Fix typo in previous commit
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-aarch64-low.c
1 /* GNU/Linux/AArch64 specific low level interface, for the remote server for
2 GDB.
3
4 Copyright (C) 2009-2016 Free Software Foundation, Inc.
5 Contributed by ARM Ltd.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "server.h"
23 #include "linux-low.h"
24 #include "nat/aarch64-linux.h"
25 #include "nat/aarch64-linux-hw-point.h"
26 #include "arch/aarch64-insn.h"
27 #include "linux-aarch32-low.h"
28 #include "elf/common.h"
29 #include "ax.h"
30 #include "tracepoint.h"
31
32 #include <signal.h>
33 #include <sys/user.h>
34 #include "nat/gdb_ptrace.h"
35 #include <asm/ptrace.h>
36 #include <inttypes.h>
37 #include <endian.h>
38 #include <sys/uio.h>
39
40 #include "gdb_proc_service.h"
41
42 /* Defined in auto-generated files. */
43 void init_registers_aarch64 (void);
44 extern const struct target_desc *tdesc_aarch64;
45
46 #ifdef HAVE_SYS_REG_H
47 #include <sys/reg.h>
48 #endif
49
50 #define AARCH64_X_REGS_NUM 31
51 #define AARCH64_V_REGS_NUM 32
52 #define AARCH64_X0_REGNO 0
53 #define AARCH64_SP_REGNO 31
54 #define AARCH64_PC_REGNO 32
55 #define AARCH64_CPSR_REGNO 33
56 #define AARCH64_V0_REGNO 34
57 #define AARCH64_FPSR_REGNO (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM)
58 #define AARCH64_FPCR_REGNO (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM + 1)
59
60 #define AARCH64_NUM_REGS (AARCH64_V0_REGNO + AARCH64_V_REGS_NUM + 2)
61
62 /* Per-process arch-specific data we want to keep. */
63
64 struct arch_process_info
65 {
66 /* Hardware breakpoint/watchpoint data.
67 The reason for them to be per-process rather than per-thread is
68 due to the lack of information in the gdbserver environment;
69 gdbserver is not told that whether a requested hardware
70 breakpoint/watchpoint is thread specific or not, so it has to set
71 each hw bp/wp for every thread in the current process. The
72 higher level bp/wp management in gdb will resume a thread if a hw
73 bp/wp trap is not expected for it. Since the hw bp/wp setting is
74 same for each thread, it is reasonable for the data to live here.
75 */
76 struct aarch64_debug_reg_state debug_reg_state;
77 };
78
79 /* Return true if the size of register 0 is 8 byte. */
80
81 static int
82 is_64bit_tdesc (void)
83 {
84 struct regcache *regcache = get_thread_regcache (current_thread, 0);
85
86 return register_size (regcache->tdesc, 0) == 8;
87 }
88
89 /* Implementation of linux_target_ops method "cannot_store_register". */
90
91 static int
92 aarch64_cannot_store_register (int regno)
93 {
94 return regno >= AARCH64_NUM_REGS;
95 }
96
97 /* Implementation of linux_target_ops method "cannot_fetch_register". */
98
99 static int
100 aarch64_cannot_fetch_register (int regno)
101 {
102 return regno >= AARCH64_NUM_REGS;
103 }
104
105 static void
106 aarch64_fill_gregset (struct regcache *regcache, void *buf)
107 {
108 struct user_pt_regs *regset = (struct user_pt_regs *) buf;
109 int i;
110
111 for (i = 0; i < AARCH64_X_REGS_NUM; i++)
112 collect_register (regcache, AARCH64_X0_REGNO + i, &regset->regs[i]);
113 collect_register (regcache, AARCH64_SP_REGNO, &regset->sp);
114 collect_register (regcache, AARCH64_PC_REGNO, &regset->pc);
115 collect_register (regcache, AARCH64_CPSR_REGNO, &regset->pstate);
116 }
117
118 static void
119 aarch64_store_gregset (struct regcache *regcache, const void *buf)
120 {
121 const struct user_pt_regs *regset = (const struct user_pt_regs *) buf;
122 int i;
123
124 for (i = 0; i < AARCH64_X_REGS_NUM; i++)
125 supply_register (regcache, AARCH64_X0_REGNO + i, &regset->regs[i]);
126 supply_register (regcache, AARCH64_SP_REGNO, &regset->sp);
127 supply_register (regcache, AARCH64_PC_REGNO, &regset->pc);
128 supply_register (regcache, AARCH64_CPSR_REGNO, &regset->pstate);
129 }
130
131 static void
132 aarch64_fill_fpregset (struct regcache *regcache, void *buf)
133 {
134 struct user_fpsimd_state *regset = (struct user_fpsimd_state *) buf;
135 int i;
136
137 for (i = 0; i < AARCH64_V_REGS_NUM; i++)
138 collect_register (regcache, AARCH64_V0_REGNO + i, &regset->vregs[i]);
139 collect_register (regcache, AARCH64_FPSR_REGNO, &regset->fpsr);
140 collect_register (regcache, AARCH64_FPCR_REGNO, &regset->fpcr);
141 }
142
143 static void
144 aarch64_store_fpregset (struct regcache *regcache, const void *buf)
145 {
146 const struct user_fpsimd_state *regset
147 = (const struct user_fpsimd_state *) buf;
148 int i;
149
150 for (i = 0; i < AARCH64_V_REGS_NUM; i++)
151 supply_register (regcache, AARCH64_V0_REGNO + i, &regset->vregs[i]);
152 supply_register (regcache, AARCH64_FPSR_REGNO, &regset->fpsr);
153 supply_register (regcache, AARCH64_FPCR_REGNO, &regset->fpcr);
154 }
155
156 /* Enable miscellaneous debugging output. The name is historical - it
157 was originally used to debug LinuxThreads support. */
158 extern int debug_threads;
159
160 /* Implementation of linux_target_ops method "get_pc". */
161
162 static CORE_ADDR
163 aarch64_get_pc (struct regcache *regcache)
164 {
165 if (register_size (regcache->tdesc, 0) == 8)
166 return linux_get_pc_64bit (regcache);
167 else
168 return linux_get_pc_32bit (regcache);
169 }
170
171 /* Implementation of linux_target_ops method "set_pc". */
172
173 static void
174 aarch64_set_pc (struct regcache *regcache, CORE_ADDR pc)
175 {
176 if (register_size (regcache->tdesc, 0) == 8)
177 linux_set_pc_64bit (regcache, pc);
178 else
179 linux_set_pc_32bit (regcache, pc);
180 }
181
182 #define aarch64_breakpoint_len 4
183
184 /* AArch64 BRK software debug mode instruction.
185 This instruction needs to match gdb/aarch64-tdep.c
186 (aarch64_default_breakpoint). */
187 static const gdb_byte aarch64_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
188
189 /* Implementation of linux_target_ops method "breakpoint_at". */
190
191 static int
192 aarch64_breakpoint_at (CORE_ADDR where)
193 {
194 if (is_64bit_tdesc ())
195 {
196 gdb_byte insn[aarch64_breakpoint_len];
197
198 (*the_target->read_memory) (where, (unsigned char *) &insn,
199 aarch64_breakpoint_len);
200 if (memcmp (insn, aarch64_breakpoint, aarch64_breakpoint_len) == 0)
201 return 1;
202
203 return 0;
204 }
205 else
206 return arm_breakpoint_at (where);
207 }
208
209 static void
210 aarch64_init_debug_reg_state (struct aarch64_debug_reg_state *state)
211 {
212 int i;
213
214 for (i = 0; i < AARCH64_HBP_MAX_NUM; ++i)
215 {
216 state->dr_addr_bp[i] = 0;
217 state->dr_ctrl_bp[i] = 0;
218 state->dr_ref_count_bp[i] = 0;
219 }
220
221 for (i = 0; i < AARCH64_HWP_MAX_NUM; ++i)
222 {
223 state->dr_addr_wp[i] = 0;
224 state->dr_ctrl_wp[i] = 0;
225 state->dr_ref_count_wp[i] = 0;
226 }
227 }
228
229 /* Return the pointer to the debug register state structure in the
230 current process' arch-specific data area. */
231
232 struct aarch64_debug_reg_state *
233 aarch64_get_debug_reg_state (pid_t pid)
234 {
235 struct process_info *proc = find_process_pid (pid);
236
237 return &proc->priv->arch_private->debug_reg_state;
238 }
239
240 /* Implementation of linux_target_ops method "supports_z_point_type". */
241
242 static int
243 aarch64_supports_z_point_type (char z_type)
244 {
245 switch (z_type)
246 {
247 case Z_PACKET_SW_BP:
248 case Z_PACKET_HW_BP:
249 case Z_PACKET_WRITE_WP:
250 case Z_PACKET_READ_WP:
251 case Z_PACKET_ACCESS_WP:
252 return 1;
253 default:
254 return 0;
255 }
256 }
257
258 /* Implementation of linux_target_ops method "insert_point".
259
260 It actually only records the info of the to-be-inserted bp/wp;
261 the actual insertion will happen when threads are resumed. */
262
263 static int
264 aarch64_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
265 int len, struct raw_breakpoint *bp)
266 {
267 int ret;
268 enum target_hw_bp_type targ_type;
269 struct aarch64_debug_reg_state *state
270 = aarch64_get_debug_reg_state (pid_of (current_thread));
271
272 if (show_debug_regs)
273 fprintf (stderr, "insert_point on entry (addr=0x%08lx, len=%d)\n",
274 (unsigned long) addr, len);
275
276 /* Determine the type from the raw breakpoint type. */
277 targ_type = raw_bkpt_type_to_target_hw_bp_type (type);
278
279 if (targ_type != hw_execute)
280 {
281 if (aarch64_linux_region_ok_for_watchpoint (addr, len))
282 ret = aarch64_handle_watchpoint (targ_type, addr, len,
283 1 /* is_insert */, state);
284 else
285 ret = -1;
286 }
287 else
288 {
289 if (len == 3)
290 {
291 /* LEN is 3 means the breakpoint is set on a 32-bit thumb
292 instruction. Set it to 2 to correctly encode length bit
293 mask in hardware/watchpoint control register. */
294 len = 2;
295 }
296 ret = aarch64_handle_breakpoint (targ_type, addr, len,
297 1 /* is_insert */, state);
298 }
299
300 if (show_debug_regs)
301 aarch64_show_debug_reg_state (state, "insert_point", addr, len,
302 targ_type);
303
304 return ret;
305 }
306
307 /* Implementation of linux_target_ops method "remove_point".
308
309 It actually only records the info of the to-be-removed bp/wp,
310 the actual removal will be done when threads are resumed. */
311
312 static int
313 aarch64_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
314 int len, struct raw_breakpoint *bp)
315 {
316 int ret;
317 enum target_hw_bp_type targ_type;
318 struct aarch64_debug_reg_state *state
319 = aarch64_get_debug_reg_state (pid_of (current_thread));
320
321 if (show_debug_regs)
322 fprintf (stderr, "remove_point on entry (addr=0x%08lx, len=%d)\n",
323 (unsigned long) addr, len);
324
325 /* Determine the type from the raw breakpoint type. */
326 targ_type = raw_bkpt_type_to_target_hw_bp_type (type);
327
328 /* Set up state pointers. */
329 if (targ_type != hw_execute)
330 ret =
331 aarch64_handle_watchpoint (targ_type, addr, len, 0 /* is_insert */,
332 state);
333 else
334 {
335 if (len == 3)
336 {
337 /* LEN is 3 means the breakpoint is set on a 32-bit thumb
338 instruction. Set it to 2 to correctly encode length bit
339 mask in hardware/watchpoint control register. */
340 len = 2;
341 }
342 ret = aarch64_handle_breakpoint (targ_type, addr, len,
343 0 /* is_insert */, state);
344 }
345
346 if (show_debug_regs)
347 aarch64_show_debug_reg_state (state, "remove_point", addr, len,
348 targ_type);
349
350 return ret;
351 }
352
353 /* Implementation of linux_target_ops method "stopped_data_address". */
354
355 static CORE_ADDR
356 aarch64_stopped_data_address (void)
357 {
358 siginfo_t siginfo;
359 int pid, i;
360 struct aarch64_debug_reg_state *state;
361
362 pid = lwpid_of (current_thread);
363
364 /* Get the siginfo. */
365 if (ptrace (PTRACE_GETSIGINFO, pid, NULL, &siginfo) != 0)
366 return (CORE_ADDR) 0;
367
368 /* Need to be a hardware breakpoint/watchpoint trap. */
369 if (siginfo.si_signo != SIGTRAP
370 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
371 return (CORE_ADDR) 0;
372
373 /* Check if the address matches any watched address. */
374 state = aarch64_get_debug_reg_state (pid_of (current_thread));
375 for (i = aarch64_num_wp_regs - 1; i >= 0; --i)
376 {
377 const unsigned int len = aarch64_watchpoint_length (state->dr_ctrl_wp[i]);
378 const CORE_ADDR addr_trap = (CORE_ADDR) siginfo.si_addr;
379 const CORE_ADDR addr_watch = state->dr_addr_wp[i];
380 if (state->dr_ref_count_wp[i]
381 && DR_CONTROL_ENABLED (state->dr_ctrl_wp[i])
382 && addr_trap >= addr_watch
383 && addr_trap < addr_watch + len)
384 return addr_trap;
385 }
386
387 return (CORE_ADDR) 0;
388 }
389
390 /* Implementation of linux_target_ops method "stopped_by_watchpoint". */
391
392 static int
393 aarch64_stopped_by_watchpoint (void)
394 {
395 if (aarch64_stopped_data_address () != 0)
396 return 1;
397 else
398 return 0;
399 }
400
401 /* Fetch the thread-local storage pointer for libthread_db. */
402
403 ps_err_e
404 ps_get_thread_area (const struct ps_prochandle *ph,
405 lwpid_t lwpid, int idx, void **base)
406 {
407 return aarch64_ps_get_thread_area (ph, lwpid, idx, base,
408 is_64bit_tdesc ());
409 }
410
411 /* Implementation of linux_target_ops method "siginfo_fixup". */
412
413 static int
414 aarch64_linux_siginfo_fixup (siginfo_t *native, gdb_byte *inf, int direction)
415 {
416 /* Is the inferior 32-bit? If so, then fixup the siginfo object. */
417 if (!is_64bit_tdesc ())
418 {
419 if (direction == 0)
420 aarch64_compat_siginfo_from_siginfo ((struct compat_siginfo *) inf,
421 native);
422 else
423 aarch64_siginfo_from_compat_siginfo (native,
424 (struct compat_siginfo *) inf);
425
426 return 1;
427 }
428
429 return 0;
430 }
431
432 /* Implementation of linux_target_ops method "linux_new_process". */
433
434 static struct arch_process_info *
435 aarch64_linux_new_process (void)
436 {
437 struct arch_process_info *info = XCNEW (struct arch_process_info);
438
439 aarch64_init_debug_reg_state (&info->debug_reg_state);
440
441 return info;
442 }
443
444 /* Implementation of linux_target_ops method "linux_new_fork". */
445
446 static void
447 aarch64_linux_new_fork (struct process_info *parent,
448 struct process_info *child)
449 {
450 /* These are allocated by linux_add_process. */
451 gdb_assert (parent->priv != NULL
452 && parent->priv->arch_private != NULL);
453 gdb_assert (child->priv != NULL
454 && child->priv->arch_private != NULL);
455
456 /* Linux kernel before 2.6.33 commit
457 72f674d203cd230426437cdcf7dd6f681dad8b0d
458 will inherit hardware debug registers from parent
459 on fork/vfork/clone. Newer Linux kernels create such tasks with
460 zeroed debug registers.
461
462 GDB core assumes the child inherits the watchpoints/hw
463 breakpoints of the parent, and will remove them all from the
464 forked off process. Copy the debug registers mirrors into the
465 new process so that all breakpoints and watchpoints can be
466 removed together. The debug registers mirror will become zeroed
467 in the end before detaching the forked off process, thus making
468 this compatible with older Linux kernels too. */
469
470 *child->priv->arch_private = *parent->priv->arch_private;
471 }
472
473 /* Return the right target description according to the ELF file of
474 current thread. */
475
476 static const struct target_desc *
477 aarch64_linux_read_description (void)
478 {
479 unsigned int machine;
480 int is_elf64;
481 int tid;
482
483 tid = lwpid_of (current_thread);
484
485 is_elf64 = linux_pid_exe_is_elf_64_file (tid, &machine);
486
487 if (is_elf64)
488 return tdesc_aarch64;
489 else
490 return tdesc_arm_with_neon;
491 }
492
493 /* Implementation of linux_target_ops method "arch_setup". */
494
495 static void
496 aarch64_arch_setup (void)
497 {
498 current_process ()->tdesc = aarch64_linux_read_description ();
499
500 aarch64_linux_get_debug_reg_capacity (lwpid_of (current_thread));
501 }
502
503 static struct regset_info aarch64_regsets[] =
504 {
505 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_PRSTATUS,
506 sizeof (struct user_pt_regs), GENERAL_REGS,
507 aarch64_fill_gregset, aarch64_store_gregset },
508 { PTRACE_GETREGSET, PTRACE_SETREGSET, NT_FPREGSET,
509 sizeof (struct user_fpsimd_state), FP_REGS,
510 aarch64_fill_fpregset, aarch64_store_fpregset
511 },
512 NULL_REGSET
513 };
514
515 static struct regsets_info aarch64_regsets_info =
516 {
517 aarch64_regsets, /* regsets */
518 0, /* num_regsets */
519 NULL, /* disabled_regsets */
520 };
521
522 static struct regs_info regs_info_aarch64 =
523 {
524 NULL, /* regset_bitmap */
525 NULL, /* usrregs */
526 &aarch64_regsets_info,
527 };
528
529 /* Implementation of linux_target_ops method "regs_info". */
530
531 static const struct regs_info *
532 aarch64_regs_info (void)
533 {
534 if (is_64bit_tdesc ())
535 return &regs_info_aarch64;
536 else
537 return &regs_info_aarch32;
538 }
539
540 /* Implementation of linux_target_ops method "supports_tracepoints". */
541
542 static int
543 aarch64_supports_tracepoints (void)
544 {
545 if (current_thread == NULL)
546 return 1;
547 else
548 {
549 /* We don't support tracepoints on aarch32 now. */
550 return is_64bit_tdesc ();
551 }
552 }
553
554 /* Implementation of linux_target_ops method "get_thread_area". */
555
556 static int
557 aarch64_get_thread_area (int lwpid, CORE_ADDR *addrp)
558 {
559 struct iovec iovec;
560 uint64_t reg;
561
562 iovec.iov_base = &reg;
563 iovec.iov_len = sizeof (reg);
564
565 if (ptrace (PTRACE_GETREGSET, lwpid, NT_ARM_TLS, &iovec) != 0)
566 return -1;
567
568 *addrp = reg;
569
570 return 0;
571 }
572
573 /* Implementation of linux_target_ops method "get_syscall_trapinfo". */
574
575 static void
576 aarch64_get_syscall_trapinfo (struct regcache *regcache, int *sysno)
577 {
578 int use_64bit = register_size (regcache->tdesc, 0) == 8;
579
580 if (use_64bit)
581 {
582 long l_sysno;
583
584 collect_register_by_name (regcache, "x8", &l_sysno);
585 *sysno = (int) l_sysno;
586 }
587 else
588 collect_register_by_name (regcache, "r7", sysno);
589 }
590
591 /* List of condition codes that we need. */
592
593 enum aarch64_condition_codes
594 {
595 EQ = 0x0,
596 NE = 0x1,
597 LO = 0x3,
598 GE = 0xa,
599 LT = 0xb,
600 GT = 0xc,
601 LE = 0xd,
602 };
603
604 enum aarch64_operand_type
605 {
606 OPERAND_IMMEDIATE,
607 OPERAND_REGISTER,
608 };
609
610 /* Representation of an operand. At this time, it only supports register
611 and immediate types. */
612
613 struct aarch64_operand
614 {
615 /* Type of the operand. */
616 enum aarch64_operand_type type;
617
618 /* Value of the operand according to the type. */
619 union
620 {
621 uint32_t imm;
622 struct aarch64_register reg;
623 };
624 };
625
626 /* List of registers that we are currently using, we can add more here as
627 we need to use them. */
628
629 /* General purpose scratch registers (64 bit). */
630 static const struct aarch64_register x0 = { 0, 1 };
631 static const struct aarch64_register x1 = { 1, 1 };
632 static const struct aarch64_register x2 = { 2, 1 };
633 static const struct aarch64_register x3 = { 3, 1 };
634 static const struct aarch64_register x4 = { 4, 1 };
635
636 /* General purpose scratch registers (32 bit). */
637 static const struct aarch64_register w0 = { 0, 0 };
638 static const struct aarch64_register w2 = { 2, 0 };
639
640 /* Intra-procedure scratch registers. */
641 static const struct aarch64_register ip0 = { 16, 1 };
642
643 /* Special purpose registers. */
644 static const struct aarch64_register fp = { 29, 1 };
645 static const struct aarch64_register lr = { 30, 1 };
646 static const struct aarch64_register sp = { 31, 1 };
647 static const struct aarch64_register xzr = { 31, 1 };
648
649 /* Dynamically allocate a new register. If we know the register
650 statically, we should make it a global as above instead of using this
651 helper function. */
652
653 static struct aarch64_register
654 aarch64_register (unsigned num, int is64)
655 {
656 return (struct aarch64_register) { num, is64 };
657 }
658
659 /* Helper function to create a register operand, for instructions with
660 different types of operands.
661
662 For example:
663 p += emit_mov (p, x0, register_operand (x1)); */
664
665 static struct aarch64_operand
666 register_operand (struct aarch64_register reg)
667 {
668 struct aarch64_operand operand;
669
670 operand.type = OPERAND_REGISTER;
671 operand.reg = reg;
672
673 return operand;
674 }
675
676 /* Helper function to create an immediate operand, for instructions with
677 different types of operands.
678
679 For example:
680 p += emit_mov (p, x0, immediate_operand (12)); */
681
682 static struct aarch64_operand
683 immediate_operand (uint32_t imm)
684 {
685 struct aarch64_operand operand;
686
687 operand.type = OPERAND_IMMEDIATE;
688 operand.imm = imm;
689
690 return operand;
691 }
692
693 /* Helper function to create an offset memory operand.
694
695 For example:
696 p += emit_ldr (p, x0, sp, offset_memory_operand (16)); */
697
698 static struct aarch64_memory_operand
699 offset_memory_operand (int32_t offset)
700 {
701 return (struct aarch64_memory_operand) { MEMORY_OPERAND_OFFSET, offset };
702 }
703
704 /* Helper function to create a pre-index memory operand.
705
706 For example:
707 p += emit_ldr (p, x0, sp, preindex_memory_operand (16)); */
708
709 static struct aarch64_memory_operand
710 preindex_memory_operand (int32_t index)
711 {
712 return (struct aarch64_memory_operand) { MEMORY_OPERAND_PREINDEX, index };
713 }
714
715 /* Helper function to create a post-index memory operand.
716
717 For example:
718 p += emit_ldr (p, x0, sp, postindex_memory_operand (16)); */
719
720 static struct aarch64_memory_operand
721 postindex_memory_operand (int32_t index)
722 {
723 return (struct aarch64_memory_operand) { MEMORY_OPERAND_POSTINDEX, index };
724 }
725
726 /* System control registers. These special registers can be written and
727 read with the MRS and MSR instructions.
728
729 - NZCV: Condition flags. GDB refers to this register under the CPSR
730 name.
731 - FPSR: Floating-point status register.
732 - FPCR: Floating-point control registers.
733 - TPIDR_EL0: Software thread ID register. */
734
735 enum aarch64_system_control_registers
736 {
737 /* op0 op1 crn crm op2 */
738 NZCV = (0x1 << 14) | (0x3 << 11) | (0x4 << 7) | (0x2 << 3) | 0x0,
739 FPSR = (0x1 << 14) | (0x3 << 11) | (0x4 << 7) | (0x4 << 3) | 0x1,
740 FPCR = (0x1 << 14) | (0x3 << 11) | (0x4 << 7) | (0x4 << 3) | 0x0,
741 TPIDR_EL0 = (0x1 << 14) | (0x3 << 11) | (0xd << 7) | (0x0 << 3) | 0x2
742 };
743
744 /* Write a BLR instruction into *BUF.
745
746 BLR rn
747
748 RN is the register to branch to. */
749
750 static int
751 emit_blr (uint32_t *buf, struct aarch64_register rn)
752 {
753 return aarch64_emit_insn (buf, BLR | ENCODE (rn.num, 5, 5));
754 }
755
756 /* Write a RET instruction into *BUF.
757
758 RET xn
759
760 RN is the register to branch to. */
761
762 static int
763 emit_ret (uint32_t *buf, struct aarch64_register rn)
764 {
765 return aarch64_emit_insn (buf, RET | ENCODE (rn.num, 5, 5));
766 }
767
768 static int
769 emit_load_store_pair (uint32_t *buf, enum aarch64_opcodes opcode,
770 struct aarch64_register rt,
771 struct aarch64_register rt2,
772 struct aarch64_register rn,
773 struct aarch64_memory_operand operand)
774 {
775 uint32_t opc;
776 uint32_t pre_index;
777 uint32_t write_back;
778
779 if (rt.is64)
780 opc = ENCODE (2, 2, 30);
781 else
782 opc = ENCODE (0, 2, 30);
783
784 switch (operand.type)
785 {
786 case MEMORY_OPERAND_OFFSET:
787 {
788 pre_index = ENCODE (1, 1, 24);
789 write_back = ENCODE (0, 1, 23);
790 break;
791 }
792 case MEMORY_OPERAND_POSTINDEX:
793 {
794 pre_index = ENCODE (0, 1, 24);
795 write_back = ENCODE (1, 1, 23);
796 break;
797 }
798 case MEMORY_OPERAND_PREINDEX:
799 {
800 pre_index = ENCODE (1, 1, 24);
801 write_back = ENCODE (1, 1, 23);
802 break;
803 }
804 default:
805 return 0;
806 }
807
808 return aarch64_emit_insn (buf, opcode | opc | pre_index | write_back
809 | ENCODE (operand.index >> 3, 7, 15)
810 | ENCODE (rt2.num, 5, 10)
811 | ENCODE (rn.num, 5, 5) | ENCODE (rt.num, 5, 0));
812 }
813
814 /* Write a STP instruction into *BUF.
815
816 STP rt, rt2, [rn, #offset]
817 STP rt, rt2, [rn, #index]!
818 STP rt, rt2, [rn], #index
819
820 RT and RT2 are the registers to store.
821 RN is the base address register.
822 OFFSET is the immediate to add to the base address. It is limited to a
823 -512 .. 504 range (7 bits << 3). */
824
825 static int
826 emit_stp (uint32_t *buf, struct aarch64_register rt,
827 struct aarch64_register rt2, struct aarch64_register rn,
828 struct aarch64_memory_operand operand)
829 {
830 return emit_load_store_pair (buf, STP, rt, rt2, rn, operand);
831 }
832
833 /* Write a LDP instruction into *BUF.
834
835 LDP rt, rt2, [rn, #offset]
836 LDP rt, rt2, [rn, #index]!
837 LDP rt, rt2, [rn], #index
838
839 RT and RT2 are the registers to store.
840 RN is the base address register.
841 OFFSET is the immediate to add to the base address. It is limited to a
842 -512 .. 504 range (7 bits << 3). */
843
844 static int
845 emit_ldp (uint32_t *buf, struct aarch64_register rt,
846 struct aarch64_register rt2, struct aarch64_register rn,
847 struct aarch64_memory_operand operand)
848 {
849 return emit_load_store_pair (buf, LDP, rt, rt2, rn, operand);
850 }
851
852 /* Write a LDP (SIMD&VFP) instruction using Q registers into *BUF.
853
854 LDP qt, qt2, [rn, #offset]
855
856 RT and RT2 are the Q registers to store.
857 RN is the base address register.
858 OFFSET is the immediate to add to the base address. It is limited to
859 -1024 .. 1008 range (7 bits << 4). */
860
861 static int
862 emit_ldp_q_offset (uint32_t *buf, unsigned rt, unsigned rt2,
863 struct aarch64_register rn, int32_t offset)
864 {
865 uint32_t opc = ENCODE (2, 2, 30);
866 uint32_t pre_index = ENCODE (1, 1, 24);
867
868 return aarch64_emit_insn (buf, LDP_SIMD_VFP | opc | pre_index
869 | ENCODE (offset >> 4, 7, 15)
870 | ENCODE (rt2, 5, 10)
871 | ENCODE (rn.num, 5, 5) | ENCODE (rt, 5, 0));
872 }
873
874 /* Write a STP (SIMD&VFP) instruction using Q registers into *BUF.
875
876 STP qt, qt2, [rn, #offset]
877
878 RT and RT2 are the Q registers to store.
879 RN is the base address register.
880 OFFSET is the immediate to add to the base address. It is limited to
881 -1024 .. 1008 range (7 bits << 4). */
882
883 static int
884 emit_stp_q_offset (uint32_t *buf, unsigned rt, unsigned rt2,
885 struct aarch64_register rn, int32_t offset)
886 {
887 uint32_t opc = ENCODE (2, 2, 30);
888 uint32_t pre_index = ENCODE (1, 1, 24);
889
890 return aarch64_emit_insn (buf, STP_SIMD_VFP | opc | pre_index
891 | ENCODE (offset >> 4, 7, 15)
892 | ENCODE (rt2, 5, 10)
893 | ENCODE (rn.num, 5, 5) | ENCODE (rt, 5, 0));
894 }
895
896 /* Write a LDRH instruction into *BUF.
897
898 LDRH wt, [xn, #offset]
899 LDRH wt, [xn, #index]!
900 LDRH wt, [xn], #index
901
902 RT is the register to store.
903 RN is the base address register.
904 OFFSET is the immediate to add to the base address. It is limited to
905 0 .. 32760 range (12 bits << 3). */
906
907 static int
908 emit_ldrh (uint32_t *buf, struct aarch64_register rt,
909 struct aarch64_register rn,
910 struct aarch64_memory_operand operand)
911 {
912 return aarch64_emit_load_store (buf, 1, LDR, rt, rn, operand);
913 }
914
915 /* Write a LDRB instruction into *BUF.
916
917 LDRB wt, [xn, #offset]
918 LDRB wt, [xn, #index]!
919 LDRB wt, [xn], #index
920
921 RT is the register to store.
922 RN is the base address register.
923 OFFSET is the immediate to add to the base address. It is limited to
924 0 .. 32760 range (12 bits << 3). */
925
926 static int
927 emit_ldrb (uint32_t *buf, struct aarch64_register rt,
928 struct aarch64_register rn,
929 struct aarch64_memory_operand operand)
930 {
931 return aarch64_emit_load_store (buf, 0, LDR, rt, rn, operand);
932 }
933
934
935
936 /* Write a STR instruction into *BUF.
937
938 STR rt, [rn, #offset]
939 STR rt, [rn, #index]!
940 STR rt, [rn], #index
941
942 RT is the register to store.
943 RN is the base address register.
944 OFFSET is the immediate to add to the base address. It is limited to
945 0 .. 32760 range (12 bits << 3). */
946
947 static int
948 emit_str (uint32_t *buf, struct aarch64_register rt,
949 struct aarch64_register rn,
950 struct aarch64_memory_operand operand)
951 {
952 return aarch64_emit_load_store (buf, rt.is64 ? 3 : 2, STR, rt, rn, operand);
953 }
954
955 /* Helper function emitting an exclusive load or store instruction. */
956
957 static int
958 emit_load_store_exclusive (uint32_t *buf, uint32_t size,
959 enum aarch64_opcodes opcode,
960 struct aarch64_register rs,
961 struct aarch64_register rt,
962 struct aarch64_register rt2,
963 struct aarch64_register rn)
964 {
965 return aarch64_emit_insn (buf, opcode | ENCODE (size, 2, 30)
966 | ENCODE (rs.num, 5, 16) | ENCODE (rt2.num, 5, 10)
967 | ENCODE (rn.num, 5, 5) | ENCODE (rt.num, 5, 0));
968 }
969
970 /* Write a LAXR instruction into *BUF.
971
972 LDAXR rt, [xn]
973
974 RT is the destination register.
975 RN is the base address register. */
976
977 static int
978 emit_ldaxr (uint32_t *buf, struct aarch64_register rt,
979 struct aarch64_register rn)
980 {
981 return emit_load_store_exclusive (buf, rt.is64 ? 3 : 2, LDAXR, xzr, rt,
982 xzr, rn);
983 }
984
985 /* Write a STXR instruction into *BUF.
986
987 STXR ws, rt, [xn]
988
989 RS is the result register, it indicates if the store succeeded or not.
990 RT is the destination register.
991 RN is the base address register. */
992
993 static int
994 emit_stxr (uint32_t *buf, struct aarch64_register rs,
995 struct aarch64_register rt, struct aarch64_register rn)
996 {
997 return emit_load_store_exclusive (buf, rt.is64 ? 3 : 2, STXR, rs, rt,
998 xzr, rn);
999 }
1000
1001 /* Write a STLR instruction into *BUF.
1002
1003 STLR rt, [xn]
1004
1005 RT is the register to store.
1006 RN is the base address register. */
1007
1008 static int
1009 emit_stlr (uint32_t *buf, struct aarch64_register rt,
1010 struct aarch64_register rn)
1011 {
1012 return emit_load_store_exclusive (buf, rt.is64 ? 3 : 2, STLR, xzr, rt,
1013 xzr, rn);
1014 }
1015
1016 /* Helper function for data processing instructions with register sources. */
1017
1018 static int
1019 emit_data_processing_reg (uint32_t *buf, uint32_t opcode,
1020 struct aarch64_register rd,
1021 struct aarch64_register rn,
1022 struct aarch64_register rm)
1023 {
1024 uint32_t size = ENCODE (rd.is64, 1, 31);
1025
1026 return aarch64_emit_insn (buf, opcode | size | ENCODE (rm.num, 5, 16)
1027 | ENCODE (rn.num, 5, 5) | ENCODE (rd.num, 5, 0));
1028 }
1029
1030 /* Helper function for data processing instructions taking either a register
1031 or an immediate. */
1032
1033 static int
1034 emit_data_processing (uint32_t *buf, enum aarch64_opcodes opcode,
1035 struct aarch64_register rd,
1036 struct aarch64_register rn,
1037 struct aarch64_operand operand)
1038 {
1039 uint32_t size = ENCODE (rd.is64, 1, 31);
1040 /* The opcode is different for register and immediate source operands. */
1041 uint32_t operand_opcode;
1042
1043 if (operand.type == OPERAND_IMMEDIATE)
1044 {
1045 /* xxx1 000x xxxx xxxx xxxx xxxx xxxx xxxx */
1046 operand_opcode = ENCODE (8, 4, 25);
1047
1048 return aarch64_emit_insn (buf, opcode | operand_opcode | size
1049 | ENCODE (operand.imm, 12, 10)
1050 | ENCODE (rn.num, 5, 5)
1051 | ENCODE (rd.num, 5, 0));
1052 }
1053 else
1054 {
1055 /* xxx0 101x xxxx xxxx xxxx xxxx xxxx xxxx */
1056 operand_opcode = ENCODE (5, 4, 25);
1057
1058 return emit_data_processing_reg (buf, opcode | operand_opcode, rd,
1059 rn, operand.reg);
1060 }
1061 }
1062
1063 /* Write an ADD instruction into *BUF.
1064
1065 ADD rd, rn, #imm
1066 ADD rd, rn, rm
1067
1068 This function handles both an immediate and register add.
1069
1070 RD is the destination register.
1071 RN is the input register.
1072 OPERAND is the source operand, either of type OPERAND_IMMEDIATE or
1073 OPERAND_REGISTER. */
1074
1075 static int
1076 emit_add (uint32_t *buf, struct aarch64_register rd,
1077 struct aarch64_register rn, struct aarch64_operand operand)
1078 {
1079 return emit_data_processing (buf, ADD, rd, rn, operand);
1080 }
1081
1082 /* Write a SUB instruction into *BUF.
1083
1084 SUB rd, rn, #imm
1085 SUB rd, rn, rm
1086
1087 This function handles both an immediate and register sub.
1088
1089 RD is the destination register.
1090 RN is the input register.
1091 IMM is the immediate to substract to RN. */
1092
1093 static int
1094 emit_sub (uint32_t *buf, struct aarch64_register rd,
1095 struct aarch64_register rn, struct aarch64_operand operand)
1096 {
1097 return emit_data_processing (buf, SUB, rd, rn, operand);
1098 }
1099
1100 /* Write a MOV instruction into *BUF.
1101
1102 MOV rd, #imm
1103 MOV rd, rm
1104
1105 This function handles both a wide immediate move and a register move,
1106 with the condition that the source register is not xzr. xzr and the
1107 stack pointer share the same encoding and this function only supports
1108 the stack pointer.
1109
1110 RD is the destination register.
1111 OPERAND is the source operand, either of type OPERAND_IMMEDIATE or
1112 OPERAND_REGISTER. */
1113
1114 static int
1115 emit_mov (uint32_t *buf, struct aarch64_register rd,
1116 struct aarch64_operand operand)
1117 {
1118 if (operand.type == OPERAND_IMMEDIATE)
1119 {
1120 uint32_t size = ENCODE (rd.is64, 1, 31);
1121 /* Do not shift the immediate. */
1122 uint32_t shift = ENCODE (0, 2, 21);
1123
1124 return aarch64_emit_insn (buf, MOV | size | shift
1125 | ENCODE (operand.imm, 16, 5)
1126 | ENCODE (rd.num, 5, 0));
1127 }
1128 else
1129 return emit_add (buf, rd, operand.reg, immediate_operand (0));
1130 }
1131
1132 /* Write a MOVK instruction into *BUF.
1133
1134 MOVK rd, #imm, lsl #shift
1135
1136 RD is the destination register.
1137 IMM is the immediate.
1138 SHIFT is the logical shift left to apply to IMM. */
1139
1140 static int
1141 emit_movk (uint32_t *buf, struct aarch64_register rd, uint32_t imm,
1142 unsigned shift)
1143 {
1144 uint32_t size = ENCODE (rd.is64, 1, 31);
1145
1146 return aarch64_emit_insn (buf, MOVK | size | ENCODE (shift, 2, 21) |
1147 ENCODE (imm, 16, 5) | ENCODE (rd.num, 5, 0));
1148 }
1149
1150 /* Write instructions into *BUF in order to move ADDR into a register.
1151 ADDR can be a 64-bit value.
1152
1153 This function will emit a series of MOV and MOVK instructions, such as:
1154
1155 MOV xd, #(addr)
1156 MOVK xd, #(addr >> 16), lsl #16
1157 MOVK xd, #(addr >> 32), lsl #32
1158 MOVK xd, #(addr >> 48), lsl #48 */
1159
1160 static int
1161 emit_mov_addr (uint32_t *buf, struct aarch64_register rd, CORE_ADDR addr)
1162 {
1163 uint32_t *p = buf;
1164
1165 /* The MOV (wide immediate) instruction clears to top bits of the
1166 register. */
1167 p += emit_mov (p, rd, immediate_operand (addr & 0xffff));
1168
1169 if ((addr >> 16) != 0)
1170 p += emit_movk (p, rd, (addr >> 16) & 0xffff, 1);
1171 else
1172 return p - buf;
1173
1174 if ((addr >> 32) != 0)
1175 p += emit_movk (p, rd, (addr >> 32) & 0xffff, 2);
1176 else
1177 return p - buf;
1178
1179 if ((addr >> 48) != 0)
1180 p += emit_movk (p, rd, (addr >> 48) & 0xffff, 3);
1181
1182 return p - buf;
1183 }
1184
1185 /* Write a SUBS instruction into *BUF.
1186
1187 SUBS rd, rn, rm
1188
1189 This instruction update the condition flags.
1190
1191 RD is the destination register.
1192 RN and RM are the source registers. */
1193
1194 static int
1195 emit_subs (uint32_t *buf, struct aarch64_register rd,
1196 struct aarch64_register rn, struct aarch64_operand operand)
1197 {
1198 return emit_data_processing (buf, SUBS, rd, rn, operand);
1199 }
1200
1201 /* Write a CMP instruction into *BUF.
1202
1203 CMP rn, rm
1204
1205 This instruction is an alias of SUBS xzr, rn, rm.
1206
1207 RN and RM are the registers to compare. */
1208
1209 static int
1210 emit_cmp (uint32_t *buf, struct aarch64_register rn,
1211 struct aarch64_operand operand)
1212 {
1213 return emit_subs (buf, xzr, rn, operand);
1214 }
1215
1216 /* Write a AND instruction into *BUF.
1217
1218 AND rd, rn, rm
1219
1220 RD is the destination register.
1221 RN and RM are the source registers. */
1222
1223 static int
1224 emit_and (uint32_t *buf, struct aarch64_register rd,
1225 struct aarch64_register rn, struct aarch64_register rm)
1226 {
1227 return emit_data_processing_reg (buf, AND, rd, rn, rm);
1228 }
1229
1230 /* Write a ORR instruction into *BUF.
1231
1232 ORR rd, rn, rm
1233
1234 RD is the destination register.
1235 RN and RM are the source registers. */
1236
1237 static int
1238 emit_orr (uint32_t *buf, struct aarch64_register rd,
1239 struct aarch64_register rn, struct aarch64_register rm)
1240 {
1241 return emit_data_processing_reg (buf, ORR, rd, rn, rm);
1242 }
1243
1244 /* Write a ORN instruction into *BUF.
1245
1246 ORN rd, rn, rm
1247
1248 RD is the destination register.
1249 RN and RM are the source registers. */
1250
1251 static int
1252 emit_orn (uint32_t *buf, struct aarch64_register rd,
1253 struct aarch64_register rn, struct aarch64_register rm)
1254 {
1255 return emit_data_processing_reg (buf, ORN, rd, rn, rm);
1256 }
1257
1258 /* Write a EOR instruction into *BUF.
1259
1260 EOR rd, rn, rm
1261
1262 RD is the destination register.
1263 RN and RM are the source registers. */
1264
1265 static int
1266 emit_eor (uint32_t *buf, struct aarch64_register rd,
1267 struct aarch64_register rn, struct aarch64_register rm)
1268 {
1269 return emit_data_processing_reg (buf, EOR, rd, rn, rm);
1270 }
1271
1272 /* Write a MVN instruction into *BUF.
1273
1274 MVN rd, rm
1275
1276 This is an alias for ORN rd, xzr, rm.
1277
1278 RD is the destination register.
1279 RM is the source register. */
1280
1281 static int
1282 emit_mvn (uint32_t *buf, struct aarch64_register rd,
1283 struct aarch64_register rm)
1284 {
1285 return emit_orn (buf, rd, xzr, rm);
1286 }
1287
1288 /* Write a LSLV instruction into *BUF.
1289
1290 LSLV rd, rn, rm
1291
1292 RD is the destination register.
1293 RN and RM are the source registers. */
1294
1295 static int
1296 emit_lslv (uint32_t *buf, struct aarch64_register rd,
1297 struct aarch64_register rn, struct aarch64_register rm)
1298 {
1299 return emit_data_processing_reg (buf, LSLV, rd, rn, rm);
1300 }
1301
1302 /* Write a LSRV instruction into *BUF.
1303
1304 LSRV rd, rn, rm
1305
1306 RD is the destination register.
1307 RN and RM are the source registers. */
1308
1309 static int
1310 emit_lsrv (uint32_t *buf, struct aarch64_register rd,
1311 struct aarch64_register rn, struct aarch64_register rm)
1312 {
1313 return emit_data_processing_reg (buf, LSRV, rd, rn, rm);
1314 }
1315
1316 /* Write a ASRV instruction into *BUF.
1317
1318 ASRV rd, rn, rm
1319
1320 RD is the destination register.
1321 RN and RM are the source registers. */
1322
1323 static int
1324 emit_asrv (uint32_t *buf, struct aarch64_register rd,
1325 struct aarch64_register rn, struct aarch64_register rm)
1326 {
1327 return emit_data_processing_reg (buf, ASRV, rd, rn, rm);
1328 }
1329
1330 /* Write a MUL instruction into *BUF.
1331
1332 MUL rd, rn, rm
1333
1334 RD is the destination register.
1335 RN and RM are the source registers. */
1336
1337 static int
1338 emit_mul (uint32_t *buf, struct aarch64_register rd,
1339 struct aarch64_register rn, struct aarch64_register rm)
1340 {
1341 return emit_data_processing_reg (buf, MUL, rd, rn, rm);
1342 }
1343
1344 /* Write a MRS instruction into *BUF. The register size is 64-bit.
1345
1346 MRS xt, system_reg
1347
1348 RT is the destination register.
1349 SYSTEM_REG is special purpose register to read. */
1350
1351 static int
1352 emit_mrs (uint32_t *buf, struct aarch64_register rt,
1353 enum aarch64_system_control_registers system_reg)
1354 {
1355 return aarch64_emit_insn (buf, MRS | ENCODE (system_reg, 15, 5)
1356 | ENCODE (rt.num, 5, 0));
1357 }
1358
1359 /* Write a MSR instruction into *BUF. The register size is 64-bit.
1360
1361 MSR system_reg, xt
1362
1363 SYSTEM_REG is special purpose register to write.
1364 RT is the input register. */
1365
1366 static int
1367 emit_msr (uint32_t *buf, enum aarch64_system_control_registers system_reg,
1368 struct aarch64_register rt)
1369 {
1370 return aarch64_emit_insn (buf, MSR | ENCODE (system_reg, 15, 5)
1371 | ENCODE (rt.num, 5, 0));
1372 }
1373
1374 /* Write a SEVL instruction into *BUF.
1375
1376 This is a hint instruction telling the hardware to trigger an event. */
1377
1378 static int
1379 emit_sevl (uint32_t *buf)
1380 {
1381 return aarch64_emit_insn (buf, SEVL);
1382 }
1383
1384 /* Write a WFE instruction into *BUF.
1385
1386 This is a hint instruction telling the hardware to wait for an event. */
1387
1388 static int
1389 emit_wfe (uint32_t *buf)
1390 {
1391 return aarch64_emit_insn (buf, WFE);
1392 }
1393
1394 /* Write a SBFM instruction into *BUF.
1395
1396 SBFM rd, rn, #immr, #imms
1397
1398 This instruction moves the bits from #immr to #imms into the
1399 destination, sign extending the result.
1400
1401 RD is the destination register.
1402 RN is the source register.
1403 IMMR is the bit number to start at (least significant bit).
1404 IMMS is the bit number to stop at (most significant bit). */
1405
1406 static int
1407 emit_sbfm (uint32_t *buf, struct aarch64_register rd,
1408 struct aarch64_register rn, uint32_t immr, uint32_t imms)
1409 {
1410 uint32_t size = ENCODE (rd.is64, 1, 31);
1411 uint32_t n = ENCODE (rd.is64, 1, 22);
1412
1413 return aarch64_emit_insn (buf, SBFM | size | n | ENCODE (immr, 6, 16)
1414 | ENCODE (imms, 6, 10) | ENCODE (rn.num, 5, 5)
1415 | ENCODE (rd.num, 5, 0));
1416 }
1417
1418 /* Write a SBFX instruction into *BUF.
1419
1420 SBFX rd, rn, #lsb, #width
1421
1422 This instruction moves #width bits from #lsb into the destination, sign
1423 extending the result. This is an alias for:
1424
1425 SBFM rd, rn, #lsb, #(lsb + width - 1)
1426
1427 RD is the destination register.
1428 RN is the source register.
1429 LSB is the bit number to start at (least significant bit).
1430 WIDTH is the number of bits to move. */
1431
1432 static int
1433 emit_sbfx (uint32_t *buf, struct aarch64_register rd,
1434 struct aarch64_register rn, uint32_t lsb, uint32_t width)
1435 {
1436 return emit_sbfm (buf, rd, rn, lsb, lsb + width - 1);
1437 }
1438
1439 /* Write a UBFM instruction into *BUF.
1440
1441 UBFM rd, rn, #immr, #imms
1442
1443 This instruction moves the bits from #immr to #imms into the
1444 destination, extending the result with zeros.
1445
1446 RD is the destination register.
1447 RN is the source register.
1448 IMMR is the bit number to start at (least significant bit).
1449 IMMS is the bit number to stop at (most significant bit). */
1450
1451 static int
1452 emit_ubfm (uint32_t *buf, struct aarch64_register rd,
1453 struct aarch64_register rn, uint32_t immr, uint32_t imms)
1454 {
1455 uint32_t size = ENCODE (rd.is64, 1, 31);
1456 uint32_t n = ENCODE (rd.is64, 1, 22);
1457
1458 return aarch64_emit_insn (buf, UBFM | size | n | ENCODE (immr, 6, 16)
1459 | ENCODE (imms, 6, 10) | ENCODE (rn.num, 5, 5)
1460 | ENCODE (rd.num, 5, 0));
1461 }
1462
1463 /* Write a UBFX instruction into *BUF.
1464
1465 UBFX rd, rn, #lsb, #width
1466
1467 This instruction moves #width bits from #lsb into the destination,
1468 extending the result with zeros. This is an alias for:
1469
1470 UBFM rd, rn, #lsb, #(lsb + width - 1)
1471
1472 RD is the destination register.
1473 RN is the source register.
1474 LSB is the bit number to start at (least significant bit).
1475 WIDTH is the number of bits to move. */
1476
1477 static int
1478 emit_ubfx (uint32_t *buf, struct aarch64_register rd,
1479 struct aarch64_register rn, uint32_t lsb, uint32_t width)
1480 {
1481 return emit_ubfm (buf, rd, rn, lsb, lsb + width - 1);
1482 }
1483
1484 /* Write a CSINC instruction into *BUF.
1485
1486 CSINC rd, rn, rm, cond
1487
1488 This instruction conditionally increments rn or rm and places the result
1489 in rd. rn is chosen is the condition is true.
1490
1491 RD is the destination register.
1492 RN and RM are the source registers.
1493 COND is the encoded condition. */
1494
1495 static int
1496 emit_csinc (uint32_t *buf, struct aarch64_register rd,
1497 struct aarch64_register rn, struct aarch64_register rm,
1498 unsigned cond)
1499 {
1500 uint32_t size = ENCODE (rd.is64, 1, 31);
1501
1502 return aarch64_emit_insn (buf, CSINC | size | ENCODE (rm.num, 5, 16)
1503 | ENCODE (cond, 4, 12) | ENCODE (rn.num, 5, 5)
1504 | ENCODE (rd.num, 5, 0));
1505 }
1506
1507 /* Write a CSET instruction into *BUF.
1508
1509 CSET rd, cond
1510
1511 This instruction conditionally write 1 or 0 in the destination register.
1512 1 is written if the condition is true. This is an alias for:
1513
1514 CSINC rd, xzr, xzr, !cond
1515
1516 Note that the condition needs to be inverted.
1517
1518 RD is the destination register.
1519 RN and RM are the source registers.
1520 COND is the encoded condition. */
1521
1522 static int
1523 emit_cset (uint32_t *buf, struct aarch64_register rd, unsigned cond)
1524 {
1525 /* The least significant bit of the condition needs toggling in order to
1526 invert it. */
1527 return emit_csinc (buf, rd, xzr, xzr, cond ^ 0x1);
1528 }
1529
1530 /* Write LEN instructions from BUF into the inferior memory at *TO.
1531
1532 Note instructions are always little endian on AArch64, unlike data. */
1533
1534 static void
1535 append_insns (CORE_ADDR *to, size_t len, const uint32_t *buf)
1536 {
1537 size_t byte_len = len * sizeof (uint32_t);
1538 #if (__BYTE_ORDER == __BIG_ENDIAN)
1539 uint32_t *le_buf = xmalloc (byte_len);
1540 size_t i;
1541
1542 for (i = 0; i < len; i++)
1543 le_buf[i] = htole32 (buf[i]);
1544
1545 write_inferior_memory (*to, (const unsigned char *) le_buf, byte_len);
1546
1547 xfree (le_buf);
1548 #else
1549 write_inferior_memory (*to, (const unsigned char *) buf, byte_len);
1550 #endif
1551
1552 *to += byte_len;
1553 }
1554
1555 /* Sub-class of struct aarch64_insn_data, store information of
1556 instruction relocation for fast tracepoint. Visitor can
1557 relocate an instruction from BASE.INSN_ADDR to NEW_ADDR and save
1558 the relocated instructions in buffer pointed by INSN_PTR. */
1559
1560 struct aarch64_insn_relocation_data
1561 {
1562 struct aarch64_insn_data base;
1563
1564 /* The new address the instruction is relocated to. */
1565 CORE_ADDR new_addr;
1566 /* Pointer to the buffer of relocated instruction(s). */
1567 uint32_t *insn_ptr;
1568 };
1569
1570 /* Implementation of aarch64_insn_visitor method "b". */
1571
1572 static void
1573 aarch64_ftrace_insn_reloc_b (const int is_bl, const int32_t offset,
1574 struct aarch64_insn_data *data)
1575 {
1576 struct aarch64_insn_relocation_data *insn_reloc
1577 = (struct aarch64_insn_relocation_data *) data;
1578 int32_t new_offset
1579 = insn_reloc->base.insn_addr - insn_reloc->new_addr + offset;
1580
1581 if (can_encode_int32 (new_offset, 28))
1582 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, is_bl, new_offset);
1583 }
1584
1585 /* Implementation of aarch64_insn_visitor method "b_cond". */
1586
1587 static void
1588 aarch64_ftrace_insn_reloc_b_cond (const unsigned cond, const int32_t offset,
1589 struct aarch64_insn_data *data)
1590 {
1591 struct aarch64_insn_relocation_data *insn_reloc
1592 = (struct aarch64_insn_relocation_data *) data;
1593 int32_t new_offset
1594 = insn_reloc->base.insn_addr - insn_reloc->new_addr + offset;
1595
1596 if (can_encode_int32 (new_offset, 21))
1597 {
1598 insn_reloc->insn_ptr += emit_bcond (insn_reloc->insn_ptr, cond,
1599 new_offset);
1600 }
1601 else if (can_encode_int32 (new_offset, 28))
1602 {
1603 /* The offset is out of range for a conditional branch
1604 instruction but not for a unconditional branch. We can use
1605 the following instructions instead:
1606
1607 B.COND TAKEN ; If cond is true, then jump to TAKEN.
1608 B NOT_TAKEN ; Else jump over TAKEN and continue.
1609 TAKEN:
1610 B #(offset - 8)
1611 NOT_TAKEN:
1612
1613 */
1614
1615 insn_reloc->insn_ptr += emit_bcond (insn_reloc->insn_ptr, cond, 8);
1616 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, 0, 8);
1617 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, 0, new_offset - 8);
1618 }
1619 }
1620
1621 /* Implementation of aarch64_insn_visitor method "cb". */
1622
1623 static void
1624 aarch64_ftrace_insn_reloc_cb (const int32_t offset, const int is_cbnz,
1625 const unsigned rn, int is64,
1626 struct aarch64_insn_data *data)
1627 {
1628 struct aarch64_insn_relocation_data *insn_reloc
1629 = (struct aarch64_insn_relocation_data *) data;
1630 int32_t new_offset
1631 = insn_reloc->base.insn_addr - insn_reloc->new_addr + offset;
1632
1633 if (can_encode_int32 (new_offset, 21))
1634 {
1635 insn_reloc->insn_ptr += emit_cb (insn_reloc->insn_ptr, is_cbnz,
1636 aarch64_register (rn, is64), new_offset);
1637 }
1638 else if (can_encode_int32 (new_offset, 28))
1639 {
1640 /* The offset is out of range for a compare and branch
1641 instruction but not for a unconditional branch. We can use
1642 the following instructions instead:
1643
1644 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
1645 B NOT_TAKEN ; Else jump over TAKEN and continue.
1646 TAKEN:
1647 B #(offset - 8)
1648 NOT_TAKEN:
1649
1650 */
1651 insn_reloc->insn_ptr += emit_cb (insn_reloc->insn_ptr, is_cbnz,
1652 aarch64_register (rn, is64), 8);
1653 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, 0, 8);
1654 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, 0, new_offset - 8);
1655 }
1656 }
1657
1658 /* Implementation of aarch64_insn_visitor method "tb". */
1659
1660 static void
1661 aarch64_ftrace_insn_reloc_tb (const int32_t offset, int is_tbnz,
1662 const unsigned rt, unsigned bit,
1663 struct aarch64_insn_data *data)
1664 {
1665 struct aarch64_insn_relocation_data *insn_reloc
1666 = (struct aarch64_insn_relocation_data *) data;
1667 int32_t new_offset
1668 = insn_reloc->base.insn_addr - insn_reloc->new_addr + offset;
1669
1670 if (can_encode_int32 (new_offset, 16))
1671 {
1672 insn_reloc->insn_ptr += emit_tb (insn_reloc->insn_ptr, is_tbnz, bit,
1673 aarch64_register (rt, 1), new_offset);
1674 }
1675 else if (can_encode_int32 (new_offset, 28))
1676 {
1677 /* The offset is out of range for a test bit and branch
1678 instruction but not for a unconditional branch. We can use
1679 the following instructions instead:
1680
1681 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
1682 B NOT_TAKEN ; Else jump over TAKEN and continue.
1683 TAKEN:
1684 B #(offset - 8)
1685 NOT_TAKEN:
1686
1687 */
1688 insn_reloc->insn_ptr += emit_tb (insn_reloc->insn_ptr, is_tbnz, bit,
1689 aarch64_register (rt, 1), 8);
1690 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, 0, 8);
1691 insn_reloc->insn_ptr += emit_b (insn_reloc->insn_ptr, 0,
1692 new_offset - 8);
1693 }
1694 }
1695
1696 /* Implementation of aarch64_insn_visitor method "adr". */
1697
1698 static void
1699 aarch64_ftrace_insn_reloc_adr (const int32_t offset, const unsigned rd,
1700 const int is_adrp,
1701 struct aarch64_insn_data *data)
1702 {
1703 struct aarch64_insn_relocation_data *insn_reloc
1704 = (struct aarch64_insn_relocation_data *) data;
1705 /* We know exactly the address the ADR{P,} instruction will compute.
1706 We can just write it to the destination register. */
1707 CORE_ADDR address = data->insn_addr + offset;
1708
1709 if (is_adrp)
1710 {
1711 /* Clear the lower 12 bits of the offset to get the 4K page. */
1712 insn_reloc->insn_ptr += emit_mov_addr (insn_reloc->insn_ptr,
1713 aarch64_register (rd, 1),
1714 address & ~0xfff);
1715 }
1716 else
1717 insn_reloc->insn_ptr += emit_mov_addr (insn_reloc->insn_ptr,
1718 aarch64_register (rd, 1), address);
1719 }
1720
1721 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
1722
1723 static void
1724 aarch64_ftrace_insn_reloc_ldr_literal (const int32_t offset, const int is_sw,
1725 const unsigned rt, const int is64,
1726 struct aarch64_insn_data *data)
1727 {
1728 struct aarch64_insn_relocation_data *insn_reloc
1729 = (struct aarch64_insn_relocation_data *) data;
1730 CORE_ADDR address = data->insn_addr + offset;
1731
1732 insn_reloc->insn_ptr += emit_mov_addr (insn_reloc->insn_ptr,
1733 aarch64_register (rt, 1), address);
1734
1735 /* We know exactly what address to load from, and what register we
1736 can use:
1737
1738 MOV xd, #(oldloc + offset)
1739 MOVK xd, #((oldloc + offset) >> 16), lsl #16
1740 ...
1741
1742 LDR xd, [xd] ; or LDRSW xd, [xd]
1743
1744 */
1745
1746 if (is_sw)
1747 insn_reloc->insn_ptr += emit_ldrsw (insn_reloc->insn_ptr,
1748 aarch64_register (rt, 1),
1749 aarch64_register (rt, 1),
1750 offset_memory_operand (0));
1751 else
1752 insn_reloc->insn_ptr += emit_ldr (insn_reloc->insn_ptr,
1753 aarch64_register (rt, is64),
1754 aarch64_register (rt, 1),
1755 offset_memory_operand (0));
1756 }
1757
1758 /* Implementation of aarch64_insn_visitor method "others". */
1759
1760 static void
1761 aarch64_ftrace_insn_reloc_others (const uint32_t insn,
1762 struct aarch64_insn_data *data)
1763 {
1764 struct aarch64_insn_relocation_data *insn_reloc
1765 = (struct aarch64_insn_relocation_data *) data;
1766
1767 /* The instruction is not PC relative. Just re-emit it at the new
1768 location. */
1769 insn_reloc->insn_ptr += aarch64_emit_insn (insn_reloc->insn_ptr, insn);
1770 }
1771
1772 static const struct aarch64_insn_visitor visitor =
1773 {
1774 aarch64_ftrace_insn_reloc_b,
1775 aarch64_ftrace_insn_reloc_b_cond,
1776 aarch64_ftrace_insn_reloc_cb,
1777 aarch64_ftrace_insn_reloc_tb,
1778 aarch64_ftrace_insn_reloc_adr,
1779 aarch64_ftrace_insn_reloc_ldr_literal,
1780 aarch64_ftrace_insn_reloc_others,
1781 };
1782
1783 /* Implementation of linux_target_ops method
1784 "install_fast_tracepoint_jump_pad". */
1785
1786 static int
1787 aarch64_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint,
1788 CORE_ADDR tpaddr,
1789 CORE_ADDR collector,
1790 CORE_ADDR lockaddr,
1791 ULONGEST orig_size,
1792 CORE_ADDR *jump_entry,
1793 CORE_ADDR *trampoline,
1794 ULONGEST *trampoline_size,
1795 unsigned char *jjump_pad_insn,
1796 ULONGEST *jjump_pad_insn_size,
1797 CORE_ADDR *adjusted_insn_addr,
1798 CORE_ADDR *adjusted_insn_addr_end,
1799 char *err)
1800 {
1801 uint32_t buf[256];
1802 uint32_t *p = buf;
1803 int32_t offset;
1804 int i;
1805 uint32_t insn;
1806 CORE_ADDR buildaddr = *jump_entry;
1807 struct aarch64_insn_relocation_data insn_data;
1808
1809 /* We need to save the current state on the stack both to restore it
1810 later and to collect register values when the tracepoint is hit.
1811
1812 The saved registers are pushed in a layout that needs to be in sync
1813 with aarch64_ft_collect_regmap (see linux-aarch64-ipa.c). Later on
1814 the supply_fast_tracepoint_registers function will fill in the
1815 register cache from a pointer to saved registers on the stack we build
1816 here.
1817
1818 For simplicity, we set the size of each cell on the stack to 16 bytes.
1819 This way one cell can hold any register type, from system registers
1820 to the 128 bit SIMD&FP registers. Furthermore, the stack pointer
1821 has to be 16 bytes aligned anyway.
1822
1823 Note that the CPSR register does not exist on AArch64. Instead we
1824 can access system bits describing the process state with the
1825 MRS/MSR instructions, namely the condition flags. We save them as
1826 if they are part of a CPSR register because that's how GDB
1827 interprets these system bits. At the moment, only the condition
1828 flags are saved in CPSR (NZCV).
1829
1830 Stack layout, each cell is 16 bytes (descending):
1831
1832 High *-------- SIMD&FP registers from 31 down to 0. --------*
1833 | q31 |
1834 . .
1835 . . 32 cells
1836 . .
1837 | q0 |
1838 *---- General purpose registers from 30 down to 0. ----*
1839 | x30 |
1840 . .
1841 . . 31 cells
1842 . .
1843 | x0 |
1844 *------------- Special purpose registers. -------------*
1845 | SP |
1846 | PC |
1847 | CPSR (NZCV) | 5 cells
1848 | FPSR |
1849 | FPCR | <- SP + 16
1850 *------------- collecting_t object --------------------*
1851 | TPIDR_EL0 | struct tracepoint * |
1852 Low *------------------------------------------------------*
1853
1854 After this stack is set up, we issue a call to the collector, passing
1855 it the saved registers at (SP + 16). */
1856
1857 /* Push SIMD&FP registers on the stack:
1858
1859 SUB sp, sp, #(32 * 16)
1860
1861 STP q30, q31, [sp, #(30 * 16)]
1862 ...
1863 STP q0, q1, [sp]
1864
1865 */
1866 p += emit_sub (p, sp, sp, immediate_operand (32 * 16));
1867 for (i = 30; i >= 0; i -= 2)
1868 p += emit_stp_q_offset (p, i, i + 1, sp, i * 16);
1869
1870 /* Push general puspose registers on the stack. Note that we do not need
1871 to push x31 as it represents the xzr register and not the stack
1872 pointer in a STR instruction.
1873
1874 SUB sp, sp, #(31 * 16)
1875
1876 STR x30, [sp, #(30 * 16)]
1877 ...
1878 STR x0, [sp]
1879
1880 */
1881 p += emit_sub (p, sp, sp, immediate_operand (31 * 16));
1882 for (i = 30; i >= 0; i -= 1)
1883 p += emit_str (p, aarch64_register (i, 1), sp,
1884 offset_memory_operand (i * 16));
1885
1886 /* Make space for 5 more cells.
1887
1888 SUB sp, sp, #(5 * 16)
1889
1890 */
1891 p += emit_sub (p, sp, sp, immediate_operand (5 * 16));
1892
1893
1894 /* Save SP:
1895
1896 ADD x4, sp, #((32 + 31 + 5) * 16)
1897 STR x4, [sp, #(4 * 16)]
1898
1899 */
1900 p += emit_add (p, x4, sp, immediate_operand ((32 + 31 + 5) * 16));
1901 p += emit_str (p, x4, sp, offset_memory_operand (4 * 16));
1902
1903 /* Save PC (tracepoint address):
1904
1905 MOV x3, #(tpaddr)
1906 ...
1907
1908 STR x3, [sp, #(3 * 16)]
1909
1910 */
1911
1912 p += emit_mov_addr (p, x3, tpaddr);
1913 p += emit_str (p, x3, sp, offset_memory_operand (3 * 16));
1914
1915 /* Save CPSR (NZCV), FPSR and FPCR:
1916
1917 MRS x2, nzcv
1918 MRS x1, fpsr
1919 MRS x0, fpcr
1920
1921 STR x2, [sp, #(2 * 16)]
1922 STR x1, [sp, #(1 * 16)]
1923 STR x0, [sp, #(0 * 16)]
1924
1925 */
1926 p += emit_mrs (p, x2, NZCV);
1927 p += emit_mrs (p, x1, FPSR);
1928 p += emit_mrs (p, x0, FPCR);
1929 p += emit_str (p, x2, sp, offset_memory_operand (2 * 16));
1930 p += emit_str (p, x1, sp, offset_memory_operand (1 * 16));
1931 p += emit_str (p, x0, sp, offset_memory_operand (0 * 16));
1932
1933 /* Push the collecting_t object. It consist of the address of the
1934 tracepoint and an ID for the current thread. We get the latter by
1935 reading the tpidr_el0 system register. It corresponds to the
1936 NT_ARM_TLS register accessible with ptrace.
1937
1938 MOV x0, #(tpoint)
1939 ...
1940
1941 MRS x1, tpidr_el0
1942
1943 STP x0, x1, [sp, #-16]!
1944
1945 */
1946
1947 p += emit_mov_addr (p, x0, tpoint);
1948 p += emit_mrs (p, x1, TPIDR_EL0);
1949 p += emit_stp (p, x0, x1, sp, preindex_memory_operand (-16));
1950
1951 /* Spin-lock:
1952
1953 The shared memory for the lock is at lockaddr. It will hold zero
1954 if no-one is holding the lock, otherwise it contains the address of
1955 the collecting_t object on the stack of the thread which acquired it.
1956
1957 At this stage, the stack pointer points to this thread's collecting_t
1958 object.
1959
1960 We use the following registers:
1961 - x0: Address of the lock.
1962 - x1: Pointer to collecting_t object.
1963 - x2: Scratch register.
1964
1965 MOV x0, #(lockaddr)
1966 ...
1967 MOV x1, sp
1968
1969 ; Trigger an event local to this core. So the following WFE
1970 ; instruction is ignored.
1971 SEVL
1972 again:
1973 ; Wait for an event. The event is triggered by either the SEVL
1974 ; or STLR instructions (store release).
1975 WFE
1976
1977 ; Atomically read at lockaddr. This marks the memory location as
1978 ; exclusive. This instruction also has memory constraints which
1979 ; make sure all previous data reads and writes are done before
1980 ; executing it.
1981 LDAXR x2, [x0]
1982
1983 ; Try again if another thread holds the lock.
1984 CBNZ x2, again
1985
1986 ; We can lock it! Write the address of the collecting_t object.
1987 ; This instruction will fail if the memory location is not marked
1988 ; as exclusive anymore. If it succeeds, it will remove the
1989 ; exclusive mark on the memory location. This way, if another
1990 ; thread executes this instruction before us, we will fail and try
1991 ; all over again.
1992 STXR w2, x1, [x0]
1993 CBNZ w2, again
1994
1995 */
1996
1997 p += emit_mov_addr (p, x0, lockaddr);
1998 p += emit_mov (p, x1, register_operand (sp));
1999
2000 p += emit_sevl (p);
2001 p += emit_wfe (p);
2002 p += emit_ldaxr (p, x2, x0);
2003 p += emit_cb (p, 1, w2, -2 * 4);
2004 p += emit_stxr (p, w2, x1, x0);
2005 p += emit_cb (p, 1, x2, -4 * 4);
2006
2007 /* Call collector (struct tracepoint *, unsigned char *):
2008
2009 MOV x0, #(tpoint)
2010 ...
2011
2012 ; Saved registers start after the collecting_t object.
2013 ADD x1, sp, #16
2014
2015 ; We use an intra-procedure-call scratch register.
2016 MOV ip0, #(collector)
2017 ...
2018
2019 ; And call back to C!
2020 BLR ip0
2021
2022 */
2023
2024 p += emit_mov_addr (p, x0, tpoint);
2025 p += emit_add (p, x1, sp, immediate_operand (16));
2026
2027 p += emit_mov_addr (p, ip0, collector);
2028 p += emit_blr (p, ip0);
2029
2030 /* Release the lock.
2031
2032 MOV x0, #(lockaddr)
2033 ...
2034
2035 ; This instruction is a normal store with memory ordering
2036 ; constraints. Thanks to this we do not have to put a data
2037 ; barrier instruction to make sure all data read and writes are done
2038 ; before this instruction is executed. Furthermore, this instrucion
2039 ; will trigger an event, letting other threads know they can grab
2040 ; the lock.
2041 STLR xzr, [x0]
2042
2043 */
2044 p += emit_mov_addr (p, x0, lockaddr);
2045 p += emit_stlr (p, xzr, x0);
2046
2047 /* Free collecting_t object:
2048
2049 ADD sp, sp, #16
2050
2051 */
2052 p += emit_add (p, sp, sp, immediate_operand (16));
2053
2054 /* Restore CPSR (NZCV), FPSR and FPCR. And free all special purpose
2055 registers from the stack.
2056
2057 LDR x2, [sp, #(2 * 16)]
2058 LDR x1, [sp, #(1 * 16)]
2059 LDR x0, [sp, #(0 * 16)]
2060
2061 MSR NZCV, x2
2062 MSR FPSR, x1
2063 MSR FPCR, x0
2064
2065 ADD sp, sp #(5 * 16)
2066
2067 */
2068 p += emit_ldr (p, x2, sp, offset_memory_operand (2 * 16));
2069 p += emit_ldr (p, x1, sp, offset_memory_operand (1 * 16));
2070 p += emit_ldr (p, x0, sp, offset_memory_operand (0 * 16));
2071 p += emit_msr (p, NZCV, x2);
2072 p += emit_msr (p, FPSR, x1);
2073 p += emit_msr (p, FPCR, x0);
2074
2075 p += emit_add (p, sp, sp, immediate_operand (5 * 16));
2076
2077 /* Pop general purpose registers:
2078
2079 LDR x0, [sp]
2080 ...
2081 LDR x30, [sp, #(30 * 16)]
2082
2083 ADD sp, sp, #(31 * 16)
2084
2085 */
2086 for (i = 0; i <= 30; i += 1)
2087 p += emit_ldr (p, aarch64_register (i, 1), sp,
2088 offset_memory_operand (i * 16));
2089 p += emit_add (p, sp, sp, immediate_operand (31 * 16));
2090
2091 /* Pop SIMD&FP registers:
2092
2093 LDP q0, q1, [sp]
2094 ...
2095 LDP q30, q31, [sp, #(30 * 16)]
2096
2097 ADD sp, sp, #(32 * 16)
2098
2099 */
2100 for (i = 0; i <= 30; i += 2)
2101 p += emit_ldp_q_offset (p, i, i + 1, sp, i * 16);
2102 p += emit_add (p, sp, sp, immediate_operand (32 * 16));
2103
2104 /* Write the code into the inferior memory. */
2105 append_insns (&buildaddr, p - buf, buf);
2106
2107 /* Now emit the relocated instruction. */
2108 *adjusted_insn_addr = buildaddr;
2109 target_read_uint32 (tpaddr, &insn);
2110
2111 insn_data.base.insn_addr = tpaddr;
2112 insn_data.new_addr = buildaddr;
2113 insn_data.insn_ptr = buf;
2114
2115 aarch64_relocate_instruction (insn, &visitor,
2116 (struct aarch64_insn_data *) &insn_data);
2117
2118 /* We may not have been able to relocate the instruction. */
2119 if (insn_data.insn_ptr == buf)
2120 {
2121 sprintf (err,
2122 "E.Could not relocate instruction from %s to %s.",
2123 core_addr_to_string_nz (tpaddr),
2124 core_addr_to_string_nz (buildaddr));
2125 return 1;
2126 }
2127 else
2128 append_insns (&buildaddr, insn_data.insn_ptr - buf, buf);
2129 *adjusted_insn_addr_end = buildaddr;
2130
2131 /* Go back to the start of the buffer. */
2132 p = buf;
2133
2134 /* Emit a branch back from the jump pad. */
2135 offset = (tpaddr + orig_size - buildaddr);
2136 if (!can_encode_int32 (offset, 28))
2137 {
2138 sprintf (err,
2139 "E.Jump back from jump pad too far from tracepoint "
2140 "(offset 0x%" PRIx32 " cannot be encoded in 28 bits).",
2141 offset);
2142 return 1;
2143 }
2144
2145 p += emit_b (p, 0, offset);
2146 append_insns (&buildaddr, p - buf, buf);
2147
2148 /* Give the caller a branch instruction into the jump pad. */
2149 offset = (*jump_entry - tpaddr);
2150 if (!can_encode_int32 (offset, 28))
2151 {
2152 sprintf (err,
2153 "E.Jump pad too far from tracepoint "
2154 "(offset 0x%" PRIx32 " cannot be encoded in 28 bits).",
2155 offset);
2156 return 1;
2157 }
2158
2159 emit_b ((uint32_t *) jjump_pad_insn, 0, offset);
2160 *jjump_pad_insn_size = 4;
2161
2162 /* Return the end address of our pad. */
2163 *jump_entry = buildaddr;
2164
2165 return 0;
2166 }
2167
2168 /* Helper function writing LEN instructions from START into
2169 current_insn_ptr. */
2170
2171 static void
2172 emit_ops_insns (const uint32_t *start, int len)
2173 {
2174 CORE_ADDR buildaddr = current_insn_ptr;
2175
2176 if (debug_threads)
2177 debug_printf ("Adding %d instrucions at %s\n",
2178 len, paddress (buildaddr));
2179
2180 append_insns (&buildaddr, len, start);
2181 current_insn_ptr = buildaddr;
2182 }
2183
2184 /* Pop a register from the stack. */
2185
2186 static int
2187 emit_pop (uint32_t *buf, struct aarch64_register rt)
2188 {
2189 return emit_ldr (buf, rt, sp, postindex_memory_operand (1 * 16));
2190 }
2191
2192 /* Push a register on the stack. */
2193
2194 static int
2195 emit_push (uint32_t *buf, struct aarch64_register rt)
2196 {
2197 return emit_str (buf, rt, sp, preindex_memory_operand (-1 * 16));
2198 }
2199
2200 /* Implementation of emit_ops method "emit_prologue". */
2201
2202 static void
2203 aarch64_emit_prologue (void)
2204 {
2205 uint32_t buf[16];
2206 uint32_t *p = buf;
2207
2208 /* This function emit a prologue for the following function prototype:
2209
2210 enum eval_result_type f (unsigned char *regs,
2211 ULONGEST *value);
2212
2213 The first argument is a buffer of raw registers. The second
2214 argument is the result of
2215 evaluating the expression, which will be set to whatever is on top of
2216 the stack at the end.
2217
2218 The stack set up by the prologue is as such:
2219
2220 High *------------------------------------------------------*
2221 | LR |
2222 | FP | <- FP
2223 | x1 (ULONGEST *value) |
2224 | x0 (unsigned char *regs) |
2225 Low *------------------------------------------------------*
2226
2227 As we are implementing a stack machine, each opcode can expand the
2228 stack so we never know how far we are from the data saved by this
2229 prologue. In order to be able refer to value and regs later, we save
2230 the current stack pointer in the frame pointer. This way, it is not
2231 clobbered when calling C functions.
2232
2233 Finally, throughtout every operation, we are using register x0 as the
2234 top of the stack, and x1 as a scratch register. */
2235
2236 p += emit_stp (p, x0, x1, sp, preindex_memory_operand (-2 * 16));
2237 p += emit_str (p, lr, sp, offset_memory_operand (3 * 8));
2238 p += emit_str (p, fp, sp, offset_memory_operand (2 * 8));
2239
2240 p += emit_add (p, fp, sp, immediate_operand (2 * 8));
2241
2242
2243 emit_ops_insns (buf, p - buf);
2244 }
2245
2246 /* Implementation of emit_ops method "emit_epilogue". */
2247
2248 static void
2249 aarch64_emit_epilogue (void)
2250 {
2251 uint32_t buf[16];
2252 uint32_t *p = buf;
2253
2254 /* Store the result of the expression (x0) in *value. */
2255 p += emit_sub (p, x1, fp, immediate_operand (1 * 8));
2256 p += emit_ldr (p, x1, x1, offset_memory_operand (0));
2257 p += emit_str (p, x0, x1, offset_memory_operand (0));
2258
2259 /* Restore the previous state. */
2260 p += emit_add (p, sp, fp, immediate_operand (2 * 8));
2261 p += emit_ldp (p, fp, lr, fp, offset_memory_operand (0));
2262
2263 /* Return expr_eval_no_error. */
2264 p += emit_mov (p, x0, immediate_operand (expr_eval_no_error));
2265 p += emit_ret (p, lr);
2266
2267 emit_ops_insns (buf, p - buf);
2268 }
2269
2270 /* Implementation of emit_ops method "emit_add". */
2271
2272 static void
2273 aarch64_emit_add (void)
2274 {
2275 uint32_t buf[16];
2276 uint32_t *p = buf;
2277
2278 p += emit_pop (p, x1);
2279 p += emit_add (p, x0, x1, register_operand (x0));
2280
2281 emit_ops_insns (buf, p - buf);
2282 }
2283
2284 /* Implementation of emit_ops method "emit_sub". */
2285
2286 static void
2287 aarch64_emit_sub (void)
2288 {
2289 uint32_t buf[16];
2290 uint32_t *p = buf;
2291
2292 p += emit_pop (p, x1);
2293 p += emit_sub (p, x0, x1, register_operand (x0));
2294
2295 emit_ops_insns (buf, p - buf);
2296 }
2297
2298 /* Implementation of emit_ops method "emit_mul". */
2299
2300 static void
2301 aarch64_emit_mul (void)
2302 {
2303 uint32_t buf[16];
2304 uint32_t *p = buf;
2305
2306 p += emit_pop (p, x1);
2307 p += emit_mul (p, x0, x1, x0);
2308
2309 emit_ops_insns (buf, p - buf);
2310 }
2311
2312 /* Implementation of emit_ops method "emit_lsh". */
2313
2314 static void
2315 aarch64_emit_lsh (void)
2316 {
2317 uint32_t buf[16];
2318 uint32_t *p = buf;
2319
2320 p += emit_pop (p, x1);
2321 p += emit_lslv (p, x0, x1, x0);
2322
2323 emit_ops_insns (buf, p - buf);
2324 }
2325
2326 /* Implementation of emit_ops method "emit_rsh_signed". */
2327
2328 static void
2329 aarch64_emit_rsh_signed (void)
2330 {
2331 uint32_t buf[16];
2332 uint32_t *p = buf;
2333
2334 p += emit_pop (p, x1);
2335 p += emit_asrv (p, x0, x1, x0);
2336
2337 emit_ops_insns (buf, p - buf);
2338 }
2339
2340 /* Implementation of emit_ops method "emit_rsh_unsigned". */
2341
2342 static void
2343 aarch64_emit_rsh_unsigned (void)
2344 {
2345 uint32_t buf[16];
2346 uint32_t *p = buf;
2347
2348 p += emit_pop (p, x1);
2349 p += emit_lsrv (p, x0, x1, x0);
2350
2351 emit_ops_insns (buf, p - buf);
2352 }
2353
2354 /* Implementation of emit_ops method "emit_ext". */
2355
2356 static void
2357 aarch64_emit_ext (int arg)
2358 {
2359 uint32_t buf[16];
2360 uint32_t *p = buf;
2361
2362 p += emit_sbfx (p, x0, x0, 0, arg);
2363
2364 emit_ops_insns (buf, p - buf);
2365 }
2366
2367 /* Implementation of emit_ops method "emit_log_not". */
2368
2369 static void
2370 aarch64_emit_log_not (void)
2371 {
2372 uint32_t buf[16];
2373 uint32_t *p = buf;
2374
2375 /* If the top of the stack is 0, replace it with 1. Else replace it with
2376 0. */
2377
2378 p += emit_cmp (p, x0, immediate_operand (0));
2379 p += emit_cset (p, x0, EQ);
2380
2381 emit_ops_insns (buf, p - buf);
2382 }
2383
2384 /* Implementation of emit_ops method "emit_bit_and". */
2385
2386 static void
2387 aarch64_emit_bit_and (void)
2388 {
2389 uint32_t buf[16];
2390 uint32_t *p = buf;
2391
2392 p += emit_pop (p, x1);
2393 p += emit_and (p, x0, x0, x1);
2394
2395 emit_ops_insns (buf, p - buf);
2396 }
2397
2398 /* Implementation of emit_ops method "emit_bit_or". */
2399
2400 static void
2401 aarch64_emit_bit_or (void)
2402 {
2403 uint32_t buf[16];
2404 uint32_t *p = buf;
2405
2406 p += emit_pop (p, x1);
2407 p += emit_orr (p, x0, x0, x1);
2408
2409 emit_ops_insns (buf, p - buf);
2410 }
2411
2412 /* Implementation of emit_ops method "emit_bit_xor". */
2413
2414 static void
2415 aarch64_emit_bit_xor (void)
2416 {
2417 uint32_t buf[16];
2418 uint32_t *p = buf;
2419
2420 p += emit_pop (p, x1);
2421 p += emit_eor (p, x0, x0, x1);
2422
2423 emit_ops_insns (buf, p - buf);
2424 }
2425
2426 /* Implementation of emit_ops method "emit_bit_not". */
2427
2428 static void
2429 aarch64_emit_bit_not (void)
2430 {
2431 uint32_t buf[16];
2432 uint32_t *p = buf;
2433
2434 p += emit_mvn (p, x0, x0);
2435
2436 emit_ops_insns (buf, p - buf);
2437 }
2438
2439 /* Implementation of emit_ops method "emit_equal". */
2440
2441 static void
2442 aarch64_emit_equal (void)
2443 {
2444 uint32_t buf[16];
2445 uint32_t *p = buf;
2446
2447 p += emit_pop (p, x1);
2448 p += emit_cmp (p, x0, register_operand (x1));
2449 p += emit_cset (p, x0, EQ);
2450
2451 emit_ops_insns (buf, p - buf);
2452 }
2453
2454 /* Implementation of emit_ops method "emit_less_signed". */
2455
2456 static void
2457 aarch64_emit_less_signed (void)
2458 {
2459 uint32_t buf[16];
2460 uint32_t *p = buf;
2461
2462 p += emit_pop (p, x1);
2463 p += emit_cmp (p, x1, register_operand (x0));
2464 p += emit_cset (p, x0, LT);
2465
2466 emit_ops_insns (buf, p - buf);
2467 }
2468
2469 /* Implementation of emit_ops method "emit_less_unsigned". */
2470
2471 static void
2472 aarch64_emit_less_unsigned (void)
2473 {
2474 uint32_t buf[16];
2475 uint32_t *p = buf;
2476
2477 p += emit_pop (p, x1);
2478 p += emit_cmp (p, x1, register_operand (x0));
2479 p += emit_cset (p, x0, LO);
2480
2481 emit_ops_insns (buf, p - buf);
2482 }
2483
2484 /* Implementation of emit_ops method "emit_ref". */
2485
2486 static void
2487 aarch64_emit_ref (int size)
2488 {
2489 uint32_t buf[16];
2490 uint32_t *p = buf;
2491
2492 switch (size)
2493 {
2494 case 1:
2495 p += emit_ldrb (p, w0, x0, offset_memory_operand (0));
2496 break;
2497 case 2:
2498 p += emit_ldrh (p, w0, x0, offset_memory_operand (0));
2499 break;
2500 case 4:
2501 p += emit_ldr (p, w0, x0, offset_memory_operand (0));
2502 break;
2503 case 8:
2504 p += emit_ldr (p, x0, x0, offset_memory_operand (0));
2505 break;
2506 default:
2507 /* Unknown size, bail on compilation. */
2508 emit_error = 1;
2509 break;
2510 }
2511
2512 emit_ops_insns (buf, p - buf);
2513 }
2514
2515 /* Implementation of emit_ops method "emit_if_goto". */
2516
2517 static void
2518 aarch64_emit_if_goto (int *offset_p, int *size_p)
2519 {
2520 uint32_t buf[16];
2521 uint32_t *p = buf;
2522
2523 /* The Z flag is set or cleared here. */
2524 p += emit_cmp (p, x0, immediate_operand (0));
2525 /* This instruction must not change the Z flag. */
2526 p += emit_pop (p, x0);
2527 /* Branch over the next instruction if x0 == 0. */
2528 p += emit_bcond (p, EQ, 8);
2529
2530 /* The NOP instruction will be patched with an unconditional branch. */
2531 if (offset_p)
2532 *offset_p = (p - buf) * 4;
2533 if (size_p)
2534 *size_p = 4;
2535 p += emit_nop (p);
2536
2537 emit_ops_insns (buf, p - buf);
2538 }
2539
2540 /* Implementation of emit_ops method "emit_goto". */
2541
2542 static void
2543 aarch64_emit_goto (int *offset_p, int *size_p)
2544 {
2545 uint32_t buf[16];
2546 uint32_t *p = buf;
2547
2548 /* The NOP instruction will be patched with an unconditional branch. */
2549 if (offset_p)
2550 *offset_p = 0;
2551 if (size_p)
2552 *size_p = 4;
2553 p += emit_nop (p);
2554
2555 emit_ops_insns (buf, p - buf);
2556 }
2557
2558 /* Implementation of emit_ops method "write_goto_address". */
2559
2560 void
2561 aarch64_write_goto_address (CORE_ADDR from, CORE_ADDR to, int size)
2562 {
2563 uint32_t insn;
2564
2565 emit_b (&insn, 0, to - from);
2566 append_insns (&from, 1, &insn);
2567 }
2568
2569 /* Implementation of emit_ops method "emit_const". */
2570
2571 static void
2572 aarch64_emit_const (LONGEST num)
2573 {
2574 uint32_t buf[16];
2575 uint32_t *p = buf;
2576
2577 p += emit_mov_addr (p, x0, num);
2578
2579 emit_ops_insns (buf, p - buf);
2580 }
2581
2582 /* Implementation of emit_ops method "emit_call". */
2583
2584 static void
2585 aarch64_emit_call (CORE_ADDR fn)
2586 {
2587 uint32_t buf[16];
2588 uint32_t *p = buf;
2589
2590 p += emit_mov_addr (p, ip0, fn);
2591 p += emit_blr (p, ip0);
2592
2593 emit_ops_insns (buf, p - buf);
2594 }
2595
2596 /* Implementation of emit_ops method "emit_reg". */
2597
2598 static void
2599 aarch64_emit_reg (int reg)
2600 {
2601 uint32_t buf[16];
2602 uint32_t *p = buf;
2603
2604 /* Set x0 to unsigned char *regs. */
2605 p += emit_sub (p, x0, fp, immediate_operand (2 * 8));
2606 p += emit_ldr (p, x0, x0, offset_memory_operand (0));
2607 p += emit_mov (p, x1, immediate_operand (reg));
2608
2609 emit_ops_insns (buf, p - buf);
2610
2611 aarch64_emit_call (get_raw_reg_func_addr ());
2612 }
2613
2614 /* Implementation of emit_ops method "emit_pop". */
2615
2616 static void
2617 aarch64_emit_pop (void)
2618 {
2619 uint32_t buf[16];
2620 uint32_t *p = buf;
2621
2622 p += emit_pop (p, x0);
2623
2624 emit_ops_insns (buf, p - buf);
2625 }
2626
2627 /* Implementation of emit_ops method "emit_stack_flush". */
2628
2629 static void
2630 aarch64_emit_stack_flush (void)
2631 {
2632 uint32_t buf[16];
2633 uint32_t *p = buf;
2634
2635 p += emit_push (p, x0);
2636
2637 emit_ops_insns (buf, p - buf);
2638 }
2639
2640 /* Implementation of emit_ops method "emit_zero_ext". */
2641
2642 static void
2643 aarch64_emit_zero_ext (int arg)
2644 {
2645 uint32_t buf[16];
2646 uint32_t *p = buf;
2647
2648 p += emit_ubfx (p, x0, x0, 0, arg);
2649
2650 emit_ops_insns (buf, p - buf);
2651 }
2652
2653 /* Implementation of emit_ops method "emit_swap". */
2654
2655 static void
2656 aarch64_emit_swap (void)
2657 {
2658 uint32_t buf[16];
2659 uint32_t *p = buf;
2660
2661 p += emit_ldr (p, x1, sp, offset_memory_operand (0 * 16));
2662 p += emit_str (p, x0, sp, offset_memory_operand (0 * 16));
2663 p += emit_mov (p, x0, register_operand (x1));
2664
2665 emit_ops_insns (buf, p - buf);
2666 }
2667
2668 /* Implementation of emit_ops method "emit_stack_adjust". */
2669
2670 static void
2671 aarch64_emit_stack_adjust (int n)
2672 {
2673 /* This is not needed with our design. */
2674 uint32_t buf[16];
2675 uint32_t *p = buf;
2676
2677 p += emit_add (p, sp, sp, immediate_operand (n * 16));
2678
2679 emit_ops_insns (buf, p - buf);
2680 }
2681
2682 /* Implementation of emit_ops method "emit_int_call_1". */
2683
2684 static void
2685 aarch64_emit_int_call_1 (CORE_ADDR fn, int arg1)
2686 {
2687 uint32_t buf[16];
2688 uint32_t *p = buf;
2689
2690 p += emit_mov (p, x0, immediate_operand (arg1));
2691
2692 emit_ops_insns (buf, p - buf);
2693
2694 aarch64_emit_call (fn);
2695 }
2696
2697 /* Implementation of emit_ops method "emit_void_call_2". */
2698
2699 static void
2700 aarch64_emit_void_call_2 (CORE_ADDR fn, int arg1)
2701 {
2702 uint32_t buf[16];
2703 uint32_t *p = buf;
2704
2705 /* Push x0 on the stack. */
2706 aarch64_emit_stack_flush ();
2707
2708 /* Setup arguments for the function call:
2709
2710 x0: arg1
2711 x1: top of the stack
2712
2713 MOV x1, x0
2714 MOV x0, #arg1 */
2715
2716 p += emit_mov (p, x1, register_operand (x0));
2717 p += emit_mov (p, x0, immediate_operand (arg1));
2718
2719 emit_ops_insns (buf, p - buf);
2720
2721 aarch64_emit_call (fn);
2722
2723 /* Restore x0. */
2724 aarch64_emit_pop ();
2725 }
2726
2727 /* Implementation of emit_ops method "emit_eq_goto". */
2728
2729 static void
2730 aarch64_emit_eq_goto (int *offset_p, int *size_p)
2731 {
2732 uint32_t buf[16];
2733 uint32_t *p = buf;
2734
2735 p += emit_pop (p, x1);
2736 p += emit_cmp (p, x1, register_operand (x0));
2737 /* Branch over the next instruction if x0 != x1. */
2738 p += emit_bcond (p, NE, 8);
2739 /* The NOP instruction will be patched with an unconditional branch. */
2740 if (offset_p)
2741 *offset_p = (p - buf) * 4;
2742 if (size_p)
2743 *size_p = 4;
2744 p += emit_nop (p);
2745
2746 emit_ops_insns (buf, p - buf);
2747 }
2748
2749 /* Implementation of emit_ops method "emit_ne_goto". */
2750
2751 static void
2752 aarch64_emit_ne_goto (int *offset_p, int *size_p)
2753 {
2754 uint32_t buf[16];
2755 uint32_t *p = buf;
2756
2757 p += emit_pop (p, x1);
2758 p += emit_cmp (p, x1, register_operand (x0));
2759 /* Branch over the next instruction if x0 == x1. */
2760 p += emit_bcond (p, EQ, 8);
2761 /* The NOP instruction will be patched with an unconditional branch. */
2762 if (offset_p)
2763 *offset_p = (p - buf) * 4;
2764 if (size_p)
2765 *size_p = 4;
2766 p += emit_nop (p);
2767
2768 emit_ops_insns (buf, p - buf);
2769 }
2770
2771 /* Implementation of emit_ops method "emit_lt_goto". */
2772
2773 static void
2774 aarch64_emit_lt_goto (int *offset_p, int *size_p)
2775 {
2776 uint32_t buf[16];
2777 uint32_t *p = buf;
2778
2779 p += emit_pop (p, x1);
2780 p += emit_cmp (p, x1, register_operand (x0));
2781 /* Branch over the next instruction if x0 >= x1. */
2782 p += emit_bcond (p, GE, 8);
2783 /* The NOP instruction will be patched with an unconditional branch. */
2784 if (offset_p)
2785 *offset_p = (p - buf) * 4;
2786 if (size_p)
2787 *size_p = 4;
2788 p += emit_nop (p);
2789
2790 emit_ops_insns (buf, p - buf);
2791 }
2792
2793 /* Implementation of emit_ops method "emit_le_goto". */
2794
2795 static void
2796 aarch64_emit_le_goto (int *offset_p, int *size_p)
2797 {
2798 uint32_t buf[16];
2799 uint32_t *p = buf;
2800
2801 p += emit_pop (p, x1);
2802 p += emit_cmp (p, x1, register_operand (x0));
2803 /* Branch over the next instruction if x0 > x1. */
2804 p += emit_bcond (p, GT, 8);
2805 /* The NOP instruction will be patched with an unconditional branch. */
2806 if (offset_p)
2807 *offset_p = (p - buf) * 4;
2808 if (size_p)
2809 *size_p = 4;
2810 p += emit_nop (p);
2811
2812 emit_ops_insns (buf, p - buf);
2813 }
2814
2815 /* Implementation of emit_ops method "emit_gt_goto". */
2816
2817 static void
2818 aarch64_emit_gt_goto (int *offset_p, int *size_p)
2819 {
2820 uint32_t buf[16];
2821 uint32_t *p = buf;
2822
2823 p += emit_pop (p, x1);
2824 p += emit_cmp (p, x1, register_operand (x0));
2825 /* Branch over the next instruction if x0 <= x1. */
2826 p += emit_bcond (p, LE, 8);
2827 /* The NOP instruction will be patched with an unconditional branch. */
2828 if (offset_p)
2829 *offset_p = (p - buf) * 4;
2830 if (size_p)
2831 *size_p = 4;
2832 p += emit_nop (p);
2833
2834 emit_ops_insns (buf, p - buf);
2835 }
2836
2837 /* Implementation of emit_ops method "emit_ge_got". */
2838
2839 static void
2840 aarch64_emit_ge_got (int *offset_p, int *size_p)
2841 {
2842 uint32_t buf[16];
2843 uint32_t *p = buf;
2844
2845 p += emit_pop (p, x1);
2846 p += emit_cmp (p, x1, register_operand (x0));
2847 /* Branch over the next instruction if x0 <= x1. */
2848 p += emit_bcond (p, LT, 8);
2849 /* The NOP instruction will be patched with an unconditional branch. */
2850 if (offset_p)
2851 *offset_p = (p - buf) * 4;
2852 if (size_p)
2853 *size_p = 4;
2854 p += emit_nop (p);
2855
2856 emit_ops_insns (buf, p - buf);
2857 }
2858
2859 static struct emit_ops aarch64_emit_ops_impl =
2860 {
2861 aarch64_emit_prologue,
2862 aarch64_emit_epilogue,
2863 aarch64_emit_add,
2864 aarch64_emit_sub,
2865 aarch64_emit_mul,
2866 aarch64_emit_lsh,
2867 aarch64_emit_rsh_signed,
2868 aarch64_emit_rsh_unsigned,
2869 aarch64_emit_ext,
2870 aarch64_emit_log_not,
2871 aarch64_emit_bit_and,
2872 aarch64_emit_bit_or,
2873 aarch64_emit_bit_xor,
2874 aarch64_emit_bit_not,
2875 aarch64_emit_equal,
2876 aarch64_emit_less_signed,
2877 aarch64_emit_less_unsigned,
2878 aarch64_emit_ref,
2879 aarch64_emit_if_goto,
2880 aarch64_emit_goto,
2881 aarch64_write_goto_address,
2882 aarch64_emit_const,
2883 aarch64_emit_call,
2884 aarch64_emit_reg,
2885 aarch64_emit_pop,
2886 aarch64_emit_stack_flush,
2887 aarch64_emit_zero_ext,
2888 aarch64_emit_swap,
2889 aarch64_emit_stack_adjust,
2890 aarch64_emit_int_call_1,
2891 aarch64_emit_void_call_2,
2892 aarch64_emit_eq_goto,
2893 aarch64_emit_ne_goto,
2894 aarch64_emit_lt_goto,
2895 aarch64_emit_le_goto,
2896 aarch64_emit_gt_goto,
2897 aarch64_emit_ge_got,
2898 };
2899
2900 /* Implementation of linux_target_ops method "emit_ops". */
2901
2902 static struct emit_ops *
2903 aarch64_emit_ops (void)
2904 {
2905 return &aarch64_emit_ops_impl;
2906 }
2907
2908 /* Implementation of linux_target_ops method
2909 "get_min_fast_tracepoint_insn_len". */
2910
2911 static int
2912 aarch64_get_min_fast_tracepoint_insn_len (void)
2913 {
2914 return 4;
2915 }
2916
2917 /* Implementation of linux_target_ops method "supports_range_stepping". */
2918
2919 static int
2920 aarch64_supports_range_stepping (void)
2921 {
2922 return 1;
2923 }
2924
2925 /* Implementation of linux_target_ops method "sw_breakpoint_from_kind". */
2926
2927 static const gdb_byte *
2928 aarch64_sw_breakpoint_from_kind (int kind, int *size)
2929 {
2930 if (is_64bit_tdesc ())
2931 {
2932 *size = aarch64_breakpoint_len;
2933 return aarch64_breakpoint;
2934 }
2935 else
2936 return arm_sw_breakpoint_from_kind (kind, size);
2937 }
2938
2939 /* Implementation of linux_target_ops method "breakpoint_kind_from_pc". */
2940
2941 static int
2942 aarch64_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
2943 {
2944 if (is_64bit_tdesc ())
2945 return aarch64_breakpoint_len;
2946 else
2947 return arm_breakpoint_kind_from_pc (pcptr);
2948 }
2949
2950 /* Implementation of the linux_target_ops method
2951 "breakpoint_kind_from_current_state". */
2952
2953 static int
2954 aarch64_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
2955 {
2956 if (is_64bit_tdesc ())
2957 return aarch64_breakpoint_len;
2958 else
2959 return arm_breakpoint_kind_from_current_state (pcptr);
2960 }
2961
2962 /* Support for hardware single step. */
2963
2964 static int
2965 aarch64_supports_hardware_single_step (void)
2966 {
2967 return 1;
2968 }
2969
2970 struct linux_target_ops the_low_target =
2971 {
2972 aarch64_arch_setup,
2973 aarch64_regs_info,
2974 aarch64_cannot_fetch_register,
2975 aarch64_cannot_store_register,
2976 NULL, /* fetch_register */
2977 aarch64_get_pc,
2978 aarch64_set_pc,
2979 aarch64_breakpoint_kind_from_pc,
2980 aarch64_sw_breakpoint_from_kind,
2981 NULL, /* get_next_pcs */
2982 0, /* decr_pc_after_break */
2983 aarch64_breakpoint_at,
2984 aarch64_supports_z_point_type,
2985 aarch64_insert_point,
2986 aarch64_remove_point,
2987 aarch64_stopped_by_watchpoint,
2988 aarch64_stopped_data_address,
2989 NULL, /* collect_ptrace_register */
2990 NULL, /* supply_ptrace_register */
2991 aarch64_linux_siginfo_fixup,
2992 aarch64_linux_new_process,
2993 aarch64_linux_new_thread,
2994 aarch64_linux_new_fork,
2995 aarch64_linux_prepare_to_resume,
2996 NULL, /* process_qsupported */
2997 aarch64_supports_tracepoints,
2998 aarch64_get_thread_area,
2999 aarch64_install_fast_tracepoint_jump_pad,
3000 aarch64_emit_ops,
3001 aarch64_get_min_fast_tracepoint_insn_len,
3002 aarch64_supports_range_stepping,
3003 aarch64_breakpoint_kind_from_current_state,
3004 aarch64_supports_hardware_single_step,
3005 aarch64_get_syscall_trapinfo,
3006 };
3007
3008 void
3009 initialize_low_arch (void)
3010 {
3011 init_registers_aarch64 ();
3012
3013 initialize_low_arch_aarch32 ();
3014
3015 initialize_regsets_info (&aarch64_regsets_info);
3016 }
This page took 0.169807 seconds and 5 git commands to generate.