gdb: silence shellcheck warning SC2162 (use read -r) in gdbarch.sh
[deliverable/binutils-gdb.git] / gdb / gdbarch.sh
1 #!/bin/sh -u
2
3 # Architecture commands for GDB, the GNU debugger.
4 #
5 # Copyright (C) 1998-2020 Free Software Foundation, Inc.
6 #
7 # This file is part of GDB.
8 #
9 # This program is free software; you can redistribute it and/or modify
10 # it under the terms of the GNU General Public License as published by
11 # the Free Software Foundation; either version 3 of the License, or
12 # (at your option) any later version.
13 #
14 # This program is distributed in the hope that it will be useful,
15 # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 # GNU General Public License for more details.
18 #
19 # You should have received a copy of the GNU General Public License
20 # along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22 # Make certain that the script is not running in an internationalized
23 # environment.
24 LANG=C ; export LANG
25 LC_ALL=C ; export LC_ALL
26
27
28 compare_new ()
29 {
30 file=$1
31 if test ! -r "${file}"
32 then
33 echo "${file} missing? cp new-${file} ${file}" 1>&2
34 elif diff -u "${file}" "new-${file}"
35 then
36 echo "${file} unchanged" 1>&2
37 else
38 echo "${file} has changed? cp new-${file} ${file}" 1>&2
39 fi
40 }
41
42
43 # Format of the input table
44 read="class returntype function formal actual staticdefault predefault postdefault invalid_p print garbage_at_eol"
45
46 do_read ()
47 {
48 comment=""
49 class=""
50 # On some SH's, 'read' trims leading and trailing whitespace by
51 # default (e.g., bash), while on others (e.g., dash), it doesn't.
52 # Set IFS to empty to disable the trimming everywhere.
53 # shellcheck disable=SC2162
54 while IFS='' read line
55 do
56 if test "${line}" = ""
57 then
58 continue
59 elif test "${line}" = "#" -a "${comment}" = ""
60 then
61 continue
62 elif expr "${line}" : "#" > /dev/null
63 then
64 comment="${comment}
65 ${line}"
66 else
67
68 # The semantics of IFS varies between different SH's. Some
69 # treat ``;;' as three fields while some treat it as just two.
70 # Work around this by eliminating ``;;'' ....
71 line="$(echo "${line}" | sed -e 's/;;/; ;/g' -e 's/;;/; ;/g')"
72
73 OFS="${IFS}" ; IFS="[;]"
74 eval read "${read}" <<EOF
75 ${line}
76 EOF
77 IFS="${OFS}"
78
79 if test -n "${garbage_at_eol:-}"
80 then
81 echo "Garbage at end-of-line in ${line}" 1>&2
82 kill $$
83 exit 1
84 fi
85
86 # .... and then going back through each field and strip out those
87 # that ended up with just that space character.
88 for r in ${read}
89 do
90 if eval test "\"\${${r}}\" = ' '"
91 then
92 eval "${r}="
93 fi
94 done
95
96 case "${class}" in
97 m ) staticdefault="${predefault:-}" ;;
98 M ) staticdefault="0" ;;
99 * ) test "${staticdefault}" || staticdefault=0 ;;
100 esac
101
102 case "${class}" in
103 F | V | M )
104 case "${invalid_p:-}" in
105 "" )
106 if test -n "${predefault}"
107 then
108 #invalid_p="gdbarch->${function} == ${predefault}"
109 predicate="gdbarch->${function:-} != ${predefault}"
110 elif class_is_variable_p
111 then
112 predicate="gdbarch->${function} != 0"
113 elif class_is_function_p
114 then
115 predicate="gdbarch->${function} != NULL"
116 fi
117 ;;
118 * )
119 echo "Predicate function ${function} with invalid_p." 1>&2
120 kill $$
121 exit 1
122 ;;
123 esac
124 esac
125
126 #NOT YET: See gdbarch.log for basic verification of
127 # database
128
129 break
130 fi
131 done
132 if [ -n "${class}" ]
133 then
134 true
135 else
136 false
137 fi
138 }
139
140
141 fallback_default_p ()
142 {
143 { [ -n "${postdefault:-}" ] && [ "x${invalid_p}" != "x0" ]; } \
144 || { [ -n "${predefault}" ] && [ "x${invalid_p}" = "x0" ]; }
145 }
146
147 class_is_variable_p ()
148 {
149 case "${class}" in
150 *v* | *V* ) true ;;
151 * ) false ;;
152 esac
153 }
154
155 class_is_function_p ()
156 {
157 case "${class}" in
158 *f* | *F* | *m* | *M* ) true ;;
159 * ) false ;;
160 esac
161 }
162
163 class_is_multiarch_p ()
164 {
165 case "${class}" in
166 *m* | *M* ) true ;;
167 * ) false ;;
168 esac
169 }
170
171 class_is_predicate_p ()
172 {
173 case "${class}" in
174 *F* | *V* | *M* ) true ;;
175 * ) false ;;
176 esac
177 }
178
179 class_is_info_p ()
180 {
181 case "${class}" in
182 *i* ) true ;;
183 * ) false ;;
184 esac
185 }
186
187
188 # dump out/verify the doco
189 for field in ${read}
190 do
191 case ${field} in
192
193 class ) : ;;
194
195 # # -> line disable
196 # f -> function
197 # hiding a function
198 # F -> function + predicate
199 # hiding a function + predicate to test function validity
200 # v -> variable
201 # hiding a variable
202 # V -> variable + predicate
203 # hiding a variable + predicate to test variables validity
204 # i -> set from info
205 # hiding something from the ``struct info'' object
206 # m -> multi-arch function
207 # hiding a multi-arch function (parameterised with the architecture)
208 # M -> multi-arch function + predicate
209 # hiding a multi-arch function + predicate to test function validity
210
211 returntype ) : ;;
212
213 # For functions, the return type; for variables, the data type
214
215 function ) : ;;
216
217 # For functions, the member function name; for variables, the
218 # variable name. Member function names are always prefixed with
219 # ``gdbarch_'' for name-space purity.
220
221 formal ) : ;;
222
223 # The formal argument list. It is assumed that the formal
224 # argument list includes the actual name of each list element.
225 # A function with no arguments shall have ``void'' as the
226 # formal argument list.
227
228 actual ) : ;;
229
230 # The list of actual arguments. The arguments specified shall
231 # match the FORMAL list given above. Functions with out
232 # arguments leave this blank.
233
234 staticdefault ) : ;;
235
236 # To help with the GDB startup a static gdbarch object is
237 # created. STATICDEFAULT is the value to insert into that
238 # static gdbarch object. Since this a static object only
239 # simple expressions can be used.
240
241 # If STATICDEFAULT is empty, zero is used.
242
243 predefault ) : ;;
244
245 # An initial value to assign to MEMBER of the freshly
246 # malloc()ed gdbarch object. After initialization, the
247 # freshly malloc()ed object is passed to the target
248 # architecture code for further updates.
249
250 # If PREDEFAULT is empty, zero is used.
251
252 # A non-empty PREDEFAULT, an empty POSTDEFAULT and a zero
253 # INVALID_P are specified, PREDEFAULT will be used as the
254 # default for the non- multi-arch target.
255
256 # A zero PREDEFAULT function will force the fallback to call
257 # internal_error().
258
259 # Variable declarations can refer to ``gdbarch'' which will
260 # contain the current architecture. Care should be taken.
261
262 postdefault ) : ;;
263
264 # A value to assign to MEMBER of the new gdbarch object should
265 # the target architecture code fail to change the PREDEFAULT
266 # value.
267
268 # If POSTDEFAULT is empty, no post update is performed.
269
270 # If both INVALID_P and POSTDEFAULT are non-empty then
271 # INVALID_P will be used to determine if MEMBER should be
272 # changed to POSTDEFAULT.
273
274 # If a non-empty POSTDEFAULT and a zero INVALID_P are
275 # specified, POSTDEFAULT will be used as the default for the
276 # non- multi-arch target (regardless of the value of
277 # PREDEFAULT).
278
279 # You cannot specify both a zero INVALID_P and a POSTDEFAULT.
280
281 # Variable declarations can refer to ``gdbarch'' which
282 # will contain the current architecture. Care should be
283 # taken.
284
285 invalid_p ) : ;;
286
287 # A predicate equation that validates MEMBER. Non-zero is
288 # returned if the code creating the new architecture failed to
289 # initialize MEMBER or the initialized the member is invalid.
290 # If POSTDEFAULT is non-empty then MEMBER will be updated to
291 # that value. If POSTDEFAULT is empty then internal_error()
292 # is called.
293
294 # If INVALID_P is empty, a check that MEMBER is no longer
295 # equal to PREDEFAULT is used.
296
297 # The expression ``0'' disables the INVALID_P check making
298 # PREDEFAULT a legitimate value.
299
300 # See also PREDEFAULT and POSTDEFAULT.
301
302 print ) : ;;
303
304 # An optional expression that convers MEMBER to a value
305 # suitable for formatting using %s.
306
307 # If PRINT is empty, core_addr_to_string_nz (for CORE_ADDR)
308 # or plongest (anything else) is used.
309
310 garbage_at_eol ) : ;;
311
312 # Catches stray fields.
313
314 *)
315 echo "Bad field ${field}"
316 exit 1;;
317 esac
318 done
319
320
321 function_list ()
322 {
323 # See below (DOCO) for description of each field
324 cat <<EOF
325 i;const struct bfd_arch_info *;bfd_arch_info;;;&bfd_default_arch_struct;;;;gdbarch_bfd_arch_info (gdbarch)->printable_name
326 #
327 i;enum bfd_endian;byte_order;;;BFD_ENDIAN_BIG
328 i;enum bfd_endian;byte_order_for_code;;;BFD_ENDIAN_BIG
329 #
330 i;enum gdb_osabi;osabi;;;GDB_OSABI_UNKNOWN
331 #
332 i;const struct target_desc *;target_desc;;;;;;;host_address_to_string (gdbarch->target_desc)
333
334 # Number of bits in a short or unsigned short for the target machine.
335 v;int;short_bit;;;8 * sizeof (short);2*TARGET_CHAR_BIT;;0
336 # Number of bits in an int or unsigned int for the target machine.
337 v;int;int_bit;;;8 * sizeof (int);4*TARGET_CHAR_BIT;;0
338 # Number of bits in a long or unsigned long for the target machine.
339 v;int;long_bit;;;8 * sizeof (long);4*TARGET_CHAR_BIT;;0
340 # Number of bits in a long long or unsigned long long for the target
341 # machine.
342 v;int;long_long_bit;;;8 * sizeof (LONGEST);2*gdbarch->long_bit;;0
343
344 # The ABI default bit-size and format for "half", "float", "double", and
345 # "long double". These bit/format pairs should eventually be combined
346 # into a single object. For the moment, just initialize them as a pair.
347 # Each format describes both the big and little endian layouts (if
348 # useful).
349
350 v;int;half_bit;;;16;2*TARGET_CHAR_BIT;;0
351 v;const struct floatformat **;half_format;;;;;floatformats_ieee_half;;pformat (gdbarch->half_format)
352 v;int;float_bit;;;8 * sizeof (float);4*TARGET_CHAR_BIT;;0
353 v;const struct floatformat **;float_format;;;;;floatformats_ieee_single;;pformat (gdbarch->float_format)
354 v;int;double_bit;;;8 * sizeof (double);8*TARGET_CHAR_BIT;;0
355 v;const struct floatformat **;double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->double_format)
356 v;int;long_double_bit;;;8 * sizeof (long double);8*TARGET_CHAR_BIT;;0
357 v;const struct floatformat **;long_double_format;;;;;floatformats_ieee_double;;pformat (gdbarch->long_double_format)
358
359 # The ABI default bit-size for "wchar_t". wchar_t is a built-in type
360 # starting with C++11.
361 v;int;wchar_bit;;;8 * sizeof (wchar_t);4*TARGET_CHAR_BIT;;0
362 # One if \`wchar_t' is signed, zero if unsigned.
363 v;int;wchar_signed;;;1;-1;1
364
365 # Returns the floating-point format to be used for values of length LENGTH.
366 # NAME, if non-NULL, is the type name, which may be used to distinguish
367 # different target formats of the same length.
368 m;const struct floatformat **;floatformat_for_type;const char *name, int length;name, length;0;default_floatformat_for_type;;0
369
370 # For most targets, a pointer on the target and its representation as an
371 # address in GDB have the same size and "look the same". For such a
372 # target, you need only set gdbarch_ptr_bit and gdbarch_addr_bit
373 # / addr_bit will be set from it.
374 #
375 # If gdbarch_ptr_bit and gdbarch_addr_bit are different, you'll probably
376 # also need to set gdbarch_dwarf2_addr_size, gdbarch_pointer_to_address and
377 # gdbarch_address_to_pointer as well.
378 #
379 # ptr_bit is the size of a pointer on the target
380 v;int;ptr_bit;;;8 * sizeof (void*);gdbarch->int_bit;;0
381 # addr_bit is the size of a target address as represented in gdb
382 v;int;addr_bit;;;8 * sizeof (void*);0;gdbarch_ptr_bit (gdbarch);
383 #
384 # dwarf2_addr_size is the target address size as used in the Dwarf debug
385 # info. For .debug_frame FDEs, this is supposed to be the target address
386 # size from the associated CU header, and which is equivalent to the
387 # DWARF2_ADDR_SIZE as defined by the target specific GCC back-end.
388 # Unfortunately there is no good way to determine this value. Therefore
389 # dwarf2_addr_size simply defaults to the target pointer size.
390 #
391 # dwarf2_addr_size is not used for .eh_frame FDEs, which are generally
392 # defined using the target's pointer size so far.
393 #
394 # Note that dwarf2_addr_size only needs to be redefined by a target if the
395 # GCC back-end defines a DWARF2_ADDR_SIZE other than the target pointer size,
396 # and if Dwarf versions < 4 need to be supported.
397 v;int;dwarf2_addr_size;;;sizeof (void*);0;gdbarch_ptr_bit (gdbarch) / TARGET_CHAR_BIT;
398 #
399 # One if \`char' acts like \`signed char', zero if \`unsigned char'.
400 v;int;char_signed;;;1;-1;1
401 #
402 F;CORE_ADDR;read_pc;readable_regcache *regcache;regcache
403 F;void;write_pc;struct regcache *regcache, CORE_ADDR val;regcache, val
404 # Function for getting target's idea of a frame pointer. FIXME: GDB's
405 # whole scheme for dealing with "frames" and "frame pointers" needs a
406 # serious shakedown.
407 m;void;virtual_frame_pointer;CORE_ADDR pc, int *frame_regnum, LONGEST *frame_offset;pc, frame_regnum, frame_offset;0;legacy_virtual_frame_pointer;;0
408 #
409 M;enum register_status;pseudo_register_read;readable_regcache *regcache, int cookednum, gdb_byte *buf;regcache, cookednum, buf
410 # Read a register into a new struct value. If the register is wholly
411 # or partly unavailable, this should call mark_value_bytes_unavailable
412 # as appropriate. If this is defined, then pseudo_register_read will
413 # never be called.
414 M;struct value *;pseudo_register_read_value;readable_regcache *regcache, int cookednum;regcache, cookednum
415 M;void;pseudo_register_write;struct regcache *regcache, int cookednum, const gdb_byte *buf;regcache, cookednum, buf
416 #
417 v;int;num_regs;;;0;-1
418 # This macro gives the number of pseudo-registers that live in the
419 # register namespace but do not get fetched or stored on the target.
420 # These pseudo-registers may be aliases for other registers,
421 # combinations of other registers, or they may be computed by GDB.
422 v;int;num_pseudo_regs;;;0;0;;0
423
424 # Assemble agent expression bytecode to collect pseudo-register REG.
425 # Return -1 if something goes wrong, 0 otherwise.
426 M;int;ax_pseudo_register_collect;struct agent_expr *ax, int reg;ax, reg
427
428 # Assemble agent expression bytecode to push the value of pseudo-register
429 # REG on the interpreter stack.
430 # Return -1 if something goes wrong, 0 otherwise.
431 M;int;ax_pseudo_register_push_stack;struct agent_expr *ax, int reg;ax, reg
432
433 # Some targets/architectures can do extra processing/display of
434 # segmentation faults. E.g., Intel MPX boundary faults.
435 # Call the architecture dependent function to handle the fault.
436 # UIOUT is the output stream where the handler will place information.
437 M;void;handle_segmentation_fault;struct ui_out *uiout;uiout
438
439 # GDB's standard (or well known) register numbers. These can map onto
440 # a real register or a pseudo (computed) register or not be defined at
441 # all (-1).
442 # gdbarch_sp_regnum will hopefully be replaced by UNWIND_SP.
443 v;int;sp_regnum;;;-1;-1;;0
444 v;int;pc_regnum;;;-1;-1;;0
445 v;int;ps_regnum;;;-1;-1;;0
446 v;int;fp0_regnum;;;0;-1;;0
447 # Convert stab register number (from \`r\' declaration) to a gdb REGNUM.
448 m;int;stab_reg_to_regnum;int stab_regnr;stab_regnr;;no_op_reg_to_regnum;;0
449 # Provide a default mapping from a ecoff register number to a gdb REGNUM.
450 m;int;ecoff_reg_to_regnum;int ecoff_regnr;ecoff_regnr;;no_op_reg_to_regnum;;0
451 # Convert from an sdb register number to an internal gdb register number.
452 m;int;sdb_reg_to_regnum;int sdb_regnr;sdb_regnr;;no_op_reg_to_regnum;;0
453 # Provide a default mapping from a DWARF2 register number to a gdb REGNUM.
454 # Return -1 for bad REGNUM. Note: Several targets get this wrong.
455 m;int;dwarf2_reg_to_regnum;int dwarf2_regnr;dwarf2_regnr;;no_op_reg_to_regnum;;0
456 m;const char *;register_name;int regnr;regnr;;0
457
458 # Return the type of a register specified by the architecture. Only
459 # the register cache should call this function directly; others should
460 # use "register_type".
461 M;struct type *;register_type;int reg_nr;reg_nr
462
463 # Generate a dummy frame_id for THIS_FRAME assuming that the frame is
464 # a dummy frame. A dummy frame is created before an inferior call,
465 # the frame_id returned here must match the frame_id that was built
466 # for the inferior call. Usually this means the returned frame_id's
467 # stack address should match the address returned by
468 # gdbarch_push_dummy_call, and the returned frame_id's code address
469 # should match the address at which the breakpoint was set in the dummy
470 # frame.
471 m;struct frame_id;dummy_id;struct frame_info *this_frame;this_frame;;default_dummy_id;;0
472 # Implement DUMMY_ID and PUSH_DUMMY_CALL, then delete
473 # deprecated_fp_regnum.
474 v;int;deprecated_fp_regnum;;;-1;-1;;0
475
476 M;CORE_ADDR;push_dummy_call;struct value *function, struct regcache *regcache, CORE_ADDR bp_addr, int nargs, struct value **args, CORE_ADDR sp, function_call_return_method return_method, CORE_ADDR struct_addr;function, regcache, bp_addr, nargs, args, sp, return_method, struct_addr
477 v;int;call_dummy_location;;;;AT_ENTRY_POINT;;0
478 M;CORE_ADDR;push_dummy_code;CORE_ADDR sp, CORE_ADDR funaddr, struct value **args, int nargs, struct type *value_type, CORE_ADDR *real_pc, CORE_ADDR *bp_addr, struct regcache *regcache;sp, funaddr, args, nargs, value_type, real_pc, bp_addr, regcache
479
480 # Return true if the code of FRAME is writable.
481 m;int;code_of_frame_writable;struct frame_info *frame;frame;;default_code_of_frame_writable;;0
482
483 m;void;print_registers_info;struct ui_file *file, struct frame_info *frame, int regnum, int all;file, frame, regnum, all;;default_print_registers_info;;0
484 m;void;print_float_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args;;default_print_float_info;;0
485 M;void;print_vector_info;struct ui_file *file, struct frame_info *frame, const char *args;file, frame, args
486 # MAP a GDB RAW register number onto a simulator register number. See
487 # also include/...-sim.h.
488 m;int;register_sim_regno;int reg_nr;reg_nr;;legacy_register_sim_regno;;0
489 m;int;cannot_fetch_register;int regnum;regnum;;cannot_register_not;;0
490 m;int;cannot_store_register;int regnum;regnum;;cannot_register_not;;0
491
492 # Determine the address where a longjmp will land and save this address
493 # in PC. Return nonzero on success.
494 #
495 # FRAME corresponds to the longjmp frame.
496 F;int;get_longjmp_target;struct frame_info *frame, CORE_ADDR *pc;frame, pc
497
498 #
499 v;int;believe_pcc_promotion;;;;;;;
500 #
501 m;int;convert_register_p;int regnum, struct type *type;regnum, type;0;generic_convert_register_p;;0
502 f;int;register_to_value;struct frame_info *frame, int regnum, struct type *type, gdb_byte *buf, int *optimizedp, int *unavailablep;frame, regnum, type, buf, optimizedp, unavailablep;0
503 f;void;value_to_register;struct frame_info *frame, int regnum, struct type *type, const gdb_byte *buf;frame, regnum, type, buf;0
504 # Construct a value representing the contents of register REGNUM in
505 # frame FRAME_ID, interpreted as type TYPE. The routine needs to
506 # allocate and return a struct value with all value attributes
507 # (but not the value contents) filled in.
508 m;struct value *;value_from_register;struct type *type, int regnum, struct frame_id frame_id;type, regnum, frame_id;;default_value_from_register;;0
509 #
510 m;CORE_ADDR;pointer_to_address;struct type *type, const gdb_byte *buf;type, buf;;unsigned_pointer_to_address;;0
511 m;void;address_to_pointer;struct type *type, gdb_byte *buf, CORE_ADDR addr;type, buf, addr;;unsigned_address_to_pointer;;0
512 M;CORE_ADDR;integer_to_address;struct type *type, const gdb_byte *buf;type, buf
513
514 # Return the return-value convention that will be used by FUNCTION
515 # to return a value of type VALTYPE. FUNCTION may be NULL in which
516 # case the return convention is computed based only on VALTYPE.
517 #
518 # If READBUF is not NULL, extract the return value and save it in this buffer.
519 #
520 # If WRITEBUF is not NULL, it contains a return value which will be
521 # stored into the appropriate register. This can be used when we want
522 # to force the value returned by a function (see the "return" command
523 # for instance).
524 M;enum return_value_convention;return_value;struct value *function, struct type *valtype, struct regcache *regcache, gdb_byte *readbuf, const gdb_byte *writebuf;function, valtype, regcache, readbuf, writebuf
525
526 # Return true if the return value of function is stored in the first hidden
527 # parameter. In theory, this feature should be language-dependent, specified
528 # by language and its ABI, such as C++. Unfortunately, compiler may
529 # implement it to a target-dependent feature. So that we need such hook here
530 # to be aware of this in GDB.
531 m;int;return_in_first_hidden_param_p;struct type *type;type;;default_return_in_first_hidden_param_p;;0
532
533 m;CORE_ADDR;skip_prologue;CORE_ADDR ip;ip;0;0
534 M;CORE_ADDR;skip_main_prologue;CORE_ADDR ip;ip
535 # On some platforms, a single function may provide multiple entry points,
536 # e.g. one that is used for function-pointer calls and a different one
537 # that is used for direct function calls.
538 # In order to ensure that breakpoints set on the function will trigger
539 # no matter via which entry point the function is entered, a platform
540 # may provide the skip_entrypoint callback. It is called with IP set
541 # to the main entry point of a function (as determined by the symbol table),
542 # and should return the address of the innermost entry point, where the
543 # actual breakpoint needs to be set. Note that skip_entrypoint is used
544 # by GDB common code even when debugging optimized code, where skip_prologue
545 # is not used.
546 M;CORE_ADDR;skip_entrypoint;CORE_ADDR ip;ip
547
548 f;int;inner_than;CORE_ADDR lhs, CORE_ADDR rhs;lhs, rhs;0;0
549 m;const gdb_byte *;breakpoint_from_pc;CORE_ADDR *pcptr, int *lenptr;pcptr, lenptr;0;default_breakpoint_from_pc;;0
550
551 # Return the breakpoint kind for this target based on *PCPTR.
552 m;int;breakpoint_kind_from_pc;CORE_ADDR *pcptr;pcptr;;0;
553
554 # Return the software breakpoint from KIND. KIND can have target
555 # specific meaning like the Z0 kind parameter.
556 # SIZE is set to the software breakpoint's length in memory.
557 m;const gdb_byte *;sw_breakpoint_from_kind;int kind, int *size;kind, size;;NULL;;0
558
559 # Return the breakpoint kind for this target based on the current
560 # processor state (e.g. the current instruction mode on ARM) and the
561 # *PCPTR. In default, it is gdbarch->breakpoint_kind_from_pc.
562 m;int;breakpoint_kind_from_current_state;struct regcache *regcache, CORE_ADDR *pcptr;regcache, pcptr;0;default_breakpoint_kind_from_current_state;;0
563
564 M;CORE_ADDR;adjust_breakpoint_address;CORE_ADDR bpaddr;bpaddr
565 m;int;memory_insert_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_insert_breakpoint;;0
566 m;int;memory_remove_breakpoint;struct bp_target_info *bp_tgt;bp_tgt;0;default_memory_remove_breakpoint;;0
567 v;CORE_ADDR;decr_pc_after_break;;;0;;;0
568
569 # A function can be addressed by either it's "pointer" (possibly a
570 # descriptor address) or "entry point" (first executable instruction).
571 # The method "convert_from_func_ptr_addr" converting the former to the
572 # latter. gdbarch_deprecated_function_start_offset is being used to implement
573 # a simplified subset of that functionality - the function's address
574 # corresponds to the "function pointer" and the function's start
575 # corresponds to the "function entry point" - and hence is redundant.
576
577 v;CORE_ADDR;deprecated_function_start_offset;;;0;;;0
578
579 # Return the remote protocol register number associated with this
580 # register. Normally the identity mapping.
581 m;int;remote_register_number;int regno;regno;;default_remote_register_number;;0
582
583 # Fetch the target specific address used to represent a load module.
584 F;CORE_ADDR;fetch_tls_load_module_address;struct objfile *objfile;objfile
585
586 # Return the thread-local address at OFFSET in the thread-local
587 # storage for the thread PTID and the shared library or executable
588 # file given by LM_ADDR. If that block of thread-local storage hasn't
589 # been allocated yet, this function may throw an error. LM_ADDR may
590 # be zero for statically linked multithreaded inferiors.
591
592 M;CORE_ADDR;get_thread_local_address;ptid_t ptid, CORE_ADDR lm_addr, CORE_ADDR offset;ptid, lm_addr, offset
593 #
594 v;CORE_ADDR;frame_args_skip;;;0;;;0
595 m;CORE_ADDR;unwind_pc;struct frame_info *next_frame;next_frame;;default_unwind_pc;;0
596 m;CORE_ADDR;unwind_sp;struct frame_info *next_frame;next_frame;;default_unwind_sp;;0
597 # DEPRECATED_FRAME_LOCALS_ADDRESS as been replaced by the per-frame
598 # frame-base. Enable frame-base before frame-unwind.
599 F;int;frame_num_args;struct frame_info *frame;frame
600 #
601 M;CORE_ADDR;frame_align;CORE_ADDR address;address
602 m;int;stabs_argument_has_addr;struct type *type;type;;default_stabs_argument_has_addr;;0
603 v;int;frame_red_zone_size
604 #
605 m;CORE_ADDR;convert_from_func_ptr_addr;CORE_ADDR addr, struct target_ops *targ;addr, targ;;convert_from_func_ptr_addr_identity;;0
606 # On some machines there are bits in addresses which are not really
607 # part of the address, but are used by the kernel, the hardware, etc.
608 # for special purposes. gdbarch_addr_bits_remove takes out any such bits so
609 # we get a "real" address such as one would find in a symbol table.
610 # This is used only for addresses of instructions, and even then I'm
611 # not sure it's used in all contexts. It exists to deal with there
612 # being a few stray bits in the PC which would mislead us, not as some
613 # sort of generic thing to handle alignment or segmentation (it's
614 # possible it should be in TARGET_READ_PC instead).
615 m;CORE_ADDR;addr_bits_remove;CORE_ADDR addr;addr;;core_addr_identity;;0
616
617 # On some machines, not all bits of an address word are significant.
618 # For example, on AArch64, the top bits of an address known as the "tag"
619 # are ignored by the kernel, the hardware, etc. and can be regarded as
620 # additional data associated with the address.
621 v;int;significant_addr_bit;;;;;;0
622
623 # FIXME/cagney/2001-01-18: This should be split in two. A target method that
624 # indicates if the target needs software single step. An ISA method to
625 # implement it.
626 #
627 # FIXME/cagney/2001-01-18: The logic is backwards. It should be asking if the
628 # target can single step. If not, then implement single step using breakpoints.
629 #
630 # Return a vector of addresses on which the software single step
631 # breakpoints should be inserted. NULL means software single step is
632 # not used.
633 # Multiple breakpoints may be inserted for some instructions such as
634 # conditional branch. However, each implementation must always evaluate
635 # the condition and only put the breakpoint at the branch destination if
636 # the condition is true, so that we ensure forward progress when stepping
637 # past a conditional branch to self.
638 F;std::vector<CORE_ADDR>;software_single_step;struct regcache *regcache;regcache
639
640 # Return non-zero if the processor is executing a delay slot and a
641 # further single-step is needed before the instruction finishes.
642 M;int;single_step_through_delay;struct frame_info *frame;frame
643 # FIXME: cagney/2003-08-28: Need to find a better way of selecting the
644 # disassembler. Perhaps objdump can handle it?
645 f;int;print_insn;bfd_vma vma, struct disassemble_info *info;vma, info;;default_print_insn;;0
646 f;CORE_ADDR;skip_trampoline_code;struct frame_info *frame, CORE_ADDR pc;frame, pc;;generic_skip_trampoline_code;;0
647
648
649 # If in_solib_dynsym_resolve_code() returns true, and SKIP_SOLIB_RESOLVER
650 # evaluates non-zero, this is the address where the debugger will place
651 # a step-resume breakpoint to get us past the dynamic linker.
652 m;CORE_ADDR;skip_solib_resolver;CORE_ADDR pc;pc;;generic_skip_solib_resolver;;0
653 # Some systems also have trampoline code for returning from shared libs.
654 m;int;in_solib_return_trampoline;CORE_ADDR pc, const char *name;pc, name;;generic_in_solib_return_trampoline;;0
655
656 # Return true if PC lies inside an indirect branch thunk.
657 m;bool;in_indirect_branch_thunk;CORE_ADDR pc;pc;;default_in_indirect_branch_thunk;;0
658
659 # A target might have problems with watchpoints as soon as the stack
660 # frame of the current function has been destroyed. This mostly happens
661 # as the first action in a function's epilogue. stack_frame_destroyed_p()
662 # is defined to return a non-zero value if either the given addr is one
663 # instruction after the stack destroying instruction up to the trailing
664 # return instruction or if we can figure out that the stack frame has
665 # already been invalidated regardless of the value of addr. Targets
666 # which don't suffer from that problem could just let this functionality
667 # untouched.
668 m;int;stack_frame_destroyed_p;CORE_ADDR addr;addr;0;generic_stack_frame_destroyed_p;;0
669 # Process an ELF symbol in the minimal symbol table in a backend-specific
670 # way. Normally this hook is supposed to do nothing, however if required,
671 # then this hook can be used to apply tranformations to symbols that are
672 # considered special in some way. For example the MIPS backend uses it
673 # to interpret \`st_other' information to mark compressed code symbols so
674 # that they can be treated in the appropriate manner in the processing of
675 # the main symbol table and DWARF-2 records.
676 F;void;elf_make_msymbol_special;asymbol *sym, struct minimal_symbol *msym;sym, msym
677 f;void;coff_make_msymbol_special;int val, struct minimal_symbol *msym;val, msym;;default_coff_make_msymbol_special;;0
678 # Process a symbol in the main symbol table in a backend-specific way.
679 # Normally this hook is supposed to do nothing, however if required,
680 # then this hook can be used to apply tranformations to symbols that
681 # are considered special in some way. This is currently used by the
682 # MIPS backend to make sure compressed code symbols have the ISA bit
683 # set. This in turn is needed for symbol values seen in GDB to match
684 # the values used at the runtime by the program itself, for function
685 # and label references.
686 f;void;make_symbol_special;struct symbol *sym, struct objfile *objfile;sym, objfile;;default_make_symbol_special;;0
687 # Adjust the address retrieved from a DWARF-2 record other than a line
688 # entry in a backend-specific way. Normally this hook is supposed to
689 # return the address passed unchanged, however if that is incorrect for
690 # any reason, then this hook can be used to fix the address up in the
691 # required manner. This is currently used by the MIPS backend to make
692 # sure addresses in FDE, range records, etc. referring to compressed
693 # code have the ISA bit set, matching line information and the symbol
694 # table.
695 f;CORE_ADDR;adjust_dwarf2_addr;CORE_ADDR pc;pc;;default_adjust_dwarf2_addr;;0
696 # Adjust the address updated by a line entry in a backend-specific way.
697 # Normally this hook is supposed to return the address passed unchanged,
698 # however in the case of inconsistencies in these records, this hook can
699 # be used to fix them up in the required manner. This is currently used
700 # by the MIPS backend to make sure all line addresses in compressed code
701 # are presented with the ISA bit set, which is not always the case. This
702 # in turn ensures breakpoint addresses are correctly matched against the
703 # stop PC.
704 f;CORE_ADDR;adjust_dwarf2_line;CORE_ADDR addr, int rel;addr, rel;;default_adjust_dwarf2_line;;0
705 v;int;cannot_step_breakpoint;;;0;0;;0
706 # See comment in target.h about continuable, steppable and
707 # non-steppable watchpoints.
708 v;int;have_nonsteppable_watchpoint;;;0;0;;0
709 F;int;address_class_type_flags;int byte_size, int dwarf2_addr_class;byte_size, dwarf2_addr_class
710 M;const char *;address_class_type_flags_to_name;int type_flags;type_flags
711 # Execute vendor-specific DWARF Call Frame Instruction. OP is the instruction.
712 # FS are passed from the generic execute_cfa_program function.
713 m;bool;execute_dwarf_cfa_vendor_op;gdb_byte op, struct dwarf2_frame_state *fs;op, fs;;default_execute_dwarf_cfa_vendor_op;;0
714
715 # Return the appropriate type_flags for the supplied address class.
716 # This function should return 1 if the address class was recognized and
717 # type_flags was set, zero otherwise.
718 M;int;address_class_name_to_type_flags;const char *name, int *type_flags_ptr;name, type_flags_ptr
719 # Is a register in a group
720 m;int;register_reggroup_p;int regnum, struct reggroup *reggroup;regnum, reggroup;;default_register_reggroup_p;;0
721 # Fetch the pointer to the ith function argument.
722 F;CORE_ADDR;fetch_pointer_argument;struct frame_info *frame, int argi, struct type *type;frame, argi, type
723
724 # Iterate over all supported register notes in a core file. For each
725 # supported register note section, the iterator must call CB and pass
726 # CB_DATA unchanged. If REGCACHE is not NULL, the iterator can limit
727 # the supported register note sections based on the current register
728 # values. Otherwise it should enumerate all supported register note
729 # sections.
730 M;void;iterate_over_regset_sections;iterate_over_regset_sections_cb *cb, void *cb_data, const struct regcache *regcache;cb, cb_data, regcache
731
732 # Create core file notes
733 M;char *;make_corefile_notes;bfd *obfd, int *note_size;obfd, note_size
734
735 # Find core file memory regions
736 M;int;find_memory_regions;find_memory_region_ftype func, void *data;func, data
737
738 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES formatted shared libraries list from
739 # core file into buffer READBUF with length LEN. Return the number of bytes read
740 # (zero indicates failure).
741 # failed, otherwise, return the red length of READBUF.
742 M;ULONGEST;core_xfer_shared_libraries;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
743
744 # Read offset OFFSET of TARGET_OBJECT_LIBRARIES_AIX formatted shared
745 # libraries list from core file into buffer READBUF with length LEN.
746 # Return the number of bytes read (zero indicates failure).
747 M;ULONGEST;core_xfer_shared_libraries_aix;gdb_byte *readbuf, ULONGEST offset, ULONGEST len;readbuf, offset, len
748
749 # How the core target converts a PTID from a core file to a string.
750 M;std::string;core_pid_to_str;ptid_t ptid;ptid
751
752 # How the core target extracts the name of a thread from a core file.
753 M;const char *;core_thread_name;struct thread_info *thr;thr
754
755 # Read offset OFFSET of TARGET_OBJECT_SIGNAL_INFO signal information
756 # from core file into buffer READBUF with length LEN. Return the number
757 # of bytes read (zero indicates EOF, a negative value indicates failure).
758 M;LONGEST;core_xfer_siginfo;gdb_byte *readbuf, ULONGEST offset, ULONGEST len; readbuf, offset, len
759
760 # BFD target to use when generating a core file.
761 V;const char *;gcore_bfd_target;;;0;0;;;pstring (gdbarch->gcore_bfd_target)
762
763 # If the elements of C++ vtables are in-place function descriptors rather
764 # than normal function pointers (which may point to code or a descriptor),
765 # set this to one.
766 v;int;vtable_function_descriptors;;;0;0;;0
767
768 # Set if the least significant bit of the delta is used instead of the least
769 # significant bit of the pfn for pointers to virtual member functions.
770 v;int;vbit_in_delta;;;0;0;;0
771
772 # Advance PC to next instruction in order to skip a permanent breakpoint.
773 f;void;skip_permanent_breakpoint;struct regcache *regcache;regcache;default_skip_permanent_breakpoint;default_skip_permanent_breakpoint;;0
774
775 # The maximum length of an instruction on this architecture in bytes.
776 V;ULONGEST;max_insn_length;;;0;0
777
778 # Copy the instruction at FROM to TO, and make any adjustments
779 # necessary to single-step it at that address.
780 #
781 # REGS holds the state the thread's registers will have before
782 # executing the copied instruction; the PC in REGS will refer to FROM,
783 # not the copy at TO. The caller should update it to point at TO later.
784 #
785 # Return a pointer to data of the architecture's choice to be passed
786 # to gdbarch_displaced_step_fixup. Or, return NULL to indicate that
787 # the instruction's effects have been completely simulated, with the
788 # resulting state written back to REGS.
789 #
790 # For a general explanation of displaced stepping and how GDB uses it,
791 # see the comments in infrun.c.
792 #
793 # The TO area is only guaranteed to have space for
794 # gdbarch_max_insn_length (arch) bytes, so this function must not
795 # write more bytes than that to that area.
796 #
797 # If you do not provide this function, GDB assumes that the
798 # architecture does not support displaced stepping.
799 #
800 # If the instruction cannot execute out of line, return NULL. The
801 # core falls back to stepping past the instruction in-line instead in
802 # that case.
803 M;displaced_step_closure_up;displaced_step_copy_insn;CORE_ADDR from, CORE_ADDR to, struct regcache *regs;from, to, regs
804
805 # Return true if GDB should use hardware single-stepping to execute
806 # the displaced instruction identified by CLOSURE. If false,
807 # GDB will simply restart execution at the displaced instruction
808 # location, and it is up to the target to ensure GDB will receive
809 # control again (e.g. by placing a software breakpoint instruction
810 # into the displaced instruction buffer).
811 #
812 # The default implementation returns false on all targets that
813 # provide a gdbarch_software_single_step routine, and true otherwise.
814 m;int;displaced_step_hw_singlestep;struct displaced_step_closure *closure;closure;;default_displaced_step_hw_singlestep;;0
815
816 # Fix up the state resulting from successfully single-stepping a
817 # displaced instruction, to give the result we would have gotten from
818 # stepping the instruction in its original location.
819 #
820 # REGS is the register state resulting from single-stepping the
821 # displaced instruction.
822 #
823 # CLOSURE is the result from the matching call to
824 # gdbarch_displaced_step_copy_insn.
825 #
826 # If you provide gdbarch_displaced_step_copy_insn.but not this
827 # function, then GDB assumes that no fixup is needed after
828 # single-stepping the instruction.
829 #
830 # For a general explanation of displaced stepping and how GDB uses it,
831 # see the comments in infrun.c.
832 M;void;displaced_step_fixup;struct displaced_step_closure *closure, CORE_ADDR from, CORE_ADDR to, struct regcache *regs;closure, from, to, regs;;NULL
833
834 # Return the address of an appropriate place to put displaced
835 # instructions while we step over them. There need only be one such
836 # place, since we're only stepping one thread over a breakpoint at a
837 # time.
838 #
839 # For a general explanation of displaced stepping and how GDB uses it,
840 # see the comments in infrun.c.
841 m;CORE_ADDR;displaced_step_location;void;;;NULL;;(! gdbarch->displaced_step_location) != (! gdbarch->displaced_step_copy_insn)
842
843 # Relocate an instruction to execute at a different address. OLDLOC
844 # is the address in the inferior memory where the instruction to
845 # relocate is currently at. On input, TO points to the destination
846 # where we want the instruction to be copied (and possibly adjusted)
847 # to. On output, it points to one past the end of the resulting
848 # instruction(s). The effect of executing the instruction at TO shall
849 # be the same as if executing it at FROM. For example, call
850 # instructions that implicitly push the return address on the stack
851 # should be adjusted to return to the instruction after OLDLOC;
852 # relative branches, and other PC-relative instructions need the
853 # offset adjusted; etc.
854 M;void;relocate_instruction;CORE_ADDR *to, CORE_ADDR from;to, from;;NULL
855
856 # Refresh overlay mapped state for section OSECT.
857 F;void;overlay_update;struct obj_section *osect;osect
858
859 M;const struct target_desc *;core_read_description;struct target_ops *target, bfd *abfd;target, abfd
860
861 # Handle special encoding of static variables in stabs debug info.
862 F;const char *;static_transform_name;const char *name;name
863 # Set if the address in N_SO or N_FUN stabs may be zero.
864 v;int;sofun_address_maybe_missing;;;0;0;;0
865
866 # Parse the instruction at ADDR storing in the record execution log
867 # the registers REGCACHE and memory ranges that will be affected when
868 # the instruction executes, along with their current values.
869 # Return -1 if something goes wrong, 0 otherwise.
870 M;int;process_record;struct regcache *regcache, CORE_ADDR addr;regcache, addr
871
872 # Save process state after a signal.
873 # Return -1 if something goes wrong, 0 otherwise.
874 M;int;process_record_signal;struct regcache *regcache, enum gdb_signal signal;regcache, signal
875
876 # Signal translation: translate inferior's signal (target's) number
877 # into GDB's representation. The implementation of this method must
878 # be host independent. IOW, don't rely on symbols of the NAT_FILE
879 # header (the nm-*.h files), the host <signal.h> header, or similar
880 # headers. This is mainly used when cross-debugging core files ---
881 # "Live" targets hide the translation behind the target interface
882 # (target_wait, target_resume, etc.).
883 M;enum gdb_signal;gdb_signal_from_target;int signo;signo
884
885 # Signal translation: translate the GDB's internal signal number into
886 # the inferior's signal (target's) representation. The implementation
887 # of this method must be host independent. IOW, don't rely on symbols
888 # of the NAT_FILE header (the nm-*.h files), the host <signal.h>
889 # header, or similar headers.
890 # Return the target signal number if found, or -1 if the GDB internal
891 # signal number is invalid.
892 M;int;gdb_signal_to_target;enum gdb_signal signal;signal
893
894 # Extra signal info inspection.
895 #
896 # Return a type suitable to inspect extra signal information.
897 M;struct type *;get_siginfo_type;void;
898
899 # Record architecture-specific information from the symbol table.
900 M;void;record_special_symbol;struct objfile *objfile, asymbol *sym;objfile, sym
901
902 # Function for the 'catch syscall' feature.
903
904 # Get architecture-specific system calls information from registers.
905 M;LONGEST;get_syscall_number;thread_info *thread;thread
906
907 # The filename of the XML syscall for this architecture.
908 v;const char *;xml_syscall_file;;;0;0;;0;pstring (gdbarch->xml_syscall_file)
909
910 # Information about system calls from this architecture
911 v;struct syscalls_info *;syscalls_info;;;0;0;;0;host_address_to_string (gdbarch->syscalls_info)
912
913 # SystemTap related fields and functions.
914
915 # A NULL-terminated array of prefixes used to mark an integer constant
916 # on the architecture's assembly.
917 # For example, on x86 integer constants are written as:
918 #
919 # \$10 ;; integer constant 10
920 #
921 # in this case, this prefix would be the character \`\$\'.
922 v;const char *const *;stap_integer_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_prefixes)
923
924 # A NULL-terminated array of suffixes used to mark an integer constant
925 # on the architecture's assembly.
926 v;const char *const *;stap_integer_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_integer_suffixes)
927
928 # A NULL-terminated array of prefixes used to mark a register name on
929 # the architecture's assembly.
930 # For example, on x86 the register name is written as:
931 #
932 # \%eax ;; register eax
933 #
934 # in this case, this prefix would be the character \`\%\'.
935 v;const char *const *;stap_register_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_prefixes)
936
937 # A NULL-terminated array of suffixes used to mark a register name on
938 # the architecture's assembly.
939 v;const char *const *;stap_register_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_suffixes)
940
941 # A NULL-terminated array of prefixes used to mark a register
942 # indirection on the architecture's assembly.
943 # For example, on x86 the register indirection is written as:
944 #
945 # \(\%eax\) ;; indirecting eax
946 #
947 # in this case, this prefix would be the charater \`\(\'.
948 #
949 # Please note that we use the indirection prefix also for register
950 # displacement, e.g., \`4\(\%eax\)\' on x86.
951 v;const char *const *;stap_register_indirection_prefixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_prefixes)
952
953 # A NULL-terminated array of suffixes used to mark a register
954 # indirection on the architecture's assembly.
955 # For example, on x86 the register indirection is written as:
956 #
957 # \(\%eax\) ;; indirecting eax
958 #
959 # in this case, this prefix would be the charater \`\)\'.
960 #
961 # Please note that we use the indirection suffix also for register
962 # displacement, e.g., \`4\(\%eax\)\' on x86.
963 v;const char *const *;stap_register_indirection_suffixes;;;0;0;;0;pstring_list (gdbarch->stap_register_indirection_suffixes)
964
965 # Prefix(es) used to name a register using GDB's nomenclature.
966 #
967 # For example, on PPC a register is represented by a number in the assembly
968 # language (e.g., \`10\' is the 10th general-purpose register). However,
969 # inside GDB this same register has an \`r\' appended to its name, so the 10th
970 # register would be represented as \`r10\' internally.
971 v;const char *;stap_gdb_register_prefix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_prefix)
972
973 # Suffix used to name a register using GDB's nomenclature.
974 v;const char *;stap_gdb_register_suffix;;;0;0;;0;pstring (gdbarch->stap_gdb_register_suffix)
975
976 # Check if S is a single operand.
977 #
978 # Single operands can be:
979 # \- Literal integers, e.g. \`\$10\' on x86
980 # \- Register access, e.g. \`\%eax\' on x86
981 # \- Register indirection, e.g. \`\(\%eax\)\' on x86
982 # \- Register displacement, e.g. \`4\(\%eax\)\' on x86
983 #
984 # This function should check for these patterns on the string
985 # and return 1 if some were found, or zero otherwise. Please try to match
986 # as much info as you can from the string, i.e., if you have to match
987 # something like \`\(\%\', do not match just the \`\(\'.
988 M;int;stap_is_single_operand;const char *s;s
989
990 # Function used to handle a "special case" in the parser.
991 #
992 # A "special case" is considered to be an unknown token, i.e., a token
993 # that the parser does not know how to parse. A good example of special
994 # case would be ARM's register displacement syntax:
995 #
996 # [R0, #4] ;; displacing R0 by 4
997 #
998 # Since the parser assumes that a register displacement is of the form:
999 #
1000 # <number> <indirection_prefix> <register_name> <indirection_suffix>
1001 #
1002 # it means that it will not be able to recognize and parse this odd syntax.
1003 # Therefore, we should add a special case function that will handle this token.
1004 #
1005 # This function should generate the proper expression form of the expression
1006 # using GDB\'s internal expression mechanism (e.g., \`write_exp_elt_opcode\'
1007 # and so on). It should also return 1 if the parsing was successful, or zero
1008 # if the token was not recognized as a special token (in this case, returning
1009 # zero means that the special parser is deferring the parsing to the generic
1010 # parser), and should advance the buffer pointer (p->arg).
1011 M;int;stap_parse_special_token;struct stap_parse_info *p;p
1012
1013 # Perform arch-dependent adjustments to a register name.
1014 #
1015 # In very specific situations, it may be necessary for the register
1016 # name present in a SystemTap probe's argument to be handled in a
1017 # special way. For example, on i386, GCC may over-optimize the
1018 # register allocation and use smaller registers than necessary. In
1019 # such cases, the client that is reading and evaluating the SystemTap
1020 # probe (ourselves) will need to actually fetch values from the wider
1021 # version of the register in question.
1022 #
1023 # To illustrate the example, consider the following probe argument
1024 # (i386):
1025 #
1026 # 4@%ax
1027 #
1028 # This argument says that its value can be found at the %ax register,
1029 # which is a 16-bit register. However, the argument's prefix says
1030 # that its type is "uint32_t", which is 32-bit in size. Therefore, in
1031 # this case, GDB should actually fetch the probe's value from register
1032 # %eax, not %ax. In this scenario, this function would actually
1033 # replace the register name from %ax to %eax.
1034 #
1035 # The rationale for this can be found at PR breakpoints/24541.
1036 M;std::string;stap_adjust_register;struct stap_parse_info *p, const std::string \&regname, int regnum;p, regname, regnum
1037
1038 # DTrace related functions.
1039
1040 # The expression to compute the NARTGth+1 argument to a DTrace USDT probe.
1041 # NARG must be >= 0.
1042 M;void;dtrace_parse_probe_argument;struct expr_builder *builder, int narg;builder, narg
1043
1044 # True if the given ADDR does not contain the instruction sequence
1045 # corresponding to a disabled DTrace is-enabled probe.
1046 M;int;dtrace_probe_is_enabled;CORE_ADDR addr;addr
1047
1048 # Enable a DTrace is-enabled probe at ADDR.
1049 M;void;dtrace_enable_probe;CORE_ADDR addr;addr
1050
1051 # Disable a DTrace is-enabled probe at ADDR.
1052 M;void;dtrace_disable_probe;CORE_ADDR addr;addr
1053
1054 # True if the list of shared libraries is one and only for all
1055 # processes, as opposed to a list of shared libraries per inferior.
1056 # This usually means that all processes, although may or may not share
1057 # an address space, will see the same set of symbols at the same
1058 # addresses.
1059 v;int;has_global_solist;;;0;0;;0
1060
1061 # On some targets, even though each inferior has its own private
1062 # address space, the debug interface takes care of making breakpoints
1063 # visible to all address spaces automatically. For such cases,
1064 # this property should be set to true.
1065 v;int;has_global_breakpoints;;;0;0;;0
1066
1067 # True if inferiors share an address space (e.g., uClinux).
1068 m;int;has_shared_address_space;void;;;default_has_shared_address_space;;0
1069
1070 # True if a fast tracepoint can be set at an address.
1071 m;int;fast_tracepoint_valid_at;CORE_ADDR addr, std::string *msg;addr, msg;;default_fast_tracepoint_valid_at;;0
1072
1073 # Guess register state based on tracepoint location. Used for tracepoints
1074 # where no registers have been collected, but there's only one location,
1075 # allowing us to guess the PC value, and perhaps some other registers.
1076 # On entry, regcache has all registers marked as unavailable.
1077 m;void;guess_tracepoint_registers;struct regcache *regcache, CORE_ADDR addr;regcache, addr;;default_guess_tracepoint_registers;;0
1078
1079 # Return the "auto" target charset.
1080 f;const char *;auto_charset;void;;default_auto_charset;default_auto_charset;;0
1081 # Return the "auto" target wide charset.
1082 f;const char *;auto_wide_charset;void;;default_auto_wide_charset;default_auto_wide_charset;;0
1083
1084 # If non-empty, this is a file extension that will be opened in place
1085 # of the file extension reported by the shared library list.
1086 #
1087 # This is most useful for toolchains that use a post-linker tool,
1088 # where the names of the files run on the target differ in extension
1089 # compared to the names of the files GDB should load for debug info.
1090 v;const char *;solib_symbols_extension;;;;;;;pstring (gdbarch->solib_symbols_extension)
1091
1092 # If true, the target OS has DOS-based file system semantics. That
1093 # is, absolute paths include a drive name, and the backslash is
1094 # considered a directory separator.
1095 v;int;has_dos_based_file_system;;;0;0;;0
1096
1097 # Generate bytecodes to collect the return address in a frame.
1098 # Since the bytecodes run on the target, possibly with GDB not even
1099 # connected, the full unwinding machinery is not available, and
1100 # typically this function will issue bytecodes for one or more likely
1101 # places that the return address may be found.
1102 m;void;gen_return_address;struct agent_expr *ax, struct axs_value *value, CORE_ADDR scope;ax, value, scope;;default_gen_return_address;;0
1103
1104 # Implement the "info proc" command.
1105 M;void;info_proc;const char *args, enum info_proc_what what;args, what
1106
1107 # Implement the "info proc" command for core files. Noe that there
1108 # are two "info_proc"-like methods on gdbarch -- one for core files,
1109 # one for live targets.
1110 M;void;core_info_proc;const char *args, enum info_proc_what what;args, what
1111
1112 # Iterate over all objfiles in the order that makes the most sense
1113 # for the architecture to make global symbol searches.
1114 #
1115 # CB is a callback function where OBJFILE is the objfile to be searched,
1116 # and CB_DATA a pointer to user-defined data (the same data that is passed
1117 # when calling this gdbarch method). The iteration stops if this function
1118 # returns nonzero.
1119 #
1120 # CB_DATA is a pointer to some user-defined data to be passed to
1121 # the callback.
1122 #
1123 # If not NULL, CURRENT_OBJFILE corresponds to the objfile being
1124 # inspected when the symbol search was requested.
1125 m;void;iterate_over_objfiles_in_search_order;iterate_over_objfiles_in_search_order_cb_ftype *cb, void *cb_data, struct objfile *current_objfile;cb, cb_data, current_objfile;0;default_iterate_over_objfiles_in_search_order;;0
1126
1127 # Ravenscar arch-dependent ops.
1128 v;struct ravenscar_arch_ops *;ravenscar_ops;;;NULL;NULL;;0;host_address_to_string (gdbarch->ravenscar_ops)
1129
1130 # Return non-zero if the instruction at ADDR is a call; zero otherwise.
1131 m;int;insn_is_call;CORE_ADDR addr;addr;;default_insn_is_call;;0
1132
1133 # Return non-zero if the instruction at ADDR is a return; zero otherwise.
1134 m;int;insn_is_ret;CORE_ADDR addr;addr;;default_insn_is_ret;;0
1135
1136 # Return non-zero if the instruction at ADDR is a jump; zero otherwise.
1137 m;int;insn_is_jump;CORE_ADDR addr;addr;;default_insn_is_jump;;0
1138
1139 # Return true if there's a program/permanent breakpoint planted in
1140 # memory at ADDRESS, return false otherwise.
1141 m;bool;program_breakpoint_here_p;CORE_ADDR address;address;;default_program_breakpoint_here_p;;0
1142
1143 # Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
1144 # Return 0 if *READPTR is already at the end of the buffer.
1145 # Return -1 if there is insufficient buffer for a whole entry.
1146 # Return 1 if an entry was read into *TYPEP and *VALP.
1147 M;int;auxv_parse;gdb_byte **readptr, gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp;readptr, endptr, typep, valp
1148
1149 # Print the description of a single auxv entry described by TYPE and VAL
1150 # to FILE.
1151 m;void;print_auxv_entry;struct ui_file *file, CORE_ADDR type, CORE_ADDR val;file, type, val;;default_print_auxv_entry;;0
1152
1153 # Find the address range of the current inferior's vsyscall/vDSO, and
1154 # write it to *RANGE. If the vsyscall's length can't be determined, a
1155 # range with zero length is returned. Returns true if the vsyscall is
1156 # found, false otherwise.
1157 m;int;vsyscall_range;struct mem_range *range;range;;default_vsyscall_range;;0
1158
1159 # Allocate SIZE bytes of PROT protected page aligned memory in inferior.
1160 # PROT has GDB_MMAP_PROT_* bitmask format.
1161 # Throw an error if it is not possible. Returned address is always valid.
1162 f;CORE_ADDR;infcall_mmap;CORE_ADDR size, unsigned prot;size, prot;;default_infcall_mmap;;0
1163
1164 # Deallocate SIZE bytes of memory at ADDR in inferior from gdbarch_infcall_mmap.
1165 # Print a warning if it is not possible.
1166 f;void;infcall_munmap;CORE_ADDR addr, CORE_ADDR size;addr, size;;default_infcall_munmap;;0
1167
1168 # Return string (caller has to use xfree for it) with options for GCC
1169 # to produce code for this target, typically "-m64", "-m32" or "-m31".
1170 # These options are put before CU's DW_AT_producer compilation options so that
1171 # they can override it.
1172 m;std::string;gcc_target_options;void;;;default_gcc_target_options;;0
1173
1174 # Return a regular expression that matches names used by this
1175 # architecture in GNU configury triplets. The result is statically
1176 # allocated and must not be freed. The default implementation simply
1177 # returns the BFD architecture name, which is correct in nearly every
1178 # case.
1179 m;const char *;gnu_triplet_regexp;void;;;default_gnu_triplet_regexp;;0
1180
1181 # Return the size in 8-bit bytes of an addressable memory unit on this
1182 # architecture. This corresponds to the number of 8-bit bytes associated to
1183 # each address in memory.
1184 m;int;addressable_memory_unit_size;void;;;default_addressable_memory_unit_size;;0
1185
1186 # Functions for allowing a target to modify its disassembler options.
1187 v;const char *;disassembler_options_implicit;;;0;0;;0;pstring (gdbarch->disassembler_options_implicit)
1188 v;char **;disassembler_options;;;0;0;;0;pstring_ptr (gdbarch->disassembler_options)
1189 v;const disasm_options_and_args_t *;valid_disassembler_options;;;0;0;;0;host_address_to_string (gdbarch->valid_disassembler_options)
1190
1191 # Type alignment override method. Return the architecture specific
1192 # alignment required for TYPE. If there is no special handling
1193 # required for TYPE then return the value 0, GDB will then apply the
1194 # default rules as laid out in gdbtypes.c:type_align.
1195 m;ULONGEST;type_align;struct type *type;type;;default_type_align;;0
1196
1197 # Return a string containing any flags for the given PC in the given FRAME.
1198 f;std::string;get_pc_address_flags;frame_info *frame, CORE_ADDR pc;frame, pc;;default_get_pc_address_flags;;0
1199
1200 EOF
1201 }
1202
1203 #
1204 # The .log file
1205 #
1206 exec > new-gdbarch.log
1207 function_list | while do_read
1208 do
1209 cat <<EOF
1210 ${class} ${returntype:-} ${function} (${formal:-})
1211 EOF
1212 for r in ${read}
1213 do
1214 eval echo "\" ${r}=\${${r}}\""
1215 done
1216 if class_is_predicate_p && fallback_default_p
1217 then
1218 echo "Error: predicate function ${function} can not have a non- multi-arch default" 1>&2
1219 kill $$
1220 exit 1
1221 fi
1222 if [ "x${invalid_p}" = "x0" ] && [ -n "${postdefault}" ]
1223 then
1224 echo "Error: postdefault is useless when invalid_p=0" 1>&2
1225 kill $$
1226 exit 1
1227 fi
1228 if class_is_multiarch_p
1229 then
1230 if class_is_predicate_p ; then :
1231 elif test "x${predefault}" = "x"
1232 then
1233 echo "Error: pure multi-arch function ${function} must have a predefault" 1>&2
1234 kill $$
1235 exit 1
1236 fi
1237 fi
1238 echo ""
1239 done
1240
1241 exec 1>&2
1242 compare_new gdbarch.log
1243
1244
1245 copyright ()
1246 {
1247 cat <<EOF
1248 /* *INDENT-OFF* */ /* THIS FILE IS GENERATED -*- buffer-read-only: t -*- */
1249 /* vi:set ro: */
1250
1251 /* Dynamic architecture support for GDB, the GNU debugger.
1252
1253 Copyright (C) 1998-2020 Free Software Foundation, Inc.
1254
1255 This file is part of GDB.
1256
1257 This program is free software; you can redistribute it and/or modify
1258 it under the terms of the GNU General Public License as published by
1259 the Free Software Foundation; either version 3 of the License, or
1260 (at your option) any later version.
1261
1262 This program is distributed in the hope that it will be useful,
1263 but WITHOUT ANY WARRANTY; without even the implied warranty of
1264 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
1265 GNU General Public License for more details.
1266
1267 You should have received a copy of the GNU General Public License
1268 along with this program. If not, see <http://www.gnu.org/licenses/>. */
1269
1270 /* This file was created with the aid of \`\`gdbarch.sh''.
1271
1272 The Bourne shell script \`\`gdbarch.sh'' creates the files
1273 \`\`new-gdbarch.c'' and \`\`new-gdbarch.h and then compares them
1274 against the existing \`\`gdbarch.[hc]''. Any differences found
1275 being reported.
1276
1277 If editing this file, please also run gdbarch.sh and merge any
1278 changes into that script. Conversely, when making sweeping changes
1279 to this file, modifying gdbarch.sh and using its output may prove
1280 easier. */
1281
1282 EOF
1283 }
1284
1285 #
1286 # The .h file
1287 #
1288
1289 exec > new-gdbarch.h
1290 copyright
1291 cat <<EOF
1292 #ifndef GDBARCH_H
1293 #define GDBARCH_H
1294
1295 #include <vector>
1296 #include "frame.h"
1297 #include "dis-asm.h"
1298 #include "gdb_obstack.h"
1299 #include "infrun.h"
1300 #include "osabi.h"
1301
1302 struct floatformat;
1303 struct ui_file;
1304 struct value;
1305 struct objfile;
1306 struct obj_section;
1307 struct minimal_symbol;
1308 struct regcache;
1309 struct reggroup;
1310 struct regset;
1311 struct disassemble_info;
1312 struct target_ops;
1313 struct obstack;
1314 struct bp_target_info;
1315 struct target_desc;
1316 struct symbol;
1317 struct syscall;
1318 struct agent_expr;
1319 struct axs_value;
1320 struct stap_parse_info;
1321 struct expr_builder;
1322 struct ravenscar_arch_ops;
1323 struct mem_range;
1324 struct syscalls_info;
1325 struct thread_info;
1326 struct ui_out;
1327
1328 #include "regcache.h"
1329
1330 /* The architecture associated with the inferior through the
1331 connection to the target.
1332
1333 The architecture vector provides some information that is really a
1334 property of the inferior, accessed through a particular target:
1335 ptrace operations; the layout of certain RSP packets; the solib_ops
1336 vector; etc. To differentiate architecture accesses to
1337 per-inferior/target properties from
1338 per-thread/per-frame/per-objfile properties, accesses to
1339 per-inferior/target properties should be made through this
1340 gdbarch. */
1341
1342 /* This is a convenience wrapper for 'current_inferior ()->gdbarch'. */
1343 extern struct gdbarch *target_gdbarch (void);
1344
1345 /* Callback type for the 'iterate_over_objfiles_in_search_order'
1346 gdbarch method. */
1347
1348 typedef int (iterate_over_objfiles_in_search_order_cb_ftype)
1349 (struct objfile *objfile, void *cb_data);
1350
1351 /* Callback type for regset section iterators. The callback usually
1352 invokes the REGSET's supply or collect method, to which it must
1353 pass a buffer - for collects this buffer will need to be created using
1354 COLLECT_SIZE, for supply the existing buffer being read from should
1355 be at least SUPPLY_SIZE. SECT_NAME is a BFD section name, and HUMAN_NAME
1356 is used for diagnostic messages. CB_DATA should have been passed
1357 unchanged through the iterator. */
1358
1359 typedef void (iterate_over_regset_sections_cb)
1360 (const char *sect_name, int supply_size, int collect_size,
1361 const struct regset *regset, const char *human_name, void *cb_data);
1362
1363 /* For a function call, does the function return a value using a
1364 normal value return or a structure return - passing a hidden
1365 argument pointing to storage. For the latter, there are two
1366 cases: language-mandated structure return and target ABI
1367 structure return. */
1368
1369 enum function_call_return_method
1370 {
1371 /* Standard value return. */
1372 return_method_normal = 0,
1373
1374 /* Language ABI structure return. This is handled
1375 by passing the return location as the first parameter to
1376 the function, even preceding "this". */
1377 return_method_hidden_param,
1378
1379 /* Target ABI struct return. This is target-specific; for instance,
1380 on ia64 the first argument is passed in out0 but the hidden
1381 structure return pointer would normally be passed in r8. */
1382 return_method_struct,
1383 };
1384
1385 EOF
1386
1387 # function typedef's
1388 printf "\n"
1389 printf "\n"
1390 printf "/* The following are pre-initialized by GDBARCH. */\n"
1391 function_list | while do_read
1392 do
1393 if class_is_info_p
1394 then
1395 printf "\n"
1396 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1397 printf "/* set_gdbarch_%s() - not applicable - pre-initialized. */\n" "$function"
1398 fi
1399 done
1400
1401 # function typedef's
1402 printf "\n"
1403 printf "\n"
1404 printf "/* The following are initialized by the target dependent code. */\n"
1405 function_list | while do_read
1406 do
1407 if [ -n "${comment}" ]
1408 then
1409 echo "${comment}" | sed \
1410 -e '2 s,#,/*,' \
1411 -e '3,$ s,#, ,' \
1412 -e '$ s,$, */,'
1413 fi
1414
1415 if class_is_predicate_p
1416 then
1417 printf "\n"
1418 printf "extern int gdbarch_%s_p (struct gdbarch *gdbarch);\n" "$function"
1419 fi
1420 if class_is_variable_p
1421 then
1422 printf "\n"
1423 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1424 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, %s %s);\n" "$function" "$returntype" "$function"
1425 fi
1426 if class_is_function_p
1427 then
1428 printf "\n"
1429 if [ "x${formal}" = "xvoid" ] && class_is_multiarch_p
1430 then
1431 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1432 elif class_is_multiarch_p
1433 then
1434 printf "typedef %s (gdbarch_%s_ftype) (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1435 else
1436 printf "typedef %s (gdbarch_%s_ftype) (%s);\n" "$returntype" "$function" "$formal"
1437 fi
1438 if [ "x${formal}" = "xvoid" ]
1439 then
1440 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch);\n" "$returntype" "$function"
1441 else
1442 printf "extern %s gdbarch_%s (struct gdbarch *gdbarch, %s);\n" "$returntype" "$function" "$formal"
1443 fi
1444 printf "extern void set_gdbarch_%s (struct gdbarch *gdbarch, gdbarch_%s_ftype *%s);\n" "$function" "$function" "$function"
1445 fi
1446 done
1447
1448 # close it off
1449 cat <<EOF
1450
1451 extern struct gdbarch_tdep *gdbarch_tdep (struct gdbarch *gdbarch);
1452
1453
1454 /* Mechanism for co-ordinating the selection of a specific
1455 architecture.
1456
1457 GDB targets (*-tdep.c) can register an interest in a specific
1458 architecture. Other GDB components can register a need to maintain
1459 per-architecture data.
1460
1461 The mechanisms below ensures that there is only a loose connection
1462 between the set-architecture command and the various GDB
1463 components. Each component can independently register their need
1464 to maintain architecture specific data with gdbarch.
1465
1466 Pragmatics:
1467
1468 Previously, a single TARGET_ARCHITECTURE_HOOK was provided. It
1469 didn't scale.
1470
1471 The more traditional mega-struct containing architecture specific
1472 data for all the various GDB components was also considered. Since
1473 GDB is built from a variable number of (fairly independent)
1474 components it was determined that the global aproach was not
1475 applicable. */
1476
1477
1478 /* Register a new architectural family with GDB.
1479
1480 Register support for the specified ARCHITECTURE with GDB. When
1481 gdbarch determines that the specified architecture has been
1482 selected, the corresponding INIT function is called.
1483
1484 --
1485
1486 The INIT function takes two parameters: INFO which contains the
1487 information available to gdbarch about the (possibly new)
1488 architecture; ARCHES which is a list of the previously created
1489 \`\`struct gdbarch'' for this architecture.
1490
1491 The INFO parameter is, as far as possible, be pre-initialized with
1492 information obtained from INFO.ABFD or the global defaults.
1493
1494 The ARCHES parameter is a linked list (sorted most recently used)
1495 of all the previously created architures for this architecture
1496 family. The (possibly NULL) ARCHES->gdbarch can used to access
1497 values from the previously selected architecture for this
1498 architecture family.
1499
1500 The INIT function shall return any of: NULL - indicating that it
1501 doesn't recognize the selected architecture; an existing \`\`struct
1502 gdbarch'' from the ARCHES list - indicating that the new
1503 architecture is just a synonym for an earlier architecture (see
1504 gdbarch_list_lookup_by_info()); a newly created \`\`struct gdbarch''
1505 - that describes the selected architecture (see gdbarch_alloc()).
1506
1507 The DUMP_TDEP function shall print out all target specific values.
1508 Care should be taken to ensure that the function works in both the
1509 multi-arch and non- multi-arch cases. */
1510
1511 struct gdbarch_list
1512 {
1513 struct gdbarch *gdbarch;
1514 struct gdbarch_list *next;
1515 };
1516
1517 struct gdbarch_info
1518 {
1519 /* Use default: NULL (ZERO). */
1520 const struct bfd_arch_info *bfd_arch_info;
1521
1522 /* Use default: BFD_ENDIAN_UNKNOWN (NB: is not ZERO). */
1523 enum bfd_endian byte_order;
1524
1525 enum bfd_endian byte_order_for_code;
1526
1527 /* Use default: NULL (ZERO). */
1528 bfd *abfd;
1529
1530 /* Use default: NULL (ZERO). */
1531 union
1532 {
1533 /* Architecture-specific information. The generic form for targets
1534 that have extra requirements. */
1535 struct gdbarch_tdep_info *tdep_info;
1536
1537 /* Architecture-specific target description data. Numerous targets
1538 need only this, so give them an easy way to hold it. */
1539 struct tdesc_arch_data *tdesc_data;
1540
1541 /* SPU file system ID. This is a single integer, so using the
1542 generic form would only complicate code. Other targets may
1543 reuse this member if suitable. */
1544 int *id;
1545 };
1546
1547 /* Use default: GDB_OSABI_UNINITIALIZED (-1). */
1548 enum gdb_osabi osabi;
1549
1550 /* Use default: NULL (ZERO). */
1551 const struct target_desc *target_desc;
1552 };
1553
1554 typedef struct gdbarch *(gdbarch_init_ftype) (struct gdbarch_info info, struct gdbarch_list *arches);
1555 typedef void (gdbarch_dump_tdep_ftype) (struct gdbarch *gdbarch, struct ui_file *file);
1556
1557 /* DEPRECATED - use gdbarch_register() */
1558 extern void register_gdbarch_init (enum bfd_architecture architecture, gdbarch_init_ftype *);
1559
1560 extern void gdbarch_register (enum bfd_architecture architecture,
1561 gdbarch_init_ftype *,
1562 gdbarch_dump_tdep_ftype *);
1563
1564
1565 /* Return a freshly allocated, NULL terminated, array of the valid
1566 architecture names. Since architectures are registered during the
1567 _initialize phase this function only returns useful information
1568 once initialization has been completed. */
1569
1570 extern const char **gdbarch_printable_names (void);
1571
1572
1573 /* Helper function. Search the list of ARCHES for a GDBARCH that
1574 matches the information provided by INFO. */
1575
1576 extern struct gdbarch_list *gdbarch_list_lookup_by_info (struct gdbarch_list *arches, const struct gdbarch_info *info);
1577
1578
1579 /* Helper function. Create a preliminary \`\`struct gdbarch''. Perform
1580 basic initialization using values obtained from the INFO and TDEP
1581 parameters. set_gdbarch_*() functions are called to complete the
1582 initialization of the object. */
1583
1584 extern struct gdbarch *gdbarch_alloc (const struct gdbarch_info *info, struct gdbarch_tdep *tdep);
1585
1586
1587 /* Helper function. Free a partially-constructed \`\`struct gdbarch''.
1588 It is assumed that the caller freeds the \`\`struct
1589 gdbarch_tdep''. */
1590
1591 extern void gdbarch_free (struct gdbarch *);
1592
1593 /* Get the obstack owned by ARCH. */
1594
1595 extern obstack *gdbarch_obstack (gdbarch *arch);
1596
1597 /* Helper function. Allocate memory from the \`\`struct gdbarch''
1598 obstack. The memory is freed when the corresponding architecture
1599 is also freed. */
1600
1601 #define GDBARCH_OBSTACK_CALLOC(GDBARCH, NR, TYPE) \
1602 obstack_calloc<TYPE> (gdbarch_obstack ((GDBARCH)), (NR))
1603
1604 #define GDBARCH_OBSTACK_ZALLOC(GDBARCH, TYPE) \
1605 obstack_zalloc<TYPE> (gdbarch_obstack ((GDBARCH)))
1606
1607 /* Duplicate STRING, returning an equivalent string that's allocated on the
1608 obstack associated with GDBARCH. The string is freed when the corresponding
1609 architecture is also freed. */
1610
1611 extern char *gdbarch_obstack_strdup (struct gdbarch *arch, const char *string);
1612
1613 /* Helper function. Force an update of the current architecture.
1614
1615 The actual architecture selected is determined by INFO, \`\`(gdb) set
1616 architecture'' et.al., the existing architecture and BFD's default
1617 architecture. INFO should be initialized to zero and then selected
1618 fields should be updated.
1619
1620 Returns non-zero if the update succeeds. */
1621
1622 extern int gdbarch_update_p (struct gdbarch_info info);
1623
1624
1625 /* Helper function. Find an architecture matching info.
1626
1627 INFO should be initialized using gdbarch_info_init, relevant fields
1628 set, and then finished using gdbarch_info_fill.
1629
1630 Returns the corresponding architecture, or NULL if no matching
1631 architecture was found. */
1632
1633 extern struct gdbarch *gdbarch_find_by_info (struct gdbarch_info info);
1634
1635
1636 /* Helper function. Set the target gdbarch to "gdbarch". */
1637
1638 extern void set_target_gdbarch (struct gdbarch *gdbarch);
1639
1640
1641 /* Register per-architecture data-pointer.
1642
1643 Reserve space for a per-architecture data-pointer. An identifier
1644 for the reserved data-pointer is returned. That identifer should
1645 be saved in a local static variable.
1646
1647 Memory for the per-architecture data shall be allocated using
1648 gdbarch_obstack_zalloc. That memory will be deleted when the
1649 corresponding architecture object is deleted.
1650
1651 When a previously created architecture is re-selected, the
1652 per-architecture data-pointer for that previous architecture is
1653 restored. INIT() is not re-called.
1654
1655 Multiple registrarants for any architecture are allowed (and
1656 strongly encouraged). */
1657
1658 struct gdbarch_data;
1659
1660 typedef void *(gdbarch_data_pre_init_ftype) (struct obstack *obstack);
1661 extern struct gdbarch_data *gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *init);
1662 typedef void *(gdbarch_data_post_init_ftype) (struct gdbarch *gdbarch);
1663 extern struct gdbarch_data *gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *init);
1664 extern void deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
1665 struct gdbarch_data *data,
1666 void *pointer);
1667
1668 extern void *gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *);
1669
1670
1671 /* Set the dynamic target-system-dependent parameters (architecture,
1672 byte-order, ...) using information found in the BFD. */
1673
1674 extern void set_gdbarch_from_file (bfd *);
1675
1676
1677 /* Initialize the current architecture to the "first" one we find on
1678 our list. */
1679
1680 extern void initialize_current_architecture (void);
1681
1682 /* gdbarch trace variable */
1683 extern unsigned int gdbarch_debug;
1684
1685 extern void gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file);
1686
1687 /* Return the number of cooked registers (raw + pseudo) for ARCH. */
1688
1689 static inline int
1690 gdbarch_num_cooked_regs (gdbarch *arch)
1691 {
1692 return gdbarch_num_regs (arch) + gdbarch_num_pseudo_regs (arch);
1693 }
1694
1695 #endif
1696 EOF
1697 exec 1>&2
1698 #../move-if-change new-gdbarch.h gdbarch.h
1699 compare_new gdbarch.h
1700
1701
1702 #
1703 # C file
1704 #
1705
1706 exec > new-gdbarch.c
1707 copyright
1708 cat <<EOF
1709
1710 #include "defs.h"
1711 #include "arch-utils.h"
1712
1713 #include "gdbcmd.h"
1714 #include "inferior.h"
1715 #include "symcat.h"
1716
1717 #include "floatformat.h"
1718 #include "reggroups.h"
1719 #include "osabi.h"
1720 #include "gdb_obstack.h"
1721 #include "observable.h"
1722 #include "regcache.h"
1723 #include "objfiles.h"
1724 #include "auxv.h"
1725 #include "frame-unwind.h"
1726 #include "dummy-frame.h"
1727
1728 /* Static function declarations */
1729
1730 static void alloc_gdbarch_data (struct gdbarch *);
1731
1732 /* Non-zero if we want to trace architecture code. */
1733
1734 #ifndef GDBARCH_DEBUG
1735 #define GDBARCH_DEBUG 0
1736 #endif
1737 unsigned int gdbarch_debug = GDBARCH_DEBUG;
1738 static void
1739 show_gdbarch_debug (struct ui_file *file, int from_tty,
1740 struct cmd_list_element *c, const char *value)
1741 {
1742 fprintf_filtered (file, _("Architecture debugging is %s.\\n"), value);
1743 }
1744
1745 static const char *
1746 pformat (const struct floatformat **format)
1747 {
1748 if (format == NULL)
1749 return "(null)";
1750 else
1751 /* Just print out one of them - this is only for diagnostics. */
1752 return format[0]->name;
1753 }
1754
1755 static const char *
1756 pstring (const char *string)
1757 {
1758 if (string == NULL)
1759 return "(null)";
1760 return string;
1761 }
1762
1763 static const char *
1764 pstring_ptr (char **string)
1765 {
1766 if (string == NULL || *string == NULL)
1767 return "(null)";
1768 return *string;
1769 }
1770
1771 /* Helper function to print a list of strings, represented as "const
1772 char *const *". The list is printed comma-separated. */
1773
1774 static const char *
1775 pstring_list (const char *const *list)
1776 {
1777 static char ret[100];
1778 const char *const *p;
1779 size_t offset = 0;
1780
1781 if (list == NULL)
1782 return "(null)";
1783
1784 ret[0] = '\0';
1785 for (p = list; *p != NULL && offset < sizeof (ret); ++p)
1786 {
1787 size_t s = xsnprintf (ret + offset, sizeof (ret) - offset, "%s, ", *p);
1788 offset += 2 + s;
1789 }
1790
1791 if (offset > 0)
1792 {
1793 gdb_assert (offset - 2 < sizeof (ret));
1794 ret[offset - 2] = '\0';
1795 }
1796
1797 return ret;
1798 }
1799
1800 EOF
1801
1802 # gdbarch open the gdbarch object
1803 printf "\n"
1804 printf "/* Maintain the struct gdbarch object. */\n"
1805 printf "\n"
1806 printf "struct gdbarch\n"
1807 printf "{\n"
1808 printf " /* Has this architecture been fully initialized? */\n"
1809 printf " int initialized_p;\n"
1810 printf "\n"
1811 printf " /* An obstack bound to the lifetime of the architecture. */\n"
1812 printf " struct obstack *obstack;\n"
1813 printf "\n"
1814 printf " /* basic architectural information. */\n"
1815 function_list | while do_read
1816 do
1817 if class_is_info_p
1818 then
1819 printf " %s %s;\n" "$returntype" "$function"
1820 fi
1821 done
1822 printf "\n"
1823 printf " /* target specific vector. */\n"
1824 printf " struct gdbarch_tdep *tdep;\n"
1825 printf " gdbarch_dump_tdep_ftype *dump_tdep;\n"
1826 printf "\n"
1827 printf " /* per-architecture data-pointers. */\n"
1828 printf " unsigned nr_data;\n"
1829 printf " void **data;\n"
1830 printf "\n"
1831 cat <<EOF
1832 /* Multi-arch values.
1833
1834 When extending this structure you must:
1835
1836 Add the field below.
1837
1838 Declare set/get functions and define the corresponding
1839 macro in gdbarch.h.
1840
1841 gdbarch_alloc(): If zero/NULL is not a suitable default,
1842 initialize the new field.
1843
1844 verify_gdbarch(): Confirm that the target updated the field
1845 correctly.
1846
1847 gdbarch_dump(): Add a fprintf_unfiltered call so that the new
1848 field is dumped out
1849
1850 get_gdbarch(): Implement the set/get functions (probably using
1851 the macro's as shortcuts).
1852
1853 */
1854
1855 EOF
1856 function_list | while do_read
1857 do
1858 if class_is_variable_p
1859 then
1860 printf " %s %s;\n" "$returntype" "$function"
1861 elif class_is_function_p
1862 then
1863 printf " gdbarch_%s_ftype *%s;\n" "$function" "$function"
1864 fi
1865 done
1866 printf "};\n"
1867
1868 # Create a new gdbarch struct
1869 cat <<EOF
1870
1871 /* Create a new \`\`struct gdbarch'' based on information provided by
1872 \`\`struct gdbarch_info''. */
1873 EOF
1874 printf "\n"
1875 cat <<EOF
1876 struct gdbarch *
1877 gdbarch_alloc (const struct gdbarch_info *info,
1878 struct gdbarch_tdep *tdep)
1879 {
1880 struct gdbarch *gdbarch;
1881
1882 /* Create an obstack for allocating all the per-architecture memory,
1883 then use that to allocate the architecture vector. */
1884 struct obstack *obstack = XNEW (struct obstack);
1885 obstack_init (obstack);
1886 gdbarch = XOBNEW (obstack, struct gdbarch);
1887 memset (gdbarch, 0, sizeof (*gdbarch));
1888 gdbarch->obstack = obstack;
1889
1890 alloc_gdbarch_data (gdbarch);
1891
1892 gdbarch->tdep = tdep;
1893 EOF
1894 printf "\n"
1895 function_list | while do_read
1896 do
1897 if class_is_info_p
1898 then
1899 printf " gdbarch->%s = info->%s;\n" "$function" "$function"
1900 fi
1901 done
1902 printf "\n"
1903 printf " /* Force the explicit initialization of these. */\n"
1904 function_list | while do_read
1905 do
1906 if class_is_function_p || class_is_variable_p
1907 then
1908 if [ -n "${predefault}" ] && [ "x${predefault}" != "x0" ]
1909 then
1910 printf " gdbarch->%s = %s;\n" "$function" "$predefault"
1911 fi
1912 fi
1913 done
1914 cat <<EOF
1915 /* gdbarch_alloc() */
1916
1917 return gdbarch;
1918 }
1919 EOF
1920
1921 # Free a gdbarch struct.
1922 printf "\n"
1923 printf "\n"
1924 cat <<EOF
1925
1926 obstack *gdbarch_obstack (gdbarch *arch)
1927 {
1928 return arch->obstack;
1929 }
1930
1931 /* See gdbarch.h. */
1932
1933 char *
1934 gdbarch_obstack_strdup (struct gdbarch *arch, const char *string)
1935 {
1936 return obstack_strdup (arch->obstack, string);
1937 }
1938
1939
1940 /* Free a gdbarch struct. This should never happen in normal
1941 operation --- once you've created a gdbarch, you keep it around.
1942 However, if an architecture's init function encounters an error
1943 building the structure, it may need to clean up a partially
1944 constructed gdbarch. */
1945
1946 void
1947 gdbarch_free (struct gdbarch *arch)
1948 {
1949 struct obstack *obstack;
1950
1951 gdb_assert (arch != NULL);
1952 gdb_assert (!arch->initialized_p);
1953 obstack = arch->obstack;
1954 obstack_free (obstack, 0); /* Includes the ARCH. */
1955 xfree (obstack);
1956 }
1957 EOF
1958
1959 # verify a new architecture
1960 cat <<EOF
1961
1962
1963 /* Ensure that all values in a GDBARCH are reasonable. */
1964
1965 static void
1966 verify_gdbarch (struct gdbarch *gdbarch)
1967 {
1968 string_file log;
1969
1970 /* fundamental */
1971 if (gdbarch->byte_order == BFD_ENDIAN_UNKNOWN)
1972 log.puts ("\n\tbyte-order");
1973 if (gdbarch->bfd_arch_info == NULL)
1974 log.puts ("\n\tbfd_arch_info");
1975 /* Check those that need to be defined for the given multi-arch level. */
1976 EOF
1977 function_list | while do_read
1978 do
1979 if class_is_function_p || class_is_variable_p
1980 then
1981 if [ "x${invalid_p}" = "x0" ]
1982 then
1983 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
1984 elif class_is_predicate_p
1985 then
1986 printf " /* Skip verify of %s, has predicate. */\n" "$function"
1987 # FIXME: See do_read for potential simplification
1988 elif [ -n "${invalid_p}" ] && [ -n "${postdefault}" ]
1989 then
1990 printf " if (%s)\n" "$invalid_p"
1991 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1992 elif [ -n "${predefault}" ] && [ -n "${postdefault}" ]
1993 then
1994 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
1995 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
1996 elif [ -n "${postdefault}" ]
1997 then
1998 printf " if (gdbarch->%s == 0)\n" "$function"
1999 printf " gdbarch->%s = %s;\n" "$function" "$postdefault"
2000 elif [ -n "${invalid_p}" ]
2001 then
2002 printf " if (%s)\n" "$invalid_p"
2003 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2004 elif [ -n "${predefault}" ]
2005 then
2006 printf " if (gdbarch->%s == %s)\n" "$function" "$predefault"
2007 printf " log.puts (\"\\\\n\\\\t%s\");\n" "$function"
2008 fi
2009 fi
2010 done
2011 cat <<EOF
2012 if (!log.empty ())
2013 internal_error (__FILE__, __LINE__,
2014 _("verify_gdbarch: the following are invalid ...%s"),
2015 log.c_str ());
2016 }
2017 EOF
2018
2019 # dump the structure
2020 printf "\n"
2021 printf "\n"
2022 cat <<EOF
2023 /* Print out the details of the current architecture. */
2024
2025 void
2026 gdbarch_dump (struct gdbarch *gdbarch, struct ui_file *file)
2027 {
2028 const char *gdb_nm_file = "<not-defined>";
2029
2030 #if defined (GDB_NM_FILE)
2031 gdb_nm_file = GDB_NM_FILE;
2032 #endif
2033 fprintf_unfiltered (file,
2034 "gdbarch_dump: GDB_NM_FILE = %s\\n",
2035 gdb_nm_file);
2036 EOF
2037 function_list | sort '-t;' -k 3 | while do_read
2038 do
2039 # First the predicate
2040 if class_is_predicate_p
2041 then
2042 printf " fprintf_unfiltered (file,\n"
2043 printf " \"gdbarch_dump: gdbarch_%s_p() = %%d\\\\n\",\n" "$function"
2044 printf " gdbarch_%s_p (gdbarch));\n" "$function"
2045 fi
2046 # Print the corresponding value.
2047 if class_is_function_p
2048 then
2049 printf " fprintf_unfiltered (file,\n"
2050 printf " \"gdbarch_dump: %s = <%%s>\\\\n\",\n" "$function"
2051 printf " host_address_to_string (gdbarch->%s));\n" "$function"
2052 else
2053 # It is a variable
2054 case "${print}:${returntype}" in
2055 :CORE_ADDR )
2056 fmt="%s"
2057 print="core_addr_to_string_nz (gdbarch->${function})"
2058 ;;
2059 :* )
2060 fmt="%s"
2061 print="plongest (gdbarch->${function})"
2062 ;;
2063 * )
2064 fmt="%s"
2065 ;;
2066 esac
2067 printf " fprintf_unfiltered (file,\n"
2068 printf " \"gdbarch_dump: %s = %s\\\\n\",\n" "$function" "$fmt"
2069 printf " %s);\n" "$print"
2070 fi
2071 done
2072 cat <<EOF
2073 if (gdbarch->dump_tdep != NULL)
2074 gdbarch->dump_tdep (gdbarch, file);
2075 }
2076 EOF
2077
2078
2079 # GET/SET
2080 printf "\n"
2081 cat <<EOF
2082 struct gdbarch_tdep *
2083 gdbarch_tdep (struct gdbarch *gdbarch)
2084 {
2085 if (gdbarch_debug >= 2)
2086 fprintf_unfiltered (gdb_stdlog, "gdbarch_tdep called\\n");
2087 return gdbarch->tdep;
2088 }
2089 EOF
2090 printf "\n"
2091 function_list | while do_read
2092 do
2093 if class_is_predicate_p
2094 then
2095 printf "\n"
2096 printf "int\n"
2097 printf "gdbarch_%s_p (struct gdbarch *gdbarch)\n" "$function"
2098 printf "{\n"
2099 printf " gdb_assert (gdbarch != NULL);\n"
2100 printf " return %s;\n" "$predicate"
2101 printf "}\n"
2102 fi
2103 if class_is_function_p
2104 then
2105 printf "\n"
2106 printf "%s\n" "$returntype"
2107 if [ "x${formal}" = "xvoid" ]
2108 then
2109 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2110 else
2111 printf "gdbarch_%s (struct gdbarch *gdbarch, %s)\n" "$function" "$formal"
2112 fi
2113 printf "{\n"
2114 printf " gdb_assert (gdbarch != NULL);\n"
2115 printf " gdb_assert (gdbarch->%s != NULL);\n" "$function"
2116 if class_is_predicate_p && test -n "${predefault}"
2117 then
2118 # Allow a call to a function with a predicate.
2119 printf " /* Do not check predicate: %s, allow call. */\n" "$predicate"
2120 fi
2121 printf " if (gdbarch_debug >= 2)\n"
2122 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2123 if [ "x${actual:-}" = "x-" ] || [ "x${actual:-}" = "x" ]
2124 then
2125 if class_is_multiarch_p
2126 then
2127 params="gdbarch"
2128 else
2129 params=""
2130 fi
2131 else
2132 if class_is_multiarch_p
2133 then
2134 params="gdbarch, ${actual}"
2135 else
2136 params="${actual}"
2137 fi
2138 fi
2139 if [ "x${returntype}" = "xvoid" ]
2140 then
2141 printf " gdbarch->%s (%s);\n" "$function" "$params"
2142 else
2143 printf " return gdbarch->%s (%s);\n" "$function" "$params"
2144 fi
2145 printf "}\n"
2146 printf "\n"
2147 printf "void\n"
2148 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2149 printf " %s gdbarch_%s_ftype %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$function" "$function"
2150 printf "{\n"
2151 printf " gdbarch->%s = %s;\n" "$function" "$function"
2152 printf "}\n"
2153 elif class_is_variable_p
2154 then
2155 printf "\n"
2156 printf "%s\n" "$returntype"
2157 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2158 printf "{\n"
2159 printf " gdb_assert (gdbarch != NULL);\n"
2160 if [ "x${invalid_p}" = "x0" ]
2161 then
2162 printf " /* Skip verify of %s, invalid_p == 0 */\n" "$function"
2163 elif [ -n "${invalid_p}" ]
2164 then
2165 printf " /* Check variable is valid. */\n"
2166 printf " gdb_assert (!(%s));\n" "$invalid_p"
2167 elif [ -n "${predefault}" ]
2168 then
2169 printf " /* Check variable changed from pre-default. */\n"
2170 printf " gdb_assert (gdbarch->%s != %s);\n" "$function" "$predefault"
2171 fi
2172 printf " if (gdbarch_debug >= 2)\n"
2173 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2174 printf " return gdbarch->%s;\n" "$function"
2175 printf "}\n"
2176 printf "\n"
2177 printf "void\n"
2178 printf "set_gdbarch_%s (struct gdbarch *gdbarch,\n" "$function"
2179 printf " %s %s %s)\n" "$(echo "$function" | sed -e 's/./ /g')" "$returntype" "$function"
2180 printf "{\n"
2181 printf " gdbarch->%s = %s;\n" "$function" "$function"
2182 printf "}\n"
2183 elif class_is_info_p
2184 then
2185 printf "\n"
2186 printf "%s\n" "$returntype"
2187 printf "gdbarch_%s (struct gdbarch *gdbarch)\n" "$function"
2188 printf "{\n"
2189 printf " gdb_assert (gdbarch != NULL);\n"
2190 printf " if (gdbarch_debug >= 2)\n"
2191 printf " fprintf_unfiltered (gdb_stdlog, \"gdbarch_%s called\\\\n\");\n" "$function"
2192 printf " return gdbarch->%s;\n" "$function"
2193 printf "}\n"
2194 fi
2195 done
2196
2197 # All the trailing guff
2198 cat <<EOF
2199
2200
2201 /* Keep a registry of per-architecture data-pointers required by GDB
2202 modules. */
2203
2204 struct gdbarch_data
2205 {
2206 unsigned index;
2207 int init_p;
2208 gdbarch_data_pre_init_ftype *pre_init;
2209 gdbarch_data_post_init_ftype *post_init;
2210 };
2211
2212 struct gdbarch_data_registration
2213 {
2214 struct gdbarch_data *data;
2215 struct gdbarch_data_registration *next;
2216 };
2217
2218 struct gdbarch_data_registry
2219 {
2220 unsigned nr;
2221 struct gdbarch_data_registration *registrations;
2222 };
2223
2224 struct gdbarch_data_registry gdbarch_data_registry =
2225 {
2226 0, NULL,
2227 };
2228
2229 static struct gdbarch_data *
2230 gdbarch_data_register (gdbarch_data_pre_init_ftype *pre_init,
2231 gdbarch_data_post_init_ftype *post_init)
2232 {
2233 struct gdbarch_data_registration **curr;
2234
2235 /* Append the new registration. */
2236 for (curr = &gdbarch_data_registry.registrations;
2237 (*curr) != NULL;
2238 curr = &(*curr)->next);
2239 (*curr) = XNEW (struct gdbarch_data_registration);
2240 (*curr)->next = NULL;
2241 (*curr)->data = XNEW (struct gdbarch_data);
2242 (*curr)->data->index = gdbarch_data_registry.nr++;
2243 (*curr)->data->pre_init = pre_init;
2244 (*curr)->data->post_init = post_init;
2245 (*curr)->data->init_p = 1;
2246 return (*curr)->data;
2247 }
2248
2249 struct gdbarch_data *
2250 gdbarch_data_register_pre_init (gdbarch_data_pre_init_ftype *pre_init)
2251 {
2252 return gdbarch_data_register (pre_init, NULL);
2253 }
2254
2255 struct gdbarch_data *
2256 gdbarch_data_register_post_init (gdbarch_data_post_init_ftype *post_init)
2257 {
2258 return gdbarch_data_register (NULL, post_init);
2259 }
2260
2261 /* Create/delete the gdbarch data vector. */
2262
2263 static void
2264 alloc_gdbarch_data (struct gdbarch *gdbarch)
2265 {
2266 gdb_assert (gdbarch->data == NULL);
2267 gdbarch->nr_data = gdbarch_data_registry.nr;
2268 gdbarch->data = GDBARCH_OBSTACK_CALLOC (gdbarch, gdbarch->nr_data, void *);
2269 }
2270
2271 /* Initialize the current value of the specified per-architecture
2272 data-pointer. */
2273
2274 void
2275 deprecated_set_gdbarch_data (struct gdbarch *gdbarch,
2276 struct gdbarch_data *data,
2277 void *pointer)
2278 {
2279 gdb_assert (data->index < gdbarch->nr_data);
2280 gdb_assert (gdbarch->data[data->index] == NULL);
2281 gdb_assert (data->pre_init == NULL);
2282 gdbarch->data[data->index] = pointer;
2283 }
2284
2285 /* Return the current value of the specified per-architecture
2286 data-pointer. */
2287
2288 void *
2289 gdbarch_data (struct gdbarch *gdbarch, struct gdbarch_data *data)
2290 {
2291 gdb_assert (data->index < gdbarch->nr_data);
2292 if (gdbarch->data[data->index] == NULL)
2293 {
2294 /* The data-pointer isn't initialized, call init() to get a
2295 value. */
2296 if (data->pre_init != NULL)
2297 /* Mid architecture creation: pass just the obstack, and not
2298 the entire architecture, as that way it isn't possible for
2299 pre-init code to refer to undefined architecture
2300 fields. */
2301 gdbarch->data[data->index] = data->pre_init (gdbarch->obstack);
2302 else if (gdbarch->initialized_p
2303 && data->post_init != NULL)
2304 /* Post architecture creation: pass the entire architecture
2305 (as all fields are valid), but be careful to also detect
2306 recursive references. */
2307 {
2308 gdb_assert (data->init_p);
2309 data->init_p = 0;
2310 gdbarch->data[data->index] = data->post_init (gdbarch);
2311 data->init_p = 1;
2312 }
2313 else
2314 /* The architecture initialization hasn't completed - punt -
2315 hope that the caller knows what they are doing. Once
2316 deprecated_set_gdbarch_data has been initialized, this can be
2317 changed to an internal error. */
2318 return NULL;
2319 gdb_assert (gdbarch->data[data->index] != NULL);
2320 }
2321 return gdbarch->data[data->index];
2322 }
2323
2324
2325 /* Keep a registry of the architectures known by GDB. */
2326
2327 struct gdbarch_registration
2328 {
2329 enum bfd_architecture bfd_architecture;
2330 gdbarch_init_ftype *init;
2331 gdbarch_dump_tdep_ftype *dump_tdep;
2332 struct gdbarch_list *arches;
2333 struct gdbarch_registration *next;
2334 };
2335
2336 static struct gdbarch_registration *gdbarch_registry = NULL;
2337
2338 static void
2339 append_name (const char ***buf, int *nr, const char *name)
2340 {
2341 *buf = XRESIZEVEC (const char *, *buf, *nr + 1);
2342 (*buf)[*nr] = name;
2343 *nr += 1;
2344 }
2345
2346 const char **
2347 gdbarch_printable_names (void)
2348 {
2349 /* Accumulate a list of names based on the registed list of
2350 architectures. */
2351 int nr_arches = 0;
2352 const char **arches = NULL;
2353 struct gdbarch_registration *rego;
2354
2355 for (rego = gdbarch_registry;
2356 rego != NULL;
2357 rego = rego->next)
2358 {
2359 const struct bfd_arch_info *ap;
2360 ap = bfd_lookup_arch (rego->bfd_architecture, 0);
2361 if (ap == NULL)
2362 internal_error (__FILE__, __LINE__,
2363 _("gdbarch_architecture_names: multi-arch unknown"));
2364 do
2365 {
2366 append_name (&arches, &nr_arches, ap->printable_name);
2367 ap = ap->next;
2368 }
2369 while (ap != NULL);
2370 }
2371 append_name (&arches, &nr_arches, NULL);
2372 return arches;
2373 }
2374
2375
2376 void
2377 gdbarch_register (enum bfd_architecture bfd_architecture,
2378 gdbarch_init_ftype *init,
2379 gdbarch_dump_tdep_ftype *dump_tdep)
2380 {
2381 struct gdbarch_registration **curr;
2382 const struct bfd_arch_info *bfd_arch_info;
2383
2384 /* Check that BFD recognizes this architecture */
2385 bfd_arch_info = bfd_lookup_arch (bfd_architecture, 0);
2386 if (bfd_arch_info == NULL)
2387 {
2388 internal_error (__FILE__, __LINE__,
2389 _("gdbarch: Attempt to register "
2390 "unknown architecture (%d)"),
2391 bfd_architecture);
2392 }
2393 /* Check that we haven't seen this architecture before. */
2394 for (curr = &gdbarch_registry;
2395 (*curr) != NULL;
2396 curr = &(*curr)->next)
2397 {
2398 if (bfd_architecture == (*curr)->bfd_architecture)
2399 internal_error (__FILE__, __LINE__,
2400 _("gdbarch: Duplicate registration "
2401 "of architecture (%s)"),
2402 bfd_arch_info->printable_name);
2403 }
2404 /* log it */
2405 if (gdbarch_debug)
2406 fprintf_unfiltered (gdb_stdlog, "register_gdbarch_init (%s, %s)\n",
2407 bfd_arch_info->printable_name,
2408 host_address_to_string (init));
2409 /* Append it */
2410 (*curr) = XNEW (struct gdbarch_registration);
2411 (*curr)->bfd_architecture = bfd_architecture;
2412 (*curr)->init = init;
2413 (*curr)->dump_tdep = dump_tdep;
2414 (*curr)->arches = NULL;
2415 (*curr)->next = NULL;
2416 }
2417
2418 void
2419 register_gdbarch_init (enum bfd_architecture bfd_architecture,
2420 gdbarch_init_ftype *init)
2421 {
2422 gdbarch_register (bfd_architecture, init, NULL);
2423 }
2424
2425
2426 /* Look for an architecture using gdbarch_info. */
2427
2428 struct gdbarch_list *
2429 gdbarch_list_lookup_by_info (struct gdbarch_list *arches,
2430 const struct gdbarch_info *info)
2431 {
2432 for (; arches != NULL; arches = arches->next)
2433 {
2434 if (info->bfd_arch_info != arches->gdbarch->bfd_arch_info)
2435 continue;
2436 if (info->byte_order != arches->gdbarch->byte_order)
2437 continue;
2438 if (info->osabi != arches->gdbarch->osabi)
2439 continue;
2440 if (info->target_desc != arches->gdbarch->target_desc)
2441 continue;
2442 return arches;
2443 }
2444 return NULL;
2445 }
2446
2447
2448 /* Find an architecture that matches the specified INFO. Create a new
2449 architecture if needed. Return that new architecture. */
2450
2451 struct gdbarch *
2452 gdbarch_find_by_info (struct gdbarch_info info)
2453 {
2454 struct gdbarch *new_gdbarch;
2455 struct gdbarch_registration *rego;
2456
2457 /* Fill in missing parts of the INFO struct using a number of
2458 sources: "set ..."; INFOabfd supplied; and the global
2459 defaults. */
2460 gdbarch_info_fill (&info);
2461
2462 /* Must have found some sort of architecture. */
2463 gdb_assert (info.bfd_arch_info != NULL);
2464
2465 if (gdbarch_debug)
2466 {
2467 fprintf_unfiltered (gdb_stdlog,
2468 "gdbarch_find_by_info: info.bfd_arch_info %s\n",
2469 (info.bfd_arch_info != NULL
2470 ? info.bfd_arch_info->printable_name
2471 : "(null)"));
2472 fprintf_unfiltered (gdb_stdlog,
2473 "gdbarch_find_by_info: info.byte_order %d (%s)\n",
2474 info.byte_order,
2475 (info.byte_order == BFD_ENDIAN_BIG ? "big"
2476 : info.byte_order == BFD_ENDIAN_LITTLE ? "little"
2477 : "default"));
2478 fprintf_unfiltered (gdb_stdlog,
2479 "gdbarch_find_by_info: info.osabi %d (%s)\n",
2480 info.osabi, gdbarch_osabi_name (info.osabi));
2481 fprintf_unfiltered (gdb_stdlog,
2482 "gdbarch_find_by_info: info.abfd %s\n",
2483 host_address_to_string (info.abfd));
2484 fprintf_unfiltered (gdb_stdlog,
2485 "gdbarch_find_by_info: info.tdep_info %s\n",
2486 host_address_to_string (info.tdep_info));
2487 }
2488
2489 /* Find the tdep code that knows about this architecture. */
2490 for (rego = gdbarch_registry;
2491 rego != NULL;
2492 rego = rego->next)
2493 if (rego->bfd_architecture == info.bfd_arch_info->arch)
2494 break;
2495 if (rego == NULL)
2496 {
2497 if (gdbarch_debug)
2498 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2499 "No matching architecture\n");
2500 return 0;
2501 }
2502
2503 /* Ask the tdep code for an architecture that matches "info". */
2504 new_gdbarch = rego->init (info, rego->arches);
2505
2506 /* Did the tdep code like it? No. Reject the change and revert to
2507 the old architecture. */
2508 if (new_gdbarch == NULL)
2509 {
2510 if (gdbarch_debug)
2511 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2512 "Target rejected architecture\n");
2513 return NULL;
2514 }
2515
2516 /* Is this a pre-existing architecture (as determined by already
2517 being initialized)? Move it to the front of the architecture
2518 list (keeping the list sorted Most Recently Used). */
2519 if (new_gdbarch->initialized_p)
2520 {
2521 struct gdbarch_list **list;
2522 struct gdbarch_list *self;
2523 if (gdbarch_debug)
2524 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2525 "Previous architecture %s (%s) selected\n",
2526 host_address_to_string (new_gdbarch),
2527 new_gdbarch->bfd_arch_info->printable_name);
2528 /* Find the existing arch in the list. */
2529 for (list = &rego->arches;
2530 (*list) != NULL && (*list)->gdbarch != new_gdbarch;
2531 list = &(*list)->next);
2532 /* It had better be in the list of architectures. */
2533 gdb_assert ((*list) != NULL && (*list)->gdbarch == new_gdbarch);
2534 /* Unlink SELF. */
2535 self = (*list);
2536 (*list) = self->next;
2537 /* Insert SELF at the front. */
2538 self->next = rego->arches;
2539 rego->arches = self;
2540 /* Return it. */
2541 return new_gdbarch;
2542 }
2543
2544 /* It's a new architecture. */
2545 if (gdbarch_debug)
2546 fprintf_unfiltered (gdb_stdlog, "gdbarch_find_by_info: "
2547 "New architecture %s (%s) selected\n",
2548 host_address_to_string (new_gdbarch),
2549 new_gdbarch->bfd_arch_info->printable_name);
2550
2551 /* Insert the new architecture into the front of the architecture
2552 list (keep the list sorted Most Recently Used). */
2553 {
2554 struct gdbarch_list *self = XNEW (struct gdbarch_list);
2555 self->next = rego->arches;
2556 self->gdbarch = new_gdbarch;
2557 rego->arches = self;
2558 }
2559
2560 /* Check that the newly installed architecture is valid. Plug in
2561 any post init values. */
2562 new_gdbarch->dump_tdep = rego->dump_tdep;
2563 verify_gdbarch (new_gdbarch);
2564 new_gdbarch->initialized_p = 1;
2565
2566 if (gdbarch_debug)
2567 gdbarch_dump (new_gdbarch, gdb_stdlog);
2568
2569 return new_gdbarch;
2570 }
2571
2572 /* Make the specified architecture current. */
2573
2574 void
2575 set_target_gdbarch (struct gdbarch *new_gdbarch)
2576 {
2577 gdb_assert (new_gdbarch != NULL);
2578 gdb_assert (new_gdbarch->initialized_p);
2579 current_inferior ()->gdbarch = new_gdbarch;
2580 gdb::observers::architecture_changed.notify (new_gdbarch);
2581 registers_changed ();
2582 }
2583
2584 /* Return the current inferior's arch. */
2585
2586 struct gdbarch *
2587 target_gdbarch (void)
2588 {
2589 return current_inferior ()->gdbarch;
2590 }
2591
2592 void _initialize_gdbarch ();
2593 void
2594 _initialize_gdbarch ()
2595 {
2596 add_setshow_zuinteger_cmd ("arch", class_maintenance, &gdbarch_debug, _("\\
2597 Set architecture debugging."), _("\\
2598 Show architecture debugging."), _("\\
2599 When non-zero, architecture debugging is enabled."),
2600 NULL,
2601 show_gdbarch_debug,
2602 &setdebuglist, &showdebuglist);
2603 }
2604 EOF
2605
2606 # close things off
2607 exec 1>&2
2608 #../move-if-change new-gdbarch.c gdbarch.c
2609 compare_new gdbarch.c
This page took 0.091335 seconds and 5 git commands to generate.