Remove usages of find_thread when calling need_step_over_p
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001 struct cleanup *restore_personality
1002 = maybe_disable_address_space_randomization (disable_randomization);
1003 std::string str_program_args = stringify_argv (program_args);
1004
1005 pid = fork_inferior (program,
1006 str_program_args.c_str (),
1007 get_environ ()->envp (), linux_ptrace_fun,
1008 NULL, NULL, NULL, NULL);
1009
1010 do_cleanups (restore_personality);
1011
1012 linux_add_process (pid, 0);
1013
1014 ptid = ptid_build (pid, pid, 0);
1015 new_lwp = add_lwp (ptid);
1016 new_lwp->must_set_ptrace_flags = 1;
1017
1018 post_fork_inferior (pid, program);
1019
1020 return pid;
1021 }
1022
1023 /* Implement the post_create_inferior target_ops method. */
1024
1025 static void
1026 linux_post_create_inferior (void)
1027 {
1028 struct lwp_info *lwp = get_thread_lwp (current_thread);
1029
1030 linux_arch_setup ();
1031
1032 if (lwp->must_set_ptrace_flags)
1033 {
1034 struct process_info *proc = current_process ();
1035 int options = linux_low_ptrace_options (proc->attached);
1036
1037 linux_enable_event_reporting (lwpid_of (current_thread), options);
1038 lwp->must_set_ptrace_flags = 0;
1039 }
1040 }
1041
1042 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1043 error. */
1044
1045 int
1046 linux_attach_lwp (ptid_t ptid)
1047 {
1048 struct lwp_info *new_lwp;
1049 int lwpid = ptid_get_lwp (ptid);
1050
1051 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1052 != 0)
1053 return errno;
1054
1055 new_lwp = add_lwp (ptid);
1056
1057 /* We need to wait for SIGSTOP before being able to make the next
1058 ptrace call on this LWP. */
1059 new_lwp->must_set_ptrace_flags = 1;
1060
1061 if (linux_proc_pid_is_stopped (lwpid))
1062 {
1063 if (debug_threads)
1064 debug_printf ("Attached to a stopped process\n");
1065
1066 /* The process is definitely stopped. It is in a job control
1067 stop, unless the kernel predates the TASK_STOPPED /
1068 TASK_TRACED distinction, in which case it might be in a
1069 ptrace stop. Make sure it is in a ptrace stop; from there we
1070 can kill it, signal it, et cetera.
1071
1072 First make sure there is a pending SIGSTOP. Since we are
1073 already attached, the process can not transition from stopped
1074 to running without a PTRACE_CONT; so we know this signal will
1075 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1076 probably already in the queue (unless this kernel is old
1077 enough to use TASK_STOPPED for ptrace stops); but since
1078 SIGSTOP is not an RT signal, it can only be queued once. */
1079 kill_lwp (lwpid, SIGSTOP);
1080
1081 /* Finally, resume the stopped process. This will deliver the
1082 SIGSTOP (or a higher priority signal, just like normal
1083 PTRACE_ATTACH), which we'll catch later on. */
1084 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1085 }
1086
1087 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1088 brings it to a halt.
1089
1090 There are several cases to consider here:
1091
1092 1) gdbserver has already attached to the process and is being notified
1093 of a new thread that is being created.
1094 In this case we should ignore that SIGSTOP and resume the
1095 process. This is handled below by setting stop_expected = 1,
1096 and the fact that add_thread sets last_resume_kind ==
1097 resume_continue.
1098
1099 2) This is the first thread (the process thread), and we're attaching
1100 to it via attach_inferior.
1101 In this case we want the process thread to stop.
1102 This is handled by having linux_attach set last_resume_kind ==
1103 resume_stop after we return.
1104
1105 If the pid we are attaching to is also the tgid, we attach to and
1106 stop all the existing threads. Otherwise, we attach to pid and
1107 ignore any other threads in the same group as this pid.
1108
1109 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1110 existing threads.
1111 In this case we want the thread to stop.
1112 FIXME: This case is currently not properly handled.
1113 We should wait for the SIGSTOP but don't. Things work apparently
1114 because enough time passes between when we ptrace (ATTACH) and when
1115 gdb makes the next ptrace call on the thread.
1116
1117 On the other hand, if we are currently trying to stop all threads, we
1118 should treat the new thread as if we had sent it a SIGSTOP. This works
1119 because we are guaranteed that the add_lwp call above added us to the
1120 end of the list, and so the new thread has not yet reached
1121 wait_for_sigstop (but will). */
1122 new_lwp->stop_expected = 1;
1123
1124 return 0;
1125 }
1126
1127 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1128 already attached. Returns true if a new LWP is found, false
1129 otherwise. */
1130
1131 static int
1132 attach_proc_task_lwp_callback (ptid_t ptid)
1133 {
1134 /* Is this a new thread? */
1135 if (find_thread_ptid (ptid) == NULL)
1136 {
1137 int lwpid = ptid_get_lwp (ptid);
1138 int err;
1139
1140 if (debug_threads)
1141 debug_printf ("Found new lwp %d\n", lwpid);
1142
1143 err = linux_attach_lwp (ptid);
1144
1145 /* Be quiet if we simply raced with the thread exiting. EPERM
1146 is returned if the thread's task still exists, and is marked
1147 as exited or zombie, as well as other conditions, so in that
1148 case, confirm the status in /proc/PID/status. */
1149 if (err == ESRCH
1150 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1151 {
1152 if (debug_threads)
1153 {
1154 debug_printf ("Cannot attach to lwp %d: "
1155 "thread is gone (%d: %s)\n",
1156 lwpid, err, strerror (err));
1157 }
1158 }
1159 else if (err != 0)
1160 {
1161 warning (_("Cannot attach to lwp %d: %s"),
1162 lwpid,
1163 linux_ptrace_attach_fail_reason_string (ptid, err));
1164 }
1165
1166 return 1;
1167 }
1168 return 0;
1169 }
1170
1171 static void async_file_mark (void);
1172
1173 /* Attach to PID. If PID is the tgid, attach to it and all
1174 of its threads. */
1175
1176 static int
1177 linux_attach (unsigned long pid)
1178 {
1179 struct process_info *proc;
1180 struct thread_info *initial_thread;
1181 ptid_t ptid = ptid_build (pid, pid, 0);
1182 int err;
1183
1184 /* Attach to PID. We will check for other threads
1185 soon. */
1186 err = linux_attach_lwp (ptid);
1187 if (err != 0)
1188 error ("Cannot attach to process %ld: %s",
1189 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1190
1191 proc = linux_add_process (pid, 1);
1192
1193 /* Don't ignore the initial SIGSTOP if we just attached to this
1194 process. It will be collected by wait shortly. */
1195 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1196 initial_thread->last_resume_kind = resume_stop;
1197
1198 /* We must attach to every LWP. If /proc is mounted, use that to
1199 find them now. On the one hand, the inferior may be using raw
1200 clone instead of using pthreads. On the other hand, even if it
1201 is using pthreads, GDB may not be connected yet (thread_db needs
1202 to do symbol lookups, through qSymbol). Also, thread_db walks
1203 structures in the inferior's address space to find the list of
1204 threads/LWPs, and those structures may well be corrupted. Note
1205 that once thread_db is loaded, we'll still use it to list threads
1206 and associate pthread info with each LWP. */
1207 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1208
1209 /* GDB will shortly read the xml target description for this
1210 process, to figure out the process' architecture. But the target
1211 description is only filled in when the first process/thread in
1212 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1213 that now, otherwise, if GDB is fast enough, it could read the
1214 target description _before_ that initial stop. */
1215 if (non_stop)
1216 {
1217 struct lwp_info *lwp;
1218 int wstat, lwpid;
1219 ptid_t pid_ptid = pid_to_ptid (pid);
1220
1221 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1222 &wstat, __WALL);
1223 gdb_assert (lwpid > 0);
1224
1225 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1226
1227 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1228 {
1229 lwp->status_pending_p = 1;
1230 lwp->status_pending = wstat;
1231 }
1232
1233 initial_thread->last_resume_kind = resume_continue;
1234
1235 async_file_mark ();
1236
1237 gdb_assert (proc->tdesc != NULL);
1238 }
1239
1240 return 0;
1241 }
1242
1243 struct counter
1244 {
1245 int pid;
1246 int count;
1247 };
1248
1249 static int
1250 second_thread_of_pid_p (thread_info *thread, void *args)
1251 {
1252 struct counter *counter = (struct counter *) args;
1253
1254 if (thread->id.pid () == counter->pid)
1255 {
1256 if (++counter->count > 1)
1257 return 1;
1258 }
1259
1260 return 0;
1261 }
1262
1263 static int
1264 last_thread_of_process_p (int pid)
1265 {
1266 struct counter counter = { pid , 0 };
1267
1268 return (find_inferior (&all_threads,
1269 second_thread_of_pid_p, &counter) == NULL);
1270 }
1271
1272 /* Kill LWP. */
1273
1274 static void
1275 linux_kill_one_lwp (struct lwp_info *lwp)
1276 {
1277 struct thread_info *thr = get_lwp_thread (lwp);
1278 int pid = lwpid_of (thr);
1279
1280 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1281 there is no signal context, and ptrace(PTRACE_KILL) (or
1282 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1283 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1284 alternative is to kill with SIGKILL. We only need one SIGKILL
1285 per process, not one for each thread. But since we still support
1286 support debugging programs using raw clone without CLONE_THREAD,
1287 we send one for each thread. For years, we used PTRACE_KILL
1288 only, so we're being a bit paranoid about some old kernels where
1289 PTRACE_KILL might work better (dubious if there are any such, but
1290 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1291 second, and so we're fine everywhere. */
1292
1293 errno = 0;
1294 kill_lwp (pid, SIGKILL);
1295 if (debug_threads)
1296 {
1297 int save_errno = errno;
1298
1299 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1300 target_pid_to_str (ptid_of (thr)),
1301 save_errno ? strerror (save_errno) : "OK");
1302 }
1303
1304 errno = 0;
1305 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1306 if (debug_threads)
1307 {
1308 int save_errno = errno;
1309
1310 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1311 target_pid_to_str (ptid_of (thr)),
1312 save_errno ? strerror (save_errno) : "OK");
1313 }
1314 }
1315
1316 /* Kill LWP and wait for it to die. */
1317
1318 static void
1319 kill_wait_lwp (struct lwp_info *lwp)
1320 {
1321 struct thread_info *thr = get_lwp_thread (lwp);
1322 int pid = ptid_get_pid (ptid_of (thr));
1323 int lwpid = ptid_get_lwp (ptid_of (thr));
1324 int wstat;
1325 int res;
1326
1327 if (debug_threads)
1328 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1329
1330 do
1331 {
1332 linux_kill_one_lwp (lwp);
1333
1334 /* Make sure it died. Notes:
1335
1336 - The loop is most likely unnecessary.
1337
1338 - We don't use linux_wait_for_event as that could delete lwps
1339 while we're iterating over them. We're not interested in
1340 any pending status at this point, only in making sure all
1341 wait status on the kernel side are collected until the
1342 process is reaped.
1343
1344 - We don't use __WALL here as the __WALL emulation relies on
1345 SIGCHLD, and killing a stopped process doesn't generate
1346 one, nor an exit status.
1347 */
1348 res = my_waitpid (lwpid, &wstat, 0);
1349 if (res == -1 && errno == ECHILD)
1350 res = my_waitpid (lwpid, &wstat, __WCLONE);
1351 } while (res > 0 && WIFSTOPPED (wstat));
1352
1353 /* Even if it was stopped, the child may have already disappeared.
1354 E.g., if it was killed by SIGKILL. */
1355 if (res < 0 && errno != ECHILD)
1356 perror_with_name ("kill_wait_lwp");
1357 }
1358
1359 /* Callback for `find_inferior'. Kills an lwp of a given process,
1360 except the leader. */
1361
1362 static int
1363 kill_one_lwp_callback (thread_info *thread, void *args)
1364 {
1365 struct lwp_info *lwp = get_thread_lwp (thread);
1366 int pid = * (int *) args;
1367
1368 if (thread->id.pid () != pid)
1369 return 0;
1370
1371 /* We avoid killing the first thread here, because of a Linux kernel (at
1372 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1373 the children get a chance to be reaped, it will remain a zombie
1374 forever. */
1375
1376 if (lwpid_of (thread) == pid)
1377 {
1378 if (debug_threads)
1379 debug_printf ("lkop: is last of process %s\n",
1380 target_pid_to_str (thread->id));
1381 return 0;
1382 }
1383
1384 kill_wait_lwp (lwp);
1385 return 0;
1386 }
1387
1388 static int
1389 linux_kill (int pid)
1390 {
1391 struct process_info *process;
1392 struct lwp_info *lwp;
1393
1394 process = find_process_pid (pid);
1395 if (process == NULL)
1396 return -1;
1397
1398 /* If we're killing a running inferior, make sure it is stopped
1399 first, as PTRACE_KILL will not work otherwise. */
1400 stop_all_lwps (0, NULL);
1401
1402 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1403
1404 /* See the comment in linux_kill_one_lwp. We did not kill the first
1405 thread in the list, so do so now. */
1406 lwp = find_lwp_pid (pid_to_ptid (pid));
1407
1408 if (lwp == NULL)
1409 {
1410 if (debug_threads)
1411 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1412 pid);
1413 }
1414 else
1415 kill_wait_lwp (lwp);
1416
1417 the_target->mourn (process);
1418
1419 /* Since we presently can only stop all lwps of all processes, we
1420 need to unstop lwps of other processes. */
1421 unstop_all_lwps (0, NULL);
1422 return 0;
1423 }
1424
1425 /* Get pending signal of THREAD, for detaching purposes. This is the
1426 signal the thread last stopped for, which we need to deliver to the
1427 thread when detaching, otherwise, it'd be suppressed/lost. */
1428
1429 static int
1430 get_detach_signal (struct thread_info *thread)
1431 {
1432 enum gdb_signal signo = GDB_SIGNAL_0;
1433 int status;
1434 struct lwp_info *lp = get_thread_lwp (thread);
1435
1436 if (lp->status_pending_p)
1437 status = lp->status_pending;
1438 else
1439 {
1440 /* If the thread had been suspended by gdbserver, and it stopped
1441 cleanly, then it'll have stopped with SIGSTOP. But we don't
1442 want to deliver that SIGSTOP. */
1443 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1444 || thread->last_status.value.sig == GDB_SIGNAL_0)
1445 return 0;
1446
1447 /* Otherwise, we may need to deliver the signal we
1448 intercepted. */
1449 status = lp->last_status;
1450 }
1451
1452 if (!WIFSTOPPED (status))
1453 {
1454 if (debug_threads)
1455 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1456 target_pid_to_str (ptid_of (thread)));
1457 return 0;
1458 }
1459
1460 /* Extended wait statuses aren't real SIGTRAPs. */
1461 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1462 {
1463 if (debug_threads)
1464 debug_printf ("GPS: lwp %s had stopped with extended "
1465 "status: no pending signal\n",
1466 target_pid_to_str (ptid_of (thread)));
1467 return 0;
1468 }
1469
1470 signo = gdb_signal_from_host (WSTOPSIG (status));
1471
1472 if (program_signals_p && !program_signals[signo])
1473 {
1474 if (debug_threads)
1475 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1476 target_pid_to_str (ptid_of (thread)),
1477 gdb_signal_to_string (signo));
1478 return 0;
1479 }
1480 else if (!program_signals_p
1481 /* If we have no way to know which signals GDB does not
1482 want to have passed to the program, assume
1483 SIGTRAP/SIGINT, which is GDB's default. */
1484 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1485 {
1486 if (debug_threads)
1487 debug_printf ("GPS: lwp %s had signal %s, "
1488 "but we don't know if we should pass it. "
1489 "Default to not.\n",
1490 target_pid_to_str (ptid_of (thread)),
1491 gdb_signal_to_string (signo));
1492 return 0;
1493 }
1494 else
1495 {
1496 if (debug_threads)
1497 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1498 target_pid_to_str (ptid_of (thread)),
1499 gdb_signal_to_string (signo));
1500
1501 return WSTOPSIG (status);
1502 }
1503 }
1504
1505 /* Detach from LWP. */
1506
1507 static void
1508 linux_detach_one_lwp (struct lwp_info *lwp)
1509 {
1510 struct thread_info *thread = get_lwp_thread (lwp);
1511 int sig;
1512 int lwpid;
1513
1514 /* If there is a pending SIGSTOP, get rid of it. */
1515 if (lwp->stop_expected)
1516 {
1517 if (debug_threads)
1518 debug_printf ("Sending SIGCONT to %s\n",
1519 target_pid_to_str (ptid_of (thread)));
1520
1521 kill_lwp (lwpid_of (thread), SIGCONT);
1522 lwp->stop_expected = 0;
1523 }
1524
1525 /* Pass on any pending signal for this thread. */
1526 sig = get_detach_signal (thread);
1527
1528 /* Preparing to resume may try to write registers, and fail if the
1529 lwp is zombie. If that happens, ignore the error. We'll handle
1530 it below, when detach fails with ESRCH. */
1531 TRY
1532 {
1533 /* Flush any pending changes to the process's registers. */
1534 regcache_invalidate_thread (thread);
1535
1536 /* Finally, let it resume. */
1537 if (the_low_target.prepare_to_resume != NULL)
1538 the_low_target.prepare_to_resume (lwp);
1539 }
1540 CATCH (ex, RETURN_MASK_ERROR)
1541 {
1542 if (!check_ptrace_stopped_lwp_gone (lwp))
1543 throw_exception (ex);
1544 }
1545 END_CATCH
1546
1547 lwpid = lwpid_of (thread);
1548 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1549 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1550 {
1551 int save_errno = errno;
1552
1553 /* We know the thread exists, so ESRCH must mean the lwp is
1554 zombie. This can happen if one of the already-detached
1555 threads exits the whole thread group. In that case we're
1556 still attached, and must reap the lwp. */
1557 if (save_errno == ESRCH)
1558 {
1559 int ret, status;
1560
1561 ret = my_waitpid (lwpid, &status, __WALL);
1562 if (ret == -1)
1563 {
1564 warning (_("Couldn't reap LWP %d while detaching: %s"),
1565 lwpid, strerror (errno));
1566 }
1567 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1568 {
1569 warning (_("Reaping LWP %d while detaching "
1570 "returned unexpected status 0x%x"),
1571 lwpid, status);
1572 }
1573 }
1574 else
1575 {
1576 error (_("Can't detach %s: %s"),
1577 target_pid_to_str (ptid_of (thread)),
1578 strerror (save_errno));
1579 }
1580 }
1581 else if (debug_threads)
1582 {
1583 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1584 target_pid_to_str (ptid_of (thread)),
1585 strsignal (sig));
1586 }
1587
1588 delete_lwp (lwp);
1589 }
1590
1591 /* Callback for find_inferior. Detaches from non-leader threads of a
1592 given process. */
1593
1594 static int
1595 linux_detach_lwp_callback (thread_info *thread, void *args)
1596 {
1597 struct lwp_info *lwp = get_thread_lwp (thread);
1598 int pid = *(int *) args;
1599 int lwpid = lwpid_of (thread);
1600
1601 /* Skip other processes. */
1602 if (thread->id.pid () != pid)
1603 return 0;
1604
1605 /* We don't actually detach from the thread group leader just yet.
1606 If the thread group exits, we must reap the zombie clone lwps
1607 before we're able to reap the leader. */
1608 if (thread->id.pid () == lwpid)
1609 return 0;
1610
1611 linux_detach_one_lwp (lwp);
1612 return 0;
1613 }
1614
1615 static int
1616 linux_detach (int pid)
1617 {
1618 struct process_info *process;
1619 struct lwp_info *main_lwp;
1620
1621 process = find_process_pid (pid);
1622 if (process == NULL)
1623 return -1;
1624
1625 /* As there's a step over already in progress, let it finish first,
1626 otherwise nesting a stabilize_threads operation on top gets real
1627 messy. */
1628 complete_ongoing_step_over ();
1629
1630 /* Stop all threads before detaching. First, ptrace requires that
1631 the thread is stopped to sucessfully detach. Second, thread_db
1632 may need to uninstall thread event breakpoints from memory, which
1633 only works with a stopped process anyway. */
1634 stop_all_lwps (0, NULL);
1635
1636 #ifdef USE_THREAD_DB
1637 thread_db_detach (process);
1638 #endif
1639
1640 /* Stabilize threads (move out of jump pads). */
1641 stabilize_threads ();
1642
1643 /* Detach from the clone lwps first. If the thread group exits just
1644 while we're detaching, we must reap the clone lwps before we're
1645 able to reap the leader. */
1646 find_inferior (&all_threads, linux_detach_lwp_callback, &pid);
1647
1648 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1649 linux_detach_one_lwp (main_lwp);
1650
1651 the_target->mourn (process);
1652
1653 /* Since we presently can only stop all lwps of all processes, we
1654 need to unstop lwps of other processes. */
1655 unstop_all_lwps (0, NULL);
1656 return 0;
1657 }
1658
1659 /* Remove all LWPs that belong to process PROC from the lwp list. */
1660
1661 static int
1662 delete_lwp_callback (thread_info *thread, void *proc)
1663 {
1664 struct lwp_info *lwp = get_thread_lwp (thread);
1665 struct process_info *process = (struct process_info *) proc;
1666
1667 if (pid_of (thread) == pid_of (process))
1668 delete_lwp (lwp);
1669
1670 return 0;
1671 }
1672
1673 static void
1674 linux_mourn (struct process_info *process)
1675 {
1676 struct process_info_private *priv;
1677
1678 #ifdef USE_THREAD_DB
1679 thread_db_mourn (process);
1680 #endif
1681
1682 find_inferior (&all_threads, delete_lwp_callback, process);
1683
1684 /* Freeing all private data. */
1685 priv = process->priv;
1686 if (the_low_target.delete_process != NULL)
1687 the_low_target.delete_process (priv->arch_private);
1688 else
1689 gdb_assert (priv->arch_private == NULL);
1690 free (priv);
1691 process->priv = NULL;
1692
1693 remove_process (process);
1694 }
1695
1696 static void
1697 linux_join (int pid)
1698 {
1699 int status, ret;
1700
1701 do {
1702 ret = my_waitpid (pid, &status, 0);
1703 if (WIFEXITED (status) || WIFSIGNALED (status))
1704 break;
1705 } while (ret != -1 || errno != ECHILD);
1706 }
1707
1708 /* Return nonzero if the given thread is still alive. */
1709 static int
1710 linux_thread_alive (ptid_t ptid)
1711 {
1712 struct lwp_info *lwp = find_lwp_pid (ptid);
1713
1714 /* We assume we always know if a thread exits. If a whole process
1715 exited but we still haven't been able to report it to GDB, we'll
1716 hold on to the last lwp of the dead process. */
1717 if (lwp != NULL)
1718 return !lwp_is_marked_dead (lwp);
1719 else
1720 return 0;
1721 }
1722
1723 /* Return 1 if this lwp still has an interesting status pending. If
1724 not (e.g., it had stopped for a breakpoint that is gone), return
1725 false. */
1726
1727 static int
1728 thread_still_has_status_pending_p (struct thread_info *thread)
1729 {
1730 struct lwp_info *lp = get_thread_lwp (thread);
1731
1732 if (!lp->status_pending_p)
1733 return 0;
1734
1735 if (thread->last_resume_kind != resume_stop
1736 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1737 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1738 {
1739 struct thread_info *saved_thread;
1740 CORE_ADDR pc;
1741 int discard = 0;
1742
1743 gdb_assert (lp->last_status != 0);
1744
1745 pc = get_pc (lp);
1746
1747 saved_thread = current_thread;
1748 current_thread = thread;
1749
1750 if (pc != lp->stop_pc)
1751 {
1752 if (debug_threads)
1753 debug_printf ("PC of %ld changed\n",
1754 lwpid_of (thread));
1755 discard = 1;
1756 }
1757
1758 #if !USE_SIGTRAP_SIGINFO
1759 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1760 && !(*the_low_target.breakpoint_at) (pc))
1761 {
1762 if (debug_threads)
1763 debug_printf ("previous SW breakpoint of %ld gone\n",
1764 lwpid_of (thread));
1765 discard = 1;
1766 }
1767 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1768 && !hardware_breakpoint_inserted_here (pc))
1769 {
1770 if (debug_threads)
1771 debug_printf ("previous HW breakpoint of %ld gone\n",
1772 lwpid_of (thread));
1773 discard = 1;
1774 }
1775 #endif
1776
1777 current_thread = saved_thread;
1778
1779 if (discard)
1780 {
1781 if (debug_threads)
1782 debug_printf ("discarding pending breakpoint status\n");
1783 lp->status_pending_p = 0;
1784 return 0;
1785 }
1786 }
1787
1788 return 1;
1789 }
1790
1791 /* Returns true if LWP is resumed from the client's perspective. */
1792
1793 static int
1794 lwp_resumed (struct lwp_info *lwp)
1795 {
1796 struct thread_info *thread = get_lwp_thread (lwp);
1797
1798 if (thread->last_resume_kind != resume_stop)
1799 return 1;
1800
1801 /* Did gdb send us a `vCont;t', but we haven't reported the
1802 corresponding stop to gdb yet? If so, the thread is still
1803 resumed/running from gdb's perspective. */
1804 if (thread->last_resume_kind == resume_stop
1805 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1806 return 1;
1807
1808 return 0;
1809 }
1810
1811 /* Return 1 if this lwp has an interesting status pending. */
1812 static int
1813 status_pending_p_callback (thread_info *thread, void *arg)
1814 {
1815 struct lwp_info *lp = get_thread_lwp (thread);
1816 ptid_t ptid = * (ptid_t *) arg;
1817
1818 /* Check if we're only interested in events from a specific process
1819 or a specific LWP. */
1820 if (!ptid_match (ptid_of (thread), ptid))
1821 return 0;
1822
1823 if (!lwp_resumed (lp))
1824 return 0;
1825
1826 if (lp->status_pending_p
1827 && !thread_still_has_status_pending_p (thread))
1828 {
1829 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1830 return 0;
1831 }
1832
1833 return lp->status_pending_p;
1834 }
1835
1836 static int
1837 same_lwp (thread_info *thread, void *data)
1838 {
1839 ptid_t ptid = *(ptid_t *) data;
1840 int lwp;
1841
1842 if (ptid_get_lwp (ptid) != 0)
1843 lwp = ptid_get_lwp (ptid);
1844 else
1845 lwp = ptid_get_pid (ptid);
1846
1847 if (thread->id.lwp () == lwp)
1848 return 1;
1849
1850 return 0;
1851 }
1852
1853 struct lwp_info *
1854 find_lwp_pid (ptid_t ptid)
1855 {
1856 thread_info *thread = find_inferior (&all_threads, same_lwp, &ptid);
1857
1858 if (thread == NULL)
1859 return NULL;
1860
1861 return get_thread_lwp (thread);
1862 }
1863
1864 /* Return the number of known LWPs in the tgid given by PID. */
1865
1866 static int
1867 num_lwps (int pid)
1868 {
1869 int count = 0;
1870
1871 for_each_thread (pid, [&] (thread_info *thread)
1872 {
1873 count++;
1874 });
1875
1876 return count;
1877 }
1878
1879 /* See nat/linux-nat.h. */
1880
1881 struct lwp_info *
1882 iterate_over_lwps (ptid_t filter,
1883 iterate_over_lwps_ftype callback,
1884 void *data)
1885 {
1886 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1887 {
1888 lwp_info *lwp = get_thread_lwp (thread);
1889
1890 return callback (lwp, data);
1891 });
1892
1893 if (thread == NULL)
1894 return NULL;
1895
1896 return get_thread_lwp (thread);
1897 }
1898
1899 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1900 their exits until all other threads in the group have exited. */
1901
1902 static void
1903 check_zombie_leaders (void)
1904 {
1905 for_each_process ([] (process_info *proc) {
1906 pid_t leader_pid = pid_of (proc);
1907 struct lwp_info *leader_lp;
1908
1909 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1910
1911 if (debug_threads)
1912 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1913 "num_lwps=%d, zombie=%d\n",
1914 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1915 linux_proc_pid_is_zombie (leader_pid));
1916
1917 if (leader_lp != NULL && !leader_lp->stopped
1918 /* Check if there are other threads in the group, as we may
1919 have raced with the inferior simply exiting. */
1920 && !last_thread_of_process_p (leader_pid)
1921 && linux_proc_pid_is_zombie (leader_pid))
1922 {
1923 /* A leader zombie can mean one of two things:
1924
1925 - It exited, and there's an exit status pending
1926 available, or only the leader exited (not the whole
1927 program). In the latter case, we can't waitpid the
1928 leader's exit status until all other threads are gone.
1929
1930 - There are 3 or more threads in the group, and a thread
1931 other than the leader exec'd. On an exec, the Linux
1932 kernel destroys all other threads (except the execing
1933 one) in the thread group, and resets the execing thread's
1934 tid to the tgid. No exit notification is sent for the
1935 execing thread -- from the ptracer's perspective, it
1936 appears as though the execing thread just vanishes.
1937 Until we reap all other threads except the leader and the
1938 execing thread, the leader will be zombie, and the
1939 execing thread will be in `D (disc sleep)'. As soon as
1940 all other threads are reaped, the execing thread changes
1941 it's tid to the tgid, and the previous (zombie) leader
1942 vanishes, giving place to the "new" leader. We could try
1943 distinguishing the exit and exec cases, by waiting once
1944 more, and seeing if something comes out, but it doesn't
1945 sound useful. The previous leader _does_ go away, and
1946 we'll re-add the new one once we see the exec event
1947 (which is just the same as what would happen if the
1948 previous leader did exit voluntarily before some other
1949 thread execs). */
1950
1951 if (debug_threads)
1952 debug_printf ("CZL: Thread group leader %d zombie "
1953 "(it exited, or another thread execd).\n",
1954 leader_pid);
1955
1956 delete_lwp (leader_lp);
1957 }
1958 });
1959 }
1960
1961 /* Callback for `find_inferior'. Returns the first LWP that is not
1962 stopped. ARG is a PTID filter. */
1963
1964 static int
1965 not_stopped_callback (thread_info *thread, void *arg)
1966 {
1967 struct lwp_info *lwp;
1968 ptid_t filter = *(ptid_t *) arg;
1969
1970 if (!ptid_match (ptid_of (thread), filter))
1971 return 0;
1972
1973 lwp = get_thread_lwp (thread);
1974 if (!lwp->stopped)
1975 return 1;
1976
1977 return 0;
1978 }
1979
1980 /* Increment LWP's suspend count. */
1981
1982 static void
1983 lwp_suspended_inc (struct lwp_info *lwp)
1984 {
1985 lwp->suspended++;
1986
1987 if (debug_threads && lwp->suspended > 4)
1988 {
1989 struct thread_info *thread = get_lwp_thread (lwp);
1990
1991 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1992 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1993 }
1994 }
1995
1996 /* Decrement LWP's suspend count. */
1997
1998 static void
1999 lwp_suspended_decr (struct lwp_info *lwp)
2000 {
2001 lwp->suspended--;
2002
2003 if (lwp->suspended < 0)
2004 {
2005 struct thread_info *thread = get_lwp_thread (lwp);
2006
2007 internal_error (__FILE__, __LINE__,
2008 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
2009 lwp->suspended);
2010 }
2011 }
2012
2013 /* This function should only be called if the LWP got a SIGTRAP.
2014
2015 Handle any tracepoint steps or hits. Return true if a tracepoint
2016 event was handled, 0 otherwise. */
2017
2018 static int
2019 handle_tracepoints (struct lwp_info *lwp)
2020 {
2021 struct thread_info *tinfo = get_lwp_thread (lwp);
2022 int tpoint_related_event = 0;
2023
2024 gdb_assert (lwp->suspended == 0);
2025
2026 /* If this tracepoint hit causes a tracing stop, we'll immediately
2027 uninsert tracepoints. To do this, we temporarily pause all
2028 threads, unpatch away, and then unpause threads. We need to make
2029 sure the unpausing doesn't resume LWP too. */
2030 lwp_suspended_inc (lwp);
2031
2032 /* And we need to be sure that any all-threads-stopping doesn't try
2033 to move threads out of the jump pads, as it could deadlock the
2034 inferior (LWP could be in the jump pad, maybe even holding the
2035 lock.) */
2036
2037 /* Do any necessary step collect actions. */
2038 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2039
2040 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2041
2042 /* See if we just hit a tracepoint and do its main collect
2043 actions. */
2044 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2045
2046 lwp_suspended_decr (lwp);
2047
2048 gdb_assert (lwp->suspended == 0);
2049 gdb_assert (!stabilizing_threads
2050 || (lwp->collecting_fast_tracepoint
2051 != fast_tpoint_collect_result::not_collecting));
2052
2053 if (tpoint_related_event)
2054 {
2055 if (debug_threads)
2056 debug_printf ("got a tracepoint event\n");
2057 return 1;
2058 }
2059
2060 return 0;
2061 }
2062
2063 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2064 collection status. */
2065
2066 static fast_tpoint_collect_result
2067 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2068 struct fast_tpoint_collect_status *status)
2069 {
2070 CORE_ADDR thread_area;
2071 struct thread_info *thread = get_lwp_thread (lwp);
2072
2073 if (the_low_target.get_thread_area == NULL)
2074 return fast_tpoint_collect_result::not_collecting;
2075
2076 /* Get the thread area address. This is used to recognize which
2077 thread is which when tracing with the in-process agent library.
2078 We don't read anything from the address, and treat it as opaque;
2079 it's the address itself that we assume is unique per-thread. */
2080 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2081 return fast_tpoint_collect_result::not_collecting;
2082
2083 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2084 }
2085
2086 /* The reason we resume in the caller, is because we want to be able
2087 to pass lwp->status_pending as WSTAT, and we need to clear
2088 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2089 refuses to resume. */
2090
2091 static int
2092 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2093 {
2094 struct thread_info *saved_thread;
2095
2096 saved_thread = current_thread;
2097 current_thread = get_lwp_thread (lwp);
2098
2099 if ((wstat == NULL
2100 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2101 && supports_fast_tracepoints ()
2102 && agent_loaded_p ())
2103 {
2104 struct fast_tpoint_collect_status status;
2105
2106 if (debug_threads)
2107 debug_printf ("Checking whether LWP %ld needs to move out of the "
2108 "jump pad.\n",
2109 lwpid_of (current_thread));
2110
2111 fast_tpoint_collect_result r
2112 = linux_fast_tracepoint_collecting (lwp, &status);
2113
2114 if (wstat == NULL
2115 || (WSTOPSIG (*wstat) != SIGILL
2116 && WSTOPSIG (*wstat) != SIGFPE
2117 && WSTOPSIG (*wstat) != SIGSEGV
2118 && WSTOPSIG (*wstat) != SIGBUS))
2119 {
2120 lwp->collecting_fast_tracepoint = r;
2121
2122 if (r != fast_tpoint_collect_result::not_collecting)
2123 {
2124 if (r == fast_tpoint_collect_result::before_insn
2125 && lwp->exit_jump_pad_bkpt == NULL)
2126 {
2127 /* Haven't executed the original instruction yet.
2128 Set breakpoint there, and wait till it's hit,
2129 then single-step until exiting the jump pad. */
2130 lwp->exit_jump_pad_bkpt
2131 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2132 }
2133
2134 if (debug_threads)
2135 debug_printf ("Checking whether LWP %ld needs to move out of "
2136 "the jump pad...it does\n",
2137 lwpid_of (current_thread));
2138 current_thread = saved_thread;
2139
2140 return 1;
2141 }
2142 }
2143 else
2144 {
2145 /* If we get a synchronous signal while collecting, *and*
2146 while executing the (relocated) original instruction,
2147 reset the PC to point at the tpoint address, before
2148 reporting to GDB. Otherwise, it's an IPA lib bug: just
2149 report the signal to GDB, and pray for the best. */
2150
2151 lwp->collecting_fast_tracepoint
2152 = fast_tpoint_collect_result::not_collecting;
2153
2154 if (r != fast_tpoint_collect_result::not_collecting
2155 && (status.adjusted_insn_addr <= lwp->stop_pc
2156 && lwp->stop_pc < status.adjusted_insn_addr_end))
2157 {
2158 siginfo_t info;
2159 struct regcache *regcache;
2160
2161 /* The si_addr on a few signals references the address
2162 of the faulting instruction. Adjust that as
2163 well. */
2164 if ((WSTOPSIG (*wstat) == SIGILL
2165 || WSTOPSIG (*wstat) == SIGFPE
2166 || WSTOPSIG (*wstat) == SIGBUS
2167 || WSTOPSIG (*wstat) == SIGSEGV)
2168 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2169 (PTRACE_TYPE_ARG3) 0, &info) == 0
2170 /* Final check just to make sure we don't clobber
2171 the siginfo of non-kernel-sent signals. */
2172 && (uintptr_t) info.si_addr == lwp->stop_pc)
2173 {
2174 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2175 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2176 (PTRACE_TYPE_ARG3) 0, &info);
2177 }
2178
2179 regcache = get_thread_regcache (current_thread, 1);
2180 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2181 lwp->stop_pc = status.tpoint_addr;
2182
2183 /* Cancel any fast tracepoint lock this thread was
2184 holding. */
2185 force_unlock_trace_buffer ();
2186 }
2187
2188 if (lwp->exit_jump_pad_bkpt != NULL)
2189 {
2190 if (debug_threads)
2191 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2192 "stopping all threads momentarily.\n");
2193
2194 stop_all_lwps (1, lwp);
2195
2196 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2197 lwp->exit_jump_pad_bkpt = NULL;
2198
2199 unstop_all_lwps (1, lwp);
2200
2201 gdb_assert (lwp->suspended >= 0);
2202 }
2203 }
2204 }
2205
2206 if (debug_threads)
2207 debug_printf ("Checking whether LWP %ld needs to move out of the "
2208 "jump pad...no\n",
2209 lwpid_of (current_thread));
2210
2211 current_thread = saved_thread;
2212 return 0;
2213 }
2214
2215 /* Enqueue one signal in the "signals to report later when out of the
2216 jump pad" list. */
2217
2218 static void
2219 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2220 {
2221 struct pending_signals *p_sig;
2222 struct thread_info *thread = get_lwp_thread (lwp);
2223
2224 if (debug_threads)
2225 debug_printf ("Deferring signal %d for LWP %ld.\n",
2226 WSTOPSIG (*wstat), lwpid_of (thread));
2227
2228 if (debug_threads)
2229 {
2230 struct pending_signals *sig;
2231
2232 for (sig = lwp->pending_signals_to_report;
2233 sig != NULL;
2234 sig = sig->prev)
2235 debug_printf (" Already queued %d\n",
2236 sig->signal);
2237
2238 debug_printf (" (no more currently queued signals)\n");
2239 }
2240
2241 /* Don't enqueue non-RT signals if they are already in the deferred
2242 queue. (SIGSTOP being the easiest signal to see ending up here
2243 twice) */
2244 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2245 {
2246 struct pending_signals *sig;
2247
2248 for (sig = lwp->pending_signals_to_report;
2249 sig != NULL;
2250 sig = sig->prev)
2251 {
2252 if (sig->signal == WSTOPSIG (*wstat))
2253 {
2254 if (debug_threads)
2255 debug_printf ("Not requeuing already queued non-RT signal %d"
2256 " for LWP %ld\n",
2257 sig->signal,
2258 lwpid_of (thread));
2259 return;
2260 }
2261 }
2262 }
2263
2264 p_sig = XCNEW (struct pending_signals);
2265 p_sig->prev = lwp->pending_signals_to_report;
2266 p_sig->signal = WSTOPSIG (*wstat);
2267
2268 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2269 &p_sig->info);
2270
2271 lwp->pending_signals_to_report = p_sig;
2272 }
2273
2274 /* Dequeue one signal from the "signals to report later when out of
2275 the jump pad" list. */
2276
2277 static int
2278 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2279 {
2280 struct thread_info *thread = get_lwp_thread (lwp);
2281
2282 if (lwp->pending_signals_to_report != NULL)
2283 {
2284 struct pending_signals **p_sig;
2285
2286 p_sig = &lwp->pending_signals_to_report;
2287 while ((*p_sig)->prev != NULL)
2288 p_sig = &(*p_sig)->prev;
2289
2290 *wstat = W_STOPCODE ((*p_sig)->signal);
2291 if ((*p_sig)->info.si_signo != 0)
2292 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2293 &(*p_sig)->info);
2294 free (*p_sig);
2295 *p_sig = NULL;
2296
2297 if (debug_threads)
2298 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2299 WSTOPSIG (*wstat), lwpid_of (thread));
2300
2301 if (debug_threads)
2302 {
2303 struct pending_signals *sig;
2304
2305 for (sig = lwp->pending_signals_to_report;
2306 sig != NULL;
2307 sig = sig->prev)
2308 debug_printf (" Still queued %d\n",
2309 sig->signal);
2310
2311 debug_printf (" (no more queued signals)\n");
2312 }
2313
2314 return 1;
2315 }
2316
2317 return 0;
2318 }
2319
2320 /* Fetch the possibly triggered data watchpoint info and store it in
2321 CHILD.
2322
2323 On some archs, like x86, that use debug registers to set
2324 watchpoints, it's possible that the way to know which watched
2325 address trapped, is to check the register that is used to select
2326 which address to watch. Problem is, between setting the watchpoint
2327 and reading back which data address trapped, the user may change
2328 the set of watchpoints, and, as a consequence, GDB changes the
2329 debug registers in the inferior. To avoid reading back a stale
2330 stopped-data-address when that happens, we cache in LP the fact
2331 that a watchpoint trapped, and the corresponding data address, as
2332 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2333 registers meanwhile, we have the cached data we can rely on. */
2334
2335 static int
2336 check_stopped_by_watchpoint (struct lwp_info *child)
2337 {
2338 if (the_low_target.stopped_by_watchpoint != NULL)
2339 {
2340 struct thread_info *saved_thread;
2341
2342 saved_thread = current_thread;
2343 current_thread = get_lwp_thread (child);
2344
2345 if (the_low_target.stopped_by_watchpoint ())
2346 {
2347 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2348
2349 if (the_low_target.stopped_data_address != NULL)
2350 child->stopped_data_address
2351 = the_low_target.stopped_data_address ();
2352 else
2353 child->stopped_data_address = 0;
2354 }
2355
2356 current_thread = saved_thread;
2357 }
2358
2359 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2360 }
2361
2362 /* Return the ptrace options that we want to try to enable. */
2363
2364 static int
2365 linux_low_ptrace_options (int attached)
2366 {
2367 int options = 0;
2368
2369 if (!attached)
2370 options |= PTRACE_O_EXITKILL;
2371
2372 if (report_fork_events)
2373 options |= PTRACE_O_TRACEFORK;
2374
2375 if (report_vfork_events)
2376 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2377
2378 if (report_exec_events)
2379 options |= PTRACE_O_TRACEEXEC;
2380
2381 options |= PTRACE_O_TRACESYSGOOD;
2382
2383 return options;
2384 }
2385
2386 /* Do low-level handling of the event, and check if we should go on
2387 and pass it to caller code. Return the affected lwp if we are, or
2388 NULL otherwise. */
2389
2390 static struct lwp_info *
2391 linux_low_filter_event (int lwpid, int wstat)
2392 {
2393 struct lwp_info *child;
2394 struct thread_info *thread;
2395 int have_stop_pc = 0;
2396
2397 child = find_lwp_pid (pid_to_ptid (lwpid));
2398
2399 /* Check for stop events reported by a process we didn't already
2400 know about - anything not already in our LWP list.
2401
2402 If we're expecting to receive stopped processes after
2403 fork, vfork, and clone events, then we'll just add the
2404 new one to our list and go back to waiting for the event
2405 to be reported - the stopped process might be returned
2406 from waitpid before or after the event is.
2407
2408 But note the case of a non-leader thread exec'ing after the
2409 leader having exited, and gone from our lists (because
2410 check_zombie_leaders deleted it). The non-leader thread
2411 changes its tid to the tgid. */
2412
2413 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2414 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2415 {
2416 ptid_t child_ptid;
2417
2418 /* A multi-thread exec after we had seen the leader exiting. */
2419 if (debug_threads)
2420 {
2421 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2422 "after exec.\n", lwpid);
2423 }
2424
2425 child_ptid = ptid_build (lwpid, lwpid, 0);
2426 child = add_lwp (child_ptid);
2427 child->stopped = 1;
2428 current_thread = child->thread;
2429 }
2430
2431 /* If we didn't find a process, one of two things presumably happened:
2432 - A process we started and then detached from has exited. Ignore it.
2433 - A process we are controlling has forked and the new child's stop
2434 was reported to us by the kernel. Save its PID. */
2435 if (child == NULL && WIFSTOPPED (wstat))
2436 {
2437 add_to_pid_list (&stopped_pids, lwpid, wstat);
2438 return NULL;
2439 }
2440 else if (child == NULL)
2441 return NULL;
2442
2443 thread = get_lwp_thread (child);
2444
2445 child->stopped = 1;
2446
2447 child->last_status = wstat;
2448
2449 /* Check if the thread has exited. */
2450 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2451 {
2452 if (debug_threads)
2453 debug_printf ("LLFE: %d exited.\n", lwpid);
2454
2455 if (finish_step_over (child))
2456 {
2457 /* Unsuspend all other LWPs, and set them back running again. */
2458 unsuspend_all_lwps (child);
2459 }
2460
2461 /* If there is at least one more LWP, then the exit signal was
2462 not the end of the debugged application and should be
2463 ignored, unless GDB wants to hear about thread exits. */
2464 if (report_thread_events
2465 || last_thread_of_process_p (pid_of (thread)))
2466 {
2467 /* Since events are serialized to GDB core, and we can't
2468 report this one right now. Leave the status pending for
2469 the next time we're able to report it. */
2470 mark_lwp_dead (child, wstat);
2471 return child;
2472 }
2473 else
2474 {
2475 delete_lwp (child);
2476 return NULL;
2477 }
2478 }
2479
2480 gdb_assert (WIFSTOPPED (wstat));
2481
2482 if (WIFSTOPPED (wstat))
2483 {
2484 struct process_info *proc;
2485
2486 /* Architecture-specific setup after inferior is running. */
2487 proc = find_process_pid (pid_of (thread));
2488 if (proc->tdesc == NULL)
2489 {
2490 if (proc->attached)
2491 {
2492 /* This needs to happen after we have attached to the
2493 inferior and it is stopped for the first time, but
2494 before we access any inferior registers. */
2495 linux_arch_setup_thread (thread);
2496 }
2497 else
2498 {
2499 /* The process is started, but GDBserver will do
2500 architecture-specific setup after the program stops at
2501 the first instruction. */
2502 child->status_pending_p = 1;
2503 child->status_pending = wstat;
2504 return child;
2505 }
2506 }
2507 }
2508
2509 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2510 {
2511 struct process_info *proc = find_process_pid (pid_of (thread));
2512 int options = linux_low_ptrace_options (proc->attached);
2513
2514 linux_enable_event_reporting (lwpid, options);
2515 child->must_set_ptrace_flags = 0;
2516 }
2517
2518 /* Always update syscall_state, even if it will be filtered later. */
2519 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2520 {
2521 child->syscall_state
2522 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2523 ? TARGET_WAITKIND_SYSCALL_RETURN
2524 : TARGET_WAITKIND_SYSCALL_ENTRY);
2525 }
2526 else
2527 {
2528 /* Almost all other ptrace-stops are known to be outside of system
2529 calls, with further exceptions in handle_extended_wait. */
2530 child->syscall_state = TARGET_WAITKIND_IGNORE;
2531 }
2532
2533 /* Be careful to not overwrite stop_pc until save_stop_reason is
2534 called. */
2535 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2536 && linux_is_extended_waitstatus (wstat))
2537 {
2538 child->stop_pc = get_pc (child);
2539 if (handle_extended_wait (&child, wstat))
2540 {
2541 /* The event has been handled, so just return without
2542 reporting it. */
2543 return NULL;
2544 }
2545 }
2546
2547 if (linux_wstatus_maybe_breakpoint (wstat))
2548 {
2549 if (save_stop_reason (child))
2550 have_stop_pc = 1;
2551 }
2552
2553 if (!have_stop_pc)
2554 child->stop_pc = get_pc (child);
2555
2556 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2557 && child->stop_expected)
2558 {
2559 if (debug_threads)
2560 debug_printf ("Expected stop.\n");
2561 child->stop_expected = 0;
2562
2563 if (thread->last_resume_kind == resume_stop)
2564 {
2565 /* We want to report the stop to the core. Treat the
2566 SIGSTOP as a normal event. */
2567 if (debug_threads)
2568 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2569 target_pid_to_str (ptid_of (thread)));
2570 }
2571 else if (stopping_threads != NOT_STOPPING_THREADS)
2572 {
2573 /* Stopping threads. We don't want this SIGSTOP to end up
2574 pending. */
2575 if (debug_threads)
2576 debug_printf ("LLW: SIGSTOP caught for %s "
2577 "while stopping threads.\n",
2578 target_pid_to_str (ptid_of (thread)));
2579 return NULL;
2580 }
2581 else
2582 {
2583 /* This is a delayed SIGSTOP. Filter out the event. */
2584 if (debug_threads)
2585 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2586 child->stepping ? "step" : "continue",
2587 target_pid_to_str (ptid_of (thread)));
2588
2589 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2590 return NULL;
2591 }
2592 }
2593
2594 child->status_pending_p = 1;
2595 child->status_pending = wstat;
2596 return child;
2597 }
2598
2599 /* Return true if THREAD is doing hardware single step. */
2600
2601 static int
2602 maybe_hw_step (struct thread_info *thread)
2603 {
2604 if (can_hardware_single_step ())
2605 return 1;
2606 else
2607 {
2608 /* GDBserver must insert single-step breakpoint for software
2609 single step. */
2610 gdb_assert (has_single_step_breakpoints (thread));
2611 return 0;
2612 }
2613 }
2614
2615 /* Resume LWPs that are currently stopped without any pending status
2616 to report, but are resumed from the core's perspective. */
2617
2618 static void
2619 resume_stopped_resumed_lwps (thread_info *thread)
2620 {
2621 struct lwp_info *lp = get_thread_lwp (thread);
2622
2623 if (lp->stopped
2624 && !lp->suspended
2625 && !lp->status_pending_p
2626 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2627 {
2628 int step = 0;
2629
2630 if (thread->last_resume_kind == resume_step)
2631 step = maybe_hw_step (thread);
2632
2633 if (debug_threads)
2634 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2635 target_pid_to_str (ptid_of (thread)),
2636 paddress (lp->stop_pc),
2637 step);
2638
2639 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2640 }
2641 }
2642
2643 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2644 match FILTER_PTID (leaving others pending). The PTIDs can be:
2645 minus_one_ptid, to specify any child; a pid PTID, specifying all
2646 lwps of a thread group; or a PTID representing a single lwp. Store
2647 the stop status through the status pointer WSTAT. OPTIONS is
2648 passed to the waitpid call. Return 0 if no event was found and
2649 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2650 was found. Return the PID of the stopped child otherwise. */
2651
2652 static int
2653 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2654 int *wstatp, int options)
2655 {
2656 struct thread_info *event_thread;
2657 struct lwp_info *event_child, *requested_child;
2658 sigset_t block_mask, prev_mask;
2659
2660 retry:
2661 /* N.B. event_thread points to the thread_info struct that contains
2662 event_child. Keep them in sync. */
2663 event_thread = NULL;
2664 event_child = NULL;
2665 requested_child = NULL;
2666
2667 /* Check for a lwp with a pending status. */
2668
2669 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2670 {
2671 event_thread = (struct thread_info *)
2672 find_inferior_in_random (&all_threads, status_pending_p_callback,
2673 &filter_ptid);
2674 if (event_thread != NULL)
2675 event_child = get_thread_lwp (event_thread);
2676 if (debug_threads && event_thread)
2677 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2678 }
2679 else if (!ptid_equal (filter_ptid, null_ptid))
2680 {
2681 requested_child = find_lwp_pid (filter_ptid);
2682
2683 if (stopping_threads == NOT_STOPPING_THREADS
2684 && requested_child->status_pending_p
2685 && (requested_child->collecting_fast_tracepoint
2686 != fast_tpoint_collect_result::not_collecting))
2687 {
2688 enqueue_one_deferred_signal (requested_child,
2689 &requested_child->status_pending);
2690 requested_child->status_pending_p = 0;
2691 requested_child->status_pending = 0;
2692 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2693 }
2694
2695 if (requested_child->suspended
2696 && requested_child->status_pending_p)
2697 {
2698 internal_error (__FILE__, __LINE__,
2699 "requesting an event out of a"
2700 " suspended child?");
2701 }
2702
2703 if (requested_child->status_pending_p)
2704 {
2705 event_child = requested_child;
2706 event_thread = get_lwp_thread (event_child);
2707 }
2708 }
2709
2710 if (event_child != NULL)
2711 {
2712 if (debug_threads)
2713 debug_printf ("Got an event from pending child %ld (%04x)\n",
2714 lwpid_of (event_thread), event_child->status_pending);
2715 *wstatp = event_child->status_pending;
2716 event_child->status_pending_p = 0;
2717 event_child->status_pending = 0;
2718 current_thread = event_thread;
2719 return lwpid_of (event_thread);
2720 }
2721
2722 /* But if we don't find a pending event, we'll have to wait.
2723
2724 We only enter this loop if no process has a pending wait status.
2725 Thus any action taken in response to a wait status inside this
2726 loop is responding as soon as we detect the status, not after any
2727 pending events. */
2728
2729 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2730 all signals while here. */
2731 sigfillset (&block_mask);
2732 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2733
2734 /* Always pull all events out of the kernel. We'll randomly select
2735 an event LWP out of all that have events, to prevent
2736 starvation. */
2737 while (event_child == NULL)
2738 {
2739 pid_t ret = 0;
2740
2741 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2742 quirks:
2743
2744 - If the thread group leader exits while other threads in the
2745 thread group still exist, waitpid(TGID, ...) hangs. That
2746 waitpid won't return an exit status until the other threads
2747 in the group are reaped.
2748
2749 - When a non-leader thread execs, that thread just vanishes
2750 without reporting an exit (so we'd hang if we waited for it
2751 explicitly in that case). The exec event is reported to
2752 the TGID pid. */
2753 errno = 0;
2754 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2755
2756 if (debug_threads)
2757 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2758 ret, errno ? strerror (errno) : "ERRNO-OK");
2759
2760 if (ret > 0)
2761 {
2762 if (debug_threads)
2763 {
2764 debug_printf ("LLW: waitpid %ld received %s\n",
2765 (long) ret, status_to_str (*wstatp));
2766 }
2767
2768 /* Filter all events. IOW, leave all events pending. We'll
2769 randomly select an event LWP out of all that have events
2770 below. */
2771 linux_low_filter_event (ret, *wstatp);
2772 /* Retry until nothing comes out of waitpid. A single
2773 SIGCHLD can indicate more than one child stopped. */
2774 continue;
2775 }
2776
2777 /* Now that we've pulled all events out of the kernel, resume
2778 LWPs that don't have an interesting event to report. */
2779 if (stopping_threads == NOT_STOPPING_THREADS)
2780 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2781
2782 /* ... and find an LWP with a status to report to the core, if
2783 any. */
2784 event_thread = (struct thread_info *)
2785 find_inferior_in_random (&all_threads, status_pending_p_callback,
2786 &filter_ptid);
2787 if (event_thread != NULL)
2788 {
2789 event_child = get_thread_lwp (event_thread);
2790 *wstatp = event_child->status_pending;
2791 event_child->status_pending_p = 0;
2792 event_child->status_pending = 0;
2793 break;
2794 }
2795
2796 /* Check for zombie thread group leaders. Those can't be reaped
2797 until all other threads in the thread group are. */
2798 check_zombie_leaders ();
2799
2800 /* If there are no resumed children left in the set of LWPs we
2801 want to wait for, bail. We can't just block in
2802 waitpid/sigsuspend, because lwps might have been left stopped
2803 in trace-stop state, and we'd be stuck forever waiting for
2804 their status to change (which would only happen if we resumed
2805 them). Even if WNOHANG is set, this return code is preferred
2806 over 0 (below), as it is more detailed. */
2807 if ((find_inferior (&all_threads,
2808 not_stopped_callback,
2809 &wait_ptid) == NULL))
2810 {
2811 if (debug_threads)
2812 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2813 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2814 return -1;
2815 }
2816
2817 /* No interesting event to report to the caller. */
2818 if ((options & WNOHANG))
2819 {
2820 if (debug_threads)
2821 debug_printf ("WNOHANG set, no event found\n");
2822
2823 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2824 return 0;
2825 }
2826
2827 /* Block until we get an event reported with SIGCHLD. */
2828 if (debug_threads)
2829 debug_printf ("sigsuspend'ing\n");
2830
2831 sigsuspend (&prev_mask);
2832 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2833 goto retry;
2834 }
2835
2836 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2837
2838 current_thread = event_thread;
2839
2840 return lwpid_of (event_thread);
2841 }
2842
2843 /* Wait for an event from child(ren) PTID. PTIDs can be:
2844 minus_one_ptid, to specify any child; a pid PTID, specifying all
2845 lwps of a thread group; or a PTID representing a single lwp. Store
2846 the stop status through the status pointer WSTAT. OPTIONS is
2847 passed to the waitpid call. Return 0 if no event was found and
2848 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2849 was found. Return the PID of the stopped child otherwise. */
2850
2851 static int
2852 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2853 {
2854 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2855 }
2856
2857 /* Count the LWP's that have had events. */
2858
2859 static int
2860 count_events_callback (thread_info *thread, void *data)
2861 {
2862 struct lwp_info *lp = get_thread_lwp (thread);
2863 int *count = (int *) data;
2864
2865 gdb_assert (count != NULL);
2866
2867 /* Count only resumed LWPs that have an event pending. */
2868 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2869 && lp->status_pending_p)
2870 (*count)++;
2871
2872 return 0;
2873 }
2874
2875 /* Select the LWP (if any) that is currently being single-stepped. */
2876
2877 static int
2878 select_singlestep_lwp_callback (thread_info *thread, void *data)
2879 {
2880 struct lwp_info *lp = get_thread_lwp (thread);
2881
2882 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2883 && thread->last_resume_kind == resume_step
2884 && lp->status_pending_p)
2885 return 1;
2886 else
2887 return 0;
2888 }
2889
2890 /* Select the Nth LWP that has had an event. */
2891
2892 static int
2893 select_event_lwp_callback (thread_info *thread, void *data)
2894 {
2895 struct lwp_info *lp = get_thread_lwp (thread);
2896 int *selector = (int *) data;
2897
2898 gdb_assert (selector != NULL);
2899
2900 /* Select only resumed LWPs that have an event pending. */
2901 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2902 && lp->status_pending_p)
2903 if ((*selector)-- == 0)
2904 return 1;
2905
2906 return 0;
2907 }
2908
2909 /* Select one LWP out of those that have events pending. */
2910
2911 static void
2912 select_event_lwp (struct lwp_info **orig_lp)
2913 {
2914 int num_events = 0;
2915 int random_selector;
2916 struct thread_info *event_thread = NULL;
2917
2918 /* In all-stop, give preference to the LWP that is being
2919 single-stepped. There will be at most one, and it's the LWP that
2920 the core is most interested in. If we didn't do this, then we'd
2921 have to handle pending step SIGTRAPs somehow in case the core
2922 later continues the previously-stepped thread, otherwise we'd
2923 report the pending SIGTRAP, and the core, not having stepped the
2924 thread, wouldn't understand what the trap was for, and therefore
2925 would report it to the user as a random signal. */
2926 if (!non_stop)
2927 {
2928 event_thread
2929 = (struct thread_info *) find_inferior (&all_threads,
2930 select_singlestep_lwp_callback,
2931 NULL);
2932 if (event_thread != NULL)
2933 {
2934 if (debug_threads)
2935 debug_printf ("SEL: Select single-step %s\n",
2936 target_pid_to_str (ptid_of (event_thread)));
2937 }
2938 }
2939 if (event_thread == NULL)
2940 {
2941 /* No single-stepping LWP. Select one at random, out of those
2942 which have had events. */
2943
2944 /* First see how many events we have. */
2945 find_inferior (&all_threads, count_events_callback, &num_events);
2946 gdb_assert (num_events > 0);
2947
2948 /* Now randomly pick a LWP out of those that have had
2949 events. */
2950 random_selector = (int)
2951 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2952
2953 if (debug_threads && num_events > 1)
2954 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2955 num_events, random_selector);
2956
2957 event_thread
2958 = (struct thread_info *) find_inferior (&all_threads,
2959 select_event_lwp_callback,
2960 &random_selector);
2961 }
2962
2963 if (event_thread != NULL)
2964 {
2965 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2966
2967 /* Switch the event LWP. */
2968 *orig_lp = event_lp;
2969 }
2970 }
2971
2972 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2973 NULL. */
2974
2975 static void
2976 unsuspend_all_lwps (struct lwp_info *except)
2977 {
2978 for_each_thread ([&] (thread_info *thread)
2979 {
2980 lwp_info *lwp = get_thread_lwp (thread);
2981
2982 if (lwp != except)
2983 lwp_suspended_decr (lwp);
2984 });
2985 }
2986
2987 static void move_out_of_jump_pad_callback (thread_info *thread);
2988 static bool stuck_in_jump_pad_callback (thread_info *thread);
2989 static int lwp_running (thread_info *thread, void *data);
2990 static ptid_t linux_wait_1 (ptid_t ptid,
2991 struct target_waitstatus *ourstatus,
2992 int target_options);
2993
2994 /* Stabilize threads (move out of jump pads).
2995
2996 If a thread is midway collecting a fast tracepoint, we need to
2997 finish the collection and move it out of the jump pad before
2998 reporting the signal.
2999
3000 This avoids recursion while collecting (when a signal arrives
3001 midway, and the signal handler itself collects), which would trash
3002 the trace buffer. In case the user set a breakpoint in a signal
3003 handler, this avoids the backtrace showing the jump pad, etc..
3004 Most importantly, there are certain things we can't do safely if
3005 threads are stopped in a jump pad (or in its callee's). For
3006 example:
3007
3008 - starting a new trace run. A thread still collecting the
3009 previous run, could trash the trace buffer when resumed. The trace
3010 buffer control structures would have been reset but the thread had
3011 no way to tell. The thread could even midway memcpy'ing to the
3012 buffer, which would mean that when resumed, it would clobber the
3013 trace buffer that had been set for a new run.
3014
3015 - we can't rewrite/reuse the jump pads for new tracepoints
3016 safely. Say you do tstart while a thread is stopped midway while
3017 collecting. When the thread is later resumed, it finishes the
3018 collection, and returns to the jump pad, to execute the original
3019 instruction that was under the tracepoint jump at the time the
3020 older run had been started. If the jump pad had been rewritten
3021 since for something else in the new run, the thread would now
3022 execute the wrong / random instructions. */
3023
3024 static void
3025 linux_stabilize_threads (void)
3026 {
3027 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
3028
3029 if (thread_stuck != NULL)
3030 {
3031 if (debug_threads)
3032 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
3033 lwpid_of (thread_stuck));
3034 return;
3035 }
3036
3037 thread_info *saved_thread = current_thread;
3038
3039 stabilizing_threads = 1;
3040
3041 /* Kick 'em all. */
3042 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3043
3044 /* Loop until all are stopped out of the jump pads. */
3045 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3046 {
3047 struct target_waitstatus ourstatus;
3048 struct lwp_info *lwp;
3049 int wstat;
3050
3051 /* Note that we go through the full wait even loop. While
3052 moving threads out of jump pad, we need to be able to step
3053 over internal breakpoints and such. */
3054 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3055
3056 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3057 {
3058 lwp = get_thread_lwp (current_thread);
3059
3060 /* Lock it. */
3061 lwp_suspended_inc (lwp);
3062
3063 if (ourstatus.value.sig != GDB_SIGNAL_0
3064 || current_thread->last_resume_kind == resume_stop)
3065 {
3066 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3067 enqueue_one_deferred_signal (lwp, &wstat);
3068 }
3069 }
3070 }
3071
3072 unsuspend_all_lwps (NULL);
3073
3074 stabilizing_threads = 0;
3075
3076 current_thread = saved_thread;
3077
3078 if (debug_threads)
3079 {
3080 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3081
3082 if (thread_stuck != NULL)
3083 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3084 lwpid_of (thread_stuck));
3085 }
3086 }
3087
3088 /* Convenience function that is called when the kernel reports an
3089 event that is not passed out to GDB. */
3090
3091 static ptid_t
3092 ignore_event (struct target_waitstatus *ourstatus)
3093 {
3094 /* If we got an event, there may still be others, as a single
3095 SIGCHLD can indicate more than one child stopped. This forces
3096 another target_wait call. */
3097 async_file_mark ();
3098
3099 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3100 return null_ptid;
3101 }
3102
3103 /* Convenience function that is called when the kernel reports an exit
3104 event. This decides whether to report the event to GDB as a
3105 process exit event, a thread exit event, or to suppress the
3106 event. */
3107
3108 static ptid_t
3109 filter_exit_event (struct lwp_info *event_child,
3110 struct target_waitstatus *ourstatus)
3111 {
3112 struct thread_info *thread = get_lwp_thread (event_child);
3113 ptid_t ptid = ptid_of (thread);
3114
3115 if (!last_thread_of_process_p (pid_of (thread)))
3116 {
3117 if (report_thread_events)
3118 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3119 else
3120 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3121
3122 delete_lwp (event_child);
3123 }
3124 return ptid;
3125 }
3126
3127 /* Returns 1 if GDB is interested in any event_child syscalls. */
3128
3129 static int
3130 gdb_catching_syscalls_p (struct lwp_info *event_child)
3131 {
3132 struct thread_info *thread = get_lwp_thread (event_child);
3133 struct process_info *proc = get_thread_process (thread);
3134
3135 return !proc->syscalls_to_catch.empty ();
3136 }
3137
3138 /* Returns 1 if GDB is interested in the event_child syscall.
3139 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3140
3141 static int
3142 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3143 {
3144 int sysno;
3145 struct thread_info *thread = get_lwp_thread (event_child);
3146 struct process_info *proc = get_thread_process (thread);
3147
3148 if (proc->syscalls_to_catch.empty ())
3149 return 0;
3150
3151 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3152 return 1;
3153
3154 get_syscall_trapinfo (event_child, &sysno);
3155
3156 for (int iter : proc->syscalls_to_catch)
3157 if (iter == sysno)
3158 return 1;
3159
3160 return 0;
3161 }
3162
3163 /* Wait for process, returns status. */
3164
3165 static ptid_t
3166 linux_wait_1 (ptid_t ptid,
3167 struct target_waitstatus *ourstatus, int target_options)
3168 {
3169 int w;
3170 struct lwp_info *event_child;
3171 int options;
3172 int pid;
3173 int step_over_finished;
3174 int bp_explains_trap;
3175 int maybe_internal_trap;
3176 int report_to_gdb;
3177 int trace_event;
3178 int in_step_range;
3179 int any_resumed;
3180
3181 if (debug_threads)
3182 {
3183 debug_enter ();
3184 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3185 }
3186
3187 /* Translate generic target options into linux options. */
3188 options = __WALL;
3189 if (target_options & TARGET_WNOHANG)
3190 options |= WNOHANG;
3191
3192 bp_explains_trap = 0;
3193 trace_event = 0;
3194 in_step_range = 0;
3195 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3196
3197 /* Find a resumed LWP, if any. */
3198 if (find_inferior (&all_threads,
3199 status_pending_p_callback,
3200 &minus_one_ptid) != NULL)
3201 any_resumed = 1;
3202 else if ((find_inferior (&all_threads,
3203 not_stopped_callback,
3204 &minus_one_ptid) != NULL))
3205 any_resumed = 1;
3206 else
3207 any_resumed = 0;
3208
3209 if (ptid_equal (step_over_bkpt, null_ptid))
3210 pid = linux_wait_for_event (ptid, &w, options);
3211 else
3212 {
3213 if (debug_threads)
3214 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3215 target_pid_to_str (step_over_bkpt));
3216 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3217 }
3218
3219 if (pid == 0 || (pid == -1 && !any_resumed))
3220 {
3221 gdb_assert (target_options & TARGET_WNOHANG);
3222
3223 if (debug_threads)
3224 {
3225 debug_printf ("linux_wait_1 ret = null_ptid, "
3226 "TARGET_WAITKIND_IGNORE\n");
3227 debug_exit ();
3228 }
3229
3230 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3231 return null_ptid;
3232 }
3233 else if (pid == -1)
3234 {
3235 if (debug_threads)
3236 {
3237 debug_printf ("linux_wait_1 ret = null_ptid, "
3238 "TARGET_WAITKIND_NO_RESUMED\n");
3239 debug_exit ();
3240 }
3241
3242 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3243 return null_ptid;
3244 }
3245
3246 event_child = get_thread_lwp (current_thread);
3247
3248 /* linux_wait_for_event only returns an exit status for the last
3249 child of a process. Report it. */
3250 if (WIFEXITED (w) || WIFSIGNALED (w))
3251 {
3252 if (WIFEXITED (w))
3253 {
3254 ourstatus->kind = TARGET_WAITKIND_EXITED;
3255 ourstatus->value.integer = WEXITSTATUS (w);
3256
3257 if (debug_threads)
3258 {
3259 debug_printf ("linux_wait_1 ret = %s, exited with "
3260 "retcode %d\n",
3261 target_pid_to_str (ptid_of (current_thread)),
3262 WEXITSTATUS (w));
3263 debug_exit ();
3264 }
3265 }
3266 else
3267 {
3268 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3269 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3270
3271 if (debug_threads)
3272 {
3273 debug_printf ("linux_wait_1 ret = %s, terminated with "
3274 "signal %d\n",
3275 target_pid_to_str (ptid_of (current_thread)),
3276 WTERMSIG (w));
3277 debug_exit ();
3278 }
3279 }
3280
3281 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3282 return filter_exit_event (event_child, ourstatus);
3283
3284 return ptid_of (current_thread);
3285 }
3286
3287 /* If step-over executes a breakpoint instruction, in the case of a
3288 hardware single step it means a gdb/gdbserver breakpoint had been
3289 planted on top of a permanent breakpoint, in the case of a software
3290 single step it may just mean that gdbserver hit the reinsert breakpoint.
3291 The PC has been adjusted by save_stop_reason to point at
3292 the breakpoint address.
3293 So in the case of the hardware single step advance the PC manually
3294 past the breakpoint and in the case of software single step advance only
3295 if it's not the single_step_breakpoint we are hitting.
3296 This avoids that a program would keep trapping a permanent breakpoint
3297 forever. */
3298 if (!ptid_equal (step_over_bkpt, null_ptid)
3299 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3300 && (event_child->stepping
3301 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3302 {
3303 int increment_pc = 0;
3304 int breakpoint_kind = 0;
3305 CORE_ADDR stop_pc = event_child->stop_pc;
3306
3307 breakpoint_kind =
3308 the_target->breakpoint_kind_from_current_state (&stop_pc);
3309 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3310
3311 if (debug_threads)
3312 {
3313 debug_printf ("step-over for %s executed software breakpoint\n",
3314 target_pid_to_str (ptid_of (current_thread)));
3315 }
3316
3317 if (increment_pc != 0)
3318 {
3319 struct regcache *regcache
3320 = get_thread_regcache (current_thread, 1);
3321
3322 event_child->stop_pc += increment_pc;
3323 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3324
3325 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3326 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3327 }
3328 }
3329
3330 /* If this event was not handled before, and is not a SIGTRAP, we
3331 report it. SIGILL and SIGSEGV are also treated as traps in case
3332 a breakpoint is inserted at the current PC. If this target does
3333 not support internal breakpoints at all, we also report the
3334 SIGTRAP without further processing; it's of no concern to us. */
3335 maybe_internal_trap
3336 = (supports_breakpoints ()
3337 && (WSTOPSIG (w) == SIGTRAP
3338 || ((WSTOPSIG (w) == SIGILL
3339 || WSTOPSIG (w) == SIGSEGV)
3340 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3341
3342 if (maybe_internal_trap)
3343 {
3344 /* Handle anything that requires bookkeeping before deciding to
3345 report the event or continue waiting. */
3346
3347 /* First check if we can explain the SIGTRAP with an internal
3348 breakpoint, or if we should possibly report the event to GDB.
3349 Do this before anything that may remove or insert a
3350 breakpoint. */
3351 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3352
3353 /* We have a SIGTRAP, possibly a step-over dance has just
3354 finished. If so, tweak the state machine accordingly,
3355 reinsert breakpoints and delete any single-step
3356 breakpoints. */
3357 step_over_finished = finish_step_over (event_child);
3358
3359 /* Now invoke the callbacks of any internal breakpoints there. */
3360 check_breakpoints (event_child->stop_pc);
3361
3362 /* Handle tracepoint data collecting. This may overflow the
3363 trace buffer, and cause a tracing stop, removing
3364 breakpoints. */
3365 trace_event = handle_tracepoints (event_child);
3366
3367 if (bp_explains_trap)
3368 {
3369 if (debug_threads)
3370 debug_printf ("Hit a gdbserver breakpoint.\n");
3371 }
3372 }
3373 else
3374 {
3375 /* We have some other signal, possibly a step-over dance was in
3376 progress, and it should be cancelled too. */
3377 step_over_finished = finish_step_over (event_child);
3378 }
3379
3380 /* We have all the data we need. Either report the event to GDB, or
3381 resume threads and keep waiting for more. */
3382
3383 /* If we're collecting a fast tracepoint, finish the collection and
3384 move out of the jump pad before delivering a signal. See
3385 linux_stabilize_threads. */
3386
3387 if (WIFSTOPPED (w)
3388 && WSTOPSIG (w) != SIGTRAP
3389 && supports_fast_tracepoints ()
3390 && agent_loaded_p ())
3391 {
3392 if (debug_threads)
3393 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3394 "to defer or adjust it.\n",
3395 WSTOPSIG (w), lwpid_of (current_thread));
3396
3397 /* Allow debugging the jump pad itself. */
3398 if (current_thread->last_resume_kind != resume_step
3399 && maybe_move_out_of_jump_pad (event_child, &w))
3400 {
3401 enqueue_one_deferred_signal (event_child, &w);
3402
3403 if (debug_threads)
3404 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3405 WSTOPSIG (w), lwpid_of (current_thread));
3406
3407 linux_resume_one_lwp (event_child, 0, 0, NULL);
3408
3409 if (debug_threads)
3410 debug_exit ();
3411 return ignore_event (ourstatus);
3412 }
3413 }
3414
3415 if (event_child->collecting_fast_tracepoint
3416 != fast_tpoint_collect_result::not_collecting)
3417 {
3418 if (debug_threads)
3419 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3420 "Check if we're already there.\n",
3421 lwpid_of (current_thread),
3422 (int) event_child->collecting_fast_tracepoint);
3423
3424 trace_event = 1;
3425
3426 event_child->collecting_fast_tracepoint
3427 = linux_fast_tracepoint_collecting (event_child, NULL);
3428
3429 if (event_child->collecting_fast_tracepoint
3430 != fast_tpoint_collect_result::before_insn)
3431 {
3432 /* No longer need this breakpoint. */
3433 if (event_child->exit_jump_pad_bkpt != NULL)
3434 {
3435 if (debug_threads)
3436 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3437 "stopping all threads momentarily.\n");
3438
3439 /* Other running threads could hit this breakpoint.
3440 We don't handle moribund locations like GDB does,
3441 instead we always pause all threads when removing
3442 breakpoints, so that any step-over or
3443 decr_pc_after_break adjustment is always taken
3444 care of while the breakpoint is still
3445 inserted. */
3446 stop_all_lwps (1, event_child);
3447
3448 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3449 event_child->exit_jump_pad_bkpt = NULL;
3450
3451 unstop_all_lwps (1, event_child);
3452
3453 gdb_assert (event_child->suspended >= 0);
3454 }
3455 }
3456
3457 if (event_child->collecting_fast_tracepoint
3458 == fast_tpoint_collect_result::not_collecting)
3459 {
3460 if (debug_threads)
3461 debug_printf ("fast tracepoint finished "
3462 "collecting successfully.\n");
3463
3464 /* We may have a deferred signal to report. */
3465 if (dequeue_one_deferred_signal (event_child, &w))
3466 {
3467 if (debug_threads)
3468 debug_printf ("dequeued one signal.\n");
3469 }
3470 else
3471 {
3472 if (debug_threads)
3473 debug_printf ("no deferred signals.\n");
3474
3475 if (stabilizing_threads)
3476 {
3477 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3478 ourstatus->value.sig = GDB_SIGNAL_0;
3479
3480 if (debug_threads)
3481 {
3482 debug_printf ("linux_wait_1 ret = %s, stopped "
3483 "while stabilizing threads\n",
3484 target_pid_to_str (ptid_of (current_thread)));
3485 debug_exit ();
3486 }
3487
3488 return ptid_of (current_thread);
3489 }
3490 }
3491 }
3492 }
3493
3494 /* Check whether GDB would be interested in this event. */
3495
3496 /* Check if GDB is interested in this syscall. */
3497 if (WIFSTOPPED (w)
3498 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3499 && !gdb_catch_this_syscall_p (event_child))
3500 {
3501 if (debug_threads)
3502 {
3503 debug_printf ("Ignored syscall for LWP %ld.\n",
3504 lwpid_of (current_thread));
3505 }
3506
3507 linux_resume_one_lwp (event_child, event_child->stepping,
3508 0, NULL);
3509
3510 if (debug_threads)
3511 debug_exit ();
3512 return ignore_event (ourstatus);
3513 }
3514
3515 /* If GDB is not interested in this signal, don't stop other
3516 threads, and don't report it to GDB. Just resume the inferior
3517 right away. We do this for threading-related signals as well as
3518 any that GDB specifically requested we ignore. But never ignore
3519 SIGSTOP if we sent it ourselves, and do not ignore signals when
3520 stepping - they may require special handling to skip the signal
3521 handler. Also never ignore signals that could be caused by a
3522 breakpoint. */
3523 if (WIFSTOPPED (w)
3524 && current_thread->last_resume_kind != resume_step
3525 && (
3526 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3527 (current_process ()->priv->thread_db != NULL
3528 && (WSTOPSIG (w) == __SIGRTMIN
3529 || WSTOPSIG (w) == __SIGRTMIN + 1))
3530 ||
3531 #endif
3532 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3533 && !(WSTOPSIG (w) == SIGSTOP
3534 && current_thread->last_resume_kind == resume_stop)
3535 && !linux_wstatus_maybe_breakpoint (w))))
3536 {
3537 siginfo_t info, *info_p;
3538
3539 if (debug_threads)
3540 debug_printf ("Ignored signal %d for LWP %ld.\n",
3541 WSTOPSIG (w), lwpid_of (current_thread));
3542
3543 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3544 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3545 info_p = &info;
3546 else
3547 info_p = NULL;
3548
3549 if (step_over_finished)
3550 {
3551 /* We cancelled this thread's step-over above. We still
3552 need to unsuspend all other LWPs, and set them back
3553 running again while the signal handler runs. */
3554 unsuspend_all_lwps (event_child);
3555
3556 /* Enqueue the pending signal info so that proceed_all_lwps
3557 doesn't lose it. */
3558 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3559
3560 proceed_all_lwps ();
3561 }
3562 else
3563 {
3564 linux_resume_one_lwp (event_child, event_child->stepping,
3565 WSTOPSIG (w), info_p);
3566 }
3567
3568 if (debug_threads)
3569 debug_exit ();
3570
3571 return ignore_event (ourstatus);
3572 }
3573
3574 /* Note that all addresses are always "out of the step range" when
3575 there's no range to begin with. */
3576 in_step_range = lwp_in_step_range (event_child);
3577
3578 /* If GDB wanted this thread to single step, and the thread is out
3579 of the step range, we always want to report the SIGTRAP, and let
3580 GDB handle it. Watchpoints should always be reported. So should
3581 signals we can't explain. A SIGTRAP we can't explain could be a
3582 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3583 do, we're be able to handle GDB breakpoints on top of internal
3584 breakpoints, by handling the internal breakpoint and still
3585 reporting the event to GDB. If we don't, we're out of luck, GDB
3586 won't see the breakpoint hit. If we see a single-step event but
3587 the thread should be continuing, don't pass the trap to gdb.
3588 That indicates that we had previously finished a single-step but
3589 left the single-step pending -- see
3590 complete_ongoing_step_over. */
3591 report_to_gdb = (!maybe_internal_trap
3592 || (current_thread->last_resume_kind == resume_step
3593 && !in_step_range)
3594 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3595 || (!in_step_range
3596 && !bp_explains_trap
3597 && !trace_event
3598 && !step_over_finished
3599 && !(current_thread->last_resume_kind == resume_continue
3600 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3601 || (gdb_breakpoint_here (event_child->stop_pc)
3602 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3603 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3604 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3605
3606 run_breakpoint_commands (event_child->stop_pc);
3607
3608 /* We found no reason GDB would want us to stop. We either hit one
3609 of our own breakpoints, or finished an internal step GDB
3610 shouldn't know about. */
3611 if (!report_to_gdb)
3612 {
3613 if (debug_threads)
3614 {
3615 if (bp_explains_trap)
3616 debug_printf ("Hit a gdbserver breakpoint.\n");
3617 if (step_over_finished)
3618 debug_printf ("Step-over finished.\n");
3619 if (trace_event)
3620 debug_printf ("Tracepoint event.\n");
3621 if (lwp_in_step_range (event_child))
3622 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3623 paddress (event_child->stop_pc),
3624 paddress (event_child->step_range_start),
3625 paddress (event_child->step_range_end));
3626 }
3627
3628 /* We're not reporting this breakpoint to GDB, so apply the
3629 decr_pc_after_break adjustment to the inferior's regcache
3630 ourselves. */
3631
3632 if (the_low_target.set_pc != NULL)
3633 {
3634 struct regcache *regcache
3635 = get_thread_regcache (current_thread, 1);
3636 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3637 }
3638
3639 if (step_over_finished)
3640 {
3641 /* If we have finished stepping over a breakpoint, we've
3642 stopped and suspended all LWPs momentarily except the
3643 stepping one. This is where we resume them all again.
3644 We're going to keep waiting, so use proceed, which
3645 handles stepping over the next breakpoint. */
3646 unsuspend_all_lwps (event_child);
3647 }
3648 else
3649 {
3650 /* Remove the single-step breakpoints if any. Note that
3651 there isn't single-step breakpoint if we finished stepping
3652 over. */
3653 if (can_software_single_step ()
3654 && has_single_step_breakpoints (current_thread))
3655 {
3656 stop_all_lwps (0, event_child);
3657 delete_single_step_breakpoints (current_thread);
3658 unstop_all_lwps (0, event_child);
3659 }
3660 }
3661
3662 if (debug_threads)
3663 debug_printf ("proceeding all threads.\n");
3664 proceed_all_lwps ();
3665
3666 if (debug_threads)
3667 debug_exit ();
3668
3669 return ignore_event (ourstatus);
3670 }
3671
3672 if (debug_threads)
3673 {
3674 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3675 {
3676 std::string str
3677 = target_waitstatus_to_string (&event_child->waitstatus);
3678
3679 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3680 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3681 }
3682 if (current_thread->last_resume_kind == resume_step)
3683 {
3684 if (event_child->step_range_start == event_child->step_range_end)
3685 debug_printf ("GDB wanted to single-step, reporting event.\n");
3686 else if (!lwp_in_step_range (event_child))
3687 debug_printf ("Out of step range, reporting event.\n");
3688 }
3689 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3690 debug_printf ("Stopped by watchpoint.\n");
3691 else if (gdb_breakpoint_here (event_child->stop_pc))
3692 debug_printf ("Stopped by GDB breakpoint.\n");
3693 if (debug_threads)
3694 debug_printf ("Hit a non-gdbserver trap event.\n");
3695 }
3696
3697 /* Alright, we're going to report a stop. */
3698
3699 /* Remove single-step breakpoints. */
3700 if (can_software_single_step ())
3701 {
3702 /* Remove single-step breakpoints or not. It it is true, stop all
3703 lwps, so that other threads won't hit the breakpoint in the
3704 staled memory. */
3705 int remove_single_step_breakpoints_p = 0;
3706
3707 if (non_stop)
3708 {
3709 remove_single_step_breakpoints_p
3710 = has_single_step_breakpoints (current_thread);
3711 }
3712 else
3713 {
3714 /* In all-stop, a stop reply cancels all previous resume
3715 requests. Delete all single-step breakpoints. */
3716
3717 find_thread ([&] (thread_info *thread) {
3718 if (has_single_step_breakpoints (thread))
3719 {
3720 remove_single_step_breakpoints_p = 1;
3721 return true;
3722 }
3723
3724 return false;
3725 });
3726 }
3727
3728 if (remove_single_step_breakpoints_p)
3729 {
3730 /* If we remove single-step breakpoints from memory, stop all lwps,
3731 so that other threads won't hit the breakpoint in the staled
3732 memory. */
3733 stop_all_lwps (0, event_child);
3734
3735 if (non_stop)
3736 {
3737 gdb_assert (has_single_step_breakpoints (current_thread));
3738 delete_single_step_breakpoints (current_thread);
3739 }
3740 else
3741 {
3742 for_each_thread ([] (thread_info *thread){
3743 if (has_single_step_breakpoints (thread))
3744 delete_single_step_breakpoints (thread);
3745 });
3746 }
3747
3748 unstop_all_lwps (0, event_child);
3749 }
3750 }
3751
3752 if (!stabilizing_threads)
3753 {
3754 /* In all-stop, stop all threads. */
3755 if (!non_stop)
3756 stop_all_lwps (0, NULL);
3757
3758 if (step_over_finished)
3759 {
3760 if (!non_stop)
3761 {
3762 /* If we were doing a step-over, all other threads but
3763 the stepping one had been paused in start_step_over,
3764 with their suspend counts incremented. We don't want
3765 to do a full unstop/unpause, because we're in
3766 all-stop mode (so we want threads stopped), but we
3767 still need to unsuspend the other threads, to
3768 decrement their `suspended' count back. */
3769 unsuspend_all_lwps (event_child);
3770 }
3771 else
3772 {
3773 /* If we just finished a step-over, then all threads had
3774 been momentarily paused. In all-stop, that's fine,
3775 we want threads stopped by now anyway. In non-stop,
3776 we need to re-resume threads that GDB wanted to be
3777 running. */
3778 unstop_all_lwps (1, event_child);
3779 }
3780 }
3781
3782 /* If we're not waiting for a specific LWP, choose an event LWP
3783 from among those that have had events. Giving equal priority
3784 to all LWPs that have had events helps prevent
3785 starvation. */
3786 if (ptid_equal (ptid, minus_one_ptid))
3787 {
3788 event_child->status_pending_p = 1;
3789 event_child->status_pending = w;
3790
3791 select_event_lwp (&event_child);
3792
3793 /* current_thread and event_child must stay in sync. */
3794 current_thread = get_lwp_thread (event_child);
3795
3796 event_child->status_pending_p = 0;
3797 w = event_child->status_pending;
3798 }
3799
3800
3801 /* Stabilize threads (move out of jump pads). */
3802 if (!non_stop)
3803 stabilize_threads ();
3804 }
3805 else
3806 {
3807 /* If we just finished a step-over, then all threads had been
3808 momentarily paused. In all-stop, that's fine, we want
3809 threads stopped by now anyway. In non-stop, we need to
3810 re-resume threads that GDB wanted to be running. */
3811 if (step_over_finished)
3812 unstop_all_lwps (1, event_child);
3813 }
3814
3815 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3816 {
3817 /* If the reported event is an exit, fork, vfork or exec, let
3818 GDB know. */
3819
3820 /* Break the unreported fork relationship chain. */
3821 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3822 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3823 {
3824 event_child->fork_relative->fork_relative = NULL;
3825 event_child->fork_relative = NULL;
3826 }
3827
3828 *ourstatus = event_child->waitstatus;
3829 /* Clear the event lwp's waitstatus since we handled it already. */
3830 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3831 }
3832 else
3833 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3834
3835 /* Now that we've selected our final event LWP, un-adjust its PC if
3836 it was a software breakpoint, and the client doesn't know we can
3837 adjust the breakpoint ourselves. */
3838 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3839 && !swbreak_feature)
3840 {
3841 int decr_pc = the_low_target.decr_pc_after_break;
3842
3843 if (decr_pc != 0)
3844 {
3845 struct regcache *regcache
3846 = get_thread_regcache (current_thread, 1);
3847 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3848 }
3849 }
3850
3851 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3852 {
3853 get_syscall_trapinfo (event_child,
3854 &ourstatus->value.syscall_number);
3855 ourstatus->kind = event_child->syscall_state;
3856 }
3857 else if (current_thread->last_resume_kind == resume_stop
3858 && WSTOPSIG (w) == SIGSTOP)
3859 {
3860 /* A thread that has been requested to stop by GDB with vCont;t,
3861 and it stopped cleanly, so report as SIG0. The use of
3862 SIGSTOP is an implementation detail. */
3863 ourstatus->value.sig = GDB_SIGNAL_0;
3864 }
3865 else if (current_thread->last_resume_kind == resume_stop
3866 && WSTOPSIG (w) != SIGSTOP)
3867 {
3868 /* A thread that has been requested to stop by GDB with vCont;t,
3869 but, it stopped for other reasons. */
3870 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3871 }
3872 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3873 {
3874 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3875 }
3876
3877 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3878
3879 if (debug_threads)
3880 {
3881 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3882 target_pid_to_str (ptid_of (current_thread)),
3883 ourstatus->kind, ourstatus->value.sig);
3884 debug_exit ();
3885 }
3886
3887 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3888 return filter_exit_event (event_child, ourstatus);
3889
3890 return ptid_of (current_thread);
3891 }
3892
3893 /* Get rid of any pending event in the pipe. */
3894 static void
3895 async_file_flush (void)
3896 {
3897 int ret;
3898 char buf;
3899
3900 do
3901 ret = read (linux_event_pipe[0], &buf, 1);
3902 while (ret >= 0 || (ret == -1 && errno == EINTR));
3903 }
3904
3905 /* Put something in the pipe, so the event loop wakes up. */
3906 static void
3907 async_file_mark (void)
3908 {
3909 int ret;
3910
3911 async_file_flush ();
3912
3913 do
3914 ret = write (linux_event_pipe[1], "+", 1);
3915 while (ret == 0 || (ret == -1 && errno == EINTR));
3916
3917 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3918 be awakened anyway. */
3919 }
3920
3921 static ptid_t
3922 linux_wait (ptid_t ptid,
3923 struct target_waitstatus *ourstatus, int target_options)
3924 {
3925 ptid_t event_ptid;
3926
3927 /* Flush the async file first. */
3928 if (target_is_async_p ())
3929 async_file_flush ();
3930
3931 do
3932 {
3933 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3934 }
3935 while ((target_options & TARGET_WNOHANG) == 0
3936 && ptid_equal (event_ptid, null_ptid)
3937 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3938
3939 /* If at least one stop was reported, there may be more. A single
3940 SIGCHLD can signal more than one child stop. */
3941 if (target_is_async_p ()
3942 && (target_options & TARGET_WNOHANG) != 0
3943 && !ptid_equal (event_ptid, null_ptid))
3944 async_file_mark ();
3945
3946 return event_ptid;
3947 }
3948
3949 /* Send a signal to an LWP. */
3950
3951 static int
3952 kill_lwp (unsigned long lwpid, int signo)
3953 {
3954 int ret;
3955
3956 errno = 0;
3957 ret = syscall (__NR_tkill, lwpid, signo);
3958 if (errno == ENOSYS)
3959 {
3960 /* If tkill fails, then we are not using nptl threads, a
3961 configuration we no longer support. */
3962 perror_with_name (("tkill"));
3963 }
3964 return ret;
3965 }
3966
3967 void
3968 linux_stop_lwp (struct lwp_info *lwp)
3969 {
3970 send_sigstop (lwp);
3971 }
3972
3973 static void
3974 send_sigstop (struct lwp_info *lwp)
3975 {
3976 int pid;
3977
3978 pid = lwpid_of (get_lwp_thread (lwp));
3979
3980 /* If we already have a pending stop signal for this process, don't
3981 send another. */
3982 if (lwp->stop_expected)
3983 {
3984 if (debug_threads)
3985 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3986
3987 return;
3988 }
3989
3990 if (debug_threads)
3991 debug_printf ("Sending sigstop to lwp %d\n", pid);
3992
3993 lwp->stop_expected = 1;
3994 kill_lwp (pid, SIGSTOP);
3995 }
3996
3997 static int
3998 send_sigstop_callback (thread_info *thread, void *except)
3999 {
4000 struct lwp_info *lwp = get_thread_lwp (thread);
4001
4002 /* Ignore EXCEPT. */
4003 if (lwp == except)
4004 return 0;
4005
4006 if (lwp->stopped)
4007 return 0;
4008
4009 send_sigstop (lwp);
4010 return 0;
4011 }
4012
4013 /* Increment the suspend count of an LWP, and stop it, if not stopped
4014 yet. */
4015 static int
4016 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
4017 {
4018 struct lwp_info *lwp = get_thread_lwp (thread);
4019
4020 /* Ignore EXCEPT. */
4021 if (lwp == except)
4022 return 0;
4023
4024 lwp_suspended_inc (lwp);
4025
4026 return send_sigstop_callback (thread, except);
4027 }
4028
4029 static void
4030 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4031 {
4032 /* Store the exit status for later. */
4033 lwp->status_pending_p = 1;
4034 lwp->status_pending = wstat;
4035
4036 /* Store in waitstatus as well, as there's nothing else to process
4037 for this event. */
4038 if (WIFEXITED (wstat))
4039 {
4040 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4041 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4042 }
4043 else if (WIFSIGNALED (wstat))
4044 {
4045 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4046 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4047 }
4048
4049 /* Prevent trying to stop it. */
4050 lwp->stopped = 1;
4051
4052 /* No further stops are expected from a dead lwp. */
4053 lwp->stop_expected = 0;
4054 }
4055
4056 /* Return true if LWP has exited already, and has a pending exit event
4057 to report to GDB. */
4058
4059 static int
4060 lwp_is_marked_dead (struct lwp_info *lwp)
4061 {
4062 return (lwp->status_pending_p
4063 && (WIFEXITED (lwp->status_pending)
4064 || WIFSIGNALED (lwp->status_pending)));
4065 }
4066
4067 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4068
4069 static void
4070 wait_for_sigstop (void)
4071 {
4072 struct thread_info *saved_thread;
4073 ptid_t saved_tid;
4074 int wstat;
4075 int ret;
4076
4077 saved_thread = current_thread;
4078 if (saved_thread != NULL)
4079 saved_tid = saved_thread->id;
4080 else
4081 saved_tid = null_ptid; /* avoid bogus unused warning */
4082
4083 if (debug_threads)
4084 debug_printf ("wait_for_sigstop: pulling events\n");
4085
4086 /* Passing NULL_PTID as filter indicates we want all events to be
4087 left pending. Eventually this returns when there are no
4088 unwaited-for children left. */
4089 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4090 &wstat, __WALL);
4091 gdb_assert (ret == -1);
4092
4093 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4094 current_thread = saved_thread;
4095 else
4096 {
4097 if (debug_threads)
4098 debug_printf ("Previously current thread died.\n");
4099
4100 /* We can't change the current inferior behind GDB's back,
4101 otherwise, a subsequent command may apply to the wrong
4102 process. */
4103 current_thread = NULL;
4104 }
4105 }
4106
4107 /* Returns true if THREAD is stopped in a jump pad, and we can't
4108 move it out, because we need to report the stop event to GDB. For
4109 example, if the user puts a breakpoint in the jump pad, it's
4110 because she wants to debug it. */
4111
4112 static bool
4113 stuck_in_jump_pad_callback (thread_info *thread)
4114 {
4115 struct lwp_info *lwp = get_thread_lwp (thread);
4116
4117 if (lwp->suspended != 0)
4118 {
4119 internal_error (__FILE__, __LINE__,
4120 "LWP %ld is suspended, suspended=%d\n",
4121 lwpid_of (thread), lwp->suspended);
4122 }
4123 gdb_assert (lwp->stopped);
4124
4125 /* Allow debugging the jump pad, gdb_collect, etc.. */
4126 return (supports_fast_tracepoints ()
4127 && agent_loaded_p ()
4128 && (gdb_breakpoint_here (lwp->stop_pc)
4129 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4130 || thread->last_resume_kind == resume_step)
4131 && (linux_fast_tracepoint_collecting (lwp, NULL)
4132 != fast_tpoint_collect_result::not_collecting));
4133 }
4134
4135 static void
4136 move_out_of_jump_pad_callback (thread_info *thread)
4137 {
4138 struct thread_info *saved_thread;
4139 struct lwp_info *lwp = get_thread_lwp (thread);
4140 int *wstat;
4141
4142 if (lwp->suspended != 0)
4143 {
4144 internal_error (__FILE__, __LINE__,
4145 "LWP %ld is suspended, suspended=%d\n",
4146 lwpid_of (thread), lwp->suspended);
4147 }
4148 gdb_assert (lwp->stopped);
4149
4150 /* For gdb_breakpoint_here. */
4151 saved_thread = current_thread;
4152 current_thread = thread;
4153
4154 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4155
4156 /* Allow debugging the jump pad, gdb_collect, etc. */
4157 if (!gdb_breakpoint_here (lwp->stop_pc)
4158 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4159 && thread->last_resume_kind != resume_step
4160 && maybe_move_out_of_jump_pad (lwp, wstat))
4161 {
4162 if (debug_threads)
4163 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4164 lwpid_of (thread));
4165
4166 if (wstat)
4167 {
4168 lwp->status_pending_p = 0;
4169 enqueue_one_deferred_signal (lwp, wstat);
4170
4171 if (debug_threads)
4172 debug_printf ("Signal %d for LWP %ld deferred "
4173 "(in jump pad)\n",
4174 WSTOPSIG (*wstat), lwpid_of (thread));
4175 }
4176
4177 linux_resume_one_lwp (lwp, 0, 0, NULL);
4178 }
4179 else
4180 lwp_suspended_inc (lwp);
4181
4182 current_thread = saved_thread;
4183 }
4184
4185 static int
4186 lwp_running (thread_info *thread, void *data)
4187 {
4188 struct lwp_info *lwp = get_thread_lwp (thread);
4189
4190 if (lwp_is_marked_dead (lwp))
4191 return 0;
4192 if (lwp->stopped)
4193 return 0;
4194 return 1;
4195 }
4196
4197 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4198 If SUSPEND, then also increase the suspend count of every LWP,
4199 except EXCEPT. */
4200
4201 static void
4202 stop_all_lwps (int suspend, struct lwp_info *except)
4203 {
4204 /* Should not be called recursively. */
4205 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4206
4207 if (debug_threads)
4208 {
4209 debug_enter ();
4210 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4211 suspend ? "stop-and-suspend" : "stop",
4212 except != NULL
4213 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4214 : "none");
4215 }
4216
4217 stopping_threads = (suspend
4218 ? STOPPING_AND_SUSPENDING_THREADS
4219 : STOPPING_THREADS);
4220
4221 if (suspend)
4222 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4223 else
4224 find_inferior (&all_threads, send_sigstop_callback, except);
4225 wait_for_sigstop ();
4226 stopping_threads = NOT_STOPPING_THREADS;
4227
4228 if (debug_threads)
4229 {
4230 debug_printf ("stop_all_lwps done, setting stopping_threads "
4231 "back to !stopping\n");
4232 debug_exit ();
4233 }
4234 }
4235
4236 /* Enqueue one signal in the chain of signals which need to be
4237 delivered to this process on next resume. */
4238
4239 static void
4240 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4241 {
4242 struct pending_signals *p_sig = XNEW (struct pending_signals);
4243
4244 p_sig->prev = lwp->pending_signals;
4245 p_sig->signal = signal;
4246 if (info == NULL)
4247 memset (&p_sig->info, 0, sizeof (siginfo_t));
4248 else
4249 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4250 lwp->pending_signals = p_sig;
4251 }
4252
4253 /* Install breakpoints for software single stepping. */
4254
4255 static void
4256 install_software_single_step_breakpoints (struct lwp_info *lwp)
4257 {
4258 struct thread_info *thread = get_lwp_thread (lwp);
4259 struct regcache *regcache = get_thread_regcache (thread, 1);
4260 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4261
4262 current_thread = thread;
4263 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4264
4265 for (CORE_ADDR pc : next_pcs)
4266 set_single_step_breakpoint (pc, current_ptid);
4267
4268 do_cleanups (old_chain);
4269 }
4270
4271 /* Single step via hardware or software single step.
4272 Return 1 if hardware single stepping, 0 if software single stepping
4273 or can't single step. */
4274
4275 static int
4276 single_step (struct lwp_info* lwp)
4277 {
4278 int step = 0;
4279
4280 if (can_hardware_single_step ())
4281 {
4282 step = 1;
4283 }
4284 else if (can_software_single_step ())
4285 {
4286 install_software_single_step_breakpoints (lwp);
4287 step = 0;
4288 }
4289 else
4290 {
4291 if (debug_threads)
4292 debug_printf ("stepping is not implemented on this target");
4293 }
4294
4295 return step;
4296 }
4297
4298 /* The signal can be delivered to the inferior if we are not trying to
4299 finish a fast tracepoint collect. Since signal can be delivered in
4300 the step-over, the program may go to signal handler and trap again
4301 after return from the signal handler. We can live with the spurious
4302 double traps. */
4303
4304 static int
4305 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4306 {
4307 return (lwp->collecting_fast_tracepoint
4308 == fast_tpoint_collect_result::not_collecting);
4309 }
4310
4311 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4312 SIGNAL is nonzero, give it that signal. */
4313
4314 static void
4315 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4316 int step, int signal, siginfo_t *info)
4317 {
4318 struct thread_info *thread = get_lwp_thread (lwp);
4319 struct thread_info *saved_thread;
4320 int ptrace_request;
4321 struct process_info *proc = get_thread_process (thread);
4322
4323 /* Note that target description may not be initialised
4324 (proc->tdesc == NULL) at this point because the program hasn't
4325 stopped at the first instruction yet. It means GDBserver skips
4326 the extra traps from the wrapper program (see option --wrapper).
4327 Code in this function that requires register access should be
4328 guarded by proc->tdesc == NULL or something else. */
4329
4330 if (lwp->stopped == 0)
4331 return;
4332
4333 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4334
4335 fast_tpoint_collect_result fast_tp_collecting
4336 = lwp->collecting_fast_tracepoint;
4337
4338 gdb_assert (!stabilizing_threads
4339 || (fast_tp_collecting
4340 != fast_tpoint_collect_result::not_collecting));
4341
4342 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4343 user used the "jump" command, or "set $pc = foo"). */
4344 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4345 {
4346 /* Collecting 'while-stepping' actions doesn't make sense
4347 anymore. */
4348 release_while_stepping_state_list (thread);
4349 }
4350
4351 /* If we have pending signals or status, and a new signal, enqueue the
4352 signal. Also enqueue the signal if it can't be delivered to the
4353 inferior right now. */
4354 if (signal != 0
4355 && (lwp->status_pending_p
4356 || lwp->pending_signals != NULL
4357 || !lwp_signal_can_be_delivered (lwp)))
4358 {
4359 enqueue_pending_signal (lwp, signal, info);
4360
4361 /* Postpone any pending signal. It was enqueued above. */
4362 signal = 0;
4363 }
4364
4365 if (lwp->status_pending_p)
4366 {
4367 if (debug_threads)
4368 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4369 " has pending status\n",
4370 lwpid_of (thread), step ? "step" : "continue",
4371 lwp->stop_expected ? "expected" : "not expected");
4372 return;
4373 }
4374
4375 saved_thread = current_thread;
4376 current_thread = thread;
4377
4378 /* This bit needs some thinking about. If we get a signal that
4379 we must report while a single-step reinsert is still pending,
4380 we often end up resuming the thread. It might be better to
4381 (ew) allow a stack of pending events; then we could be sure that
4382 the reinsert happened right away and not lose any signals.
4383
4384 Making this stack would also shrink the window in which breakpoints are
4385 uninserted (see comment in linux_wait_for_lwp) but not enough for
4386 complete correctness, so it won't solve that problem. It may be
4387 worthwhile just to solve this one, however. */
4388 if (lwp->bp_reinsert != 0)
4389 {
4390 if (debug_threads)
4391 debug_printf (" pending reinsert at 0x%s\n",
4392 paddress (lwp->bp_reinsert));
4393
4394 if (can_hardware_single_step ())
4395 {
4396 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4397 {
4398 if (step == 0)
4399 warning ("BAD - reinserting but not stepping.");
4400 if (lwp->suspended)
4401 warning ("BAD - reinserting and suspended(%d).",
4402 lwp->suspended);
4403 }
4404 }
4405
4406 step = maybe_hw_step (thread);
4407 }
4408
4409 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4410 {
4411 if (debug_threads)
4412 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4413 " (exit-jump-pad-bkpt)\n",
4414 lwpid_of (thread));
4415 }
4416 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4417 {
4418 if (debug_threads)
4419 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4420 " single-stepping\n",
4421 lwpid_of (thread));
4422
4423 if (can_hardware_single_step ())
4424 step = 1;
4425 else
4426 {
4427 internal_error (__FILE__, __LINE__,
4428 "moving out of jump pad single-stepping"
4429 " not implemented on this target");
4430 }
4431 }
4432
4433 /* If we have while-stepping actions in this thread set it stepping.
4434 If we have a signal to deliver, it may or may not be set to
4435 SIG_IGN, we don't know. Assume so, and allow collecting
4436 while-stepping into a signal handler. A possible smart thing to
4437 do would be to set an internal breakpoint at the signal return
4438 address, continue, and carry on catching this while-stepping
4439 action only when that breakpoint is hit. A future
4440 enhancement. */
4441 if (thread->while_stepping != NULL)
4442 {
4443 if (debug_threads)
4444 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4445 lwpid_of (thread));
4446
4447 step = single_step (lwp);
4448 }
4449
4450 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4451 {
4452 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4453
4454 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4455
4456 if (debug_threads)
4457 {
4458 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4459 (long) lwp->stop_pc);
4460 }
4461 }
4462
4463 /* If we have pending signals, consume one if it can be delivered to
4464 the inferior. */
4465 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4466 {
4467 struct pending_signals **p_sig;
4468
4469 p_sig = &lwp->pending_signals;
4470 while ((*p_sig)->prev != NULL)
4471 p_sig = &(*p_sig)->prev;
4472
4473 signal = (*p_sig)->signal;
4474 if ((*p_sig)->info.si_signo != 0)
4475 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4476 &(*p_sig)->info);
4477
4478 free (*p_sig);
4479 *p_sig = NULL;
4480 }
4481
4482 if (debug_threads)
4483 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4484 lwpid_of (thread), step ? "step" : "continue", signal,
4485 lwp->stop_expected ? "expected" : "not expected");
4486
4487 if (the_low_target.prepare_to_resume != NULL)
4488 the_low_target.prepare_to_resume (lwp);
4489
4490 regcache_invalidate_thread (thread);
4491 errno = 0;
4492 lwp->stepping = step;
4493 if (step)
4494 ptrace_request = PTRACE_SINGLESTEP;
4495 else if (gdb_catching_syscalls_p (lwp))
4496 ptrace_request = PTRACE_SYSCALL;
4497 else
4498 ptrace_request = PTRACE_CONT;
4499 ptrace (ptrace_request,
4500 lwpid_of (thread),
4501 (PTRACE_TYPE_ARG3) 0,
4502 /* Coerce to a uintptr_t first to avoid potential gcc warning
4503 of coercing an 8 byte integer to a 4 byte pointer. */
4504 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4505
4506 current_thread = saved_thread;
4507 if (errno)
4508 perror_with_name ("resuming thread");
4509
4510 /* Successfully resumed. Clear state that no longer makes sense,
4511 and mark the LWP as running. Must not do this before resuming
4512 otherwise if that fails other code will be confused. E.g., we'd
4513 later try to stop the LWP and hang forever waiting for a stop
4514 status. Note that we must not throw after this is cleared,
4515 otherwise handle_zombie_lwp_error would get confused. */
4516 lwp->stopped = 0;
4517 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4518 }
4519
4520 /* Called when we try to resume a stopped LWP and that errors out. If
4521 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4522 or about to become), discard the error, clear any pending status
4523 the LWP may have, and return true (we'll collect the exit status
4524 soon enough). Otherwise, return false. */
4525
4526 static int
4527 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4528 {
4529 struct thread_info *thread = get_lwp_thread (lp);
4530
4531 /* If we get an error after resuming the LWP successfully, we'd
4532 confuse !T state for the LWP being gone. */
4533 gdb_assert (lp->stopped);
4534
4535 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4536 because even if ptrace failed with ESRCH, the tracee may be "not
4537 yet fully dead", but already refusing ptrace requests. In that
4538 case the tracee has 'R (Running)' state for a little bit
4539 (observed in Linux 3.18). See also the note on ESRCH in the
4540 ptrace(2) man page. Instead, check whether the LWP has any state
4541 other than ptrace-stopped. */
4542
4543 /* Don't assume anything if /proc/PID/status can't be read. */
4544 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4545 {
4546 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4547 lp->status_pending_p = 0;
4548 return 1;
4549 }
4550 return 0;
4551 }
4552
4553 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4554 disappears while we try to resume it. */
4555
4556 static void
4557 linux_resume_one_lwp (struct lwp_info *lwp,
4558 int step, int signal, siginfo_t *info)
4559 {
4560 TRY
4561 {
4562 linux_resume_one_lwp_throw (lwp, step, signal, info);
4563 }
4564 CATCH (ex, RETURN_MASK_ERROR)
4565 {
4566 if (!check_ptrace_stopped_lwp_gone (lwp))
4567 throw_exception (ex);
4568 }
4569 END_CATCH
4570 }
4571
4572 /* This function is called once per thread via for_each_thread.
4573 We look up which resume request applies to THREAD and mark it with a
4574 pointer to the appropriate resume request.
4575
4576 This algorithm is O(threads * resume elements), but resume elements
4577 is small (and will remain small at least until GDB supports thread
4578 suspension). */
4579
4580 static void
4581 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4582 {
4583 struct lwp_info *lwp = get_thread_lwp (thread);
4584
4585 for (int ndx = 0; ndx < n; ndx++)
4586 {
4587 ptid_t ptid = resume[ndx].thread;
4588 if (ptid_equal (ptid, minus_one_ptid)
4589 || ptid == thread->id
4590 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4591 of PID'. */
4592 || (ptid_get_pid (ptid) == pid_of (thread)
4593 && (ptid_is_pid (ptid)
4594 || ptid_get_lwp (ptid) == -1)))
4595 {
4596 if (resume[ndx].kind == resume_stop
4597 && thread->last_resume_kind == resume_stop)
4598 {
4599 if (debug_threads)
4600 debug_printf ("already %s LWP %ld at GDB's request\n",
4601 (thread->last_status.kind
4602 == TARGET_WAITKIND_STOPPED)
4603 ? "stopped"
4604 : "stopping",
4605 lwpid_of (thread));
4606
4607 continue;
4608 }
4609
4610 /* Ignore (wildcard) resume requests for already-resumed
4611 threads. */
4612 if (resume[ndx].kind != resume_stop
4613 && thread->last_resume_kind != resume_stop)
4614 {
4615 if (debug_threads)
4616 debug_printf ("already %s LWP %ld at GDB's request\n",
4617 (thread->last_resume_kind
4618 == resume_step)
4619 ? "stepping"
4620 : "continuing",
4621 lwpid_of (thread));
4622 continue;
4623 }
4624
4625 /* Don't let wildcard resumes resume fork children that GDB
4626 does not yet know are new fork children. */
4627 if (lwp->fork_relative != NULL)
4628 {
4629 struct lwp_info *rel = lwp->fork_relative;
4630
4631 if (rel->status_pending_p
4632 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4633 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4634 {
4635 if (debug_threads)
4636 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4637 lwpid_of (thread));
4638 continue;
4639 }
4640 }
4641
4642 /* If the thread has a pending event that has already been
4643 reported to GDBserver core, but GDB has not pulled the
4644 event out of the vStopped queue yet, likewise, ignore the
4645 (wildcard) resume request. */
4646 if (in_queued_stop_replies (thread->id))
4647 {
4648 if (debug_threads)
4649 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4650 lwpid_of (thread));
4651 continue;
4652 }
4653
4654 lwp->resume = &resume[ndx];
4655 thread->last_resume_kind = lwp->resume->kind;
4656
4657 lwp->step_range_start = lwp->resume->step_range_start;
4658 lwp->step_range_end = lwp->resume->step_range_end;
4659
4660 /* If we had a deferred signal to report, dequeue one now.
4661 This can happen if LWP gets more than one signal while
4662 trying to get out of a jump pad. */
4663 if (lwp->stopped
4664 && !lwp->status_pending_p
4665 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4666 {
4667 lwp->status_pending_p = 1;
4668
4669 if (debug_threads)
4670 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4671 "leaving status pending.\n",
4672 WSTOPSIG (lwp->status_pending),
4673 lwpid_of (thread));
4674 }
4675
4676 return;
4677 }
4678 }
4679
4680 /* No resume action for this thread. */
4681 lwp->resume = NULL;
4682 }
4683
4684 /* find_inferior callback for linux_resume.
4685 Set *FLAG_P if this lwp has an interesting status pending. */
4686
4687 static bool
4688 resume_status_pending_p (thread_info *thread)
4689 {
4690 struct lwp_info *lwp = get_thread_lwp (thread);
4691
4692 /* LWPs which will not be resumed are not interesting, because
4693 we might not wait for them next time through linux_wait. */
4694 if (lwp->resume == NULL)
4695 return false;
4696
4697 return thread_still_has_status_pending_p (thread);
4698 }
4699
4700 /* Return 1 if this lwp that GDB wants running is stopped at an
4701 internal breakpoint that we need to step over. It assumes that any
4702 required STOP_PC adjustment has already been propagated to the
4703 inferior's regcache. */
4704
4705 static bool
4706 need_step_over_p (thread_info *thread)
4707 {
4708 struct lwp_info *lwp = get_thread_lwp (thread);
4709 struct thread_info *saved_thread;
4710 CORE_ADDR pc;
4711 struct process_info *proc = get_thread_process (thread);
4712
4713 /* GDBserver is skipping the extra traps from the wrapper program,
4714 don't have to do step over. */
4715 if (proc->tdesc == NULL)
4716 return false;
4717
4718 /* LWPs which will not be resumed are not interesting, because we
4719 might not wait for them next time through linux_wait. */
4720
4721 if (!lwp->stopped)
4722 {
4723 if (debug_threads)
4724 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4725 lwpid_of (thread));
4726 return false;
4727 }
4728
4729 if (thread->last_resume_kind == resume_stop)
4730 {
4731 if (debug_threads)
4732 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4733 " stopped\n",
4734 lwpid_of (thread));
4735 return false;
4736 }
4737
4738 gdb_assert (lwp->suspended >= 0);
4739
4740 if (lwp->suspended)
4741 {
4742 if (debug_threads)
4743 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4744 lwpid_of (thread));
4745 return false;
4746 }
4747
4748 if (lwp->status_pending_p)
4749 {
4750 if (debug_threads)
4751 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4752 " status.\n",
4753 lwpid_of (thread));
4754 return false;
4755 }
4756
4757 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4758 or we have. */
4759 pc = get_pc (lwp);
4760
4761 /* If the PC has changed since we stopped, then don't do anything,
4762 and let the breakpoint/tracepoint be hit. This happens if, for
4763 instance, GDB handled the decr_pc_after_break subtraction itself,
4764 GDB is OOL stepping this thread, or the user has issued a "jump"
4765 command, or poked thread's registers herself. */
4766 if (pc != lwp->stop_pc)
4767 {
4768 if (debug_threads)
4769 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4770 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4771 lwpid_of (thread),
4772 paddress (lwp->stop_pc), paddress (pc));
4773 return false;
4774 }
4775
4776 /* On software single step target, resume the inferior with signal
4777 rather than stepping over. */
4778 if (can_software_single_step ()
4779 && lwp->pending_signals != NULL
4780 && lwp_signal_can_be_delivered (lwp))
4781 {
4782 if (debug_threads)
4783 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4784 " signals.\n",
4785 lwpid_of (thread));
4786
4787 return false;
4788 }
4789
4790 saved_thread = current_thread;
4791 current_thread = thread;
4792
4793 /* We can only step over breakpoints we know about. */
4794 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4795 {
4796 /* Don't step over a breakpoint that GDB expects to hit
4797 though. If the condition is being evaluated on the target's side
4798 and it evaluate to false, step over this breakpoint as well. */
4799 if (gdb_breakpoint_here (pc)
4800 && gdb_condition_true_at_breakpoint (pc)
4801 && gdb_no_commands_at_breakpoint (pc))
4802 {
4803 if (debug_threads)
4804 debug_printf ("Need step over [LWP %ld]? yes, but found"
4805 " GDB breakpoint at 0x%s; skipping step over\n",
4806 lwpid_of (thread), paddress (pc));
4807
4808 current_thread = saved_thread;
4809 return false;
4810 }
4811 else
4812 {
4813 if (debug_threads)
4814 debug_printf ("Need step over [LWP %ld]? yes, "
4815 "found breakpoint at 0x%s\n",
4816 lwpid_of (thread), paddress (pc));
4817
4818 /* We've found an lwp that needs stepping over --- return 1 so
4819 that find_inferior stops looking. */
4820 current_thread = saved_thread;
4821
4822 return true;
4823 }
4824 }
4825
4826 current_thread = saved_thread;
4827
4828 if (debug_threads)
4829 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4830 " at 0x%s\n",
4831 lwpid_of (thread), paddress (pc));
4832
4833 return false;
4834 }
4835
4836 /* Start a step-over operation on LWP. When LWP stopped at a
4837 breakpoint, to make progress, we need to remove the breakpoint out
4838 of the way. If we let other threads run while we do that, they may
4839 pass by the breakpoint location and miss hitting it. To avoid
4840 that, a step-over momentarily stops all threads while LWP is
4841 single-stepped by either hardware or software while the breakpoint
4842 is temporarily uninserted from the inferior. When the single-step
4843 finishes, we reinsert the breakpoint, and let all threads that are
4844 supposed to be running, run again. */
4845
4846 static int
4847 start_step_over (struct lwp_info *lwp)
4848 {
4849 struct thread_info *thread = get_lwp_thread (lwp);
4850 struct thread_info *saved_thread;
4851 CORE_ADDR pc;
4852 int step;
4853
4854 if (debug_threads)
4855 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4856 lwpid_of (thread));
4857
4858 stop_all_lwps (1, lwp);
4859
4860 if (lwp->suspended != 0)
4861 {
4862 internal_error (__FILE__, __LINE__,
4863 "LWP %ld suspended=%d\n", lwpid_of (thread),
4864 lwp->suspended);
4865 }
4866
4867 if (debug_threads)
4868 debug_printf ("Done stopping all threads for step-over.\n");
4869
4870 /* Note, we should always reach here with an already adjusted PC,
4871 either by GDB (if we're resuming due to GDB's request), or by our
4872 caller, if we just finished handling an internal breakpoint GDB
4873 shouldn't care about. */
4874 pc = get_pc (lwp);
4875
4876 saved_thread = current_thread;
4877 current_thread = thread;
4878
4879 lwp->bp_reinsert = pc;
4880 uninsert_breakpoints_at (pc);
4881 uninsert_fast_tracepoint_jumps_at (pc);
4882
4883 step = single_step (lwp);
4884
4885 current_thread = saved_thread;
4886
4887 linux_resume_one_lwp (lwp, step, 0, NULL);
4888
4889 /* Require next event from this LWP. */
4890 step_over_bkpt = thread->id;
4891 return 1;
4892 }
4893
4894 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4895 start_step_over, if still there, and delete any single-step
4896 breakpoints we've set, on non hardware single-step targets. */
4897
4898 static int
4899 finish_step_over (struct lwp_info *lwp)
4900 {
4901 if (lwp->bp_reinsert != 0)
4902 {
4903 struct thread_info *saved_thread = current_thread;
4904
4905 if (debug_threads)
4906 debug_printf ("Finished step over.\n");
4907
4908 current_thread = get_lwp_thread (lwp);
4909
4910 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4911 may be no breakpoint to reinsert there by now. */
4912 reinsert_breakpoints_at (lwp->bp_reinsert);
4913 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4914
4915 lwp->bp_reinsert = 0;
4916
4917 /* Delete any single-step breakpoints. No longer needed. We
4918 don't have to worry about other threads hitting this trap,
4919 and later not being able to explain it, because we were
4920 stepping over a breakpoint, and we hold all threads but
4921 LWP stopped while doing that. */
4922 if (!can_hardware_single_step ())
4923 {
4924 gdb_assert (has_single_step_breakpoints (current_thread));
4925 delete_single_step_breakpoints (current_thread);
4926 }
4927
4928 step_over_bkpt = null_ptid;
4929 current_thread = saved_thread;
4930 return 1;
4931 }
4932 else
4933 return 0;
4934 }
4935
4936 /* If there's a step over in progress, wait until all threads stop
4937 (that is, until the stepping thread finishes its step), and
4938 unsuspend all lwps. The stepping thread ends with its status
4939 pending, which is processed later when we get back to processing
4940 events. */
4941
4942 static void
4943 complete_ongoing_step_over (void)
4944 {
4945 if (!ptid_equal (step_over_bkpt, null_ptid))
4946 {
4947 struct lwp_info *lwp;
4948 int wstat;
4949 int ret;
4950
4951 if (debug_threads)
4952 debug_printf ("detach: step over in progress, finish it first\n");
4953
4954 /* Passing NULL_PTID as filter indicates we want all events to
4955 be left pending. Eventually this returns when there are no
4956 unwaited-for children left. */
4957 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4958 &wstat, __WALL);
4959 gdb_assert (ret == -1);
4960
4961 lwp = find_lwp_pid (step_over_bkpt);
4962 if (lwp != NULL)
4963 finish_step_over (lwp);
4964 step_over_bkpt = null_ptid;
4965 unsuspend_all_lwps (lwp);
4966 }
4967 }
4968
4969 /* This function is called once per thread. We check the thread's resume
4970 request, which will tell us whether to resume, step, or leave the thread
4971 stopped; and what signal, if any, it should be sent.
4972
4973 For threads which we aren't explicitly told otherwise, we preserve
4974 the stepping flag; this is used for stepping over gdbserver-placed
4975 breakpoints.
4976
4977 If pending_flags was set in any thread, we queue any needed
4978 signals, since we won't actually resume. We already have a pending
4979 event to report, so we don't need to preserve any step requests;
4980 they should be re-issued if necessary. */
4981
4982 static int
4983 linux_resume_one_thread (thread_info *thread, void *arg)
4984 {
4985 struct lwp_info *lwp = get_thread_lwp (thread);
4986 int leave_all_stopped = * (int *) arg;
4987 int leave_pending;
4988
4989 if (lwp->resume == NULL)
4990 return 0;
4991
4992 if (lwp->resume->kind == resume_stop)
4993 {
4994 if (debug_threads)
4995 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4996
4997 if (!lwp->stopped)
4998 {
4999 if (debug_threads)
5000 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
5001
5002 /* Stop the thread, and wait for the event asynchronously,
5003 through the event loop. */
5004 send_sigstop (lwp);
5005 }
5006 else
5007 {
5008 if (debug_threads)
5009 debug_printf ("already stopped LWP %ld\n",
5010 lwpid_of (thread));
5011
5012 /* The LWP may have been stopped in an internal event that
5013 was not meant to be notified back to GDB (e.g., gdbserver
5014 breakpoint), so we should be reporting a stop event in
5015 this case too. */
5016
5017 /* If the thread already has a pending SIGSTOP, this is a
5018 no-op. Otherwise, something later will presumably resume
5019 the thread and this will cause it to cancel any pending
5020 operation, due to last_resume_kind == resume_stop. If
5021 the thread already has a pending status to report, we
5022 will still report it the next time we wait - see
5023 status_pending_p_callback. */
5024
5025 /* If we already have a pending signal to report, then
5026 there's no need to queue a SIGSTOP, as this means we're
5027 midway through moving the LWP out of the jumppad, and we
5028 will report the pending signal as soon as that is
5029 finished. */
5030 if (lwp->pending_signals_to_report == NULL)
5031 send_sigstop (lwp);
5032 }
5033
5034 /* For stop requests, we're done. */
5035 lwp->resume = NULL;
5036 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5037 return 0;
5038 }
5039
5040 /* If this thread which is about to be resumed has a pending status,
5041 then don't resume it - we can just report the pending status.
5042 Likewise if it is suspended, because e.g., another thread is
5043 stepping past a breakpoint. Make sure to queue any signals that
5044 would otherwise be sent. In all-stop mode, we do this decision
5045 based on if *any* thread has a pending status. If there's a
5046 thread that needs the step-over-breakpoint dance, then don't
5047 resume any other thread but that particular one. */
5048 leave_pending = (lwp->suspended
5049 || lwp->status_pending_p
5050 || leave_all_stopped);
5051
5052 /* If we have a new signal, enqueue the signal. */
5053 if (lwp->resume->sig != 0)
5054 {
5055 siginfo_t info, *info_p;
5056
5057 /* If this is the same signal we were previously stopped by,
5058 make sure to queue its siginfo. */
5059 if (WIFSTOPPED (lwp->last_status)
5060 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5061 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5062 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5063 info_p = &info;
5064 else
5065 info_p = NULL;
5066
5067 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5068 }
5069
5070 if (!leave_pending)
5071 {
5072 if (debug_threads)
5073 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5074
5075 proceed_one_lwp (thread, NULL);
5076 }
5077 else
5078 {
5079 if (debug_threads)
5080 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5081 }
5082
5083 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5084 lwp->resume = NULL;
5085 return 0;
5086 }
5087
5088 static void
5089 linux_resume (struct thread_resume *resume_info, size_t n)
5090 {
5091 struct thread_info *need_step_over = NULL;
5092 int leave_all_stopped;
5093
5094 if (debug_threads)
5095 {
5096 debug_enter ();
5097 debug_printf ("linux_resume:\n");
5098 }
5099
5100 for_each_thread ([&] (thread_info *thread)
5101 {
5102 linux_set_resume_request (thread, resume_info, n);
5103 });
5104
5105 /* If there is a thread which would otherwise be resumed, which has
5106 a pending status, then don't resume any threads - we can just
5107 report the pending status. Make sure to queue any signals that
5108 would otherwise be sent. In non-stop mode, we'll apply this
5109 logic to each thread individually. We consume all pending events
5110 before considering to start a step-over (in all-stop). */
5111 bool any_pending = false;
5112 if (!non_stop)
5113 any_pending = find_thread (resume_status_pending_p) != NULL;
5114
5115 /* If there is a thread which would otherwise be resumed, which is
5116 stopped at a breakpoint that needs stepping over, then don't
5117 resume any threads - have it step over the breakpoint with all
5118 other threads stopped, then resume all threads again. Make sure
5119 to queue any signals that would otherwise be delivered or
5120 queued. */
5121 if (!any_pending && supports_breakpoints ())
5122 need_step_over = find_thread (need_step_over_p);
5123
5124 leave_all_stopped = (need_step_over != NULL || any_pending);
5125
5126 if (debug_threads)
5127 {
5128 if (need_step_over != NULL)
5129 debug_printf ("Not resuming all, need step over\n");
5130 else if (any_pending)
5131 debug_printf ("Not resuming, all-stop and found "
5132 "an LWP with pending status\n");
5133 else
5134 debug_printf ("Resuming, no pending status or step over needed\n");
5135 }
5136
5137 /* Even if we're leaving threads stopped, queue all signals we'd
5138 otherwise deliver. */
5139 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5140
5141 if (need_step_over)
5142 start_step_over (get_thread_lwp (need_step_over));
5143
5144 if (debug_threads)
5145 {
5146 debug_printf ("linux_resume done\n");
5147 debug_exit ();
5148 }
5149
5150 /* We may have events that were pending that can/should be sent to
5151 the client now. Trigger a linux_wait call. */
5152 if (target_is_async_p ())
5153 async_file_mark ();
5154 }
5155
5156 /* This function is called once per thread. We check the thread's
5157 last resume request, which will tell us whether to resume, step, or
5158 leave the thread stopped. Any signal the client requested to be
5159 delivered has already been enqueued at this point.
5160
5161 If any thread that GDB wants running is stopped at an internal
5162 breakpoint that needs stepping over, we start a step-over operation
5163 on that particular thread, and leave all others stopped. */
5164
5165 static int
5166 proceed_one_lwp (thread_info *thread, void *except)
5167 {
5168 struct lwp_info *lwp = get_thread_lwp (thread);
5169 int step;
5170
5171 if (lwp == except)
5172 return 0;
5173
5174 if (debug_threads)
5175 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5176
5177 if (!lwp->stopped)
5178 {
5179 if (debug_threads)
5180 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5181 return 0;
5182 }
5183
5184 if (thread->last_resume_kind == resume_stop
5185 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5186 {
5187 if (debug_threads)
5188 debug_printf (" client wants LWP to remain %ld stopped\n",
5189 lwpid_of (thread));
5190 return 0;
5191 }
5192
5193 if (lwp->status_pending_p)
5194 {
5195 if (debug_threads)
5196 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5197 lwpid_of (thread));
5198 return 0;
5199 }
5200
5201 gdb_assert (lwp->suspended >= 0);
5202
5203 if (lwp->suspended)
5204 {
5205 if (debug_threads)
5206 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5207 return 0;
5208 }
5209
5210 if (thread->last_resume_kind == resume_stop
5211 && lwp->pending_signals_to_report == NULL
5212 && (lwp->collecting_fast_tracepoint
5213 == fast_tpoint_collect_result::not_collecting))
5214 {
5215 /* We haven't reported this LWP as stopped yet (otherwise, the
5216 last_status.kind check above would catch it, and we wouldn't
5217 reach here. This LWP may have been momentarily paused by a
5218 stop_all_lwps call while handling for example, another LWP's
5219 step-over. In that case, the pending expected SIGSTOP signal
5220 that was queued at vCont;t handling time will have already
5221 been consumed by wait_for_sigstop, and so we need to requeue
5222 another one here. Note that if the LWP already has a SIGSTOP
5223 pending, this is a no-op. */
5224
5225 if (debug_threads)
5226 debug_printf ("Client wants LWP %ld to stop. "
5227 "Making sure it has a SIGSTOP pending\n",
5228 lwpid_of (thread));
5229
5230 send_sigstop (lwp);
5231 }
5232
5233 if (thread->last_resume_kind == resume_step)
5234 {
5235 if (debug_threads)
5236 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5237 lwpid_of (thread));
5238
5239 /* If resume_step is requested by GDB, install single-step
5240 breakpoints when the thread is about to be actually resumed if
5241 the single-step breakpoints weren't removed. */
5242 if (can_software_single_step ()
5243 && !has_single_step_breakpoints (thread))
5244 install_software_single_step_breakpoints (lwp);
5245
5246 step = maybe_hw_step (thread);
5247 }
5248 else if (lwp->bp_reinsert != 0)
5249 {
5250 if (debug_threads)
5251 debug_printf (" stepping LWP %ld, reinsert set\n",
5252 lwpid_of (thread));
5253
5254 step = maybe_hw_step (thread);
5255 }
5256 else
5257 step = 0;
5258
5259 linux_resume_one_lwp (lwp, step, 0, NULL);
5260 return 0;
5261 }
5262
5263 static int
5264 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5265 {
5266 struct lwp_info *lwp = get_thread_lwp (thread);
5267
5268 if (lwp == except)
5269 return 0;
5270
5271 lwp_suspended_decr (lwp);
5272
5273 return proceed_one_lwp (thread, except);
5274 }
5275
5276 /* When we finish a step-over, set threads running again. If there's
5277 another thread that may need a step-over, now's the time to start
5278 it. Eventually, we'll move all threads past their breakpoints. */
5279
5280 static void
5281 proceed_all_lwps (void)
5282 {
5283 struct thread_info *need_step_over;
5284
5285 /* If there is a thread which would otherwise be resumed, which is
5286 stopped at a breakpoint that needs stepping over, then don't
5287 resume any threads - have it step over the breakpoint with all
5288 other threads stopped, then resume all threads again. */
5289
5290 if (supports_breakpoints ())
5291 {
5292 need_step_over = find_thread (need_step_over_p);
5293
5294 if (need_step_over != NULL)
5295 {
5296 if (debug_threads)
5297 debug_printf ("proceed_all_lwps: found "
5298 "thread %ld needing a step-over\n",
5299 lwpid_of (need_step_over));
5300
5301 start_step_over (get_thread_lwp (need_step_over));
5302 return;
5303 }
5304 }
5305
5306 if (debug_threads)
5307 debug_printf ("Proceeding, no step-over needed\n");
5308
5309 find_inferior (&all_threads, proceed_one_lwp, NULL);
5310 }
5311
5312 /* Stopped LWPs that the client wanted to be running, that don't have
5313 pending statuses, are set to run again, except for EXCEPT, if not
5314 NULL. This undoes a stop_all_lwps call. */
5315
5316 static void
5317 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5318 {
5319 if (debug_threads)
5320 {
5321 debug_enter ();
5322 if (except)
5323 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5324 lwpid_of (get_lwp_thread (except)));
5325 else
5326 debug_printf ("unstopping all lwps\n");
5327 }
5328
5329 if (unsuspend)
5330 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5331 else
5332 find_inferior (&all_threads, proceed_one_lwp, except);
5333
5334 if (debug_threads)
5335 {
5336 debug_printf ("unstop_all_lwps done\n");
5337 debug_exit ();
5338 }
5339 }
5340
5341
5342 #ifdef HAVE_LINUX_REGSETS
5343
5344 #define use_linux_regsets 1
5345
5346 /* Returns true if REGSET has been disabled. */
5347
5348 static int
5349 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5350 {
5351 return (info->disabled_regsets != NULL
5352 && info->disabled_regsets[regset - info->regsets]);
5353 }
5354
5355 /* Disable REGSET. */
5356
5357 static void
5358 disable_regset (struct regsets_info *info, struct regset_info *regset)
5359 {
5360 int dr_offset;
5361
5362 dr_offset = regset - info->regsets;
5363 if (info->disabled_regsets == NULL)
5364 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5365 info->disabled_regsets[dr_offset] = 1;
5366 }
5367
5368 static int
5369 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5370 struct regcache *regcache)
5371 {
5372 struct regset_info *regset;
5373 int saw_general_regs = 0;
5374 int pid;
5375 struct iovec iov;
5376
5377 pid = lwpid_of (current_thread);
5378 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5379 {
5380 void *buf, *data;
5381 int nt_type, res;
5382
5383 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5384 continue;
5385
5386 buf = xmalloc (regset->size);
5387
5388 nt_type = regset->nt_type;
5389 if (nt_type)
5390 {
5391 iov.iov_base = buf;
5392 iov.iov_len = regset->size;
5393 data = (void *) &iov;
5394 }
5395 else
5396 data = buf;
5397
5398 #ifndef __sparc__
5399 res = ptrace (regset->get_request, pid,
5400 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5401 #else
5402 res = ptrace (regset->get_request, pid, data, nt_type);
5403 #endif
5404 if (res < 0)
5405 {
5406 if (errno == EIO)
5407 {
5408 /* If we get EIO on a regset, do not try it again for
5409 this process mode. */
5410 disable_regset (regsets_info, regset);
5411 }
5412 else if (errno == ENODATA)
5413 {
5414 /* ENODATA may be returned if the regset is currently
5415 not "active". This can happen in normal operation,
5416 so suppress the warning in this case. */
5417 }
5418 else if (errno == ESRCH)
5419 {
5420 /* At this point, ESRCH should mean the process is
5421 already gone, in which case we simply ignore attempts
5422 to read its registers. */
5423 }
5424 else
5425 {
5426 char s[256];
5427 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5428 pid);
5429 perror (s);
5430 }
5431 }
5432 else
5433 {
5434 if (regset->type == GENERAL_REGS)
5435 saw_general_regs = 1;
5436 regset->store_function (regcache, buf);
5437 }
5438 free (buf);
5439 }
5440 if (saw_general_regs)
5441 return 0;
5442 else
5443 return 1;
5444 }
5445
5446 static int
5447 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5448 struct regcache *regcache)
5449 {
5450 struct regset_info *regset;
5451 int saw_general_regs = 0;
5452 int pid;
5453 struct iovec iov;
5454
5455 pid = lwpid_of (current_thread);
5456 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5457 {
5458 void *buf, *data;
5459 int nt_type, res;
5460
5461 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5462 || regset->fill_function == NULL)
5463 continue;
5464
5465 buf = xmalloc (regset->size);
5466
5467 /* First fill the buffer with the current register set contents,
5468 in case there are any items in the kernel's regset that are
5469 not in gdbserver's regcache. */
5470
5471 nt_type = regset->nt_type;
5472 if (nt_type)
5473 {
5474 iov.iov_base = buf;
5475 iov.iov_len = regset->size;
5476 data = (void *) &iov;
5477 }
5478 else
5479 data = buf;
5480
5481 #ifndef __sparc__
5482 res = ptrace (regset->get_request, pid,
5483 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5484 #else
5485 res = ptrace (regset->get_request, pid, data, nt_type);
5486 #endif
5487
5488 if (res == 0)
5489 {
5490 /* Then overlay our cached registers on that. */
5491 regset->fill_function (regcache, buf);
5492
5493 /* Only now do we write the register set. */
5494 #ifndef __sparc__
5495 res = ptrace (regset->set_request, pid,
5496 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5497 #else
5498 res = ptrace (regset->set_request, pid, data, nt_type);
5499 #endif
5500 }
5501
5502 if (res < 0)
5503 {
5504 if (errno == EIO)
5505 {
5506 /* If we get EIO on a regset, do not try it again for
5507 this process mode. */
5508 disable_regset (regsets_info, regset);
5509 }
5510 else if (errno == ESRCH)
5511 {
5512 /* At this point, ESRCH should mean the process is
5513 already gone, in which case we simply ignore attempts
5514 to change its registers. See also the related
5515 comment in linux_resume_one_lwp. */
5516 free (buf);
5517 return 0;
5518 }
5519 else
5520 {
5521 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5522 }
5523 }
5524 else if (regset->type == GENERAL_REGS)
5525 saw_general_regs = 1;
5526 free (buf);
5527 }
5528 if (saw_general_regs)
5529 return 0;
5530 else
5531 return 1;
5532 }
5533
5534 #else /* !HAVE_LINUX_REGSETS */
5535
5536 #define use_linux_regsets 0
5537 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5538 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5539
5540 #endif
5541
5542 /* Return 1 if register REGNO is supported by one of the regset ptrace
5543 calls or 0 if it has to be transferred individually. */
5544
5545 static int
5546 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5547 {
5548 unsigned char mask = 1 << (regno % 8);
5549 size_t index = regno / 8;
5550
5551 return (use_linux_regsets
5552 && (regs_info->regset_bitmap == NULL
5553 || (regs_info->regset_bitmap[index] & mask) != 0));
5554 }
5555
5556 #ifdef HAVE_LINUX_USRREGS
5557
5558 static int
5559 register_addr (const struct usrregs_info *usrregs, int regnum)
5560 {
5561 int addr;
5562
5563 if (regnum < 0 || regnum >= usrregs->num_regs)
5564 error ("Invalid register number %d.", regnum);
5565
5566 addr = usrregs->regmap[regnum];
5567
5568 return addr;
5569 }
5570
5571 /* Fetch one register. */
5572 static void
5573 fetch_register (const struct usrregs_info *usrregs,
5574 struct regcache *regcache, int regno)
5575 {
5576 CORE_ADDR regaddr;
5577 int i, size;
5578 char *buf;
5579 int pid;
5580
5581 if (regno >= usrregs->num_regs)
5582 return;
5583 if ((*the_low_target.cannot_fetch_register) (regno))
5584 return;
5585
5586 regaddr = register_addr (usrregs, regno);
5587 if (regaddr == -1)
5588 return;
5589
5590 size = ((register_size (regcache->tdesc, regno)
5591 + sizeof (PTRACE_XFER_TYPE) - 1)
5592 & -sizeof (PTRACE_XFER_TYPE));
5593 buf = (char *) alloca (size);
5594
5595 pid = lwpid_of (current_thread);
5596 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5597 {
5598 errno = 0;
5599 *(PTRACE_XFER_TYPE *) (buf + i) =
5600 ptrace (PTRACE_PEEKUSER, pid,
5601 /* Coerce to a uintptr_t first to avoid potential gcc warning
5602 of coercing an 8 byte integer to a 4 byte pointer. */
5603 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5604 regaddr += sizeof (PTRACE_XFER_TYPE);
5605 if (errno != 0)
5606 error ("reading register %d: %s", regno, strerror (errno));
5607 }
5608
5609 if (the_low_target.supply_ptrace_register)
5610 the_low_target.supply_ptrace_register (regcache, regno, buf);
5611 else
5612 supply_register (regcache, regno, buf);
5613 }
5614
5615 /* Store one register. */
5616 static void
5617 store_register (const struct usrregs_info *usrregs,
5618 struct regcache *regcache, int regno)
5619 {
5620 CORE_ADDR regaddr;
5621 int i, size;
5622 char *buf;
5623 int pid;
5624
5625 if (regno >= usrregs->num_regs)
5626 return;
5627 if ((*the_low_target.cannot_store_register) (regno))
5628 return;
5629
5630 regaddr = register_addr (usrregs, regno);
5631 if (regaddr == -1)
5632 return;
5633
5634 size = ((register_size (regcache->tdesc, regno)
5635 + sizeof (PTRACE_XFER_TYPE) - 1)
5636 & -sizeof (PTRACE_XFER_TYPE));
5637 buf = (char *) alloca (size);
5638 memset (buf, 0, size);
5639
5640 if (the_low_target.collect_ptrace_register)
5641 the_low_target.collect_ptrace_register (regcache, regno, buf);
5642 else
5643 collect_register (regcache, regno, buf);
5644
5645 pid = lwpid_of (current_thread);
5646 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5647 {
5648 errno = 0;
5649 ptrace (PTRACE_POKEUSER, pid,
5650 /* Coerce to a uintptr_t first to avoid potential gcc warning
5651 about coercing an 8 byte integer to a 4 byte pointer. */
5652 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5653 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5654 if (errno != 0)
5655 {
5656 /* At this point, ESRCH should mean the process is
5657 already gone, in which case we simply ignore attempts
5658 to change its registers. See also the related
5659 comment in linux_resume_one_lwp. */
5660 if (errno == ESRCH)
5661 return;
5662
5663 if ((*the_low_target.cannot_store_register) (regno) == 0)
5664 error ("writing register %d: %s", regno, strerror (errno));
5665 }
5666 regaddr += sizeof (PTRACE_XFER_TYPE);
5667 }
5668 }
5669
5670 /* Fetch all registers, or just one, from the child process.
5671 If REGNO is -1, do this for all registers, skipping any that are
5672 assumed to have been retrieved by regsets_fetch_inferior_registers,
5673 unless ALL is non-zero.
5674 Otherwise, REGNO specifies which register (so we can save time). */
5675 static void
5676 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5677 struct regcache *regcache, int regno, int all)
5678 {
5679 struct usrregs_info *usr = regs_info->usrregs;
5680
5681 if (regno == -1)
5682 {
5683 for (regno = 0; regno < usr->num_regs; regno++)
5684 if (all || !linux_register_in_regsets (regs_info, regno))
5685 fetch_register (usr, regcache, regno);
5686 }
5687 else
5688 fetch_register (usr, regcache, regno);
5689 }
5690
5691 /* Store our register values back into the inferior.
5692 If REGNO is -1, do this for all registers, skipping any that are
5693 assumed to have been saved by regsets_store_inferior_registers,
5694 unless ALL is non-zero.
5695 Otherwise, REGNO specifies which register (so we can save time). */
5696 static void
5697 usr_store_inferior_registers (const struct regs_info *regs_info,
5698 struct regcache *regcache, int regno, int all)
5699 {
5700 struct usrregs_info *usr = regs_info->usrregs;
5701
5702 if (regno == -1)
5703 {
5704 for (regno = 0; regno < usr->num_regs; regno++)
5705 if (all || !linux_register_in_regsets (regs_info, regno))
5706 store_register (usr, regcache, regno);
5707 }
5708 else
5709 store_register (usr, regcache, regno);
5710 }
5711
5712 #else /* !HAVE_LINUX_USRREGS */
5713
5714 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5715 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5716
5717 #endif
5718
5719
5720 static void
5721 linux_fetch_registers (struct regcache *regcache, int regno)
5722 {
5723 int use_regsets;
5724 int all = 0;
5725 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5726
5727 if (regno == -1)
5728 {
5729 if (the_low_target.fetch_register != NULL
5730 && regs_info->usrregs != NULL)
5731 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5732 (*the_low_target.fetch_register) (regcache, regno);
5733
5734 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5735 if (regs_info->usrregs != NULL)
5736 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5737 }
5738 else
5739 {
5740 if (the_low_target.fetch_register != NULL
5741 && (*the_low_target.fetch_register) (regcache, regno))
5742 return;
5743
5744 use_regsets = linux_register_in_regsets (regs_info, regno);
5745 if (use_regsets)
5746 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5747 regcache);
5748 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5749 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5750 }
5751 }
5752
5753 static void
5754 linux_store_registers (struct regcache *regcache, int regno)
5755 {
5756 int use_regsets;
5757 int all = 0;
5758 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5759
5760 if (regno == -1)
5761 {
5762 all = regsets_store_inferior_registers (regs_info->regsets_info,
5763 regcache);
5764 if (regs_info->usrregs != NULL)
5765 usr_store_inferior_registers (regs_info, regcache, regno, all);
5766 }
5767 else
5768 {
5769 use_regsets = linux_register_in_regsets (regs_info, regno);
5770 if (use_regsets)
5771 all = regsets_store_inferior_registers (regs_info->regsets_info,
5772 regcache);
5773 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5774 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5775 }
5776 }
5777
5778
5779 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5780 to debugger memory starting at MYADDR. */
5781
5782 static int
5783 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5784 {
5785 int pid = lwpid_of (current_thread);
5786 PTRACE_XFER_TYPE *buffer;
5787 CORE_ADDR addr;
5788 int count;
5789 char filename[64];
5790 int i;
5791 int ret;
5792 int fd;
5793
5794 /* Try using /proc. Don't bother for one word. */
5795 if (len >= 3 * sizeof (long))
5796 {
5797 int bytes;
5798
5799 /* We could keep this file open and cache it - possibly one per
5800 thread. That requires some juggling, but is even faster. */
5801 sprintf (filename, "/proc/%d/mem", pid);
5802 fd = open (filename, O_RDONLY | O_LARGEFILE);
5803 if (fd == -1)
5804 goto no_proc;
5805
5806 /* If pread64 is available, use it. It's faster if the kernel
5807 supports it (only one syscall), and it's 64-bit safe even on
5808 32-bit platforms (for instance, SPARC debugging a SPARC64
5809 application). */
5810 #ifdef HAVE_PREAD64
5811 bytes = pread64 (fd, myaddr, len, memaddr);
5812 #else
5813 bytes = -1;
5814 if (lseek (fd, memaddr, SEEK_SET) != -1)
5815 bytes = read (fd, myaddr, len);
5816 #endif
5817
5818 close (fd);
5819 if (bytes == len)
5820 return 0;
5821
5822 /* Some data was read, we'll try to get the rest with ptrace. */
5823 if (bytes > 0)
5824 {
5825 memaddr += bytes;
5826 myaddr += bytes;
5827 len -= bytes;
5828 }
5829 }
5830
5831 no_proc:
5832 /* Round starting address down to longword boundary. */
5833 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5834 /* Round ending address up; get number of longwords that makes. */
5835 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5836 / sizeof (PTRACE_XFER_TYPE));
5837 /* Allocate buffer of that many longwords. */
5838 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5839
5840 /* Read all the longwords */
5841 errno = 0;
5842 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5843 {
5844 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5845 about coercing an 8 byte integer to a 4 byte pointer. */
5846 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5847 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5848 (PTRACE_TYPE_ARG4) 0);
5849 if (errno)
5850 break;
5851 }
5852 ret = errno;
5853
5854 /* Copy appropriate bytes out of the buffer. */
5855 if (i > 0)
5856 {
5857 i *= sizeof (PTRACE_XFER_TYPE);
5858 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5859 memcpy (myaddr,
5860 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5861 i < len ? i : len);
5862 }
5863
5864 return ret;
5865 }
5866
5867 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5868 memory at MEMADDR. On failure (cannot write to the inferior)
5869 returns the value of errno. Always succeeds if LEN is zero. */
5870
5871 static int
5872 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5873 {
5874 int i;
5875 /* Round starting address down to longword boundary. */
5876 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5877 /* Round ending address up; get number of longwords that makes. */
5878 int count
5879 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5880 / sizeof (PTRACE_XFER_TYPE);
5881
5882 /* Allocate buffer of that many longwords. */
5883 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5884
5885 int pid = lwpid_of (current_thread);
5886
5887 if (len == 0)
5888 {
5889 /* Zero length write always succeeds. */
5890 return 0;
5891 }
5892
5893 if (debug_threads)
5894 {
5895 /* Dump up to four bytes. */
5896 char str[4 * 2 + 1];
5897 char *p = str;
5898 int dump = len < 4 ? len : 4;
5899
5900 for (i = 0; i < dump; i++)
5901 {
5902 sprintf (p, "%02x", myaddr[i]);
5903 p += 2;
5904 }
5905 *p = '\0';
5906
5907 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5908 str, (long) memaddr, pid);
5909 }
5910
5911 /* Fill start and end extra bytes of buffer with existing memory data. */
5912
5913 errno = 0;
5914 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5915 about coercing an 8 byte integer to a 4 byte pointer. */
5916 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5917 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5918 (PTRACE_TYPE_ARG4) 0);
5919 if (errno)
5920 return errno;
5921
5922 if (count > 1)
5923 {
5924 errno = 0;
5925 buffer[count - 1]
5926 = ptrace (PTRACE_PEEKTEXT, pid,
5927 /* Coerce to a uintptr_t first to avoid potential gcc warning
5928 about coercing an 8 byte integer to a 4 byte pointer. */
5929 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5930 * sizeof (PTRACE_XFER_TYPE)),
5931 (PTRACE_TYPE_ARG4) 0);
5932 if (errno)
5933 return errno;
5934 }
5935
5936 /* Copy data to be written over corresponding part of buffer. */
5937
5938 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5939 myaddr, len);
5940
5941 /* Write the entire buffer. */
5942
5943 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5944 {
5945 errno = 0;
5946 ptrace (PTRACE_POKETEXT, pid,
5947 /* Coerce to a uintptr_t first to avoid potential gcc warning
5948 about coercing an 8 byte integer to a 4 byte pointer. */
5949 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5950 (PTRACE_TYPE_ARG4) buffer[i]);
5951 if (errno)
5952 return errno;
5953 }
5954
5955 return 0;
5956 }
5957
5958 static void
5959 linux_look_up_symbols (void)
5960 {
5961 #ifdef USE_THREAD_DB
5962 struct process_info *proc = current_process ();
5963
5964 if (proc->priv->thread_db != NULL)
5965 return;
5966
5967 thread_db_init ();
5968 #endif
5969 }
5970
5971 static void
5972 linux_request_interrupt (void)
5973 {
5974 /* Send a SIGINT to the process group. This acts just like the user
5975 typed a ^C on the controlling terminal. */
5976 kill (-signal_pid, SIGINT);
5977 }
5978
5979 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5980 to debugger memory starting at MYADDR. */
5981
5982 static int
5983 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5984 {
5985 char filename[PATH_MAX];
5986 int fd, n;
5987 int pid = lwpid_of (current_thread);
5988
5989 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5990
5991 fd = open (filename, O_RDONLY);
5992 if (fd < 0)
5993 return -1;
5994
5995 if (offset != (CORE_ADDR) 0
5996 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5997 n = -1;
5998 else
5999 n = read (fd, myaddr, len);
6000
6001 close (fd);
6002
6003 return n;
6004 }
6005
6006 /* These breakpoint and watchpoint related wrapper functions simply
6007 pass on the function call if the target has registered a
6008 corresponding function. */
6009
6010 static int
6011 linux_supports_z_point_type (char z_type)
6012 {
6013 return (the_low_target.supports_z_point_type != NULL
6014 && the_low_target.supports_z_point_type (z_type));
6015 }
6016
6017 static int
6018 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
6019 int size, struct raw_breakpoint *bp)
6020 {
6021 if (type == raw_bkpt_type_sw)
6022 return insert_memory_breakpoint (bp);
6023 else if (the_low_target.insert_point != NULL)
6024 return the_low_target.insert_point (type, addr, size, bp);
6025 else
6026 /* Unsupported (see target.h). */
6027 return 1;
6028 }
6029
6030 static int
6031 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6032 int size, struct raw_breakpoint *bp)
6033 {
6034 if (type == raw_bkpt_type_sw)
6035 return remove_memory_breakpoint (bp);
6036 else if (the_low_target.remove_point != NULL)
6037 return the_low_target.remove_point (type, addr, size, bp);
6038 else
6039 /* Unsupported (see target.h). */
6040 return 1;
6041 }
6042
6043 /* Implement the to_stopped_by_sw_breakpoint target_ops
6044 method. */
6045
6046 static int
6047 linux_stopped_by_sw_breakpoint (void)
6048 {
6049 struct lwp_info *lwp = get_thread_lwp (current_thread);
6050
6051 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6052 }
6053
6054 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6055 method. */
6056
6057 static int
6058 linux_supports_stopped_by_sw_breakpoint (void)
6059 {
6060 return USE_SIGTRAP_SIGINFO;
6061 }
6062
6063 /* Implement the to_stopped_by_hw_breakpoint target_ops
6064 method. */
6065
6066 static int
6067 linux_stopped_by_hw_breakpoint (void)
6068 {
6069 struct lwp_info *lwp = get_thread_lwp (current_thread);
6070
6071 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6072 }
6073
6074 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6075 method. */
6076
6077 static int
6078 linux_supports_stopped_by_hw_breakpoint (void)
6079 {
6080 return USE_SIGTRAP_SIGINFO;
6081 }
6082
6083 /* Implement the supports_hardware_single_step target_ops method. */
6084
6085 static int
6086 linux_supports_hardware_single_step (void)
6087 {
6088 return can_hardware_single_step ();
6089 }
6090
6091 static int
6092 linux_supports_software_single_step (void)
6093 {
6094 return can_software_single_step ();
6095 }
6096
6097 static int
6098 linux_stopped_by_watchpoint (void)
6099 {
6100 struct lwp_info *lwp = get_thread_lwp (current_thread);
6101
6102 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6103 }
6104
6105 static CORE_ADDR
6106 linux_stopped_data_address (void)
6107 {
6108 struct lwp_info *lwp = get_thread_lwp (current_thread);
6109
6110 return lwp->stopped_data_address;
6111 }
6112
6113 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6114 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6115 && defined(PT_TEXT_END_ADDR)
6116
6117 /* This is only used for targets that define PT_TEXT_ADDR,
6118 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6119 the target has different ways of acquiring this information, like
6120 loadmaps. */
6121
6122 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6123 to tell gdb about. */
6124
6125 static int
6126 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6127 {
6128 unsigned long text, text_end, data;
6129 int pid = lwpid_of (current_thread);
6130
6131 errno = 0;
6132
6133 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6134 (PTRACE_TYPE_ARG4) 0);
6135 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6136 (PTRACE_TYPE_ARG4) 0);
6137 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6138 (PTRACE_TYPE_ARG4) 0);
6139
6140 if (errno == 0)
6141 {
6142 /* Both text and data offsets produced at compile-time (and so
6143 used by gdb) are relative to the beginning of the program,
6144 with the data segment immediately following the text segment.
6145 However, the actual runtime layout in memory may put the data
6146 somewhere else, so when we send gdb a data base-address, we
6147 use the real data base address and subtract the compile-time
6148 data base-address from it (which is just the length of the
6149 text segment). BSS immediately follows data in both
6150 cases. */
6151 *text_p = text;
6152 *data_p = data - (text_end - text);
6153
6154 return 1;
6155 }
6156 return 0;
6157 }
6158 #endif
6159
6160 static int
6161 linux_qxfer_osdata (const char *annex,
6162 unsigned char *readbuf, unsigned const char *writebuf,
6163 CORE_ADDR offset, int len)
6164 {
6165 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6166 }
6167
6168 /* Convert a native/host siginfo object, into/from the siginfo in the
6169 layout of the inferiors' architecture. */
6170
6171 static void
6172 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6173 {
6174 int done = 0;
6175
6176 if (the_low_target.siginfo_fixup != NULL)
6177 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6178
6179 /* If there was no callback, or the callback didn't do anything,
6180 then just do a straight memcpy. */
6181 if (!done)
6182 {
6183 if (direction == 1)
6184 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6185 else
6186 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6187 }
6188 }
6189
6190 static int
6191 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6192 unsigned const char *writebuf, CORE_ADDR offset, int len)
6193 {
6194 int pid;
6195 siginfo_t siginfo;
6196 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6197
6198 if (current_thread == NULL)
6199 return -1;
6200
6201 pid = lwpid_of (current_thread);
6202
6203 if (debug_threads)
6204 debug_printf ("%s siginfo for lwp %d.\n",
6205 readbuf != NULL ? "Reading" : "Writing",
6206 pid);
6207
6208 if (offset >= sizeof (siginfo))
6209 return -1;
6210
6211 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6212 return -1;
6213
6214 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6215 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6216 inferior with a 64-bit GDBSERVER should look the same as debugging it
6217 with a 32-bit GDBSERVER, we need to convert it. */
6218 siginfo_fixup (&siginfo, inf_siginfo, 0);
6219
6220 if (offset + len > sizeof (siginfo))
6221 len = sizeof (siginfo) - offset;
6222
6223 if (readbuf != NULL)
6224 memcpy (readbuf, inf_siginfo + offset, len);
6225 else
6226 {
6227 memcpy (inf_siginfo + offset, writebuf, len);
6228
6229 /* Convert back to ptrace layout before flushing it out. */
6230 siginfo_fixup (&siginfo, inf_siginfo, 1);
6231
6232 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6233 return -1;
6234 }
6235
6236 return len;
6237 }
6238
6239 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6240 so we notice when children change state; as the handler for the
6241 sigsuspend in my_waitpid. */
6242
6243 static void
6244 sigchld_handler (int signo)
6245 {
6246 int old_errno = errno;
6247
6248 if (debug_threads)
6249 {
6250 do
6251 {
6252 /* fprintf is not async-signal-safe, so call write
6253 directly. */
6254 if (write (2, "sigchld_handler\n",
6255 sizeof ("sigchld_handler\n") - 1) < 0)
6256 break; /* just ignore */
6257 } while (0);
6258 }
6259
6260 if (target_is_async_p ())
6261 async_file_mark (); /* trigger a linux_wait */
6262
6263 errno = old_errno;
6264 }
6265
6266 static int
6267 linux_supports_non_stop (void)
6268 {
6269 return 1;
6270 }
6271
6272 static int
6273 linux_async (int enable)
6274 {
6275 int previous = target_is_async_p ();
6276
6277 if (debug_threads)
6278 debug_printf ("linux_async (%d), previous=%d\n",
6279 enable, previous);
6280
6281 if (previous != enable)
6282 {
6283 sigset_t mask;
6284 sigemptyset (&mask);
6285 sigaddset (&mask, SIGCHLD);
6286
6287 sigprocmask (SIG_BLOCK, &mask, NULL);
6288
6289 if (enable)
6290 {
6291 if (pipe (linux_event_pipe) == -1)
6292 {
6293 linux_event_pipe[0] = -1;
6294 linux_event_pipe[1] = -1;
6295 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6296
6297 warning ("creating event pipe failed.");
6298 return previous;
6299 }
6300
6301 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6302 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6303
6304 /* Register the event loop handler. */
6305 add_file_handler (linux_event_pipe[0],
6306 handle_target_event, NULL);
6307
6308 /* Always trigger a linux_wait. */
6309 async_file_mark ();
6310 }
6311 else
6312 {
6313 delete_file_handler (linux_event_pipe[0]);
6314
6315 close (linux_event_pipe[0]);
6316 close (linux_event_pipe[1]);
6317 linux_event_pipe[0] = -1;
6318 linux_event_pipe[1] = -1;
6319 }
6320
6321 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6322 }
6323
6324 return previous;
6325 }
6326
6327 static int
6328 linux_start_non_stop (int nonstop)
6329 {
6330 /* Register or unregister from event-loop accordingly. */
6331 linux_async (nonstop);
6332
6333 if (target_is_async_p () != (nonstop != 0))
6334 return -1;
6335
6336 return 0;
6337 }
6338
6339 static int
6340 linux_supports_multi_process (void)
6341 {
6342 return 1;
6343 }
6344
6345 /* Check if fork events are supported. */
6346
6347 static int
6348 linux_supports_fork_events (void)
6349 {
6350 return linux_supports_tracefork ();
6351 }
6352
6353 /* Check if vfork events are supported. */
6354
6355 static int
6356 linux_supports_vfork_events (void)
6357 {
6358 return linux_supports_tracefork ();
6359 }
6360
6361 /* Check if exec events are supported. */
6362
6363 static int
6364 linux_supports_exec_events (void)
6365 {
6366 return linux_supports_traceexec ();
6367 }
6368
6369 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6370 ptrace flags for all inferiors. This is in case the new GDB connection
6371 doesn't support the same set of events that the previous one did. */
6372
6373 static void
6374 linux_handle_new_gdb_connection (void)
6375 {
6376 /* Request that all the lwps reset their ptrace options. */
6377 for_each_thread ([] (thread_info *thread)
6378 {
6379 struct lwp_info *lwp = get_thread_lwp (thread);
6380
6381 if (!lwp->stopped)
6382 {
6383 /* Stop the lwp so we can modify its ptrace options. */
6384 lwp->must_set_ptrace_flags = 1;
6385 linux_stop_lwp (lwp);
6386 }
6387 else
6388 {
6389 /* Already stopped; go ahead and set the ptrace options. */
6390 struct process_info *proc = find_process_pid (pid_of (thread));
6391 int options = linux_low_ptrace_options (proc->attached);
6392
6393 linux_enable_event_reporting (lwpid_of (thread), options);
6394 lwp->must_set_ptrace_flags = 0;
6395 }
6396 });
6397 }
6398
6399 static int
6400 linux_supports_disable_randomization (void)
6401 {
6402 #ifdef HAVE_PERSONALITY
6403 return 1;
6404 #else
6405 return 0;
6406 #endif
6407 }
6408
6409 static int
6410 linux_supports_agent (void)
6411 {
6412 return 1;
6413 }
6414
6415 static int
6416 linux_supports_range_stepping (void)
6417 {
6418 if (can_software_single_step ())
6419 return 1;
6420 if (*the_low_target.supports_range_stepping == NULL)
6421 return 0;
6422
6423 return (*the_low_target.supports_range_stepping) ();
6424 }
6425
6426 /* Enumerate spufs IDs for process PID. */
6427 static int
6428 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6429 {
6430 int pos = 0;
6431 int written = 0;
6432 char path[128];
6433 DIR *dir;
6434 struct dirent *entry;
6435
6436 sprintf (path, "/proc/%ld/fd", pid);
6437 dir = opendir (path);
6438 if (!dir)
6439 return -1;
6440
6441 rewinddir (dir);
6442 while ((entry = readdir (dir)) != NULL)
6443 {
6444 struct stat st;
6445 struct statfs stfs;
6446 int fd;
6447
6448 fd = atoi (entry->d_name);
6449 if (!fd)
6450 continue;
6451
6452 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6453 if (stat (path, &st) != 0)
6454 continue;
6455 if (!S_ISDIR (st.st_mode))
6456 continue;
6457
6458 if (statfs (path, &stfs) != 0)
6459 continue;
6460 if (stfs.f_type != SPUFS_MAGIC)
6461 continue;
6462
6463 if (pos >= offset && pos + 4 <= offset + len)
6464 {
6465 *(unsigned int *)(buf + pos - offset) = fd;
6466 written += 4;
6467 }
6468 pos += 4;
6469 }
6470
6471 closedir (dir);
6472 return written;
6473 }
6474
6475 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6476 object type, using the /proc file system. */
6477 static int
6478 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6479 unsigned const char *writebuf,
6480 CORE_ADDR offset, int len)
6481 {
6482 long pid = lwpid_of (current_thread);
6483 char buf[128];
6484 int fd = 0;
6485 int ret = 0;
6486
6487 if (!writebuf && !readbuf)
6488 return -1;
6489
6490 if (!*annex)
6491 {
6492 if (!readbuf)
6493 return -1;
6494 else
6495 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6496 }
6497
6498 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6499 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6500 if (fd <= 0)
6501 return -1;
6502
6503 if (offset != 0
6504 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6505 {
6506 close (fd);
6507 return 0;
6508 }
6509
6510 if (writebuf)
6511 ret = write (fd, writebuf, (size_t) len);
6512 else
6513 ret = read (fd, readbuf, (size_t) len);
6514
6515 close (fd);
6516 return ret;
6517 }
6518
6519 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6520 struct target_loadseg
6521 {
6522 /* Core address to which the segment is mapped. */
6523 Elf32_Addr addr;
6524 /* VMA recorded in the program header. */
6525 Elf32_Addr p_vaddr;
6526 /* Size of this segment in memory. */
6527 Elf32_Word p_memsz;
6528 };
6529
6530 # if defined PT_GETDSBT
6531 struct target_loadmap
6532 {
6533 /* Protocol version number, must be zero. */
6534 Elf32_Word version;
6535 /* Pointer to the DSBT table, its size, and the DSBT index. */
6536 unsigned *dsbt_table;
6537 unsigned dsbt_size, dsbt_index;
6538 /* Number of segments in this map. */
6539 Elf32_Word nsegs;
6540 /* The actual memory map. */
6541 struct target_loadseg segs[/*nsegs*/];
6542 };
6543 # define LINUX_LOADMAP PT_GETDSBT
6544 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6545 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6546 # else
6547 struct target_loadmap
6548 {
6549 /* Protocol version number, must be zero. */
6550 Elf32_Half version;
6551 /* Number of segments in this map. */
6552 Elf32_Half nsegs;
6553 /* The actual memory map. */
6554 struct target_loadseg segs[/*nsegs*/];
6555 };
6556 # define LINUX_LOADMAP PTRACE_GETFDPIC
6557 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6558 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6559 # endif
6560
6561 static int
6562 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6563 unsigned char *myaddr, unsigned int len)
6564 {
6565 int pid = lwpid_of (current_thread);
6566 int addr = -1;
6567 struct target_loadmap *data = NULL;
6568 unsigned int actual_length, copy_length;
6569
6570 if (strcmp (annex, "exec") == 0)
6571 addr = (int) LINUX_LOADMAP_EXEC;
6572 else if (strcmp (annex, "interp") == 0)
6573 addr = (int) LINUX_LOADMAP_INTERP;
6574 else
6575 return -1;
6576
6577 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6578 return -1;
6579
6580 if (data == NULL)
6581 return -1;
6582
6583 actual_length = sizeof (struct target_loadmap)
6584 + sizeof (struct target_loadseg) * data->nsegs;
6585
6586 if (offset < 0 || offset > actual_length)
6587 return -1;
6588
6589 copy_length = actual_length - offset < len ? actual_length - offset : len;
6590 memcpy (myaddr, (char *) data + offset, copy_length);
6591 return copy_length;
6592 }
6593 #else
6594 # define linux_read_loadmap NULL
6595 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6596
6597 static void
6598 linux_process_qsupported (char **features, int count)
6599 {
6600 if (the_low_target.process_qsupported != NULL)
6601 the_low_target.process_qsupported (features, count);
6602 }
6603
6604 static int
6605 linux_supports_catch_syscall (void)
6606 {
6607 return (the_low_target.get_syscall_trapinfo != NULL
6608 && linux_supports_tracesysgood ());
6609 }
6610
6611 static int
6612 linux_get_ipa_tdesc_idx (void)
6613 {
6614 if (the_low_target.get_ipa_tdesc_idx == NULL)
6615 return 0;
6616
6617 return (*the_low_target.get_ipa_tdesc_idx) ();
6618 }
6619
6620 static int
6621 linux_supports_tracepoints (void)
6622 {
6623 if (*the_low_target.supports_tracepoints == NULL)
6624 return 0;
6625
6626 return (*the_low_target.supports_tracepoints) ();
6627 }
6628
6629 static CORE_ADDR
6630 linux_read_pc (struct regcache *regcache)
6631 {
6632 if (the_low_target.get_pc == NULL)
6633 return 0;
6634
6635 return (*the_low_target.get_pc) (regcache);
6636 }
6637
6638 static void
6639 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6640 {
6641 gdb_assert (the_low_target.set_pc != NULL);
6642
6643 (*the_low_target.set_pc) (regcache, pc);
6644 }
6645
6646 static int
6647 linux_thread_stopped (struct thread_info *thread)
6648 {
6649 return get_thread_lwp (thread)->stopped;
6650 }
6651
6652 /* This exposes stop-all-threads functionality to other modules. */
6653
6654 static void
6655 linux_pause_all (int freeze)
6656 {
6657 stop_all_lwps (freeze, NULL);
6658 }
6659
6660 /* This exposes unstop-all-threads functionality to other gdbserver
6661 modules. */
6662
6663 static void
6664 linux_unpause_all (int unfreeze)
6665 {
6666 unstop_all_lwps (unfreeze, NULL);
6667 }
6668
6669 static int
6670 linux_prepare_to_access_memory (void)
6671 {
6672 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6673 running LWP. */
6674 if (non_stop)
6675 linux_pause_all (1);
6676 return 0;
6677 }
6678
6679 static void
6680 linux_done_accessing_memory (void)
6681 {
6682 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6683 running LWP. */
6684 if (non_stop)
6685 linux_unpause_all (1);
6686 }
6687
6688 static int
6689 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6690 CORE_ADDR collector,
6691 CORE_ADDR lockaddr,
6692 ULONGEST orig_size,
6693 CORE_ADDR *jump_entry,
6694 CORE_ADDR *trampoline,
6695 ULONGEST *trampoline_size,
6696 unsigned char *jjump_pad_insn,
6697 ULONGEST *jjump_pad_insn_size,
6698 CORE_ADDR *adjusted_insn_addr,
6699 CORE_ADDR *adjusted_insn_addr_end,
6700 char *err)
6701 {
6702 return (*the_low_target.install_fast_tracepoint_jump_pad)
6703 (tpoint, tpaddr, collector, lockaddr, orig_size,
6704 jump_entry, trampoline, trampoline_size,
6705 jjump_pad_insn, jjump_pad_insn_size,
6706 adjusted_insn_addr, adjusted_insn_addr_end,
6707 err);
6708 }
6709
6710 static struct emit_ops *
6711 linux_emit_ops (void)
6712 {
6713 if (the_low_target.emit_ops != NULL)
6714 return (*the_low_target.emit_ops) ();
6715 else
6716 return NULL;
6717 }
6718
6719 static int
6720 linux_get_min_fast_tracepoint_insn_len (void)
6721 {
6722 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6723 }
6724
6725 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6726
6727 static int
6728 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6729 CORE_ADDR *phdr_memaddr, int *num_phdr)
6730 {
6731 char filename[PATH_MAX];
6732 int fd;
6733 const int auxv_size = is_elf64
6734 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6735 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6736
6737 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6738
6739 fd = open (filename, O_RDONLY);
6740 if (fd < 0)
6741 return 1;
6742
6743 *phdr_memaddr = 0;
6744 *num_phdr = 0;
6745 while (read (fd, buf, auxv_size) == auxv_size
6746 && (*phdr_memaddr == 0 || *num_phdr == 0))
6747 {
6748 if (is_elf64)
6749 {
6750 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6751
6752 switch (aux->a_type)
6753 {
6754 case AT_PHDR:
6755 *phdr_memaddr = aux->a_un.a_val;
6756 break;
6757 case AT_PHNUM:
6758 *num_phdr = aux->a_un.a_val;
6759 break;
6760 }
6761 }
6762 else
6763 {
6764 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6765
6766 switch (aux->a_type)
6767 {
6768 case AT_PHDR:
6769 *phdr_memaddr = aux->a_un.a_val;
6770 break;
6771 case AT_PHNUM:
6772 *num_phdr = aux->a_un.a_val;
6773 break;
6774 }
6775 }
6776 }
6777
6778 close (fd);
6779
6780 if (*phdr_memaddr == 0 || *num_phdr == 0)
6781 {
6782 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6783 "phdr_memaddr = %ld, phdr_num = %d",
6784 (long) *phdr_memaddr, *num_phdr);
6785 return 2;
6786 }
6787
6788 return 0;
6789 }
6790
6791 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6792
6793 static CORE_ADDR
6794 get_dynamic (const int pid, const int is_elf64)
6795 {
6796 CORE_ADDR phdr_memaddr, relocation;
6797 int num_phdr, i;
6798 unsigned char *phdr_buf;
6799 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6800
6801 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6802 return 0;
6803
6804 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6805 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6806
6807 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6808 return 0;
6809
6810 /* Compute relocation: it is expected to be 0 for "regular" executables,
6811 non-zero for PIE ones. */
6812 relocation = -1;
6813 for (i = 0; relocation == -1 && i < num_phdr; i++)
6814 if (is_elf64)
6815 {
6816 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6817
6818 if (p->p_type == PT_PHDR)
6819 relocation = phdr_memaddr - p->p_vaddr;
6820 }
6821 else
6822 {
6823 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6824
6825 if (p->p_type == PT_PHDR)
6826 relocation = phdr_memaddr - p->p_vaddr;
6827 }
6828
6829 if (relocation == -1)
6830 {
6831 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6832 any real world executables, including PIE executables, have always
6833 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6834 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6835 or present DT_DEBUG anyway (fpc binaries are statically linked).
6836
6837 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6838
6839 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6840
6841 return 0;
6842 }
6843
6844 for (i = 0; i < num_phdr; i++)
6845 {
6846 if (is_elf64)
6847 {
6848 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6849
6850 if (p->p_type == PT_DYNAMIC)
6851 return p->p_vaddr + relocation;
6852 }
6853 else
6854 {
6855 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6856
6857 if (p->p_type == PT_DYNAMIC)
6858 return p->p_vaddr + relocation;
6859 }
6860 }
6861
6862 return 0;
6863 }
6864
6865 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6866 can be 0 if the inferior does not yet have the library list initialized.
6867 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6868 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6869
6870 static CORE_ADDR
6871 get_r_debug (const int pid, const int is_elf64)
6872 {
6873 CORE_ADDR dynamic_memaddr;
6874 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6875 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6876 CORE_ADDR map = -1;
6877
6878 dynamic_memaddr = get_dynamic (pid, is_elf64);
6879 if (dynamic_memaddr == 0)
6880 return map;
6881
6882 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6883 {
6884 if (is_elf64)
6885 {
6886 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6887 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6888 union
6889 {
6890 Elf64_Xword map;
6891 unsigned char buf[sizeof (Elf64_Xword)];
6892 }
6893 rld_map;
6894 #endif
6895 #ifdef DT_MIPS_RLD_MAP
6896 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6897 {
6898 if (linux_read_memory (dyn->d_un.d_val,
6899 rld_map.buf, sizeof (rld_map.buf)) == 0)
6900 return rld_map.map;
6901 else
6902 break;
6903 }
6904 #endif /* DT_MIPS_RLD_MAP */
6905 #ifdef DT_MIPS_RLD_MAP_REL
6906 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6907 {
6908 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6909 rld_map.buf, sizeof (rld_map.buf)) == 0)
6910 return rld_map.map;
6911 else
6912 break;
6913 }
6914 #endif /* DT_MIPS_RLD_MAP_REL */
6915
6916 if (dyn->d_tag == DT_DEBUG && map == -1)
6917 map = dyn->d_un.d_val;
6918
6919 if (dyn->d_tag == DT_NULL)
6920 break;
6921 }
6922 else
6923 {
6924 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6925 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6926 union
6927 {
6928 Elf32_Word map;
6929 unsigned char buf[sizeof (Elf32_Word)];
6930 }
6931 rld_map;
6932 #endif
6933 #ifdef DT_MIPS_RLD_MAP
6934 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6935 {
6936 if (linux_read_memory (dyn->d_un.d_val,
6937 rld_map.buf, sizeof (rld_map.buf)) == 0)
6938 return rld_map.map;
6939 else
6940 break;
6941 }
6942 #endif /* DT_MIPS_RLD_MAP */
6943 #ifdef DT_MIPS_RLD_MAP_REL
6944 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6945 {
6946 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6947 rld_map.buf, sizeof (rld_map.buf)) == 0)
6948 return rld_map.map;
6949 else
6950 break;
6951 }
6952 #endif /* DT_MIPS_RLD_MAP_REL */
6953
6954 if (dyn->d_tag == DT_DEBUG && map == -1)
6955 map = dyn->d_un.d_val;
6956
6957 if (dyn->d_tag == DT_NULL)
6958 break;
6959 }
6960
6961 dynamic_memaddr += dyn_size;
6962 }
6963
6964 return map;
6965 }
6966
6967 /* Read one pointer from MEMADDR in the inferior. */
6968
6969 static int
6970 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6971 {
6972 int ret;
6973
6974 /* Go through a union so this works on either big or little endian
6975 hosts, when the inferior's pointer size is smaller than the size
6976 of CORE_ADDR. It is assumed the inferior's endianness is the
6977 same of the superior's. */
6978 union
6979 {
6980 CORE_ADDR core_addr;
6981 unsigned int ui;
6982 unsigned char uc;
6983 } addr;
6984
6985 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6986 if (ret == 0)
6987 {
6988 if (ptr_size == sizeof (CORE_ADDR))
6989 *ptr = addr.core_addr;
6990 else if (ptr_size == sizeof (unsigned int))
6991 *ptr = addr.ui;
6992 else
6993 gdb_assert_not_reached ("unhandled pointer size");
6994 }
6995 return ret;
6996 }
6997
6998 struct link_map_offsets
6999 {
7000 /* Offset and size of r_debug.r_version. */
7001 int r_version_offset;
7002
7003 /* Offset and size of r_debug.r_map. */
7004 int r_map_offset;
7005
7006 /* Offset to l_addr field in struct link_map. */
7007 int l_addr_offset;
7008
7009 /* Offset to l_name field in struct link_map. */
7010 int l_name_offset;
7011
7012 /* Offset to l_ld field in struct link_map. */
7013 int l_ld_offset;
7014
7015 /* Offset to l_next field in struct link_map. */
7016 int l_next_offset;
7017
7018 /* Offset to l_prev field in struct link_map. */
7019 int l_prev_offset;
7020 };
7021
7022 /* Construct qXfer:libraries-svr4:read reply. */
7023
7024 static int
7025 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
7026 unsigned const char *writebuf,
7027 CORE_ADDR offset, int len)
7028 {
7029 char *document;
7030 unsigned document_len;
7031 struct process_info_private *const priv = current_process ()->priv;
7032 char filename[PATH_MAX];
7033 int pid, is_elf64;
7034
7035 static const struct link_map_offsets lmo_32bit_offsets =
7036 {
7037 0, /* r_version offset. */
7038 4, /* r_debug.r_map offset. */
7039 0, /* l_addr offset in link_map. */
7040 4, /* l_name offset in link_map. */
7041 8, /* l_ld offset in link_map. */
7042 12, /* l_next offset in link_map. */
7043 16 /* l_prev offset in link_map. */
7044 };
7045
7046 static const struct link_map_offsets lmo_64bit_offsets =
7047 {
7048 0, /* r_version offset. */
7049 8, /* r_debug.r_map offset. */
7050 0, /* l_addr offset in link_map. */
7051 8, /* l_name offset in link_map. */
7052 16, /* l_ld offset in link_map. */
7053 24, /* l_next offset in link_map. */
7054 32 /* l_prev offset in link_map. */
7055 };
7056 const struct link_map_offsets *lmo;
7057 unsigned int machine;
7058 int ptr_size;
7059 CORE_ADDR lm_addr = 0, lm_prev = 0;
7060 int allocated = 1024;
7061 char *p;
7062 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7063 int header_done = 0;
7064
7065 if (writebuf != NULL)
7066 return -2;
7067 if (readbuf == NULL)
7068 return -1;
7069
7070 pid = lwpid_of (current_thread);
7071 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7072 is_elf64 = elf_64_file_p (filename, &machine);
7073 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7074 ptr_size = is_elf64 ? 8 : 4;
7075
7076 while (annex[0] != '\0')
7077 {
7078 const char *sep;
7079 CORE_ADDR *addrp;
7080 int len;
7081
7082 sep = strchr (annex, '=');
7083 if (sep == NULL)
7084 break;
7085
7086 len = sep - annex;
7087 if (len == 5 && startswith (annex, "start"))
7088 addrp = &lm_addr;
7089 else if (len == 4 && startswith (annex, "prev"))
7090 addrp = &lm_prev;
7091 else
7092 {
7093 annex = strchr (sep, ';');
7094 if (annex == NULL)
7095 break;
7096 annex++;
7097 continue;
7098 }
7099
7100 annex = decode_address_to_semicolon (addrp, sep + 1);
7101 }
7102
7103 if (lm_addr == 0)
7104 {
7105 int r_version = 0;
7106
7107 if (priv->r_debug == 0)
7108 priv->r_debug = get_r_debug (pid, is_elf64);
7109
7110 /* We failed to find DT_DEBUG. Such situation will not change
7111 for this inferior - do not retry it. Report it to GDB as
7112 E01, see for the reasons at the GDB solib-svr4.c side. */
7113 if (priv->r_debug == (CORE_ADDR) -1)
7114 return -1;
7115
7116 if (priv->r_debug != 0)
7117 {
7118 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7119 (unsigned char *) &r_version,
7120 sizeof (r_version)) != 0
7121 || r_version != 1)
7122 {
7123 warning ("unexpected r_debug version %d", r_version);
7124 }
7125 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7126 &lm_addr, ptr_size) != 0)
7127 {
7128 warning ("unable to read r_map from 0x%lx",
7129 (long) priv->r_debug + lmo->r_map_offset);
7130 }
7131 }
7132 }
7133
7134 document = (char *) xmalloc (allocated);
7135 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7136 p = document + strlen (document);
7137
7138 while (lm_addr
7139 && read_one_ptr (lm_addr + lmo->l_name_offset,
7140 &l_name, ptr_size) == 0
7141 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7142 &l_addr, ptr_size) == 0
7143 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7144 &l_ld, ptr_size) == 0
7145 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7146 &l_prev, ptr_size) == 0
7147 && read_one_ptr (lm_addr + lmo->l_next_offset,
7148 &l_next, ptr_size) == 0)
7149 {
7150 unsigned char libname[PATH_MAX];
7151
7152 if (lm_prev != l_prev)
7153 {
7154 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7155 (long) lm_prev, (long) l_prev);
7156 break;
7157 }
7158
7159 /* Ignore the first entry even if it has valid name as the first entry
7160 corresponds to the main executable. The first entry should not be
7161 skipped if the dynamic loader was loaded late by a static executable
7162 (see solib-svr4.c parameter ignore_first). But in such case the main
7163 executable does not have PT_DYNAMIC present and this function already
7164 exited above due to failed get_r_debug. */
7165 if (lm_prev == 0)
7166 {
7167 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7168 p = p + strlen (p);
7169 }
7170 else
7171 {
7172 /* Not checking for error because reading may stop before
7173 we've got PATH_MAX worth of characters. */
7174 libname[0] = '\0';
7175 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7176 libname[sizeof (libname) - 1] = '\0';
7177 if (libname[0] != '\0')
7178 {
7179 /* 6x the size for xml_escape_text below. */
7180 size_t len = 6 * strlen ((char *) libname);
7181
7182 if (!header_done)
7183 {
7184 /* Terminate `<library-list-svr4'. */
7185 *p++ = '>';
7186 header_done = 1;
7187 }
7188
7189 while (allocated < p - document + len + 200)
7190 {
7191 /* Expand to guarantee sufficient storage. */
7192 uintptr_t document_len = p - document;
7193
7194 document = (char *) xrealloc (document, 2 * allocated);
7195 allocated *= 2;
7196 p = document + document_len;
7197 }
7198
7199 std::string name = xml_escape_text ((char *) libname);
7200 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7201 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7202 name.c_str (), (unsigned long) lm_addr,
7203 (unsigned long) l_addr, (unsigned long) l_ld);
7204 }
7205 }
7206
7207 lm_prev = lm_addr;
7208 lm_addr = l_next;
7209 }
7210
7211 if (!header_done)
7212 {
7213 /* Empty list; terminate `<library-list-svr4'. */
7214 strcpy (p, "/>");
7215 }
7216 else
7217 strcpy (p, "</library-list-svr4>");
7218
7219 document_len = strlen (document);
7220 if (offset < document_len)
7221 document_len -= offset;
7222 else
7223 document_len = 0;
7224 if (len > document_len)
7225 len = document_len;
7226
7227 memcpy (readbuf, document + offset, len);
7228 xfree (document);
7229
7230 return len;
7231 }
7232
7233 #ifdef HAVE_LINUX_BTRACE
7234
7235 /* See to_disable_btrace target method. */
7236
7237 static int
7238 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7239 {
7240 enum btrace_error err;
7241
7242 err = linux_disable_btrace (tinfo);
7243 return (err == BTRACE_ERR_NONE ? 0 : -1);
7244 }
7245
7246 /* Encode an Intel Processor Trace configuration. */
7247
7248 static void
7249 linux_low_encode_pt_config (struct buffer *buffer,
7250 const struct btrace_data_pt_config *config)
7251 {
7252 buffer_grow_str (buffer, "<pt-config>\n");
7253
7254 switch (config->cpu.vendor)
7255 {
7256 case CV_INTEL:
7257 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7258 "model=\"%u\" stepping=\"%u\"/>\n",
7259 config->cpu.family, config->cpu.model,
7260 config->cpu.stepping);
7261 break;
7262
7263 default:
7264 break;
7265 }
7266
7267 buffer_grow_str (buffer, "</pt-config>\n");
7268 }
7269
7270 /* Encode a raw buffer. */
7271
7272 static void
7273 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7274 unsigned int size)
7275 {
7276 if (size == 0)
7277 return;
7278
7279 /* We use hex encoding - see common/rsp-low.h. */
7280 buffer_grow_str (buffer, "<raw>\n");
7281
7282 while (size-- > 0)
7283 {
7284 char elem[2];
7285
7286 elem[0] = tohex ((*data >> 4) & 0xf);
7287 elem[1] = tohex (*data++ & 0xf);
7288
7289 buffer_grow (buffer, elem, 2);
7290 }
7291
7292 buffer_grow_str (buffer, "</raw>\n");
7293 }
7294
7295 /* See to_read_btrace target method. */
7296
7297 static int
7298 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7299 enum btrace_read_type type)
7300 {
7301 struct btrace_data btrace;
7302 struct btrace_block *block;
7303 enum btrace_error err;
7304 int i;
7305
7306 btrace_data_init (&btrace);
7307
7308 err = linux_read_btrace (&btrace, tinfo, type);
7309 if (err != BTRACE_ERR_NONE)
7310 {
7311 if (err == BTRACE_ERR_OVERFLOW)
7312 buffer_grow_str0 (buffer, "E.Overflow.");
7313 else
7314 buffer_grow_str0 (buffer, "E.Generic Error.");
7315
7316 goto err;
7317 }
7318
7319 switch (btrace.format)
7320 {
7321 case BTRACE_FORMAT_NONE:
7322 buffer_grow_str0 (buffer, "E.No Trace.");
7323 goto err;
7324
7325 case BTRACE_FORMAT_BTS:
7326 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7327 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7328
7329 for (i = 0;
7330 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7331 i++)
7332 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7333 paddress (block->begin), paddress (block->end));
7334
7335 buffer_grow_str0 (buffer, "</btrace>\n");
7336 break;
7337
7338 case BTRACE_FORMAT_PT:
7339 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7340 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7341 buffer_grow_str (buffer, "<pt>\n");
7342
7343 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7344
7345 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7346 btrace.variant.pt.size);
7347
7348 buffer_grow_str (buffer, "</pt>\n");
7349 buffer_grow_str0 (buffer, "</btrace>\n");
7350 break;
7351
7352 default:
7353 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7354 goto err;
7355 }
7356
7357 btrace_data_fini (&btrace);
7358 return 0;
7359
7360 err:
7361 btrace_data_fini (&btrace);
7362 return -1;
7363 }
7364
7365 /* See to_btrace_conf target method. */
7366
7367 static int
7368 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7369 struct buffer *buffer)
7370 {
7371 const struct btrace_config *conf;
7372
7373 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7374 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7375
7376 conf = linux_btrace_conf (tinfo);
7377 if (conf != NULL)
7378 {
7379 switch (conf->format)
7380 {
7381 case BTRACE_FORMAT_NONE:
7382 break;
7383
7384 case BTRACE_FORMAT_BTS:
7385 buffer_xml_printf (buffer, "<bts");
7386 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7387 buffer_xml_printf (buffer, " />\n");
7388 break;
7389
7390 case BTRACE_FORMAT_PT:
7391 buffer_xml_printf (buffer, "<pt");
7392 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7393 buffer_xml_printf (buffer, "/>\n");
7394 break;
7395 }
7396 }
7397
7398 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7399 return 0;
7400 }
7401 #endif /* HAVE_LINUX_BTRACE */
7402
7403 /* See nat/linux-nat.h. */
7404
7405 ptid_t
7406 current_lwp_ptid (void)
7407 {
7408 return ptid_of (current_thread);
7409 }
7410
7411 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7412
7413 static int
7414 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7415 {
7416 if (the_low_target.breakpoint_kind_from_pc != NULL)
7417 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7418 else
7419 return default_breakpoint_kind_from_pc (pcptr);
7420 }
7421
7422 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7423
7424 static const gdb_byte *
7425 linux_sw_breakpoint_from_kind (int kind, int *size)
7426 {
7427 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7428
7429 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7430 }
7431
7432 /* Implementation of the target_ops method
7433 "breakpoint_kind_from_current_state". */
7434
7435 static int
7436 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7437 {
7438 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7439 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7440 else
7441 return linux_breakpoint_kind_from_pc (pcptr);
7442 }
7443
7444 /* Default implementation of linux_target_ops method "set_pc" for
7445 32-bit pc register which is literally named "pc". */
7446
7447 void
7448 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7449 {
7450 uint32_t newpc = pc;
7451
7452 supply_register_by_name (regcache, "pc", &newpc);
7453 }
7454
7455 /* Default implementation of linux_target_ops method "get_pc" for
7456 32-bit pc register which is literally named "pc". */
7457
7458 CORE_ADDR
7459 linux_get_pc_32bit (struct regcache *regcache)
7460 {
7461 uint32_t pc;
7462
7463 collect_register_by_name (regcache, "pc", &pc);
7464 if (debug_threads)
7465 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7466 return pc;
7467 }
7468
7469 /* Default implementation of linux_target_ops method "set_pc" for
7470 64-bit pc register which is literally named "pc". */
7471
7472 void
7473 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7474 {
7475 uint64_t newpc = pc;
7476
7477 supply_register_by_name (regcache, "pc", &newpc);
7478 }
7479
7480 /* Default implementation of linux_target_ops method "get_pc" for
7481 64-bit pc register which is literally named "pc". */
7482
7483 CORE_ADDR
7484 linux_get_pc_64bit (struct regcache *regcache)
7485 {
7486 uint64_t pc;
7487
7488 collect_register_by_name (regcache, "pc", &pc);
7489 if (debug_threads)
7490 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7491 return pc;
7492 }
7493
7494
7495 static struct target_ops linux_target_ops = {
7496 linux_create_inferior,
7497 linux_post_create_inferior,
7498 linux_attach,
7499 linux_kill,
7500 linux_detach,
7501 linux_mourn,
7502 linux_join,
7503 linux_thread_alive,
7504 linux_resume,
7505 linux_wait,
7506 linux_fetch_registers,
7507 linux_store_registers,
7508 linux_prepare_to_access_memory,
7509 linux_done_accessing_memory,
7510 linux_read_memory,
7511 linux_write_memory,
7512 linux_look_up_symbols,
7513 linux_request_interrupt,
7514 linux_read_auxv,
7515 linux_supports_z_point_type,
7516 linux_insert_point,
7517 linux_remove_point,
7518 linux_stopped_by_sw_breakpoint,
7519 linux_supports_stopped_by_sw_breakpoint,
7520 linux_stopped_by_hw_breakpoint,
7521 linux_supports_stopped_by_hw_breakpoint,
7522 linux_supports_hardware_single_step,
7523 linux_stopped_by_watchpoint,
7524 linux_stopped_data_address,
7525 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7526 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7527 && defined(PT_TEXT_END_ADDR)
7528 linux_read_offsets,
7529 #else
7530 NULL,
7531 #endif
7532 #ifdef USE_THREAD_DB
7533 thread_db_get_tls_address,
7534 #else
7535 NULL,
7536 #endif
7537 linux_qxfer_spu,
7538 hostio_last_error_from_errno,
7539 linux_qxfer_osdata,
7540 linux_xfer_siginfo,
7541 linux_supports_non_stop,
7542 linux_async,
7543 linux_start_non_stop,
7544 linux_supports_multi_process,
7545 linux_supports_fork_events,
7546 linux_supports_vfork_events,
7547 linux_supports_exec_events,
7548 linux_handle_new_gdb_connection,
7549 #ifdef USE_THREAD_DB
7550 thread_db_handle_monitor_command,
7551 #else
7552 NULL,
7553 #endif
7554 linux_common_core_of_thread,
7555 linux_read_loadmap,
7556 linux_process_qsupported,
7557 linux_supports_tracepoints,
7558 linux_read_pc,
7559 linux_write_pc,
7560 linux_thread_stopped,
7561 NULL,
7562 linux_pause_all,
7563 linux_unpause_all,
7564 linux_stabilize_threads,
7565 linux_install_fast_tracepoint_jump_pad,
7566 linux_emit_ops,
7567 linux_supports_disable_randomization,
7568 linux_get_min_fast_tracepoint_insn_len,
7569 linux_qxfer_libraries_svr4,
7570 linux_supports_agent,
7571 #ifdef HAVE_LINUX_BTRACE
7572 linux_supports_btrace,
7573 linux_enable_btrace,
7574 linux_low_disable_btrace,
7575 linux_low_read_btrace,
7576 linux_low_btrace_conf,
7577 #else
7578 NULL,
7579 NULL,
7580 NULL,
7581 NULL,
7582 NULL,
7583 #endif
7584 linux_supports_range_stepping,
7585 linux_proc_pid_to_exec_file,
7586 linux_mntns_open_cloexec,
7587 linux_mntns_unlink,
7588 linux_mntns_readlink,
7589 linux_breakpoint_kind_from_pc,
7590 linux_sw_breakpoint_from_kind,
7591 linux_proc_tid_get_name,
7592 linux_breakpoint_kind_from_current_state,
7593 linux_supports_software_single_step,
7594 linux_supports_catch_syscall,
7595 linux_get_ipa_tdesc_idx,
7596 #if USE_THREAD_DB
7597 thread_db_thread_handle,
7598 #else
7599 NULL,
7600 #endif
7601 };
7602
7603 #ifdef HAVE_LINUX_REGSETS
7604 void
7605 initialize_regsets_info (struct regsets_info *info)
7606 {
7607 for (info->num_regsets = 0;
7608 info->regsets[info->num_regsets].size >= 0;
7609 info->num_regsets++)
7610 ;
7611 }
7612 #endif
7613
7614 void
7615 initialize_low (void)
7616 {
7617 struct sigaction sigchld_action;
7618
7619 memset (&sigchld_action, 0, sizeof (sigchld_action));
7620 set_target_ops (&linux_target_ops);
7621
7622 linux_ptrace_init_warnings ();
7623
7624 sigchld_action.sa_handler = sigchld_handler;
7625 sigemptyset (&sigchld_action.sa_mask);
7626 sigchld_action.sa_flags = SA_RESTART;
7627 sigaction (SIGCHLD, &sigchld_action, NULL);
7628
7629 initialize_low_arch ();
7630
7631 linux_check_ptrace_features ();
7632 }
This page took 0.268022 seconds and 4 git commands to generate.