Remove all_lwps global.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-aarch64-low.c
1 /* GNU/Linux/AArch64 specific low level interface, for the remote server for
2 GDB.
3
4 Copyright (C) 2009-2014 Free Software Foundation, Inc.
5 Contributed by ARM Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "server.h"
23 #include "linux-low.h"
24 #include "elf/common.h"
25
26 #include <signal.h>
27 #include <sys/user.h>
28 #include <sys/ptrace.h>
29 #include <sys/uio.h>
30
31 #include "gdb_proc_service.h"
32
33 /* Defined in auto-generated files. */
34 void init_registers_aarch64 (void);
35 extern const struct target_desc *tdesc_aarch64;
36
37 #ifdef HAVE_SYS_REG_H
38 #include <sys/reg.h>
39 #endif
40
41 #define AARCH64_X_REGS_NUM 31
42 #define AARCH64_V_REGS_NUM 32
43 #define AARCH64_X0_REGNO 0
44 #define AARCH64_SP_REGNO 31
45 #define AARCH64_PC_REGNO 32
46 #define AARCH64_CPSR_REGNO 33
47 #define AARCH64_V0_REGNO 34
48
49 #define AARCH64_NUM_REGS (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM)
50
51 static int
52 aarch64_regmap [] =
53 {
54 /* These offsets correspond to GET/SETREGSET */
55 /* x0... */
56 0*8, 1*8, 2*8, 3*8, 4*8, 5*8, 6*8, 7*8,
57 8*8, 9*8, 10*8, 11*8, 12*8, 13*8, 14*8, 15*8,
58 16*8, 17*8, 18*8, 19*8, 20*8, 21*8, 22*8, 23*8,
59 24*8, 25*8, 26*8, 27*8, 28*8,
60 29*8,
61 30*8, /* x30 lr */
62 31*8, /* x31 sp */
63 32*8, /* pc */
64 33*8, /* cpsr 4 bytes!*/
65
66 /* FP register offsets correspond to GET/SETFPREGSET */
67 0*16, 1*16, 2*16, 3*16, 4*16, 5*16, 6*16, 7*16,
68 8*16, 9*16, 10*16, 11*16, 12*16, 13*16, 14*16, 15*16,
69 16*16, 17*16, 18*16, 19*16, 20*16, 21*16, 22*16, 23*16,
70 24*16, 25*16, 26*16, 27*16, 28*16, 29*16, 30*16, 31*16
71 };
72
73 /* Here starts the macro definitions, data structures, and code for
74 the hardware breakpoint and hardware watchpoint support. The
75 following is the abbreviations that are used frequently in the code
76 and comment:
77
78 hw - hardware
79 bp - breakpoint
80 wp - watchpoint */
81
82 /* Maximum number of hardware breakpoint and watchpoint registers.
83 Neither of these values may exceed the width of dr_changed_t
84 measured in bits. */
85
86 #define AARCH64_HBP_MAX_NUM 16
87 #define AARCH64_HWP_MAX_NUM 16
88
89 /* Alignment requirement in bytes of hardware breakpoint and
90 watchpoint address. This is the requirement for the addresses that
91 can be written to the hardware breakpoint/watchpoint value
92 registers. The kernel currently does not do any alignment on
93 addresses when receiving a writing request (via ptrace call) to
94 these debug registers, and it will reject any address that is
95 unaligned.
96 Some limited support has been provided in this gdbserver port for
97 unaligned watchpoints, so that from a gdb user point of view, an
98 unaligned watchpoint can still be set. This is achieved by
99 minimally enlarging the watched area to meet the alignment
100 requirement, and if necessary, splitting the watchpoint over
101 several hardware watchpoint registers. */
102
103 #define AARCH64_HBP_ALIGNMENT 4
104 #define AARCH64_HWP_ALIGNMENT 8
105
106 /* The maximum length of a memory region that can be watched by one
107 hardware watchpoint register. */
108
109 #define AARCH64_HWP_MAX_LEN_PER_REG 8
110
111 /* Each bit of a variable of this type is used to indicate whether a
112 hardware breakpoint or watchpoint setting has been changed since
113 the last updating. Bit N corresponds to the Nth hardware
114 breakpoint or watchpoint setting which is managed in
115 aarch64_debug_reg_state. Where N is valid between 0 and the total
116 number of the hardware breakpoint or watchpoint debug registers
117 minus 1. When the bit N is 1, it indicates the corresponding
118 breakpoint or watchpoint setting is changed, and thus the
119 corresponding hardware debug register needs to be updated via the
120 ptrace interface.
121
122 In the per-thread arch-specific data area, we define two such
123 variables for per-thread hardware breakpoint and watchpoint
124 settings respectively.
125
126 This type is part of the mechanism which helps reduce the number of
127 ptrace calls to the kernel, i.e. avoid asking the kernel to write
128 to the debug registers with unchanged values. */
129
130 typedef unsigned long long dr_changed_t;
131
132 /* Set each of the lower M bits of X to 1; assert X is wide enough. */
133
134 #define DR_MARK_ALL_CHANGED(x, m) \
135 do \
136 { \
137 gdb_assert (sizeof ((x)) * 8 >= (m)); \
138 (x) = (((dr_changed_t)1 << (m)) - 1); \
139 } while (0)
140
141 #define DR_MARK_N_CHANGED(x, n) \
142 do \
143 { \
144 (x) |= ((dr_changed_t)1 << (n)); \
145 } while (0)
146
147 #define DR_CLEAR_CHANGED(x) \
148 do \
149 { \
150 (x) = 0; \
151 } while (0)
152
153 #define DR_HAS_CHANGED(x) ((x) != 0)
154 #define DR_N_HAS_CHANGED(x, n) ((x) & ((dr_changed_t)1 << (n)))
155
156 /* Structure for managing the hardware breakpoint/watchpoint resources.
157 DR_ADDR_* stores the address, DR_CTRL_* stores the control register
158 content, and DR_REF_COUNT_* counts the numbers of references to the
159 corresponding bp/wp, by which way the limited hardware resources
160 are not wasted on duplicated bp/wp settings (though so far gdb has
161 done a good job by not sending duplicated bp/wp requests). */
162
163 struct aarch64_debug_reg_state
164 {
165 /* hardware breakpoint */
166 CORE_ADDR dr_addr_bp[AARCH64_HBP_MAX_NUM];
167 unsigned int dr_ctrl_bp[AARCH64_HBP_MAX_NUM];
168 unsigned int dr_ref_count_bp[AARCH64_HBP_MAX_NUM];
169
170 /* hardware watchpoint */
171 CORE_ADDR dr_addr_wp[AARCH64_HWP_MAX_NUM];
172 unsigned int dr_ctrl_wp[AARCH64_HWP_MAX_NUM];
173 unsigned int dr_ref_count_wp[AARCH64_HWP_MAX_NUM];
174 };
175
176 /* Per-process arch-specific data we want to keep. */
177
178 struct arch_process_info
179 {
180 /* Hardware breakpoint/watchpoint data.
181 The reason for them to be per-process rather than per-thread is
182 due to the lack of information in the gdbserver environment;
183 gdbserver is not told that whether a requested hardware
184 breakpoint/watchpoint is thread specific or not, so it has to set
185 each hw bp/wp for every thread in the current process. The
186 higher level bp/wp management in gdb will resume a thread if a hw
187 bp/wp trap is not expected for it. Since the hw bp/wp setting is
188 same for each thread, it is reasonable for the data to live here.
189 */
190 struct aarch64_debug_reg_state debug_reg_state;
191 };
192
193 /* Per-thread arch-specific data we want to keep. */
194
195 struct arch_lwp_info
196 {
197 /* When bit N is 1, it indicates the Nth hardware breakpoint or
198 watchpoint register pair needs to be updated when the thread is
199 resumed; see aarch64_linux_prepare_to_resume. */
200 dr_changed_t dr_changed_bp;
201 dr_changed_t dr_changed_wp;
202 };
203
204 /* Number of hardware breakpoints/watchpoints the target supports.
205 They are initialized with values obtained via the ptrace calls
206 with NT_ARM_HW_BREAK and NT_ARM_HW_WATCH respectively. */
207
208 static int aarch64_num_bp_regs;
209 static int aarch64_num_wp_regs;
210
211 /* Hardware breakpoint/watchpoint types.
212 The values map to their encodings in the bit 4 and bit 3 of the
213 hardware breakpoint/watchpoint control registers. */
214
215 enum target_point_type
216 {
217 hw_execute = 0, /* Execute HW breakpoint */
218 hw_read = 1, /* Read HW watchpoint */
219 hw_write = 2, /* Common HW watchpoint */
220 hw_access = 3, /* Access HW watchpoint */
221 point_type_unsupported
222 };
223
224 #define Z_PACKET_SW_BP '0'
225 #define Z_PACKET_HW_BP '1'
226 #define Z_PACKET_WRITE_WP '2'
227 #define Z_PACKET_READ_WP '3'
228 #define Z_PACKET_ACCESS_WP '4'
229
230 /* Map the protocol breakpoint/watchpoint type TYPE to
231 enum target_point_type. */
232
233 static enum target_point_type
234 Z_packet_to_point_type (char type)
235 {
236 switch (type)
237 {
238 case Z_PACKET_SW_BP:
239 /* Leave the handling of the sw breakpoint with the gdb client. */
240 return point_type_unsupported;
241 case Z_PACKET_HW_BP:
242 return hw_execute;
243 case Z_PACKET_WRITE_WP:
244 return hw_write;
245 case Z_PACKET_READ_WP:
246 return hw_read;
247 case Z_PACKET_ACCESS_WP:
248 return hw_access;
249 default:
250 return point_type_unsupported;
251 }
252 }
253
254 static int
255 aarch64_cannot_store_register (int regno)
256 {
257 return regno >= AARCH64_NUM_REGS;
258 }
259
260 static int
261 aarch64_cannot_fetch_register (int regno)
262 {
263 return regno >= AARCH64_NUM_REGS;
264 }
265
266 static void
267 aarch64_fill_gregset (struct regcache *regcache, void *buf)
268 {
269 struct user_pt_regs *regset = buf;
270 int i;
271
272 for (i = 0; i < AARCH64_X_REGS_NUM; i++)
273 collect_register (regcache, AARCH64_X0_REGNO + i, &regset->regs[i]);
274 collect_register (regcache, AARCH64_SP_REGNO, &regset->sp);
275 collect_register (regcache, AARCH64_PC_REGNO, &regset->pc);
276 collect_register (regcache, AARCH64_CPSR_REGNO, &regset->pstate);
277 }
278
279 static void
280 aarch64_store_gregset (struct regcache *regcache, const void *buf)
281 {
282 const struct user_pt_regs *regset = buf;
283 int i;
284
285 for (i = 0; i < AARCH64_X_REGS_NUM; i++)
286 supply_register (regcache, AARCH64_X0_REGNO + i, &regset->regs[i]);
287 supply_register (regcache, AARCH64_SP_REGNO, &regset->sp);
288 supply_register (regcache, AARCH64_PC_REGNO, &regset->pc);
289 supply_register (regcache, AARCH64_CPSR_REGNO, &regset->pstate);
290 }
291
292 static void
293 aarch64_fill_fpregset (struct regcache *regcache, void *buf)
294 {
295 struct user_fpsimd_state *regset = buf;
296 int i;
297
298 for (i = 0; i < AARCH64_V_REGS_NUM; i++)
299 collect_register (regcache, AARCH64_V0_REGNO + i, &regset->vregs[i]);
300 }
301
302 static void
303 aarch64_store_fpregset (struct regcache *regcache, const void *buf)
304 {
305 const struct user_fpsimd_state *regset = buf;
306 int i;
307
308 for (i = 0; i < AARCH64_V_REGS_NUM; i++)
309 supply_register (regcache, AARCH64_V0_REGNO + i, &regset->vregs[i]);
310 }
311
312 /* Debugging of hardware breakpoint/watchpoint support. */
313 extern int debug_hw_points;
314
315 /* Enable miscellaneous debugging output. The name is historical - it
316 was originally used to debug LinuxThreads support. */
317 extern int debug_threads;
318
319 static CORE_ADDR
320 aarch64_get_pc (struct regcache *regcache)
321 {
322 unsigned long pc;
323
324 collect_register_by_name (regcache, "pc", &pc);
325 if (debug_threads)
326 debug_printf ("stop pc is %08lx\n", pc);
327 return pc;
328 }
329
330 static void
331 aarch64_set_pc (struct regcache *regcache, CORE_ADDR pc)
332 {
333 unsigned long newpc = pc;
334 supply_register_by_name (regcache, "pc", &newpc);
335 }
336
337 /* Correct in either endianness. */
338
339 #define aarch64_breakpoint_len 4
340
341 static const unsigned long aarch64_breakpoint = 0x00800011;
342
343 static int
344 aarch64_breakpoint_at (CORE_ADDR where)
345 {
346 unsigned long insn;
347
348 (*the_target->read_memory) (where, (unsigned char *) &insn, 4);
349 if (insn == aarch64_breakpoint)
350 return 1;
351
352 return 0;
353 }
354
355 /* Print the values of the cached breakpoint/watchpoint registers.
356 This is enabled via the "set debug-hw-points" monitor command. */
357
358 static void
359 aarch64_show_debug_reg_state (struct aarch64_debug_reg_state *state,
360 const char *func, CORE_ADDR addr,
361 int len, enum target_point_type type)
362 {
363 int i;
364
365 fprintf (stderr, "%s", func);
366 if (addr || len)
367 fprintf (stderr, " (addr=0x%08lx, len=%d, type=%s)",
368 (unsigned long) addr, len,
369 type == hw_write ? "hw-write-watchpoint"
370 : (type == hw_read ? "hw-read-watchpoint"
371 : (type == hw_access ? "hw-access-watchpoint"
372 : (type == hw_execute ? "hw-breakpoint"
373 : "??unknown??"))));
374 fprintf (stderr, ":\n");
375
376 fprintf (stderr, "\tBREAKPOINTs:\n");
377 for (i = 0; i < aarch64_num_bp_regs; i++)
378 fprintf (stderr, "\tBP%d: addr=0x%s, ctrl=0x%08x, ref.count=%d\n",
379 i, paddress (state->dr_addr_bp[i]),
380 state->dr_ctrl_bp[i], state->dr_ref_count_bp[i]);
381
382 fprintf (stderr, "\tWATCHPOINTs:\n");
383 for (i = 0; i < aarch64_num_wp_regs; i++)
384 fprintf (stderr, "\tWP%d: addr=0x%s, ctrl=0x%08x, ref.count=%d\n",
385 i, paddress (state->dr_addr_wp[i]),
386 state->dr_ctrl_wp[i], state->dr_ref_count_wp[i]);
387 }
388
389 static void
390 aarch64_init_debug_reg_state (struct aarch64_debug_reg_state *state)
391 {
392 int i;
393
394 for (i = 0; i < AARCH64_HBP_MAX_NUM; ++i)
395 {
396 state->dr_addr_bp[i] = 0;
397 state->dr_ctrl_bp[i] = 0;
398 state->dr_ref_count_bp[i] = 0;
399 }
400
401 for (i = 0; i < AARCH64_HWP_MAX_NUM; ++i)
402 {
403 state->dr_addr_wp[i] = 0;
404 state->dr_ctrl_wp[i] = 0;
405 state->dr_ref_count_wp[i] = 0;
406 }
407 }
408
409 /* ptrace expects control registers to be formatted as follows:
410
411 31 13 5 3 1 0
412 +--------------------------------+----------+------+------+----+
413 | RESERVED (SBZ) | LENGTH | TYPE | PRIV | EN |
414 +--------------------------------+----------+------+------+----+
415
416 The TYPE field is ignored for breakpoints. */
417
418 #define DR_CONTROL_ENABLED(ctrl) (((ctrl) & 0x1) == 1)
419 #define DR_CONTROL_LENGTH(ctrl) (((ctrl) >> 5) & 0xff)
420
421 /* Utility function that returns the length in bytes of a watchpoint
422 according to the content of a hardware debug control register CTRL.
423 Note that the kernel currently only supports the following Byte
424 Address Select (BAS) values: 0x1, 0x3, 0xf and 0xff, which means
425 that for a hardware watchpoint, its valid length can only be 1
426 byte, 2 bytes, 4 bytes or 8 bytes. */
427
428 static inline unsigned int
429 aarch64_watchpoint_length (unsigned int ctrl)
430 {
431 switch (DR_CONTROL_LENGTH (ctrl))
432 {
433 case 0x01:
434 return 1;
435 case 0x03:
436 return 2;
437 case 0x0f:
438 return 4;
439 case 0xff:
440 return 8;
441 default:
442 return 0;
443 }
444 }
445
446 /* Given the hardware breakpoint or watchpoint type TYPE and its
447 length LEN, return the expected encoding for a hardware
448 breakpoint/watchpoint control register. */
449
450 static unsigned int
451 aarch64_point_encode_ctrl_reg (enum target_point_type type, int len)
452 {
453 unsigned int ctrl;
454
455 /* type */
456 ctrl = type << 3;
457 /* length bitmask */
458 ctrl |= ((1 << len) - 1) << 5;
459 /* enabled at el0 */
460 ctrl |= (2 << 1) | 1;
461
462 return ctrl;
463 }
464
465 /* Addresses to be written to the hardware breakpoint and watchpoint
466 value registers need to be aligned; the alignment is 4-byte and
467 8-type respectively. Linux kernel rejects any non-aligned address
468 it receives from the related ptrace call. Furthermore, the kernel
469 currently only supports the following Byte Address Select (BAS)
470 values: 0x1, 0x3, 0xf and 0xff, which means that for a hardware
471 watchpoint to be accepted by the kernel (via ptrace call), its
472 valid length can only be 1 byte, 2 bytes, 4 bytes or 8 bytes.
473 Despite these limitations, the unaligned watchpoint is supported in
474 this gdbserver port.
475
476 Return 0 for any non-compliant ADDR and/or LEN; return 1 otherwise. */
477
478 static int
479 aarch64_point_is_aligned (int is_watchpoint, CORE_ADDR addr, int len)
480 {
481 unsigned int alignment = is_watchpoint ? AARCH64_HWP_ALIGNMENT
482 : AARCH64_HBP_ALIGNMENT;
483
484 if (addr & (alignment - 1))
485 return 0;
486
487 if (len != 8 && len != 4 && len != 2 && len != 1)
488 return 0;
489
490 return 1;
491 }
492
493 /* Given the (potentially unaligned) watchpoint address in ADDR and
494 length in LEN, return the aligned address and aligned length in
495 *ALIGNED_ADDR_P and *ALIGNED_LEN_P, respectively. The returned
496 aligned address and length will be valid to be written to the
497 hardware watchpoint value and control registers. See the comment
498 above aarch64_point_is_aligned for the information about the
499 alignment requirement. The given watchpoint may get truncated if
500 more than one hardware register is needed to cover the watched
501 region. *NEXT_ADDR_P and *NEXT_LEN_P, if non-NULL, will return the
502 address and length of the remaining part of the watchpoint (which
503 can be processed by calling this routine again to generate another
504 aligned address and length pair.
505
506 Essentially, unaligned watchpoint is achieved by minimally
507 enlarging the watched area to meet the alignment requirement, and
508 if necessary, splitting the watchpoint over several hardware
509 watchpoint registers. The trade-off is that there will be
510 false-positive hits for the read-type or the access-type hardware
511 watchpoints; for the write type, which is more commonly used, there
512 will be no such issues, as the higher-level breakpoint management
513 in gdb always examines the exact watched region for any content
514 change, and transparently resumes a thread from a watchpoint trap
515 if there is no change to the watched region.
516
517 Another limitation is that because the watched region is enlarged,
518 the watchpoint fault address returned by
519 aarch64_stopped_data_address may be outside of the original watched
520 region, especially when the triggering instruction is accessing a
521 larger region. When the fault address is not within any known
522 range, watchpoints_triggered in gdb will get confused, as the
523 higher-level watchpoint management is only aware of original
524 watched regions, and will think that some unknown watchpoint has
525 been triggered. In such a case, gdb may stop without displaying
526 any detailed information.
527
528 Once the kernel provides the full support for Byte Address Select
529 (BAS) in the hardware watchpoint control register, these
530 limitations can be largely relaxed with some further work. */
531
532 static void
533 aarch64_align_watchpoint (CORE_ADDR addr, int len, CORE_ADDR *aligned_addr_p,
534 int *aligned_len_p, CORE_ADDR *next_addr_p,
535 int *next_len_p)
536 {
537 int aligned_len;
538 unsigned int offset;
539 CORE_ADDR aligned_addr;
540 const unsigned int alignment = AARCH64_HWP_ALIGNMENT;
541 const unsigned int max_wp_len = AARCH64_HWP_MAX_LEN_PER_REG;
542
543 /* As assumed by the algorithm. */
544 gdb_assert (alignment == max_wp_len);
545
546 if (len <= 0)
547 return;
548
549 /* Address to be put into the hardware watchpoint value register
550 must be aligned. */
551 offset = addr & (alignment - 1);
552 aligned_addr = addr - offset;
553
554 gdb_assert (offset >= 0 && offset < alignment);
555 gdb_assert (aligned_addr >= 0 && aligned_addr <= addr);
556 gdb_assert ((offset + len) > 0);
557
558 if (offset + len >= max_wp_len)
559 {
560 /* Need more than one watchpoint registers; truncate it at the
561 alignment boundary. */
562 aligned_len = max_wp_len;
563 len -= (max_wp_len - offset);
564 addr += (max_wp_len - offset);
565 gdb_assert ((addr & (alignment - 1)) == 0);
566 }
567 else
568 {
569 /* Find the smallest valid length that is large enough to
570 accommodate this watchpoint. */
571 static const unsigned char
572 aligned_len_array[AARCH64_HWP_MAX_LEN_PER_REG] =
573 { 1, 2, 4, 4, 8, 8, 8, 8 };
574
575 aligned_len = aligned_len_array[offset + len - 1];
576 addr += len;
577 len = 0;
578 }
579
580 if (aligned_addr_p != NULL)
581 *aligned_addr_p = aligned_addr;
582 if (aligned_len_p != NULL)
583 *aligned_len_p = aligned_len;
584 if (next_addr_p != NULL)
585 *next_addr_p = addr;
586 if (next_len_p != NULL)
587 *next_len_p = len;
588 }
589
590 /* Call ptrace to set the thread TID's hardware breakpoint/watchpoint
591 registers with data from *STATE. */
592
593 static void
594 aarch64_linux_set_debug_regs (const struct aarch64_debug_reg_state *state,
595 int tid, int watchpoint)
596 {
597 int i, count;
598 struct iovec iov;
599 struct user_hwdebug_state regs;
600 const CORE_ADDR *addr;
601 const unsigned int *ctrl;
602
603 memset (&regs, 0, sizeof (regs));
604 iov.iov_base = &regs;
605 count = watchpoint ? aarch64_num_wp_regs : aarch64_num_bp_regs;
606 addr = watchpoint ? state->dr_addr_wp : state->dr_addr_bp;
607 ctrl = watchpoint ? state->dr_ctrl_wp : state->dr_ctrl_bp;
608 if (count == 0)
609 return;
610 iov.iov_len = (offsetof (struct user_hwdebug_state, dbg_regs[count - 1])
611 + sizeof (regs.dbg_regs [count - 1]));
612
613 for (i = 0; i < count; i++)
614 {
615 regs.dbg_regs[i].addr = addr[i];
616 regs.dbg_regs[i].ctrl = ctrl[i];
617 }
618
619 if (ptrace (PTRACE_SETREGSET, tid,
620 watchpoint ? NT_ARM_HW_WATCH : NT_ARM_HW_BREAK,
621 (void *) &iov))
622 error (_("Unexpected error setting hardware debug registers"));
623 }
624
625 struct aarch64_dr_update_callback_param
626 {
627 int pid;
628 int is_watchpoint;
629 unsigned int idx;
630 };
631
632 /* Callback function which records the information about the change of
633 one hardware breakpoint/watchpoint setting for the thread ENTRY.
634 The information is passed in via PTR.
635 N.B. The actual updating of hardware debug registers is not
636 carried out until the moment the thread is resumed. */
637
638 static int
639 debug_reg_change_callback (struct inferior_list_entry *entry, void *ptr)
640 {
641 struct thread_info *thread = (struct thread_info *) entry;
642 struct lwp_info *lwp = get_thread_lwp (thread);
643 struct aarch64_dr_update_callback_param *param_p
644 = (struct aarch64_dr_update_callback_param *) ptr;
645 int pid = param_p->pid;
646 int idx = param_p->idx;
647 int is_watchpoint = param_p->is_watchpoint;
648 struct arch_lwp_info *info = lwp->arch_private;
649 dr_changed_t *dr_changed_ptr;
650 dr_changed_t dr_changed;
651
652 if (debug_hw_points)
653 {
654 fprintf (stderr, "debug_reg_change_callback: \n\tOn entry:\n");
655 fprintf (stderr, "\tpid%d, tid: %ld, dr_changed_bp=0x%llx, "
656 "dr_changed_wp=0x%llx\n",
657 pid, lwpid_of (thread), info->dr_changed_bp,
658 info->dr_changed_wp);
659 }
660
661 dr_changed_ptr = is_watchpoint ? &info->dr_changed_wp
662 : &info->dr_changed_bp;
663 dr_changed = *dr_changed_ptr;
664
665 /* Only update the threads of this process. */
666 if (pid_of (thread) == pid)
667 {
668 gdb_assert (idx >= 0
669 && (idx <= (is_watchpoint ? aarch64_num_wp_regs
670 : aarch64_num_bp_regs)));
671
672 /* The following assertion is not right, as there can be changes
673 that have not been made to the hardware debug registers
674 before new changes overwrite the old ones. This can happen,
675 for instance, when the breakpoint/watchpoint hit one of the
676 threads and the user enters continue; then what happens is:
677 1) all breakpoints/watchpoints are removed for all threads;
678 2) a single step is carried out for the thread that was hit;
679 3) all of the points are inserted again for all threads;
680 4) all threads are resumed.
681 The 2nd step will only affect the one thread in which the
682 bp/wp was hit, which means only that one thread is resumed;
683 remember that the actual updating only happen in
684 aarch64_linux_prepare_to_resume, so other threads remain
685 stopped during the removal and insertion of bp/wp. Therefore
686 for those threads, the change of insertion of the bp/wp
687 overwrites that of the earlier removals. (The situation may
688 be different when bp/wp is steppable, or in the non-stop
689 mode.) */
690 /* gdb_assert (DR_N_HAS_CHANGED (dr_changed, idx) == 0); */
691
692 /* The actual update is done later just before resuming the lwp,
693 we just mark that one register pair needs updating. */
694 DR_MARK_N_CHANGED (dr_changed, idx);
695 *dr_changed_ptr = dr_changed;
696
697 /* If the lwp isn't stopped, force it to momentarily pause, so
698 we can update its debug registers. */
699 if (!lwp->stopped)
700 linux_stop_lwp (lwp);
701 }
702
703 if (debug_hw_points)
704 {
705 fprintf (stderr, "\tOn exit:\n\tpid%d, tid: %ld, dr_changed_bp=0x%llx, "
706 "dr_changed_wp=0x%llx\n",
707 pid, lwpid_of (thread), info->dr_changed_bp,
708 info->dr_changed_wp);
709 }
710
711 return 0;
712 }
713
714 /* Notify each thread that their IDXth breakpoint/watchpoint register
715 pair needs to be updated. The message will be recorded in each
716 thread's arch-specific data area, the actual updating will be done
717 when the thread is resumed. */
718
719 void
720 aarch64_notify_debug_reg_change (const struct aarch64_debug_reg_state *state,
721 int is_watchpoint, unsigned int idx)
722 {
723 struct aarch64_dr_update_callback_param param;
724
725 /* Only update the threads of this process. */
726 param.pid = pid_of (current_inferior);
727
728 param.is_watchpoint = is_watchpoint;
729 param.idx = idx;
730
731 find_inferior (&all_threads, debug_reg_change_callback, (void *) &param);
732 }
733
734
735 /* Return the pointer to the debug register state structure in the
736 current process' arch-specific data area. */
737
738 static struct aarch64_debug_reg_state *
739 aarch64_get_debug_reg_state ()
740 {
741 struct process_info *proc;
742
743 proc = current_process ();
744 return &proc->private->arch_private->debug_reg_state;
745 }
746
747 /* Record the insertion of one breakpoint/watchpoint, as represented
748 by ADDR and CTRL, in the process' arch-specific data area *STATE. */
749
750 static int
751 aarch64_dr_state_insert_one_point (struct aarch64_debug_reg_state *state,
752 enum target_point_type type,
753 CORE_ADDR addr, int len)
754 {
755 int i, idx, num_regs, is_watchpoint;
756 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
757 CORE_ADDR *dr_addr_p;
758
759 /* Set up state pointers. */
760 is_watchpoint = (type != hw_execute);
761 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
762 if (is_watchpoint)
763 {
764 num_regs = aarch64_num_wp_regs;
765 dr_addr_p = state->dr_addr_wp;
766 dr_ctrl_p = state->dr_ctrl_wp;
767 dr_ref_count = state->dr_ref_count_wp;
768 }
769 else
770 {
771 num_regs = aarch64_num_bp_regs;
772 dr_addr_p = state->dr_addr_bp;
773 dr_ctrl_p = state->dr_ctrl_bp;
774 dr_ref_count = state->dr_ref_count_bp;
775 }
776
777 ctrl = aarch64_point_encode_ctrl_reg (type, len);
778
779 /* Find an existing or free register in our cache. */
780 idx = -1;
781 for (i = 0; i < num_regs; ++i)
782 {
783 if ((dr_ctrl_p[i] & 1) == 0)
784 {
785 gdb_assert (dr_ref_count[i] == 0);
786 idx = i;
787 /* no break; continue hunting for an exising one. */
788 }
789 else if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
790 {
791 gdb_assert (dr_ref_count[i] != 0);
792 idx = i;
793 break;
794 }
795 }
796
797 /* No space. */
798 if (idx == -1)
799 return -1;
800
801 /* Update our cache. */
802 if ((dr_ctrl_p[idx] & 1) == 0)
803 {
804 /* new entry */
805 dr_addr_p[idx] = addr;
806 dr_ctrl_p[idx] = ctrl;
807 dr_ref_count[idx] = 1;
808 /* Notify the change. */
809 aarch64_notify_debug_reg_change (state, is_watchpoint, idx);
810 }
811 else
812 {
813 /* existing entry */
814 dr_ref_count[idx]++;
815 }
816
817 return 0;
818 }
819
820 /* Record the removal of one breakpoint/watchpoint, as represented by
821 ADDR and CTRL, in the process' arch-specific data area *STATE. */
822
823 static int
824 aarch64_dr_state_remove_one_point (struct aarch64_debug_reg_state *state,
825 enum target_point_type type,
826 CORE_ADDR addr, int len)
827 {
828 int i, num_regs, is_watchpoint;
829 unsigned int ctrl, *dr_ctrl_p, *dr_ref_count;
830 CORE_ADDR *dr_addr_p;
831
832 /* Set up state pointers. */
833 is_watchpoint = (type != hw_execute);
834 gdb_assert (aarch64_point_is_aligned (is_watchpoint, addr, len));
835 if (is_watchpoint)
836 {
837 num_regs = aarch64_num_wp_regs;
838 dr_addr_p = state->dr_addr_wp;
839 dr_ctrl_p = state->dr_ctrl_wp;
840 dr_ref_count = state->dr_ref_count_wp;
841 }
842 else
843 {
844 num_regs = aarch64_num_bp_regs;
845 dr_addr_p = state->dr_addr_bp;
846 dr_ctrl_p = state->dr_ctrl_bp;
847 dr_ref_count = state->dr_ref_count_bp;
848 }
849
850 ctrl = aarch64_point_encode_ctrl_reg (type, len);
851
852 /* Find the entry that matches the ADDR and CTRL. */
853 for (i = 0; i < num_regs; ++i)
854 if (dr_addr_p[i] == addr && dr_ctrl_p[i] == ctrl)
855 {
856 gdb_assert (dr_ref_count[i] != 0);
857 break;
858 }
859
860 /* Not found. */
861 if (i == num_regs)
862 return -1;
863
864 /* Clear our cache. */
865 if (--dr_ref_count[i] == 0)
866 {
867 /* Clear the enable bit. */
868 ctrl &= ~1;
869 dr_addr_p[i] = 0;
870 dr_ctrl_p[i] = ctrl;
871 /* Notify the change. */
872 aarch64_notify_debug_reg_change (state, is_watchpoint, i);
873 }
874
875 return 0;
876 }
877
878 static int
879 aarch64_handle_breakpoint (enum target_point_type type, CORE_ADDR addr,
880 int len, int is_insert)
881 {
882 struct aarch64_debug_reg_state *state;
883
884 /* The hardware breakpoint on AArch64 should always be 4-byte
885 aligned. */
886 if (!aarch64_point_is_aligned (0 /* is_watchpoint */ , addr, len))
887 return -1;
888
889 state = aarch64_get_debug_reg_state ();
890
891 if (is_insert)
892 return aarch64_dr_state_insert_one_point (state, type, addr, len);
893 else
894 return aarch64_dr_state_remove_one_point (state, type, addr, len);
895 }
896
897 /* This is essentially the same as aarch64_handle_breakpoint, apart
898 from that it is an aligned watchpoint to be handled. */
899
900 static int
901 aarch64_handle_aligned_watchpoint (enum target_point_type type,
902 CORE_ADDR addr, int len, int is_insert)
903 {
904 struct aarch64_debug_reg_state *state;
905
906 state = aarch64_get_debug_reg_state ();
907
908 if (is_insert)
909 return aarch64_dr_state_insert_one_point (state, type, addr, len);
910 else
911 return aarch64_dr_state_remove_one_point (state, type, addr, len);
912 }
913
914 /* Insert/remove unaligned watchpoint by calling
915 aarch64_align_watchpoint repeatedly until the whole watched region,
916 as represented by ADDR and LEN, has been properly aligned and ready
917 to be written to one or more hardware watchpoint registers.
918 IS_INSERT indicates whether this is an insertion or a deletion.
919 Return 0 if succeed. */
920
921 static int
922 aarch64_handle_unaligned_watchpoint (enum target_point_type type,
923 CORE_ADDR addr, int len, int is_insert)
924 {
925 struct aarch64_debug_reg_state *state
926 = aarch64_get_debug_reg_state ();
927
928 while (len > 0)
929 {
930 CORE_ADDR aligned_addr;
931 int aligned_len, ret;
932
933 aarch64_align_watchpoint (addr, len, &aligned_addr, &aligned_len,
934 &addr, &len);
935
936 if (is_insert)
937 ret = aarch64_dr_state_insert_one_point (state, type, aligned_addr,
938 aligned_len);
939 else
940 ret = aarch64_dr_state_remove_one_point (state, type, aligned_addr,
941 aligned_len);
942
943 if (debug_hw_points)
944 fprintf (stderr,
945 "handle_unaligned_watchpoint: is_insert: %d\n"
946 " aligned_addr: 0x%s, aligned_len: %d\n"
947 " next_addr: 0x%s, next_len: %d\n",
948 is_insert, paddress (aligned_addr), aligned_len,
949 paddress (addr), len);
950
951 if (ret != 0)
952 return ret;
953 }
954
955 return 0;
956 }
957
958 static int
959 aarch64_handle_watchpoint (enum target_point_type type, CORE_ADDR addr,
960 int len, int is_insert)
961 {
962 if (aarch64_point_is_aligned (1 /* is_watchpoint */ , addr, len))
963 return aarch64_handle_aligned_watchpoint (type, addr, len, is_insert);
964 else
965 return aarch64_handle_unaligned_watchpoint (type, addr, len, is_insert);
966 }
967
968 /* Insert a hardware breakpoint/watchpoint.
969 It actually only records the info of the to-be-inserted bp/wp;
970 the actual insertion will happen when threads are resumed.
971
972 Return 0 if succeed;
973 Return 1 if TYPE is unsupported type;
974 Return -1 if an error occurs. */
975
976 static int
977 aarch64_insert_point (char type, CORE_ADDR addr, int len)
978 {
979 int ret;
980 enum target_point_type targ_type;
981
982 if (debug_hw_points)
983 fprintf (stderr, "insert_point on entry (addr=0x%08lx, len=%d)\n",
984 (unsigned long) addr, len);
985
986 /* Determine the type from the packet. */
987 targ_type = Z_packet_to_point_type (type);
988 if (targ_type == point_type_unsupported)
989 return 1;
990
991 if (targ_type != hw_execute)
992 ret =
993 aarch64_handle_watchpoint (targ_type, addr, len, 1 /* is_insert */);
994 else
995 ret =
996 aarch64_handle_breakpoint (targ_type, addr, len, 1 /* is_insert */);
997
998 if (debug_hw_points > 1)
999 aarch64_show_debug_reg_state (aarch64_get_debug_reg_state (),
1000 "insert_point", addr, len, targ_type);
1001
1002 return ret;
1003 }
1004
1005 /* Remove a hardware breakpoint/watchpoint.
1006 It actually only records the info of the to-be-removed bp/wp,
1007 the actual removal will be done when threads are resumed.
1008
1009 Return 0 if succeed;
1010 Return 1 if TYPE is an unsupported type;
1011 Return -1 if an error occurs. */
1012
1013 static int
1014 aarch64_remove_point (char type, CORE_ADDR addr, int len)
1015 {
1016 int ret;
1017 enum target_point_type targ_type;
1018
1019 if (debug_hw_points)
1020 fprintf (stderr, "remove_point on entry (addr=0x%08lx, len=%d)\n",
1021 (unsigned long) addr, len);
1022
1023 /* Determine the type from the packet. */
1024 targ_type = Z_packet_to_point_type (type);
1025 if (targ_type == point_type_unsupported)
1026 return 1;
1027
1028 /* Set up state pointers. */
1029 if (targ_type != hw_execute)
1030 ret =
1031 aarch64_handle_watchpoint (targ_type, addr, len, 0 /* is_insert */);
1032 else
1033 ret =
1034 aarch64_handle_breakpoint (targ_type, addr, len, 0 /* is_insert */);
1035
1036 if (debug_hw_points > 1)
1037 aarch64_show_debug_reg_state (aarch64_get_debug_reg_state (),
1038 "remove_point", addr, len, targ_type);
1039
1040 return ret;
1041 }
1042
1043 /* Returns the address associated with the watchpoint that hit, if
1044 any; returns 0 otherwise. */
1045
1046 static CORE_ADDR
1047 aarch64_stopped_data_address (void)
1048 {
1049 siginfo_t siginfo;
1050 int pid, i;
1051 struct aarch64_debug_reg_state *state;
1052
1053 pid = lwpid_of (current_inferior);
1054
1055 /* Get the siginfo. */
1056 if (ptrace (PTRACE_GETSIGINFO, pid, NULL, &siginfo) != 0)
1057 return (CORE_ADDR) 0;
1058
1059 /* Need to be a hardware breakpoint/watchpoint trap. */
1060 if (siginfo.si_signo != SIGTRAP
1061 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
1062 return (CORE_ADDR) 0;
1063
1064 /* Check if the address matches any watched address. */
1065 state = aarch64_get_debug_reg_state ();
1066 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
1067 {
1068 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
1069 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
1070 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
1071 if (state->dr_ref_count_wp[i]
1072 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
1073 && addr_trap >= addr_watch
1074 && addr_trap < addr_watch + len)
1075 return addr_trap;
1076 }
1077
1078 return (CORE_ADDR) 0;
1079 }
1080
1081 /* Returns 1 if target was stopped due to a watchpoint hit, 0
1082 otherwise. */
1083
1084 static int
1085 aarch64_stopped_by_watchpoint (void)
1086 {
1087 if (aarch64_stopped_data_address () != 0)
1088 return 1;
1089 else
1090 return 0;
1091 }
1092
1093 /* Fetch the thread-local storage pointer for libthread_db. */
1094
1095 ps_err_e
1096 ps_get_thread_area (const struct ps_prochandle *ph,
1097 lwpid_t lwpid, int idx, void **base)
1098 {
1099 struct iovec iovec;
1100 uint64_t reg;
1101
1102 iovec.iov_base = &reg;
1103 iovec.iov_len = sizeof (reg);
1104
1105 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
1106 return PS_ERR;
1107
1108 /* IDX is the bias from the thread pointer to the beginning of the
1109 thread descriptor. It has to be subtracted due to implementation
1110 quirks in libthread_db. */
1111 *base = (void *) (reg - idx);
1112
1113 return PS_OK;
1114 }
1115
1116 /* Called when a new process is created. */
1117
1118 static struct arch_process_info *
1119 aarch64_linux_new_process (void)
1120 {
1121 struct arch_process_info *info = xcalloc (1, sizeof (*info));
1122
1123 aarch64_init_debug_reg_state (&info->debug_reg_state);
1124
1125 return info;
1126 }
1127
1128 /* Called when a new thread is detected. */
1129
1130 static struct arch_lwp_info *
1131 aarch64_linux_new_thread (void)
1132 {
1133 struct arch_lwp_info *info = xcalloc (1, sizeof (*info));
1134
1135 /* Mark that all the hardware breakpoint/watchpoint register pairs
1136 for this thread need to be initialized (with data from
1137 aarch_process_info.debug_reg_state). */
1138 DR_MARK_ALL_CHANGED (info->dr_changed_bp, aarch64_num_bp_regs);
1139 DR_MARK_ALL_CHANGED (info->dr_changed_wp, aarch64_num_wp_regs);
1140
1141 return info;
1142 }
1143
1144 /* Called when resuming a thread.
1145 If the debug regs have changed, update the thread's copies. */
1146
1147 static void
1148 aarch64_linux_prepare_to_resume (struct lwp_info *lwp)
1149 {
1150 struct thread_info *thread = get_lwp_thread (lwp);
1151 ptid_t ptid = ptid_of (thread);
1152 struct arch_lwp_info *info = lwp->arch_private;
1153
1154 if (DR_HAS_CHANGED (info->dr_changed_bp)
1155 || DR_HAS_CHANGED (info->dr_changed_wp))
1156 {
1157 int tid = ptid_get_lwp (ptid);
1158 struct process_info *proc = find_process_pid (ptid_get_pid (ptid));
1159 struct aarch64_debug_reg_state *state
1160 = &proc->private->arch_private->debug_reg_state;
1161
1162 if (debug_hw_points)
1163 fprintf (stderr, "prepare_to_resume thread %ld\n", lwpid_of (thread));
1164
1165 /* Watchpoints. */
1166 if (DR_HAS_CHANGED (info->dr_changed_wp))
1167 {
1168 aarch64_linux_set_debug_regs (state, tid, 1);
1169 DR_CLEAR_CHANGED (info->dr_changed_wp);
1170 }
1171
1172 /* Breakpoints. */
1173 if (DR_HAS_CHANGED (info->dr_changed_bp))
1174 {
1175 aarch64_linux_set_debug_regs (state, tid, 0);
1176 DR_CLEAR_CHANGED (info->dr_changed_bp);
1177 }
1178 }
1179 }
1180
1181 /* ptrace hardware breakpoint resource info is formatted as follows:
1182
1183 31 24 16 8 0
1184 +---------------+--------------+---------------+---------------+
1185 | RESERVED | RESERVED | DEBUG_ARCH | NUM_SLOTS |
1186 +---------------+--------------+---------------+---------------+ */
1187
1188 #define AARCH64_DEBUG_NUM_SLOTS(x) ((x) & 0xff)
1189 #define AARCH64_DEBUG_ARCH(x) (((x) >> 8) & 0xff)
1190 #define AARCH64_DEBUG_ARCH_V8 0x6
1191
1192 static void
1193 aarch64_arch_setup (void)
1194 {
1195 int pid;
1196 struct iovec iov;
1197 struct user_hwdebug_state dreg_state;
1198
1199 current_process ()->tdesc = tdesc_aarch64;
1200
1201 pid = lwpid_of (current_inferior);
1202 iov.iov_base = &dreg_state;
1203 iov.iov_len = sizeof (dreg_state);
1204
1205 /* Get hardware watchpoint register info. */
1206 if (ptrace (PTRACE_GETREGSET, pid, NT_ARM_HW_WATCH, &iov) == 0
1207 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
1208 {
1209 aarch64_num_wp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
1210 if (aarch64_num_wp_regs > AARCH64_HWP_MAX_NUM)
1211 {
1212 warning ("Unexpected number of hardware watchpoint registers reported"
1213 " by ptrace, got %d, expected %d.",
1214 aarch64_num_wp_regs, AARCH64_HWP_MAX_NUM);
1215 aarch64_num_wp_regs = AARCH64_HWP_MAX_NUM;
1216 }
1217 }
1218 else
1219 {
1220 warning ("Unable to determine the number of hardware watchpoints"
1221 " available.");
1222 aarch64_num_wp_regs = 0;
1223 }
1224
1225 /* Get hardware breakpoint register info. */
1226 if (ptrace (PTRACE_GETREGSET, pid, NT_ARM_HW_BREAK, &iov) == 0
1227 && AARCH64_DEBUG_ARCH (dreg_state.dbg_info) == AARCH64_DEBUG_ARCH_V8)
1228 {
1229 aarch64_num_bp_regs = AARCH64_DEBUG_NUM_SLOTS (dreg_state.dbg_info);
1230 if (aarch64_num_bp_regs > AARCH64_HBP_MAX_NUM)
1231 {
1232 warning ("Unexpected number of hardware breakpoint registers reported"
1233 " by ptrace, got %d, expected %d.",
1234 aarch64_num_bp_regs, AARCH64_HBP_MAX_NUM);
1235 aarch64_num_bp_regs = AARCH64_HBP_MAX_NUM;
1236 }
1237 }
1238 else
1239 {
1240 warning ("Unable to determine the number of hardware breakpoints"
1241 " available.");
1242 aarch64_num_bp_regs = 0;
1243 }
1244 }
1245
1246 static struct regset_info aarch64_regsets[] =
1247 {
1248 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PRSTATUS,
1249 sizeof (struct user_pt_regs), GENERAL_REGS,
1250 aarch64_fill_gregset, aarch64_store_gregset },
1251 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_FPREGSET,
1252 sizeof (struct user_fpsimd_state), FP_REGS,
1253 aarch64_fill_fpregset, aarch64_store_fpregset
1254 },
1255 { 0, 0, 0, -1, -1, NULL, NULL }
1256 };
1257
1258 static struct regsets_info aarch64_regsets_info =
1259 {
1260 aarch64_regsets, /* regsets */
1261 0, /* num_regsets */
1262 NULL, /* disabled_regsets */
1263 };
1264
1265 static struct usrregs_info aarch64_usrregs_info =
1266 {
1267 AARCH64_NUM_REGS,
1268 aarch64_regmap,
1269 };
1270
1271 static struct regs_info regs_info =
1272 {
1273 NULL, /* regset_bitmap */
1274 &aarch64_usrregs_info,
1275 &aarch64_regsets_info,
1276 };
1277
1278 static const struct regs_info *
1279 aarch64_regs_info (void)
1280 {
1281 return &regs_info;
1282 }
1283
1284 struct linux_target_ops the_low_target =
1285 {
1286 aarch64_arch_setup,
1287 aarch64_regs_info,
1288 aarch64_cannot_fetch_register,
1289 aarch64_cannot_store_register,
1290 NULL,
1291 aarch64_get_pc,
1292 aarch64_set_pc,
1293 (const unsigned char *) &aarch64_breakpoint,
1294 aarch64_breakpoint_len,
1295 NULL,
1296 0,
1297 aarch64_breakpoint_at,
1298 aarch64_insert_point,
1299 aarch64_remove_point,
1300 aarch64_stopped_by_watchpoint,
1301 aarch64_stopped_data_address,
1302 NULL,
1303 NULL,
1304 NULL,
1305 aarch64_linux_new_process,
1306 aarch64_linux_new_thread,
1307 aarch64_linux_prepare_to_resume,
1308 };
1309
1310 void
1311 initialize_low_arch (void)
1312 {
1313 init_registers_aarch64 ();
1314
1315 initialize_regsets_info (&aarch64_regsets_info);
1316 }
This page took 0.060013 seconds and 4 git commands to generate.