3fdb3a74ae7c53a50bb9ae06d2f49eda66328264
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include "linux-low.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/param.h>
26 #include <sys/ptrace.h>
27 #include <signal.h>
28 #include <sys/ioctl.h>
29 #include <fcntl.h>
30 #include <string.h>
31 #include <stdlib.h>
32 #include <unistd.h>
33 #include <errno.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40
41 #ifndef PTRACE_GETSIGINFO
42 # define PTRACE_GETSIGINFO 0x4202
43 # define PTRACE_SETSIGINFO 0x4203
44 #endif
45
46 #ifndef O_LARGEFILE
47 #define O_LARGEFILE 0
48 #endif
49
50 /* If the system headers did not provide the constants, hard-code the normal
51 values. */
52 #ifndef PTRACE_EVENT_FORK
53
54 #define PTRACE_SETOPTIONS 0x4200
55 #define PTRACE_GETEVENTMSG 0x4201
56
57 /* options set using PTRACE_SETOPTIONS */
58 #define PTRACE_O_TRACESYSGOOD 0x00000001
59 #define PTRACE_O_TRACEFORK 0x00000002
60 #define PTRACE_O_TRACEVFORK 0x00000004
61 #define PTRACE_O_TRACECLONE 0x00000008
62 #define PTRACE_O_TRACEEXEC 0x00000010
63 #define PTRACE_O_TRACEVFORKDONE 0x00000020
64 #define PTRACE_O_TRACEEXIT 0x00000040
65
66 /* Wait extended result codes for the above trace options. */
67 #define PTRACE_EVENT_FORK 1
68 #define PTRACE_EVENT_VFORK 2
69 #define PTRACE_EVENT_CLONE 3
70 #define PTRACE_EVENT_EXEC 4
71 #define PTRACE_EVENT_VFORK_DONE 5
72 #define PTRACE_EVENT_EXIT 6
73
74 #endif /* PTRACE_EVENT_FORK */
75
76 /* We can't always assume that this flag is available, but all systems
77 with the ptrace event handlers also have __WALL, so it's safe to use
78 in some contexts. */
79 #ifndef __WALL
80 #define __WALL 0x40000000 /* Wait for any child. */
81 #endif
82
83 #ifdef __UCLIBC__
84 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
85 #define HAS_NOMMU
86 #endif
87 #endif
88
89 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
90 representation of the thread ID.
91
92 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
93 the same as the LWP ID. */
94
95 struct inferior_list all_lwps;
96
97 /* A list of all unknown processes which receive stop signals. Some other
98 process will presumably claim each of these as forked children
99 momentarily. */
100
101 struct inferior_list stopped_pids;
102
103 /* FIXME this is a bit of a hack, and could be removed. */
104 int stopping_threads;
105
106 /* FIXME make into a target method? */
107 int using_threads = 1;
108 static int thread_db_active;
109
110 static int must_set_ptrace_flags;
111
112 /* This flag is true iff we've just created or attached to a new inferior
113 but it has not stopped yet. As soon as it does, we need to call the
114 low target's arch_setup callback. */
115 static int new_inferior;
116
117 static void linux_resume_one_lwp (struct inferior_list_entry *entry,
118 int step, int signal, siginfo_t *info);
119 static void linux_resume (struct thread_resume *resume_info);
120 static void stop_all_lwps (void);
121 static int linux_wait_for_event (struct thread_info *child);
122 static int check_removed_breakpoint (struct lwp_info *event_child);
123 static void *add_lwp (unsigned long pid);
124 static int my_waitpid (int pid, int *status, int flags);
125
126 struct pending_signals
127 {
128 int signal;
129 siginfo_t info;
130 struct pending_signals *prev;
131 };
132
133 #define PTRACE_ARG3_TYPE long
134 #define PTRACE_XFER_TYPE long
135
136 #ifdef HAVE_LINUX_REGSETS
137 static char *disabled_regsets;
138 static int num_regsets;
139 #endif
140
141 #define pid_of(proc) ((proc)->head.id)
142
143 /* FIXME: Delete eventually. */
144 #define inferior_pid (pid_of (get_thread_lwp (current_inferior)))
145
146 static void
147 handle_extended_wait (struct lwp_info *event_child, int wstat)
148 {
149 int event = wstat >> 16;
150 struct lwp_info *new_lwp;
151
152 if (event == PTRACE_EVENT_CLONE)
153 {
154 unsigned long new_pid;
155 int ret, status = W_STOPCODE (SIGSTOP);
156
157 ptrace (PTRACE_GETEVENTMSG, inferior_pid, 0, &new_pid);
158
159 /* If we haven't already seen the new PID stop, wait for it now. */
160 if (! pull_pid_from_list (&stopped_pids, new_pid))
161 {
162 /* The new child has a pending SIGSTOP. We can't affect it until it
163 hits the SIGSTOP, but we're already attached. */
164
165 ret = my_waitpid (new_pid, &status, __WALL);
166
167 if (ret == -1)
168 perror_with_name ("waiting for new child");
169 else if (ret != new_pid)
170 warning ("wait returned unexpected PID %d", ret);
171 else if (!WIFSTOPPED (status))
172 warning ("wait returned unexpected status 0x%x", status);
173 }
174
175 ptrace (PTRACE_SETOPTIONS, new_pid, 0, PTRACE_O_TRACECLONE);
176
177 new_lwp = (struct lwp_info *) add_lwp (new_pid);
178 add_thread (new_pid, new_lwp, new_pid);
179 new_thread_notify (thread_id_to_gdb_id (new_lwp->lwpid));
180
181 /* Normally we will get the pending SIGSTOP. But in some cases
182 we might get another signal delivered to the group first.
183 If we do get another signal, be sure not to lose it. */
184 if (WSTOPSIG (status) == SIGSTOP)
185 {
186 if (stopping_threads)
187 new_lwp->stopped = 1;
188 else
189 ptrace (PTRACE_CONT, new_pid, 0, 0);
190 }
191 else
192 {
193 new_lwp->stop_expected = 1;
194 if (stopping_threads)
195 {
196 new_lwp->stopped = 1;
197 new_lwp->status_pending_p = 1;
198 new_lwp->status_pending = status;
199 }
200 else
201 /* Pass the signal on. This is what GDB does - except
202 shouldn't we really report it instead? */
203 ptrace (PTRACE_CONT, new_pid, 0, WSTOPSIG (status));
204 }
205
206 /* Always resume the current thread. If we are stopping
207 threads, it will have a pending SIGSTOP; we may as well
208 collect it now. */
209 linux_resume_one_lwp (&event_child->head,
210 event_child->stepping, 0, NULL);
211 }
212 }
213
214 /* This function should only be called if the process got a SIGTRAP.
215 The SIGTRAP could mean several things.
216
217 On i386, where decr_pc_after_break is non-zero:
218 If we were single-stepping this process using PTRACE_SINGLESTEP,
219 we will get only the one SIGTRAP (even if the instruction we
220 stepped over was a breakpoint). The value of $eip will be the
221 next instruction.
222 If we continue the process using PTRACE_CONT, we will get a
223 SIGTRAP when we hit a breakpoint. The value of $eip will be
224 the instruction after the breakpoint (i.e. needs to be
225 decremented). If we report the SIGTRAP to GDB, we must also
226 report the undecremented PC. If we cancel the SIGTRAP, we
227 must resume at the decremented PC.
228
229 (Presumably, not yet tested) On a non-decr_pc_after_break machine
230 with hardware or kernel single-step:
231 If we single-step over a breakpoint instruction, our PC will
232 point at the following instruction. If we continue and hit a
233 breakpoint instruction, our PC will point at the breakpoint
234 instruction. */
235
236 static CORE_ADDR
237 get_stop_pc (void)
238 {
239 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
240
241 if (get_thread_lwp (current_inferior)->stepping)
242 return stop_pc;
243 else
244 return stop_pc - the_low_target.decr_pc_after_break;
245 }
246
247 static void *
248 add_lwp (unsigned long pid)
249 {
250 struct lwp_info *lwp;
251
252 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
253 memset (lwp, 0, sizeof (*lwp));
254
255 lwp->head.id = pid;
256 lwp->lwpid = pid;
257
258 add_inferior_to_list (&all_lwps, &lwp->head);
259
260 return lwp;
261 }
262
263 /* Start an inferior process and returns its pid.
264 ALLARGS is a vector of program-name and args. */
265
266 static int
267 linux_create_inferior (char *program, char **allargs)
268 {
269 void *new_lwp;
270 int pid;
271
272 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
273 pid = vfork ();
274 #else
275 pid = fork ();
276 #endif
277 if (pid < 0)
278 perror_with_name ("fork");
279
280 if (pid == 0)
281 {
282 ptrace (PTRACE_TRACEME, 0, 0, 0);
283
284 signal (__SIGRTMIN + 1, SIG_DFL);
285
286 setpgid (0, 0);
287
288 execv (program, allargs);
289 if (errno == ENOENT)
290 execvp (program, allargs);
291
292 fprintf (stderr, "Cannot exec %s: %s.\n", program,
293 strerror (errno));
294 fflush (stderr);
295 _exit (0177);
296 }
297
298 new_lwp = add_lwp (pid);
299 add_thread (pid, new_lwp, pid);
300 must_set_ptrace_flags = 1;
301 new_inferior = 1;
302
303 return pid;
304 }
305
306 /* Attach to an inferior process. */
307
308 void
309 linux_attach_lwp (unsigned long pid)
310 {
311 struct lwp_info *new_lwp;
312
313 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
314 {
315 if (all_threads.head != NULL)
316 {
317 /* If we fail to attach to an LWP, just warn. */
318 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", pid,
319 strerror (errno), errno);
320 fflush (stderr);
321 return;
322 }
323 else
324 /* If we fail to attach to a process, report an error. */
325 error ("Cannot attach to process %ld: %s (%d)\n", pid,
326 strerror (errno), errno);
327 }
328
329 /* FIXME: This intermittently fails.
330 We need to wait for SIGSTOP first. */
331 ptrace (PTRACE_SETOPTIONS, pid, 0, PTRACE_O_TRACECLONE);
332
333 new_lwp = (struct lwp_info *) add_lwp (pid);
334 add_thread (pid, new_lwp, pid);
335 new_thread_notify (thread_id_to_gdb_id (new_lwp->lwpid));
336
337 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
338 brings it to a halt.
339
340 There are several cases to consider here:
341
342 1) gdbserver has already attached to the process and is being notified
343 of a new thread that is being created.
344 In this case we should ignore that SIGSTOP and resume the process.
345 This is handled below by setting stop_expected = 1.
346
347 2) This is the first thread (the process thread), and we're attaching
348 to it via attach_inferior.
349 In this case we want the process thread to stop.
350 This is handled by having linux_attach clear stop_expected after
351 we return.
352 ??? If the process already has several threads we leave the other
353 threads running.
354
355 3) GDB is connecting to gdbserver and is requesting an enumeration of all
356 existing threads.
357 In this case we want the thread to stop.
358 FIXME: This case is currently not properly handled.
359 We should wait for the SIGSTOP but don't. Things work apparently
360 because enough time passes between when we ptrace (ATTACH) and when
361 gdb makes the next ptrace call on the thread.
362
363 On the other hand, if we are currently trying to stop all threads, we
364 should treat the new thread as if we had sent it a SIGSTOP. This works
365 because we are guaranteed that the add_lwp call above added us to the
366 end of the list, and so the new thread has not yet reached
367 wait_for_sigstop (but will). */
368 if (! stopping_threads)
369 new_lwp->stop_expected = 1;
370 }
371
372 int
373 linux_attach (unsigned long pid)
374 {
375 struct lwp_info *lwp;
376
377 linux_attach_lwp (pid);
378
379 /* Don't ignore the initial SIGSTOP if we just attached to this process.
380 It will be collected by wait shortly. */
381 lwp = (struct lwp_info *) find_inferior_id (&all_lwps, pid);
382 lwp->stop_expected = 0;
383
384 new_inferior = 1;
385
386 return 0;
387 }
388
389 /* Kill the inferior process. Make us have no inferior. */
390
391 static void
392 linux_kill_one_lwp (struct inferior_list_entry *entry)
393 {
394 struct thread_info *thread = (struct thread_info *) entry;
395 struct lwp_info *lwp = get_thread_lwp (thread);
396 int wstat;
397
398 /* We avoid killing the first thread here, because of a Linux kernel (at
399 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
400 the children get a chance to be reaped, it will remain a zombie
401 forever. */
402 if (entry == all_threads.head)
403 return;
404
405 do
406 {
407 ptrace (PTRACE_KILL, pid_of (lwp), 0, 0);
408
409 /* Make sure it died. The loop is most likely unnecessary. */
410 wstat = linux_wait_for_event (thread);
411 } while (WIFSTOPPED (wstat));
412 }
413
414 static void
415 linux_kill (void)
416 {
417 struct thread_info *thread = (struct thread_info *) all_threads.head;
418 struct lwp_info *lwp;
419 int wstat;
420
421 if (thread == NULL)
422 return;
423
424 for_each_inferior (&all_threads, linux_kill_one_lwp);
425
426 /* See the comment in linux_kill_one_lwp. We did not kill the first
427 thread in the list, so do so now. */
428 lwp = get_thread_lwp (thread);
429 do
430 {
431 ptrace (PTRACE_KILL, pid_of (lwp), 0, 0);
432
433 /* Make sure it died. The loop is most likely unnecessary. */
434 wstat = linux_wait_for_event (thread);
435 } while (WIFSTOPPED (wstat));
436
437 clear_inferiors ();
438 free (all_lwps.head);
439 all_lwps.head = all_lwps.tail = NULL;
440 }
441
442 static void
443 linux_detach_one_lwp (struct inferior_list_entry *entry)
444 {
445 struct thread_info *thread = (struct thread_info *) entry;
446 struct lwp_info *lwp = get_thread_lwp (thread);
447
448 /* Make sure the process isn't stopped at a breakpoint that's
449 no longer there. */
450 check_removed_breakpoint (lwp);
451
452 /* If this process is stopped but is expecting a SIGSTOP, then make
453 sure we take care of that now. This isn't absolutely guaranteed
454 to collect the SIGSTOP, but is fairly likely to. */
455 if (lwp->stop_expected)
456 {
457 /* Clear stop_expected, so that the SIGSTOP will be reported. */
458 lwp->stop_expected = 0;
459 if (lwp->stopped)
460 linux_resume_one_lwp (&lwp->head, 0, 0, NULL);
461 linux_wait_for_event (thread);
462 }
463
464 /* Flush any pending changes to the process's registers. */
465 regcache_invalidate_one ((struct inferior_list_entry *)
466 get_lwp_thread (lwp));
467
468 /* Finally, let it resume. */
469 ptrace (PTRACE_DETACH, pid_of (lwp), 0, 0);
470 }
471
472 static int
473 linux_detach (void)
474 {
475 delete_all_breakpoints ();
476 for_each_inferior (&all_threads, linux_detach_one_lwp);
477 clear_inferiors ();
478 free (all_lwps.head);
479 all_lwps.head = all_lwps.tail = NULL;
480 return 0;
481 }
482
483 static void
484 linux_join (void)
485 {
486 extern unsigned long signal_pid;
487 int status, ret;
488
489 do {
490 ret = waitpid (signal_pid, &status, 0);
491 if (WIFEXITED (status) || WIFSIGNALED (status))
492 break;
493 } while (ret != -1 || errno != ECHILD);
494 }
495
496 /* Return nonzero if the given thread is still alive. */
497 static int
498 linux_thread_alive (unsigned long lwpid)
499 {
500 if (find_inferior_id (&all_threads, lwpid) != NULL)
501 return 1;
502 else
503 return 0;
504 }
505
506 /* Return nonzero if this process stopped at a breakpoint which
507 no longer appears to be inserted. Also adjust the PC
508 appropriately to resume where the breakpoint used to be. */
509 static int
510 check_removed_breakpoint (struct lwp_info *event_child)
511 {
512 CORE_ADDR stop_pc;
513 struct thread_info *saved_inferior;
514
515 if (event_child->pending_is_breakpoint == 0)
516 return 0;
517
518 if (debug_threads)
519 fprintf (stderr, "Checking for breakpoint in lwp %ld.\n",
520 event_child->lwpid);
521
522 saved_inferior = current_inferior;
523 current_inferior = get_lwp_thread (event_child);
524
525 stop_pc = get_stop_pc ();
526
527 /* If the PC has changed since we stopped, then we shouldn't do
528 anything. This happens if, for instance, GDB handled the
529 decr_pc_after_break subtraction itself. */
530 if (stop_pc != event_child->pending_stop_pc)
531 {
532 if (debug_threads)
533 fprintf (stderr, "Ignoring, PC was changed. Old PC was 0x%08llx\n",
534 event_child->pending_stop_pc);
535
536 event_child->pending_is_breakpoint = 0;
537 current_inferior = saved_inferior;
538 return 0;
539 }
540
541 /* If the breakpoint is still there, we will report hitting it. */
542 if ((*the_low_target.breakpoint_at) (stop_pc))
543 {
544 if (debug_threads)
545 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
546 current_inferior = saved_inferior;
547 return 0;
548 }
549
550 if (debug_threads)
551 fprintf (stderr, "Removed breakpoint.\n");
552
553 /* For decr_pc_after_break targets, here is where we perform the
554 decrement. We go immediately from this function to resuming,
555 and can not safely call get_stop_pc () again. */
556 if (the_low_target.set_pc != NULL)
557 (*the_low_target.set_pc) (stop_pc);
558
559 /* We consumed the pending SIGTRAP. */
560 event_child->pending_is_breakpoint = 0;
561 event_child->status_pending_p = 0;
562 event_child->status_pending = 0;
563
564 current_inferior = saved_inferior;
565 return 1;
566 }
567
568 /* Return 1 if this lwp has an interesting status pending. This
569 function may silently resume an inferior lwp. */
570 static int
571 status_pending_p (struct inferior_list_entry *entry, void *dummy)
572 {
573 struct lwp_info *lwp = (struct lwp_info *) entry;
574
575 if (lwp->status_pending_p)
576 if (check_removed_breakpoint (lwp))
577 {
578 /* This thread was stopped at a breakpoint, and the breakpoint
579 is now gone. We were told to continue (or step...) all threads,
580 so GDB isn't trying to single-step past this breakpoint.
581 So instead of reporting the old SIGTRAP, pretend we got to
582 the breakpoint just after it was removed instead of just
583 before; resume the process. */
584 linux_resume_one_lwp (&lwp->head, 0, 0, NULL);
585 return 0;
586 }
587
588 return lwp->status_pending_p;
589 }
590
591 static void
592 linux_wait_for_lwp (struct lwp_info **childp, int *wstatp)
593 {
594 int ret;
595 int to_wait_for = -1;
596
597 if (*childp != NULL)
598 to_wait_for = (*childp)->lwpid;
599
600 retry:
601 while (1)
602 {
603 ret = waitpid (to_wait_for, wstatp, WNOHANG);
604
605 if (ret == -1)
606 {
607 if (errno != ECHILD)
608 perror_with_name ("waitpid");
609 }
610 else if (ret > 0)
611 break;
612
613 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
614
615 if (ret == -1)
616 {
617 if (errno != ECHILD)
618 perror_with_name ("waitpid (WCLONE)");
619 }
620 else if (ret > 0)
621 break;
622
623 usleep (1000);
624 }
625
626 if (debug_threads
627 && (!WIFSTOPPED (*wstatp)
628 || (WSTOPSIG (*wstatp) != 32
629 && WSTOPSIG (*wstatp) != 33)))
630 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
631
632 if (to_wait_for == -1)
633 *childp = (struct lwp_info *) find_inferior_id (&all_lwps, ret);
634
635 /* If we didn't find a process, one of two things presumably happened:
636 - A process we started and then detached from has exited. Ignore it.
637 - A process we are controlling has forked and the new child's stop
638 was reported to us by the kernel. Save its PID. */
639 if (*childp == NULL && WIFSTOPPED (*wstatp))
640 {
641 add_pid_to_list (&stopped_pids, ret);
642 goto retry;
643 }
644 else if (*childp == NULL)
645 goto retry;
646
647 (*childp)->stopped = 1;
648 (*childp)->pending_is_breakpoint = 0;
649
650 (*childp)->last_status = *wstatp;
651
652 /* Architecture-specific setup after inferior is running.
653 This needs to happen after we have attached to the inferior
654 and it is stopped for the first time, but before we access
655 any inferior registers. */
656 if (new_inferior)
657 {
658 the_low_target.arch_setup ();
659 #ifdef HAVE_LINUX_REGSETS
660 memset (disabled_regsets, 0, num_regsets);
661 #endif
662 new_inferior = 0;
663 }
664
665 if (debug_threads
666 && WIFSTOPPED (*wstatp))
667 {
668 struct thread_info *saved_inferior = current_inferior;
669 current_inferior = (struct thread_info *)
670 find_inferior_id (&all_threads, (*childp)->lwpid);
671 /* For testing only; i386_stop_pc prints out a diagnostic. */
672 if (the_low_target.get_pc != NULL)
673 get_stop_pc ();
674 current_inferior = saved_inferior;
675 }
676 }
677
678 static int
679 linux_wait_for_event (struct thread_info *child)
680 {
681 CORE_ADDR stop_pc;
682 struct lwp_info *event_child;
683 int wstat;
684 int bp_status;
685
686 /* Check for a process with a pending status. */
687 /* It is possible that the user changed the pending task's registers since
688 it stopped. We correctly handle the change of PC if we hit a breakpoint
689 (in check_removed_breakpoint); signals should be reported anyway. */
690 if (child == NULL)
691 {
692 event_child = (struct lwp_info *)
693 find_inferior (&all_lwps, status_pending_p, NULL);
694 if (debug_threads && event_child)
695 fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
696 }
697 else
698 {
699 event_child = get_thread_lwp (child);
700 if (event_child->status_pending_p
701 && check_removed_breakpoint (event_child))
702 event_child = NULL;
703 }
704
705 if (event_child != NULL)
706 {
707 if (event_child->status_pending_p)
708 {
709 if (debug_threads)
710 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
711 event_child->lwpid, event_child->status_pending);
712 wstat = event_child->status_pending;
713 event_child->status_pending_p = 0;
714 event_child->status_pending = 0;
715 current_inferior = get_lwp_thread (event_child);
716 return wstat;
717 }
718 }
719
720 /* We only enter this loop if no process has a pending wait status. Thus
721 any action taken in response to a wait status inside this loop is
722 responding as soon as we detect the status, not after any pending
723 events. */
724 while (1)
725 {
726 if (child == NULL)
727 event_child = NULL;
728 else
729 event_child = get_thread_lwp (child);
730
731 linux_wait_for_lwp (&event_child, &wstat);
732
733 if (event_child == NULL)
734 error ("event from unknown child");
735
736 current_inferior = (struct thread_info *)
737 find_inferior_id (&all_threads, event_child->lwpid);
738
739 /* Check for thread exit. */
740 if (! WIFSTOPPED (wstat))
741 {
742 if (debug_threads)
743 fprintf (stderr, "LWP %ld exiting\n", event_child->head.id);
744
745 /* If the last thread is exiting, just return. */
746 if (all_threads.head == all_threads.tail)
747 return wstat;
748
749 dead_thread_notify (thread_id_to_gdb_id (event_child->lwpid));
750
751 remove_inferior (&all_lwps, &event_child->head);
752 free (event_child);
753 remove_thread (current_inferior);
754 current_inferior = (struct thread_info *) all_threads.head;
755
756 /* If we were waiting for this particular child to do something...
757 well, it did something. */
758 if (child != NULL)
759 return wstat;
760
761 /* Wait for a more interesting event. */
762 continue;
763 }
764
765 if (WIFSTOPPED (wstat)
766 && WSTOPSIG (wstat) == SIGSTOP
767 && event_child->stop_expected)
768 {
769 if (debug_threads)
770 fprintf (stderr, "Expected stop.\n");
771 event_child->stop_expected = 0;
772 linux_resume_one_lwp (&event_child->head,
773 event_child->stepping, 0, NULL);
774 continue;
775 }
776
777 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
778 && wstat >> 16 != 0)
779 {
780 handle_extended_wait (event_child, wstat);
781 continue;
782 }
783
784 /* If GDB is not interested in this signal, don't stop other
785 threads, and don't report it to GDB. Just resume the
786 inferior right away. We do this for threading-related
787 signals as well as any that GDB specifically requested we
788 ignore. But never ignore SIGSTOP if we sent it ourselves,
789 and do not ignore signals when stepping - they may require
790 special handling to skip the signal handler. */
791 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
792 thread library? */
793 if (WIFSTOPPED (wstat)
794 && !event_child->stepping
795 && (
796 #ifdef USE_THREAD_DB
797 (thread_db_active && (WSTOPSIG (wstat) == __SIGRTMIN
798 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
799 ||
800 #endif
801 (pass_signals[target_signal_from_host (WSTOPSIG (wstat))]
802 && (WSTOPSIG (wstat) != SIGSTOP || !stopping_threads))))
803 {
804 siginfo_t info, *info_p;
805
806 if (debug_threads)
807 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
808 WSTOPSIG (wstat), event_child->head.id);
809
810 if (ptrace (PTRACE_GETSIGINFO, event_child->lwpid, 0, &info) == 0)
811 info_p = &info;
812 else
813 info_p = NULL;
814 linux_resume_one_lwp (&event_child->head,
815 event_child->stepping,
816 WSTOPSIG (wstat), info_p);
817 continue;
818 }
819
820 /* If this event was not handled above, and is not a SIGTRAP, report
821 it. */
822 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
823 return wstat;
824
825 /* If this target does not support breakpoints, we simply report the
826 SIGTRAP; it's of no concern to us. */
827 if (the_low_target.get_pc == NULL)
828 return wstat;
829
830 stop_pc = get_stop_pc ();
831
832 /* bp_reinsert will only be set if we were single-stepping.
833 Notice that we will resume the process after hitting
834 a gdbserver breakpoint; single-stepping to/over one
835 is not supported (yet). */
836 if (event_child->bp_reinsert != 0)
837 {
838 if (debug_threads)
839 fprintf (stderr, "Reinserted breakpoint.\n");
840 reinsert_breakpoint (event_child->bp_reinsert);
841 event_child->bp_reinsert = 0;
842
843 /* Clear the single-stepping flag and SIGTRAP as we resume. */
844 linux_resume_one_lwp (&event_child->head, 0, 0, NULL);
845 continue;
846 }
847
848 bp_status = check_breakpoints (stop_pc);
849
850 if (bp_status != 0)
851 {
852 if (debug_threads)
853 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
854
855 /* We hit one of our own breakpoints. We mark it as a pending
856 breakpoint, so that check_removed_breakpoint () will do the PC
857 adjustment for us at the appropriate time. */
858 event_child->pending_is_breakpoint = 1;
859 event_child->pending_stop_pc = stop_pc;
860
861 /* We may need to put the breakpoint back. We continue in the event
862 loop instead of simply replacing the breakpoint right away,
863 in order to not lose signals sent to the thread that hit the
864 breakpoint. Unfortunately this increases the window where another
865 thread could sneak past the removed breakpoint. For the current
866 use of server-side breakpoints (thread creation) this is
867 acceptable; but it needs to be considered before this breakpoint
868 mechanism can be used in more general ways. For some breakpoints
869 it may be necessary to stop all other threads, but that should
870 be avoided where possible.
871
872 If breakpoint_reinsert_addr is NULL, that means that we can
873 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
874 mark it for reinsertion, and single-step.
875
876 Otherwise, call the target function to figure out where we need
877 our temporary breakpoint, create it, and continue executing this
878 process. */
879 if (bp_status == 2)
880 /* No need to reinsert. */
881 linux_resume_one_lwp (&event_child->head, 0, 0, NULL);
882 else if (the_low_target.breakpoint_reinsert_addr == NULL)
883 {
884 event_child->bp_reinsert = stop_pc;
885 uninsert_breakpoint (stop_pc);
886 linux_resume_one_lwp (&event_child->head, 1, 0, NULL);
887 }
888 else
889 {
890 reinsert_breakpoint_by_bp
891 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
892 linux_resume_one_lwp (&event_child->head, 0, 0, NULL);
893 }
894
895 continue;
896 }
897
898 if (debug_threads)
899 fprintf (stderr, "Hit a non-gdbserver breakpoint.\n");
900
901 /* If we were single-stepping, we definitely want to report the
902 SIGTRAP. The single-step operation has completed, so also
903 clear the stepping flag; in general this does not matter,
904 because the SIGTRAP will be reported to the client, which
905 will give us a new action for this thread, but clear it for
906 consistency anyway. It's safe to clear the stepping flag
907 because the only consumer of get_stop_pc () after this point
908 is check_removed_breakpoint, and pending_is_breakpoint is not
909 set. It might be wiser to use a step_completed flag instead. */
910 if (event_child->stepping)
911 {
912 event_child->stepping = 0;
913 return wstat;
914 }
915
916 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
917 Check if it is a breakpoint, and if so mark the process information
918 accordingly. This will handle both the necessary fiddling with the
919 PC on decr_pc_after_break targets and suppressing extra threads
920 hitting a breakpoint if two hit it at once and then GDB removes it
921 after the first is reported. Arguably it would be better to report
922 multiple threads hitting breakpoints simultaneously, but the current
923 remote protocol does not allow this. */
924 if ((*the_low_target.breakpoint_at) (stop_pc))
925 {
926 event_child->pending_is_breakpoint = 1;
927 event_child->pending_stop_pc = stop_pc;
928 }
929
930 return wstat;
931 }
932
933 /* NOTREACHED */
934 return 0;
935 }
936
937 /* Wait for process, returns status. */
938
939 static unsigned char
940 linux_wait (char *status)
941 {
942 int w;
943 struct thread_info *child = NULL;
944
945 retry:
946 /* If we were only supposed to resume one thread, only wait for
947 that thread - if it's still alive. If it died, however - which
948 can happen if we're coming from the thread death case below -
949 then we need to make sure we restart the other threads. We could
950 pick a thread at random or restart all; restarting all is less
951 arbitrary. */
952 if (cont_thread != 0 && cont_thread != -1)
953 {
954 child = (struct thread_info *) find_inferior_id (&all_threads,
955 cont_thread);
956
957 /* No stepping, no signal - unless one is pending already, of course. */
958 if (child == NULL)
959 {
960 struct thread_resume resume_info;
961 resume_info.thread = -1;
962 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
963 linux_resume (&resume_info);
964 }
965 }
966
967 w = linux_wait_for_event (child);
968 stop_all_lwps ();
969
970 if (must_set_ptrace_flags)
971 {
972 ptrace (PTRACE_SETOPTIONS, inferior_pid, 0, PTRACE_O_TRACECLONE);
973 must_set_ptrace_flags = 0;
974 }
975
976 /* If we are waiting for a particular child, and it exited,
977 linux_wait_for_event will return its exit status. Similarly if
978 the last child exited. If this is not the last child, however,
979 do not report it as exited until there is a 'thread exited' response
980 available in the remote protocol. Instead, just wait for another event.
981 This should be safe, because if the thread crashed we will already
982 have reported the termination signal to GDB; that should stop any
983 in-progress stepping operations, etc.
984
985 Report the exit status of the last thread to exit. This matches
986 LinuxThreads' behavior. */
987
988 if (all_threads.head == all_threads.tail)
989 {
990 if (WIFEXITED (w))
991 {
992 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
993 *status = 'W';
994 clear_inferiors ();
995 free (all_lwps.head);
996 all_lwps.head = all_lwps.tail = NULL;
997 return WEXITSTATUS (w);
998 }
999 else if (!WIFSTOPPED (w))
1000 {
1001 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
1002 *status = 'X';
1003 clear_inferiors ();
1004 free (all_lwps.head);
1005 all_lwps.head = all_lwps.tail = NULL;
1006 return target_signal_from_host (WTERMSIG (w));
1007 }
1008 }
1009 else
1010 {
1011 if (!WIFSTOPPED (w))
1012 goto retry;
1013 }
1014
1015 *status = 'T';
1016 return target_signal_from_host (WSTOPSIG (w));
1017 }
1018
1019 /* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
1020 thread groups are in use, we need to use tkill. */
1021
1022 static int
1023 kill_lwp (unsigned long lwpid, int signo)
1024 {
1025 static int tkill_failed;
1026
1027 errno = 0;
1028
1029 #ifdef SYS_tkill
1030 if (!tkill_failed)
1031 {
1032 int ret = syscall (SYS_tkill, lwpid, signo);
1033 if (errno != ENOSYS)
1034 return ret;
1035 errno = 0;
1036 tkill_failed = 1;
1037 }
1038 #endif
1039
1040 return kill (lwpid, signo);
1041 }
1042
1043 static void
1044 send_sigstop (struct inferior_list_entry *entry)
1045 {
1046 struct lwp_info *lwp = (struct lwp_info *) entry;
1047
1048 if (lwp->stopped)
1049 return;
1050
1051 /* If we already have a pending stop signal for this process, don't
1052 send another. */
1053 if (lwp->stop_expected)
1054 {
1055 if (debug_threads)
1056 fprintf (stderr, "Have pending sigstop for lwp %ld\n",
1057 lwp->lwpid);
1058
1059 /* We clear the stop_expected flag so that wait_for_sigstop
1060 will receive the SIGSTOP event (instead of silently resuming and
1061 waiting again). It'll be reset below. */
1062 lwp->stop_expected = 0;
1063 return;
1064 }
1065
1066 if (debug_threads)
1067 fprintf (stderr, "Sending sigstop to lwp %ld\n", lwp->head.id);
1068
1069 kill_lwp (lwp->head.id, SIGSTOP);
1070 }
1071
1072 static void
1073 wait_for_sigstop (struct inferior_list_entry *entry)
1074 {
1075 struct lwp_info *lwp = (struct lwp_info *) entry;
1076 struct thread_info *saved_inferior, *thread;
1077 int wstat;
1078 unsigned long saved_tid;
1079
1080 if (lwp->stopped)
1081 return;
1082
1083 saved_inferior = current_inferior;
1084 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
1085 thread = (struct thread_info *) find_inferior_id (&all_threads,
1086 lwp->lwpid);
1087 wstat = linux_wait_for_event (thread);
1088
1089 /* If we stopped with a non-SIGSTOP signal, save it for later
1090 and record the pending SIGSTOP. If the process exited, just
1091 return. */
1092 if (WIFSTOPPED (wstat)
1093 && WSTOPSIG (wstat) != SIGSTOP)
1094 {
1095 if (debug_threads)
1096 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
1097 lwp->lwpid, wstat);
1098 lwp->status_pending_p = 1;
1099 lwp->status_pending = wstat;
1100 lwp->stop_expected = 1;
1101 }
1102
1103 if (linux_thread_alive (saved_tid))
1104 current_inferior = saved_inferior;
1105 else
1106 {
1107 if (debug_threads)
1108 fprintf (stderr, "Previously current thread died.\n");
1109
1110 /* Set a valid thread as current. */
1111 set_desired_inferior (0);
1112 }
1113 }
1114
1115 static void
1116 stop_all_lwps (void)
1117 {
1118 stopping_threads = 1;
1119 for_each_inferior (&all_lwps, send_sigstop);
1120 for_each_inferior (&all_lwps, wait_for_sigstop);
1121 stopping_threads = 0;
1122 }
1123
1124 /* Resume execution of the inferior process.
1125 If STEP is nonzero, single-step it.
1126 If SIGNAL is nonzero, give it that signal. */
1127
1128 static void
1129 linux_resume_one_lwp (struct inferior_list_entry *entry,
1130 int step, int signal, siginfo_t *info)
1131 {
1132 struct lwp_info *lwp = (struct lwp_info *) entry;
1133 struct thread_info *saved_inferior;
1134
1135 if (lwp->stopped == 0)
1136 return;
1137
1138 /* If we have pending signals or status, and a new signal, enqueue the
1139 signal. Also enqueue the signal if we are waiting to reinsert a
1140 breakpoint; it will be picked up again below. */
1141 if (signal != 0
1142 && (lwp->status_pending_p || lwp->pending_signals != NULL
1143 || lwp->bp_reinsert != 0))
1144 {
1145 struct pending_signals *p_sig;
1146 p_sig = xmalloc (sizeof (*p_sig));
1147 p_sig->prev = lwp->pending_signals;
1148 p_sig->signal = signal;
1149 if (info == NULL)
1150 memset (&p_sig->info, 0, sizeof (siginfo_t));
1151 else
1152 memcpy (&p_sig->info, info, sizeof (siginfo_t));
1153 lwp->pending_signals = p_sig;
1154 }
1155
1156 if (lwp->status_pending_p && !check_removed_breakpoint (lwp))
1157 return;
1158
1159 saved_inferior = current_inferior;
1160 current_inferior = get_lwp_thread (lwp);
1161
1162 if (debug_threads)
1163 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n", inferior_pid,
1164 step ? "step" : "continue", signal,
1165 lwp->stop_expected ? "expected" : "not expected");
1166
1167 /* This bit needs some thinking about. If we get a signal that
1168 we must report while a single-step reinsert is still pending,
1169 we often end up resuming the thread. It might be better to
1170 (ew) allow a stack of pending events; then we could be sure that
1171 the reinsert happened right away and not lose any signals.
1172
1173 Making this stack would also shrink the window in which breakpoints are
1174 uninserted (see comment in linux_wait_for_lwp) but not enough for
1175 complete correctness, so it won't solve that problem. It may be
1176 worthwhile just to solve this one, however. */
1177 if (lwp->bp_reinsert != 0)
1178 {
1179 if (debug_threads)
1180 fprintf (stderr, " pending reinsert at %08lx", (long)lwp->bp_reinsert);
1181 if (step == 0)
1182 fprintf (stderr, "BAD - reinserting but not stepping.\n");
1183 step = 1;
1184
1185 /* Postpone any pending signal. It was enqueued above. */
1186 signal = 0;
1187 }
1188
1189 check_removed_breakpoint (lwp);
1190
1191 if (debug_threads && the_low_target.get_pc != NULL)
1192 {
1193 fprintf (stderr, " ");
1194 (*the_low_target.get_pc) ();
1195 }
1196
1197 /* If we have pending signals, consume one unless we are trying to reinsert
1198 a breakpoint. */
1199 if (lwp->pending_signals != NULL && lwp->bp_reinsert == 0)
1200 {
1201 struct pending_signals **p_sig;
1202
1203 p_sig = &lwp->pending_signals;
1204 while ((*p_sig)->prev != NULL)
1205 p_sig = &(*p_sig)->prev;
1206
1207 signal = (*p_sig)->signal;
1208 if ((*p_sig)->info.si_signo != 0)
1209 ptrace (PTRACE_SETSIGINFO, lwp->lwpid, 0, &(*p_sig)->info);
1210
1211 free (*p_sig);
1212 *p_sig = NULL;
1213 }
1214
1215 regcache_invalidate_one ((struct inferior_list_entry *)
1216 get_lwp_thread (lwp));
1217 errno = 0;
1218 lwp->stopped = 0;
1219 lwp->stepping = step;
1220 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwp->lwpid, 0, signal);
1221
1222 current_inferior = saved_inferior;
1223 if (errno)
1224 {
1225 /* ESRCH from ptrace either means that the thread was already
1226 running (an error) or that it is gone (a race condition). If
1227 it's gone, we will get a notification the next time we wait,
1228 so we can ignore the error. We could differentiate these
1229 two, but it's tricky without waiting; the thread still exists
1230 as a zombie, so sending it signal 0 would succeed. So just
1231 ignore ESRCH. */
1232 if (errno == ESRCH)
1233 return;
1234
1235 perror_with_name ("ptrace");
1236 }
1237 }
1238
1239 static struct thread_resume *resume_ptr;
1240
1241 /* This function is called once per thread. We look up the thread
1242 in RESUME_PTR, and mark the thread with a pointer to the appropriate
1243 resume request.
1244
1245 This algorithm is O(threads * resume elements), but resume elements
1246 is small (and will remain small at least until GDB supports thread
1247 suspension). */
1248 static void
1249 linux_set_resume_request (struct inferior_list_entry *entry)
1250 {
1251 struct lwp_info *lwp;
1252 struct thread_info *thread;
1253 int ndx;
1254
1255 thread = (struct thread_info *) entry;
1256 lwp = get_thread_lwp (thread);
1257
1258 ndx = 0;
1259 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
1260 ndx++;
1261
1262 lwp->resume = &resume_ptr[ndx];
1263 }
1264
1265 /* This function is called once per thread. We check the thread's resume
1266 request, which will tell us whether to resume, step, or leave the thread
1267 stopped; and what signal, if any, it should be sent. For threads which
1268 we aren't explicitly told otherwise, we preserve the stepping flag; this
1269 is used for stepping over gdbserver-placed breakpoints. */
1270
1271 static void
1272 linux_continue_one_thread (struct inferior_list_entry *entry)
1273 {
1274 struct lwp_info *lwp;
1275 struct thread_info *thread;
1276 int step;
1277
1278 thread = (struct thread_info *) entry;
1279 lwp = get_thread_lwp (thread);
1280
1281 if (lwp->resume->leave_stopped)
1282 return;
1283
1284 if (lwp->resume->thread == -1)
1285 step = lwp->stepping || lwp->resume->step;
1286 else
1287 step = lwp->resume->step;
1288
1289 linux_resume_one_lwp (&lwp->head, step, lwp->resume->sig, NULL);
1290
1291 lwp->resume = NULL;
1292 }
1293
1294 /* This function is called once per thread. We check the thread's resume
1295 request, which will tell us whether to resume, step, or leave the thread
1296 stopped; and what signal, if any, it should be sent. We queue any needed
1297 signals, since we won't actually resume. We already have a pending event
1298 to report, so we don't need to preserve any step requests; they should
1299 be re-issued if necessary. */
1300
1301 static void
1302 linux_queue_one_thread (struct inferior_list_entry *entry)
1303 {
1304 struct lwp_info *lwp;
1305 struct thread_info *thread;
1306
1307 thread = (struct thread_info *) entry;
1308 lwp = get_thread_lwp (thread);
1309
1310 if (lwp->resume->leave_stopped)
1311 return;
1312
1313 /* If we have a new signal, enqueue the signal. */
1314 if (lwp->resume->sig != 0)
1315 {
1316 struct pending_signals *p_sig;
1317 p_sig = xmalloc (sizeof (*p_sig));
1318 p_sig->prev = lwp->pending_signals;
1319 p_sig->signal = lwp->resume->sig;
1320 memset (&p_sig->info, 0, sizeof (siginfo_t));
1321
1322 /* If this is the same signal we were previously stopped by,
1323 make sure to queue its siginfo. We can ignore the return
1324 value of ptrace; if it fails, we'll skip
1325 PTRACE_SETSIGINFO. */
1326 if (WIFSTOPPED (lwp->last_status)
1327 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
1328 ptrace (PTRACE_GETSIGINFO, lwp->lwpid, 0, &p_sig->info);
1329
1330 lwp->pending_signals = p_sig;
1331 }
1332
1333 lwp->resume = NULL;
1334 }
1335
1336 /* Set DUMMY if this process has an interesting status pending. */
1337 static int
1338 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1339 {
1340 struct lwp_info *lwp = (struct lwp_info *) entry;
1341
1342 /* Processes which will not be resumed are not interesting, because
1343 we might not wait for them next time through linux_wait. */
1344 if (lwp->resume->leave_stopped)
1345 return 0;
1346
1347 /* If this thread has a removed breakpoint, we won't have any
1348 events to report later, so check now. check_removed_breakpoint
1349 may clear status_pending_p. We avoid calling check_removed_breakpoint
1350 for any thread that we are not otherwise going to resume - this
1351 lets us preserve stopped status when two threads hit a breakpoint.
1352 GDB removes the breakpoint to single-step a particular thread
1353 past it, then re-inserts it and resumes all threads. We want
1354 to report the second thread without resuming it in the interim. */
1355 if (lwp->status_pending_p)
1356 check_removed_breakpoint (lwp);
1357
1358 if (lwp->status_pending_p)
1359 * (int *) flag_p = 1;
1360
1361 return 0;
1362 }
1363
1364 static void
1365 linux_resume (struct thread_resume *resume_info)
1366 {
1367 int pending_flag;
1368
1369 /* Yes, the use of a global here is rather ugly. */
1370 resume_ptr = resume_info;
1371
1372 for_each_inferior (&all_threads, linux_set_resume_request);
1373
1374 /* If there is a thread which would otherwise be resumed, which
1375 has a pending status, then don't resume any threads - we can just
1376 report the pending status. Make sure to queue any signals
1377 that would otherwise be sent. */
1378 pending_flag = 0;
1379 find_inferior (&all_lwps, resume_status_pending_p, &pending_flag);
1380
1381 if (debug_threads)
1382 {
1383 if (pending_flag)
1384 fprintf (stderr, "Not resuming, pending status\n");
1385 else
1386 fprintf (stderr, "Resuming, no pending status\n");
1387 }
1388
1389 if (pending_flag)
1390 for_each_inferior (&all_threads, linux_queue_one_thread);
1391 else
1392 for_each_inferior (&all_threads, linux_continue_one_thread);
1393 }
1394
1395 #ifdef HAVE_LINUX_USRREGS
1396
1397 int
1398 register_addr (int regnum)
1399 {
1400 int addr;
1401
1402 if (regnum < 0 || regnum >= the_low_target.num_regs)
1403 error ("Invalid register number %d.", regnum);
1404
1405 addr = the_low_target.regmap[regnum];
1406
1407 return addr;
1408 }
1409
1410 /* Fetch one register. */
1411 static void
1412 fetch_register (int regno)
1413 {
1414 CORE_ADDR regaddr;
1415 int i, size;
1416 char *buf;
1417
1418 if (regno >= the_low_target.num_regs)
1419 return;
1420 if ((*the_low_target.cannot_fetch_register) (regno))
1421 return;
1422
1423 regaddr = register_addr (regno);
1424 if (regaddr == -1)
1425 return;
1426 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1427 & - sizeof (PTRACE_XFER_TYPE);
1428 buf = alloca (size);
1429 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
1430 {
1431 errno = 0;
1432 *(PTRACE_XFER_TYPE *) (buf + i) =
1433 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1434 regaddr += sizeof (PTRACE_XFER_TYPE);
1435 if (errno != 0)
1436 {
1437 /* Warning, not error, in case we are attached; sometimes the
1438 kernel doesn't let us at the registers. */
1439 char *err = strerror (errno);
1440 char *msg = alloca (strlen (err) + 128);
1441 sprintf (msg, "reading register %d: %s", regno, err);
1442 error (msg);
1443 goto error_exit;
1444 }
1445 }
1446
1447 if (the_low_target.supply_ptrace_register)
1448 the_low_target.supply_ptrace_register (regno, buf);
1449 else
1450 supply_register (regno, buf);
1451
1452 error_exit:;
1453 }
1454
1455 /* Fetch all registers, or just one, from the child process. */
1456 static void
1457 usr_fetch_inferior_registers (int regno)
1458 {
1459 if (regno == -1 || regno == 0)
1460 for (regno = 0; regno < the_low_target.num_regs; regno++)
1461 fetch_register (regno);
1462 else
1463 fetch_register (regno);
1464 }
1465
1466 /* Store our register values back into the inferior.
1467 If REGNO is -1, do this for all registers.
1468 Otherwise, REGNO specifies which register (so we can save time). */
1469 static void
1470 usr_store_inferior_registers (int regno)
1471 {
1472 CORE_ADDR regaddr;
1473 int i, size;
1474 char *buf;
1475
1476 if (regno >= 0)
1477 {
1478 if (regno >= the_low_target.num_regs)
1479 return;
1480
1481 if ((*the_low_target.cannot_store_register) (regno) == 1)
1482 return;
1483
1484 regaddr = register_addr (regno);
1485 if (regaddr == -1)
1486 return;
1487 errno = 0;
1488 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1489 & - sizeof (PTRACE_XFER_TYPE);
1490 buf = alloca (size);
1491 memset (buf, 0, size);
1492
1493 if (the_low_target.collect_ptrace_register)
1494 the_low_target.collect_ptrace_register (regno, buf);
1495 else
1496 collect_register (regno, buf);
1497
1498 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
1499 {
1500 errno = 0;
1501 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
1502 *(PTRACE_XFER_TYPE *) (buf + i));
1503 if (errno != 0)
1504 {
1505 /* At this point, ESRCH should mean the process is already gone,
1506 in which case we simply ignore attempts to change its registers.
1507 See also the related comment in linux_resume_one_lwp. */
1508 if (errno == ESRCH)
1509 return;
1510
1511 if ((*the_low_target.cannot_store_register) (regno) == 0)
1512 {
1513 char *err = strerror (errno);
1514 char *msg = alloca (strlen (err) + 128);
1515 sprintf (msg, "writing register %d: %s",
1516 regno, err);
1517 error (msg);
1518 return;
1519 }
1520 }
1521 regaddr += sizeof (PTRACE_XFER_TYPE);
1522 }
1523 }
1524 else
1525 for (regno = 0; regno < the_low_target.num_regs; regno++)
1526 usr_store_inferior_registers (regno);
1527 }
1528 #endif /* HAVE_LINUX_USRREGS */
1529
1530
1531
1532 #ifdef HAVE_LINUX_REGSETS
1533
1534 static int
1535 regsets_fetch_inferior_registers ()
1536 {
1537 struct regset_info *regset;
1538 int saw_general_regs = 0;
1539
1540 regset = target_regsets;
1541
1542 while (regset->size >= 0)
1543 {
1544 void *buf;
1545 int res;
1546
1547 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
1548 {
1549 regset ++;
1550 continue;
1551 }
1552
1553 buf = xmalloc (regset->size);
1554 #ifndef __sparc__
1555 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1556 #else
1557 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1558 #endif
1559 if (res < 0)
1560 {
1561 if (errno == EIO)
1562 {
1563 /* If we get EIO on a regset, do not try it again for
1564 this process. */
1565 disabled_regsets[regset - target_regsets] = 1;
1566 continue;
1567 }
1568 else
1569 {
1570 char s[256];
1571 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
1572 inferior_pid);
1573 perror (s);
1574 }
1575 }
1576 else if (regset->type == GENERAL_REGS)
1577 saw_general_regs = 1;
1578 regset->store_function (buf);
1579 regset ++;
1580 }
1581 if (saw_general_regs)
1582 return 0;
1583 else
1584 return 1;
1585 }
1586
1587 static int
1588 regsets_store_inferior_registers ()
1589 {
1590 struct regset_info *regset;
1591 int saw_general_regs = 0;
1592
1593 regset = target_regsets;
1594
1595 while (regset->size >= 0)
1596 {
1597 void *buf;
1598 int res;
1599
1600 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
1601 {
1602 regset ++;
1603 continue;
1604 }
1605
1606 buf = xmalloc (regset->size);
1607
1608 /* First fill the buffer with the current register set contents,
1609 in case there are any items in the kernel's regset that are
1610 not in gdbserver's regcache. */
1611 #ifndef __sparc__
1612 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1613 #else
1614 res = ptrace (regset->get_request, inferior_pid, buf, 0);
1615 #endif
1616
1617 if (res == 0)
1618 {
1619 /* Then overlay our cached registers on that. */
1620 regset->fill_function (buf);
1621
1622 /* Only now do we write the register set. */
1623 #ifndef __sparc__
1624 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1625 #else
1626 res = ptrace (regset->set_request, inferior_pid, buf, 0);
1627 #endif
1628 }
1629
1630 if (res < 0)
1631 {
1632 if (errno == EIO)
1633 {
1634 /* If we get EIO on a regset, do not try it again for
1635 this process. */
1636 disabled_regsets[regset - target_regsets] = 1;
1637 continue;
1638 }
1639 else if (errno == ESRCH)
1640 {
1641 /* At this point, ESRCH should mean the process is already gone,
1642 in which case we simply ignore attempts to change its registers.
1643 See also the related comment in linux_resume_one_lwp. */
1644 return 0;
1645 }
1646 else
1647 {
1648 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1649 }
1650 }
1651 else if (regset->type == GENERAL_REGS)
1652 saw_general_regs = 1;
1653 regset ++;
1654 free (buf);
1655 }
1656 if (saw_general_regs)
1657 return 0;
1658 else
1659 return 1;
1660 return 0;
1661 }
1662
1663 #endif /* HAVE_LINUX_REGSETS */
1664
1665
1666 void
1667 linux_fetch_registers (int regno)
1668 {
1669 #ifdef HAVE_LINUX_REGSETS
1670 if (regsets_fetch_inferior_registers () == 0)
1671 return;
1672 #endif
1673 #ifdef HAVE_LINUX_USRREGS
1674 usr_fetch_inferior_registers (regno);
1675 #endif
1676 }
1677
1678 void
1679 linux_store_registers (int regno)
1680 {
1681 #ifdef HAVE_LINUX_REGSETS
1682 if (regsets_store_inferior_registers () == 0)
1683 return;
1684 #endif
1685 #ifdef HAVE_LINUX_USRREGS
1686 usr_store_inferior_registers (regno);
1687 #endif
1688 }
1689
1690
1691 /* Copy LEN bytes from inferior's memory starting at MEMADDR
1692 to debugger memory starting at MYADDR. */
1693
1694 static int
1695 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
1696 {
1697 register int i;
1698 /* Round starting address down to longword boundary. */
1699 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1700 /* Round ending address up; get number of longwords that makes. */
1701 register int count
1702 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1703 / sizeof (PTRACE_XFER_TYPE);
1704 /* Allocate buffer of that many longwords. */
1705 register PTRACE_XFER_TYPE *buffer
1706 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1707 int fd;
1708 char filename[64];
1709
1710 /* Try using /proc. Don't bother for one word. */
1711 if (len >= 3 * sizeof (long))
1712 {
1713 /* We could keep this file open and cache it - possibly one per
1714 thread. That requires some juggling, but is even faster. */
1715 sprintf (filename, "/proc/%ld/mem", inferior_pid);
1716 fd = open (filename, O_RDONLY | O_LARGEFILE);
1717 if (fd == -1)
1718 goto no_proc;
1719
1720 /* If pread64 is available, use it. It's faster if the kernel
1721 supports it (only one syscall), and it's 64-bit safe even on
1722 32-bit platforms (for instance, SPARC debugging a SPARC64
1723 application). */
1724 #ifdef HAVE_PREAD64
1725 if (pread64 (fd, myaddr, len, memaddr) != len)
1726 #else
1727 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, memaddr, len) != len)
1728 #endif
1729 {
1730 close (fd);
1731 goto no_proc;
1732 }
1733
1734 close (fd);
1735 return 0;
1736 }
1737
1738 no_proc:
1739 /* Read all the longwords */
1740 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1741 {
1742 errno = 0;
1743 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1744 if (errno)
1745 return errno;
1746 }
1747
1748 /* Copy appropriate bytes out of the buffer. */
1749 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1750
1751 return 0;
1752 }
1753
1754 /* Copy LEN bytes of data from debugger memory at MYADDR
1755 to inferior's memory at MEMADDR.
1756 On failure (cannot write the inferior)
1757 returns the value of errno. */
1758
1759 static int
1760 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
1761 {
1762 register int i;
1763 /* Round starting address down to longword boundary. */
1764 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1765 /* Round ending address up; get number of longwords that makes. */
1766 register int count
1767 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1768 /* Allocate buffer of that many longwords. */
1769 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1770
1771 if (debug_threads)
1772 {
1773 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1774 }
1775
1776 /* Fill start and end extra bytes of buffer with existing memory data. */
1777
1778 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1779 (PTRACE_ARG3_TYPE) addr, 0);
1780
1781 if (count > 1)
1782 {
1783 buffer[count - 1]
1784 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1785 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1786 * sizeof (PTRACE_XFER_TYPE)),
1787 0);
1788 }
1789
1790 /* Copy data to be written over corresponding part of buffer */
1791
1792 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1793
1794 /* Write the entire buffer. */
1795
1796 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1797 {
1798 errno = 0;
1799 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1800 if (errno)
1801 return errno;
1802 }
1803
1804 return 0;
1805 }
1806
1807 static int linux_supports_tracefork_flag;
1808
1809 /* Helper functions for linux_test_for_tracefork, called via clone (). */
1810
1811 static int
1812 linux_tracefork_grandchild (void *arg)
1813 {
1814 _exit (0);
1815 }
1816
1817 #define STACK_SIZE 4096
1818
1819 static int
1820 linux_tracefork_child (void *arg)
1821 {
1822 ptrace (PTRACE_TRACEME, 0, 0, 0);
1823 kill (getpid (), SIGSTOP);
1824 #ifdef __ia64__
1825 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
1826 CLONE_VM | SIGCHLD, NULL);
1827 #else
1828 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
1829 CLONE_VM | SIGCHLD, NULL);
1830 #endif
1831 _exit (0);
1832 }
1833
1834 /* Wrapper function for waitpid which handles EINTR. */
1835
1836 static int
1837 my_waitpid (int pid, int *status, int flags)
1838 {
1839 int ret;
1840 do
1841 {
1842 ret = waitpid (pid, status, flags);
1843 }
1844 while (ret == -1 && errno == EINTR);
1845
1846 return ret;
1847 }
1848
1849 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
1850 sure that we can enable the option, and that it had the desired
1851 effect. */
1852
1853 static void
1854 linux_test_for_tracefork (void)
1855 {
1856 int child_pid, ret, status;
1857 long second_pid;
1858 char *stack = xmalloc (STACK_SIZE * 4);
1859
1860 linux_supports_tracefork_flag = 0;
1861
1862 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
1863 #ifdef __ia64__
1864 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
1865 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1866 #else
1867 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
1868 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
1869 #endif
1870 if (child_pid == -1)
1871 perror_with_name ("clone");
1872
1873 ret = my_waitpid (child_pid, &status, 0);
1874 if (ret == -1)
1875 perror_with_name ("waitpid");
1876 else if (ret != child_pid)
1877 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
1878 if (! WIFSTOPPED (status))
1879 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
1880
1881 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0, PTRACE_O_TRACEFORK);
1882 if (ret != 0)
1883 {
1884 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1885 if (ret != 0)
1886 {
1887 warning ("linux_test_for_tracefork: failed to kill child");
1888 return;
1889 }
1890
1891 ret = my_waitpid (child_pid, &status, 0);
1892 if (ret != child_pid)
1893 warning ("linux_test_for_tracefork: failed to wait for killed child");
1894 else if (!WIFSIGNALED (status))
1895 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
1896 "killed child", status);
1897
1898 return;
1899 }
1900
1901 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
1902 if (ret != 0)
1903 warning ("linux_test_for_tracefork: failed to resume child");
1904
1905 ret = my_waitpid (child_pid, &status, 0);
1906
1907 if (ret == child_pid && WIFSTOPPED (status)
1908 && status >> 16 == PTRACE_EVENT_FORK)
1909 {
1910 second_pid = 0;
1911 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
1912 if (ret == 0 && second_pid != 0)
1913 {
1914 int second_status;
1915
1916 linux_supports_tracefork_flag = 1;
1917 my_waitpid (second_pid, &second_status, 0);
1918 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
1919 if (ret != 0)
1920 warning ("linux_test_for_tracefork: failed to kill second child");
1921 my_waitpid (second_pid, &status, 0);
1922 }
1923 }
1924 else
1925 warning ("linux_test_for_tracefork: unexpected result from waitpid "
1926 "(%d, status 0x%x)", ret, status);
1927
1928 do
1929 {
1930 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
1931 if (ret != 0)
1932 warning ("linux_test_for_tracefork: failed to kill child");
1933 my_waitpid (child_pid, &status, 0);
1934 }
1935 while (WIFSTOPPED (status));
1936
1937 free (stack);
1938 }
1939
1940
1941 static void
1942 linux_look_up_symbols (void)
1943 {
1944 #ifdef USE_THREAD_DB
1945 if (thread_db_active)
1946 return;
1947
1948 thread_db_active = thread_db_init (!linux_supports_tracefork_flag);
1949 #endif
1950 }
1951
1952 static void
1953 linux_request_interrupt (void)
1954 {
1955 extern unsigned long signal_pid;
1956
1957 if (cont_thread != 0 && cont_thread != -1)
1958 {
1959 struct lwp_info *lwp;
1960
1961 lwp = get_thread_lwp (current_inferior);
1962 kill_lwp (lwp->lwpid, SIGINT);
1963 }
1964 else
1965 kill_lwp (signal_pid, SIGINT);
1966 }
1967
1968 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1969 to debugger memory starting at MYADDR. */
1970
1971 static int
1972 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
1973 {
1974 char filename[PATH_MAX];
1975 int fd, n;
1976
1977 snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
1978
1979 fd = open (filename, O_RDONLY);
1980 if (fd < 0)
1981 return -1;
1982
1983 if (offset != (CORE_ADDR) 0
1984 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1985 n = -1;
1986 else
1987 n = read (fd, myaddr, len);
1988
1989 close (fd);
1990
1991 return n;
1992 }
1993
1994 /* These watchpoint related wrapper functions simply pass on the function call
1995 if the target has registered a corresponding function. */
1996
1997 static int
1998 linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
1999 {
2000 if (the_low_target.insert_watchpoint != NULL)
2001 return the_low_target.insert_watchpoint (type, addr, len);
2002 else
2003 /* Unsupported (see target.h). */
2004 return 1;
2005 }
2006
2007 static int
2008 linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
2009 {
2010 if (the_low_target.remove_watchpoint != NULL)
2011 return the_low_target.remove_watchpoint (type, addr, len);
2012 else
2013 /* Unsupported (see target.h). */
2014 return 1;
2015 }
2016
2017 static int
2018 linux_stopped_by_watchpoint (void)
2019 {
2020 if (the_low_target.stopped_by_watchpoint != NULL)
2021 return the_low_target.stopped_by_watchpoint ();
2022 else
2023 return 0;
2024 }
2025
2026 static CORE_ADDR
2027 linux_stopped_data_address (void)
2028 {
2029 if (the_low_target.stopped_data_address != NULL)
2030 return the_low_target.stopped_data_address ();
2031 else
2032 return 0;
2033 }
2034
2035 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
2036 #if defined(__mcoldfire__)
2037 /* These should really be defined in the kernel's ptrace.h header. */
2038 #define PT_TEXT_ADDR 49*4
2039 #define PT_DATA_ADDR 50*4
2040 #define PT_TEXT_END_ADDR 51*4
2041 #endif
2042
2043 /* Under uClinux, programs are loaded at non-zero offsets, which we need
2044 to tell gdb about. */
2045
2046 static int
2047 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
2048 {
2049 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
2050 unsigned long text, text_end, data;
2051 int pid = get_thread_lwp (current_inferior)->head.id;
2052
2053 errno = 0;
2054
2055 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
2056 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
2057 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
2058
2059 if (errno == 0)
2060 {
2061 /* Both text and data offsets produced at compile-time (and so
2062 used by gdb) are relative to the beginning of the program,
2063 with the data segment immediately following the text segment.
2064 However, the actual runtime layout in memory may put the data
2065 somewhere else, so when we send gdb a data base-address, we
2066 use the real data base address and subtract the compile-time
2067 data base-address from it (which is just the length of the
2068 text segment). BSS immediately follows data in both
2069 cases. */
2070 *text_p = text;
2071 *data_p = data - (text_end - text);
2072
2073 return 1;
2074 }
2075 #endif
2076 return 0;
2077 }
2078 #endif
2079
2080 static int
2081 linux_qxfer_osdata (const char *annex,
2082 unsigned char *readbuf, unsigned const char *writebuf,
2083 CORE_ADDR offset, int len)
2084 {
2085 /* We make the process list snapshot when the object starts to be
2086 read. */
2087 static const char *buf;
2088 static long len_avail = -1;
2089 static struct buffer buffer;
2090
2091 DIR *dirp;
2092
2093 if (strcmp (annex, "processes") != 0)
2094 return 0;
2095
2096 if (!readbuf || writebuf)
2097 return 0;
2098
2099 if (offset == 0)
2100 {
2101 if (len_avail != -1 && len_avail != 0)
2102 buffer_free (&buffer);
2103 len_avail = 0;
2104 buf = NULL;
2105 buffer_init (&buffer);
2106 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
2107
2108 dirp = opendir ("/proc");
2109 if (dirp)
2110 {
2111 struct dirent *dp;
2112 while ((dp = readdir (dirp)) != NULL)
2113 {
2114 struct stat statbuf;
2115 char procentry[sizeof ("/proc/4294967295")];
2116
2117 if (!isdigit (dp->d_name[0])
2118 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
2119 continue;
2120
2121 sprintf (procentry, "/proc/%s", dp->d_name);
2122 if (stat (procentry, &statbuf) == 0
2123 && S_ISDIR (statbuf.st_mode))
2124 {
2125 char pathname[128];
2126 FILE *f;
2127 char cmd[MAXPATHLEN + 1];
2128 struct passwd *entry;
2129
2130 sprintf (pathname, "/proc/%s/cmdline", dp->d_name);
2131 entry = getpwuid (statbuf.st_uid);
2132
2133 if ((f = fopen (pathname, "r")) != NULL)
2134 {
2135 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
2136 if (len > 0)
2137 {
2138 int i;
2139 for (i = 0; i < len; i++)
2140 if (cmd[i] == '\0')
2141 cmd[i] = ' ';
2142 cmd[len] = '\0';
2143
2144 buffer_xml_printf (
2145 &buffer,
2146 "<item>"
2147 "<column name=\"pid\">%s</column>"
2148 "<column name=\"user\">%s</column>"
2149 "<column name=\"command\">%s</column>"
2150 "</item>",
2151 dp->d_name,
2152 entry ? entry->pw_name : "?",
2153 cmd);
2154 }
2155 fclose (f);
2156 }
2157 }
2158 }
2159
2160 closedir (dirp);
2161 }
2162 buffer_grow_str0 (&buffer, "</osdata>\n");
2163 buf = buffer_finish (&buffer);
2164 len_avail = strlen (buf);
2165 }
2166
2167 if (offset >= len_avail)
2168 {
2169 /* Done. Get rid of the data. */
2170 buffer_free (&buffer);
2171 buf = NULL;
2172 len_avail = 0;
2173 return 0;
2174 }
2175
2176 if (len > len_avail - offset)
2177 len = len_avail - offset;
2178 memcpy (readbuf, buf + offset, len);
2179
2180 return len;
2181 }
2182
2183 static int
2184 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
2185 unsigned const char *writebuf, CORE_ADDR offset, int len)
2186 {
2187 struct siginfo siginfo;
2188 long pid = -1;
2189
2190 if (current_inferior == NULL)
2191 return -1;
2192
2193 pid = pid_of (get_thread_lwp (current_inferior));
2194
2195 if (debug_threads)
2196 fprintf (stderr, "%s siginfo for lwp %ld.\n",
2197 readbuf != NULL ? "Reading" : "Writing",
2198 pid);
2199
2200 if (offset > sizeof (siginfo))
2201 return -1;
2202
2203 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
2204 return -1;
2205
2206 if (offset + len > sizeof (siginfo))
2207 len = sizeof (siginfo) - offset;
2208
2209 if (readbuf != NULL)
2210 memcpy (readbuf, (char *) &siginfo + offset, len);
2211 else
2212 {
2213 memcpy ((char *) &siginfo + offset, writebuf, len);
2214 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
2215 return -1;
2216 }
2217
2218 return len;
2219 }
2220
2221 static struct target_ops linux_target_ops = {
2222 linux_create_inferior,
2223 linux_attach,
2224 linux_kill,
2225 linux_detach,
2226 linux_join,
2227 linux_thread_alive,
2228 linux_resume,
2229 linux_wait,
2230 linux_fetch_registers,
2231 linux_store_registers,
2232 linux_read_memory,
2233 linux_write_memory,
2234 linux_look_up_symbols,
2235 linux_request_interrupt,
2236 linux_read_auxv,
2237 linux_insert_watchpoint,
2238 linux_remove_watchpoint,
2239 linux_stopped_by_watchpoint,
2240 linux_stopped_data_address,
2241 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
2242 linux_read_offsets,
2243 #else
2244 NULL,
2245 #endif
2246 #ifdef USE_THREAD_DB
2247 thread_db_get_tls_address,
2248 #else
2249 NULL,
2250 #endif
2251 NULL,
2252 hostio_last_error_from_errno,
2253 linux_qxfer_osdata,
2254 linux_xfer_siginfo,
2255 };
2256
2257 static void
2258 linux_init_signals ()
2259 {
2260 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
2261 to find what the cancel signal actually is. */
2262 signal (__SIGRTMIN+1, SIG_IGN);
2263 }
2264
2265 void
2266 initialize_low (void)
2267 {
2268 thread_db_active = 0;
2269 set_target_ops (&linux_target_ops);
2270 set_breakpoint_data (the_low_target.breakpoint,
2271 the_low_target.breakpoint_len);
2272 linux_init_signals ();
2273 linux_test_for_tracefork ();
2274 #ifdef HAVE_LINUX_REGSETS
2275 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
2276 ;
2277 disabled_regsets = xmalloc (num_regsets);
2278 #endif
2279 }
This page took 0.075954 seconds and 3 git commands to generate.