2013-06-04 Gary Benson <gbenson@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2013 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "linux-osdata.h"
22 #include "agent.h"
23
24 #include "gdb_wait.h"
25 #include <stdio.h>
26 #include <sys/param.h>
27 #include <sys/ptrace.h>
28 #include "linux-ptrace.h"
29 #include "linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <string.h>
34 #include <stdlib.h>
35 #include <unistd.h>
36 #include <errno.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include "gdb_stat.h"
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 #ifdef __UCLIBC__
80 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
81 /* PTRACE_TEXT_ADDR and friends. */
82 #include <asm/ptrace.h>
83 #define HAS_NOMMU
84 #endif
85 #endif
86
87 /* Some targets did not define these ptrace constants from the start,
88 so gdbserver defines them locally here. In the future, these may
89 be removed after they are added to asm/ptrace.h. */
90 #if !(defined(PT_TEXT_ADDR) \
91 || defined(PT_DATA_ADDR) \
92 || defined(PT_TEXT_END_ADDR))
93 #if defined(__mcoldfire__)
94 /* These are still undefined in 3.10 kernels. */
95 #define PT_TEXT_ADDR 49*4
96 #define PT_DATA_ADDR 50*4
97 #define PT_TEXT_END_ADDR 51*4
98 /* BFIN already defines these since at least 2.6.32 kernels. */
99 #elif defined(BFIN)
100 #define PT_TEXT_ADDR 220
101 #define PT_TEXT_END_ADDR 224
102 #define PT_DATA_ADDR 228
103 /* These are still undefined in 3.10 kernels. */
104 #elif defined(__TMS320C6X__)
105 #define PT_TEXT_ADDR (0x10000*4)
106 #define PT_DATA_ADDR (0x10004*4)
107 #define PT_TEXT_END_ADDR (0x10008*4)
108 #endif
109 #endif
110
111 #ifdef HAVE_LINUX_BTRACE
112 # include "linux-btrace.h"
113 #endif
114
115 #ifndef HAVE_ELF32_AUXV_T
116 /* Copied from glibc's elf.h. */
117 typedef struct
118 {
119 uint32_t a_type; /* Entry type */
120 union
121 {
122 uint32_t a_val; /* Integer value */
123 /* We use to have pointer elements added here. We cannot do that,
124 though, since it does not work when using 32-bit definitions
125 on 64-bit platforms and vice versa. */
126 } a_un;
127 } Elf32_auxv_t;
128 #endif
129
130 #ifndef HAVE_ELF64_AUXV_T
131 /* Copied from glibc's elf.h. */
132 typedef struct
133 {
134 uint64_t a_type; /* Entry type */
135 union
136 {
137 uint64_t a_val; /* Integer value */
138 /* We use to have pointer elements added here. We cannot do that,
139 though, since it does not work when using 32-bit definitions
140 on 64-bit platforms and vice versa. */
141 } a_un;
142 } Elf64_auxv_t;
143 #endif
144
145 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
146 representation of the thread ID.
147
148 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
149 the same as the LWP ID.
150
151 ``all_processes'' is keyed by the "overall process ID", which
152 GNU/Linux calls tgid, "thread group ID". */
153
154 struct inferior_list all_lwps;
155
156 /* A list of all unknown processes which receive stop signals. Some
157 other process will presumably claim each of these as forked
158 children momentarily. */
159
160 struct simple_pid_list
161 {
162 /* The process ID. */
163 int pid;
164
165 /* The status as reported by waitpid. */
166 int status;
167
168 /* Next in chain. */
169 struct simple_pid_list *next;
170 };
171 struct simple_pid_list *stopped_pids;
172
173 /* Trivial list manipulation functions to keep track of a list of new
174 stopped processes. */
175
176 static void
177 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
178 {
179 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
180
181 new_pid->pid = pid;
182 new_pid->status = status;
183 new_pid->next = *listp;
184 *listp = new_pid;
185 }
186
187 static int
188 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
189 {
190 struct simple_pid_list **p;
191
192 for (p = listp; *p != NULL; p = &(*p)->next)
193 if ((*p)->pid == pid)
194 {
195 struct simple_pid_list *next = (*p)->next;
196
197 *statusp = (*p)->status;
198 xfree (*p);
199 *p = next;
200 return 1;
201 }
202 return 0;
203 }
204
205 enum stopping_threads_kind
206 {
207 /* Not stopping threads presently. */
208 NOT_STOPPING_THREADS,
209
210 /* Stopping threads. */
211 STOPPING_THREADS,
212
213 /* Stopping and suspending threads. */
214 STOPPING_AND_SUSPENDING_THREADS
215 };
216
217 /* This is set while stop_all_lwps is in effect. */
218 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
219
220 /* FIXME make into a target method? */
221 int using_threads = 1;
222
223 /* True if we're presently stabilizing threads (moving them out of
224 jump pads). */
225 static int stabilizing_threads;
226
227 /* This flag is true iff we've just created or attached to our first
228 inferior but it has not stopped yet. As soon as it does, we need
229 to call the low target's arch_setup callback. Doing this only on
230 the first inferior avoids reinializing the architecture on every
231 inferior, and avoids messing with the register caches of the
232 already running inferiors. NOTE: this assumes all inferiors under
233 control of gdbserver have the same architecture. */
234 static int new_inferior;
235
236 static void linux_resume_one_lwp (struct lwp_info *lwp,
237 int step, int signal, siginfo_t *info);
238 static void linux_resume (struct thread_resume *resume_info, size_t n);
239 static void stop_all_lwps (int suspend, struct lwp_info *except);
240 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
241 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
242 static void *add_lwp (ptid_t ptid);
243 static int linux_stopped_by_watchpoint (void);
244 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
245 static void proceed_all_lwps (void);
246 static int finish_step_over (struct lwp_info *lwp);
247 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
248 static int kill_lwp (unsigned long lwpid, int signo);
249 static void linux_enable_event_reporting (int pid);
250
251 /* True if the low target can hardware single-step. Such targets
252 don't need a BREAKPOINT_REINSERT_ADDR callback. */
253
254 static int
255 can_hardware_single_step (void)
256 {
257 return (the_low_target.breakpoint_reinsert_addr == NULL);
258 }
259
260 /* True if the low target supports memory breakpoints. If so, we'll
261 have a GET_PC implementation. */
262
263 static int
264 supports_breakpoints (void)
265 {
266 return (the_low_target.get_pc != NULL);
267 }
268
269 /* Returns true if this target can support fast tracepoints. This
270 does not mean that the in-process agent has been loaded in the
271 inferior. */
272
273 static int
274 supports_fast_tracepoints (void)
275 {
276 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
277 }
278
279 /* True if LWP is stopped in its stepping range. */
280
281 static int
282 lwp_in_step_range (struct lwp_info *lwp)
283 {
284 CORE_ADDR pc = lwp->stop_pc;
285
286 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
287 }
288
289 struct pending_signals
290 {
291 int signal;
292 siginfo_t info;
293 struct pending_signals *prev;
294 };
295
296 #ifdef HAVE_LINUX_REGSETS
297 static char *disabled_regsets;
298 static int num_regsets;
299 #endif
300
301 /* The read/write ends of the pipe registered as waitable file in the
302 event loop. */
303 static int linux_event_pipe[2] = { -1, -1 };
304
305 /* True if we're currently in async mode. */
306 #define target_is_async_p() (linux_event_pipe[0] != -1)
307
308 static void send_sigstop (struct lwp_info *lwp);
309 static void wait_for_sigstop (struct inferior_list_entry *entry);
310
311 /* Return non-zero if HEADER is a 64-bit ELF file. */
312
313 static int
314 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
315 {
316 if (header->e_ident[EI_MAG0] == ELFMAG0
317 && header->e_ident[EI_MAG1] == ELFMAG1
318 && header->e_ident[EI_MAG2] == ELFMAG2
319 && header->e_ident[EI_MAG3] == ELFMAG3)
320 {
321 *machine = header->e_machine;
322 return header->e_ident[EI_CLASS] == ELFCLASS64;
323
324 }
325 *machine = EM_NONE;
326 return -1;
327 }
328
329 /* Return non-zero if FILE is a 64-bit ELF file,
330 zero if the file is not a 64-bit ELF file,
331 and -1 if the file is not accessible or doesn't exist. */
332
333 static int
334 elf_64_file_p (const char *file, unsigned int *machine)
335 {
336 Elf64_Ehdr header;
337 int fd;
338
339 fd = open (file, O_RDONLY);
340 if (fd < 0)
341 return -1;
342
343 if (read (fd, &header, sizeof (header)) != sizeof (header))
344 {
345 close (fd);
346 return 0;
347 }
348 close (fd);
349
350 return elf_64_header_p (&header, machine);
351 }
352
353 /* Accepts an integer PID; Returns true if the executable PID is
354 running is a 64-bit ELF file.. */
355
356 int
357 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
358 {
359 char file[MAXPATHLEN];
360
361 sprintf (file, "/proc/%d/exe", pid);
362 return elf_64_file_p (file, machine);
363 }
364
365 static void
366 delete_lwp (struct lwp_info *lwp)
367 {
368 remove_thread (get_lwp_thread (lwp));
369 remove_inferior (&all_lwps, &lwp->head);
370 free (lwp->arch_private);
371 free (lwp);
372 }
373
374 /* Add a process to the common process list, and set its private
375 data. */
376
377 static struct process_info *
378 linux_add_process (int pid, int attached)
379 {
380 struct process_info *proc;
381
382 /* Is this the first process? If so, then set the arch. */
383 if (all_processes.head == NULL)
384 new_inferior = 1;
385
386 proc = add_process (pid, attached);
387 proc->private = xcalloc (1, sizeof (*proc->private));
388
389 if (the_low_target.new_process != NULL)
390 proc->private->arch_private = the_low_target.new_process ();
391
392 return proc;
393 }
394
395 /* Wrapper function for waitpid which handles EINTR, and emulates
396 __WALL for systems where that is not available. */
397
398 static int
399 my_waitpid (int pid, int *status, int flags)
400 {
401 int ret, out_errno;
402
403 if (debug_threads)
404 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
405
406 if (flags & __WALL)
407 {
408 sigset_t block_mask, org_mask, wake_mask;
409 int wnohang;
410
411 wnohang = (flags & WNOHANG) != 0;
412 flags &= ~(__WALL | __WCLONE);
413 flags |= WNOHANG;
414
415 /* Block all signals while here. This avoids knowing about
416 LinuxThread's signals. */
417 sigfillset (&block_mask);
418 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
419
420 /* ... except during the sigsuspend below. */
421 sigemptyset (&wake_mask);
422
423 while (1)
424 {
425 /* Since all signals are blocked, there's no need to check
426 for EINTR here. */
427 ret = waitpid (pid, status, flags);
428 out_errno = errno;
429
430 if (ret == -1 && out_errno != ECHILD)
431 break;
432 else if (ret > 0)
433 break;
434
435 if (flags & __WCLONE)
436 {
437 /* We've tried both flavors now. If WNOHANG is set,
438 there's nothing else to do, just bail out. */
439 if (wnohang)
440 break;
441
442 if (debug_threads)
443 fprintf (stderr, "blocking\n");
444
445 /* Block waiting for signals. */
446 sigsuspend (&wake_mask);
447 }
448
449 flags ^= __WCLONE;
450 }
451
452 sigprocmask (SIG_SETMASK, &org_mask, NULL);
453 }
454 else
455 {
456 do
457 ret = waitpid (pid, status, flags);
458 while (ret == -1 && errno == EINTR);
459 out_errno = errno;
460 }
461
462 if (debug_threads)
463 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
464 pid, flags, status ? *status : -1, ret);
465
466 errno = out_errno;
467 return ret;
468 }
469
470 /* Handle a GNU/Linux extended wait response. If we see a clone
471 event, we need to add the new LWP to our list (and not report the
472 trap to higher layers). */
473
474 static void
475 handle_extended_wait (struct lwp_info *event_child, int wstat)
476 {
477 int event = wstat >> 16;
478 struct lwp_info *new_lwp;
479
480 if (event == PTRACE_EVENT_CLONE)
481 {
482 ptid_t ptid;
483 unsigned long new_pid;
484 int ret, status;
485
486 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), (PTRACE_ARG3_TYPE) 0,
487 &new_pid);
488
489 /* If we haven't already seen the new PID stop, wait for it now. */
490 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
491 {
492 /* The new child has a pending SIGSTOP. We can't affect it until it
493 hits the SIGSTOP, but we're already attached. */
494
495 ret = my_waitpid (new_pid, &status, __WALL);
496
497 if (ret == -1)
498 perror_with_name ("waiting for new child");
499 else if (ret != new_pid)
500 warning ("wait returned unexpected PID %d", ret);
501 else if (!WIFSTOPPED (status))
502 warning ("wait returned unexpected status 0x%x", status);
503 }
504
505 ptid = ptid_build (pid_of (event_child), new_pid, 0);
506 new_lwp = (struct lwp_info *) add_lwp (ptid);
507 add_thread (ptid, new_lwp);
508
509 /* Either we're going to immediately resume the new thread
510 or leave it stopped. linux_resume_one_lwp is a nop if it
511 thinks the thread is currently running, so set this first
512 before calling linux_resume_one_lwp. */
513 new_lwp->stopped = 1;
514
515 /* If we're suspending all threads, leave this one suspended
516 too. */
517 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
518 new_lwp->suspended = 1;
519
520 /* Normally we will get the pending SIGSTOP. But in some cases
521 we might get another signal delivered to the group first.
522 If we do get another signal, be sure not to lose it. */
523 if (WSTOPSIG (status) == SIGSTOP)
524 {
525 if (stopping_threads != NOT_STOPPING_THREADS)
526 new_lwp->stop_pc = get_stop_pc (new_lwp);
527 else
528 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
529 }
530 else
531 {
532 new_lwp->stop_expected = 1;
533
534 if (stopping_threads != NOT_STOPPING_THREADS)
535 {
536 new_lwp->stop_pc = get_stop_pc (new_lwp);
537 new_lwp->status_pending_p = 1;
538 new_lwp->status_pending = status;
539 }
540 else
541 /* Pass the signal on. This is what GDB does - except
542 shouldn't we really report it instead? */
543 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
544 }
545
546 /* Always resume the current thread. If we are stopping
547 threads, it will have a pending SIGSTOP; we may as well
548 collect it now. */
549 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
550 }
551 }
552
553 /* Return the PC as read from the regcache of LWP, without any
554 adjustment. */
555
556 static CORE_ADDR
557 get_pc (struct lwp_info *lwp)
558 {
559 struct thread_info *saved_inferior;
560 struct regcache *regcache;
561 CORE_ADDR pc;
562
563 if (the_low_target.get_pc == NULL)
564 return 0;
565
566 saved_inferior = current_inferior;
567 current_inferior = get_lwp_thread (lwp);
568
569 regcache = get_thread_regcache (current_inferior, 1);
570 pc = (*the_low_target.get_pc) (regcache);
571
572 if (debug_threads)
573 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
574
575 current_inferior = saved_inferior;
576 return pc;
577 }
578
579 /* This function should only be called if LWP got a SIGTRAP.
580 The SIGTRAP could mean several things.
581
582 On i386, where decr_pc_after_break is non-zero:
583 If we were single-stepping this process using PTRACE_SINGLESTEP,
584 we will get only the one SIGTRAP (even if the instruction we
585 stepped over was a breakpoint). The value of $eip will be the
586 next instruction.
587 If we continue the process using PTRACE_CONT, we will get a
588 SIGTRAP when we hit a breakpoint. The value of $eip will be
589 the instruction after the breakpoint (i.e. needs to be
590 decremented). If we report the SIGTRAP to GDB, we must also
591 report the undecremented PC. If we cancel the SIGTRAP, we
592 must resume at the decremented PC.
593
594 (Presumably, not yet tested) On a non-decr_pc_after_break machine
595 with hardware or kernel single-step:
596 If we single-step over a breakpoint instruction, our PC will
597 point at the following instruction. If we continue and hit a
598 breakpoint instruction, our PC will point at the breakpoint
599 instruction. */
600
601 static CORE_ADDR
602 get_stop_pc (struct lwp_info *lwp)
603 {
604 CORE_ADDR stop_pc;
605
606 if (the_low_target.get_pc == NULL)
607 return 0;
608
609 stop_pc = get_pc (lwp);
610
611 if (WSTOPSIG (lwp->last_status) == SIGTRAP
612 && !lwp->stepping
613 && !lwp->stopped_by_watchpoint
614 && lwp->last_status >> 16 == 0)
615 stop_pc -= the_low_target.decr_pc_after_break;
616
617 if (debug_threads)
618 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
619
620 return stop_pc;
621 }
622
623 static void *
624 add_lwp (ptid_t ptid)
625 {
626 struct lwp_info *lwp;
627
628 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
629 memset (lwp, 0, sizeof (*lwp));
630
631 lwp->head.id = ptid;
632
633 if (the_low_target.new_thread != NULL)
634 lwp->arch_private = the_low_target.new_thread ();
635
636 add_inferior_to_list (&all_lwps, &lwp->head);
637
638 return lwp;
639 }
640
641 /* Start an inferior process and returns its pid.
642 ALLARGS is a vector of program-name and args. */
643
644 static int
645 linux_create_inferior (char *program, char **allargs)
646 {
647 #ifdef HAVE_PERSONALITY
648 int personality_orig = 0, personality_set = 0;
649 #endif
650 struct lwp_info *new_lwp;
651 int pid;
652 ptid_t ptid;
653
654 #ifdef HAVE_PERSONALITY
655 if (disable_randomization)
656 {
657 errno = 0;
658 personality_orig = personality (0xffffffff);
659 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
660 {
661 personality_set = 1;
662 personality (personality_orig | ADDR_NO_RANDOMIZE);
663 }
664 if (errno != 0 || (personality_set
665 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
666 warning ("Error disabling address space randomization: %s",
667 strerror (errno));
668 }
669 #endif
670
671 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
672 pid = vfork ();
673 #else
674 pid = fork ();
675 #endif
676 if (pid < 0)
677 perror_with_name ("fork");
678
679 if (pid == 0)
680 {
681 ptrace (PTRACE_TRACEME, 0, (PTRACE_ARG3_TYPE) 0, (PTRACE_ARG4_TYPE) 0);
682
683 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
684 signal (__SIGRTMIN + 1, SIG_DFL);
685 #endif
686
687 setpgid (0, 0);
688
689 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
690 stdout to stderr so that inferior i/o doesn't corrupt the connection.
691 Also, redirect stdin to /dev/null. */
692 if (remote_connection_is_stdio ())
693 {
694 close (0);
695 open ("/dev/null", O_RDONLY);
696 dup2 (2, 1);
697 if (write (2, "stdin/stdout redirected\n",
698 sizeof ("stdin/stdout redirected\n") - 1) < 0)
699 {
700 /* Errors ignored. */;
701 }
702 }
703
704 execv (program, allargs);
705 if (errno == ENOENT)
706 execvp (program, allargs);
707
708 fprintf (stderr, "Cannot exec %s: %s.\n", program,
709 strerror (errno));
710 fflush (stderr);
711 _exit (0177);
712 }
713
714 #ifdef HAVE_PERSONALITY
715 if (personality_set)
716 {
717 errno = 0;
718 personality (personality_orig);
719 if (errno != 0)
720 warning ("Error restoring address space randomization: %s",
721 strerror (errno));
722 }
723 #endif
724
725 linux_add_process (pid, 0);
726
727 ptid = ptid_build (pid, pid, 0);
728 new_lwp = add_lwp (ptid);
729 add_thread (ptid, new_lwp);
730 new_lwp->must_set_ptrace_flags = 1;
731
732 return pid;
733 }
734
735 /* Attach to an inferior process. */
736
737 static void
738 linux_attach_lwp_1 (unsigned long lwpid, int initial)
739 {
740 ptid_t ptid;
741 struct lwp_info *new_lwp;
742
743 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_ARG3_TYPE) 0, (PTRACE_ARG4_TYPE) 0)
744 != 0)
745 {
746 struct buffer buffer;
747
748 if (!initial)
749 {
750 /* If we fail to attach to an LWP, just warn. */
751 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
752 strerror (errno), errno);
753 fflush (stderr);
754 return;
755 }
756
757 /* If we fail to attach to a process, report an error. */
758 buffer_init (&buffer);
759 linux_ptrace_attach_warnings (lwpid, &buffer);
760 buffer_grow_str0 (&buffer, "");
761 error ("%sCannot attach to lwp %ld: %s (%d)", buffer_finish (&buffer),
762 lwpid, strerror (errno), errno);
763 }
764
765 if (initial)
766 /* If lwp is the tgid, we handle adding existing threads later.
767 Otherwise we just add lwp without bothering about any other
768 threads. */
769 ptid = ptid_build (lwpid, lwpid, 0);
770 else
771 {
772 /* Note that extracting the pid from the current inferior is
773 safe, since we're always called in the context of the same
774 process as this new thread. */
775 int pid = pid_of (get_thread_lwp (current_inferior));
776 ptid = ptid_build (pid, lwpid, 0);
777 }
778
779 new_lwp = (struct lwp_info *) add_lwp (ptid);
780 add_thread (ptid, new_lwp);
781
782 /* We need to wait for SIGSTOP before being able to make the next
783 ptrace call on this LWP. */
784 new_lwp->must_set_ptrace_flags = 1;
785
786 if (linux_proc_pid_is_stopped (lwpid))
787 {
788 if (debug_threads)
789 fprintf (stderr,
790 "Attached to a stopped process\n");
791
792 /* The process is definitely stopped. It is in a job control
793 stop, unless the kernel predates the TASK_STOPPED /
794 TASK_TRACED distinction, in which case it might be in a
795 ptrace stop. Make sure it is in a ptrace stop; from there we
796 can kill it, signal it, et cetera.
797
798 First make sure there is a pending SIGSTOP. Since we are
799 already attached, the process can not transition from stopped
800 to running without a PTRACE_CONT; so we know this signal will
801 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
802 probably already in the queue (unless this kernel is old
803 enough to use TASK_STOPPED for ptrace stops); but since
804 SIGSTOP is not an RT signal, it can only be queued once. */
805 kill_lwp (lwpid, SIGSTOP);
806
807 /* Finally, resume the stopped process. This will deliver the
808 SIGSTOP (or a higher priority signal, just like normal
809 PTRACE_ATTACH), which we'll catch later on. */
810 ptrace (PTRACE_CONT, lwpid, (PTRACE_ARG3_TYPE) 0, (PTRACE_ARG4_TYPE) 0);
811 }
812
813 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
814 brings it to a halt.
815
816 There are several cases to consider here:
817
818 1) gdbserver has already attached to the process and is being notified
819 of a new thread that is being created.
820 In this case we should ignore that SIGSTOP and resume the
821 process. This is handled below by setting stop_expected = 1,
822 and the fact that add_thread sets last_resume_kind ==
823 resume_continue.
824
825 2) This is the first thread (the process thread), and we're attaching
826 to it via attach_inferior.
827 In this case we want the process thread to stop.
828 This is handled by having linux_attach set last_resume_kind ==
829 resume_stop after we return.
830
831 If the pid we are attaching to is also the tgid, we attach to and
832 stop all the existing threads. Otherwise, we attach to pid and
833 ignore any other threads in the same group as this pid.
834
835 3) GDB is connecting to gdbserver and is requesting an enumeration of all
836 existing threads.
837 In this case we want the thread to stop.
838 FIXME: This case is currently not properly handled.
839 We should wait for the SIGSTOP but don't. Things work apparently
840 because enough time passes between when we ptrace (ATTACH) and when
841 gdb makes the next ptrace call on the thread.
842
843 On the other hand, if we are currently trying to stop all threads, we
844 should treat the new thread as if we had sent it a SIGSTOP. This works
845 because we are guaranteed that the add_lwp call above added us to the
846 end of the list, and so the new thread has not yet reached
847 wait_for_sigstop (but will). */
848 new_lwp->stop_expected = 1;
849 }
850
851 void
852 linux_attach_lwp (unsigned long lwpid)
853 {
854 linux_attach_lwp_1 (lwpid, 0);
855 }
856
857 /* Attach to PID. If PID is the tgid, attach to it and all
858 of its threads. */
859
860 static int
861 linux_attach (unsigned long pid)
862 {
863 /* Attach to PID. We will check for other threads
864 soon. */
865 linux_attach_lwp_1 (pid, 1);
866 linux_add_process (pid, 1);
867
868 if (!non_stop)
869 {
870 struct thread_info *thread;
871
872 /* Don't ignore the initial SIGSTOP if we just attached to this
873 process. It will be collected by wait shortly. */
874 thread = find_thread_ptid (ptid_build (pid, pid, 0));
875 thread->last_resume_kind = resume_stop;
876 }
877
878 if (linux_proc_get_tgid (pid) == pid)
879 {
880 DIR *dir;
881 char pathname[128];
882
883 sprintf (pathname, "/proc/%ld/task", pid);
884
885 dir = opendir (pathname);
886
887 if (!dir)
888 {
889 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
890 fflush (stderr);
891 }
892 else
893 {
894 /* At this point we attached to the tgid. Scan the task for
895 existing threads. */
896 unsigned long lwp;
897 int new_threads_found;
898 int iterations = 0;
899 struct dirent *dp;
900
901 while (iterations < 2)
902 {
903 new_threads_found = 0;
904 /* Add all the other threads. While we go through the
905 threads, new threads may be spawned. Cycle through
906 the list of threads until we have done two iterations without
907 finding new threads. */
908 while ((dp = readdir (dir)) != NULL)
909 {
910 /* Fetch one lwp. */
911 lwp = strtoul (dp->d_name, NULL, 10);
912
913 /* Is this a new thread? */
914 if (lwp
915 && find_thread_ptid (ptid_build (pid, lwp, 0)) == NULL)
916 {
917 linux_attach_lwp_1 (lwp, 0);
918 new_threads_found++;
919
920 if (debug_threads)
921 fprintf (stderr, "\
922 Found and attached to new lwp %ld\n", lwp);
923 }
924 }
925
926 if (!new_threads_found)
927 iterations++;
928 else
929 iterations = 0;
930
931 rewinddir (dir);
932 }
933 closedir (dir);
934 }
935 }
936
937 return 0;
938 }
939
940 struct counter
941 {
942 int pid;
943 int count;
944 };
945
946 static int
947 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
948 {
949 struct counter *counter = args;
950
951 if (ptid_get_pid (entry->id) == counter->pid)
952 {
953 if (++counter->count > 1)
954 return 1;
955 }
956
957 return 0;
958 }
959
960 static int
961 last_thread_of_process_p (struct thread_info *thread)
962 {
963 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
964 int pid = ptid_get_pid (ptid);
965 struct counter counter = { pid , 0 };
966
967 return (find_inferior (&all_threads,
968 second_thread_of_pid_p, &counter) == NULL);
969 }
970
971 /* Kill LWP. */
972
973 static void
974 linux_kill_one_lwp (struct lwp_info *lwp)
975 {
976 int pid = lwpid_of (lwp);
977
978 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
979 there is no signal context, and ptrace(PTRACE_KILL) (or
980 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
981 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
982 alternative is to kill with SIGKILL. We only need one SIGKILL
983 per process, not one for each thread. But since we still support
984 linuxthreads, and we also support debugging programs using raw
985 clone without CLONE_THREAD, we send one for each thread. For
986 years, we used PTRACE_KILL only, so we're being a bit paranoid
987 about some old kernels where PTRACE_KILL might work better
988 (dubious if there are any such, but that's why it's paranoia), so
989 we try SIGKILL first, PTRACE_KILL second, and so we're fine
990 everywhere. */
991
992 errno = 0;
993 kill (pid, SIGKILL);
994 if (debug_threads)
995 fprintf (stderr,
996 "LKL: kill (SIGKILL) %s, 0, 0 (%s)\n",
997 target_pid_to_str (ptid_of (lwp)),
998 errno ? strerror (errno) : "OK");
999
1000 errno = 0;
1001 ptrace (PTRACE_KILL, pid, (PTRACE_ARG3_TYPE) 0, (PTRACE_ARG4_TYPE) 0);
1002 if (debug_threads)
1003 fprintf (stderr,
1004 "LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1005 target_pid_to_str (ptid_of (lwp)),
1006 errno ? strerror (errno) : "OK");
1007 }
1008
1009 /* Callback for `find_inferior'. Kills an lwp of a given process,
1010 except the leader. */
1011
1012 static int
1013 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
1014 {
1015 struct thread_info *thread = (struct thread_info *) entry;
1016 struct lwp_info *lwp = get_thread_lwp (thread);
1017 int wstat;
1018 int pid = * (int *) args;
1019
1020 if (ptid_get_pid (entry->id) != pid)
1021 return 0;
1022
1023 /* We avoid killing the first thread here, because of a Linux kernel (at
1024 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1025 the children get a chance to be reaped, it will remain a zombie
1026 forever. */
1027
1028 if (lwpid_of (lwp) == pid)
1029 {
1030 if (debug_threads)
1031 fprintf (stderr, "lkop: is last of process %s\n",
1032 target_pid_to_str (entry->id));
1033 return 0;
1034 }
1035
1036 do
1037 {
1038 linux_kill_one_lwp (lwp);
1039
1040 /* Make sure it died. The loop is most likely unnecessary. */
1041 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
1042 } while (pid > 0 && WIFSTOPPED (wstat));
1043
1044 return 0;
1045 }
1046
1047 static int
1048 linux_kill (int pid)
1049 {
1050 struct process_info *process;
1051 struct lwp_info *lwp;
1052 int wstat;
1053 int lwpid;
1054
1055 process = find_process_pid (pid);
1056 if (process == NULL)
1057 return -1;
1058
1059 /* If we're killing a running inferior, make sure it is stopped
1060 first, as PTRACE_KILL will not work otherwise. */
1061 stop_all_lwps (0, NULL);
1062
1063 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1064
1065 /* See the comment in linux_kill_one_lwp. We did not kill the first
1066 thread in the list, so do so now. */
1067 lwp = find_lwp_pid (pid_to_ptid (pid));
1068
1069 if (lwp == NULL)
1070 {
1071 if (debug_threads)
1072 fprintf (stderr, "lk_1: cannot find lwp %ld, for pid: %d\n",
1073 lwpid_of (lwp), pid);
1074 }
1075 else
1076 {
1077 if (debug_threads)
1078 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
1079 lwpid_of (lwp), pid);
1080
1081 do
1082 {
1083 linux_kill_one_lwp (lwp);
1084
1085 /* Make sure it died. The loop is most likely unnecessary. */
1086 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
1087 } while (lwpid > 0 && WIFSTOPPED (wstat));
1088 }
1089
1090 the_target->mourn (process);
1091
1092 /* Since we presently can only stop all lwps of all processes, we
1093 need to unstop lwps of other processes. */
1094 unstop_all_lwps (0, NULL);
1095 return 0;
1096 }
1097
1098 /* Get pending signal of THREAD, for detaching purposes. This is the
1099 signal the thread last stopped for, which we need to deliver to the
1100 thread when detaching, otherwise, it'd be suppressed/lost. */
1101
1102 static int
1103 get_detach_signal (struct thread_info *thread)
1104 {
1105 enum gdb_signal signo = GDB_SIGNAL_0;
1106 int status;
1107 struct lwp_info *lp = get_thread_lwp (thread);
1108
1109 if (lp->status_pending_p)
1110 status = lp->status_pending;
1111 else
1112 {
1113 /* If the thread had been suspended by gdbserver, and it stopped
1114 cleanly, then it'll have stopped with SIGSTOP. But we don't
1115 want to deliver that SIGSTOP. */
1116 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1117 || thread->last_status.value.sig == GDB_SIGNAL_0)
1118 return 0;
1119
1120 /* Otherwise, we may need to deliver the signal we
1121 intercepted. */
1122 status = lp->last_status;
1123 }
1124
1125 if (!WIFSTOPPED (status))
1126 {
1127 if (debug_threads)
1128 fprintf (stderr,
1129 "GPS: lwp %s hasn't stopped: no pending signal\n",
1130 target_pid_to_str (ptid_of (lp)));
1131 return 0;
1132 }
1133
1134 /* Extended wait statuses aren't real SIGTRAPs. */
1135 if (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1136 {
1137 if (debug_threads)
1138 fprintf (stderr,
1139 "GPS: lwp %s had stopped with extended "
1140 "status: no pending signal\n",
1141 target_pid_to_str (ptid_of (lp)));
1142 return 0;
1143 }
1144
1145 signo = gdb_signal_from_host (WSTOPSIG (status));
1146
1147 if (program_signals_p && !program_signals[signo])
1148 {
1149 if (debug_threads)
1150 fprintf (stderr,
1151 "GPS: lwp %s had signal %s, but it is in nopass state\n",
1152 target_pid_to_str (ptid_of (lp)),
1153 gdb_signal_to_string (signo));
1154 return 0;
1155 }
1156 else if (!program_signals_p
1157 /* If we have no way to know which signals GDB does not
1158 want to have passed to the program, assume
1159 SIGTRAP/SIGINT, which is GDB's default. */
1160 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1161 {
1162 if (debug_threads)
1163 fprintf (stderr,
1164 "GPS: lwp %s had signal %s, "
1165 "but we don't know if we should pass it. Default to not.\n",
1166 target_pid_to_str (ptid_of (lp)),
1167 gdb_signal_to_string (signo));
1168 return 0;
1169 }
1170 else
1171 {
1172 if (debug_threads)
1173 fprintf (stderr,
1174 "GPS: lwp %s has pending signal %s: delivering it.\n",
1175 target_pid_to_str (ptid_of (lp)),
1176 gdb_signal_to_string (signo));
1177
1178 return WSTOPSIG (status);
1179 }
1180 }
1181
1182 static int
1183 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1184 {
1185 struct thread_info *thread = (struct thread_info *) entry;
1186 struct lwp_info *lwp = get_thread_lwp (thread);
1187 int pid = * (int *) args;
1188 int sig;
1189
1190 if (ptid_get_pid (entry->id) != pid)
1191 return 0;
1192
1193 /* If there is a pending SIGSTOP, get rid of it. */
1194 if (lwp->stop_expected)
1195 {
1196 if (debug_threads)
1197 fprintf (stderr,
1198 "Sending SIGCONT to %s\n",
1199 target_pid_to_str (ptid_of (lwp)));
1200
1201 kill_lwp (lwpid_of (lwp), SIGCONT);
1202 lwp->stop_expected = 0;
1203 }
1204
1205 /* Flush any pending changes to the process's registers. */
1206 regcache_invalidate_one ((struct inferior_list_entry *)
1207 get_lwp_thread (lwp));
1208
1209 /* Pass on any pending signal for this thread. */
1210 sig = get_detach_signal (thread);
1211
1212 /* Finally, let it resume. */
1213 if (the_low_target.prepare_to_resume != NULL)
1214 the_low_target.prepare_to_resume (lwp);
1215 if (ptrace (PTRACE_DETACH, lwpid_of (lwp), (PTRACE_ARG3_TYPE) 0,
1216 (PTRACE_ARG4_TYPE) (long) sig) < 0)
1217 error (_("Can't detach %s: %s"),
1218 target_pid_to_str (ptid_of (lwp)),
1219 strerror (errno));
1220
1221 delete_lwp (lwp);
1222 return 0;
1223 }
1224
1225 static int
1226 linux_detach (int pid)
1227 {
1228 struct process_info *process;
1229
1230 process = find_process_pid (pid);
1231 if (process == NULL)
1232 return -1;
1233
1234 /* Stop all threads before detaching. First, ptrace requires that
1235 the thread is stopped to sucessfully detach. Second, thread_db
1236 may need to uninstall thread event breakpoints from memory, which
1237 only works with a stopped process anyway. */
1238 stop_all_lwps (0, NULL);
1239
1240 #ifdef USE_THREAD_DB
1241 thread_db_detach (process);
1242 #endif
1243
1244 /* Stabilize threads (move out of jump pads). */
1245 stabilize_threads ();
1246
1247 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1248
1249 the_target->mourn (process);
1250
1251 /* Since we presently can only stop all lwps of all processes, we
1252 need to unstop lwps of other processes. */
1253 unstop_all_lwps (0, NULL);
1254 return 0;
1255 }
1256
1257 /* Remove all LWPs that belong to process PROC from the lwp list. */
1258
1259 static int
1260 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1261 {
1262 struct lwp_info *lwp = (struct lwp_info *) entry;
1263 struct process_info *process = proc;
1264
1265 if (pid_of (lwp) == pid_of (process))
1266 delete_lwp (lwp);
1267
1268 return 0;
1269 }
1270
1271 static void
1272 linux_mourn (struct process_info *process)
1273 {
1274 struct process_info_private *priv;
1275
1276 #ifdef USE_THREAD_DB
1277 thread_db_mourn (process);
1278 #endif
1279
1280 find_inferior (&all_lwps, delete_lwp_callback, process);
1281
1282 /* Freeing all private data. */
1283 priv = process->private;
1284 free (priv->arch_private);
1285 free (priv);
1286 process->private = NULL;
1287
1288 remove_process (process);
1289 }
1290
1291 static void
1292 linux_join (int pid)
1293 {
1294 int status, ret;
1295
1296 do {
1297 ret = my_waitpid (pid, &status, 0);
1298 if (WIFEXITED (status) || WIFSIGNALED (status))
1299 break;
1300 } while (ret != -1 || errno != ECHILD);
1301 }
1302
1303 /* Return nonzero if the given thread is still alive. */
1304 static int
1305 linux_thread_alive (ptid_t ptid)
1306 {
1307 struct lwp_info *lwp = find_lwp_pid (ptid);
1308
1309 /* We assume we always know if a thread exits. If a whole process
1310 exited but we still haven't been able to report it to GDB, we'll
1311 hold on to the last lwp of the dead process. */
1312 if (lwp != NULL)
1313 return !lwp->dead;
1314 else
1315 return 0;
1316 }
1317
1318 /* Return 1 if this lwp has an interesting status pending. */
1319 static int
1320 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1321 {
1322 struct lwp_info *lwp = (struct lwp_info *) entry;
1323 ptid_t ptid = * (ptid_t *) arg;
1324 struct thread_info *thread;
1325
1326 /* Check if we're only interested in events from a specific process
1327 or its lwps. */
1328 if (!ptid_equal (minus_one_ptid, ptid)
1329 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
1330 return 0;
1331
1332 thread = get_lwp_thread (lwp);
1333
1334 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1335 report any status pending the LWP may have. */
1336 if (thread->last_resume_kind == resume_stop
1337 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1338 return 0;
1339
1340 return lwp->status_pending_p;
1341 }
1342
1343 static int
1344 same_lwp (struct inferior_list_entry *entry, void *data)
1345 {
1346 ptid_t ptid = *(ptid_t *) data;
1347 int lwp;
1348
1349 if (ptid_get_lwp (ptid) != 0)
1350 lwp = ptid_get_lwp (ptid);
1351 else
1352 lwp = ptid_get_pid (ptid);
1353
1354 if (ptid_get_lwp (entry->id) == lwp)
1355 return 1;
1356
1357 return 0;
1358 }
1359
1360 struct lwp_info *
1361 find_lwp_pid (ptid_t ptid)
1362 {
1363 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
1364 }
1365
1366 static struct lwp_info *
1367 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
1368 {
1369 int ret;
1370 int to_wait_for = -1;
1371 struct lwp_info *child = NULL;
1372
1373 if (debug_threads)
1374 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
1375
1376 if (ptid_equal (ptid, minus_one_ptid))
1377 to_wait_for = -1; /* any child */
1378 else
1379 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1380
1381 options |= __WALL;
1382
1383 retry:
1384
1385 ret = my_waitpid (to_wait_for, wstatp, options);
1386 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1387 return NULL;
1388 else if (ret == -1)
1389 perror_with_name ("waitpid");
1390
1391 if (debug_threads
1392 && (!WIFSTOPPED (*wstatp)
1393 || (WSTOPSIG (*wstatp) != 32
1394 && WSTOPSIG (*wstatp) != 33)))
1395 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1396
1397 child = find_lwp_pid (pid_to_ptid (ret));
1398
1399 /* If we didn't find a process, one of two things presumably happened:
1400 - A process we started and then detached from has exited. Ignore it.
1401 - A process we are controlling has forked and the new child's stop
1402 was reported to us by the kernel. Save its PID. */
1403 if (child == NULL && WIFSTOPPED (*wstatp))
1404 {
1405 add_to_pid_list (&stopped_pids, ret, *wstatp);
1406 goto retry;
1407 }
1408 else if (child == NULL)
1409 goto retry;
1410
1411 child->stopped = 1;
1412
1413 child->last_status = *wstatp;
1414
1415 /* Architecture-specific setup after inferior is running.
1416 This needs to happen after we have attached to the inferior
1417 and it is stopped for the first time, but before we access
1418 any inferior registers. */
1419 if (new_inferior)
1420 {
1421 the_low_target.arch_setup ();
1422 #ifdef HAVE_LINUX_REGSETS
1423 memset (disabled_regsets, 0, num_regsets);
1424 #endif
1425 new_inferior = 0;
1426 }
1427
1428 /* Fetch the possibly triggered data watchpoint info and store it in
1429 CHILD.
1430
1431 On some archs, like x86, that use debug registers to set
1432 watchpoints, it's possible that the way to know which watched
1433 address trapped, is to check the register that is used to select
1434 which address to watch. Problem is, between setting the
1435 watchpoint and reading back which data address trapped, the user
1436 may change the set of watchpoints, and, as a consequence, GDB
1437 changes the debug registers in the inferior. To avoid reading
1438 back a stale stopped-data-address when that happens, we cache in
1439 LP the fact that a watchpoint trapped, and the corresponding data
1440 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1441 changes the debug registers meanwhile, we have the cached data we
1442 can rely on. */
1443
1444 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1445 {
1446 if (the_low_target.stopped_by_watchpoint == NULL)
1447 {
1448 child->stopped_by_watchpoint = 0;
1449 }
1450 else
1451 {
1452 struct thread_info *saved_inferior;
1453
1454 saved_inferior = current_inferior;
1455 current_inferior = get_lwp_thread (child);
1456
1457 child->stopped_by_watchpoint
1458 = the_low_target.stopped_by_watchpoint ();
1459
1460 if (child->stopped_by_watchpoint)
1461 {
1462 if (the_low_target.stopped_data_address != NULL)
1463 child->stopped_data_address
1464 = the_low_target.stopped_data_address ();
1465 else
1466 child->stopped_data_address = 0;
1467 }
1468
1469 current_inferior = saved_inferior;
1470 }
1471 }
1472
1473 /* Store the STOP_PC, with adjustment applied. This depends on the
1474 architecture being defined already (so that CHILD has a valid
1475 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1476 not). */
1477 if (WIFSTOPPED (*wstatp))
1478 child->stop_pc = get_stop_pc (child);
1479
1480 if (debug_threads
1481 && WIFSTOPPED (*wstatp)
1482 && the_low_target.get_pc != NULL)
1483 {
1484 struct thread_info *saved_inferior = current_inferior;
1485 struct regcache *regcache;
1486 CORE_ADDR pc;
1487
1488 current_inferior = get_lwp_thread (child);
1489 regcache = get_thread_regcache (current_inferior, 1);
1490 pc = (*the_low_target.get_pc) (regcache);
1491 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1492 current_inferior = saved_inferior;
1493 }
1494
1495 return child;
1496 }
1497
1498 /* This function should only be called if the LWP got a SIGTRAP.
1499
1500 Handle any tracepoint steps or hits. Return true if a tracepoint
1501 event was handled, 0 otherwise. */
1502
1503 static int
1504 handle_tracepoints (struct lwp_info *lwp)
1505 {
1506 struct thread_info *tinfo = get_lwp_thread (lwp);
1507 int tpoint_related_event = 0;
1508
1509 /* If this tracepoint hit causes a tracing stop, we'll immediately
1510 uninsert tracepoints. To do this, we temporarily pause all
1511 threads, unpatch away, and then unpause threads. We need to make
1512 sure the unpausing doesn't resume LWP too. */
1513 lwp->suspended++;
1514
1515 /* And we need to be sure that any all-threads-stopping doesn't try
1516 to move threads out of the jump pads, as it could deadlock the
1517 inferior (LWP could be in the jump pad, maybe even holding the
1518 lock.) */
1519
1520 /* Do any necessary step collect actions. */
1521 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1522
1523 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1524
1525 /* See if we just hit a tracepoint and do its main collect
1526 actions. */
1527 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1528
1529 lwp->suspended--;
1530
1531 gdb_assert (lwp->suspended == 0);
1532 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1533
1534 if (tpoint_related_event)
1535 {
1536 if (debug_threads)
1537 fprintf (stderr, "got a tracepoint event\n");
1538 return 1;
1539 }
1540
1541 return 0;
1542 }
1543
1544 /* Convenience wrapper. Returns true if LWP is presently collecting a
1545 fast tracepoint. */
1546
1547 static int
1548 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1549 struct fast_tpoint_collect_status *status)
1550 {
1551 CORE_ADDR thread_area;
1552
1553 if (the_low_target.get_thread_area == NULL)
1554 return 0;
1555
1556 /* Get the thread area address. This is used to recognize which
1557 thread is which when tracing with the in-process agent library.
1558 We don't read anything from the address, and treat it as opaque;
1559 it's the address itself that we assume is unique per-thread. */
1560 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1561 return 0;
1562
1563 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1564 }
1565
1566 /* The reason we resume in the caller, is because we want to be able
1567 to pass lwp->status_pending as WSTAT, and we need to clear
1568 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1569 refuses to resume. */
1570
1571 static int
1572 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1573 {
1574 struct thread_info *saved_inferior;
1575
1576 saved_inferior = current_inferior;
1577 current_inferior = get_lwp_thread (lwp);
1578
1579 if ((wstat == NULL
1580 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1581 && supports_fast_tracepoints ()
1582 && agent_loaded_p ())
1583 {
1584 struct fast_tpoint_collect_status status;
1585 int r;
1586
1587 if (debug_threads)
1588 fprintf (stderr, "\
1589 Checking whether LWP %ld needs to move out of the jump pad.\n",
1590 lwpid_of (lwp));
1591
1592 r = linux_fast_tracepoint_collecting (lwp, &status);
1593
1594 if (wstat == NULL
1595 || (WSTOPSIG (*wstat) != SIGILL
1596 && WSTOPSIG (*wstat) != SIGFPE
1597 && WSTOPSIG (*wstat) != SIGSEGV
1598 && WSTOPSIG (*wstat) != SIGBUS))
1599 {
1600 lwp->collecting_fast_tracepoint = r;
1601
1602 if (r != 0)
1603 {
1604 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1605 {
1606 /* Haven't executed the original instruction yet.
1607 Set breakpoint there, and wait till it's hit,
1608 then single-step until exiting the jump pad. */
1609 lwp->exit_jump_pad_bkpt
1610 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1611 }
1612
1613 if (debug_threads)
1614 fprintf (stderr, "\
1615 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1616 lwpid_of (lwp));
1617 current_inferior = saved_inferior;
1618
1619 return 1;
1620 }
1621 }
1622 else
1623 {
1624 /* If we get a synchronous signal while collecting, *and*
1625 while executing the (relocated) original instruction,
1626 reset the PC to point at the tpoint address, before
1627 reporting to GDB. Otherwise, it's an IPA lib bug: just
1628 report the signal to GDB, and pray for the best. */
1629
1630 lwp->collecting_fast_tracepoint = 0;
1631
1632 if (r != 0
1633 && (status.adjusted_insn_addr <= lwp->stop_pc
1634 && lwp->stop_pc < status.adjusted_insn_addr_end))
1635 {
1636 siginfo_t info;
1637 struct regcache *regcache;
1638
1639 /* The si_addr on a few signals references the address
1640 of the faulting instruction. Adjust that as
1641 well. */
1642 if ((WSTOPSIG (*wstat) == SIGILL
1643 || WSTOPSIG (*wstat) == SIGFPE
1644 || WSTOPSIG (*wstat) == SIGBUS
1645 || WSTOPSIG (*wstat) == SIGSEGV)
1646 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp),
1647 (PTRACE_ARG3_TYPE) 0, &info) == 0
1648 /* Final check just to make sure we don't clobber
1649 the siginfo of non-kernel-sent signals. */
1650 && (uintptr_t) info.si_addr == lwp->stop_pc)
1651 {
1652 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1653 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp),
1654 (PTRACE_ARG3_TYPE) 0, &info);
1655 }
1656
1657 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1658 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1659 lwp->stop_pc = status.tpoint_addr;
1660
1661 /* Cancel any fast tracepoint lock this thread was
1662 holding. */
1663 force_unlock_trace_buffer ();
1664 }
1665
1666 if (lwp->exit_jump_pad_bkpt != NULL)
1667 {
1668 if (debug_threads)
1669 fprintf (stderr,
1670 "Cancelling fast exit-jump-pad: removing bkpt. "
1671 "stopping all threads momentarily.\n");
1672
1673 stop_all_lwps (1, lwp);
1674 cancel_breakpoints ();
1675
1676 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1677 lwp->exit_jump_pad_bkpt = NULL;
1678
1679 unstop_all_lwps (1, lwp);
1680
1681 gdb_assert (lwp->suspended >= 0);
1682 }
1683 }
1684 }
1685
1686 if (debug_threads)
1687 fprintf (stderr, "\
1688 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1689 lwpid_of (lwp));
1690
1691 current_inferior = saved_inferior;
1692 return 0;
1693 }
1694
1695 /* Enqueue one signal in the "signals to report later when out of the
1696 jump pad" list. */
1697
1698 static void
1699 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1700 {
1701 struct pending_signals *p_sig;
1702
1703 if (debug_threads)
1704 fprintf (stderr, "\
1705 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1706
1707 if (debug_threads)
1708 {
1709 struct pending_signals *sig;
1710
1711 for (sig = lwp->pending_signals_to_report;
1712 sig != NULL;
1713 sig = sig->prev)
1714 fprintf (stderr,
1715 " Already queued %d\n",
1716 sig->signal);
1717
1718 fprintf (stderr, " (no more currently queued signals)\n");
1719 }
1720
1721 /* Don't enqueue non-RT signals if they are already in the deferred
1722 queue. (SIGSTOP being the easiest signal to see ending up here
1723 twice) */
1724 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1725 {
1726 struct pending_signals *sig;
1727
1728 for (sig = lwp->pending_signals_to_report;
1729 sig != NULL;
1730 sig = sig->prev)
1731 {
1732 if (sig->signal == WSTOPSIG (*wstat))
1733 {
1734 if (debug_threads)
1735 fprintf (stderr,
1736 "Not requeuing already queued non-RT signal %d"
1737 " for LWP %ld\n",
1738 sig->signal,
1739 lwpid_of (lwp));
1740 return;
1741 }
1742 }
1743 }
1744
1745 p_sig = xmalloc (sizeof (*p_sig));
1746 p_sig->prev = lwp->pending_signals_to_report;
1747 p_sig->signal = WSTOPSIG (*wstat);
1748 memset (&p_sig->info, 0, sizeof (siginfo_t));
1749 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), (PTRACE_ARG3_TYPE) 0,
1750 &p_sig->info);
1751
1752 lwp->pending_signals_to_report = p_sig;
1753 }
1754
1755 /* Dequeue one signal from the "signals to report later when out of
1756 the jump pad" list. */
1757
1758 static int
1759 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1760 {
1761 if (lwp->pending_signals_to_report != NULL)
1762 {
1763 struct pending_signals **p_sig;
1764
1765 p_sig = &lwp->pending_signals_to_report;
1766 while ((*p_sig)->prev != NULL)
1767 p_sig = &(*p_sig)->prev;
1768
1769 *wstat = W_STOPCODE ((*p_sig)->signal);
1770 if ((*p_sig)->info.si_signo != 0)
1771 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), (PTRACE_ARG3_TYPE) 0,
1772 &(*p_sig)->info);
1773 free (*p_sig);
1774 *p_sig = NULL;
1775
1776 if (debug_threads)
1777 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1778 WSTOPSIG (*wstat), lwpid_of (lwp));
1779
1780 if (debug_threads)
1781 {
1782 struct pending_signals *sig;
1783
1784 for (sig = lwp->pending_signals_to_report;
1785 sig != NULL;
1786 sig = sig->prev)
1787 fprintf (stderr,
1788 " Still queued %d\n",
1789 sig->signal);
1790
1791 fprintf (stderr, " (no more queued signals)\n");
1792 }
1793
1794 return 1;
1795 }
1796
1797 return 0;
1798 }
1799
1800 /* Arrange for a breakpoint to be hit again later. We don't keep the
1801 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1802 will handle the current event, eventually we will resume this LWP,
1803 and this breakpoint will trap again. */
1804
1805 static int
1806 cancel_breakpoint (struct lwp_info *lwp)
1807 {
1808 struct thread_info *saved_inferior;
1809
1810 /* There's nothing to do if we don't support breakpoints. */
1811 if (!supports_breakpoints ())
1812 return 0;
1813
1814 /* breakpoint_at reads from current inferior. */
1815 saved_inferior = current_inferior;
1816 current_inferior = get_lwp_thread (lwp);
1817
1818 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1819 {
1820 if (debug_threads)
1821 fprintf (stderr,
1822 "CB: Push back breakpoint for %s\n",
1823 target_pid_to_str (ptid_of (lwp)));
1824
1825 /* Back up the PC if necessary. */
1826 if (the_low_target.decr_pc_after_break)
1827 {
1828 struct regcache *regcache
1829 = get_thread_regcache (current_inferior, 1);
1830 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1831 }
1832
1833 current_inferior = saved_inferior;
1834 return 1;
1835 }
1836 else
1837 {
1838 if (debug_threads)
1839 fprintf (stderr,
1840 "CB: No breakpoint found at %s for [%s]\n",
1841 paddress (lwp->stop_pc),
1842 target_pid_to_str (ptid_of (lwp)));
1843 }
1844
1845 current_inferior = saved_inferior;
1846 return 0;
1847 }
1848
1849 /* When the event-loop is doing a step-over, this points at the thread
1850 being stepped. */
1851 ptid_t step_over_bkpt;
1852
1853 /* Wait for an event from child PID. If PID is -1, wait for any
1854 child. Store the stop status through the status pointer WSTAT.
1855 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1856 event was found and OPTIONS contains WNOHANG. Return the PID of
1857 the stopped child otherwise. */
1858
1859 static int
1860 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1861 {
1862 struct lwp_info *event_child, *requested_child;
1863 ptid_t wait_ptid;
1864
1865 event_child = NULL;
1866 requested_child = NULL;
1867
1868 /* Check for a lwp with a pending status. */
1869
1870 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
1871 {
1872 event_child = (struct lwp_info *)
1873 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1874 if (debug_threads && event_child)
1875 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1876 }
1877 else
1878 {
1879 requested_child = find_lwp_pid (ptid);
1880
1881 if (stopping_threads == NOT_STOPPING_THREADS
1882 && requested_child->status_pending_p
1883 && requested_child->collecting_fast_tracepoint)
1884 {
1885 enqueue_one_deferred_signal (requested_child,
1886 &requested_child->status_pending);
1887 requested_child->status_pending_p = 0;
1888 requested_child->status_pending = 0;
1889 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1890 }
1891
1892 if (requested_child->suspended
1893 && requested_child->status_pending_p)
1894 fatal ("requesting an event out of a suspended child?");
1895
1896 if (requested_child->status_pending_p)
1897 event_child = requested_child;
1898 }
1899
1900 if (event_child != NULL)
1901 {
1902 if (debug_threads)
1903 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1904 lwpid_of (event_child), event_child->status_pending);
1905 *wstat = event_child->status_pending;
1906 event_child->status_pending_p = 0;
1907 event_child->status_pending = 0;
1908 current_inferior = get_lwp_thread (event_child);
1909 return lwpid_of (event_child);
1910 }
1911
1912 if (ptid_is_pid (ptid))
1913 {
1914 /* A request to wait for a specific tgid. This is not possible
1915 with waitpid, so instead, we wait for any child, and leave
1916 children we're not interested in right now with a pending
1917 status to report later. */
1918 wait_ptid = minus_one_ptid;
1919 }
1920 else
1921 wait_ptid = ptid;
1922
1923 /* We only enter this loop if no process has a pending wait status. Thus
1924 any action taken in response to a wait status inside this loop is
1925 responding as soon as we detect the status, not after any pending
1926 events. */
1927 while (1)
1928 {
1929 event_child = linux_wait_for_lwp (wait_ptid, wstat, options);
1930
1931 if ((options & WNOHANG) && event_child == NULL)
1932 {
1933 if (debug_threads)
1934 fprintf (stderr, "WNOHANG set, no event found\n");
1935 return 0;
1936 }
1937
1938 if (event_child == NULL)
1939 error ("event from unknown child");
1940
1941 if (ptid_is_pid (ptid)
1942 && ptid_get_pid (ptid) != ptid_get_pid (ptid_of (event_child)))
1943 {
1944 if (! WIFSTOPPED (*wstat))
1945 mark_lwp_dead (event_child, *wstat);
1946 else
1947 {
1948 event_child->status_pending_p = 1;
1949 event_child->status_pending = *wstat;
1950 }
1951 continue;
1952 }
1953
1954 current_inferior = get_lwp_thread (event_child);
1955
1956 /* Check for thread exit. */
1957 if (! WIFSTOPPED (*wstat))
1958 {
1959 if (debug_threads)
1960 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1961
1962 /* If the last thread is exiting, just return. */
1963 if (last_thread_of_process_p (current_inferior))
1964 {
1965 if (debug_threads)
1966 fprintf (stderr, "LWP %ld is last lwp of process\n",
1967 lwpid_of (event_child));
1968 return lwpid_of (event_child);
1969 }
1970
1971 if (!non_stop)
1972 {
1973 current_inferior = (struct thread_info *) all_threads.head;
1974 if (debug_threads)
1975 fprintf (stderr, "Current inferior is now %ld\n",
1976 lwpid_of (get_thread_lwp (current_inferior)));
1977 }
1978 else
1979 {
1980 current_inferior = NULL;
1981 if (debug_threads)
1982 fprintf (stderr, "Current inferior is now <NULL>\n");
1983 }
1984
1985 /* If we were waiting for this particular child to do something...
1986 well, it did something. */
1987 if (requested_child != NULL)
1988 {
1989 int lwpid = lwpid_of (event_child);
1990
1991 /* Cancel the step-over operation --- the thread that
1992 started it is gone. */
1993 if (finish_step_over (event_child))
1994 unstop_all_lwps (1, event_child);
1995 delete_lwp (event_child);
1996 return lwpid;
1997 }
1998
1999 delete_lwp (event_child);
2000
2001 /* Wait for a more interesting event. */
2002 continue;
2003 }
2004
2005 if (event_child->must_set_ptrace_flags)
2006 {
2007 linux_enable_event_reporting (lwpid_of (event_child));
2008 event_child->must_set_ptrace_flags = 0;
2009 }
2010
2011 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
2012 && *wstat >> 16 != 0)
2013 {
2014 handle_extended_wait (event_child, *wstat);
2015 continue;
2016 }
2017
2018 if (WIFSTOPPED (*wstat)
2019 && WSTOPSIG (*wstat) == SIGSTOP
2020 && event_child->stop_expected)
2021 {
2022 int should_stop;
2023
2024 if (debug_threads)
2025 fprintf (stderr, "Expected stop.\n");
2026 event_child->stop_expected = 0;
2027
2028 should_stop = (current_inferior->last_resume_kind == resume_stop
2029 || stopping_threads != NOT_STOPPING_THREADS);
2030
2031 if (!should_stop)
2032 {
2033 linux_resume_one_lwp (event_child,
2034 event_child->stepping, 0, NULL);
2035 continue;
2036 }
2037 }
2038
2039 return lwpid_of (event_child);
2040 }
2041
2042 /* NOTREACHED */
2043 return 0;
2044 }
2045
2046 /* Count the LWP's that have had events. */
2047
2048 static int
2049 count_events_callback (struct inferior_list_entry *entry, void *data)
2050 {
2051 struct lwp_info *lp = (struct lwp_info *) entry;
2052 struct thread_info *thread = get_lwp_thread (lp);
2053 int *count = data;
2054
2055 gdb_assert (count != NULL);
2056
2057 /* Count only resumed LWPs that have a SIGTRAP event pending that
2058 should be reported to GDB. */
2059 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2060 && thread->last_resume_kind != resume_stop
2061 && lp->status_pending_p
2062 && WIFSTOPPED (lp->status_pending)
2063 && WSTOPSIG (lp->status_pending) == SIGTRAP
2064 && !breakpoint_inserted_here (lp->stop_pc))
2065 (*count)++;
2066
2067 return 0;
2068 }
2069
2070 /* Select the LWP (if any) that is currently being single-stepped. */
2071
2072 static int
2073 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2074 {
2075 struct lwp_info *lp = (struct lwp_info *) entry;
2076 struct thread_info *thread = get_lwp_thread (lp);
2077
2078 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2079 && thread->last_resume_kind == resume_step
2080 && lp->status_pending_p)
2081 return 1;
2082 else
2083 return 0;
2084 }
2085
2086 /* Select the Nth LWP that has had a SIGTRAP event that should be
2087 reported to GDB. */
2088
2089 static int
2090 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2091 {
2092 struct lwp_info *lp = (struct lwp_info *) entry;
2093 struct thread_info *thread = get_lwp_thread (lp);
2094 int *selector = data;
2095
2096 gdb_assert (selector != NULL);
2097
2098 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2099 if (thread->last_resume_kind != resume_stop
2100 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2101 && lp->status_pending_p
2102 && WIFSTOPPED (lp->status_pending)
2103 && WSTOPSIG (lp->status_pending) == SIGTRAP
2104 && !breakpoint_inserted_here (lp->stop_pc))
2105 if ((*selector)-- == 0)
2106 return 1;
2107
2108 return 0;
2109 }
2110
2111 static int
2112 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2113 {
2114 struct lwp_info *lp = (struct lwp_info *) entry;
2115 struct thread_info *thread = get_lwp_thread (lp);
2116 struct lwp_info *event_lp = data;
2117
2118 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2119 if (lp == event_lp)
2120 return 0;
2121
2122 /* If a LWP other than the LWP that we're reporting an event for has
2123 hit a GDB breakpoint (as opposed to some random trap signal),
2124 then just arrange for it to hit it again later. We don't keep
2125 the SIGTRAP status and don't forward the SIGTRAP signal to the
2126 LWP. We will handle the current event, eventually we will resume
2127 all LWPs, and this one will get its breakpoint trap again.
2128
2129 If we do not do this, then we run the risk that the user will
2130 delete or disable the breakpoint, but the LWP will have already
2131 tripped on it. */
2132
2133 if (thread->last_resume_kind != resume_stop
2134 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2135 && lp->status_pending_p
2136 && WIFSTOPPED (lp->status_pending)
2137 && WSTOPSIG (lp->status_pending) == SIGTRAP
2138 && !lp->stepping
2139 && !lp->stopped_by_watchpoint
2140 && cancel_breakpoint (lp))
2141 /* Throw away the SIGTRAP. */
2142 lp->status_pending_p = 0;
2143
2144 return 0;
2145 }
2146
2147 static void
2148 linux_cancel_breakpoints (void)
2149 {
2150 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
2151 }
2152
2153 /* Select one LWP out of those that have events pending. */
2154
2155 static void
2156 select_event_lwp (struct lwp_info **orig_lp)
2157 {
2158 int num_events = 0;
2159 int random_selector;
2160 struct lwp_info *event_lp;
2161
2162 /* Give preference to any LWP that is being single-stepped. */
2163 event_lp
2164 = (struct lwp_info *) find_inferior (&all_lwps,
2165 select_singlestep_lwp_callback, NULL);
2166 if (event_lp != NULL)
2167 {
2168 if (debug_threads)
2169 fprintf (stderr,
2170 "SEL: Select single-step %s\n",
2171 target_pid_to_str (ptid_of (event_lp)));
2172 }
2173 else
2174 {
2175 /* No single-stepping LWP. Select one at random, out of those
2176 which have had SIGTRAP events. */
2177
2178 /* First see how many SIGTRAP events we have. */
2179 find_inferior (&all_lwps, count_events_callback, &num_events);
2180
2181 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2182 random_selector = (int)
2183 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2184
2185 if (debug_threads && num_events > 1)
2186 fprintf (stderr,
2187 "SEL: Found %d SIGTRAP events, selecting #%d\n",
2188 num_events, random_selector);
2189
2190 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
2191 select_event_lwp_callback,
2192 &random_selector);
2193 }
2194
2195 if (event_lp != NULL)
2196 {
2197 /* Switch the event LWP. */
2198 *orig_lp = event_lp;
2199 }
2200 }
2201
2202 /* Decrement the suspend count of an LWP. */
2203
2204 static int
2205 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2206 {
2207 struct lwp_info *lwp = (struct lwp_info *) entry;
2208
2209 /* Ignore EXCEPT. */
2210 if (lwp == except)
2211 return 0;
2212
2213 lwp->suspended--;
2214
2215 gdb_assert (lwp->suspended >= 0);
2216 return 0;
2217 }
2218
2219 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2220 NULL. */
2221
2222 static void
2223 unsuspend_all_lwps (struct lwp_info *except)
2224 {
2225 find_inferior (&all_lwps, unsuspend_one_lwp, except);
2226 }
2227
2228 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2229 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2230 void *data);
2231 static int lwp_running (struct inferior_list_entry *entry, void *data);
2232 static ptid_t linux_wait_1 (ptid_t ptid,
2233 struct target_waitstatus *ourstatus,
2234 int target_options);
2235
2236 /* Stabilize threads (move out of jump pads).
2237
2238 If a thread is midway collecting a fast tracepoint, we need to
2239 finish the collection and move it out of the jump pad before
2240 reporting the signal.
2241
2242 This avoids recursion while collecting (when a signal arrives
2243 midway, and the signal handler itself collects), which would trash
2244 the trace buffer. In case the user set a breakpoint in a signal
2245 handler, this avoids the backtrace showing the jump pad, etc..
2246 Most importantly, there are certain things we can't do safely if
2247 threads are stopped in a jump pad (or in its callee's). For
2248 example:
2249
2250 - starting a new trace run. A thread still collecting the
2251 previous run, could trash the trace buffer when resumed. The trace
2252 buffer control structures would have been reset but the thread had
2253 no way to tell. The thread could even midway memcpy'ing to the
2254 buffer, which would mean that when resumed, it would clobber the
2255 trace buffer that had been set for a new run.
2256
2257 - we can't rewrite/reuse the jump pads for new tracepoints
2258 safely. Say you do tstart while a thread is stopped midway while
2259 collecting. When the thread is later resumed, it finishes the
2260 collection, and returns to the jump pad, to execute the original
2261 instruction that was under the tracepoint jump at the time the
2262 older run had been started. If the jump pad had been rewritten
2263 since for something else in the new run, the thread would now
2264 execute the wrong / random instructions. */
2265
2266 static void
2267 linux_stabilize_threads (void)
2268 {
2269 struct thread_info *save_inferior;
2270 struct lwp_info *lwp_stuck;
2271
2272 lwp_stuck
2273 = (struct lwp_info *) find_inferior (&all_lwps,
2274 stuck_in_jump_pad_callback, NULL);
2275 if (lwp_stuck != NULL)
2276 {
2277 if (debug_threads)
2278 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
2279 lwpid_of (lwp_stuck));
2280 return;
2281 }
2282
2283 save_inferior = current_inferior;
2284
2285 stabilizing_threads = 1;
2286
2287 /* Kick 'em all. */
2288 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
2289
2290 /* Loop until all are stopped out of the jump pads. */
2291 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
2292 {
2293 struct target_waitstatus ourstatus;
2294 struct lwp_info *lwp;
2295 int wstat;
2296
2297 /* Note that we go through the full wait even loop. While
2298 moving threads out of jump pad, we need to be able to step
2299 over internal breakpoints and such. */
2300 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2301
2302 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2303 {
2304 lwp = get_thread_lwp (current_inferior);
2305
2306 /* Lock it. */
2307 lwp->suspended++;
2308
2309 if (ourstatus.value.sig != GDB_SIGNAL_0
2310 || current_inferior->last_resume_kind == resume_stop)
2311 {
2312 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2313 enqueue_one_deferred_signal (lwp, &wstat);
2314 }
2315 }
2316 }
2317
2318 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
2319
2320 stabilizing_threads = 0;
2321
2322 current_inferior = save_inferior;
2323
2324 if (debug_threads)
2325 {
2326 lwp_stuck
2327 = (struct lwp_info *) find_inferior (&all_lwps,
2328 stuck_in_jump_pad_callback, NULL);
2329 if (lwp_stuck != NULL)
2330 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
2331 lwpid_of (lwp_stuck));
2332 }
2333 }
2334
2335 /* Wait for process, returns status. */
2336
2337 static ptid_t
2338 linux_wait_1 (ptid_t ptid,
2339 struct target_waitstatus *ourstatus, int target_options)
2340 {
2341 int w;
2342 struct lwp_info *event_child;
2343 int options;
2344 int pid;
2345 int step_over_finished;
2346 int bp_explains_trap;
2347 int maybe_internal_trap;
2348 int report_to_gdb;
2349 int trace_event;
2350 int in_step_range;
2351
2352 /* Translate generic target options into linux options. */
2353 options = __WALL;
2354 if (target_options & TARGET_WNOHANG)
2355 options |= WNOHANG;
2356
2357 retry:
2358 bp_explains_trap = 0;
2359 trace_event = 0;
2360 in_step_range = 0;
2361 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2362
2363 /* If we were only supposed to resume one thread, only wait for
2364 that thread - if it's still alive. If it died, however - which
2365 can happen if we're coming from the thread death case below -
2366 then we need to make sure we restart the other threads. We could
2367 pick a thread at random or restart all; restarting all is less
2368 arbitrary. */
2369 if (!non_stop
2370 && !ptid_equal (cont_thread, null_ptid)
2371 && !ptid_equal (cont_thread, minus_one_ptid))
2372 {
2373 struct thread_info *thread;
2374
2375 thread = (struct thread_info *) find_inferior_id (&all_threads,
2376 cont_thread);
2377
2378 /* No stepping, no signal - unless one is pending already, of course. */
2379 if (thread == NULL)
2380 {
2381 struct thread_resume resume_info;
2382 resume_info.thread = minus_one_ptid;
2383 resume_info.kind = resume_continue;
2384 resume_info.sig = 0;
2385 linux_resume (&resume_info, 1);
2386 }
2387 else
2388 ptid = cont_thread;
2389 }
2390
2391 if (ptid_equal (step_over_bkpt, null_ptid))
2392 pid = linux_wait_for_event (ptid, &w, options);
2393 else
2394 {
2395 if (debug_threads)
2396 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2397 target_pid_to_str (step_over_bkpt));
2398 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2399 }
2400
2401 if (pid == 0) /* only if TARGET_WNOHANG */
2402 return null_ptid;
2403
2404 event_child = get_thread_lwp (current_inferior);
2405
2406 /* If we are waiting for a particular child, and it exited,
2407 linux_wait_for_event will return its exit status. Similarly if
2408 the last child exited. If this is not the last child, however,
2409 do not report it as exited until there is a 'thread exited' response
2410 available in the remote protocol. Instead, just wait for another event.
2411 This should be safe, because if the thread crashed we will already
2412 have reported the termination signal to GDB; that should stop any
2413 in-progress stepping operations, etc.
2414
2415 Report the exit status of the last thread to exit. This matches
2416 LinuxThreads' behavior. */
2417
2418 if (last_thread_of_process_p (current_inferior))
2419 {
2420 if (WIFEXITED (w) || WIFSIGNALED (w))
2421 {
2422 if (WIFEXITED (w))
2423 {
2424 ourstatus->kind = TARGET_WAITKIND_EXITED;
2425 ourstatus->value.integer = WEXITSTATUS (w);
2426
2427 if (debug_threads)
2428 fprintf (stderr,
2429 "\nChild exited with retcode = %x \n",
2430 WEXITSTATUS (w));
2431 }
2432 else
2433 {
2434 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2435 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2436
2437 if (debug_threads)
2438 fprintf (stderr,
2439 "\nChild terminated with signal = %x \n",
2440 WTERMSIG (w));
2441
2442 }
2443
2444 return ptid_of (event_child);
2445 }
2446 }
2447 else
2448 {
2449 if (!WIFSTOPPED (w))
2450 goto retry;
2451 }
2452
2453 /* If this event was not handled before, and is not a SIGTRAP, we
2454 report it. SIGILL and SIGSEGV are also treated as traps in case
2455 a breakpoint is inserted at the current PC. If this target does
2456 not support internal breakpoints at all, we also report the
2457 SIGTRAP without further processing; it's of no concern to us. */
2458 maybe_internal_trap
2459 = (supports_breakpoints ()
2460 && (WSTOPSIG (w) == SIGTRAP
2461 || ((WSTOPSIG (w) == SIGILL
2462 || WSTOPSIG (w) == SIGSEGV)
2463 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2464
2465 if (maybe_internal_trap)
2466 {
2467 /* Handle anything that requires bookkeeping before deciding to
2468 report the event or continue waiting. */
2469
2470 /* First check if we can explain the SIGTRAP with an internal
2471 breakpoint, or if we should possibly report the event to GDB.
2472 Do this before anything that may remove or insert a
2473 breakpoint. */
2474 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2475
2476 /* We have a SIGTRAP, possibly a step-over dance has just
2477 finished. If so, tweak the state machine accordingly,
2478 reinsert breakpoints and delete any reinsert (software
2479 single-step) breakpoints. */
2480 step_over_finished = finish_step_over (event_child);
2481
2482 /* Now invoke the callbacks of any internal breakpoints there. */
2483 check_breakpoints (event_child->stop_pc);
2484
2485 /* Handle tracepoint data collecting. This may overflow the
2486 trace buffer, and cause a tracing stop, removing
2487 breakpoints. */
2488 trace_event = handle_tracepoints (event_child);
2489
2490 if (bp_explains_trap)
2491 {
2492 /* If we stepped or ran into an internal breakpoint, we've
2493 already handled it. So next time we resume (from this
2494 PC), we should step over it. */
2495 if (debug_threads)
2496 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2497
2498 if (breakpoint_here (event_child->stop_pc))
2499 event_child->need_step_over = 1;
2500 }
2501 }
2502 else
2503 {
2504 /* We have some other signal, possibly a step-over dance was in
2505 progress, and it should be cancelled too. */
2506 step_over_finished = finish_step_over (event_child);
2507 }
2508
2509 /* We have all the data we need. Either report the event to GDB, or
2510 resume threads and keep waiting for more. */
2511
2512 /* If we're collecting a fast tracepoint, finish the collection and
2513 move out of the jump pad before delivering a signal. See
2514 linux_stabilize_threads. */
2515
2516 if (WIFSTOPPED (w)
2517 && WSTOPSIG (w) != SIGTRAP
2518 && supports_fast_tracepoints ()
2519 && agent_loaded_p ())
2520 {
2521 if (debug_threads)
2522 fprintf (stderr,
2523 "Got signal %d for LWP %ld. Check if we need "
2524 "to defer or adjust it.\n",
2525 WSTOPSIG (w), lwpid_of (event_child));
2526
2527 /* Allow debugging the jump pad itself. */
2528 if (current_inferior->last_resume_kind != resume_step
2529 && maybe_move_out_of_jump_pad (event_child, &w))
2530 {
2531 enqueue_one_deferred_signal (event_child, &w);
2532
2533 if (debug_threads)
2534 fprintf (stderr,
2535 "Signal %d for LWP %ld deferred (in jump pad)\n",
2536 WSTOPSIG (w), lwpid_of (event_child));
2537
2538 linux_resume_one_lwp (event_child, 0, 0, NULL);
2539 goto retry;
2540 }
2541 }
2542
2543 if (event_child->collecting_fast_tracepoint)
2544 {
2545 if (debug_threads)
2546 fprintf (stderr, "\
2547 LWP %ld was trying to move out of the jump pad (%d). \
2548 Check if we're already there.\n",
2549 lwpid_of (event_child),
2550 event_child->collecting_fast_tracepoint);
2551
2552 trace_event = 1;
2553
2554 event_child->collecting_fast_tracepoint
2555 = linux_fast_tracepoint_collecting (event_child, NULL);
2556
2557 if (event_child->collecting_fast_tracepoint != 1)
2558 {
2559 /* No longer need this breakpoint. */
2560 if (event_child->exit_jump_pad_bkpt != NULL)
2561 {
2562 if (debug_threads)
2563 fprintf (stderr,
2564 "No longer need exit-jump-pad bkpt; removing it."
2565 "stopping all threads momentarily.\n");
2566
2567 /* Other running threads could hit this breakpoint.
2568 We don't handle moribund locations like GDB does,
2569 instead we always pause all threads when removing
2570 breakpoints, so that any step-over or
2571 decr_pc_after_break adjustment is always taken
2572 care of while the breakpoint is still
2573 inserted. */
2574 stop_all_lwps (1, event_child);
2575 cancel_breakpoints ();
2576
2577 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2578 event_child->exit_jump_pad_bkpt = NULL;
2579
2580 unstop_all_lwps (1, event_child);
2581
2582 gdb_assert (event_child->suspended >= 0);
2583 }
2584 }
2585
2586 if (event_child->collecting_fast_tracepoint == 0)
2587 {
2588 if (debug_threads)
2589 fprintf (stderr,
2590 "fast tracepoint finished "
2591 "collecting successfully.\n");
2592
2593 /* We may have a deferred signal to report. */
2594 if (dequeue_one_deferred_signal (event_child, &w))
2595 {
2596 if (debug_threads)
2597 fprintf (stderr, "dequeued one signal.\n");
2598 }
2599 else
2600 {
2601 if (debug_threads)
2602 fprintf (stderr, "no deferred signals.\n");
2603
2604 if (stabilizing_threads)
2605 {
2606 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2607 ourstatus->value.sig = GDB_SIGNAL_0;
2608 return ptid_of (event_child);
2609 }
2610 }
2611 }
2612 }
2613
2614 /* Check whether GDB would be interested in this event. */
2615
2616 /* If GDB is not interested in this signal, don't stop other
2617 threads, and don't report it to GDB. Just resume the inferior
2618 right away. We do this for threading-related signals as well as
2619 any that GDB specifically requested we ignore. But never ignore
2620 SIGSTOP if we sent it ourselves, and do not ignore signals when
2621 stepping - they may require special handling to skip the signal
2622 handler. */
2623 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2624 thread library? */
2625 if (WIFSTOPPED (w)
2626 && current_inferior->last_resume_kind != resume_step
2627 && (
2628 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2629 (current_process ()->private->thread_db != NULL
2630 && (WSTOPSIG (w) == __SIGRTMIN
2631 || WSTOPSIG (w) == __SIGRTMIN + 1))
2632 ||
2633 #endif
2634 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2635 && !(WSTOPSIG (w) == SIGSTOP
2636 && current_inferior->last_resume_kind == resume_stop))))
2637 {
2638 siginfo_t info, *info_p;
2639
2640 if (debug_threads)
2641 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2642 WSTOPSIG (w), lwpid_of (event_child));
2643
2644 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child),
2645 (PTRACE_ARG3_TYPE) 0, &info) == 0)
2646 info_p = &info;
2647 else
2648 info_p = NULL;
2649 linux_resume_one_lwp (event_child, event_child->stepping,
2650 WSTOPSIG (w), info_p);
2651 goto retry;
2652 }
2653
2654 /* Note that all addresses are always "out of the step range" when
2655 there's no range to begin with. */
2656 in_step_range = lwp_in_step_range (event_child);
2657
2658 /* If GDB wanted this thread to single step, and the thread is out
2659 of the step range, we always want to report the SIGTRAP, and let
2660 GDB handle it. Watchpoints should always be reported. So should
2661 signals we can't explain. A SIGTRAP we can't explain could be a
2662 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2663 do, we're be able to handle GDB breakpoints on top of internal
2664 breakpoints, by handling the internal breakpoint and still
2665 reporting the event to GDB. If we don't, we're out of luck, GDB
2666 won't see the breakpoint hit. */
2667 report_to_gdb = (!maybe_internal_trap
2668 || (current_inferior->last_resume_kind == resume_step
2669 && !in_step_range)
2670 || event_child->stopped_by_watchpoint
2671 || (!step_over_finished && !in_step_range
2672 && !bp_explains_trap && !trace_event)
2673 || (gdb_breakpoint_here (event_child->stop_pc)
2674 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2675 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2676
2677 run_breakpoint_commands (event_child->stop_pc);
2678
2679 /* We found no reason GDB would want us to stop. We either hit one
2680 of our own breakpoints, or finished an internal step GDB
2681 shouldn't know about. */
2682 if (!report_to_gdb)
2683 {
2684 if (debug_threads)
2685 {
2686 if (bp_explains_trap)
2687 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2688 if (step_over_finished)
2689 fprintf (stderr, "Step-over finished.\n");
2690 if (trace_event)
2691 fprintf (stderr, "Tracepoint event.\n");
2692 if (lwp_in_step_range (event_child))
2693 fprintf (stderr, "Range stepping pc 0x%s [0x%s, 0x%s).\n",
2694 paddress (event_child->stop_pc),
2695 paddress (event_child->step_range_start),
2696 paddress (event_child->step_range_end));
2697 }
2698
2699 /* We're not reporting this breakpoint to GDB, so apply the
2700 decr_pc_after_break adjustment to the inferior's regcache
2701 ourselves. */
2702
2703 if (the_low_target.set_pc != NULL)
2704 {
2705 struct regcache *regcache
2706 = get_thread_regcache (get_lwp_thread (event_child), 1);
2707 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2708 }
2709
2710 /* We may have finished stepping over a breakpoint. If so,
2711 we've stopped and suspended all LWPs momentarily except the
2712 stepping one. This is where we resume them all again. We're
2713 going to keep waiting, so use proceed, which handles stepping
2714 over the next breakpoint. */
2715 if (debug_threads)
2716 fprintf (stderr, "proceeding all threads.\n");
2717
2718 if (step_over_finished)
2719 unsuspend_all_lwps (event_child);
2720
2721 proceed_all_lwps ();
2722 goto retry;
2723 }
2724
2725 if (debug_threads)
2726 {
2727 if (current_inferior->last_resume_kind == resume_step)
2728 {
2729 if (event_child->step_range_start == event_child->step_range_end)
2730 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2731 else if (!lwp_in_step_range (event_child))
2732 fprintf (stderr, "Out of step range, reporting event.\n");
2733 }
2734 if (event_child->stopped_by_watchpoint)
2735 fprintf (stderr, "Stopped by watchpoint.\n");
2736 if (gdb_breakpoint_here (event_child->stop_pc))
2737 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2738 if (debug_threads)
2739 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2740 }
2741
2742 /* Alright, we're going to report a stop. */
2743
2744 if (!non_stop && !stabilizing_threads)
2745 {
2746 /* In all-stop, stop all threads. */
2747 stop_all_lwps (0, NULL);
2748
2749 /* If we're not waiting for a specific LWP, choose an event LWP
2750 from among those that have had events. Giving equal priority
2751 to all LWPs that have had events helps prevent
2752 starvation. */
2753 if (ptid_equal (ptid, minus_one_ptid))
2754 {
2755 event_child->status_pending_p = 1;
2756 event_child->status_pending = w;
2757
2758 select_event_lwp (&event_child);
2759
2760 event_child->status_pending_p = 0;
2761 w = event_child->status_pending;
2762 }
2763
2764 /* Now that we've selected our final event LWP, cancel any
2765 breakpoints in other LWPs that have hit a GDB breakpoint.
2766 See the comment in cancel_breakpoints_callback to find out
2767 why. */
2768 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2769
2770 /* If we were going a step-over, all other threads but the stepping one
2771 had been paused in start_step_over, with their suspend counts
2772 incremented. We don't want to do a full unstop/unpause, because we're
2773 in all-stop mode (so we want threads stopped), but we still need to
2774 unsuspend the other threads, to decrement their `suspended' count
2775 back. */
2776 if (step_over_finished)
2777 unsuspend_all_lwps (event_child);
2778
2779 /* Stabilize threads (move out of jump pads). */
2780 stabilize_threads ();
2781 }
2782 else
2783 {
2784 /* If we just finished a step-over, then all threads had been
2785 momentarily paused. In all-stop, that's fine, we want
2786 threads stopped by now anyway. In non-stop, we need to
2787 re-resume threads that GDB wanted to be running. */
2788 if (step_over_finished)
2789 unstop_all_lwps (1, event_child);
2790 }
2791
2792 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2793
2794 if (current_inferior->last_resume_kind == resume_stop
2795 && WSTOPSIG (w) == SIGSTOP)
2796 {
2797 /* A thread that has been requested to stop by GDB with vCont;t,
2798 and it stopped cleanly, so report as SIG0. The use of
2799 SIGSTOP is an implementation detail. */
2800 ourstatus->value.sig = GDB_SIGNAL_0;
2801 }
2802 else if (current_inferior->last_resume_kind == resume_stop
2803 && WSTOPSIG (w) != SIGSTOP)
2804 {
2805 /* A thread that has been requested to stop by GDB with vCont;t,
2806 but, it stopped for other reasons. */
2807 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2808 }
2809 else
2810 {
2811 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2812 }
2813
2814 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2815
2816 if (debug_threads)
2817 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2818 target_pid_to_str (ptid_of (event_child)),
2819 ourstatus->kind,
2820 ourstatus->value.sig);
2821
2822 return ptid_of (event_child);
2823 }
2824
2825 /* Get rid of any pending event in the pipe. */
2826 static void
2827 async_file_flush (void)
2828 {
2829 int ret;
2830 char buf;
2831
2832 do
2833 ret = read (linux_event_pipe[0], &buf, 1);
2834 while (ret >= 0 || (ret == -1 && errno == EINTR));
2835 }
2836
2837 /* Put something in the pipe, so the event loop wakes up. */
2838 static void
2839 async_file_mark (void)
2840 {
2841 int ret;
2842
2843 async_file_flush ();
2844
2845 do
2846 ret = write (linux_event_pipe[1], "+", 1);
2847 while (ret == 0 || (ret == -1 && errno == EINTR));
2848
2849 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2850 be awakened anyway. */
2851 }
2852
2853 static ptid_t
2854 linux_wait (ptid_t ptid,
2855 struct target_waitstatus *ourstatus, int target_options)
2856 {
2857 ptid_t event_ptid;
2858
2859 if (debug_threads)
2860 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2861
2862 /* Flush the async file first. */
2863 if (target_is_async_p ())
2864 async_file_flush ();
2865
2866 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2867
2868 /* If at least one stop was reported, there may be more. A single
2869 SIGCHLD can signal more than one child stop. */
2870 if (target_is_async_p ()
2871 && (target_options & TARGET_WNOHANG) != 0
2872 && !ptid_equal (event_ptid, null_ptid))
2873 async_file_mark ();
2874
2875 return event_ptid;
2876 }
2877
2878 /* Send a signal to an LWP. */
2879
2880 static int
2881 kill_lwp (unsigned long lwpid, int signo)
2882 {
2883 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2884 fails, then we are not using nptl threads and we should be using kill. */
2885
2886 #ifdef __NR_tkill
2887 {
2888 static int tkill_failed;
2889
2890 if (!tkill_failed)
2891 {
2892 int ret;
2893
2894 errno = 0;
2895 ret = syscall (__NR_tkill, lwpid, signo);
2896 if (errno != ENOSYS)
2897 return ret;
2898 tkill_failed = 1;
2899 }
2900 }
2901 #endif
2902
2903 return kill (lwpid, signo);
2904 }
2905
2906 void
2907 linux_stop_lwp (struct lwp_info *lwp)
2908 {
2909 send_sigstop (lwp);
2910 }
2911
2912 static void
2913 send_sigstop (struct lwp_info *lwp)
2914 {
2915 int pid;
2916
2917 pid = lwpid_of (lwp);
2918
2919 /* If we already have a pending stop signal for this process, don't
2920 send another. */
2921 if (lwp->stop_expected)
2922 {
2923 if (debug_threads)
2924 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2925
2926 return;
2927 }
2928
2929 if (debug_threads)
2930 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2931
2932 lwp->stop_expected = 1;
2933 kill_lwp (pid, SIGSTOP);
2934 }
2935
2936 static int
2937 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2938 {
2939 struct lwp_info *lwp = (struct lwp_info *) entry;
2940
2941 /* Ignore EXCEPT. */
2942 if (lwp == except)
2943 return 0;
2944
2945 if (lwp->stopped)
2946 return 0;
2947
2948 send_sigstop (lwp);
2949 return 0;
2950 }
2951
2952 /* Increment the suspend count of an LWP, and stop it, if not stopped
2953 yet. */
2954 static int
2955 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2956 void *except)
2957 {
2958 struct lwp_info *lwp = (struct lwp_info *) entry;
2959
2960 /* Ignore EXCEPT. */
2961 if (lwp == except)
2962 return 0;
2963
2964 lwp->suspended++;
2965
2966 return send_sigstop_callback (entry, except);
2967 }
2968
2969 static void
2970 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2971 {
2972 /* It's dead, really. */
2973 lwp->dead = 1;
2974
2975 /* Store the exit status for later. */
2976 lwp->status_pending_p = 1;
2977 lwp->status_pending = wstat;
2978
2979 /* Prevent trying to stop it. */
2980 lwp->stopped = 1;
2981
2982 /* No further stops are expected from a dead lwp. */
2983 lwp->stop_expected = 0;
2984 }
2985
2986 static void
2987 wait_for_sigstop (struct inferior_list_entry *entry)
2988 {
2989 struct lwp_info *lwp = (struct lwp_info *) entry;
2990 struct thread_info *saved_inferior;
2991 int wstat;
2992 ptid_t saved_tid;
2993 ptid_t ptid;
2994 int pid;
2995
2996 if (lwp->stopped)
2997 {
2998 if (debug_threads)
2999 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
3000 lwpid_of (lwp));
3001 return;
3002 }
3003
3004 saved_inferior = current_inferior;
3005 if (saved_inferior != NULL)
3006 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
3007 else
3008 saved_tid = null_ptid; /* avoid bogus unused warning */
3009
3010 ptid = lwp->head.id;
3011
3012 if (debug_threads)
3013 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
3014
3015 pid = linux_wait_for_event (ptid, &wstat, __WALL);
3016
3017 /* If we stopped with a non-SIGSTOP signal, save it for later
3018 and record the pending SIGSTOP. If the process exited, just
3019 return. */
3020 if (WIFSTOPPED (wstat))
3021 {
3022 if (debug_threads)
3023 fprintf (stderr, "LWP %ld stopped with signal %d\n",
3024 lwpid_of (lwp), WSTOPSIG (wstat));
3025
3026 if (WSTOPSIG (wstat) != SIGSTOP)
3027 {
3028 if (debug_threads)
3029 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
3030 lwpid_of (lwp), wstat);
3031
3032 lwp->status_pending_p = 1;
3033 lwp->status_pending = wstat;
3034 }
3035 }
3036 else
3037 {
3038 if (debug_threads)
3039 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
3040
3041 lwp = find_lwp_pid (pid_to_ptid (pid));
3042 if (lwp)
3043 {
3044 /* Leave this status pending for the next time we're able to
3045 report it. In the mean time, we'll report this lwp as
3046 dead to GDB, so GDB doesn't try to read registers and
3047 memory from it. This can only happen if this was the
3048 last thread of the process; otherwise, PID is removed
3049 from the thread tables before linux_wait_for_event
3050 returns. */
3051 mark_lwp_dead (lwp, wstat);
3052 }
3053 }
3054
3055 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
3056 current_inferior = saved_inferior;
3057 else
3058 {
3059 if (debug_threads)
3060 fprintf (stderr, "Previously current thread died.\n");
3061
3062 if (non_stop)
3063 {
3064 /* We can't change the current inferior behind GDB's back,
3065 otherwise, a subsequent command may apply to the wrong
3066 process. */
3067 current_inferior = NULL;
3068 }
3069 else
3070 {
3071 /* Set a valid thread as current. */
3072 set_desired_inferior (0);
3073 }
3074 }
3075 }
3076
3077 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3078 move it out, because we need to report the stop event to GDB. For
3079 example, if the user puts a breakpoint in the jump pad, it's
3080 because she wants to debug it. */
3081
3082 static int
3083 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3084 {
3085 struct lwp_info *lwp = (struct lwp_info *) entry;
3086 struct thread_info *thread = get_lwp_thread (lwp);
3087
3088 gdb_assert (lwp->suspended == 0);
3089 gdb_assert (lwp->stopped);
3090
3091 /* Allow debugging the jump pad, gdb_collect, etc.. */
3092 return (supports_fast_tracepoints ()
3093 && agent_loaded_p ()
3094 && (gdb_breakpoint_here (lwp->stop_pc)
3095 || lwp->stopped_by_watchpoint
3096 || thread->last_resume_kind == resume_step)
3097 && linux_fast_tracepoint_collecting (lwp, NULL));
3098 }
3099
3100 static void
3101 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3102 {
3103 struct lwp_info *lwp = (struct lwp_info *) entry;
3104 struct thread_info *thread = get_lwp_thread (lwp);
3105 int *wstat;
3106
3107 gdb_assert (lwp->suspended == 0);
3108 gdb_assert (lwp->stopped);
3109
3110 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3111
3112 /* Allow debugging the jump pad, gdb_collect, etc. */
3113 if (!gdb_breakpoint_here (lwp->stop_pc)
3114 && !lwp->stopped_by_watchpoint
3115 && thread->last_resume_kind != resume_step
3116 && maybe_move_out_of_jump_pad (lwp, wstat))
3117 {
3118 if (debug_threads)
3119 fprintf (stderr,
3120 "LWP %ld needs stabilizing (in jump pad)\n",
3121 lwpid_of (lwp));
3122
3123 if (wstat)
3124 {
3125 lwp->status_pending_p = 0;
3126 enqueue_one_deferred_signal (lwp, wstat);
3127
3128 if (debug_threads)
3129 fprintf (stderr,
3130 "Signal %d for LWP %ld deferred "
3131 "(in jump pad)\n",
3132 WSTOPSIG (*wstat), lwpid_of (lwp));
3133 }
3134
3135 linux_resume_one_lwp (lwp, 0, 0, NULL);
3136 }
3137 else
3138 lwp->suspended++;
3139 }
3140
3141 static int
3142 lwp_running (struct inferior_list_entry *entry, void *data)
3143 {
3144 struct lwp_info *lwp = (struct lwp_info *) entry;
3145
3146 if (lwp->dead)
3147 return 0;
3148 if (lwp->stopped)
3149 return 0;
3150 return 1;
3151 }
3152
3153 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3154 If SUSPEND, then also increase the suspend count of every LWP,
3155 except EXCEPT. */
3156
3157 static void
3158 stop_all_lwps (int suspend, struct lwp_info *except)
3159 {
3160 /* Should not be called recursively. */
3161 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3162
3163 stopping_threads = (suspend
3164 ? STOPPING_AND_SUSPENDING_THREADS
3165 : STOPPING_THREADS);
3166
3167 if (suspend)
3168 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
3169 else
3170 find_inferior (&all_lwps, send_sigstop_callback, except);
3171 for_each_inferior (&all_lwps, wait_for_sigstop);
3172 stopping_threads = NOT_STOPPING_THREADS;
3173 }
3174
3175 /* Resume execution of the inferior process.
3176 If STEP is nonzero, single-step it.
3177 If SIGNAL is nonzero, give it that signal. */
3178
3179 static void
3180 linux_resume_one_lwp (struct lwp_info *lwp,
3181 int step, int signal, siginfo_t *info)
3182 {
3183 struct thread_info *saved_inferior;
3184 int fast_tp_collecting;
3185
3186 if (lwp->stopped == 0)
3187 return;
3188
3189 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3190
3191 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3192
3193 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3194 user used the "jump" command, or "set $pc = foo"). */
3195 if (lwp->stop_pc != get_pc (lwp))
3196 {
3197 /* Collecting 'while-stepping' actions doesn't make sense
3198 anymore. */
3199 release_while_stepping_state_list (get_lwp_thread (lwp));
3200 }
3201
3202 /* If we have pending signals or status, and a new signal, enqueue the
3203 signal. Also enqueue the signal if we are waiting to reinsert a
3204 breakpoint; it will be picked up again below. */
3205 if (signal != 0
3206 && (lwp->status_pending_p
3207 || lwp->pending_signals != NULL
3208 || lwp->bp_reinsert != 0
3209 || fast_tp_collecting))
3210 {
3211 struct pending_signals *p_sig;
3212 p_sig = xmalloc (sizeof (*p_sig));
3213 p_sig->prev = lwp->pending_signals;
3214 p_sig->signal = signal;
3215 if (info == NULL)
3216 memset (&p_sig->info, 0, sizeof (siginfo_t));
3217 else
3218 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3219 lwp->pending_signals = p_sig;
3220 }
3221
3222 if (lwp->status_pending_p)
3223 {
3224 if (debug_threads)
3225 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
3226 " has pending status\n",
3227 lwpid_of (lwp), step ? "step" : "continue", signal,
3228 lwp->stop_expected ? "expected" : "not expected");
3229 return;
3230 }
3231
3232 saved_inferior = current_inferior;
3233 current_inferior = get_lwp_thread (lwp);
3234
3235 if (debug_threads)
3236 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
3237 lwpid_of (lwp), step ? "step" : "continue", signal,
3238 lwp->stop_expected ? "expected" : "not expected");
3239
3240 /* This bit needs some thinking about. If we get a signal that
3241 we must report while a single-step reinsert is still pending,
3242 we often end up resuming the thread. It might be better to
3243 (ew) allow a stack of pending events; then we could be sure that
3244 the reinsert happened right away and not lose any signals.
3245
3246 Making this stack would also shrink the window in which breakpoints are
3247 uninserted (see comment in linux_wait_for_lwp) but not enough for
3248 complete correctness, so it won't solve that problem. It may be
3249 worthwhile just to solve this one, however. */
3250 if (lwp->bp_reinsert != 0)
3251 {
3252 if (debug_threads)
3253 fprintf (stderr, " pending reinsert at 0x%s\n",
3254 paddress (lwp->bp_reinsert));
3255
3256 if (can_hardware_single_step ())
3257 {
3258 if (fast_tp_collecting == 0)
3259 {
3260 if (step == 0)
3261 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3262 if (lwp->suspended)
3263 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3264 lwp->suspended);
3265 }
3266
3267 step = 1;
3268 }
3269
3270 /* Postpone any pending signal. It was enqueued above. */
3271 signal = 0;
3272 }
3273
3274 if (fast_tp_collecting == 1)
3275 {
3276 if (debug_threads)
3277 fprintf (stderr, "\
3278 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
3279 lwpid_of (lwp));
3280
3281 /* Postpone any pending signal. It was enqueued above. */
3282 signal = 0;
3283 }
3284 else if (fast_tp_collecting == 2)
3285 {
3286 if (debug_threads)
3287 fprintf (stderr, "\
3288 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
3289 lwpid_of (lwp));
3290
3291 if (can_hardware_single_step ())
3292 step = 1;
3293 else
3294 fatal ("moving out of jump pad single-stepping"
3295 " not implemented on this target");
3296
3297 /* Postpone any pending signal. It was enqueued above. */
3298 signal = 0;
3299 }
3300
3301 /* If we have while-stepping actions in this thread set it stepping.
3302 If we have a signal to deliver, it may or may not be set to
3303 SIG_IGN, we don't know. Assume so, and allow collecting
3304 while-stepping into a signal handler. A possible smart thing to
3305 do would be to set an internal breakpoint at the signal return
3306 address, continue, and carry on catching this while-stepping
3307 action only when that breakpoint is hit. A future
3308 enhancement. */
3309 if (get_lwp_thread (lwp)->while_stepping != NULL
3310 && can_hardware_single_step ())
3311 {
3312 if (debug_threads)
3313 fprintf (stderr,
3314 "lwp %ld has a while-stepping action -> forcing step.\n",
3315 lwpid_of (lwp));
3316 step = 1;
3317 }
3318
3319 if (debug_threads && the_low_target.get_pc != NULL)
3320 {
3321 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3322 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3323 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
3324 }
3325
3326 /* If we have pending signals, consume one unless we are trying to
3327 reinsert a breakpoint or we're trying to finish a fast tracepoint
3328 collect. */
3329 if (lwp->pending_signals != NULL
3330 && lwp->bp_reinsert == 0
3331 && fast_tp_collecting == 0)
3332 {
3333 struct pending_signals **p_sig;
3334
3335 p_sig = &lwp->pending_signals;
3336 while ((*p_sig)->prev != NULL)
3337 p_sig = &(*p_sig)->prev;
3338
3339 signal = (*p_sig)->signal;
3340 if ((*p_sig)->info.si_signo != 0)
3341 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), (PTRACE_ARG3_TYPE) 0,
3342 &(*p_sig)->info);
3343
3344 free (*p_sig);
3345 *p_sig = NULL;
3346 }
3347
3348 if (the_low_target.prepare_to_resume != NULL)
3349 the_low_target.prepare_to_resume (lwp);
3350
3351 regcache_invalidate_one ((struct inferior_list_entry *)
3352 get_lwp_thread (lwp));
3353 errno = 0;
3354 lwp->stopped = 0;
3355 lwp->stopped_by_watchpoint = 0;
3356 lwp->stepping = step;
3357 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp),
3358 (PTRACE_ARG3_TYPE) 0,
3359 /* Coerce to a uintptr_t first to avoid potential gcc warning
3360 of coercing an 8 byte integer to a 4 byte pointer. */
3361 (PTRACE_ARG4_TYPE) (uintptr_t) signal);
3362
3363 current_inferior = saved_inferior;
3364 if (errno)
3365 {
3366 /* ESRCH from ptrace either means that the thread was already
3367 running (an error) or that it is gone (a race condition). If
3368 it's gone, we will get a notification the next time we wait,
3369 so we can ignore the error. We could differentiate these
3370 two, but it's tricky without waiting; the thread still exists
3371 as a zombie, so sending it signal 0 would succeed. So just
3372 ignore ESRCH. */
3373 if (errno == ESRCH)
3374 return;
3375
3376 perror_with_name ("ptrace");
3377 }
3378 }
3379
3380 struct thread_resume_array
3381 {
3382 struct thread_resume *resume;
3383 size_t n;
3384 };
3385
3386 /* This function is called once per thread. We look up the thread
3387 in RESUME_PTR, and mark the thread with a pointer to the appropriate
3388 resume request.
3389
3390 This algorithm is O(threads * resume elements), but resume elements
3391 is small (and will remain small at least until GDB supports thread
3392 suspension). */
3393 static int
3394 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3395 {
3396 struct lwp_info *lwp;
3397 struct thread_info *thread;
3398 int ndx;
3399 struct thread_resume_array *r;
3400
3401 thread = (struct thread_info *) entry;
3402 lwp = get_thread_lwp (thread);
3403 r = arg;
3404
3405 for (ndx = 0; ndx < r->n; ndx++)
3406 {
3407 ptid_t ptid = r->resume[ndx].thread;
3408 if (ptid_equal (ptid, minus_one_ptid)
3409 || ptid_equal (ptid, entry->id)
3410 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3411 of PID'. */
3412 || (ptid_get_pid (ptid) == pid_of (lwp)
3413 && (ptid_is_pid (ptid)
3414 || ptid_get_lwp (ptid) == -1)))
3415 {
3416 if (r->resume[ndx].kind == resume_stop
3417 && thread->last_resume_kind == resume_stop)
3418 {
3419 if (debug_threads)
3420 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
3421 thread->last_status.kind == TARGET_WAITKIND_STOPPED
3422 ? "stopped"
3423 : "stopping",
3424 lwpid_of (lwp));
3425
3426 continue;
3427 }
3428
3429 lwp->resume = &r->resume[ndx];
3430 thread->last_resume_kind = lwp->resume->kind;
3431
3432 lwp->step_range_start = lwp->resume->step_range_start;
3433 lwp->step_range_end = lwp->resume->step_range_end;
3434
3435 /* If we had a deferred signal to report, dequeue one now.
3436 This can happen if LWP gets more than one signal while
3437 trying to get out of a jump pad. */
3438 if (lwp->stopped
3439 && !lwp->status_pending_p
3440 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3441 {
3442 lwp->status_pending_p = 1;
3443
3444 if (debug_threads)
3445 fprintf (stderr,
3446 "Dequeueing deferred signal %d for LWP %ld, "
3447 "leaving status pending.\n",
3448 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3449 }
3450
3451 return 0;
3452 }
3453 }
3454
3455 /* No resume action for this thread. */
3456 lwp->resume = NULL;
3457
3458 return 0;
3459 }
3460
3461
3462 /* Set *FLAG_P if this lwp has an interesting status pending. */
3463 static int
3464 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3465 {
3466 struct lwp_info *lwp = (struct lwp_info *) entry;
3467
3468 /* LWPs which will not be resumed are not interesting, because
3469 we might not wait for them next time through linux_wait. */
3470 if (lwp->resume == NULL)
3471 return 0;
3472
3473 if (lwp->status_pending_p)
3474 * (int *) flag_p = 1;
3475
3476 return 0;
3477 }
3478
3479 /* Return 1 if this lwp that GDB wants running is stopped at an
3480 internal breakpoint that we need to step over. It assumes that any
3481 required STOP_PC adjustment has already been propagated to the
3482 inferior's regcache. */
3483
3484 static int
3485 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3486 {
3487 struct lwp_info *lwp = (struct lwp_info *) entry;
3488 struct thread_info *thread;
3489 struct thread_info *saved_inferior;
3490 CORE_ADDR pc;
3491
3492 /* LWPs which will not be resumed are not interesting, because we
3493 might not wait for them next time through linux_wait. */
3494
3495 if (!lwp->stopped)
3496 {
3497 if (debug_threads)
3498 fprintf (stderr,
3499 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3500 lwpid_of (lwp));
3501 return 0;
3502 }
3503
3504 thread = get_lwp_thread (lwp);
3505
3506 if (thread->last_resume_kind == resume_stop)
3507 {
3508 if (debug_threads)
3509 fprintf (stderr,
3510 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3511 lwpid_of (lwp));
3512 return 0;
3513 }
3514
3515 gdb_assert (lwp->suspended >= 0);
3516
3517 if (lwp->suspended)
3518 {
3519 if (debug_threads)
3520 fprintf (stderr,
3521 "Need step over [LWP %ld]? Ignoring, suspended\n",
3522 lwpid_of (lwp));
3523 return 0;
3524 }
3525
3526 if (!lwp->need_step_over)
3527 {
3528 if (debug_threads)
3529 fprintf (stderr,
3530 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3531 }
3532
3533 if (lwp->status_pending_p)
3534 {
3535 if (debug_threads)
3536 fprintf (stderr,
3537 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3538 lwpid_of (lwp));
3539 return 0;
3540 }
3541
3542 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3543 or we have. */
3544 pc = get_pc (lwp);
3545
3546 /* If the PC has changed since we stopped, then don't do anything,
3547 and let the breakpoint/tracepoint be hit. This happens if, for
3548 instance, GDB handled the decr_pc_after_break subtraction itself,
3549 GDB is OOL stepping this thread, or the user has issued a "jump"
3550 command, or poked thread's registers herself. */
3551 if (pc != lwp->stop_pc)
3552 {
3553 if (debug_threads)
3554 fprintf (stderr,
3555 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3556 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3557 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3558
3559 lwp->need_step_over = 0;
3560 return 0;
3561 }
3562
3563 saved_inferior = current_inferior;
3564 current_inferior = thread;
3565
3566 /* We can only step over breakpoints we know about. */
3567 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3568 {
3569 /* Don't step over a breakpoint that GDB expects to hit
3570 though. If the condition is being evaluated on the target's side
3571 and it evaluate to false, step over this breakpoint as well. */
3572 if (gdb_breakpoint_here (pc)
3573 && gdb_condition_true_at_breakpoint (pc)
3574 && gdb_no_commands_at_breakpoint (pc))
3575 {
3576 if (debug_threads)
3577 fprintf (stderr,
3578 "Need step over [LWP %ld]? yes, but found"
3579 " GDB breakpoint at 0x%s; skipping step over\n",
3580 lwpid_of (lwp), paddress (pc));
3581
3582 current_inferior = saved_inferior;
3583 return 0;
3584 }
3585 else
3586 {
3587 if (debug_threads)
3588 fprintf (stderr,
3589 "Need step over [LWP %ld]? yes, "
3590 "found breakpoint at 0x%s\n",
3591 lwpid_of (lwp), paddress (pc));
3592
3593 /* We've found an lwp that needs stepping over --- return 1 so
3594 that find_inferior stops looking. */
3595 current_inferior = saved_inferior;
3596
3597 /* If the step over is cancelled, this is set again. */
3598 lwp->need_step_over = 0;
3599 return 1;
3600 }
3601 }
3602
3603 current_inferior = saved_inferior;
3604
3605 if (debug_threads)
3606 fprintf (stderr,
3607 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3608 lwpid_of (lwp), paddress (pc));
3609
3610 return 0;
3611 }
3612
3613 /* Start a step-over operation on LWP. When LWP stopped at a
3614 breakpoint, to make progress, we need to remove the breakpoint out
3615 of the way. If we let other threads run while we do that, they may
3616 pass by the breakpoint location and miss hitting it. To avoid
3617 that, a step-over momentarily stops all threads while LWP is
3618 single-stepped while the breakpoint is temporarily uninserted from
3619 the inferior. When the single-step finishes, we reinsert the
3620 breakpoint, and let all threads that are supposed to be running,
3621 run again.
3622
3623 On targets that don't support hardware single-step, we don't
3624 currently support full software single-stepping. Instead, we only
3625 support stepping over the thread event breakpoint, by asking the
3626 low target where to place a reinsert breakpoint. Since this
3627 routine assumes the breakpoint being stepped over is a thread event
3628 breakpoint, it usually assumes the return address of the current
3629 function is a good enough place to set the reinsert breakpoint. */
3630
3631 static int
3632 start_step_over (struct lwp_info *lwp)
3633 {
3634 struct thread_info *saved_inferior;
3635 CORE_ADDR pc;
3636 int step;
3637
3638 if (debug_threads)
3639 fprintf (stderr,
3640 "Starting step-over on LWP %ld. Stopping all threads\n",
3641 lwpid_of (lwp));
3642
3643 stop_all_lwps (1, lwp);
3644 gdb_assert (lwp->suspended == 0);
3645
3646 if (debug_threads)
3647 fprintf (stderr, "Done stopping all threads for step-over.\n");
3648
3649 /* Note, we should always reach here with an already adjusted PC,
3650 either by GDB (if we're resuming due to GDB's request), or by our
3651 caller, if we just finished handling an internal breakpoint GDB
3652 shouldn't care about. */
3653 pc = get_pc (lwp);
3654
3655 saved_inferior = current_inferior;
3656 current_inferior = get_lwp_thread (lwp);
3657
3658 lwp->bp_reinsert = pc;
3659 uninsert_breakpoints_at (pc);
3660 uninsert_fast_tracepoint_jumps_at (pc);
3661
3662 if (can_hardware_single_step ())
3663 {
3664 step = 1;
3665 }
3666 else
3667 {
3668 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3669 set_reinsert_breakpoint (raddr);
3670 step = 0;
3671 }
3672
3673 current_inferior = saved_inferior;
3674
3675 linux_resume_one_lwp (lwp, step, 0, NULL);
3676
3677 /* Require next event from this LWP. */
3678 step_over_bkpt = lwp->head.id;
3679 return 1;
3680 }
3681
3682 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3683 start_step_over, if still there, and delete any reinsert
3684 breakpoints we've set, on non hardware single-step targets. */
3685
3686 static int
3687 finish_step_over (struct lwp_info *lwp)
3688 {
3689 if (lwp->bp_reinsert != 0)
3690 {
3691 if (debug_threads)
3692 fprintf (stderr, "Finished step over.\n");
3693
3694 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3695 may be no breakpoint to reinsert there by now. */
3696 reinsert_breakpoints_at (lwp->bp_reinsert);
3697 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3698
3699 lwp->bp_reinsert = 0;
3700
3701 /* Delete any software-single-step reinsert breakpoints. No
3702 longer needed. We don't have to worry about other threads
3703 hitting this trap, and later not being able to explain it,
3704 because we were stepping over a breakpoint, and we hold all
3705 threads but LWP stopped while doing that. */
3706 if (!can_hardware_single_step ())
3707 delete_reinsert_breakpoints ();
3708
3709 step_over_bkpt = null_ptid;
3710 return 1;
3711 }
3712 else
3713 return 0;
3714 }
3715
3716 /* This function is called once per thread. We check the thread's resume
3717 request, which will tell us whether to resume, step, or leave the thread
3718 stopped; and what signal, if any, it should be sent.
3719
3720 For threads which we aren't explicitly told otherwise, we preserve
3721 the stepping flag; this is used for stepping over gdbserver-placed
3722 breakpoints.
3723
3724 If pending_flags was set in any thread, we queue any needed
3725 signals, since we won't actually resume. We already have a pending
3726 event to report, so we don't need to preserve any step requests;
3727 they should be re-issued if necessary. */
3728
3729 static int
3730 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3731 {
3732 struct lwp_info *lwp;
3733 struct thread_info *thread;
3734 int step;
3735 int leave_all_stopped = * (int *) arg;
3736 int leave_pending;
3737
3738 thread = (struct thread_info *) entry;
3739 lwp = get_thread_lwp (thread);
3740
3741 if (lwp->resume == NULL)
3742 return 0;
3743
3744 if (lwp->resume->kind == resume_stop)
3745 {
3746 if (debug_threads)
3747 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3748
3749 if (!lwp->stopped)
3750 {
3751 if (debug_threads)
3752 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3753
3754 /* Stop the thread, and wait for the event asynchronously,
3755 through the event loop. */
3756 send_sigstop (lwp);
3757 }
3758 else
3759 {
3760 if (debug_threads)
3761 fprintf (stderr, "already stopped LWP %ld\n",
3762 lwpid_of (lwp));
3763
3764 /* The LWP may have been stopped in an internal event that
3765 was not meant to be notified back to GDB (e.g., gdbserver
3766 breakpoint), so we should be reporting a stop event in
3767 this case too. */
3768
3769 /* If the thread already has a pending SIGSTOP, this is a
3770 no-op. Otherwise, something later will presumably resume
3771 the thread and this will cause it to cancel any pending
3772 operation, due to last_resume_kind == resume_stop. If
3773 the thread already has a pending status to report, we
3774 will still report it the next time we wait - see
3775 status_pending_p_callback. */
3776
3777 /* If we already have a pending signal to report, then
3778 there's no need to queue a SIGSTOP, as this means we're
3779 midway through moving the LWP out of the jumppad, and we
3780 will report the pending signal as soon as that is
3781 finished. */
3782 if (lwp->pending_signals_to_report == NULL)
3783 send_sigstop (lwp);
3784 }
3785
3786 /* For stop requests, we're done. */
3787 lwp->resume = NULL;
3788 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3789 return 0;
3790 }
3791
3792 /* If this thread which is about to be resumed has a pending status,
3793 then don't resume any threads - we can just report the pending
3794 status. Make sure to queue any signals that would otherwise be
3795 sent. In all-stop mode, we do this decision based on if *any*
3796 thread has a pending status. If there's a thread that needs the
3797 step-over-breakpoint dance, then don't resume any other thread
3798 but that particular one. */
3799 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3800
3801 if (!leave_pending)
3802 {
3803 if (debug_threads)
3804 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3805
3806 step = (lwp->resume->kind == resume_step);
3807 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3808 }
3809 else
3810 {
3811 if (debug_threads)
3812 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3813
3814 /* If we have a new signal, enqueue the signal. */
3815 if (lwp->resume->sig != 0)
3816 {
3817 struct pending_signals *p_sig;
3818 p_sig = xmalloc (sizeof (*p_sig));
3819 p_sig->prev = lwp->pending_signals;
3820 p_sig->signal = lwp->resume->sig;
3821 memset (&p_sig->info, 0, sizeof (siginfo_t));
3822
3823 /* If this is the same signal we were previously stopped by,
3824 make sure to queue its siginfo. We can ignore the return
3825 value of ptrace; if it fails, we'll skip
3826 PTRACE_SETSIGINFO. */
3827 if (WIFSTOPPED (lwp->last_status)
3828 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3829 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), (PTRACE_ARG3_TYPE) 0,
3830 &p_sig->info);
3831
3832 lwp->pending_signals = p_sig;
3833 }
3834 }
3835
3836 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3837 lwp->resume = NULL;
3838 return 0;
3839 }
3840
3841 static void
3842 linux_resume (struct thread_resume *resume_info, size_t n)
3843 {
3844 struct thread_resume_array array = { resume_info, n };
3845 struct lwp_info *need_step_over = NULL;
3846 int any_pending;
3847 int leave_all_stopped;
3848
3849 find_inferior (&all_threads, linux_set_resume_request, &array);
3850
3851 /* If there is a thread which would otherwise be resumed, which has
3852 a pending status, then don't resume any threads - we can just
3853 report the pending status. Make sure to queue any signals that
3854 would otherwise be sent. In non-stop mode, we'll apply this
3855 logic to each thread individually. We consume all pending events
3856 before considering to start a step-over (in all-stop). */
3857 any_pending = 0;
3858 if (!non_stop)
3859 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3860
3861 /* If there is a thread which would otherwise be resumed, which is
3862 stopped at a breakpoint that needs stepping over, then don't
3863 resume any threads - have it step over the breakpoint with all
3864 other threads stopped, then resume all threads again. Make sure
3865 to queue any signals that would otherwise be delivered or
3866 queued. */
3867 if (!any_pending && supports_breakpoints ())
3868 need_step_over
3869 = (struct lwp_info *) find_inferior (&all_lwps,
3870 need_step_over_p, NULL);
3871
3872 leave_all_stopped = (need_step_over != NULL || any_pending);
3873
3874 if (debug_threads)
3875 {
3876 if (need_step_over != NULL)
3877 fprintf (stderr, "Not resuming all, need step over\n");
3878 else if (any_pending)
3879 fprintf (stderr,
3880 "Not resuming, all-stop and found "
3881 "an LWP with pending status\n");
3882 else
3883 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3884 }
3885
3886 /* Even if we're leaving threads stopped, queue all signals we'd
3887 otherwise deliver. */
3888 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3889
3890 if (need_step_over)
3891 start_step_over (need_step_over);
3892 }
3893
3894 /* This function is called once per thread. We check the thread's
3895 last resume request, which will tell us whether to resume, step, or
3896 leave the thread stopped. Any signal the client requested to be
3897 delivered has already been enqueued at this point.
3898
3899 If any thread that GDB wants running is stopped at an internal
3900 breakpoint that needs stepping over, we start a step-over operation
3901 on that particular thread, and leave all others stopped. */
3902
3903 static int
3904 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3905 {
3906 struct lwp_info *lwp = (struct lwp_info *) entry;
3907 struct thread_info *thread;
3908 int step;
3909
3910 if (lwp == except)
3911 return 0;
3912
3913 if (debug_threads)
3914 fprintf (stderr,
3915 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3916
3917 if (!lwp->stopped)
3918 {
3919 if (debug_threads)
3920 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3921 return 0;
3922 }
3923
3924 thread = get_lwp_thread (lwp);
3925
3926 if (thread->last_resume_kind == resume_stop
3927 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3928 {
3929 if (debug_threads)
3930 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3931 lwpid_of (lwp));
3932 return 0;
3933 }
3934
3935 if (lwp->status_pending_p)
3936 {
3937 if (debug_threads)
3938 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3939 lwpid_of (lwp));
3940 return 0;
3941 }
3942
3943 gdb_assert (lwp->suspended >= 0);
3944
3945 if (lwp->suspended)
3946 {
3947 if (debug_threads)
3948 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3949 return 0;
3950 }
3951
3952 if (thread->last_resume_kind == resume_stop
3953 && lwp->pending_signals_to_report == NULL
3954 && lwp->collecting_fast_tracepoint == 0)
3955 {
3956 /* We haven't reported this LWP as stopped yet (otherwise, the
3957 last_status.kind check above would catch it, and we wouldn't
3958 reach here. This LWP may have been momentarily paused by a
3959 stop_all_lwps call while handling for example, another LWP's
3960 step-over. In that case, the pending expected SIGSTOP signal
3961 that was queued at vCont;t handling time will have already
3962 been consumed by wait_for_sigstop, and so we need to requeue
3963 another one here. Note that if the LWP already has a SIGSTOP
3964 pending, this is a no-op. */
3965
3966 if (debug_threads)
3967 fprintf (stderr,
3968 "Client wants LWP %ld to stop. "
3969 "Making sure it has a SIGSTOP pending\n",
3970 lwpid_of (lwp));
3971
3972 send_sigstop (lwp);
3973 }
3974
3975 step = thread->last_resume_kind == resume_step;
3976 linux_resume_one_lwp (lwp, step, 0, NULL);
3977 return 0;
3978 }
3979
3980 static int
3981 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3982 {
3983 struct lwp_info *lwp = (struct lwp_info *) entry;
3984
3985 if (lwp == except)
3986 return 0;
3987
3988 lwp->suspended--;
3989 gdb_assert (lwp->suspended >= 0);
3990
3991 return proceed_one_lwp (entry, except);
3992 }
3993
3994 /* When we finish a step-over, set threads running again. If there's
3995 another thread that may need a step-over, now's the time to start
3996 it. Eventually, we'll move all threads past their breakpoints. */
3997
3998 static void
3999 proceed_all_lwps (void)
4000 {
4001 struct lwp_info *need_step_over;
4002
4003 /* If there is a thread which would otherwise be resumed, which is
4004 stopped at a breakpoint that needs stepping over, then don't
4005 resume any threads - have it step over the breakpoint with all
4006 other threads stopped, then resume all threads again. */
4007
4008 if (supports_breakpoints ())
4009 {
4010 need_step_over
4011 = (struct lwp_info *) find_inferior (&all_lwps,
4012 need_step_over_p, NULL);
4013
4014 if (need_step_over != NULL)
4015 {
4016 if (debug_threads)
4017 fprintf (stderr, "proceed_all_lwps: found "
4018 "thread %ld needing a step-over\n",
4019 lwpid_of (need_step_over));
4020
4021 start_step_over (need_step_over);
4022 return;
4023 }
4024 }
4025
4026 if (debug_threads)
4027 fprintf (stderr, "Proceeding, no step-over needed\n");
4028
4029 find_inferior (&all_lwps, proceed_one_lwp, NULL);
4030 }
4031
4032 /* Stopped LWPs that the client wanted to be running, that don't have
4033 pending statuses, are set to run again, except for EXCEPT, if not
4034 NULL. This undoes a stop_all_lwps call. */
4035
4036 static void
4037 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4038 {
4039 if (debug_threads)
4040 {
4041 if (except)
4042 fprintf (stderr,
4043 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
4044 else
4045 fprintf (stderr,
4046 "unstopping all lwps\n");
4047 }
4048
4049 if (unsuspend)
4050 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
4051 else
4052 find_inferior (&all_lwps, proceed_one_lwp, except);
4053 }
4054
4055
4056 #ifdef HAVE_LINUX_REGSETS
4057
4058 #define use_linux_regsets 1
4059
4060 static int
4061 regsets_fetch_inferior_registers (struct regcache *regcache)
4062 {
4063 struct regset_info *regset;
4064 int saw_general_regs = 0;
4065 int pid;
4066 struct iovec iov;
4067
4068 regset = target_regsets;
4069
4070 pid = lwpid_of (get_thread_lwp (current_inferior));
4071 while (regset->size >= 0)
4072 {
4073 void *buf, *data;
4074 int nt_type, res;
4075
4076 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
4077 {
4078 regset ++;
4079 continue;
4080 }
4081
4082 buf = xmalloc (regset->size);
4083
4084 nt_type = regset->nt_type;
4085 if (nt_type)
4086 {
4087 iov.iov_base = buf;
4088 iov.iov_len = regset->size;
4089 data = (void *) &iov;
4090 }
4091 else
4092 data = buf;
4093
4094 #ifndef __sparc__
4095 res = ptrace (regset->get_request, pid,
4096 (PTRACE_ARG3_TYPE) (long) nt_type, data);
4097 #else
4098 res = ptrace (regset->get_request, pid, data, nt_type);
4099 #endif
4100 if (res < 0)
4101 {
4102 if (errno == EIO)
4103 {
4104 /* If we get EIO on a regset, do not try it again for
4105 this process. */
4106 disabled_regsets[regset - target_regsets] = 1;
4107 free (buf);
4108 continue;
4109 }
4110 else
4111 {
4112 char s[256];
4113 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4114 pid);
4115 perror (s);
4116 }
4117 }
4118 else if (regset->type == GENERAL_REGS)
4119 saw_general_regs = 1;
4120 regset->store_function (regcache, buf);
4121 regset ++;
4122 free (buf);
4123 }
4124 if (saw_general_regs)
4125 return 0;
4126 else
4127 return 1;
4128 }
4129
4130 static int
4131 regsets_store_inferior_registers (struct regcache *regcache)
4132 {
4133 struct regset_info *regset;
4134 int saw_general_regs = 0;
4135 int pid;
4136 struct iovec iov;
4137
4138 regset = target_regsets;
4139
4140 pid = lwpid_of (get_thread_lwp (current_inferior));
4141 while (regset->size >= 0)
4142 {
4143 void *buf, *data;
4144 int nt_type, res;
4145
4146 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
4147 {
4148 regset ++;
4149 continue;
4150 }
4151
4152 buf = xmalloc (regset->size);
4153
4154 /* First fill the buffer with the current register set contents,
4155 in case there are any items in the kernel's regset that are
4156 not in gdbserver's regcache. */
4157
4158 nt_type = regset->nt_type;
4159 if (nt_type)
4160 {
4161 iov.iov_base = buf;
4162 iov.iov_len = regset->size;
4163 data = (void *) &iov;
4164 }
4165 else
4166 data = buf;
4167
4168 #ifndef __sparc__
4169 res = ptrace (regset->get_request, pid,
4170 (PTRACE_ARG3_TYPE) (long) nt_type, data);
4171 #else
4172 res = ptrace (regset->get_request, pid, data, nt_type);
4173 #endif
4174
4175 if (res == 0)
4176 {
4177 /* Then overlay our cached registers on that. */
4178 regset->fill_function (regcache, buf);
4179
4180 /* Only now do we write the register set. */
4181 #ifndef __sparc__
4182 res = ptrace (regset->set_request, pid,
4183 (PTRACE_ARG3_TYPE) (long) nt_type, data);
4184 #else
4185 res = ptrace (regset->set_request, pid, data, nt_type);
4186 #endif
4187 }
4188
4189 if (res < 0)
4190 {
4191 if (errno == EIO)
4192 {
4193 /* If we get EIO on a regset, do not try it again for
4194 this process. */
4195 disabled_regsets[regset - target_regsets] = 1;
4196 free (buf);
4197 continue;
4198 }
4199 else if (errno == ESRCH)
4200 {
4201 /* At this point, ESRCH should mean the process is
4202 already gone, in which case we simply ignore attempts
4203 to change its registers. See also the related
4204 comment in linux_resume_one_lwp. */
4205 free (buf);
4206 return 0;
4207 }
4208 else
4209 {
4210 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4211 }
4212 }
4213 else if (regset->type == GENERAL_REGS)
4214 saw_general_regs = 1;
4215 regset ++;
4216 free (buf);
4217 }
4218 if (saw_general_regs)
4219 return 0;
4220 else
4221 return 1;
4222 }
4223
4224 #else /* !HAVE_LINUX_REGSETS */
4225
4226 #define use_linux_regsets 0
4227 #define regsets_fetch_inferior_registers(regcache) 1
4228 #define regsets_store_inferior_registers(regcache) 1
4229
4230 #endif
4231
4232 /* Return 1 if register REGNO is supported by one of the regset ptrace
4233 calls or 0 if it has to be transferred individually. */
4234
4235 static int
4236 linux_register_in_regsets (int regno)
4237 {
4238 unsigned char mask = 1 << (regno % 8);
4239 size_t index = regno / 8;
4240
4241 return (use_linux_regsets
4242 && (the_low_target.regset_bitmap == NULL
4243 || (the_low_target.regset_bitmap[index] & mask) != 0));
4244 }
4245
4246 #ifdef HAVE_LINUX_USRREGS
4247
4248 int
4249 register_addr (int regnum)
4250 {
4251 int addr;
4252
4253 if (regnum < 0 || regnum >= the_low_target.num_regs)
4254 error ("Invalid register number %d.", regnum);
4255
4256 addr = the_low_target.regmap[regnum];
4257
4258 return addr;
4259 }
4260
4261 /* Fetch one register. */
4262 static void
4263 fetch_register (struct regcache *regcache, int regno)
4264 {
4265 CORE_ADDR regaddr;
4266 int i, size;
4267 char *buf;
4268 int pid;
4269
4270 if (regno >= the_low_target.num_regs)
4271 return;
4272 if ((*the_low_target.cannot_fetch_register) (regno))
4273 return;
4274
4275 regaddr = register_addr (regno);
4276 if (regaddr == -1)
4277 return;
4278
4279 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
4280 & -sizeof (PTRACE_XFER_TYPE));
4281 buf = alloca (size);
4282
4283 pid = lwpid_of (get_thread_lwp (current_inferior));
4284 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4285 {
4286 errno = 0;
4287 *(PTRACE_XFER_TYPE *) (buf + i) =
4288 ptrace (PTRACE_PEEKUSER, pid,
4289 /* Coerce to a uintptr_t first to avoid potential gcc warning
4290 of coercing an 8 byte integer to a 4 byte pointer. */
4291 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr, (PTRACE_ARG4_TYPE) 0);
4292 regaddr += sizeof (PTRACE_XFER_TYPE);
4293 if (errno != 0)
4294 error ("reading register %d: %s", regno, strerror (errno));
4295 }
4296
4297 if (the_low_target.supply_ptrace_register)
4298 the_low_target.supply_ptrace_register (regcache, regno, buf);
4299 else
4300 supply_register (regcache, regno, buf);
4301 }
4302
4303 /* Store one register. */
4304 static void
4305 store_register (struct regcache *regcache, int regno)
4306 {
4307 CORE_ADDR regaddr;
4308 int i, size;
4309 char *buf;
4310 int pid;
4311
4312 if (regno >= the_low_target.num_regs)
4313 return;
4314 if ((*the_low_target.cannot_store_register) (regno))
4315 return;
4316
4317 regaddr = register_addr (regno);
4318 if (regaddr == -1)
4319 return;
4320
4321 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
4322 & -sizeof (PTRACE_XFER_TYPE));
4323 buf = alloca (size);
4324 memset (buf, 0, size);
4325
4326 if (the_low_target.collect_ptrace_register)
4327 the_low_target.collect_ptrace_register (regcache, regno, buf);
4328 else
4329 collect_register (regcache, regno, buf);
4330
4331 pid = lwpid_of (get_thread_lwp (current_inferior));
4332 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4333 {
4334 errno = 0;
4335 ptrace (PTRACE_POKEUSER, pid,
4336 /* Coerce to a uintptr_t first to avoid potential gcc warning
4337 about coercing an 8 byte integer to a 4 byte pointer. */
4338 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr,
4339 (PTRACE_ARG4_TYPE) *(PTRACE_XFER_TYPE *) (buf + i));
4340 if (errno != 0)
4341 {
4342 /* At this point, ESRCH should mean the process is
4343 already gone, in which case we simply ignore attempts
4344 to change its registers. See also the related
4345 comment in linux_resume_one_lwp. */
4346 if (errno == ESRCH)
4347 return;
4348
4349 if ((*the_low_target.cannot_store_register) (regno) == 0)
4350 error ("writing register %d: %s", regno, strerror (errno));
4351 }
4352 regaddr += sizeof (PTRACE_XFER_TYPE);
4353 }
4354 }
4355
4356 /* Fetch all registers, or just one, from the child process.
4357 If REGNO is -1, do this for all registers, skipping any that are
4358 assumed to have been retrieved by regsets_fetch_inferior_registers,
4359 unless ALL is non-zero.
4360 Otherwise, REGNO specifies which register (so we can save time). */
4361 static void
4362 usr_fetch_inferior_registers (struct regcache *regcache, int regno, int all)
4363 {
4364 if (regno == -1)
4365 {
4366 for (regno = 0; regno < the_low_target.num_regs; regno++)
4367 if (all || !linux_register_in_regsets (regno))
4368 fetch_register (regcache, regno);
4369 }
4370 else
4371 fetch_register (regcache, regno);
4372 }
4373
4374 /* Store our register values back into the inferior.
4375 If REGNO is -1, do this for all registers, skipping any that are
4376 assumed to have been saved by regsets_store_inferior_registers,
4377 unless ALL is non-zero.
4378 Otherwise, REGNO specifies which register (so we can save time). */
4379 static void
4380 usr_store_inferior_registers (struct regcache *regcache, int regno, int all)
4381 {
4382 if (regno == -1)
4383 {
4384 for (regno = 0; regno < the_low_target.num_regs; regno++)
4385 if (all || !linux_register_in_regsets (regno))
4386 store_register (regcache, regno);
4387 }
4388 else
4389 store_register (regcache, regno);
4390 }
4391
4392 #else /* !HAVE_LINUX_USRREGS */
4393
4394 #define usr_fetch_inferior_registers(regcache, regno, all) do {} while (0)
4395 #define usr_store_inferior_registers(regcache, regno, all) do {} while (0)
4396
4397 #endif
4398
4399
4400 void
4401 linux_fetch_registers (struct regcache *regcache, int regno)
4402 {
4403 int use_regsets;
4404 int all = 0;
4405
4406 if (regno == -1)
4407 {
4408 if (the_low_target.fetch_register != NULL)
4409 for (regno = 0; regno < the_low_target.num_regs; regno++)
4410 (*the_low_target.fetch_register) (regcache, regno);
4411
4412 all = regsets_fetch_inferior_registers (regcache);
4413 usr_fetch_inferior_registers (regcache, -1, all);
4414 }
4415 else
4416 {
4417 if (the_low_target.fetch_register != NULL
4418 && (*the_low_target.fetch_register) (regcache, regno))
4419 return;
4420
4421 use_regsets = linux_register_in_regsets (regno);
4422 if (use_regsets)
4423 all = regsets_fetch_inferior_registers (regcache);
4424 if (!use_regsets || all)
4425 usr_fetch_inferior_registers (regcache, regno, 1);
4426 }
4427 }
4428
4429 void
4430 linux_store_registers (struct regcache *regcache, int regno)
4431 {
4432 int use_regsets;
4433 int all = 0;
4434
4435 if (regno == -1)
4436 {
4437 all = regsets_store_inferior_registers (regcache);
4438 usr_store_inferior_registers (regcache, regno, all);
4439 }
4440 else
4441 {
4442 use_regsets = linux_register_in_regsets (regno);
4443 if (use_regsets)
4444 all = regsets_store_inferior_registers (regcache);
4445 if (!use_regsets || all)
4446 usr_store_inferior_registers (regcache, regno, 1);
4447 }
4448 }
4449
4450
4451 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4452 to debugger memory starting at MYADDR. */
4453
4454 static int
4455 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4456 {
4457 int pid = lwpid_of (get_thread_lwp (current_inferior));
4458 register PTRACE_XFER_TYPE *buffer;
4459 register CORE_ADDR addr;
4460 register int count;
4461 char filename[64];
4462 register int i;
4463 int ret;
4464 int fd;
4465
4466 /* Try using /proc. Don't bother for one word. */
4467 if (len >= 3 * sizeof (long))
4468 {
4469 int bytes;
4470
4471 /* We could keep this file open and cache it - possibly one per
4472 thread. That requires some juggling, but is even faster. */
4473 sprintf (filename, "/proc/%d/mem", pid);
4474 fd = open (filename, O_RDONLY | O_LARGEFILE);
4475 if (fd == -1)
4476 goto no_proc;
4477
4478 /* If pread64 is available, use it. It's faster if the kernel
4479 supports it (only one syscall), and it's 64-bit safe even on
4480 32-bit platforms (for instance, SPARC debugging a SPARC64
4481 application). */
4482 #ifdef HAVE_PREAD64
4483 bytes = pread64 (fd, myaddr, len, memaddr);
4484 #else
4485 bytes = -1;
4486 if (lseek (fd, memaddr, SEEK_SET) != -1)
4487 bytes = read (fd, myaddr, len);
4488 #endif
4489
4490 close (fd);
4491 if (bytes == len)
4492 return 0;
4493
4494 /* Some data was read, we'll try to get the rest with ptrace. */
4495 if (bytes > 0)
4496 {
4497 memaddr += bytes;
4498 myaddr += bytes;
4499 len -= bytes;
4500 }
4501 }
4502
4503 no_proc:
4504 /* Round starting address down to longword boundary. */
4505 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4506 /* Round ending address up; get number of longwords that makes. */
4507 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4508 / sizeof (PTRACE_XFER_TYPE));
4509 /* Allocate buffer of that many longwords. */
4510 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4511
4512 /* Read all the longwords */
4513 errno = 0;
4514 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4515 {
4516 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4517 about coercing an 8 byte integer to a 4 byte pointer. */
4518 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4519 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4520 (PTRACE_ARG4_TYPE) 0);
4521 if (errno)
4522 break;
4523 }
4524 ret = errno;
4525
4526 /* Copy appropriate bytes out of the buffer. */
4527 if (i > 0)
4528 {
4529 i *= sizeof (PTRACE_XFER_TYPE);
4530 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4531 memcpy (myaddr,
4532 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4533 i < len ? i : len);
4534 }
4535
4536 return ret;
4537 }
4538
4539 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4540 memory at MEMADDR. On failure (cannot write to the inferior)
4541 returns the value of errno. Always succeeds if LEN is zero. */
4542
4543 static int
4544 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4545 {
4546 register int i;
4547 /* Round starting address down to longword boundary. */
4548 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4549 /* Round ending address up; get number of longwords that makes. */
4550 register int count
4551 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4552 / sizeof (PTRACE_XFER_TYPE);
4553
4554 /* Allocate buffer of that many longwords. */
4555 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4556 alloca (count * sizeof (PTRACE_XFER_TYPE));
4557
4558 int pid = lwpid_of (get_thread_lwp (current_inferior));
4559
4560 if (len == 0)
4561 {
4562 /* Zero length write always succeeds. */
4563 return 0;
4564 }
4565
4566 if (debug_threads)
4567 {
4568 /* Dump up to four bytes. */
4569 unsigned int val = * (unsigned int *) myaddr;
4570 if (len == 1)
4571 val = val & 0xff;
4572 else if (len == 2)
4573 val = val & 0xffff;
4574 else if (len == 3)
4575 val = val & 0xffffff;
4576 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4577 val, (long)memaddr);
4578 }
4579
4580 /* Fill start and end extra bytes of buffer with existing memory data. */
4581
4582 errno = 0;
4583 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4584 about coercing an 8 byte integer to a 4 byte pointer. */
4585 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4586 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4587 (PTRACE_ARG4_TYPE) 0);
4588 if (errno)
4589 return errno;
4590
4591 if (count > 1)
4592 {
4593 errno = 0;
4594 buffer[count - 1]
4595 = ptrace (PTRACE_PEEKTEXT, pid,
4596 /* Coerce to a uintptr_t first to avoid potential gcc warning
4597 about coercing an 8 byte integer to a 4 byte pointer. */
4598 (PTRACE_ARG3_TYPE) (uintptr_t) (addr + (count - 1)
4599 * sizeof (PTRACE_XFER_TYPE)),
4600 (PTRACE_ARG4_TYPE) 0);
4601 if (errno)
4602 return errno;
4603 }
4604
4605 /* Copy data to be written over corresponding part of buffer. */
4606
4607 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4608 myaddr, len);
4609
4610 /* Write the entire buffer. */
4611
4612 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4613 {
4614 errno = 0;
4615 ptrace (PTRACE_POKETEXT, pid,
4616 /* Coerce to a uintptr_t first to avoid potential gcc warning
4617 about coercing an 8 byte integer to a 4 byte pointer. */
4618 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4619 (PTRACE_ARG4_TYPE) buffer[i]);
4620 if (errno)
4621 return errno;
4622 }
4623
4624 return 0;
4625 }
4626
4627 /* Non-zero if the kernel supports PTRACE_O_TRACEFORK. */
4628 static int linux_supports_tracefork_flag;
4629
4630 static void
4631 linux_enable_event_reporting (int pid)
4632 {
4633 if (!linux_supports_tracefork_flag)
4634 return;
4635
4636 ptrace (PTRACE_SETOPTIONS, pid, (PTRACE_ARG3_TYPE) 0,
4637 (PTRACE_ARG4_TYPE) PTRACE_O_TRACECLONE);
4638 }
4639
4640 /* Helper functions for linux_test_for_tracefork, called via clone (). */
4641
4642 static int
4643 linux_tracefork_grandchild (void *arg)
4644 {
4645 _exit (0);
4646 }
4647
4648 #define STACK_SIZE 4096
4649
4650 static int
4651 linux_tracefork_child (void *arg)
4652 {
4653 ptrace (PTRACE_TRACEME, 0, (PTRACE_ARG3_TYPE) 0, (PTRACE_ARG4_TYPE) 0);
4654 kill (getpid (), SIGSTOP);
4655
4656 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4657
4658 if (fork () == 0)
4659 linux_tracefork_grandchild (NULL);
4660
4661 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4662
4663 #ifdef __ia64__
4664 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
4665 CLONE_VM | SIGCHLD, NULL);
4666 #else
4667 clone (linux_tracefork_grandchild, (char *) arg + STACK_SIZE,
4668 CLONE_VM | SIGCHLD, NULL);
4669 #endif
4670
4671 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4672
4673 _exit (0);
4674 }
4675
4676 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
4677 sure that we can enable the option, and that it had the desired
4678 effect. */
4679
4680 static void
4681 linux_test_for_tracefork (void)
4682 {
4683 int child_pid, ret, status;
4684 long second_pid;
4685 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4686 char *stack = xmalloc (STACK_SIZE * 4);
4687 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4688
4689 linux_supports_tracefork_flag = 0;
4690
4691 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4692
4693 child_pid = fork ();
4694 if (child_pid == 0)
4695 linux_tracefork_child (NULL);
4696
4697 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4698
4699 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
4700 #ifdef __ia64__
4701 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
4702 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4703 #else /* !__ia64__ */
4704 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
4705 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4706 #endif /* !__ia64__ */
4707
4708 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4709
4710 if (child_pid == -1)
4711 perror_with_name ("clone");
4712
4713 ret = my_waitpid (child_pid, &status, 0);
4714 if (ret == -1)
4715 perror_with_name ("waitpid");
4716 else if (ret != child_pid)
4717 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
4718 if (! WIFSTOPPED (status))
4719 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
4720
4721 ret = ptrace (PTRACE_SETOPTIONS, child_pid, (PTRACE_ARG3_TYPE) 0,
4722 (PTRACE_ARG4_TYPE) PTRACE_O_TRACEFORK);
4723 if (ret != 0)
4724 {
4725 ret = ptrace (PTRACE_KILL, child_pid, (PTRACE_ARG3_TYPE) 0,
4726 (PTRACE_ARG4_TYPE) 0);
4727 if (ret != 0)
4728 {
4729 warning ("linux_test_for_tracefork: failed to kill child");
4730 return;
4731 }
4732
4733 ret = my_waitpid (child_pid, &status, 0);
4734 if (ret != child_pid)
4735 warning ("linux_test_for_tracefork: failed to wait for killed child");
4736 else if (!WIFSIGNALED (status))
4737 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
4738 "killed child", status);
4739
4740 return;
4741 }
4742
4743 ret = ptrace (PTRACE_CONT, child_pid, (PTRACE_ARG3_TYPE) 0,
4744 (PTRACE_ARG4_TYPE) 0);
4745 if (ret != 0)
4746 warning ("linux_test_for_tracefork: failed to resume child");
4747
4748 ret = my_waitpid (child_pid, &status, 0);
4749
4750 if (ret == child_pid && WIFSTOPPED (status)
4751 && status >> 16 == PTRACE_EVENT_FORK)
4752 {
4753 second_pid = 0;
4754 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, (PTRACE_ARG3_TYPE) 0,
4755 &second_pid);
4756 if (ret == 0 && second_pid != 0)
4757 {
4758 int second_status;
4759
4760 linux_supports_tracefork_flag = 1;
4761 my_waitpid (second_pid, &second_status, 0);
4762 ret = ptrace (PTRACE_KILL, second_pid, (PTRACE_ARG3_TYPE) 0,
4763 (PTRACE_ARG4_TYPE) 0);
4764 if (ret != 0)
4765 warning ("linux_test_for_tracefork: failed to kill second child");
4766 my_waitpid (second_pid, &status, 0);
4767 }
4768 }
4769 else
4770 warning ("linux_test_for_tracefork: unexpected result from waitpid "
4771 "(%d, status 0x%x)", ret, status);
4772
4773 do
4774 {
4775 ret = ptrace (PTRACE_KILL, child_pid, (PTRACE_ARG3_TYPE) 0,
4776 (PTRACE_ARG4_TYPE) 0);
4777 if (ret != 0)
4778 warning ("linux_test_for_tracefork: failed to kill child");
4779 my_waitpid (child_pid, &status, 0);
4780 }
4781 while (WIFSTOPPED (status));
4782
4783 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4784 free (stack);
4785 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4786 }
4787
4788
4789 static void
4790 linux_look_up_symbols (void)
4791 {
4792 #ifdef USE_THREAD_DB
4793 struct process_info *proc = current_process ();
4794
4795 if (proc->private->thread_db != NULL)
4796 return;
4797
4798 /* If the kernel supports tracing forks then it also supports tracing
4799 clones, and then we don't need to use the magic thread event breakpoint
4800 to learn about threads. */
4801 thread_db_init (!linux_supports_tracefork_flag);
4802 #endif
4803 }
4804
4805 static void
4806 linux_request_interrupt (void)
4807 {
4808 extern unsigned long signal_pid;
4809
4810 if (!ptid_equal (cont_thread, null_ptid)
4811 && !ptid_equal (cont_thread, minus_one_ptid))
4812 {
4813 struct lwp_info *lwp;
4814 int lwpid;
4815
4816 lwp = get_thread_lwp (current_inferior);
4817 lwpid = lwpid_of (lwp);
4818 kill_lwp (lwpid, SIGINT);
4819 }
4820 else
4821 kill_lwp (signal_pid, SIGINT);
4822 }
4823
4824 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4825 to debugger memory starting at MYADDR. */
4826
4827 static int
4828 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4829 {
4830 char filename[PATH_MAX];
4831 int fd, n;
4832 int pid = lwpid_of (get_thread_lwp (current_inferior));
4833
4834 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4835
4836 fd = open (filename, O_RDONLY);
4837 if (fd < 0)
4838 return -1;
4839
4840 if (offset != (CORE_ADDR) 0
4841 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4842 n = -1;
4843 else
4844 n = read (fd, myaddr, len);
4845
4846 close (fd);
4847
4848 return n;
4849 }
4850
4851 /* These breakpoint and watchpoint related wrapper functions simply
4852 pass on the function call if the target has registered a
4853 corresponding function. */
4854
4855 static int
4856 linux_insert_point (char type, CORE_ADDR addr, int len)
4857 {
4858 if (the_low_target.insert_point != NULL)
4859 return the_low_target.insert_point (type, addr, len);
4860 else
4861 /* Unsupported (see target.h). */
4862 return 1;
4863 }
4864
4865 static int
4866 linux_remove_point (char type, CORE_ADDR addr, int len)
4867 {
4868 if (the_low_target.remove_point != NULL)
4869 return the_low_target.remove_point (type, addr, len);
4870 else
4871 /* Unsupported (see target.h). */
4872 return 1;
4873 }
4874
4875 static int
4876 linux_stopped_by_watchpoint (void)
4877 {
4878 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4879
4880 return lwp->stopped_by_watchpoint;
4881 }
4882
4883 static CORE_ADDR
4884 linux_stopped_data_address (void)
4885 {
4886 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4887
4888 return lwp->stopped_data_address;
4889 }
4890
4891 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
4892 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
4893 && defined(PT_TEXT_END_ADDR)
4894
4895 /* This is only used for targets that define PT_TEXT_ADDR,
4896 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
4897 the target has different ways of acquiring this information, like
4898 loadmaps. */
4899
4900 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4901 to tell gdb about. */
4902
4903 static int
4904 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4905 {
4906 unsigned long text, text_end, data;
4907 int pid = lwpid_of (get_thread_lwp (current_inferior));
4908
4909 errno = 0;
4910
4911 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_ARG3_TYPE) PT_TEXT_ADDR,
4912 (PTRACE_ARG4_TYPE) 0);
4913 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_ARG3_TYPE) PT_TEXT_END_ADDR,
4914 (PTRACE_ARG4_TYPE) 0);
4915 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_ARG3_TYPE) PT_DATA_ADDR,
4916 (PTRACE_ARG4_TYPE) 0);
4917
4918 if (errno == 0)
4919 {
4920 /* Both text and data offsets produced at compile-time (and so
4921 used by gdb) are relative to the beginning of the program,
4922 with the data segment immediately following the text segment.
4923 However, the actual runtime layout in memory may put the data
4924 somewhere else, so when we send gdb a data base-address, we
4925 use the real data base address and subtract the compile-time
4926 data base-address from it (which is just the length of the
4927 text segment). BSS immediately follows data in both
4928 cases. */
4929 *text_p = text;
4930 *data_p = data - (text_end - text);
4931
4932 return 1;
4933 }
4934 return 0;
4935 }
4936 #endif
4937
4938 static int
4939 linux_qxfer_osdata (const char *annex,
4940 unsigned char *readbuf, unsigned const char *writebuf,
4941 CORE_ADDR offset, int len)
4942 {
4943 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4944 }
4945
4946 /* Convert a native/host siginfo object, into/from the siginfo in the
4947 layout of the inferiors' architecture. */
4948
4949 static void
4950 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4951 {
4952 int done = 0;
4953
4954 if (the_low_target.siginfo_fixup != NULL)
4955 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4956
4957 /* If there was no callback, or the callback didn't do anything,
4958 then just do a straight memcpy. */
4959 if (!done)
4960 {
4961 if (direction == 1)
4962 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
4963 else
4964 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
4965 }
4966 }
4967
4968 static int
4969 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4970 unsigned const char *writebuf, CORE_ADDR offset, int len)
4971 {
4972 int pid;
4973 siginfo_t siginfo;
4974 char inf_siginfo[sizeof (siginfo_t)];
4975
4976 if (current_inferior == NULL)
4977 return -1;
4978
4979 pid = lwpid_of (get_thread_lwp (current_inferior));
4980
4981 if (debug_threads)
4982 fprintf (stderr, "%s siginfo for lwp %d.\n",
4983 readbuf != NULL ? "Reading" : "Writing",
4984 pid);
4985
4986 if (offset >= sizeof (siginfo))
4987 return -1;
4988
4989 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_ARG3_TYPE) 0, &siginfo) != 0)
4990 return -1;
4991
4992 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4993 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4994 inferior with a 64-bit GDBSERVER should look the same as debugging it
4995 with a 32-bit GDBSERVER, we need to convert it. */
4996 siginfo_fixup (&siginfo, inf_siginfo, 0);
4997
4998 if (offset + len > sizeof (siginfo))
4999 len = sizeof (siginfo) - offset;
5000
5001 if (readbuf != NULL)
5002 memcpy (readbuf, inf_siginfo + offset, len);
5003 else
5004 {
5005 memcpy (inf_siginfo + offset, writebuf, len);
5006
5007 /* Convert back to ptrace layout before flushing it out. */
5008 siginfo_fixup (&siginfo, inf_siginfo, 1);
5009
5010 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_ARG3_TYPE) 0, &siginfo) != 0)
5011 return -1;
5012 }
5013
5014 return len;
5015 }
5016
5017 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5018 so we notice when children change state; as the handler for the
5019 sigsuspend in my_waitpid. */
5020
5021 static void
5022 sigchld_handler (int signo)
5023 {
5024 int old_errno = errno;
5025
5026 if (debug_threads)
5027 {
5028 do
5029 {
5030 /* fprintf is not async-signal-safe, so call write
5031 directly. */
5032 if (write (2, "sigchld_handler\n",
5033 sizeof ("sigchld_handler\n") - 1) < 0)
5034 break; /* just ignore */
5035 } while (0);
5036 }
5037
5038 if (target_is_async_p ())
5039 async_file_mark (); /* trigger a linux_wait */
5040
5041 errno = old_errno;
5042 }
5043
5044 static int
5045 linux_supports_non_stop (void)
5046 {
5047 return 1;
5048 }
5049
5050 static int
5051 linux_async (int enable)
5052 {
5053 int previous = (linux_event_pipe[0] != -1);
5054
5055 if (debug_threads)
5056 fprintf (stderr, "linux_async (%d), previous=%d\n",
5057 enable, previous);
5058
5059 if (previous != enable)
5060 {
5061 sigset_t mask;
5062 sigemptyset (&mask);
5063 sigaddset (&mask, SIGCHLD);
5064
5065 sigprocmask (SIG_BLOCK, &mask, NULL);
5066
5067 if (enable)
5068 {
5069 if (pipe (linux_event_pipe) == -1)
5070 fatal ("creating event pipe failed.");
5071
5072 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5073 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5074
5075 /* Register the event loop handler. */
5076 add_file_handler (linux_event_pipe[0],
5077 handle_target_event, NULL);
5078
5079 /* Always trigger a linux_wait. */
5080 async_file_mark ();
5081 }
5082 else
5083 {
5084 delete_file_handler (linux_event_pipe[0]);
5085
5086 close (linux_event_pipe[0]);
5087 close (linux_event_pipe[1]);
5088 linux_event_pipe[0] = -1;
5089 linux_event_pipe[1] = -1;
5090 }
5091
5092 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5093 }
5094
5095 return previous;
5096 }
5097
5098 static int
5099 linux_start_non_stop (int nonstop)
5100 {
5101 /* Register or unregister from event-loop accordingly. */
5102 linux_async (nonstop);
5103 return 0;
5104 }
5105
5106 static int
5107 linux_supports_multi_process (void)
5108 {
5109 return 1;
5110 }
5111
5112 static int
5113 linux_supports_disable_randomization (void)
5114 {
5115 #ifdef HAVE_PERSONALITY
5116 return 1;
5117 #else
5118 return 0;
5119 #endif
5120 }
5121
5122 static int
5123 linux_supports_agent (void)
5124 {
5125 return 1;
5126 }
5127
5128 static int
5129 linux_supports_range_stepping (void)
5130 {
5131 if (*the_low_target.supports_range_stepping == NULL)
5132 return 0;
5133
5134 return (*the_low_target.supports_range_stepping) ();
5135 }
5136
5137 /* Enumerate spufs IDs for process PID. */
5138 static int
5139 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5140 {
5141 int pos = 0;
5142 int written = 0;
5143 char path[128];
5144 DIR *dir;
5145 struct dirent *entry;
5146
5147 sprintf (path, "/proc/%ld/fd", pid);
5148 dir = opendir (path);
5149 if (!dir)
5150 return -1;
5151
5152 rewinddir (dir);
5153 while ((entry = readdir (dir)) != NULL)
5154 {
5155 struct stat st;
5156 struct statfs stfs;
5157 int fd;
5158
5159 fd = atoi (entry->d_name);
5160 if (!fd)
5161 continue;
5162
5163 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5164 if (stat (path, &st) != 0)
5165 continue;
5166 if (!S_ISDIR (st.st_mode))
5167 continue;
5168
5169 if (statfs (path, &stfs) != 0)
5170 continue;
5171 if (stfs.f_type != SPUFS_MAGIC)
5172 continue;
5173
5174 if (pos >= offset && pos + 4 <= offset + len)
5175 {
5176 *(unsigned int *)(buf + pos - offset) = fd;
5177 written += 4;
5178 }
5179 pos += 4;
5180 }
5181
5182 closedir (dir);
5183 return written;
5184 }
5185
5186 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5187 object type, using the /proc file system. */
5188 static int
5189 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5190 unsigned const char *writebuf,
5191 CORE_ADDR offset, int len)
5192 {
5193 long pid = lwpid_of (get_thread_lwp (current_inferior));
5194 char buf[128];
5195 int fd = 0;
5196 int ret = 0;
5197
5198 if (!writebuf && !readbuf)
5199 return -1;
5200
5201 if (!*annex)
5202 {
5203 if (!readbuf)
5204 return -1;
5205 else
5206 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5207 }
5208
5209 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5210 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5211 if (fd <= 0)
5212 return -1;
5213
5214 if (offset != 0
5215 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5216 {
5217 close (fd);
5218 return 0;
5219 }
5220
5221 if (writebuf)
5222 ret = write (fd, writebuf, (size_t) len);
5223 else
5224 ret = read (fd, readbuf, (size_t) len);
5225
5226 close (fd);
5227 return ret;
5228 }
5229
5230 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5231 struct target_loadseg
5232 {
5233 /* Core address to which the segment is mapped. */
5234 Elf32_Addr addr;
5235 /* VMA recorded in the program header. */
5236 Elf32_Addr p_vaddr;
5237 /* Size of this segment in memory. */
5238 Elf32_Word p_memsz;
5239 };
5240
5241 # if defined PT_GETDSBT
5242 struct target_loadmap
5243 {
5244 /* Protocol version number, must be zero. */
5245 Elf32_Word version;
5246 /* Pointer to the DSBT table, its size, and the DSBT index. */
5247 unsigned *dsbt_table;
5248 unsigned dsbt_size, dsbt_index;
5249 /* Number of segments in this map. */
5250 Elf32_Word nsegs;
5251 /* The actual memory map. */
5252 struct target_loadseg segs[/*nsegs*/];
5253 };
5254 # define LINUX_LOADMAP PT_GETDSBT
5255 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5256 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5257 # else
5258 struct target_loadmap
5259 {
5260 /* Protocol version number, must be zero. */
5261 Elf32_Half version;
5262 /* Number of segments in this map. */
5263 Elf32_Half nsegs;
5264 /* The actual memory map. */
5265 struct target_loadseg segs[/*nsegs*/];
5266 };
5267 # define LINUX_LOADMAP PTRACE_GETFDPIC
5268 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5269 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5270 # endif
5271
5272 static int
5273 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5274 unsigned char *myaddr, unsigned int len)
5275 {
5276 int pid = lwpid_of (get_thread_lwp (current_inferior));
5277 int addr = -1;
5278 struct target_loadmap *data = NULL;
5279 unsigned int actual_length, copy_length;
5280
5281 if (strcmp (annex, "exec") == 0)
5282 addr = (int) LINUX_LOADMAP_EXEC;
5283 else if (strcmp (annex, "interp") == 0)
5284 addr = (int) LINUX_LOADMAP_INTERP;
5285 else
5286 return -1;
5287
5288 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5289 return -1;
5290
5291 if (data == NULL)
5292 return -1;
5293
5294 actual_length = sizeof (struct target_loadmap)
5295 + sizeof (struct target_loadseg) * data->nsegs;
5296
5297 if (offset < 0 || offset > actual_length)
5298 return -1;
5299
5300 copy_length = actual_length - offset < len ? actual_length - offset : len;
5301 memcpy (myaddr, (char *) data + offset, copy_length);
5302 return copy_length;
5303 }
5304 #else
5305 # define linux_read_loadmap NULL
5306 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5307
5308 static void
5309 linux_process_qsupported (const char *query)
5310 {
5311 if (the_low_target.process_qsupported != NULL)
5312 the_low_target.process_qsupported (query);
5313 }
5314
5315 static int
5316 linux_supports_tracepoints (void)
5317 {
5318 if (*the_low_target.supports_tracepoints == NULL)
5319 return 0;
5320
5321 return (*the_low_target.supports_tracepoints) ();
5322 }
5323
5324 static CORE_ADDR
5325 linux_read_pc (struct regcache *regcache)
5326 {
5327 if (the_low_target.get_pc == NULL)
5328 return 0;
5329
5330 return (*the_low_target.get_pc) (regcache);
5331 }
5332
5333 static void
5334 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5335 {
5336 gdb_assert (the_low_target.set_pc != NULL);
5337
5338 (*the_low_target.set_pc) (regcache, pc);
5339 }
5340
5341 static int
5342 linux_thread_stopped (struct thread_info *thread)
5343 {
5344 return get_thread_lwp (thread)->stopped;
5345 }
5346
5347 /* This exposes stop-all-threads functionality to other modules. */
5348
5349 static void
5350 linux_pause_all (int freeze)
5351 {
5352 stop_all_lwps (freeze, NULL);
5353 }
5354
5355 /* This exposes unstop-all-threads functionality to other gdbserver
5356 modules. */
5357
5358 static void
5359 linux_unpause_all (int unfreeze)
5360 {
5361 unstop_all_lwps (unfreeze, NULL);
5362 }
5363
5364 static int
5365 linux_prepare_to_access_memory (void)
5366 {
5367 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5368 running LWP. */
5369 if (non_stop)
5370 linux_pause_all (1);
5371 return 0;
5372 }
5373
5374 static void
5375 linux_done_accessing_memory (void)
5376 {
5377 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5378 running LWP. */
5379 if (non_stop)
5380 linux_unpause_all (1);
5381 }
5382
5383 static int
5384 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5385 CORE_ADDR collector,
5386 CORE_ADDR lockaddr,
5387 ULONGEST orig_size,
5388 CORE_ADDR *jump_entry,
5389 CORE_ADDR *trampoline,
5390 ULONGEST *trampoline_size,
5391 unsigned char *jjump_pad_insn,
5392 ULONGEST *jjump_pad_insn_size,
5393 CORE_ADDR *adjusted_insn_addr,
5394 CORE_ADDR *adjusted_insn_addr_end,
5395 char *err)
5396 {
5397 return (*the_low_target.install_fast_tracepoint_jump_pad)
5398 (tpoint, tpaddr, collector, lockaddr, orig_size,
5399 jump_entry, trampoline, trampoline_size,
5400 jjump_pad_insn, jjump_pad_insn_size,
5401 adjusted_insn_addr, adjusted_insn_addr_end,
5402 err);
5403 }
5404
5405 static struct emit_ops *
5406 linux_emit_ops (void)
5407 {
5408 if (the_low_target.emit_ops != NULL)
5409 return (*the_low_target.emit_ops) ();
5410 else
5411 return NULL;
5412 }
5413
5414 static int
5415 linux_get_min_fast_tracepoint_insn_len (void)
5416 {
5417 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5418 }
5419
5420 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5421
5422 static int
5423 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5424 CORE_ADDR *phdr_memaddr, int *num_phdr)
5425 {
5426 char filename[PATH_MAX];
5427 int fd;
5428 const int auxv_size = is_elf64
5429 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5430 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5431
5432 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5433
5434 fd = open (filename, O_RDONLY);
5435 if (fd < 0)
5436 return 1;
5437
5438 *phdr_memaddr = 0;
5439 *num_phdr = 0;
5440 while (read (fd, buf, auxv_size) == auxv_size
5441 && (*phdr_memaddr == 0 || *num_phdr == 0))
5442 {
5443 if (is_elf64)
5444 {
5445 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5446
5447 switch (aux->a_type)
5448 {
5449 case AT_PHDR:
5450 *phdr_memaddr = aux->a_un.a_val;
5451 break;
5452 case AT_PHNUM:
5453 *num_phdr = aux->a_un.a_val;
5454 break;
5455 }
5456 }
5457 else
5458 {
5459 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5460
5461 switch (aux->a_type)
5462 {
5463 case AT_PHDR:
5464 *phdr_memaddr = aux->a_un.a_val;
5465 break;
5466 case AT_PHNUM:
5467 *num_phdr = aux->a_un.a_val;
5468 break;
5469 }
5470 }
5471 }
5472
5473 close (fd);
5474
5475 if (*phdr_memaddr == 0 || *num_phdr == 0)
5476 {
5477 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5478 "phdr_memaddr = %ld, phdr_num = %d",
5479 (long) *phdr_memaddr, *num_phdr);
5480 return 2;
5481 }
5482
5483 return 0;
5484 }
5485
5486 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5487
5488 static CORE_ADDR
5489 get_dynamic (const int pid, const int is_elf64)
5490 {
5491 CORE_ADDR phdr_memaddr, relocation;
5492 int num_phdr, i;
5493 unsigned char *phdr_buf;
5494 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5495
5496 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5497 return 0;
5498
5499 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5500 phdr_buf = alloca (num_phdr * phdr_size);
5501
5502 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5503 return 0;
5504
5505 /* Compute relocation: it is expected to be 0 for "regular" executables,
5506 non-zero for PIE ones. */
5507 relocation = -1;
5508 for (i = 0; relocation == -1 && i < num_phdr; i++)
5509 if (is_elf64)
5510 {
5511 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5512
5513 if (p->p_type == PT_PHDR)
5514 relocation = phdr_memaddr - p->p_vaddr;
5515 }
5516 else
5517 {
5518 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5519
5520 if (p->p_type == PT_PHDR)
5521 relocation = phdr_memaddr - p->p_vaddr;
5522 }
5523
5524 if (relocation == -1)
5525 {
5526 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5527 any real world executables, including PIE executables, have always
5528 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5529 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5530 or present DT_DEBUG anyway (fpc binaries are statically linked).
5531
5532 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5533
5534 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5535
5536 return 0;
5537 }
5538
5539 for (i = 0; i < num_phdr; i++)
5540 {
5541 if (is_elf64)
5542 {
5543 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5544
5545 if (p->p_type == PT_DYNAMIC)
5546 return p->p_vaddr + relocation;
5547 }
5548 else
5549 {
5550 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5551
5552 if (p->p_type == PT_DYNAMIC)
5553 return p->p_vaddr + relocation;
5554 }
5555 }
5556
5557 return 0;
5558 }
5559
5560 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5561 can be 0 if the inferior does not yet have the library list initialized.
5562 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5563 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5564
5565 static CORE_ADDR
5566 get_r_debug (const int pid, const int is_elf64)
5567 {
5568 CORE_ADDR dynamic_memaddr;
5569 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5570 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5571 CORE_ADDR map = -1;
5572
5573 dynamic_memaddr = get_dynamic (pid, is_elf64);
5574 if (dynamic_memaddr == 0)
5575 return map;
5576
5577 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5578 {
5579 if (is_elf64)
5580 {
5581 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5582 #ifdef DT_MIPS_RLD_MAP
5583 union
5584 {
5585 Elf64_Xword map;
5586 unsigned char buf[sizeof (Elf64_Xword)];
5587 }
5588 rld_map;
5589
5590 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5591 {
5592 if (linux_read_memory (dyn->d_un.d_val,
5593 rld_map.buf, sizeof (rld_map.buf)) == 0)
5594 return rld_map.map;
5595 else
5596 break;
5597 }
5598 #endif /* DT_MIPS_RLD_MAP */
5599
5600 if (dyn->d_tag == DT_DEBUG && map == -1)
5601 map = dyn->d_un.d_val;
5602
5603 if (dyn->d_tag == DT_NULL)
5604 break;
5605 }
5606 else
5607 {
5608 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5609 #ifdef DT_MIPS_RLD_MAP
5610 union
5611 {
5612 Elf32_Word map;
5613 unsigned char buf[sizeof (Elf32_Word)];
5614 }
5615 rld_map;
5616
5617 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5618 {
5619 if (linux_read_memory (dyn->d_un.d_val,
5620 rld_map.buf, sizeof (rld_map.buf)) == 0)
5621 return rld_map.map;
5622 else
5623 break;
5624 }
5625 #endif /* DT_MIPS_RLD_MAP */
5626
5627 if (dyn->d_tag == DT_DEBUG && map == -1)
5628 map = dyn->d_un.d_val;
5629
5630 if (dyn->d_tag == DT_NULL)
5631 break;
5632 }
5633
5634 dynamic_memaddr += dyn_size;
5635 }
5636
5637 return map;
5638 }
5639
5640 /* Read one pointer from MEMADDR in the inferior. */
5641
5642 static int
5643 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5644 {
5645 int ret;
5646
5647 /* Go through a union so this works on either big or little endian
5648 hosts, when the inferior's pointer size is smaller than the size
5649 of CORE_ADDR. It is assumed the inferior's endianness is the
5650 same of the superior's. */
5651 union
5652 {
5653 CORE_ADDR core_addr;
5654 unsigned int ui;
5655 unsigned char uc;
5656 } addr;
5657
5658 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5659 if (ret == 0)
5660 {
5661 if (ptr_size == sizeof (CORE_ADDR))
5662 *ptr = addr.core_addr;
5663 else if (ptr_size == sizeof (unsigned int))
5664 *ptr = addr.ui;
5665 else
5666 gdb_assert_not_reached ("unhandled pointer size");
5667 }
5668 return ret;
5669 }
5670
5671 struct link_map_offsets
5672 {
5673 /* Offset and size of r_debug.r_version. */
5674 int r_version_offset;
5675
5676 /* Offset and size of r_debug.r_map. */
5677 int r_map_offset;
5678
5679 /* Offset to l_addr field in struct link_map. */
5680 int l_addr_offset;
5681
5682 /* Offset to l_name field in struct link_map. */
5683 int l_name_offset;
5684
5685 /* Offset to l_ld field in struct link_map. */
5686 int l_ld_offset;
5687
5688 /* Offset to l_next field in struct link_map. */
5689 int l_next_offset;
5690
5691 /* Offset to l_prev field in struct link_map. */
5692 int l_prev_offset;
5693 };
5694
5695 /* Construct qXfer:libraries-svr4:read reply. */
5696
5697 static int
5698 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5699 unsigned const char *writebuf,
5700 CORE_ADDR offset, int len)
5701 {
5702 char *document;
5703 unsigned document_len;
5704 struct process_info_private *const priv = current_process ()->private;
5705 char filename[PATH_MAX];
5706 int pid, is_elf64;
5707
5708 static const struct link_map_offsets lmo_32bit_offsets =
5709 {
5710 0, /* r_version offset. */
5711 4, /* r_debug.r_map offset. */
5712 0, /* l_addr offset in link_map. */
5713 4, /* l_name offset in link_map. */
5714 8, /* l_ld offset in link_map. */
5715 12, /* l_next offset in link_map. */
5716 16 /* l_prev offset in link_map. */
5717 };
5718
5719 static const struct link_map_offsets lmo_64bit_offsets =
5720 {
5721 0, /* r_version offset. */
5722 8, /* r_debug.r_map offset. */
5723 0, /* l_addr offset in link_map. */
5724 8, /* l_name offset in link_map. */
5725 16, /* l_ld offset in link_map. */
5726 24, /* l_next offset in link_map. */
5727 32 /* l_prev offset in link_map. */
5728 };
5729 const struct link_map_offsets *lmo;
5730 unsigned int machine;
5731 int ptr_size;
5732 CORE_ADDR lm_addr = 0, lm_prev = 0;
5733 int allocated = 1024;
5734 char *p;
5735 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
5736 int header_done = 0;
5737
5738 if (writebuf != NULL)
5739 return -2;
5740 if (readbuf == NULL)
5741 return -1;
5742
5743 pid = lwpid_of (get_thread_lwp (current_inferior));
5744 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5745 is_elf64 = elf_64_file_p (filename, &machine);
5746 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5747 ptr_size = is_elf64 ? 8 : 4;
5748
5749 while (annex[0] != '\0')
5750 {
5751 const char *sep;
5752 CORE_ADDR *addrp;
5753 int len;
5754
5755 sep = strchr (annex, '=');
5756 if (sep == NULL)
5757 break;
5758
5759 len = sep - annex;
5760 if (len == 5 && strncmp (annex, "start", 5) == 0)
5761 addrp = &lm_addr;
5762 else if (len == 4 && strncmp (annex, "prev", 4) == 0)
5763 addrp = &lm_prev;
5764 else
5765 {
5766 annex = strchr (sep, ';');
5767 if (annex == NULL)
5768 break;
5769 annex++;
5770 continue;
5771 }
5772
5773 annex = decode_address_to_semicolon (addrp, sep + 1);
5774 }
5775
5776 if (lm_addr == 0)
5777 {
5778 int r_version = 0;
5779
5780 if (priv->r_debug == 0)
5781 priv->r_debug = get_r_debug (pid, is_elf64);
5782
5783 /* We failed to find DT_DEBUG. Such situation will not change
5784 for this inferior - do not retry it. Report it to GDB as
5785 E01, see for the reasons at the GDB solib-svr4.c side. */
5786 if (priv->r_debug == (CORE_ADDR) -1)
5787 return -1;
5788
5789 if (priv->r_debug != 0)
5790 {
5791 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5792 (unsigned char *) &r_version,
5793 sizeof (r_version)) != 0
5794 || r_version != 1)
5795 {
5796 warning ("unexpected r_debug version %d", r_version);
5797 }
5798 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5799 &lm_addr, ptr_size) != 0)
5800 {
5801 warning ("unable to read r_map from 0x%lx",
5802 (long) priv->r_debug + lmo->r_map_offset);
5803 }
5804 }
5805 }
5806
5807 document = xmalloc (allocated);
5808 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5809 p = document + strlen (document);
5810
5811 while (lm_addr
5812 && read_one_ptr (lm_addr + lmo->l_name_offset,
5813 &l_name, ptr_size) == 0
5814 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5815 &l_addr, ptr_size) == 0
5816 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5817 &l_ld, ptr_size) == 0
5818 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5819 &l_prev, ptr_size) == 0
5820 && read_one_ptr (lm_addr + lmo->l_next_offset,
5821 &l_next, ptr_size) == 0)
5822 {
5823 unsigned char libname[PATH_MAX];
5824
5825 if (lm_prev != l_prev)
5826 {
5827 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5828 (long) lm_prev, (long) l_prev);
5829 break;
5830 }
5831
5832 /* Not checking for error because reading may stop before
5833 we've got PATH_MAX worth of characters. */
5834 libname[0] = '\0';
5835 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5836 libname[sizeof (libname) - 1] = '\0';
5837 if (libname[0] != '\0')
5838 {
5839 /* 6x the size for xml_escape_text below. */
5840 size_t len = 6 * strlen ((char *) libname);
5841 char *name;
5842
5843 if (!header_done)
5844 {
5845 /* Terminate `<library-list-svr4'. */
5846 *p++ = '>';
5847 header_done = 1;
5848 }
5849
5850 while (allocated < p - document + len + 200)
5851 {
5852 /* Expand to guarantee sufficient storage. */
5853 uintptr_t document_len = p - document;
5854
5855 document = xrealloc (document, 2 * allocated);
5856 allocated *= 2;
5857 p = document + document_len;
5858 }
5859
5860 name = xml_escape_text ((char *) libname);
5861 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5862 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5863 name, (unsigned long) lm_addr,
5864 (unsigned long) l_addr, (unsigned long) l_ld);
5865 free (name);
5866 }
5867 else if (lm_prev == 0)
5868 {
5869 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5870 p = p + strlen (p);
5871 }
5872
5873 lm_prev = lm_addr;
5874 lm_addr = l_next;
5875 }
5876
5877 if (!header_done)
5878 {
5879 /* Empty list; terminate `<library-list-svr4'. */
5880 strcpy (p, "/>");
5881 }
5882 else
5883 strcpy (p, "</library-list-svr4>");
5884
5885 document_len = strlen (document);
5886 if (offset < document_len)
5887 document_len -= offset;
5888 else
5889 document_len = 0;
5890 if (len > document_len)
5891 len = document_len;
5892
5893 memcpy (readbuf, document + offset, len);
5894 xfree (document);
5895
5896 return len;
5897 }
5898
5899 #ifdef HAVE_LINUX_BTRACE
5900
5901 /* Enable branch tracing. */
5902
5903 static struct btrace_target_info *
5904 linux_low_enable_btrace (ptid_t ptid)
5905 {
5906 struct btrace_target_info *tinfo;
5907
5908 tinfo = linux_enable_btrace (ptid);
5909 if (tinfo != NULL)
5910 tinfo->ptr_bits = register_size (0) * 8;
5911
5912 return tinfo;
5913 }
5914
5915 /* Read branch trace data as btrace xml document. */
5916
5917 static void
5918 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
5919 int type)
5920 {
5921 VEC (btrace_block_s) *btrace;
5922 struct btrace_block *block;
5923 int i;
5924
5925 btrace = linux_read_btrace (tinfo, type);
5926
5927 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
5928 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
5929
5930 for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
5931 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
5932 paddress (block->begin), paddress (block->end));
5933
5934 buffer_grow_str (buffer, "</btrace>\n");
5935
5936 VEC_free (btrace_block_s, btrace);
5937 }
5938 #endif /* HAVE_LINUX_BTRACE */
5939
5940 static struct target_ops linux_target_ops = {
5941 linux_create_inferior,
5942 linux_attach,
5943 linux_kill,
5944 linux_detach,
5945 linux_mourn,
5946 linux_join,
5947 linux_thread_alive,
5948 linux_resume,
5949 linux_wait,
5950 linux_fetch_registers,
5951 linux_store_registers,
5952 linux_prepare_to_access_memory,
5953 linux_done_accessing_memory,
5954 linux_read_memory,
5955 linux_write_memory,
5956 linux_look_up_symbols,
5957 linux_request_interrupt,
5958 linux_read_auxv,
5959 linux_insert_point,
5960 linux_remove_point,
5961 linux_stopped_by_watchpoint,
5962 linux_stopped_data_address,
5963 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
5964 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
5965 && defined(PT_TEXT_END_ADDR)
5966 linux_read_offsets,
5967 #else
5968 NULL,
5969 #endif
5970 #ifdef USE_THREAD_DB
5971 thread_db_get_tls_address,
5972 #else
5973 NULL,
5974 #endif
5975 linux_qxfer_spu,
5976 hostio_last_error_from_errno,
5977 linux_qxfer_osdata,
5978 linux_xfer_siginfo,
5979 linux_supports_non_stop,
5980 linux_async,
5981 linux_start_non_stop,
5982 linux_supports_multi_process,
5983 #ifdef USE_THREAD_DB
5984 thread_db_handle_monitor_command,
5985 #else
5986 NULL,
5987 #endif
5988 linux_common_core_of_thread,
5989 linux_read_loadmap,
5990 linux_process_qsupported,
5991 linux_supports_tracepoints,
5992 linux_read_pc,
5993 linux_write_pc,
5994 linux_thread_stopped,
5995 NULL,
5996 linux_pause_all,
5997 linux_unpause_all,
5998 linux_cancel_breakpoints,
5999 linux_stabilize_threads,
6000 linux_install_fast_tracepoint_jump_pad,
6001 linux_emit_ops,
6002 linux_supports_disable_randomization,
6003 linux_get_min_fast_tracepoint_insn_len,
6004 linux_qxfer_libraries_svr4,
6005 linux_supports_agent,
6006 #ifdef HAVE_LINUX_BTRACE
6007 linux_supports_btrace,
6008 linux_low_enable_btrace,
6009 linux_disable_btrace,
6010 linux_low_read_btrace,
6011 #else
6012 NULL,
6013 NULL,
6014 NULL,
6015 NULL,
6016 #endif
6017 linux_supports_range_stepping,
6018 };
6019
6020 static void
6021 linux_init_signals ()
6022 {
6023 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6024 to find what the cancel signal actually is. */
6025 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6026 signal (__SIGRTMIN+1, SIG_IGN);
6027 #endif
6028 }
6029
6030 void
6031 initialize_low (void)
6032 {
6033 struct sigaction sigchld_action;
6034 memset (&sigchld_action, 0, sizeof (sigchld_action));
6035 set_target_ops (&linux_target_ops);
6036 set_breakpoint_data (the_low_target.breakpoint,
6037 the_low_target.breakpoint_len);
6038 linux_init_signals ();
6039 linux_test_for_tracefork ();
6040 linux_ptrace_init_warnings ();
6041 #ifdef HAVE_LINUX_REGSETS
6042 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
6043 ;
6044 disabled_regsets = xmalloc (num_regsets);
6045 #endif
6046
6047 sigchld_action.sa_handler = sigchld_handler;
6048 sigemptyset (&sigchld_action.sa_mask);
6049 sigchld_action.sa_flags = SA_RESTART;
6050 sigaction (SIGCHLD, &sigchld_action, NULL);
6051 }
This page took 0.15897 seconds and 4 git commands to generate.