Honour SIGILL and SIGSEGV in cancel breakpoint and event lwp selection
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <sys/ptrace.h>
28 #include "nat/linux-ptrace.h"
29 #include "nat/linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <unistd.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <sys/vfs.h>
42 #include <sys/uio.h>
43 #include "filestuff.h"
44 #include "tracepoint.h"
45 #include "hostio.h"
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #elif defined(BFIN)
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
100 #endif
101 #endif
102
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 #endif
106
107 #ifndef HAVE_ELF32_AUXV_T
108 /* Copied from glibc's elf.h. */
109 typedef struct
110 {
111 uint32_t a_type; /* Entry type */
112 union
113 {
114 uint32_t a_val; /* Integer value */
115 /* We use to have pointer elements added here. We cannot do that,
116 though, since it does not work when using 32-bit definitions
117 on 64-bit platforms and vice versa. */
118 } a_un;
119 } Elf32_auxv_t;
120 #endif
121
122 #ifndef HAVE_ELF64_AUXV_T
123 /* Copied from glibc's elf.h. */
124 typedef struct
125 {
126 uint64_t a_type; /* Entry type */
127 union
128 {
129 uint64_t a_val; /* Integer value */
130 /* We use to have pointer elements added here. We cannot do that,
131 though, since it does not work when using 32-bit definitions
132 on 64-bit platforms and vice versa. */
133 } a_un;
134 } Elf64_auxv_t;
135 #endif
136
137 /* A list of all unknown processes which receive stop signals. Some
138 other process will presumably claim each of these as forked
139 children momentarily. */
140
141 struct simple_pid_list
142 {
143 /* The process ID. */
144 int pid;
145
146 /* The status as reported by waitpid. */
147 int status;
148
149 /* Next in chain. */
150 struct simple_pid_list *next;
151 };
152 struct simple_pid_list *stopped_pids;
153
154 /* Trivial list manipulation functions to keep track of a list of new
155 stopped processes. */
156
157 static void
158 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
159 {
160 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
161
162 new_pid->pid = pid;
163 new_pid->status = status;
164 new_pid->next = *listp;
165 *listp = new_pid;
166 }
167
168 static int
169 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
170 {
171 struct simple_pid_list **p;
172
173 for (p = listp; *p != NULL; p = &(*p)->next)
174 if ((*p)->pid == pid)
175 {
176 struct simple_pid_list *next = (*p)->next;
177
178 *statusp = (*p)->status;
179 xfree (*p);
180 *p = next;
181 return 1;
182 }
183 return 0;
184 }
185
186 enum stopping_threads_kind
187 {
188 /* Not stopping threads presently. */
189 NOT_STOPPING_THREADS,
190
191 /* Stopping threads. */
192 STOPPING_THREADS,
193
194 /* Stopping and suspending threads. */
195 STOPPING_AND_SUSPENDING_THREADS
196 };
197
198 /* This is set while stop_all_lwps is in effect. */
199 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
200
201 /* FIXME make into a target method? */
202 int using_threads = 1;
203
204 /* True if we're presently stabilizing threads (moving them out of
205 jump pads). */
206 static int stabilizing_threads;
207
208 static void linux_resume_one_lwp (struct lwp_info *lwp,
209 int step, int signal, siginfo_t *info);
210 static void linux_resume (struct thread_resume *resume_info, size_t n);
211 static void stop_all_lwps (int suspend, struct lwp_info *except);
212 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
213 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
214 int *wstat, int options);
215 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
216 static struct lwp_info *add_lwp (ptid_t ptid);
217 static int linux_stopped_by_watchpoint (void);
218 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
219 static void proceed_all_lwps (void);
220 static int finish_step_over (struct lwp_info *lwp);
221 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
222 static int kill_lwp (unsigned long lwpid, int signo);
223
224 /* True if the low target can hardware single-step. Such targets
225 don't need a BREAKPOINT_REINSERT_ADDR callback. */
226
227 static int
228 can_hardware_single_step (void)
229 {
230 return (the_low_target.breakpoint_reinsert_addr == NULL);
231 }
232
233 /* True if the low target supports memory breakpoints. If so, we'll
234 have a GET_PC implementation. */
235
236 static int
237 supports_breakpoints (void)
238 {
239 return (the_low_target.get_pc != NULL);
240 }
241
242 /* Returns true if this target can support fast tracepoints. This
243 does not mean that the in-process agent has been loaded in the
244 inferior. */
245
246 static int
247 supports_fast_tracepoints (void)
248 {
249 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
250 }
251
252 /* True if LWP is stopped in its stepping range. */
253
254 static int
255 lwp_in_step_range (struct lwp_info *lwp)
256 {
257 CORE_ADDR pc = lwp->stop_pc;
258
259 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
260 }
261
262 struct pending_signals
263 {
264 int signal;
265 siginfo_t info;
266 struct pending_signals *prev;
267 };
268
269 /* The read/write ends of the pipe registered as waitable file in the
270 event loop. */
271 static int linux_event_pipe[2] = { -1, -1 };
272
273 /* True if we're currently in async mode. */
274 #define target_is_async_p() (linux_event_pipe[0] != -1)
275
276 static void send_sigstop (struct lwp_info *lwp);
277 static void wait_for_sigstop (void);
278
279 /* Return non-zero if HEADER is a 64-bit ELF file. */
280
281 static int
282 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
283 {
284 if (header->e_ident[EI_MAG0] == ELFMAG0
285 && header->e_ident[EI_MAG1] == ELFMAG1
286 && header->e_ident[EI_MAG2] == ELFMAG2
287 && header->e_ident[EI_MAG3] == ELFMAG3)
288 {
289 *machine = header->e_machine;
290 return header->e_ident[EI_CLASS] == ELFCLASS64;
291
292 }
293 *machine = EM_NONE;
294 return -1;
295 }
296
297 /* Return non-zero if FILE is a 64-bit ELF file,
298 zero if the file is not a 64-bit ELF file,
299 and -1 if the file is not accessible or doesn't exist. */
300
301 static int
302 elf_64_file_p (const char *file, unsigned int *machine)
303 {
304 Elf64_Ehdr header;
305 int fd;
306
307 fd = open (file, O_RDONLY);
308 if (fd < 0)
309 return -1;
310
311 if (read (fd, &header, sizeof (header)) != sizeof (header))
312 {
313 close (fd);
314 return 0;
315 }
316 close (fd);
317
318 return elf_64_header_p (&header, machine);
319 }
320
321 /* Accepts an integer PID; Returns true if the executable PID is
322 running is a 64-bit ELF file.. */
323
324 int
325 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
326 {
327 char file[PATH_MAX];
328
329 sprintf (file, "/proc/%d/exe", pid);
330 return elf_64_file_p (file, machine);
331 }
332
333 static void
334 delete_lwp (struct lwp_info *lwp)
335 {
336 struct thread_info *thr = get_lwp_thread (lwp);
337
338 if (debug_threads)
339 debug_printf ("deleting %ld\n", lwpid_of (thr));
340
341 remove_thread (thr);
342 free (lwp->arch_private);
343 free (lwp);
344 }
345
346 /* Add a process to the common process list, and set its private
347 data. */
348
349 static struct process_info *
350 linux_add_process (int pid, int attached)
351 {
352 struct process_info *proc;
353
354 proc = add_process (pid, attached);
355 proc->private = xcalloc (1, sizeof (*proc->private));
356
357 /* Set the arch when the first LWP stops. */
358 proc->private->new_inferior = 1;
359
360 if (the_low_target.new_process != NULL)
361 proc->private->arch_private = the_low_target.new_process ();
362
363 return proc;
364 }
365
366 /* Handle a GNU/Linux extended wait response. If we see a clone
367 event, we need to add the new LWP to our list (and not report the
368 trap to higher layers). */
369
370 static void
371 handle_extended_wait (struct lwp_info *event_child, int wstat)
372 {
373 int event = linux_ptrace_get_extended_event (wstat);
374 struct thread_info *event_thr = get_lwp_thread (event_child);
375 struct lwp_info *new_lwp;
376
377 if (event == PTRACE_EVENT_CLONE)
378 {
379 ptid_t ptid;
380 unsigned long new_pid;
381 int ret, status;
382
383 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
384 &new_pid);
385
386 /* If we haven't already seen the new PID stop, wait for it now. */
387 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
388 {
389 /* The new child has a pending SIGSTOP. We can't affect it until it
390 hits the SIGSTOP, but we're already attached. */
391
392 ret = my_waitpid (new_pid, &status, __WALL);
393
394 if (ret == -1)
395 perror_with_name ("waiting for new child");
396 else if (ret != new_pid)
397 warning ("wait returned unexpected PID %d", ret);
398 else if (!WIFSTOPPED (status))
399 warning ("wait returned unexpected status 0x%x", status);
400 }
401
402 if (debug_threads)
403 debug_printf ("HEW: Got clone event "
404 "from LWP %ld, new child is LWP %ld\n",
405 lwpid_of (event_thr), new_pid);
406
407 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
408 new_lwp = add_lwp (ptid);
409
410 /* Either we're going to immediately resume the new thread
411 or leave it stopped. linux_resume_one_lwp is a nop if it
412 thinks the thread is currently running, so set this first
413 before calling linux_resume_one_lwp. */
414 new_lwp->stopped = 1;
415
416 /* If we're suspending all threads, leave this one suspended
417 too. */
418 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
419 new_lwp->suspended = 1;
420
421 /* Normally we will get the pending SIGSTOP. But in some cases
422 we might get another signal delivered to the group first.
423 If we do get another signal, be sure not to lose it. */
424 if (WSTOPSIG (status) == SIGSTOP)
425 {
426 if (stopping_threads != NOT_STOPPING_THREADS)
427 new_lwp->stop_pc = get_stop_pc (new_lwp);
428 else
429 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
430 }
431 else
432 {
433 new_lwp->stop_expected = 1;
434
435 if (stopping_threads != NOT_STOPPING_THREADS)
436 {
437 new_lwp->stop_pc = get_stop_pc (new_lwp);
438 new_lwp->status_pending_p = 1;
439 new_lwp->status_pending = status;
440 }
441 else
442 /* Pass the signal on. This is what GDB does - except
443 shouldn't we really report it instead? */
444 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
445 }
446
447 /* Always resume the current thread. If we are stopping
448 threads, it will have a pending SIGSTOP; we may as well
449 collect it now. */
450 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
451 }
452 }
453
454 /* Return the PC as read from the regcache of LWP, without any
455 adjustment. */
456
457 static CORE_ADDR
458 get_pc (struct lwp_info *lwp)
459 {
460 struct thread_info *saved_thread;
461 struct regcache *regcache;
462 CORE_ADDR pc;
463
464 if (the_low_target.get_pc == NULL)
465 return 0;
466
467 saved_thread = current_thread;
468 current_thread = get_lwp_thread (lwp);
469
470 regcache = get_thread_regcache (current_thread, 1);
471 pc = (*the_low_target.get_pc) (regcache);
472
473 if (debug_threads)
474 debug_printf ("pc is 0x%lx\n", (long) pc);
475
476 current_thread = saved_thread;
477 return pc;
478 }
479
480 /* This function should only be called if LWP got a SIGTRAP.
481 The SIGTRAP could mean several things.
482
483 On i386, where decr_pc_after_break is non-zero:
484 If we were single-stepping this process using PTRACE_SINGLESTEP,
485 we will get only the one SIGTRAP (even if the instruction we
486 stepped over was a breakpoint). The value of $eip will be the
487 next instruction.
488 If we continue the process using PTRACE_CONT, we will get a
489 SIGTRAP when we hit a breakpoint. The value of $eip will be
490 the instruction after the breakpoint (i.e. needs to be
491 decremented). If we report the SIGTRAP to GDB, we must also
492 report the undecremented PC. If we cancel the SIGTRAP, we
493 must resume at the decremented PC.
494
495 (Presumably, not yet tested) On a non-decr_pc_after_break machine
496 with hardware or kernel single-step:
497 If we single-step over a breakpoint instruction, our PC will
498 point at the following instruction. If we continue and hit a
499 breakpoint instruction, our PC will point at the breakpoint
500 instruction. */
501
502 static CORE_ADDR
503 get_stop_pc (struct lwp_info *lwp)
504 {
505 CORE_ADDR stop_pc;
506
507 if (the_low_target.get_pc == NULL)
508 return 0;
509
510 stop_pc = get_pc (lwp);
511
512 if (WSTOPSIG (lwp->last_status) == SIGTRAP
513 && !lwp->stepping
514 && !lwp->stopped_by_watchpoint
515 && !linux_is_extended_waitstatus (lwp->last_status))
516 stop_pc -= the_low_target.decr_pc_after_break;
517
518 if (debug_threads)
519 debug_printf ("stop pc is 0x%lx\n", (long) stop_pc);
520
521 return stop_pc;
522 }
523
524 static struct lwp_info *
525 add_lwp (ptid_t ptid)
526 {
527 struct lwp_info *lwp;
528
529 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
530 memset (lwp, 0, sizeof (*lwp));
531
532 if (the_low_target.new_thread != NULL)
533 lwp->arch_private = the_low_target.new_thread ();
534
535 lwp->thread = add_thread (ptid, lwp);
536
537 return lwp;
538 }
539
540 /* Start an inferior process and returns its pid.
541 ALLARGS is a vector of program-name and args. */
542
543 static int
544 linux_create_inferior (char *program, char **allargs)
545 {
546 #ifdef HAVE_PERSONALITY
547 int personality_orig = 0, personality_set = 0;
548 #endif
549 struct lwp_info *new_lwp;
550 int pid;
551 ptid_t ptid;
552
553 #ifdef HAVE_PERSONALITY
554 if (disable_randomization)
555 {
556 errno = 0;
557 personality_orig = personality (0xffffffff);
558 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
559 {
560 personality_set = 1;
561 personality (personality_orig | ADDR_NO_RANDOMIZE);
562 }
563 if (errno != 0 || (personality_set
564 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
565 warning ("Error disabling address space randomization: %s",
566 strerror (errno));
567 }
568 #endif
569
570 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
571 pid = vfork ();
572 #else
573 pid = fork ();
574 #endif
575 if (pid < 0)
576 perror_with_name ("fork");
577
578 if (pid == 0)
579 {
580 close_most_fds ();
581 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
582
583 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
584 signal (__SIGRTMIN + 1, SIG_DFL);
585 #endif
586
587 setpgid (0, 0);
588
589 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
590 stdout to stderr so that inferior i/o doesn't corrupt the connection.
591 Also, redirect stdin to /dev/null. */
592 if (remote_connection_is_stdio ())
593 {
594 close (0);
595 open ("/dev/null", O_RDONLY);
596 dup2 (2, 1);
597 if (write (2, "stdin/stdout redirected\n",
598 sizeof ("stdin/stdout redirected\n") - 1) < 0)
599 {
600 /* Errors ignored. */;
601 }
602 }
603
604 execv (program, allargs);
605 if (errno == ENOENT)
606 execvp (program, allargs);
607
608 fprintf (stderr, "Cannot exec %s: %s.\n", program,
609 strerror (errno));
610 fflush (stderr);
611 _exit (0177);
612 }
613
614 #ifdef HAVE_PERSONALITY
615 if (personality_set)
616 {
617 errno = 0;
618 personality (personality_orig);
619 if (errno != 0)
620 warning ("Error restoring address space randomization: %s",
621 strerror (errno));
622 }
623 #endif
624
625 linux_add_process (pid, 0);
626
627 ptid = ptid_build (pid, pid, 0);
628 new_lwp = add_lwp (ptid);
629 new_lwp->must_set_ptrace_flags = 1;
630
631 return pid;
632 }
633
634 char *
635 linux_attach_fail_reason_string (ptid_t ptid, int err)
636 {
637 static char *reason_string;
638 struct buffer buffer;
639 char *warnings;
640 long lwpid = ptid_get_lwp (ptid);
641
642 xfree (reason_string);
643
644 buffer_init (&buffer);
645 linux_ptrace_attach_fail_reason (lwpid, &buffer);
646 buffer_grow_str0 (&buffer, "");
647 warnings = buffer_finish (&buffer);
648 if (warnings[0] != '\0')
649 reason_string = xstrprintf ("%s (%d), %s",
650 strerror (err), err, warnings);
651 else
652 reason_string = xstrprintf ("%s (%d)",
653 strerror (err), err);
654 xfree (warnings);
655 return reason_string;
656 }
657
658 /* Attach to an inferior process. */
659
660 int
661 linux_attach_lwp (ptid_t ptid)
662 {
663 struct lwp_info *new_lwp;
664 int lwpid = ptid_get_lwp (ptid);
665
666 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
667 != 0)
668 return errno;
669
670 new_lwp = add_lwp (ptid);
671
672 /* We need to wait for SIGSTOP before being able to make the next
673 ptrace call on this LWP. */
674 new_lwp->must_set_ptrace_flags = 1;
675
676 if (linux_proc_pid_is_stopped (lwpid))
677 {
678 if (debug_threads)
679 debug_printf ("Attached to a stopped process\n");
680
681 /* The process is definitely stopped. It is in a job control
682 stop, unless the kernel predates the TASK_STOPPED /
683 TASK_TRACED distinction, in which case it might be in a
684 ptrace stop. Make sure it is in a ptrace stop; from there we
685 can kill it, signal it, et cetera.
686
687 First make sure there is a pending SIGSTOP. Since we are
688 already attached, the process can not transition from stopped
689 to running without a PTRACE_CONT; so we know this signal will
690 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
691 probably already in the queue (unless this kernel is old
692 enough to use TASK_STOPPED for ptrace stops); but since
693 SIGSTOP is not an RT signal, it can only be queued once. */
694 kill_lwp (lwpid, SIGSTOP);
695
696 /* Finally, resume the stopped process. This will deliver the
697 SIGSTOP (or a higher priority signal, just like normal
698 PTRACE_ATTACH), which we'll catch later on. */
699 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
700 }
701
702 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
703 brings it to a halt.
704
705 There are several cases to consider here:
706
707 1) gdbserver has already attached to the process and is being notified
708 of a new thread that is being created.
709 In this case we should ignore that SIGSTOP and resume the
710 process. This is handled below by setting stop_expected = 1,
711 and the fact that add_thread sets last_resume_kind ==
712 resume_continue.
713
714 2) This is the first thread (the process thread), and we're attaching
715 to it via attach_inferior.
716 In this case we want the process thread to stop.
717 This is handled by having linux_attach set last_resume_kind ==
718 resume_stop after we return.
719
720 If the pid we are attaching to is also the tgid, we attach to and
721 stop all the existing threads. Otherwise, we attach to pid and
722 ignore any other threads in the same group as this pid.
723
724 3) GDB is connecting to gdbserver and is requesting an enumeration of all
725 existing threads.
726 In this case we want the thread to stop.
727 FIXME: This case is currently not properly handled.
728 We should wait for the SIGSTOP but don't. Things work apparently
729 because enough time passes between when we ptrace (ATTACH) and when
730 gdb makes the next ptrace call on the thread.
731
732 On the other hand, if we are currently trying to stop all threads, we
733 should treat the new thread as if we had sent it a SIGSTOP. This works
734 because we are guaranteed that the add_lwp call above added us to the
735 end of the list, and so the new thread has not yet reached
736 wait_for_sigstop (but will). */
737 new_lwp->stop_expected = 1;
738
739 return 0;
740 }
741
742 /* Attach to PID. If PID is the tgid, attach to it and all
743 of its threads. */
744
745 static int
746 linux_attach (unsigned long pid)
747 {
748 ptid_t ptid = ptid_build (pid, pid, 0);
749 int err;
750
751 /* Attach to PID. We will check for other threads
752 soon. */
753 err = linux_attach_lwp (ptid);
754 if (err != 0)
755 error ("Cannot attach to process %ld: %s",
756 pid, linux_attach_fail_reason_string (ptid, err));
757
758 linux_add_process (pid, 1);
759
760 if (!non_stop)
761 {
762 struct thread_info *thread;
763
764 /* Don't ignore the initial SIGSTOP if we just attached to this
765 process. It will be collected by wait shortly. */
766 thread = find_thread_ptid (ptid_build (pid, pid, 0));
767 thread->last_resume_kind = resume_stop;
768 }
769
770 if (linux_proc_get_tgid (pid) == pid)
771 {
772 DIR *dir;
773 char pathname[128];
774
775 sprintf (pathname, "/proc/%ld/task", pid);
776
777 dir = opendir (pathname);
778
779 if (!dir)
780 {
781 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
782 fflush (stderr);
783 }
784 else
785 {
786 /* At this point we attached to the tgid. Scan the task for
787 existing threads. */
788 int new_threads_found;
789 int iterations = 0;
790
791 while (iterations < 2)
792 {
793 struct dirent *dp;
794
795 new_threads_found = 0;
796 /* Add all the other threads. While we go through the
797 threads, new threads may be spawned. Cycle through
798 the list of threads until we have done two iterations without
799 finding new threads. */
800 while ((dp = readdir (dir)) != NULL)
801 {
802 unsigned long lwp;
803 ptid_t ptid;
804
805 /* Fetch one lwp. */
806 lwp = strtoul (dp->d_name, NULL, 10);
807
808 ptid = ptid_build (pid, lwp, 0);
809
810 /* Is this a new thread? */
811 if (lwp != 0 && find_thread_ptid (ptid) == NULL)
812 {
813 int err;
814
815 if (debug_threads)
816 debug_printf ("Found new lwp %ld\n", lwp);
817
818 err = linux_attach_lwp (ptid);
819 if (err != 0)
820 warning ("Cannot attach to lwp %ld: %s",
821 lwp,
822 linux_attach_fail_reason_string (ptid, err));
823
824 new_threads_found++;
825 }
826 }
827
828 if (!new_threads_found)
829 iterations++;
830 else
831 iterations = 0;
832
833 rewinddir (dir);
834 }
835 closedir (dir);
836 }
837 }
838
839 return 0;
840 }
841
842 struct counter
843 {
844 int pid;
845 int count;
846 };
847
848 static int
849 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
850 {
851 struct counter *counter = args;
852
853 if (ptid_get_pid (entry->id) == counter->pid)
854 {
855 if (++counter->count > 1)
856 return 1;
857 }
858
859 return 0;
860 }
861
862 static int
863 last_thread_of_process_p (int pid)
864 {
865 struct counter counter = { pid , 0 };
866
867 return (find_inferior (&all_threads,
868 second_thread_of_pid_p, &counter) == NULL);
869 }
870
871 /* Kill LWP. */
872
873 static void
874 linux_kill_one_lwp (struct lwp_info *lwp)
875 {
876 struct thread_info *thr = get_lwp_thread (lwp);
877 int pid = lwpid_of (thr);
878
879 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
880 there is no signal context, and ptrace(PTRACE_KILL) (or
881 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
882 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
883 alternative is to kill with SIGKILL. We only need one SIGKILL
884 per process, not one for each thread. But since we still support
885 linuxthreads, and we also support debugging programs using raw
886 clone without CLONE_THREAD, we send one for each thread. For
887 years, we used PTRACE_KILL only, so we're being a bit paranoid
888 about some old kernels where PTRACE_KILL might work better
889 (dubious if there are any such, but that's why it's paranoia), so
890 we try SIGKILL first, PTRACE_KILL second, and so we're fine
891 everywhere. */
892
893 errno = 0;
894 kill_lwp (pid, SIGKILL);
895 if (debug_threads)
896 {
897 int save_errno = errno;
898
899 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
900 target_pid_to_str (ptid_of (thr)),
901 save_errno ? strerror (save_errno) : "OK");
902 }
903
904 errno = 0;
905 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
906 if (debug_threads)
907 {
908 int save_errno = errno;
909
910 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
911 target_pid_to_str (ptid_of (thr)),
912 save_errno ? strerror (save_errno) : "OK");
913 }
914 }
915
916 /* Kill LWP and wait for it to die. */
917
918 static void
919 kill_wait_lwp (struct lwp_info *lwp)
920 {
921 struct thread_info *thr = get_lwp_thread (lwp);
922 int pid = ptid_get_pid (ptid_of (thr));
923 int lwpid = ptid_get_lwp (ptid_of (thr));
924 int wstat;
925 int res;
926
927 if (debug_threads)
928 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
929
930 do
931 {
932 linux_kill_one_lwp (lwp);
933
934 /* Make sure it died. Notes:
935
936 - The loop is most likely unnecessary.
937
938 - We don't use linux_wait_for_event as that could delete lwps
939 while we're iterating over them. We're not interested in
940 any pending status at this point, only in making sure all
941 wait status on the kernel side are collected until the
942 process is reaped.
943
944 - We don't use __WALL here as the __WALL emulation relies on
945 SIGCHLD, and killing a stopped process doesn't generate
946 one, nor an exit status.
947 */
948 res = my_waitpid (lwpid, &wstat, 0);
949 if (res == -1 && errno == ECHILD)
950 res = my_waitpid (lwpid, &wstat, __WCLONE);
951 } while (res > 0 && WIFSTOPPED (wstat));
952
953 gdb_assert (res > 0);
954 }
955
956 /* Callback for `find_inferior'. Kills an lwp of a given process,
957 except the leader. */
958
959 static int
960 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
961 {
962 struct thread_info *thread = (struct thread_info *) entry;
963 struct lwp_info *lwp = get_thread_lwp (thread);
964 int pid = * (int *) args;
965
966 if (ptid_get_pid (entry->id) != pid)
967 return 0;
968
969 /* We avoid killing the first thread here, because of a Linux kernel (at
970 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
971 the children get a chance to be reaped, it will remain a zombie
972 forever. */
973
974 if (lwpid_of (thread) == pid)
975 {
976 if (debug_threads)
977 debug_printf ("lkop: is last of process %s\n",
978 target_pid_to_str (entry->id));
979 return 0;
980 }
981
982 kill_wait_lwp (lwp);
983 return 0;
984 }
985
986 static int
987 linux_kill (int pid)
988 {
989 struct process_info *process;
990 struct lwp_info *lwp;
991
992 process = find_process_pid (pid);
993 if (process == NULL)
994 return -1;
995
996 /* If we're killing a running inferior, make sure it is stopped
997 first, as PTRACE_KILL will not work otherwise. */
998 stop_all_lwps (0, NULL);
999
1000 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1001
1002 /* See the comment in linux_kill_one_lwp. We did not kill the first
1003 thread in the list, so do so now. */
1004 lwp = find_lwp_pid (pid_to_ptid (pid));
1005
1006 if (lwp == NULL)
1007 {
1008 if (debug_threads)
1009 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1010 pid);
1011 }
1012 else
1013 kill_wait_lwp (lwp);
1014
1015 the_target->mourn (process);
1016
1017 /* Since we presently can only stop all lwps of all processes, we
1018 need to unstop lwps of other processes. */
1019 unstop_all_lwps (0, NULL);
1020 return 0;
1021 }
1022
1023 /* Get pending signal of THREAD, for detaching purposes. This is the
1024 signal the thread last stopped for, which we need to deliver to the
1025 thread when detaching, otherwise, it'd be suppressed/lost. */
1026
1027 static int
1028 get_detach_signal (struct thread_info *thread)
1029 {
1030 enum gdb_signal signo = GDB_SIGNAL_0;
1031 int status;
1032 struct lwp_info *lp = get_thread_lwp (thread);
1033
1034 if (lp->status_pending_p)
1035 status = lp->status_pending;
1036 else
1037 {
1038 /* If the thread had been suspended by gdbserver, and it stopped
1039 cleanly, then it'll have stopped with SIGSTOP. But we don't
1040 want to deliver that SIGSTOP. */
1041 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1042 || thread->last_status.value.sig == GDB_SIGNAL_0)
1043 return 0;
1044
1045 /* Otherwise, we may need to deliver the signal we
1046 intercepted. */
1047 status = lp->last_status;
1048 }
1049
1050 if (!WIFSTOPPED (status))
1051 {
1052 if (debug_threads)
1053 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1054 target_pid_to_str (ptid_of (thread)));
1055 return 0;
1056 }
1057
1058 /* Extended wait statuses aren't real SIGTRAPs. */
1059 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1060 {
1061 if (debug_threads)
1062 debug_printf ("GPS: lwp %s had stopped with extended "
1063 "status: no pending signal\n",
1064 target_pid_to_str (ptid_of (thread)));
1065 return 0;
1066 }
1067
1068 signo = gdb_signal_from_host (WSTOPSIG (status));
1069
1070 if (program_signals_p && !program_signals[signo])
1071 {
1072 if (debug_threads)
1073 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1074 target_pid_to_str (ptid_of (thread)),
1075 gdb_signal_to_string (signo));
1076 return 0;
1077 }
1078 else if (!program_signals_p
1079 /* If we have no way to know which signals GDB does not
1080 want to have passed to the program, assume
1081 SIGTRAP/SIGINT, which is GDB's default. */
1082 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1083 {
1084 if (debug_threads)
1085 debug_printf ("GPS: lwp %s had signal %s, "
1086 "but we don't know if we should pass it. "
1087 "Default to not.\n",
1088 target_pid_to_str (ptid_of (thread)),
1089 gdb_signal_to_string (signo));
1090 return 0;
1091 }
1092 else
1093 {
1094 if (debug_threads)
1095 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1096 target_pid_to_str (ptid_of (thread)),
1097 gdb_signal_to_string (signo));
1098
1099 return WSTOPSIG (status);
1100 }
1101 }
1102
1103 static int
1104 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1105 {
1106 struct thread_info *thread = (struct thread_info *) entry;
1107 struct lwp_info *lwp = get_thread_lwp (thread);
1108 int pid = * (int *) args;
1109 int sig;
1110
1111 if (ptid_get_pid (entry->id) != pid)
1112 return 0;
1113
1114 /* If there is a pending SIGSTOP, get rid of it. */
1115 if (lwp->stop_expected)
1116 {
1117 if (debug_threads)
1118 debug_printf ("Sending SIGCONT to %s\n",
1119 target_pid_to_str (ptid_of (thread)));
1120
1121 kill_lwp (lwpid_of (thread), SIGCONT);
1122 lwp->stop_expected = 0;
1123 }
1124
1125 /* Flush any pending changes to the process's registers. */
1126 regcache_invalidate_thread (thread);
1127
1128 /* Pass on any pending signal for this thread. */
1129 sig = get_detach_signal (thread);
1130
1131 /* Finally, let it resume. */
1132 if (the_low_target.prepare_to_resume != NULL)
1133 the_low_target.prepare_to_resume (lwp);
1134 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1135 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1136 error (_("Can't detach %s: %s"),
1137 target_pid_to_str (ptid_of (thread)),
1138 strerror (errno));
1139
1140 delete_lwp (lwp);
1141 return 0;
1142 }
1143
1144 static int
1145 linux_detach (int pid)
1146 {
1147 struct process_info *process;
1148
1149 process = find_process_pid (pid);
1150 if (process == NULL)
1151 return -1;
1152
1153 /* Stop all threads before detaching. First, ptrace requires that
1154 the thread is stopped to sucessfully detach. Second, thread_db
1155 may need to uninstall thread event breakpoints from memory, which
1156 only works with a stopped process anyway. */
1157 stop_all_lwps (0, NULL);
1158
1159 #ifdef USE_THREAD_DB
1160 thread_db_detach (process);
1161 #endif
1162
1163 /* Stabilize threads (move out of jump pads). */
1164 stabilize_threads ();
1165
1166 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1167
1168 the_target->mourn (process);
1169
1170 /* Since we presently can only stop all lwps of all processes, we
1171 need to unstop lwps of other processes. */
1172 unstop_all_lwps (0, NULL);
1173 return 0;
1174 }
1175
1176 /* Remove all LWPs that belong to process PROC from the lwp list. */
1177
1178 static int
1179 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1180 {
1181 struct thread_info *thread = (struct thread_info *) entry;
1182 struct lwp_info *lwp = get_thread_lwp (thread);
1183 struct process_info *process = proc;
1184
1185 if (pid_of (thread) == pid_of (process))
1186 delete_lwp (lwp);
1187
1188 return 0;
1189 }
1190
1191 static void
1192 linux_mourn (struct process_info *process)
1193 {
1194 struct process_info_private *priv;
1195
1196 #ifdef USE_THREAD_DB
1197 thread_db_mourn (process);
1198 #endif
1199
1200 find_inferior (&all_threads, delete_lwp_callback, process);
1201
1202 /* Freeing all private data. */
1203 priv = process->private;
1204 free (priv->arch_private);
1205 free (priv);
1206 process->private = NULL;
1207
1208 remove_process (process);
1209 }
1210
1211 static void
1212 linux_join (int pid)
1213 {
1214 int status, ret;
1215
1216 do {
1217 ret = my_waitpid (pid, &status, 0);
1218 if (WIFEXITED (status) || WIFSIGNALED (status))
1219 break;
1220 } while (ret != -1 || errno != ECHILD);
1221 }
1222
1223 /* Return nonzero if the given thread is still alive. */
1224 static int
1225 linux_thread_alive (ptid_t ptid)
1226 {
1227 struct lwp_info *lwp = find_lwp_pid (ptid);
1228
1229 /* We assume we always know if a thread exits. If a whole process
1230 exited but we still haven't been able to report it to GDB, we'll
1231 hold on to the last lwp of the dead process. */
1232 if (lwp != NULL)
1233 return !lwp->dead;
1234 else
1235 return 0;
1236 }
1237
1238 /* Return 1 if this lwp has an interesting status pending. */
1239 static int
1240 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1241 {
1242 struct thread_info *thread = (struct thread_info *) entry;
1243 struct lwp_info *lwp = get_thread_lwp (thread);
1244 ptid_t ptid = * (ptid_t *) arg;
1245
1246 /* Check if we're only interested in events from a specific process
1247 or its lwps. */
1248 if (!ptid_equal (minus_one_ptid, ptid)
1249 && ptid_get_pid (ptid) != ptid_get_pid (thread->entry.id))
1250 return 0;
1251
1252 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1253 report any status pending the LWP may have. */
1254 if (thread->last_resume_kind == resume_stop
1255 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1256 return 0;
1257
1258 return lwp->status_pending_p;
1259 }
1260
1261 static int
1262 same_lwp (struct inferior_list_entry *entry, void *data)
1263 {
1264 ptid_t ptid = *(ptid_t *) data;
1265 int lwp;
1266
1267 if (ptid_get_lwp (ptid) != 0)
1268 lwp = ptid_get_lwp (ptid);
1269 else
1270 lwp = ptid_get_pid (ptid);
1271
1272 if (ptid_get_lwp (entry->id) == lwp)
1273 return 1;
1274
1275 return 0;
1276 }
1277
1278 struct lwp_info *
1279 find_lwp_pid (ptid_t ptid)
1280 {
1281 struct inferior_list_entry *thread
1282 = find_inferior (&all_threads, same_lwp, &ptid);
1283
1284 if (thread == NULL)
1285 return NULL;
1286
1287 return get_thread_lwp ((struct thread_info *) thread);
1288 }
1289
1290 /* Return the number of known LWPs in the tgid given by PID. */
1291
1292 static int
1293 num_lwps (int pid)
1294 {
1295 struct inferior_list_entry *inf, *tmp;
1296 int count = 0;
1297
1298 ALL_INFERIORS (&all_threads, inf, tmp)
1299 {
1300 if (ptid_get_pid (inf->id) == pid)
1301 count++;
1302 }
1303
1304 return count;
1305 }
1306
1307 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1308 their exits until all other threads in the group have exited. */
1309
1310 static void
1311 check_zombie_leaders (void)
1312 {
1313 struct process_info *proc, *tmp;
1314
1315 ALL_PROCESSES (proc, tmp)
1316 {
1317 pid_t leader_pid = pid_of (proc);
1318 struct lwp_info *leader_lp;
1319
1320 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1321
1322 if (debug_threads)
1323 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1324 "num_lwps=%d, zombie=%d\n",
1325 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1326 linux_proc_pid_is_zombie (leader_pid));
1327
1328 if (leader_lp != NULL
1329 /* Check if there are other threads in the group, as we may
1330 have raced with the inferior simply exiting. */
1331 && !last_thread_of_process_p (leader_pid)
1332 && linux_proc_pid_is_zombie (leader_pid))
1333 {
1334 /* A leader zombie can mean one of two things:
1335
1336 - It exited, and there's an exit status pending
1337 available, or only the leader exited (not the whole
1338 program). In the latter case, we can't waitpid the
1339 leader's exit status until all other threads are gone.
1340
1341 - There are 3 or more threads in the group, and a thread
1342 other than the leader exec'd. On an exec, the Linux
1343 kernel destroys all other threads (except the execing
1344 one) in the thread group, and resets the execing thread's
1345 tid to the tgid. No exit notification is sent for the
1346 execing thread -- from the ptracer's perspective, it
1347 appears as though the execing thread just vanishes.
1348 Until we reap all other threads except the leader and the
1349 execing thread, the leader will be zombie, and the
1350 execing thread will be in `D (disc sleep)'. As soon as
1351 all other threads are reaped, the execing thread changes
1352 it's tid to the tgid, and the previous (zombie) leader
1353 vanishes, giving place to the "new" leader. We could try
1354 distinguishing the exit and exec cases, by waiting once
1355 more, and seeing if something comes out, but it doesn't
1356 sound useful. The previous leader _does_ go away, and
1357 we'll re-add the new one once we see the exec event
1358 (which is just the same as what would happen if the
1359 previous leader did exit voluntarily before some other
1360 thread execs). */
1361
1362 if (debug_threads)
1363 fprintf (stderr,
1364 "CZL: Thread group leader %d zombie "
1365 "(it exited, or another thread execd).\n",
1366 leader_pid);
1367
1368 delete_lwp (leader_lp);
1369 }
1370 }
1371 }
1372
1373 /* Callback for `find_inferior'. Returns the first LWP that is not
1374 stopped. ARG is a PTID filter. */
1375
1376 static int
1377 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1378 {
1379 struct thread_info *thr = (struct thread_info *) entry;
1380 struct lwp_info *lwp;
1381 ptid_t filter = *(ptid_t *) arg;
1382
1383 if (!ptid_match (ptid_of (thr), filter))
1384 return 0;
1385
1386 lwp = get_thread_lwp (thr);
1387 if (!lwp->stopped)
1388 return 1;
1389
1390 return 0;
1391 }
1392
1393 /* This function should only be called if the LWP got a SIGTRAP.
1394
1395 Handle any tracepoint steps or hits. Return true if a tracepoint
1396 event was handled, 0 otherwise. */
1397
1398 static int
1399 handle_tracepoints (struct lwp_info *lwp)
1400 {
1401 struct thread_info *tinfo = get_lwp_thread (lwp);
1402 int tpoint_related_event = 0;
1403
1404 /* If this tracepoint hit causes a tracing stop, we'll immediately
1405 uninsert tracepoints. To do this, we temporarily pause all
1406 threads, unpatch away, and then unpause threads. We need to make
1407 sure the unpausing doesn't resume LWP too. */
1408 lwp->suspended++;
1409
1410 /* And we need to be sure that any all-threads-stopping doesn't try
1411 to move threads out of the jump pads, as it could deadlock the
1412 inferior (LWP could be in the jump pad, maybe even holding the
1413 lock.) */
1414
1415 /* Do any necessary step collect actions. */
1416 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1417
1418 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1419
1420 /* See if we just hit a tracepoint and do its main collect
1421 actions. */
1422 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1423
1424 lwp->suspended--;
1425
1426 gdb_assert (lwp->suspended == 0);
1427 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1428
1429 if (tpoint_related_event)
1430 {
1431 if (debug_threads)
1432 debug_printf ("got a tracepoint event\n");
1433 return 1;
1434 }
1435
1436 return 0;
1437 }
1438
1439 /* Convenience wrapper. Returns true if LWP is presently collecting a
1440 fast tracepoint. */
1441
1442 static int
1443 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1444 struct fast_tpoint_collect_status *status)
1445 {
1446 CORE_ADDR thread_area;
1447 struct thread_info *thread = get_lwp_thread (lwp);
1448
1449 if (the_low_target.get_thread_area == NULL)
1450 return 0;
1451
1452 /* Get the thread area address. This is used to recognize which
1453 thread is which when tracing with the in-process agent library.
1454 We don't read anything from the address, and treat it as opaque;
1455 it's the address itself that we assume is unique per-thread. */
1456 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1457 return 0;
1458
1459 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1460 }
1461
1462 /* The reason we resume in the caller, is because we want to be able
1463 to pass lwp->status_pending as WSTAT, and we need to clear
1464 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1465 refuses to resume. */
1466
1467 static int
1468 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1469 {
1470 struct thread_info *saved_thread;
1471
1472 saved_thread = current_thread;
1473 current_thread = get_lwp_thread (lwp);
1474
1475 if ((wstat == NULL
1476 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1477 && supports_fast_tracepoints ()
1478 && agent_loaded_p ())
1479 {
1480 struct fast_tpoint_collect_status status;
1481 int r;
1482
1483 if (debug_threads)
1484 debug_printf ("Checking whether LWP %ld needs to move out of the "
1485 "jump pad.\n",
1486 lwpid_of (current_thread));
1487
1488 r = linux_fast_tracepoint_collecting (lwp, &status);
1489
1490 if (wstat == NULL
1491 || (WSTOPSIG (*wstat) != SIGILL
1492 && WSTOPSIG (*wstat) != SIGFPE
1493 && WSTOPSIG (*wstat) != SIGSEGV
1494 && WSTOPSIG (*wstat) != SIGBUS))
1495 {
1496 lwp->collecting_fast_tracepoint = r;
1497
1498 if (r != 0)
1499 {
1500 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1501 {
1502 /* Haven't executed the original instruction yet.
1503 Set breakpoint there, and wait till it's hit,
1504 then single-step until exiting the jump pad. */
1505 lwp->exit_jump_pad_bkpt
1506 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1507 }
1508
1509 if (debug_threads)
1510 debug_printf ("Checking whether LWP %ld needs to move out of "
1511 "the jump pad...it does\n",
1512 lwpid_of (current_thread));
1513 current_thread = saved_thread;
1514
1515 return 1;
1516 }
1517 }
1518 else
1519 {
1520 /* If we get a synchronous signal while collecting, *and*
1521 while executing the (relocated) original instruction,
1522 reset the PC to point at the tpoint address, before
1523 reporting to GDB. Otherwise, it's an IPA lib bug: just
1524 report the signal to GDB, and pray for the best. */
1525
1526 lwp->collecting_fast_tracepoint = 0;
1527
1528 if (r != 0
1529 && (status.adjusted_insn_addr <= lwp->stop_pc
1530 && lwp->stop_pc < status.adjusted_insn_addr_end))
1531 {
1532 siginfo_t info;
1533 struct regcache *regcache;
1534
1535 /* The si_addr on a few signals references the address
1536 of the faulting instruction. Adjust that as
1537 well. */
1538 if ((WSTOPSIG (*wstat) == SIGILL
1539 || WSTOPSIG (*wstat) == SIGFPE
1540 || WSTOPSIG (*wstat) == SIGBUS
1541 || WSTOPSIG (*wstat) == SIGSEGV)
1542 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
1543 (PTRACE_TYPE_ARG3) 0, &info) == 0
1544 /* Final check just to make sure we don't clobber
1545 the siginfo of non-kernel-sent signals. */
1546 && (uintptr_t) info.si_addr == lwp->stop_pc)
1547 {
1548 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1549 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
1550 (PTRACE_TYPE_ARG3) 0, &info);
1551 }
1552
1553 regcache = get_thread_regcache (current_thread, 1);
1554 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1555 lwp->stop_pc = status.tpoint_addr;
1556
1557 /* Cancel any fast tracepoint lock this thread was
1558 holding. */
1559 force_unlock_trace_buffer ();
1560 }
1561
1562 if (lwp->exit_jump_pad_bkpt != NULL)
1563 {
1564 if (debug_threads)
1565 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1566 "stopping all threads momentarily.\n");
1567
1568 stop_all_lwps (1, lwp);
1569 cancel_breakpoints ();
1570
1571 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1572 lwp->exit_jump_pad_bkpt = NULL;
1573
1574 unstop_all_lwps (1, lwp);
1575
1576 gdb_assert (lwp->suspended >= 0);
1577 }
1578 }
1579 }
1580
1581 if (debug_threads)
1582 debug_printf ("Checking whether LWP %ld needs to move out of the "
1583 "jump pad...no\n",
1584 lwpid_of (current_thread));
1585
1586 current_thread = saved_thread;
1587 return 0;
1588 }
1589
1590 /* Enqueue one signal in the "signals to report later when out of the
1591 jump pad" list. */
1592
1593 static void
1594 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1595 {
1596 struct pending_signals *p_sig;
1597 struct thread_info *thread = get_lwp_thread (lwp);
1598
1599 if (debug_threads)
1600 debug_printf ("Deferring signal %d for LWP %ld.\n",
1601 WSTOPSIG (*wstat), lwpid_of (thread));
1602
1603 if (debug_threads)
1604 {
1605 struct pending_signals *sig;
1606
1607 for (sig = lwp->pending_signals_to_report;
1608 sig != NULL;
1609 sig = sig->prev)
1610 debug_printf (" Already queued %d\n",
1611 sig->signal);
1612
1613 debug_printf (" (no more currently queued signals)\n");
1614 }
1615
1616 /* Don't enqueue non-RT signals if they are already in the deferred
1617 queue. (SIGSTOP being the easiest signal to see ending up here
1618 twice) */
1619 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1620 {
1621 struct pending_signals *sig;
1622
1623 for (sig = lwp->pending_signals_to_report;
1624 sig != NULL;
1625 sig = sig->prev)
1626 {
1627 if (sig->signal == WSTOPSIG (*wstat))
1628 {
1629 if (debug_threads)
1630 debug_printf ("Not requeuing already queued non-RT signal %d"
1631 " for LWP %ld\n",
1632 sig->signal,
1633 lwpid_of (thread));
1634 return;
1635 }
1636 }
1637 }
1638
1639 p_sig = xmalloc (sizeof (*p_sig));
1640 p_sig->prev = lwp->pending_signals_to_report;
1641 p_sig->signal = WSTOPSIG (*wstat);
1642 memset (&p_sig->info, 0, sizeof (siginfo_t));
1643 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1644 &p_sig->info);
1645
1646 lwp->pending_signals_to_report = p_sig;
1647 }
1648
1649 /* Dequeue one signal from the "signals to report later when out of
1650 the jump pad" list. */
1651
1652 static int
1653 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1654 {
1655 struct thread_info *thread = get_lwp_thread (lwp);
1656
1657 if (lwp->pending_signals_to_report != NULL)
1658 {
1659 struct pending_signals **p_sig;
1660
1661 p_sig = &lwp->pending_signals_to_report;
1662 while ((*p_sig)->prev != NULL)
1663 p_sig = &(*p_sig)->prev;
1664
1665 *wstat = W_STOPCODE ((*p_sig)->signal);
1666 if ((*p_sig)->info.si_signo != 0)
1667 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1668 &(*p_sig)->info);
1669 free (*p_sig);
1670 *p_sig = NULL;
1671
1672 if (debug_threads)
1673 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
1674 WSTOPSIG (*wstat), lwpid_of (thread));
1675
1676 if (debug_threads)
1677 {
1678 struct pending_signals *sig;
1679
1680 for (sig = lwp->pending_signals_to_report;
1681 sig != NULL;
1682 sig = sig->prev)
1683 debug_printf (" Still queued %d\n",
1684 sig->signal);
1685
1686 debug_printf (" (no more queued signals)\n");
1687 }
1688
1689 return 1;
1690 }
1691
1692 return 0;
1693 }
1694
1695 /* Arrange for a breakpoint to be hit again later. We don't keep the
1696 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1697 will handle the current event, eventually we will resume this LWP,
1698 and this breakpoint will trap again. */
1699
1700 static int
1701 cancel_breakpoint (struct lwp_info *lwp)
1702 {
1703 struct thread_info *saved_thread;
1704
1705 /* There's nothing to do if we don't support breakpoints. */
1706 if (!supports_breakpoints ())
1707 return 0;
1708
1709 /* breakpoint_at reads from current inferior. */
1710 saved_thread = current_thread;
1711 current_thread = get_lwp_thread (lwp);
1712
1713 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1714 {
1715 if (debug_threads)
1716 debug_printf ("CB: Push back breakpoint for %s\n",
1717 target_pid_to_str (ptid_of (current_thread)));
1718
1719 /* Back up the PC if necessary. */
1720 if (the_low_target.decr_pc_after_break)
1721 {
1722 struct regcache *regcache
1723 = get_thread_regcache (current_thread, 1);
1724 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1725 }
1726
1727 current_thread = saved_thread;
1728 return 1;
1729 }
1730 else
1731 {
1732 if (debug_threads)
1733 debug_printf ("CB: No breakpoint found at %s for [%s]\n",
1734 paddress (lwp->stop_pc),
1735 target_pid_to_str (ptid_of (current_thread)));
1736 }
1737
1738 current_thread = saved_thread;
1739 return 0;
1740 }
1741
1742 /* Return true if the event in LP may be caused by breakpoint. */
1743
1744 static int
1745 lp_status_maybe_breakpoint (struct lwp_info *lp)
1746 {
1747 return (lp->status_pending_p
1748 && WIFSTOPPED (lp->status_pending)
1749 && (WSTOPSIG (lp->status_pending) == SIGTRAP
1750 /* SIGILL and SIGSEGV are also treated as traps in case a
1751 breakpoint is inserted at the current PC. */
1752 || WSTOPSIG (lp->status_pending) == SIGILL
1753 || WSTOPSIG (lp->status_pending) == SIGSEGV));
1754 }
1755
1756 /* Do low-level handling of the event, and check if we should go on
1757 and pass it to caller code. Return the affected lwp if we are, or
1758 NULL otherwise. */
1759
1760 static struct lwp_info *
1761 linux_low_filter_event (ptid_t filter_ptid, int lwpid, int wstat)
1762 {
1763 struct lwp_info *child;
1764 struct thread_info *thread;
1765
1766 child = find_lwp_pid (pid_to_ptid (lwpid));
1767
1768 /* If we didn't find a process, one of two things presumably happened:
1769 - A process we started and then detached from has exited. Ignore it.
1770 - A process we are controlling has forked and the new child's stop
1771 was reported to us by the kernel. Save its PID. */
1772 if (child == NULL && WIFSTOPPED (wstat))
1773 {
1774 add_to_pid_list (&stopped_pids, lwpid, wstat);
1775 return NULL;
1776 }
1777 else if (child == NULL)
1778 return NULL;
1779
1780 thread = get_lwp_thread (child);
1781
1782 child->stopped = 1;
1783
1784 child->last_status = wstat;
1785
1786 if (WIFSTOPPED (wstat))
1787 {
1788 struct process_info *proc;
1789
1790 /* Architecture-specific setup after inferior is running. This
1791 needs to happen after we have attached to the inferior and it
1792 is stopped for the first time, but before we access any
1793 inferior registers. */
1794 proc = find_process_pid (pid_of (thread));
1795 if (proc->private->new_inferior)
1796 {
1797 struct thread_info *saved_thread;
1798
1799 saved_thread = current_thread;
1800 current_thread = thread;
1801
1802 the_low_target.arch_setup ();
1803
1804 current_thread = saved_thread;
1805
1806 proc->private->new_inferior = 0;
1807 }
1808 }
1809
1810 /* Store the STOP_PC, with adjustment applied. This depends on the
1811 architecture being defined already (so that CHILD has a valid
1812 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1813 not). */
1814 if (WIFSTOPPED (wstat))
1815 {
1816 if (debug_threads
1817 && the_low_target.get_pc != NULL)
1818 {
1819 struct thread_info *saved_thread;
1820 struct regcache *regcache;
1821 CORE_ADDR pc;
1822
1823 saved_thread = current_thread;
1824 current_thread = thread;
1825 regcache = get_thread_regcache (current_thread, 1);
1826 pc = (*the_low_target.get_pc) (regcache);
1827 debug_printf ("linux_low_filter_event: pc is 0x%lx\n", (long) pc);
1828 current_thread = saved_thread;
1829 }
1830
1831 child->stop_pc = get_stop_pc (child);
1832 }
1833
1834 /* Fetch the possibly triggered data watchpoint info and store it in
1835 CHILD.
1836
1837 On some archs, like x86, that use debug registers to set
1838 watchpoints, it's possible that the way to know which watched
1839 address trapped, is to check the register that is used to select
1840 which address to watch. Problem is, between setting the
1841 watchpoint and reading back which data address trapped, the user
1842 may change the set of watchpoints, and, as a consequence, GDB
1843 changes the debug registers in the inferior. To avoid reading
1844 back a stale stopped-data-address when that happens, we cache in
1845 LP the fact that a watchpoint trapped, and the corresponding data
1846 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1847 changes the debug registers meanwhile, we have the cached data we
1848 can rely on. */
1849
1850 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP)
1851 {
1852 if (the_low_target.stopped_by_watchpoint == NULL)
1853 {
1854 child->stopped_by_watchpoint = 0;
1855 }
1856 else
1857 {
1858 struct thread_info *saved_thread;
1859
1860 saved_thread = current_thread;
1861 current_thread = thread;
1862
1863 child->stopped_by_watchpoint
1864 = the_low_target.stopped_by_watchpoint ();
1865
1866 if (child->stopped_by_watchpoint)
1867 {
1868 if (the_low_target.stopped_data_address != NULL)
1869 child->stopped_data_address
1870 = the_low_target.stopped_data_address ();
1871 else
1872 child->stopped_data_address = 0;
1873 }
1874
1875 current_thread = saved_thread;
1876 }
1877 }
1878
1879 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
1880 {
1881 linux_enable_event_reporting (lwpid);
1882 child->must_set_ptrace_flags = 0;
1883 }
1884
1885 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
1886 && linux_is_extended_waitstatus (wstat))
1887 {
1888 handle_extended_wait (child, wstat);
1889 return NULL;
1890 }
1891
1892 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
1893 && child->stop_expected)
1894 {
1895 if (debug_threads)
1896 debug_printf ("Expected stop.\n");
1897 child->stop_expected = 0;
1898
1899 if (thread->last_resume_kind == resume_stop)
1900 {
1901 /* We want to report the stop to the core. Treat the
1902 SIGSTOP as a normal event. */
1903 }
1904 else if (stopping_threads != NOT_STOPPING_THREADS)
1905 {
1906 /* Stopping threads. We don't want this SIGSTOP to end up
1907 pending in the FILTER_PTID handling below. */
1908 return NULL;
1909 }
1910 else
1911 {
1912 /* Filter out the event. */
1913 linux_resume_one_lwp (child, child->stepping, 0, NULL);
1914 return NULL;
1915 }
1916 }
1917
1918 /* Check if the thread has exited. */
1919 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat))
1920 && num_lwps (pid_of (thread)) > 1)
1921 {
1922 if (debug_threads)
1923 debug_printf ("LLW: %d exited.\n", lwpid);
1924
1925 /* If there is at least one more LWP, then the exit signal
1926 was not the end of the debugged application and should be
1927 ignored. */
1928 delete_lwp (child);
1929 return NULL;
1930 }
1931
1932 if (!ptid_match (ptid_of (thread), filter_ptid))
1933 {
1934 if (debug_threads)
1935 debug_printf ("LWP %d got an event %06x, leaving pending.\n",
1936 lwpid, wstat);
1937
1938 if (WIFSTOPPED (wstat))
1939 {
1940 child->status_pending_p = 1;
1941 child->status_pending = wstat;
1942
1943 if (WSTOPSIG (wstat) != SIGSTOP)
1944 {
1945 /* Cancel breakpoint hits. The breakpoint may be
1946 removed before we fetch events from this process to
1947 report to the core. It is best not to assume the
1948 moribund breakpoints heuristic always handles these
1949 cases --- it could be too many events go through to
1950 the core before this one is handled. All-stop always
1951 cancels breakpoint hits in all threads. */
1952 if (non_stop
1953 && lp_status_maybe_breakpoint (child)
1954 && cancel_breakpoint (child))
1955 {
1956 /* Throw away the SIGTRAP. */
1957 child->status_pending_p = 0;
1958
1959 if (debug_threads)
1960 debug_printf ("LLW: LWP %d hit a breakpoint while"
1961 " waiting for another process;"
1962 " cancelled it\n", lwpid);
1963 }
1964 }
1965 }
1966 else if (WIFEXITED (wstat) || WIFSIGNALED (wstat))
1967 {
1968 if (debug_threads)
1969 debug_printf ("LLWE: process %d exited while fetching "
1970 "event from another LWP\n", lwpid);
1971
1972 /* This was the last lwp in the process. Since events are
1973 serialized to GDB core, and we can't report this one
1974 right now, but GDB core and the other target layers will
1975 want to be notified about the exit code/signal, leave the
1976 status pending for the next time we're able to report
1977 it. */
1978 mark_lwp_dead (child, wstat);
1979 }
1980
1981 return NULL;
1982 }
1983
1984 return child;
1985 }
1986
1987 /* When the event-loop is doing a step-over, this points at the thread
1988 being stepped. */
1989 ptid_t step_over_bkpt;
1990
1991 /* Wait for an event from child(ren) WAIT_PTID, and return any that
1992 match FILTER_PTID (leaving others pending). The PTIDs can be:
1993 minus_one_ptid, to specify any child; a pid PTID, specifying all
1994 lwps of a thread group; or a PTID representing a single lwp. Store
1995 the stop status through the status pointer WSTAT. OPTIONS is
1996 passed to the waitpid call. Return 0 if no event was found and
1997 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
1998 was found. Return the PID of the stopped child otherwise. */
1999
2000 static int
2001 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2002 int *wstatp, int options)
2003 {
2004 struct thread_info *event_thread;
2005 struct lwp_info *event_child, *requested_child;
2006 sigset_t block_mask, prev_mask;
2007
2008 retry:
2009 /* N.B. event_thread points to the thread_info struct that contains
2010 event_child. Keep them in sync. */
2011 event_thread = NULL;
2012 event_child = NULL;
2013 requested_child = NULL;
2014
2015 /* Check for a lwp with a pending status. */
2016
2017 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2018 {
2019 event_thread = (struct thread_info *)
2020 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2021 if (event_thread != NULL)
2022 event_child = get_thread_lwp (event_thread);
2023 if (debug_threads && event_thread)
2024 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2025 }
2026 else if (!ptid_equal (filter_ptid, null_ptid))
2027 {
2028 requested_child = find_lwp_pid (filter_ptid);
2029
2030 if (stopping_threads == NOT_STOPPING_THREADS
2031 && requested_child->status_pending_p
2032 && requested_child->collecting_fast_tracepoint)
2033 {
2034 enqueue_one_deferred_signal (requested_child,
2035 &requested_child->status_pending);
2036 requested_child->status_pending_p = 0;
2037 requested_child->status_pending = 0;
2038 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2039 }
2040
2041 if (requested_child->suspended
2042 && requested_child->status_pending_p)
2043 {
2044 internal_error (__FILE__, __LINE__,
2045 "requesting an event out of a"
2046 " suspended child?");
2047 }
2048
2049 if (requested_child->status_pending_p)
2050 {
2051 event_child = requested_child;
2052 event_thread = get_lwp_thread (event_child);
2053 }
2054 }
2055
2056 if (event_child != NULL)
2057 {
2058 if (debug_threads)
2059 debug_printf ("Got an event from pending child %ld (%04x)\n",
2060 lwpid_of (event_thread), event_child->status_pending);
2061 *wstatp = event_child->status_pending;
2062 event_child->status_pending_p = 0;
2063 event_child->status_pending = 0;
2064 current_thread = event_thread;
2065 return lwpid_of (event_thread);
2066 }
2067
2068 /* But if we don't find a pending event, we'll have to wait.
2069
2070 We only enter this loop if no process has a pending wait status.
2071 Thus any action taken in response to a wait status inside this
2072 loop is responding as soon as we detect the status, not after any
2073 pending events. */
2074
2075 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2076 all signals while here. */
2077 sigfillset (&block_mask);
2078 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2079
2080 while (event_child == NULL)
2081 {
2082 pid_t ret = 0;
2083
2084 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2085 quirks:
2086
2087 - If the thread group leader exits while other threads in the
2088 thread group still exist, waitpid(TGID, ...) hangs. That
2089 waitpid won't return an exit status until the other threads
2090 in the group are reaped.
2091
2092 - When a non-leader thread execs, that thread just vanishes
2093 without reporting an exit (so we'd hang if we waited for it
2094 explicitly in that case). The exec event is reported to
2095 the TGID pid (although we don't currently enable exec
2096 events). */
2097 errno = 0;
2098 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2099
2100 if (debug_threads)
2101 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2102 ret, errno ? strerror (errno) : "ERRNO-OK");
2103
2104 if (ret > 0)
2105 {
2106 if (debug_threads)
2107 {
2108 debug_printf ("LLW: waitpid %ld received %s\n",
2109 (long) ret, status_to_str (*wstatp));
2110 }
2111
2112 event_child = linux_low_filter_event (filter_ptid,
2113 ret, *wstatp);
2114 if (event_child != NULL)
2115 {
2116 /* We got an event to report to the core. */
2117 event_thread = get_lwp_thread (event_child);
2118 break;
2119 }
2120
2121 /* Retry until nothing comes out of waitpid. A single
2122 SIGCHLD can indicate more than one child stopped. */
2123 continue;
2124 }
2125
2126 /* Check for zombie thread group leaders. Those can't be reaped
2127 until all other threads in the thread group are. */
2128 check_zombie_leaders ();
2129
2130 /* If there are no resumed children left in the set of LWPs we
2131 want to wait for, bail. We can't just block in
2132 waitpid/sigsuspend, because lwps might have been left stopped
2133 in trace-stop state, and we'd be stuck forever waiting for
2134 their status to change (which would only happen if we resumed
2135 them). Even if WNOHANG is set, this return code is preferred
2136 over 0 (below), as it is more detailed. */
2137 if ((find_inferior (&all_threads,
2138 not_stopped_callback,
2139 &wait_ptid) == NULL))
2140 {
2141 if (debug_threads)
2142 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2143 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2144 return -1;
2145 }
2146
2147 /* No interesting event to report to the caller. */
2148 if ((options & WNOHANG))
2149 {
2150 if (debug_threads)
2151 debug_printf ("WNOHANG set, no event found\n");
2152
2153 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2154 return 0;
2155 }
2156
2157 /* Block until we get an event reported with SIGCHLD. */
2158 if (debug_threads)
2159 debug_printf ("sigsuspend'ing\n");
2160
2161 sigsuspend (&prev_mask);
2162 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2163 goto retry;
2164 }
2165
2166 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2167
2168 current_thread = event_thread;
2169
2170 /* Check for thread exit. */
2171 if (! WIFSTOPPED (*wstatp))
2172 {
2173 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2174
2175 if (debug_threads)
2176 debug_printf ("LWP %d is the last lwp of process. "
2177 "Process %ld exiting.\n",
2178 pid_of (event_thread), lwpid_of (event_thread));
2179 return lwpid_of (event_thread);
2180 }
2181
2182 return lwpid_of (event_thread);
2183 }
2184
2185 /* Wait for an event from child(ren) PTID. PTIDs can be:
2186 minus_one_ptid, to specify any child; a pid PTID, specifying all
2187 lwps of a thread group; or a PTID representing a single lwp. Store
2188 the stop status through the status pointer WSTAT. OPTIONS is
2189 passed to the waitpid call. Return 0 if no event was found and
2190 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2191 was found. Return the PID of the stopped child otherwise. */
2192
2193 static int
2194 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2195 {
2196 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2197 }
2198
2199 /* Count the LWP's that have had events. */
2200
2201 static int
2202 count_events_callback (struct inferior_list_entry *entry, void *data)
2203 {
2204 struct thread_info *thread = (struct thread_info *) entry;
2205 struct lwp_info *lp = get_thread_lwp (thread);
2206 int *count = data;
2207
2208 gdb_assert (count != NULL);
2209
2210 /* Count only resumed LWPs that have a SIGTRAP event pending that
2211 should be reported to GDB. */
2212 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2213 && thread->last_resume_kind != resume_stop
2214 && lp_status_maybe_breakpoint (lp)
2215 && !breakpoint_inserted_here (lp->stop_pc))
2216 (*count)++;
2217
2218 return 0;
2219 }
2220
2221 /* Select the LWP (if any) that is currently being single-stepped. */
2222
2223 static int
2224 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2225 {
2226 struct thread_info *thread = (struct thread_info *) entry;
2227 struct lwp_info *lp = get_thread_lwp (thread);
2228
2229 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2230 && thread->last_resume_kind == resume_step
2231 && lp->status_pending_p)
2232 return 1;
2233 else
2234 return 0;
2235 }
2236
2237 /* Select the Nth LWP that has had a SIGTRAP event that should be
2238 reported to GDB. */
2239
2240 static int
2241 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2242 {
2243 struct thread_info *thread = (struct thread_info *) entry;
2244 struct lwp_info *lp = get_thread_lwp (thread);
2245 int *selector = data;
2246
2247 gdb_assert (selector != NULL);
2248
2249 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2250 if (thread->last_resume_kind != resume_stop
2251 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2252 && lp_status_maybe_breakpoint (lp)
2253 && !breakpoint_inserted_here (lp->stop_pc))
2254 if ((*selector)-- == 0)
2255 return 1;
2256
2257 return 0;
2258 }
2259
2260 static int
2261 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2262 {
2263 struct thread_info *thread = (struct thread_info *) entry;
2264 struct lwp_info *lp = get_thread_lwp (thread);
2265 struct lwp_info *event_lp = data;
2266
2267 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2268 if (lp == event_lp)
2269 return 0;
2270
2271 /* If a LWP other than the LWP that we're reporting an event for has
2272 hit a GDB breakpoint (as opposed to some random trap signal),
2273 then just arrange for it to hit it again later. We don't keep
2274 the SIGTRAP status and don't forward the SIGTRAP signal to the
2275 LWP. We will handle the current event, eventually we will resume
2276 all LWPs, and this one will get its breakpoint trap again.
2277
2278 If we do not do this, then we run the risk that the user will
2279 delete or disable the breakpoint, but the LWP will have already
2280 tripped on it. */
2281
2282 if (thread->last_resume_kind != resume_stop
2283 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2284 && lp_status_maybe_breakpoint (lp)
2285 && !lp->stepping
2286 && !lp->stopped_by_watchpoint
2287 && cancel_breakpoint (lp))
2288 /* Throw away the SIGTRAP. */
2289 lp->status_pending_p = 0;
2290
2291 return 0;
2292 }
2293
2294 static void
2295 linux_cancel_breakpoints (void)
2296 {
2297 find_inferior (&all_threads, cancel_breakpoints_callback, NULL);
2298 }
2299
2300 /* Select one LWP out of those that have events pending. */
2301
2302 static void
2303 select_event_lwp (struct lwp_info **orig_lp)
2304 {
2305 int num_events = 0;
2306 int random_selector;
2307 struct thread_info *event_thread;
2308
2309 /* Give preference to any LWP that is being single-stepped. */
2310 event_thread
2311 = (struct thread_info *) find_inferior (&all_threads,
2312 select_singlestep_lwp_callback,
2313 NULL);
2314 if (event_thread != NULL)
2315 {
2316 if (debug_threads)
2317 debug_printf ("SEL: Select single-step %s\n",
2318 target_pid_to_str (ptid_of (event_thread)));
2319 }
2320 else
2321 {
2322 /* No single-stepping LWP. Select one at random, out of those
2323 which have had SIGTRAP events. */
2324
2325 /* First see how many SIGTRAP events we have. */
2326 find_inferior (&all_threads, count_events_callback, &num_events);
2327
2328 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2329 random_selector = (int)
2330 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2331
2332 if (debug_threads && num_events > 1)
2333 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2334 num_events, random_selector);
2335
2336 event_thread
2337 = (struct thread_info *) find_inferior (&all_threads,
2338 select_event_lwp_callback,
2339 &random_selector);
2340 }
2341
2342 if (event_thread != NULL)
2343 {
2344 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2345
2346 /* Switch the event LWP. */
2347 *orig_lp = event_lp;
2348 }
2349 }
2350
2351 /* Decrement the suspend count of an LWP. */
2352
2353 static int
2354 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2355 {
2356 struct thread_info *thread = (struct thread_info *) entry;
2357 struct lwp_info *lwp = get_thread_lwp (thread);
2358
2359 /* Ignore EXCEPT. */
2360 if (lwp == except)
2361 return 0;
2362
2363 lwp->suspended--;
2364
2365 gdb_assert (lwp->suspended >= 0);
2366 return 0;
2367 }
2368
2369 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2370 NULL. */
2371
2372 static void
2373 unsuspend_all_lwps (struct lwp_info *except)
2374 {
2375 find_inferior (&all_threads, unsuspend_one_lwp, except);
2376 }
2377
2378 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2379 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2380 void *data);
2381 static int lwp_running (struct inferior_list_entry *entry, void *data);
2382 static ptid_t linux_wait_1 (ptid_t ptid,
2383 struct target_waitstatus *ourstatus,
2384 int target_options);
2385
2386 /* Stabilize threads (move out of jump pads).
2387
2388 If a thread is midway collecting a fast tracepoint, we need to
2389 finish the collection and move it out of the jump pad before
2390 reporting the signal.
2391
2392 This avoids recursion while collecting (when a signal arrives
2393 midway, and the signal handler itself collects), which would trash
2394 the trace buffer. In case the user set a breakpoint in a signal
2395 handler, this avoids the backtrace showing the jump pad, etc..
2396 Most importantly, there are certain things we can't do safely if
2397 threads are stopped in a jump pad (or in its callee's). For
2398 example:
2399
2400 - starting a new trace run. A thread still collecting the
2401 previous run, could trash the trace buffer when resumed. The trace
2402 buffer control structures would have been reset but the thread had
2403 no way to tell. The thread could even midway memcpy'ing to the
2404 buffer, which would mean that when resumed, it would clobber the
2405 trace buffer that had been set for a new run.
2406
2407 - we can't rewrite/reuse the jump pads for new tracepoints
2408 safely. Say you do tstart while a thread is stopped midway while
2409 collecting. When the thread is later resumed, it finishes the
2410 collection, and returns to the jump pad, to execute the original
2411 instruction that was under the tracepoint jump at the time the
2412 older run had been started. If the jump pad had been rewritten
2413 since for something else in the new run, the thread would now
2414 execute the wrong / random instructions. */
2415
2416 static void
2417 linux_stabilize_threads (void)
2418 {
2419 struct thread_info *saved_thread;
2420 struct thread_info *thread_stuck;
2421
2422 thread_stuck
2423 = (struct thread_info *) find_inferior (&all_threads,
2424 stuck_in_jump_pad_callback,
2425 NULL);
2426 if (thread_stuck != NULL)
2427 {
2428 if (debug_threads)
2429 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2430 lwpid_of (thread_stuck));
2431 return;
2432 }
2433
2434 saved_thread = current_thread;
2435
2436 stabilizing_threads = 1;
2437
2438 /* Kick 'em all. */
2439 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2440
2441 /* Loop until all are stopped out of the jump pads. */
2442 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2443 {
2444 struct target_waitstatus ourstatus;
2445 struct lwp_info *lwp;
2446 int wstat;
2447
2448 /* Note that we go through the full wait even loop. While
2449 moving threads out of jump pad, we need to be able to step
2450 over internal breakpoints and such. */
2451 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2452
2453 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2454 {
2455 lwp = get_thread_lwp (current_thread);
2456
2457 /* Lock it. */
2458 lwp->suspended++;
2459
2460 if (ourstatus.value.sig != GDB_SIGNAL_0
2461 || current_thread->last_resume_kind == resume_stop)
2462 {
2463 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2464 enqueue_one_deferred_signal (lwp, &wstat);
2465 }
2466 }
2467 }
2468
2469 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2470
2471 stabilizing_threads = 0;
2472
2473 current_thread = saved_thread;
2474
2475 if (debug_threads)
2476 {
2477 thread_stuck
2478 = (struct thread_info *) find_inferior (&all_threads,
2479 stuck_in_jump_pad_callback,
2480 NULL);
2481 if (thread_stuck != NULL)
2482 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2483 lwpid_of (thread_stuck));
2484 }
2485 }
2486
2487 /* Wait for process, returns status. */
2488
2489 static ptid_t
2490 linux_wait_1 (ptid_t ptid,
2491 struct target_waitstatus *ourstatus, int target_options)
2492 {
2493 int w;
2494 struct lwp_info *event_child;
2495 int options;
2496 int pid;
2497 int step_over_finished;
2498 int bp_explains_trap;
2499 int maybe_internal_trap;
2500 int report_to_gdb;
2501 int trace_event;
2502 int in_step_range;
2503
2504 if (debug_threads)
2505 {
2506 debug_enter ();
2507 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2508 }
2509
2510 /* Translate generic target options into linux options. */
2511 options = __WALL;
2512 if (target_options & TARGET_WNOHANG)
2513 options |= WNOHANG;
2514
2515 retry:
2516 bp_explains_trap = 0;
2517 trace_event = 0;
2518 in_step_range = 0;
2519 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2520
2521 /* If we were only supposed to resume one thread, only wait for
2522 that thread - if it's still alive. If it died, however - which
2523 can happen if we're coming from the thread death case below -
2524 then we need to make sure we restart the other threads. We could
2525 pick a thread at random or restart all; restarting all is less
2526 arbitrary. */
2527 if (!non_stop
2528 && !ptid_equal (cont_thread, null_ptid)
2529 && !ptid_equal (cont_thread, minus_one_ptid))
2530 {
2531 struct thread_info *thread;
2532
2533 thread = (struct thread_info *) find_inferior_id (&all_threads,
2534 cont_thread);
2535
2536 /* No stepping, no signal - unless one is pending already, of course. */
2537 if (thread == NULL)
2538 {
2539 struct thread_resume resume_info;
2540 resume_info.thread = minus_one_ptid;
2541 resume_info.kind = resume_continue;
2542 resume_info.sig = 0;
2543 linux_resume (&resume_info, 1);
2544 }
2545 else
2546 ptid = cont_thread;
2547 }
2548
2549 if (ptid_equal (step_over_bkpt, null_ptid))
2550 pid = linux_wait_for_event (ptid, &w, options);
2551 else
2552 {
2553 if (debug_threads)
2554 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2555 target_pid_to_str (step_over_bkpt));
2556 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2557 }
2558
2559 if (pid == 0)
2560 {
2561 gdb_assert (target_options & TARGET_WNOHANG);
2562
2563 if (debug_threads)
2564 {
2565 debug_printf ("linux_wait_1 ret = null_ptid, "
2566 "TARGET_WAITKIND_IGNORE\n");
2567 debug_exit ();
2568 }
2569
2570 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2571 return null_ptid;
2572 }
2573 else if (pid == -1)
2574 {
2575 if (debug_threads)
2576 {
2577 debug_printf ("linux_wait_1 ret = null_ptid, "
2578 "TARGET_WAITKIND_NO_RESUMED\n");
2579 debug_exit ();
2580 }
2581
2582 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2583 return null_ptid;
2584 }
2585
2586 event_child = get_thread_lwp (current_thread);
2587
2588 /* linux_wait_for_event only returns an exit status for the last
2589 child of a process. Report it. */
2590 if (WIFEXITED (w) || WIFSIGNALED (w))
2591 {
2592 if (WIFEXITED (w))
2593 {
2594 ourstatus->kind = TARGET_WAITKIND_EXITED;
2595 ourstatus->value.integer = WEXITSTATUS (w);
2596
2597 if (debug_threads)
2598 {
2599 debug_printf ("linux_wait_1 ret = %s, exited with "
2600 "retcode %d\n",
2601 target_pid_to_str (ptid_of (current_thread)),
2602 WEXITSTATUS (w));
2603 debug_exit ();
2604 }
2605 }
2606 else
2607 {
2608 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2609 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2610
2611 if (debug_threads)
2612 {
2613 debug_printf ("linux_wait_1 ret = %s, terminated with "
2614 "signal %d\n",
2615 target_pid_to_str (ptid_of (current_thread)),
2616 WTERMSIG (w));
2617 debug_exit ();
2618 }
2619 }
2620
2621 return ptid_of (current_thread);
2622 }
2623
2624 /* If this event was not handled before, and is not a SIGTRAP, we
2625 report it. SIGILL and SIGSEGV are also treated as traps in case
2626 a breakpoint is inserted at the current PC. If this target does
2627 not support internal breakpoints at all, we also report the
2628 SIGTRAP without further processing; it's of no concern to us. */
2629 maybe_internal_trap
2630 = (supports_breakpoints ()
2631 && (WSTOPSIG (w) == SIGTRAP
2632 || ((WSTOPSIG (w) == SIGILL
2633 || WSTOPSIG (w) == SIGSEGV)
2634 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2635
2636 if (maybe_internal_trap)
2637 {
2638 /* Handle anything that requires bookkeeping before deciding to
2639 report the event or continue waiting. */
2640
2641 /* First check if we can explain the SIGTRAP with an internal
2642 breakpoint, or if we should possibly report the event to GDB.
2643 Do this before anything that may remove or insert a
2644 breakpoint. */
2645 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2646
2647 /* We have a SIGTRAP, possibly a step-over dance has just
2648 finished. If so, tweak the state machine accordingly,
2649 reinsert breakpoints and delete any reinsert (software
2650 single-step) breakpoints. */
2651 step_over_finished = finish_step_over (event_child);
2652
2653 /* Now invoke the callbacks of any internal breakpoints there. */
2654 check_breakpoints (event_child->stop_pc);
2655
2656 /* Handle tracepoint data collecting. This may overflow the
2657 trace buffer, and cause a tracing stop, removing
2658 breakpoints. */
2659 trace_event = handle_tracepoints (event_child);
2660
2661 if (bp_explains_trap)
2662 {
2663 /* If we stepped or ran into an internal breakpoint, we've
2664 already handled it. So next time we resume (from this
2665 PC), we should step over it. */
2666 if (debug_threads)
2667 debug_printf ("Hit a gdbserver breakpoint.\n");
2668
2669 if (breakpoint_here (event_child->stop_pc))
2670 event_child->need_step_over = 1;
2671 }
2672 }
2673 else
2674 {
2675 /* We have some other signal, possibly a step-over dance was in
2676 progress, and it should be cancelled too. */
2677 step_over_finished = finish_step_over (event_child);
2678 }
2679
2680 /* We have all the data we need. Either report the event to GDB, or
2681 resume threads and keep waiting for more. */
2682
2683 /* If we're collecting a fast tracepoint, finish the collection and
2684 move out of the jump pad before delivering a signal. See
2685 linux_stabilize_threads. */
2686
2687 if (WIFSTOPPED (w)
2688 && WSTOPSIG (w) != SIGTRAP
2689 && supports_fast_tracepoints ()
2690 && agent_loaded_p ())
2691 {
2692 if (debug_threads)
2693 debug_printf ("Got signal %d for LWP %ld. Check if we need "
2694 "to defer or adjust it.\n",
2695 WSTOPSIG (w), lwpid_of (current_thread));
2696
2697 /* Allow debugging the jump pad itself. */
2698 if (current_thread->last_resume_kind != resume_step
2699 && maybe_move_out_of_jump_pad (event_child, &w))
2700 {
2701 enqueue_one_deferred_signal (event_child, &w);
2702
2703 if (debug_threads)
2704 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
2705 WSTOPSIG (w), lwpid_of (current_thread));
2706
2707 linux_resume_one_lwp (event_child, 0, 0, NULL);
2708 goto retry;
2709 }
2710 }
2711
2712 if (event_child->collecting_fast_tracepoint)
2713 {
2714 if (debug_threads)
2715 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
2716 "Check if we're already there.\n",
2717 lwpid_of (current_thread),
2718 event_child->collecting_fast_tracepoint);
2719
2720 trace_event = 1;
2721
2722 event_child->collecting_fast_tracepoint
2723 = linux_fast_tracepoint_collecting (event_child, NULL);
2724
2725 if (event_child->collecting_fast_tracepoint != 1)
2726 {
2727 /* No longer need this breakpoint. */
2728 if (event_child->exit_jump_pad_bkpt != NULL)
2729 {
2730 if (debug_threads)
2731 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
2732 "stopping all threads momentarily.\n");
2733
2734 /* Other running threads could hit this breakpoint.
2735 We don't handle moribund locations like GDB does,
2736 instead we always pause all threads when removing
2737 breakpoints, so that any step-over or
2738 decr_pc_after_break adjustment is always taken
2739 care of while the breakpoint is still
2740 inserted. */
2741 stop_all_lwps (1, event_child);
2742 cancel_breakpoints ();
2743
2744 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2745 event_child->exit_jump_pad_bkpt = NULL;
2746
2747 unstop_all_lwps (1, event_child);
2748
2749 gdb_assert (event_child->suspended >= 0);
2750 }
2751 }
2752
2753 if (event_child->collecting_fast_tracepoint == 0)
2754 {
2755 if (debug_threads)
2756 debug_printf ("fast tracepoint finished "
2757 "collecting successfully.\n");
2758
2759 /* We may have a deferred signal to report. */
2760 if (dequeue_one_deferred_signal (event_child, &w))
2761 {
2762 if (debug_threads)
2763 debug_printf ("dequeued one signal.\n");
2764 }
2765 else
2766 {
2767 if (debug_threads)
2768 debug_printf ("no deferred signals.\n");
2769
2770 if (stabilizing_threads)
2771 {
2772 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2773 ourstatus->value.sig = GDB_SIGNAL_0;
2774
2775 if (debug_threads)
2776 {
2777 debug_printf ("linux_wait_1 ret = %s, stopped "
2778 "while stabilizing threads\n",
2779 target_pid_to_str (ptid_of (current_thread)));
2780 debug_exit ();
2781 }
2782
2783 return ptid_of (current_thread);
2784 }
2785 }
2786 }
2787 }
2788
2789 /* Check whether GDB would be interested in this event. */
2790
2791 /* If GDB is not interested in this signal, don't stop other
2792 threads, and don't report it to GDB. Just resume the inferior
2793 right away. We do this for threading-related signals as well as
2794 any that GDB specifically requested we ignore. But never ignore
2795 SIGSTOP if we sent it ourselves, and do not ignore signals when
2796 stepping - they may require special handling to skip the signal
2797 handler. */
2798 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2799 thread library? */
2800 if (WIFSTOPPED (w)
2801 && current_thread->last_resume_kind != resume_step
2802 && (
2803 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2804 (current_process ()->private->thread_db != NULL
2805 && (WSTOPSIG (w) == __SIGRTMIN
2806 || WSTOPSIG (w) == __SIGRTMIN + 1))
2807 ||
2808 #endif
2809 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2810 && !(WSTOPSIG (w) == SIGSTOP
2811 && current_thread->last_resume_kind == resume_stop))))
2812 {
2813 siginfo_t info, *info_p;
2814
2815 if (debug_threads)
2816 debug_printf ("Ignored signal %d for LWP %ld.\n",
2817 WSTOPSIG (w), lwpid_of (current_thread));
2818
2819 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2820 (PTRACE_TYPE_ARG3) 0, &info) == 0)
2821 info_p = &info;
2822 else
2823 info_p = NULL;
2824 linux_resume_one_lwp (event_child, event_child->stepping,
2825 WSTOPSIG (w), info_p);
2826 goto retry;
2827 }
2828
2829 /* Note that all addresses are always "out of the step range" when
2830 there's no range to begin with. */
2831 in_step_range = lwp_in_step_range (event_child);
2832
2833 /* If GDB wanted this thread to single step, and the thread is out
2834 of the step range, we always want to report the SIGTRAP, and let
2835 GDB handle it. Watchpoints should always be reported. So should
2836 signals we can't explain. A SIGTRAP we can't explain could be a
2837 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2838 do, we're be able to handle GDB breakpoints on top of internal
2839 breakpoints, by handling the internal breakpoint and still
2840 reporting the event to GDB. If we don't, we're out of luck, GDB
2841 won't see the breakpoint hit. */
2842 report_to_gdb = (!maybe_internal_trap
2843 || (current_thread->last_resume_kind == resume_step
2844 && !in_step_range)
2845 || event_child->stopped_by_watchpoint
2846 || (!step_over_finished && !in_step_range
2847 && !bp_explains_trap && !trace_event)
2848 || (gdb_breakpoint_here (event_child->stop_pc)
2849 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2850 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2851
2852 run_breakpoint_commands (event_child->stop_pc);
2853
2854 /* We found no reason GDB would want us to stop. We either hit one
2855 of our own breakpoints, or finished an internal step GDB
2856 shouldn't know about. */
2857 if (!report_to_gdb)
2858 {
2859 if (debug_threads)
2860 {
2861 if (bp_explains_trap)
2862 debug_printf ("Hit a gdbserver breakpoint.\n");
2863 if (step_over_finished)
2864 debug_printf ("Step-over finished.\n");
2865 if (trace_event)
2866 debug_printf ("Tracepoint event.\n");
2867 if (lwp_in_step_range (event_child))
2868 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
2869 paddress (event_child->stop_pc),
2870 paddress (event_child->step_range_start),
2871 paddress (event_child->step_range_end));
2872 }
2873
2874 /* We're not reporting this breakpoint to GDB, so apply the
2875 decr_pc_after_break adjustment to the inferior's regcache
2876 ourselves. */
2877
2878 if (the_low_target.set_pc != NULL)
2879 {
2880 struct regcache *regcache
2881 = get_thread_regcache (current_thread, 1);
2882 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2883 }
2884
2885 /* We may have finished stepping over a breakpoint. If so,
2886 we've stopped and suspended all LWPs momentarily except the
2887 stepping one. This is where we resume them all again. We're
2888 going to keep waiting, so use proceed, which handles stepping
2889 over the next breakpoint. */
2890 if (debug_threads)
2891 debug_printf ("proceeding all threads.\n");
2892
2893 if (step_over_finished)
2894 unsuspend_all_lwps (event_child);
2895
2896 proceed_all_lwps ();
2897 goto retry;
2898 }
2899
2900 if (debug_threads)
2901 {
2902 if (current_thread->last_resume_kind == resume_step)
2903 {
2904 if (event_child->step_range_start == event_child->step_range_end)
2905 debug_printf ("GDB wanted to single-step, reporting event.\n");
2906 else if (!lwp_in_step_range (event_child))
2907 debug_printf ("Out of step range, reporting event.\n");
2908 }
2909 if (event_child->stopped_by_watchpoint)
2910 debug_printf ("Stopped by watchpoint.\n");
2911 if (gdb_breakpoint_here (event_child->stop_pc))
2912 debug_printf ("Stopped by GDB breakpoint.\n");
2913 if (debug_threads)
2914 debug_printf ("Hit a non-gdbserver trap event.\n");
2915 }
2916
2917 /* Alright, we're going to report a stop. */
2918
2919 if (!non_stop && !stabilizing_threads)
2920 {
2921 /* In all-stop, stop all threads. */
2922 stop_all_lwps (0, NULL);
2923
2924 /* If we're not waiting for a specific LWP, choose an event LWP
2925 from among those that have had events. Giving equal priority
2926 to all LWPs that have had events helps prevent
2927 starvation. */
2928 if (ptid_equal (ptid, minus_one_ptid))
2929 {
2930 event_child->status_pending_p = 1;
2931 event_child->status_pending = w;
2932
2933 select_event_lwp (&event_child);
2934
2935 /* current_thread and event_child must stay in sync. */
2936 current_thread = get_lwp_thread (event_child);
2937
2938 event_child->status_pending_p = 0;
2939 w = event_child->status_pending;
2940 }
2941
2942 /* Now that we've selected our final event LWP, cancel any
2943 breakpoints in other LWPs that have hit a GDB breakpoint.
2944 See the comment in cancel_breakpoints_callback to find out
2945 why. */
2946 find_inferior (&all_threads, cancel_breakpoints_callback, event_child);
2947
2948 /* If we were going a step-over, all other threads but the stepping one
2949 had been paused in start_step_over, with their suspend counts
2950 incremented. We don't want to do a full unstop/unpause, because we're
2951 in all-stop mode (so we want threads stopped), but we still need to
2952 unsuspend the other threads, to decrement their `suspended' count
2953 back. */
2954 if (step_over_finished)
2955 unsuspend_all_lwps (event_child);
2956
2957 /* Stabilize threads (move out of jump pads). */
2958 stabilize_threads ();
2959 }
2960 else
2961 {
2962 /* If we just finished a step-over, then all threads had been
2963 momentarily paused. In all-stop, that's fine, we want
2964 threads stopped by now anyway. In non-stop, we need to
2965 re-resume threads that GDB wanted to be running. */
2966 if (step_over_finished)
2967 unstop_all_lwps (1, event_child);
2968 }
2969
2970 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2971
2972 if (current_thread->last_resume_kind == resume_stop
2973 && WSTOPSIG (w) == SIGSTOP)
2974 {
2975 /* A thread that has been requested to stop by GDB with vCont;t,
2976 and it stopped cleanly, so report as SIG0. The use of
2977 SIGSTOP is an implementation detail. */
2978 ourstatus->value.sig = GDB_SIGNAL_0;
2979 }
2980 else if (current_thread->last_resume_kind == resume_stop
2981 && WSTOPSIG (w) != SIGSTOP)
2982 {
2983 /* A thread that has been requested to stop by GDB with vCont;t,
2984 but, it stopped for other reasons. */
2985 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2986 }
2987 else
2988 {
2989 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2990 }
2991
2992 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2993
2994 if (debug_threads)
2995 {
2996 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
2997 target_pid_to_str (ptid_of (current_thread)),
2998 ourstatus->kind, ourstatus->value.sig);
2999 debug_exit ();
3000 }
3001
3002 return ptid_of (current_thread);
3003 }
3004
3005 /* Get rid of any pending event in the pipe. */
3006 static void
3007 async_file_flush (void)
3008 {
3009 int ret;
3010 char buf;
3011
3012 do
3013 ret = read (linux_event_pipe[0], &buf, 1);
3014 while (ret >= 0 || (ret == -1 && errno == EINTR));
3015 }
3016
3017 /* Put something in the pipe, so the event loop wakes up. */
3018 static void
3019 async_file_mark (void)
3020 {
3021 int ret;
3022
3023 async_file_flush ();
3024
3025 do
3026 ret = write (linux_event_pipe[1], "+", 1);
3027 while (ret == 0 || (ret == -1 && errno == EINTR));
3028
3029 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3030 be awakened anyway. */
3031 }
3032
3033 static ptid_t
3034 linux_wait (ptid_t ptid,
3035 struct target_waitstatus *ourstatus, int target_options)
3036 {
3037 ptid_t event_ptid;
3038
3039 /* Flush the async file first. */
3040 if (target_is_async_p ())
3041 async_file_flush ();
3042
3043 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3044
3045 /* If at least one stop was reported, there may be more. A single
3046 SIGCHLD can signal more than one child stop. */
3047 if (target_is_async_p ()
3048 && (target_options & TARGET_WNOHANG) != 0
3049 && !ptid_equal (event_ptid, null_ptid))
3050 async_file_mark ();
3051
3052 return event_ptid;
3053 }
3054
3055 /* Send a signal to an LWP. */
3056
3057 static int
3058 kill_lwp (unsigned long lwpid, int signo)
3059 {
3060 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3061 fails, then we are not using nptl threads and we should be using kill. */
3062
3063 #ifdef __NR_tkill
3064 {
3065 static int tkill_failed;
3066
3067 if (!tkill_failed)
3068 {
3069 int ret;
3070
3071 errno = 0;
3072 ret = syscall (__NR_tkill, lwpid, signo);
3073 if (errno != ENOSYS)
3074 return ret;
3075 tkill_failed = 1;
3076 }
3077 }
3078 #endif
3079
3080 return kill (lwpid, signo);
3081 }
3082
3083 void
3084 linux_stop_lwp (struct lwp_info *lwp)
3085 {
3086 send_sigstop (lwp);
3087 }
3088
3089 static void
3090 send_sigstop (struct lwp_info *lwp)
3091 {
3092 int pid;
3093
3094 pid = lwpid_of (get_lwp_thread (lwp));
3095
3096 /* If we already have a pending stop signal for this process, don't
3097 send another. */
3098 if (lwp->stop_expected)
3099 {
3100 if (debug_threads)
3101 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3102
3103 return;
3104 }
3105
3106 if (debug_threads)
3107 debug_printf ("Sending sigstop to lwp %d\n", pid);
3108
3109 lwp->stop_expected = 1;
3110 kill_lwp (pid, SIGSTOP);
3111 }
3112
3113 static int
3114 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3115 {
3116 struct thread_info *thread = (struct thread_info *) entry;
3117 struct lwp_info *lwp = get_thread_lwp (thread);
3118
3119 /* Ignore EXCEPT. */
3120 if (lwp == except)
3121 return 0;
3122
3123 if (lwp->stopped)
3124 return 0;
3125
3126 send_sigstop (lwp);
3127 return 0;
3128 }
3129
3130 /* Increment the suspend count of an LWP, and stop it, if not stopped
3131 yet. */
3132 static int
3133 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3134 void *except)
3135 {
3136 struct thread_info *thread = (struct thread_info *) entry;
3137 struct lwp_info *lwp = get_thread_lwp (thread);
3138
3139 /* Ignore EXCEPT. */
3140 if (lwp == except)
3141 return 0;
3142
3143 lwp->suspended++;
3144
3145 return send_sigstop_callback (entry, except);
3146 }
3147
3148 static void
3149 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3150 {
3151 /* It's dead, really. */
3152 lwp->dead = 1;
3153
3154 /* Store the exit status for later. */
3155 lwp->status_pending_p = 1;
3156 lwp->status_pending = wstat;
3157
3158 /* Prevent trying to stop it. */
3159 lwp->stopped = 1;
3160
3161 /* No further stops are expected from a dead lwp. */
3162 lwp->stop_expected = 0;
3163 }
3164
3165 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3166
3167 static void
3168 wait_for_sigstop (void)
3169 {
3170 struct thread_info *saved_thread;
3171 ptid_t saved_tid;
3172 int wstat;
3173 int ret;
3174
3175 saved_thread = current_thread;
3176 if (saved_thread != NULL)
3177 saved_tid = saved_thread->entry.id;
3178 else
3179 saved_tid = null_ptid; /* avoid bogus unused warning */
3180
3181 if (debug_threads)
3182 debug_printf ("wait_for_sigstop: pulling events\n");
3183
3184 /* Passing NULL_PTID as filter indicates we want all events to be
3185 left pending. Eventually this returns when there are no
3186 unwaited-for children left. */
3187 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3188 &wstat, __WALL);
3189 gdb_assert (ret == -1);
3190
3191 if (saved_thread == NULL || linux_thread_alive (saved_tid))
3192 current_thread = saved_thread;
3193 else
3194 {
3195 if (debug_threads)
3196 debug_printf ("Previously current thread died.\n");
3197
3198 if (non_stop)
3199 {
3200 /* We can't change the current inferior behind GDB's back,
3201 otherwise, a subsequent command may apply to the wrong
3202 process. */
3203 current_thread = NULL;
3204 }
3205 else
3206 {
3207 /* Set a valid thread as current. */
3208 set_desired_thread (0);
3209 }
3210 }
3211 }
3212
3213 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3214 move it out, because we need to report the stop event to GDB. For
3215 example, if the user puts a breakpoint in the jump pad, it's
3216 because she wants to debug it. */
3217
3218 static int
3219 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3220 {
3221 struct thread_info *thread = (struct thread_info *) entry;
3222 struct lwp_info *lwp = get_thread_lwp (thread);
3223
3224 gdb_assert (lwp->suspended == 0);
3225 gdb_assert (lwp->stopped);
3226
3227 /* Allow debugging the jump pad, gdb_collect, etc.. */
3228 return (supports_fast_tracepoints ()
3229 && agent_loaded_p ()
3230 && (gdb_breakpoint_here (lwp->stop_pc)
3231 || lwp->stopped_by_watchpoint
3232 || thread->last_resume_kind == resume_step)
3233 && linux_fast_tracepoint_collecting (lwp, NULL));
3234 }
3235
3236 static void
3237 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3238 {
3239 struct thread_info *thread = (struct thread_info *) entry;
3240 struct lwp_info *lwp = get_thread_lwp (thread);
3241 int *wstat;
3242
3243 gdb_assert (lwp->suspended == 0);
3244 gdb_assert (lwp->stopped);
3245
3246 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3247
3248 /* Allow debugging the jump pad, gdb_collect, etc. */
3249 if (!gdb_breakpoint_here (lwp->stop_pc)
3250 && !lwp->stopped_by_watchpoint
3251 && thread->last_resume_kind != resume_step
3252 && maybe_move_out_of_jump_pad (lwp, wstat))
3253 {
3254 if (debug_threads)
3255 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3256 lwpid_of (thread));
3257
3258 if (wstat)
3259 {
3260 lwp->status_pending_p = 0;
3261 enqueue_one_deferred_signal (lwp, wstat);
3262
3263 if (debug_threads)
3264 debug_printf ("Signal %d for LWP %ld deferred "
3265 "(in jump pad)\n",
3266 WSTOPSIG (*wstat), lwpid_of (thread));
3267 }
3268
3269 linux_resume_one_lwp (lwp, 0, 0, NULL);
3270 }
3271 else
3272 lwp->suspended++;
3273 }
3274
3275 static int
3276 lwp_running (struct inferior_list_entry *entry, void *data)
3277 {
3278 struct thread_info *thread = (struct thread_info *) entry;
3279 struct lwp_info *lwp = get_thread_lwp (thread);
3280
3281 if (lwp->dead)
3282 return 0;
3283 if (lwp->stopped)
3284 return 0;
3285 return 1;
3286 }
3287
3288 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3289 If SUSPEND, then also increase the suspend count of every LWP,
3290 except EXCEPT. */
3291
3292 static void
3293 stop_all_lwps (int suspend, struct lwp_info *except)
3294 {
3295 /* Should not be called recursively. */
3296 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3297
3298 if (debug_threads)
3299 {
3300 debug_enter ();
3301 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3302 suspend ? "stop-and-suspend" : "stop",
3303 except != NULL
3304 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3305 : "none");
3306 }
3307
3308 stopping_threads = (suspend
3309 ? STOPPING_AND_SUSPENDING_THREADS
3310 : STOPPING_THREADS);
3311
3312 if (suspend)
3313 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3314 else
3315 find_inferior (&all_threads, send_sigstop_callback, except);
3316 wait_for_sigstop ();
3317 stopping_threads = NOT_STOPPING_THREADS;
3318
3319 if (debug_threads)
3320 {
3321 debug_printf ("stop_all_lwps done, setting stopping_threads "
3322 "back to !stopping\n");
3323 debug_exit ();
3324 }
3325 }
3326
3327 /* Resume execution of the inferior process.
3328 If STEP is nonzero, single-step it.
3329 If SIGNAL is nonzero, give it that signal. */
3330
3331 static void
3332 linux_resume_one_lwp (struct lwp_info *lwp,
3333 int step, int signal, siginfo_t *info)
3334 {
3335 struct thread_info *thread = get_lwp_thread (lwp);
3336 struct thread_info *saved_thread;
3337 int fast_tp_collecting;
3338
3339 if (lwp->stopped == 0)
3340 return;
3341
3342 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3343
3344 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3345
3346 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3347 user used the "jump" command, or "set $pc = foo"). */
3348 if (lwp->stop_pc != get_pc (lwp))
3349 {
3350 /* Collecting 'while-stepping' actions doesn't make sense
3351 anymore. */
3352 release_while_stepping_state_list (thread);
3353 }
3354
3355 /* If we have pending signals or status, and a new signal, enqueue the
3356 signal. Also enqueue the signal if we are waiting to reinsert a
3357 breakpoint; it will be picked up again below. */
3358 if (signal != 0
3359 && (lwp->status_pending_p
3360 || lwp->pending_signals != NULL
3361 || lwp->bp_reinsert != 0
3362 || fast_tp_collecting))
3363 {
3364 struct pending_signals *p_sig;
3365 p_sig = xmalloc (sizeof (*p_sig));
3366 p_sig->prev = lwp->pending_signals;
3367 p_sig->signal = signal;
3368 if (info == NULL)
3369 memset (&p_sig->info, 0, sizeof (siginfo_t));
3370 else
3371 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3372 lwp->pending_signals = p_sig;
3373 }
3374
3375 if (lwp->status_pending_p)
3376 {
3377 if (debug_threads)
3378 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3379 " has pending status\n",
3380 lwpid_of (thread), step ? "step" : "continue", signal,
3381 lwp->stop_expected ? "expected" : "not expected");
3382 return;
3383 }
3384
3385 saved_thread = current_thread;
3386 current_thread = thread;
3387
3388 if (debug_threads)
3389 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3390 lwpid_of (thread), step ? "step" : "continue", signal,
3391 lwp->stop_expected ? "expected" : "not expected");
3392
3393 /* This bit needs some thinking about. If we get a signal that
3394 we must report while a single-step reinsert is still pending,
3395 we often end up resuming the thread. It might be better to
3396 (ew) allow a stack of pending events; then we could be sure that
3397 the reinsert happened right away and not lose any signals.
3398
3399 Making this stack would also shrink the window in which breakpoints are
3400 uninserted (see comment in linux_wait_for_lwp) but not enough for
3401 complete correctness, so it won't solve that problem. It may be
3402 worthwhile just to solve this one, however. */
3403 if (lwp->bp_reinsert != 0)
3404 {
3405 if (debug_threads)
3406 debug_printf (" pending reinsert at 0x%s\n",
3407 paddress (lwp->bp_reinsert));
3408
3409 if (can_hardware_single_step ())
3410 {
3411 if (fast_tp_collecting == 0)
3412 {
3413 if (step == 0)
3414 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3415 if (lwp->suspended)
3416 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3417 lwp->suspended);
3418 }
3419
3420 step = 1;
3421 }
3422
3423 /* Postpone any pending signal. It was enqueued above. */
3424 signal = 0;
3425 }
3426
3427 if (fast_tp_collecting == 1)
3428 {
3429 if (debug_threads)
3430 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3431 " (exit-jump-pad-bkpt)\n",
3432 lwpid_of (thread));
3433
3434 /* Postpone any pending signal. It was enqueued above. */
3435 signal = 0;
3436 }
3437 else if (fast_tp_collecting == 2)
3438 {
3439 if (debug_threads)
3440 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3441 " single-stepping\n",
3442 lwpid_of (thread));
3443
3444 if (can_hardware_single_step ())
3445 step = 1;
3446 else
3447 {
3448 internal_error (__FILE__, __LINE__,
3449 "moving out of jump pad single-stepping"
3450 " not implemented on this target");
3451 }
3452
3453 /* Postpone any pending signal. It was enqueued above. */
3454 signal = 0;
3455 }
3456
3457 /* If we have while-stepping actions in this thread set it stepping.
3458 If we have a signal to deliver, it may or may not be set to
3459 SIG_IGN, we don't know. Assume so, and allow collecting
3460 while-stepping into a signal handler. A possible smart thing to
3461 do would be to set an internal breakpoint at the signal return
3462 address, continue, and carry on catching this while-stepping
3463 action only when that breakpoint is hit. A future
3464 enhancement. */
3465 if (thread->while_stepping != NULL
3466 && can_hardware_single_step ())
3467 {
3468 if (debug_threads)
3469 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
3470 lwpid_of (thread));
3471 step = 1;
3472 }
3473
3474 if (debug_threads && the_low_target.get_pc != NULL)
3475 {
3476 struct regcache *regcache = get_thread_regcache (current_thread, 1);
3477 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3478 debug_printf (" resuming from pc 0x%lx\n", (long) pc);
3479 }
3480
3481 /* If we have pending signals, consume one unless we are trying to
3482 reinsert a breakpoint or we're trying to finish a fast tracepoint
3483 collect. */
3484 if (lwp->pending_signals != NULL
3485 && lwp->bp_reinsert == 0
3486 && fast_tp_collecting == 0)
3487 {
3488 struct pending_signals **p_sig;
3489
3490 p_sig = &lwp->pending_signals;
3491 while ((*p_sig)->prev != NULL)
3492 p_sig = &(*p_sig)->prev;
3493
3494 signal = (*p_sig)->signal;
3495 if ((*p_sig)->info.si_signo != 0)
3496 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3497 &(*p_sig)->info);
3498
3499 free (*p_sig);
3500 *p_sig = NULL;
3501 }
3502
3503 if (the_low_target.prepare_to_resume != NULL)
3504 the_low_target.prepare_to_resume (lwp);
3505
3506 regcache_invalidate_thread (thread);
3507 errno = 0;
3508 lwp->stopped = 0;
3509 lwp->stopped_by_watchpoint = 0;
3510 lwp->stepping = step;
3511 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
3512 (PTRACE_TYPE_ARG3) 0,
3513 /* Coerce to a uintptr_t first to avoid potential gcc warning
3514 of coercing an 8 byte integer to a 4 byte pointer. */
3515 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3516
3517 current_thread = saved_thread;
3518 if (errno)
3519 {
3520 /* ESRCH from ptrace either means that the thread was already
3521 running (an error) or that it is gone (a race condition). If
3522 it's gone, we will get a notification the next time we wait,
3523 so we can ignore the error. We could differentiate these
3524 two, but it's tricky without waiting; the thread still exists
3525 as a zombie, so sending it signal 0 would succeed. So just
3526 ignore ESRCH. */
3527 if (errno == ESRCH)
3528 return;
3529
3530 perror_with_name ("ptrace");
3531 }
3532 }
3533
3534 struct thread_resume_array
3535 {
3536 struct thread_resume *resume;
3537 size_t n;
3538 };
3539
3540 /* This function is called once per thread via find_inferior.
3541 ARG is a pointer to a thread_resume_array struct.
3542 We look up the thread specified by ENTRY in ARG, and mark the thread
3543 with a pointer to the appropriate resume request.
3544
3545 This algorithm is O(threads * resume elements), but resume elements
3546 is small (and will remain small at least until GDB supports thread
3547 suspension). */
3548
3549 static int
3550 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3551 {
3552 struct thread_info *thread = (struct thread_info *) entry;
3553 struct lwp_info *lwp = get_thread_lwp (thread);
3554 int ndx;
3555 struct thread_resume_array *r;
3556
3557 r = arg;
3558
3559 for (ndx = 0; ndx < r->n; ndx++)
3560 {
3561 ptid_t ptid = r->resume[ndx].thread;
3562 if (ptid_equal (ptid, minus_one_ptid)
3563 || ptid_equal (ptid, entry->id)
3564 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3565 of PID'. */
3566 || (ptid_get_pid (ptid) == pid_of (thread)
3567 && (ptid_is_pid (ptid)
3568 || ptid_get_lwp (ptid) == -1)))
3569 {
3570 if (r->resume[ndx].kind == resume_stop
3571 && thread->last_resume_kind == resume_stop)
3572 {
3573 if (debug_threads)
3574 debug_printf ("already %s LWP %ld at GDB's request\n",
3575 (thread->last_status.kind
3576 == TARGET_WAITKIND_STOPPED)
3577 ? "stopped"
3578 : "stopping",
3579 lwpid_of (thread));
3580
3581 continue;
3582 }
3583
3584 lwp->resume = &r->resume[ndx];
3585 thread->last_resume_kind = lwp->resume->kind;
3586
3587 lwp->step_range_start = lwp->resume->step_range_start;
3588 lwp->step_range_end = lwp->resume->step_range_end;
3589
3590 /* If we had a deferred signal to report, dequeue one now.
3591 This can happen if LWP gets more than one signal while
3592 trying to get out of a jump pad. */
3593 if (lwp->stopped
3594 && !lwp->status_pending_p
3595 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3596 {
3597 lwp->status_pending_p = 1;
3598
3599 if (debug_threads)
3600 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
3601 "leaving status pending.\n",
3602 WSTOPSIG (lwp->status_pending),
3603 lwpid_of (thread));
3604 }
3605
3606 return 0;
3607 }
3608 }
3609
3610 /* No resume action for this thread. */
3611 lwp->resume = NULL;
3612
3613 return 0;
3614 }
3615
3616 /* find_inferior callback for linux_resume.
3617 Set *FLAG_P if this lwp has an interesting status pending. */
3618
3619 static int
3620 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3621 {
3622 struct thread_info *thread = (struct thread_info *) entry;
3623 struct lwp_info *lwp = get_thread_lwp (thread);
3624
3625 /* LWPs which will not be resumed are not interesting, because
3626 we might not wait for them next time through linux_wait. */
3627 if (lwp->resume == NULL)
3628 return 0;
3629
3630 if (lwp->status_pending_p)
3631 * (int *) flag_p = 1;
3632
3633 return 0;
3634 }
3635
3636 /* Return 1 if this lwp that GDB wants running is stopped at an
3637 internal breakpoint that we need to step over. It assumes that any
3638 required STOP_PC adjustment has already been propagated to the
3639 inferior's regcache. */
3640
3641 static int
3642 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3643 {
3644 struct thread_info *thread = (struct thread_info *) entry;
3645 struct lwp_info *lwp = get_thread_lwp (thread);
3646 struct thread_info *saved_thread;
3647 CORE_ADDR pc;
3648
3649 /* LWPs which will not be resumed are not interesting, because we
3650 might not wait for them next time through linux_wait. */
3651
3652 if (!lwp->stopped)
3653 {
3654 if (debug_threads)
3655 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
3656 lwpid_of (thread));
3657 return 0;
3658 }
3659
3660 if (thread->last_resume_kind == resume_stop)
3661 {
3662 if (debug_threads)
3663 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
3664 " stopped\n",
3665 lwpid_of (thread));
3666 return 0;
3667 }
3668
3669 gdb_assert (lwp->suspended >= 0);
3670
3671 if (lwp->suspended)
3672 {
3673 if (debug_threads)
3674 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
3675 lwpid_of (thread));
3676 return 0;
3677 }
3678
3679 if (!lwp->need_step_over)
3680 {
3681 if (debug_threads)
3682 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
3683 }
3684
3685 if (lwp->status_pending_p)
3686 {
3687 if (debug_threads)
3688 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
3689 " status.\n",
3690 lwpid_of (thread));
3691 return 0;
3692 }
3693
3694 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3695 or we have. */
3696 pc = get_pc (lwp);
3697
3698 /* If the PC has changed since we stopped, then don't do anything,
3699 and let the breakpoint/tracepoint be hit. This happens if, for
3700 instance, GDB handled the decr_pc_after_break subtraction itself,
3701 GDB is OOL stepping this thread, or the user has issued a "jump"
3702 command, or poked thread's registers herself. */
3703 if (pc != lwp->stop_pc)
3704 {
3705 if (debug_threads)
3706 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
3707 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3708 lwpid_of (thread),
3709 paddress (lwp->stop_pc), paddress (pc));
3710
3711 lwp->need_step_over = 0;
3712 return 0;
3713 }
3714
3715 saved_thread = current_thread;
3716 current_thread = thread;
3717
3718 /* We can only step over breakpoints we know about. */
3719 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3720 {
3721 /* Don't step over a breakpoint that GDB expects to hit
3722 though. If the condition is being evaluated on the target's side
3723 and it evaluate to false, step over this breakpoint as well. */
3724 if (gdb_breakpoint_here (pc)
3725 && gdb_condition_true_at_breakpoint (pc)
3726 && gdb_no_commands_at_breakpoint (pc))
3727 {
3728 if (debug_threads)
3729 debug_printf ("Need step over [LWP %ld]? yes, but found"
3730 " GDB breakpoint at 0x%s; skipping step over\n",
3731 lwpid_of (thread), paddress (pc));
3732
3733 current_thread = saved_thread;
3734 return 0;
3735 }
3736 else
3737 {
3738 if (debug_threads)
3739 debug_printf ("Need step over [LWP %ld]? yes, "
3740 "found breakpoint at 0x%s\n",
3741 lwpid_of (thread), paddress (pc));
3742
3743 /* We've found an lwp that needs stepping over --- return 1 so
3744 that find_inferior stops looking. */
3745 current_thread = saved_thread;
3746
3747 /* If the step over is cancelled, this is set again. */
3748 lwp->need_step_over = 0;
3749 return 1;
3750 }
3751 }
3752
3753 current_thread = saved_thread;
3754
3755 if (debug_threads)
3756 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
3757 " at 0x%s\n",
3758 lwpid_of (thread), paddress (pc));
3759
3760 return 0;
3761 }
3762
3763 /* Start a step-over operation on LWP. When LWP stopped at a
3764 breakpoint, to make progress, we need to remove the breakpoint out
3765 of the way. If we let other threads run while we do that, they may
3766 pass by the breakpoint location and miss hitting it. To avoid
3767 that, a step-over momentarily stops all threads while LWP is
3768 single-stepped while the breakpoint is temporarily uninserted from
3769 the inferior. When the single-step finishes, we reinsert the
3770 breakpoint, and let all threads that are supposed to be running,
3771 run again.
3772
3773 On targets that don't support hardware single-step, we don't
3774 currently support full software single-stepping. Instead, we only
3775 support stepping over the thread event breakpoint, by asking the
3776 low target where to place a reinsert breakpoint. Since this
3777 routine assumes the breakpoint being stepped over is a thread event
3778 breakpoint, it usually assumes the return address of the current
3779 function is a good enough place to set the reinsert breakpoint. */
3780
3781 static int
3782 start_step_over (struct lwp_info *lwp)
3783 {
3784 struct thread_info *thread = get_lwp_thread (lwp);
3785 struct thread_info *saved_thread;
3786 CORE_ADDR pc;
3787 int step;
3788
3789 if (debug_threads)
3790 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
3791 lwpid_of (thread));
3792
3793 stop_all_lwps (1, lwp);
3794 gdb_assert (lwp->suspended == 0);
3795
3796 if (debug_threads)
3797 debug_printf ("Done stopping all threads for step-over.\n");
3798
3799 /* Note, we should always reach here with an already adjusted PC,
3800 either by GDB (if we're resuming due to GDB's request), or by our
3801 caller, if we just finished handling an internal breakpoint GDB
3802 shouldn't care about. */
3803 pc = get_pc (lwp);
3804
3805 saved_thread = current_thread;
3806 current_thread = thread;
3807
3808 lwp->bp_reinsert = pc;
3809 uninsert_breakpoints_at (pc);
3810 uninsert_fast_tracepoint_jumps_at (pc);
3811
3812 if (can_hardware_single_step ())
3813 {
3814 step = 1;
3815 }
3816 else
3817 {
3818 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3819 set_reinsert_breakpoint (raddr);
3820 step = 0;
3821 }
3822
3823 current_thread = saved_thread;
3824
3825 linux_resume_one_lwp (lwp, step, 0, NULL);
3826
3827 /* Require next event from this LWP. */
3828 step_over_bkpt = thread->entry.id;
3829 return 1;
3830 }
3831
3832 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3833 start_step_over, if still there, and delete any reinsert
3834 breakpoints we've set, on non hardware single-step targets. */
3835
3836 static int
3837 finish_step_over (struct lwp_info *lwp)
3838 {
3839 if (lwp->bp_reinsert != 0)
3840 {
3841 if (debug_threads)
3842 debug_printf ("Finished step over.\n");
3843
3844 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3845 may be no breakpoint to reinsert there by now. */
3846 reinsert_breakpoints_at (lwp->bp_reinsert);
3847 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3848
3849 lwp->bp_reinsert = 0;
3850
3851 /* Delete any software-single-step reinsert breakpoints. No
3852 longer needed. We don't have to worry about other threads
3853 hitting this trap, and later not being able to explain it,
3854 because we were stepping over a breakpoint, and we hold all
3855 threads but LWP stopped while doing that. */
3856 if (!can_hardware_single_step ())
3857 delete_reinsert_breakpoints ();
3858
3859 step_over_bkpt = null_ptid;
3860 return 1;
3861 }
3862 else
3863 return 0;
3864 }
3865
3866 /* This function is called once per thread. We check the thread's resume
3867 request, which will tell us whether to resume, step, or leave the thread
3868 stopped; and what signal, if any, it should be sent.
3869
3870 For threads which we aren't explicitly told otherwise, we preserve
3871 the stepping flag; this is used for stepping over gdbserver-placed
3872 breakpoints.
3873
3874 If pending_flags was set in any thread, we queue any needed
3875 signals, since we won't actually resume. We already have a pending
3876 event to report, so we don't need to preserve any step requests;
3877 they should be re-issued if necessary. */
3878
3879 static int
3880 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3881 {
3882 struct thread_info *thread = (struct thread_info *) entry;
3883 struct lwp_info *lwp = get_thread_lwp (thread);
3884 int step;
3885 int leave_all_stopped = * (int *) arg;
3886 int leave_pending;
3887
3888 if (lwp->resume == NULL)
3889 return 0;
3890
3891 if (lwp->resume->kind == resume_stop)
3892 {
3893 if (debug_threads)
3894 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
3895
3896 if (!lwp->stopped)
3897 {
3898 if (debug_threads)
3899 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
3900
3901 /* Stop the thread, and wait for the event asynchronously,
3902 through the event loop. */
3903 send_sigstop (lwp);
3904 }
3905 else
3906 {
3907 if (debug_threads)
3908 debug_printf ("already stopped LWP %ld\n",
3909 lwpid_of (thread));
3910
3911 /* The LWP may have been stopped in an internal event that
3912 was not meant to be notified back to GDB (e.g., gdbserver
3913 breakpoint), so we should be reporting a stop event in
3914 this case too. */
3915
3916 /* If the thread already has a pending SIGSTOP, this is a
3917 no-op. Otherwise, something later will presumably resume
3918 the thread and this will cause it to cancel any pending
3919 operation, due to last_resume_kind == resume_stop. If
3920 the thread already has a pending status to report, we
3921 will still report it the next time we wait - see
3922 status_pending_p_callback. */
3923
3924 /* If we already have a pending signal to report, then
3925 there's no need to queue a SIGSTOP, as this means we're
3926 midway through moving the LWP out of the jumppad, and we
3927 will report the pending signal as soon as that is
3928 finished. */
3929 if (lwp->pending_signals_to_report == NULL)
3930 send_sigstop (lwp);
3931 }
3932
3933 /* For stop requests, we're done. */
3934 lwp->resume = NULL;
3935 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3936 return 0;
3937 }
3938
3939 /* If this thread which is about to be resumed has a pending status,
3940 then don't resume any threads - we can just report the pending
3941 status. Make sure to queue any signals that would otherwise be
3942 sent. In all-stop mode, we do this decision based on if *any*
3943 thread has a pending status. If there's a thread that needs the
3944 step-over-breakpoint dance, then don't resume any other thread
3945 but that particular one. */
3946 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3947
3948 if (!leave_pending)
3949 {
3950 if (debug_threads)
3951 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
3952
3953 step = (lwp->resume->kind == resume_step);
3954 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3955 }
3956 else
3957 {
3958 if (debug_threads)
3959 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
3960
3961 /* If we have a new signal, enqueue the signal. */
3962 if (lwp->resume->sig != 0)
3963 {
3964 struct pending_signals *p_sig;
3965 p_sig = xmalloc (sizeof (*p_sig));
3966 p_sig->prev = lwp->pending_signals;
3967 p_sig->signal = lwp->resume->sig;
3968 memset (&p_sig->info, 0, sizeof (siginfo_t));
3969
3970 /* If this is the same signal we were previously stopped by,
3971 make sure to queue its siginfo. We can ignore the return
3972 value of ptrace; if it fails, we'll skip
3973 PTRACE_SETSIGINFO. */
3974 if (WIFSTOPPED (lwp->last_status)
3975 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3976 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3977 &p_sig->info);
3978
3979 lwp->pending_signals = p_sig;
3980 }
3981 }
3982
3983 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3984 lwp->resume = NULL;
3985 return 0;
3986 }
3987
3988 static void
3989 linux_resume (struct thread_resume *resume_info, size_t n)
3990 {
3991 struct thread_resume_array array = { resume_info, n };
3992 struct thread_info *need_step_over = NULL;
3993 int any_pending;
3994 int leave_all_stopped;
3995
3996 if (debug_threads)
3997 {
3998 debug_enter ();
3999 debug_printf ("linux_resume:\n");
4000 }
4001
4002 find_inferior (&all_threads, linux_set_resume_request, &array);
4003
4004 /* If there is a thread which would otherwise be resumed, which has
4005 a pending status, then don't resume any threads - we can just
4006 report the pending status. Make sure to queue any signals that
4007 would otherwise be sent. In non-stop mode, we'll apply this
4008 logic to each thread individually. We consume all pending events
4009 before considering to start a step-over (in all-stop). */
4010 any_pending = 0;
4011 if (!non_stop)
4012 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4013
4014 /* If there is a thread which would otherwise be resumed, which is
4015 stopped at a breakpoint that needs stepping over, then don't
4016 resume any threads - have it step over the breakpoint with all
4017 other threads stopped, then resume all threads again. Make sure
4018 to queue any signals that would otherwise be delivered or
4019 queued. */
4020 if (!any_pending && supports_breakpoints ())
4021 need_step_over
4022 = (struct thread_info *) find_inferior (&all_threads,
4023 need_step_over_p, NULL);
4024
4025 leave_all_stopped = (need_step_over != NULL || any_pending);
4026
4027 if (debug_threads)
4028 {
4029 if (need_step_over != NULL)
4030 debug_printf ("Not resuming all, need step over\n");
4031 else if (any_pending)
4032 debug_printf ("Not resuming, all-stop and found "
4033 "an LWP with pending status\n");
4034 else
4035 debug_printf ("Resuming, no pending status or step over needed\n");
4036 }
4037
4038 /* Even if we're leaving threads stopped, queue all signals we'd
4039 otherwise deliver. */
4040 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4041
4042 if (need_step_over)
4043 start_step_over (get_thread_lwp (need_step_over));
4044
4045 if (debug_threads)
4046 {
4047 debug_printf ("linux_resume done\n");
4048 debug_exit ();
4049 }
4050 }
4051
4052 /* This function is called once per thread. We check the thread's
4053 last resume request, which will tell us whether to resume, step, or
4054 leave the thread stopped. Any signal the client requested to be
4055 delivered has already been enqueued at this point.
4056
4057 If any thread that GDB wants running is stopped at an internal
4058 breakpoint that needs stepping over, we start a step-over operation
4059 on that particular thread, and leave all others stopped. */
4060
4061 static int
4062 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4063 {
4064 struct thread_info *thread = (struct thread_info *) entry;
4065 struct lwp_info *lwp = get_thread_lwp (thread);
4066 int step;
4067
4068 if (lwp == except)
4069 return 0;
4070
4071 if (debug_threads)
4072 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4073
4074 if (!lwp->stopped)
4075 {
4076 if (debug_threads)
4077 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4078 return 0;
4079 }
4080
4081 if (thread->last_resume_kind == resume_stop
4082 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4083 {
4084 if (debug_threads)
4085 debug_printf (" client wants LWP to remain %ld stopped\n",
4086 lwpid_of (thread));
4087 return 0;
4088 }
4089
4090 if (lwp->status_pending_p)
4091 {
4092 if (debug_threads)
4093 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4094 lwpid_of (thread));
4095 return 0;
4096 }
4097
4098 gdb_assert (lwp->suspended >= 0);
4099
4100 if (lwp->suspended)
4101 {
4102 if (debug_threads)
4103 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4104 return 0;
4105 }
4106
4107 if (thread->last_resume_kind == resume_stop
4108 && lwp->pending_signals_to_report == NULL
4109 && lwp->collecting_fast_tracepoint == 0)
4110 {
4111 /* We haven't reported this LWP as stopped yet (otherwise, the
4112 last_status.kind check above would catch it, and we wouldn't
4113 reach here. This LWP may have been momentarily paused by a
4114 stop_all_lwps call while handling for example, another LWP's
4115 step-over. In that case, the pending expected SIGSTOP signal
4116 that was queued at vCont;t handling time will have already
4117 been consumed by wait_for_sigstop, and so we need to requeue
4118 another one here. Note that if the LWP already has a SIGSTOP
4119 pending, this is a no-op. */
4120
4121 if (debug_threads)
4122 debug_printf ("Client wants LWP %ld to stop. "
4123 "Making sure it has a SIGSTOP pending\n",
4124 lwpid_of (thread));
4125
4126 send_sigstop (lwp);
4127 }
4128
4129 step = thread->last_resume_kind == resume_step;
4130 linux_resume_one_lwp (lwp, step, 0, NULL);
4131 return 0;
4132 }
4133
4134 static int
4135 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4136 {
4137 struct thread_info *thread = (struct thread_info *) entry;
4138 struct lwp_info *lwp = get_thread_lwp (thread);
4139
4140 if (lwp == except)
4141 return 0;
4142
4143 lwp->suspended--;
4144 gdb_assert (lwp->suspended >= 0);
4145
4146 return proceed_one_lwp (entry, except);
4147 }
4148
4149 /* When we finish a step-over, set threads running again. If there's
4150 another thread that may need a step-over, now's the time to start
4151 it. Eventually, we'll move all threads past their breakpoints. */
4152
4153 static void
4154 proceed_all_lwps (void)
4155 {
4156 struct thread_info *need_step_over;
4157
4158 /* If there is a thread which would otherwise be resumed, which is
4159 stopped at a breakpoint that needs stepping over, then don't
4160 resume any threads - have it step over the breakpoint with all
4161 other threads stopped, then resume all threads again. */
4162
4163 if (supports_breakpoints ())
4164 {
4165 need_step_over
4166 = (struct thread_info *) find_inferior (&all_threads,
4167 need_step_over_p, NULL);
4168
4169 if (need_step_over != NULL)
4170 {
4171 if (debug_threads)
4172 debug_printf ("proceed_all_lwps: found "
4173 "thread %ld needing a step-over\n",
4174 lwpid_of (need_step_over));
4175
4176 start_step_over (get_thread_lwp (need_step_over));
4177 return;
4178 }
4179 }
4180
4181 if (debug_threads)
4182 debug_printf ("Proceeding, no step-over needed\n");
4183
4184 find_inferior (&all_threads, proceed_one_lwp, NULL);
4185 }
4186
4187 /* Stopped LWPs that the client wanted to be running, that don't have
4188 pending statuses, are set to run again, except for EXCEPT, if not
4189 NULL. This undoes a stop_all_lwps call. */
4190
4191 static void
4192 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4193 {
4194 if (debug_threads)
4195 {
4196 debug_enter ();
4197 if (except)
4198 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4199 lwpid_of (get_lwp_thread (except)));
4200 else
4201 debug_printf ("unstopping all lwps\n");
4202 }
4203
4204 if (unsuspend)
4205 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4206 else
4207 find_inferior (&all_threads, proceed_one_lwp, except);
4208
4209 if (debug_threads)
4210 {
4211 debug_printf ("unstop_all_lwps done\n");
4212 debug_exit ();
4213 }
4214 }
4215
4216
4217 #ifdef HAVE_LINUX_REGSETS
4218
4219 #define use_linux_regsets 1
4220
4221 /* Returns true if REGSET has been disabled. */
4222
4223 static int
4224 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4225 {
4226 return (info->disabled_regsets != NULL
4227 && info->disabled_regsets[regset - info->regsets]);
4228 }
4229
4230 /* Disable REGSET. */
4231
4232 static void
4233 disable_regset (struct regsets_info *info, struct regset_info *regset)
4234 {
4235 int dr_offset;
4236
4237 dr_offset = regset - info->regsets;
4238 if (info->disabled_regsets == NULL)
4239 info->disabled_regsets = xcalloc (1, info->num_regsets);
4240 info->disabled_regsets[dr_offset] = 1;
4241 }
4242
4243 static int
4244 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4245 struct regcache *regcache)
4246 {
4247 struct regset_info *regset;
4248 int saw_general_regs = 0;
4249 int pid;
4250 struct iovec iov;
4251
4252 regset = regsets_info->regsets;
4253
4254 pid = lwpid_of (current_thread);
4255 while (regset->size >= 0)
4256 {
4257 void *buf, *data;
4258 int nt_type, res;
4259
4260 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4261 {
4262 regset ++;
4263 continue;
4264 }
4265
4266 buf = xmalloc (regset->size);
4267
4268 nt_type = regset->nt_type;
4269 if (nt_type)
4270 {
4271 iov.iov_base = buf;
4272 iov.iov_len = regset->size;
4273 data = (void *) &iov;
4274 }
4275 else
4276 data = buf;
4277
4278 #ifndef __sparc__
4279 res = ptrace (regset->get_request, pid,
4280 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4281 #else
4282 res = ptrace (regset->get_request, pid, data, nt_type);
4283 #endif
4284 if (res < 0)
4285 {
4286 if (errno == EIO)
4287 {
4288 /* If we get EIO on a regset, do not try it again for
4289 this process mode. */
4290 disable_regset (regsets_info, regset);
4291 free (buf);
4292 continue;
4293 }
4294 else
4295 {
4296 char s[256];
4297 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4298 pid);
4299 perror (s);
4300 }
4301 }
4302 else if (regset->type == GENERAL_REGS)
4303 saw_general_regs = 1;
4304 regset->store_function (regcache, buf);
4305 regset ++;
4306 free (buf);
4307 }
4308 if (saw_general_regs)
4309 return 0;
4310 else
4311 return 1;
4312 }
4313
4314 static int
4315 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4316 struct regcache *regcache)
4317 {
4318 struct regset_info *regset;
4319 int saw_general_regs = 0;
4320 int pid;
4321 struct iovec iov;
4322
4323 regset = regsets_info->regsets;
4324
4325 pid = lwpid_of (current_thread);
4326 while (regset->size >= 0)
4327 {
4328 void *buf, *data;
4329 int nt_type, res;
4330
4331 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4332 {
4333 regset ++;
4334 continue;
4335 }
4336
4337 buf = xmalloc (regset->size);
4338
4339 /* First fill the buffer with the current register set contents,
4340 in case there are any items in the kernel's regset that are
4341 not in gdbserver's regcache. */
4342
4343 nt_type = regset->nt_type;
4344 if (nt_type)
4345 {
4346 iov.iov_base = buf;
4347 iov.iov_len = regset->size;
4348 data = (void *) &iov;
4349 }
4350 else
4351 data = buf;
4352
4353 #ifndef __sparc__
4354 res = ptrace (regset->get_request, pid,
4355 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4356 #else
4357 res = ptrace (regset->get_request, pid, data, nt_type);
4358 #endif
4359
4360 if (res == 0)
4361 {
4362 /* Then overlay our cached registers on that. */
4363 regset->fill_function (regcache, buf);
4364
4365 /* Only now do we write the register set. */
4366 #ifndef __sparc__
4367 res = ptrace (regset->set_request, pid,
4368 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4369 #else
4370 res = ptrace (regset->set_request, pid, data, nt_type);
4371 #endif
4372 }
4373
4374 if (res < 0)
4375 {
4376 if (errno == EIO)
4377 {
4378 /* If we get EIO on a regset, do not try it again for
4379 this process mode. */
4380 disable_regset (regsets_info, regset);
4381 free (buf);
4382 continue;
4383 }
4384 else if (errno == ESRCH)
4385 {
4386 /* At this point, ESRCH should mean the process is
4387 already gone, in which case we simply ignore attempts
4388 to change its registers. See also the related
4389 comment in linux_resume_one_lwp. */
4390 free (buf);
4391 return 0;
4392 }
4393 else
4394 {
4395 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4396 }
4397 }
4398 else if (regset->type == GENERAL_REGS)
4399 saw_general_regs = 1;
4400 regset ++;
4401 free (buf);
4402 }
4403 if (saw_general_regs)
4404 return 0;
4405 else
4406 return 1;
4407 }
4408
4409 #else /* !HAVE_LINUX_REGSETS */
4410
4411 #define use_linux_regsets 0
4412 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4413 #define regsets_store_inferior_registers(regsets_info, regcache) 1
4414
4415 #endif
4416
4417 /* Return 1 if register REGNO is supported by one of the regset ptrace
4418 calls or 0 if it has to be transferred individually. */
4419
4420 static int
4421 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4422 {
4423 unsigned char mask = 1 << (regno % 8);
4424 size_t index = regno / 8;
4425
4426 return (use_linux_regsets
4427 && (regs_info->regset_bitmap == NULL
4428 || (regs_info->regset_bitmap[index] & mask) != 0));
4429 }
4430
4431 #ifdef HAVE_LINUX_USRREGS
4432
4433 int
4434 register_addr (const struct usrregs_info *usrregs, int regnum)
4435 {
4436 int addr;
4437
4438 if (regnum < 0 || regnum >= usrregs->num_regs)
4439 error ("Invalid register number %d.", regnum);
4440
4441 addr = usrregs->regmap[regnum];
4442
4443 return addr;
4444 }
4445
4446 /* Fetch one register. */
4447 static void
4448 fetch_register (const struct usrregs_info *usrregs,
4449 struct regcache *regcache, int regno)
4450 {
4451 CORE_ADDR regaddr;
4452 int i, size;
4453 char *buf;
4454 int pid;
4455
4456 if (regno >= usrregs->num_regs)
4457 return;
4458 if ((*the_low_target.cannot_fetch_register) (regno))
4459 return;
4460
4461 regaddr = register_addr (usrregs, regno);
4462 if (regaddr == -1)
4463 return;
4464
4465 size = ((register_size (regcache->tdesc, regno)
4466 + sizeof (PTRACE_XFER_TYPE) - 1)
4467 & -sizeof (PTRACE_XFER_TYPE));
4468 buf = alloca (size);
4469
4470 pid = lwpid_of (current_thread);
4471 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4472 {
4473 errno = 0;
4474 *(PTRACE_XFER_TYPE *) (buf + i) =
4475 ptrace (PTRACE_PEEKUSER, pid,
4476 /* Coerce to a uintptr_t first to avoid potential gcc warning
4477 of coercing an 8 byte integer to a 4 byte pointer. */
4478 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
4479 regaddr += sizeof (PTRACE_XFER_TYPE);
4480 if (errno != 0)
4481 error ("reading register %d: %s", regno, strerror (errno));
4482 }
4483
4484 if (the_low_target.supply_ptrace_register)
4485 the_low_target.supply_ptrace_register (regcache, regno, buf);
4486 else
4487 supply_register (regcache, regno, buf);
4488 }
4489
4490 /* Store one register. */
4491 static void
4492 store_register (const struct usrregs_info *usrregs,
4493 struct regcache *regcache, int regno)
4494 {
4495 CORE_ADDR regaddr;
4496 int i, size;
4497 char *buf;
4498 int pid;
4499
4500 if (regno >= usrregs->num_regs)
4501 return;
4502 if ((*the_low_target.cannot_store_register) (regno))
4503 return;
4504
4505 regaddr = register_addr (usrregs, regno);
4506 if (regaddr == -1)
4507 return;
4508
4509 size = ((register_size (regcache->tdesc, regno)
4510 + sizeof (PTRACE_XFER_TYPE) - 1)
4511 & -sizeof (PTRACE_XFER_TYPE));
4512 buf = alloca (size);
4513 memset (buf, 0, size);
4514
4515 if (the_low_target.collect_ptrace_register)
4516 the_low_target.collect_ptrace_register (regcache, regno, buf);
4517 else
4518 collect_register (regcache, regno, buf);
4519
4520 pid = lwpid_of (current_thread);
4521 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4522 {
4523 errno = 0;
4524 ptrace (PTRACE_POKEUSER, pid,
4525 /* Coerce to a uintptr_t first to avoid potential gcc warning
4526 about coercing an 8 byte integer to a 4 byte pointer. */
4527 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
4528 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
4529 if (errno != 0)
4530 {
4531 /* At this point, ESRCH should mean the process is
4532 already gone, in which case we simply ignore attempts
4533 to change its registers. See also the related
4534 comment in linux_resume_one_lwp. */
4535 if (errno == ESRCH)
4536 return;
4537
4538 if ((*the_low_target.cannot_store_register) (regno) == 0)
4539 error ("writing register %d: %s", regno, strerror (errno));
4540 }
4541 regaddr += sizeof (PTRACE_XFER_TYPE);
4542 }
4543 }
4544
4545 /* Fetch all registers, or just one, from the child process.
4546 If REGNO is -1, do this for all registers, skipping any that are
4547 assumed to have been retrieved by regsets_fetch_inferior_registers,
4548 unless ALL is non-zero.
4549 Otherwise, REGNO specifies which register (so we can save time). */
4550 static void
4551 usr_fetch_inferior_registers (const struct regs_info *regs_info,
4552 struct regcache *regcache, int regno, int all)
4553 {
4554 struct usrregs_info *usr = regs_info->usrregs;
4555
4556 if (regno == -1)
4557 {
4558 for (regno = 0; regno < usr->num_regs; regno++)
4559 if (all || !linux_register_in_regsets (regs_info, regno))
4560 fetch_register (usr, regcache, regno);
4561 }
4562 else
4563 fetch_register (usr, regcache, regno);
4564 }
4565
4566 /* Store our register values back into the inferior.
4567 If REGNO is -1, do this for all registers, skipping any that are
4568 assumed to have been saved by regsets_store_inferior_registers,
4569 unless ALL is non-zero.
4570 Otherwise, REGNO specifies which register (so we can save time). */
4571 static void
4572 usr_store_inferior_registers (const struct regs_info *regs_info,
4573 struct regcache *regcache, int regno, int all)
4574 {
4575 struct usrregs_info *usr = regs_info->usrregs;
4576
4577 if (regno == -1)
4578 {
4579 for (regno = 0; regno < usr->num_regs; regno++)
4580 if (all || !linux_register_in_regsets (regs_info, regno))
4581 store_register (usr, regcache, regno);
4582 }
4583 else
4584 store_register (usr, regcache, regno);
4585 }
4586
4587 #else /* !HAVE_LINUX_USRREGS */
4588
4589 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4590 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4591
4592 #endif
4593
4594
4595 void
4596 linux_fetch_registers (struct regcache *regcache, int regno)
4597 {
4598 int use_regsets;
4599 int all = 0;
4600 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4601
4602 if (regno == -1)
4603 {
4604 if (the_low_target.fetch_register != NULL
4605 && regs_info->usrregs != NULL)
4606 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
4607 (*the_low_target.fetch_register) (regcache, regno);
4608
4609 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
4610 if (regs_info->usrregs != NULL)
4611 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
4612 }
4613 else
4614 {
4615 if (the_low_target.fetch_register != NULL
4616 && (*the_low_target.fetch_register) (regcache, regno))
4617 return;
4618
4619 use_regsets = linux_register_in_regsets (regs_info, regno);
4620 if (use_regsets)
4621 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
4622 regcache);
4623 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4624 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
4625 }
4626 }
4627
4628 void
4629 linux_store_registers (struct regcache *regcache, int regno)
4630 {
4631 int use_regsets;
4632 int all = 0;
4633 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4634
4635 if (regno == -1)
4636 {
4637 all = regsets_store_inferior_registers (regs_info->regsets_info,
4638 regcache);
4639 if (regs_info->usrregs != NULL)
4640 usr_store_inferior_registers (regs_info, regcache, regno, all);
4641 }
4642 else
4643 {
4644 use_regsets = linux_register_in_regsets (regs_info, regno);
4645 if (use_regsets)
4646 all = regsets_store_inferior_registers (regs_info->regsets_info,
4647 regcache);
4648 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4649 usr_store_inferior_registers (regs_info, regcache, regno, 1);
4650 }
4651 }
4652
4653
4654 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4655 to debugger memory starting at MYADDR. */
4656
4657 static int
4658 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4659 {
4660 int pid = lwpid_of (current_thread);
4661 register PTRACE_XFER_TYPE *buffer;
4662 register CORE_ADDR addr;
4663 register int count;
4664 char filename[64];
4665 register int i;
4666 int ret;
4667 int fd;
4668
4669 /* Try using /proc. Don't bother for one word. */
4670 if (len >= 3 * sizeof (long))
4671 {
4672 int bytes;
4673
4674 /* We could keep this file open and cache it - possibly one per
4675 thread. That requires some juggling, but is even faster. */
4676 sprintf (filename, "/proc/%d/mem", pid);
4677 fd = open (filename, O_RDONLY | O_LARGEFILE);
4678 if (fd == -1)
4679 goto no_proc;
4680
4681 /* If pread64 is available, use it. It's faster if the kernel
4682 supports it (only one syscall), and it's 64-bit safe even on
4683 32-bit platforms (for instance, SPARC debugging a SPARC64
4684 application). */
4685 #ifdef HAVE_PREAD64
4686 bytes = pread64 (fd, myaddr, len, memaddr);
4687 #else
4688 bytes = -1;
4689 if (lseek (fd, memaddr, SEEK_SET) != -1)
4690 bytes = read (fd, myaddr, len);
4691 #endif
4692
4693 close (fd);
4694 if (bytes == len)
4695 return 0;
4696
4697 /* Some data was read, we'll try to get the rest with ptrace. */
4698 if (bytes > 0)
4699 {
4700 memaddr += bytes;
4701 myaddr += bytes;
4702 len -= bytes;
4703 }
4704 }
4705
4706 no_proc:
4707 /* Round starting address down to longword boundary. */
4708 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4709 /* Round ending address up; get number of longwords that makes. */
4710 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4711 / sizeof (PTRACE_XFER_TYPE));
4712 /* Allocate buffer of that many longwords. */
4713 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4714
4715 /* Read all the longwords */
4716 errno = 0;
4717 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4718 {
4719 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4720 about coercing an 8 byte integer to a 4 byte pointer. */
4721 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4722 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4723 (PTRACE_TYPE_ARG4) 0);
4724 if (errno)
4725 break;
4726 }
4727 ret = errno;
4728
4729 /* Copy appropriate bytes out of the buffer. */
4730 if (i > 0)
4731 {
4732 i *= sizeof (PTRACE_XFER_TYPE);
4733 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4734 memcpy (myaddr,
4735 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4736 i < len ? i : len);
4737 }
4738
4739 return ret;
4740 }
4741
4742 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4743 memory at MEMADDR. On failure (cannot write to the inferior)
4744 returns the value of errno. Always succeeds if LEN is zero. */
4745
4746 static int
4747 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4748 {
4749 register int i;
4750 /* Round starting address down to longword boundary. */
4751 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4752 /* Round ending address up; get number of longwords that makes. */
4753 register int count
4754 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4755 / sizeof (PTRACE_XFER_TYPE);
4756
4757 /* Allocate buffer of that many longwords. */
4758 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4759 alloca (count * sizeof (PTRACE_XFER_TYPE));
4760
4761 int pid = lwpid_of (current_thread);
4762
4763 if (len == 0)
4764 {
4765 /* Zero length write always succeeds. */
4766 return 0;
4767 }
4768
4769 if (debug_threads)
4770 {
4771 /* Dump up to four bytes. */
4772 unsigned int val = * (unsigned int *) myaddr;
4773 if (len == 1)
4774 val = val & 0xff;
4775 else if (len == 2)
4776 val = val & 0xffff;
4777 else if (len == 3)
4778 val = val & 0xffffff;
4779 debug_printf ("Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4780 val, (long)memaddr);
4781 }
4782
4783 /* Fill start and end extra bytes of buffer with existing memory data. */
4784
4785 errno = 0;
4786 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4787 about coercing an 8 byte integer to a 4 byte pointer. */
4788 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4789 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4790 (PTRACE_TYPE_ARG4) 0);
4791 if (errno)
4792 return errno;
4793
4794 if (count > 1)
4795 {
4796 errno = 0;
4797 buffer[count - 1]
4798 = ptrace (PTRACE_PEEKTEXT, pid,
4799 /* Coerce to a uintptr_t first to avoid potential gcc warning
4800 about coercing an 8 byte integer to a 4 byte pointer. */
4801 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
4802 * sizeof (PTRACE_XFER_TYPE)),
4803 (PTRACE_TYPE_ARG4) 0);
4804 if (errno)
4805 return errno;
4806 }
4807
4808 /* Copy data to be written over corresponding part of buffer. */
4809
4810 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4811 myaddr, len);
4812
4813 /* Write the entire buffer. */
4814
4815 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4816 {
4817 errno = 0;
4818 ptrace (PTRACE_POKETEXT, pid,
4819 /* Coerce to a uintptr_t first to avoid potential gcc warning
4820 about coercing an 8 byte integer to a 4 byte pointer. */
4821 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4822 (PTRACE_TYPE_ARG4) buffer[i]);
4823 if (errno)
4824 return errno;
4825 }
4826
4827 return 0;
4828 }
4829
4830 static void
4831 linux_look_up_symbols (void)
4832 {
4833 #ifdef USE_THREAD_DB
4834 struct process_info *proc = current_process ();
4835
4836 if (proc->private->thread_db != NULL)
4837 return;
4838
4839 /* If the kernel supports tracing clones, then we don't need to
4840 use the magic thread event breakpoint to learn about
4841 threads. */
4842 thread_db_init (!linux_supports_traceclone ());
4843 #endif
4844 }
4845
4846 static void
4847 linux_request_interrupt (void)
4848 {
4849 extern unsigned long signal_pid;
4850
4851 if (!ptid_equal (cont_thread, null_ptid)
4852 && !ptid_equal (cont_thread, minus_one_ptid))
4853 {
4854 int lwpid;
4855
4856 lwpid = lwpid_of (current_thread);
4857 kill_lwp (lwpid, SIGINT);
4858 }
4859 else
4860 kill_lwp (signal_pid, SIGINT);
4861 }
4862
4863 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4864 to debugger memory starting at MYADDR. */
4865
4866 static int
4867 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4868 {
4869 char filename[PATH_MAX];
4870 int fd, n;
4871 int pid = lwpid_of (current_thread);
4872
4873 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4874
4875 fd = open (filename, O_RDONLY);
4876 if (fd < 0)
4877 return -1;
4878
4879 if (offset != (CORE_ADDR) 0
4880 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4881 n = -1;
4882 else
4883 n = read (fd, myaddr, len);
4884
4885 close (fd);
4886
4887 return n;
4888 }
4889
4890 /* These breakpoint and watchpoint related wrapper functions simply
4891 pass on the function call if the target has registered a
4892 corresponding function. */
4893
4894 static int
4895 linux_supports_z_point_type (char z_type)
4896 {
4897 return (the_low_target.supports_z_point_type != NULL
4898 && the_low_target.supports_z_point_type (z_type));
4899 }
4900
4901 static int
4902 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
4903 int size, struct raw_breakpoint *bp)
4904 {
4905 if (the_low_target.insert_point != NULL)
4906 return the_low_target.insert_point (type, addr, size, bp);
4907 else
4908 /* Unsupported (see target.h). */
4909 return 1;
4910 }
4911
4912 static int
4913 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
4914 int size, struct raw_breakpoint *bp)
4915 {
4916 if (the_low_target.remove_point != NULL)
4917 return the_low_target.remove_point (type, addr, size, bp);
4918 else
4919 /* Unsupported (see target.h). */
4920 return 1;
4921 }
4922
4923 static int
4924 linux_stopped_by_watchpoint (void)
4925 {
4926 struct lwp_info *lwp = get_thread_lwp (current_thread);
4927
4928 return lwp->stopped_by_watchpoint;
4929 }
4930
4931 static CORE_ADDR
4932 linux_stopped_data_address (void)
4933 {
4934 struct lwp_info *lwp = get_thread_lwp (current_thread);
4935
4936 return lwp->stopped_data_address;
4937 }
4938
4939 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
4940 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
4941 && defined(PT_TEXT_END_ADDR)
4942
4943 /* This is only used for targets that define PT_TEXT_ADDR,
4944 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
4945 the target has different ways of acquiring this information, like
4946 loadmaps. */
4947
4948 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4949 to tell gdb about. */
4950
4951 static int
4952 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4953 {
4954 unsigned long text, text_end, data;
4955 int pid = lwpid_of (get_thread_lwp (current_thread));
4956
4957 errno = 0;
4958
4959 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
4960 (PTRACE_TYPE_ARG4) 0);
4961 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
4962 (PTRACE_TYPE_ARG4) 0);
4963 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
4964 (PTRACE_TYPE_ARG4) 0);
4965
4966 if (errno == 0)
4967 {
4968 /* Both text and data offsets produced at compile-time (and so
4969 used by gdb) are relative to the beginning of the program,
4970 with the data segment immediately following the text segment.
4971 However, the actual runtime layout in memory may put the data
4972 somewhere else, so when we send gdb a data base-address, we
4973 use the real data base address and subtract the compile-time
4974 data base-address from it (which is just the length of the
4975 text segment). BSS immediately follows data in both
4976 cases. */
4977 *text_p = text;
4978 *data_p = data - (text_end - text);
4979
4980 return 1;
4981 }
4982 return 0;
4983 }
4984 #endif
4985
4986 static int
4987 linux_qxfer_osdata (const char *annex,
4988 unsigned char *readbuf, unsigned const char *writebuf,
4989 CORE_ADDR offset, int len)
4990 {
4991 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4992 }
4993
4994 /* Convert a native/host siginfo object, into/from the siginfo in the
4995 layout of the inferiors' architecture. */
4996
4997 static void
4998 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4999 {
5000 int done = 0;
5001
5002 if (the_low_target.siginfo_fixup != NULL)
5003 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
5004
5005 /* If there was no callback, or the callback didn't do anything,
5006 then just do a straight memcpy. */
5007 if (!done)
5008 {
5009 if (direction == 1)
5010 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5011 else
5012 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5013 }
5014 }
5015
5016 static int
5017 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5018 unsigned const char *writebuf, CORE_ADDR offset, int len)
5019 {
5020 int pid;
5021 siginfo_t siginfo;
5022 char inf_siginfo[sizeof (siginfo_t)];
5023
5024 if (current_thread == NULL)
5025 return -1;
5026
5027 pid = lwpid_of (current_thread);
5028
5029 if (debug_threads)
5030 debug_printf ("%s siginfo for lwp %d.\n",
5031 readbuf != NULL ? "Reading" : "Writing",
5032 pid);
5033
5034 if (offset >= sizeof (siginfo))
5035 return -1;
5036
5037 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5038 return -1;
5039
5040 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5041 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5042 inferior with a 64-bit GDBSERVER should look the same as debugging it
5043 with a 32-bit GDBSERVER, we need to convert it. */
5044 siginfo_fixup (&siginfo, inf_siginfo, 0);
5045
5046 if (offset + len > sizeof (siginfo))
5047 len = sizeof (siginfo) - offset;
5048
5049 if (readbuf != NULL)
5050 memcpy (readbuf, inf_siginfo + offset, len);
5051 else
5052 {
5053 memcpy (inf_siginfo + offset, writebuf, len);
5054
5055 /* Convert back to ptrace layout before flushing it out. */
5056 siginfo_fixup (&siginfo, inf_siginfo, 1);
5057
5058 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5059 return -1;
5060 }
5061
5062 return len;
5063 }
5064
5065 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5066 so we notice when children change state; as the handler for the
5067 sigsuspend in my_waitpid. */
5068
5069 static void
5070 sigchld_handler (int signo)
5071 {
5072 int old_errno = errno;
5073
5074 if (debug_threads)
5075 {
5076 do
5077 {
5078 /* fprintf is not async-signal-safe, so call write
5079 directly. */
5080 if (write (2, "sigchld_handler\n",
5081 sizeof ("sigchld_handler\n") - 1) < 0)
5082 break; /* just ignore */
5083 } while (0);
5084 }
5085
5086 if (target_is_async_p ())
5087 async_file_mark (); /* trigger a linux_wait */
5088
5089 errno = old_errno;
5090 }
5091
5092 static int
5093 linux_supports_non_stop (void)
5094 {
5095 return 1;
5096 }
5097
5098 static int
5099 linux_async (int enable)
5100 {
5101 int previous = target_is_async_p ();
5102
5103 if (debug_threads)
5104 debug_printf ("linux_async (%d), previous=%d\n",
5105 enable, previous);
5106
5107 if (previous != enable)
5108 {
5109 sigset_t mask;
5110 sigemptyset (&mask);
5111 sigaddset (&mask, SIGCHLD);
5112
5113 sigprocmask (SIG_BLOCK, &mask, NULL);
5114
5115 if (enable)
5116 {
5117 if (pipe (linux_event_pipe) == -1)
5118 {
5119 linux_event_pipe[0] = -1;
5120 linux_event_pipe[1] = -1;
5121 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5122
5123 warning ("creating event pipe failed.");
5124 return previous;
5125 }
5126
5127 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5128 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5129
5130 /* Register the event loop handler. */
5131 add_file_handler (linux_event_pipe[0],
5132 handle_target_event, NULL);
5133
5134 /* Always trigger a linux_wait. */
5135 async_file_mark ();
5136 }
5137 else
5138 {
5139 delete_file_handler (linux_event_pipe[0]);
5140
5141 close (linux_event_pipe[0]);
5142 close (linux_event_pipe[1]);
5143 linux_event_pipe[0] = -1;
5144 linux_event_pipe[1] = -1;
5145 }
5146
5147 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5148 }
5149
5150 return previous;
5151 }
5152
5153 static int
5154 linux_start_non_stop (int nonstop)
5155 {
5156 /* Register or unregister from event-loop accordingly. */
5157 linux_async (nonstop);
5158
5159 if (target_is_async_p () != (nonstop != 0))
5160 return -1;
5161
5162 return 0;
5163 }
5164
5165 static int
5166 linux_supports_multi_process (void)
5167 {
5168 return 1;
5169 }
5170
5171 static int
5172 linux_supports_disable_randomization (void)
5173 {
5174 #ifdef HAVE_PERSONALITY
5175 return 1;
5176 #else
5177 return 0;
5178 #endif
5179 }
5180
5181 static int
5182 linux_supports_agent (void)
5183 {
5184 return 1;
5185 }
5186
5187 static int
5188 linux_supports_range_stepping (void)
5189 {
5190 if (*the_low_target.supports_range_stepping == NULL)
5191 return 0;
5192
5193 return (*the_low_target.supports_range_stepping) ();
5194 }
5195
5196 /* Enumerate spufs IDs for process PID. */
5197 static int
5198 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5199 {
5200 int pos = 0;
5201 int written = 0;
5202 char path[128];
5203 DIR *dir;
5204 struct dirent *entry;
5205
5206 sprintf (path, "/proc/%ld/fd", pid);
5207 dir = opendir (path);
5208 if (!dir)
5209 return -1;
5210
5211 rewinddir (dir);
5212 while ((entry = readdir (dir)) != NULL)
5213 {
5214 struct stat st;
5215 struct statfs stfs;
5216 int fd;
5217
5218 fd = atoi (entry->d_name);
5219 if (!fd)
5220 continue;
5221
5222 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5223 if (stat (path, &st) != 0)
5224 continue;
5225 if (!S_ISDIR (st.st_mode))
5226 continue;
5227
5228 if (statfs (path, &stfs) != 0)
5229 continue;
5230 if (stfs.f_type != SPUFS_MAGIC)
5231 continue;
5232
5233 if (pos >= offset && pos + 4 <= offset + len)
5234 {
5235 *(unsigned int *)(buf + pos - offset) = fd;
5236 written += 4;
5237 }
5238 pos += 4;
5239 }
5240
5241 closedir (dir);
5242 return written;
5243 }
5244
5245 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5246 object type, using the /proc file system. */
5247 static int
5248 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5249 unsigned const char *writebuf,
5250 CORE_ADDR offset, int len)
5251 {
5252 long pid = lwpid_of (current_thread);
5253 char buf[128];
5254 int fd = 0;
5255 int ret = 0;
5256
5257 if (!writebuf && !readbuf)
5258 return -1;
5259
5260 if (!*annex)
5261 {
5262 if (!readbuf)
5263 return -1;
5264 else
5265 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5266 }
5267
5268 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5269 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5270 if (fd <= 0)
5271 return -1;
5272
5273 if (offset != 0
5274 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5275 {
5276 close (fd);
5277 return 0;
5278 }
5279
5280 if (writebuf)
5281 ret = write (fd, writebuf, (size_t) len);
5282 else
5283 ret = read (fd, readbuf, (size_t) len);
5284
5285 close (fd);
5286 return ret;
5287 }
5288
5289 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5290 struct target_loadseg
5291 {
5292 /* Core address to which the segment is mapped. */
5293 Elf32_Addr addr;
5294 /* VMA recorded in the program header. */
5295 Elf32_Addr p_vaddr;
5296 /* Size of this segment in memory. */
5297 Elf32_Word p_memsz;
5298 };
5299
5300 # if defined PT_GETDSBT
5301 struct target_loadmap
5302 {
5303 /* Protocol version number, must be zero. */
5304 Elf32_Word version;
5305 /* Pointer to the DSBT table, its size, and the DSBT index. */
5306 unsigned *dsbt_table;
5307 unsigned dsbt_size, dsbt_index;
5308 /* Number of segments in this map. */
5309 Elf32_Word nsegs;
5310 /* The actual memory map. */
5311 struct target_loadseg segs[/*nsegs*/];
5312 };
5313 # define LINUX_LOADMAP PT_GETDSBT
5314 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5315 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5316 # else
5317 struct target_loadmap
5318 {
5319 /* Protocol version number, must be zero. */
5320 Elf32_Half version;
5321 /* Number of segments in this map. */
5322 Elf32_Half nsegs;
5323 /* The actual memory map. */
5324 struct target_loadseg segs[/*nsegs*/];
5325 };
5326 # define LINUX_LOADMAP PTRACE_GETFDPIC
5327 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5328 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5329 # endif
5330
5331 static int
5332 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5333 unsigned char *myaddr, unsigned int len)
5334 {
5335 int pid = lwpid_of (current_thread);
5336 int addr = -1;
5337 struct target_loadmap *data = NULL;
5338 unsigned int actual_length, copy_length;
5339
5340 if (strcmp (annex, "exec") == 0)
5341 addr = (int) LINUX_LOADMAP_EXEC;
5342 else if (strcmp (annex, "interp") == 0)
5343 addr = (int) LINUX_LOADMAP_INTERP;
5344 else
5345 return -1;
5346
5347 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5348 return -1;
5349
5350 if (data == NULL)
5351 return -1;
5352
5353 actual_length = sizeof (struct target_loadmap)
5354 + sizeof (struct target_loadseg) * data->nsegs;
5355
5356 if (offset < 0 || offset > actual_length)
5357 return -1;
5358
5359 copy_length = actual_length - offset < len ? actual_length - offset : len;
5360 memcpy (myaddr, (char *) data + offset, copy_length);
5361 return copy_length;
5362 }
5363 #else
5364 # define linux_read_loadmap NULL
5365 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5366
5367 static void
5368 linux_process_qsupported (const char *query)
5369 {
5370 if (the_low_target.process_qsupported != NULL)
5371 the_low_target.process_qsupported (query);
5372 }
5373
5374 static int
5375 linux_supports_tracepoints (void)
5376 {
5377 if (*the_low_target.supports_tracepoints == NULL)
5378 return 0;
5379
5380 return (*the_low_target.supports_tracepoints) ();
5381 }
5382
5383 static CORE_ADDR
5384 linux_read_pc (struct regcache *regcache)
5385 {
5386 if (the_low_target.get_pc == NULL)
5387 return 0;
5388
5389 return (*the_low_target.get_pc) (regcache);
5390 }
5391
5392 static void
5393 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5394 {
5395 gdb_assert (the_low_target.set_pc != NULL);
5396
5397 (*the_low_target.set_pc) (regcache, pc);
5398 }
5399
5400 static int
5401 linux_thread_stopped (struct thread_info *thread)
5402 {
5403 return get_thread_lwp (thread)->stopped;
5404 }
5405
5406 /* This exposes stop-all-threads functionality to other modules. */
5407
5408 static void
5409 linux_pause_all (int freeze)
5410 {
5411 stop_all_lwps (freeze, NULL);
5412 }
5413
5414 /* This exposes unstop-all-threads functionality to other gdbserver
5415 modules. */
5416
5417 static void
5418 linux_unpause_all (int unfreeze)
5419 {
5420 unstop_all_lwps (unfreeze, NULL);
5421 }
5422
5423 static int
5424 linux_prepare_to_access_memory (void)
5425 {
5426 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5427 running LWP. */
5428 if (non_stop)
5429 linux_pause_all (1);
5430 return 0;
5431 }
5432
5433 static void
5434 linux_done_accessing_memory (void)
5435 {
5436 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5437 running LWP. */
5438 if (non_stop)
5439 linux_unpause_all (1);
5440 }
5441
5442 static int
5443 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5444 CORE_ADDR collector,
5445 CORE_ADDR lockaddr,
5446 ULONGEST orig_size,
5447 CORE_ADDR *jump_entry,
5448 CORE_ADDR *trampoline,
5449 ULONGEST *trampoline_size,
5450 unsigned char *jjump_pad_insn,
5451 ULONGEST *jjump_pad_insn_size,
5452 CORE_ADDR *adjusted_insn_addr,
5453 CORE_ADDR *adjusted_insn_addr_end,
5454 char *err)
5455 {
5456 return (*the_low_target.install_fast_tracepoint_jump_pad)
5457 (tpoint, tpaddr, collector, lockaddr, orig_size,
5458 jump_entry, trampoline, trampoline_size,
5459 jjump_pad_insn, jjump_pad_insn_size,
5460 adjusted_insn_addr, adjusted_insn_addr_end,
5461 err);
5462 }
5463
5464 static struct emit_ops *
5465 linux_emit_ops (void)
5466 {
5467 if (the_low_target.emit_ops != NULL)
5468 return (*the_low_target.emit_ops) ();
5469 else
5470 return NULL;
5471 }
5472
5473 static int
5474 linux_get_min_fast_tracepoint_insn_len (void)
5475 {
5476 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5477 }
5478
5479 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5480
5481 static int
5482 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5483 CORE_ADDR *phdr_memaddr, int *num_phdr)
5484 {
5485 char filename[PATH_MAX];
5486 int fd;
5487 const int auxv_size = is_elf64
5488 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5489 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5490
5491 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5492
5493 fd = open (filename, O_RDONLY);
5494 if (fd < 0)
5495 return 1;
5496
5497 *phdr_memaddr = 0;
5498 *num_phdr = 0;
5499 while (read (fd, buf, auxv_size) == auxv_size
5500 && (*phdr_memaddr == 0 || *num_phdr == 0))
5501 {
5502 if (is_elf64)
5503 {
5504 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5505
5506 switch (aux->a_type)
5507 {
5508 case AT_PHDR:
5509 *phdr_memaddr = aux->a_un.a_val;
5510 break;
5511 case AT_PHNUM:
5512 *num_phdr = aux->a_un.a_val;
5513 break;
5514 }
5515 }
5516 else
5517 {
5518 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5519
5520 switch (aux->a_type)
5521 {
5522 case AT_PHDR:
5523 *phdr_memaddr = aux->a_un.a_val;
5524 break;
5525 case AT_PHNUM:
5526 *num_phdr = aux->a_un.a_val;
5527 break;
5528 }
5529 }
5530 }
5531
5532 close (fd);
5533
5534 if (*phdr_memaddr == 0 || *num_phdr == 0)
5535 {
5536 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5537 "phdr_memaddr = %ld, phdr_num = %d",
5538 (long) *phdr_memaddr, *num_phdr);
5539 return 2;
5540 }
5541
5542 return 0;
5543 }
5544
5545 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5546
5547 static CORE_ADDR
5548 get_dynamic (const int pid, const int is_elf64)
5549 {
5550 CORE_ADDR phdr_memaddr, relocation;
5551 int num_phdr, i;
5552 unsigned char *phdr_buf;
5553 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5554
5555 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5556 return 0;
5557
5558 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5559 phdr_buf = alloca (num_phdr * phdr_size);
5560
5561 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5562 return 0;
5563
5564 /* Compute relocation: it is expected to be 0 for "regular" executables,
5565 non-zero for PIE ones. */
5566 relocation = -1;
5567 for (i = 0; relocation == -1 && i < num_phdr; i++)
5568 if (is_elf64)
5569 {
5570 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5571
5572 if (p->p_type == PT_PHDR)
5573 relocation = phdr_memaddr - p->p_vaddr;
5574 }
5575 else
5576 {
5577 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5578
5579 if (p->p_type == PT_PHDR)
5580 relocation = phdr_memaddr - p->p_vaddr;
5581 }
5582
5583 if (relocation == -1)
5584 {
5585 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5586 any real world executables, including PIE executables, have always
5587 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5588 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5589 or present DT_DEBUG anyway (fpc binaries are statically linked).
5590
5591 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5592
5593 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5594
5595 return 0;
5596 }
5597
5598 for (i = 0; i < num_phdr; i++)
5599 {
5600 if (is_elf64)
5601 {
5602 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5603
5604 if (p->p_type == PT_DYNAMIC)
5605 return p->p_vaddr + relocation;
5606 }
5607 else
5608 {
5609 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5610
5611 if (p->p_type == PT_DYNAMIC)
5612 return p->p_vaddr + relocation;
5613 }
5614 }
5615
5616 return 0;
5617 }
5618
5619 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5620 can be 0 if the inferior does not yet have the library list initialized.
5621 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5622 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5623
5624 static CORE_ADDR
5625 get_r_debug (const int pid, const int is_elf64)
5626 {
5627 CORE_ADDR dynamic_memaddr;
5628 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5629 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5630 CORE_ADDR map = -1;
5631
5632 dynamic_memaddr = get_dynamic (pid, is_elf64);
5633 if (dynamic_memaddr == 0)
5634 return map;
5635
5636 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5637 {
5638 if (is_elf64)
5639 {
5640 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5641 #ifdef DT_MIPS_RLD_MAP
5642 union
5643 {
5644 Elf64_Xword map;
5645 unsigned char buf[sizeof (Elf64_Xword)];
5646 }
5647 rld_map;
5648
5649 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5650 {
5651 if (linux_read_memory (dyn->d_un.d_val,
5652 rld_map.buf, sizeof (rld_map.buf)) == 0)
5653 return rld_map.map;
5654 else
5655 break;
5656 }
5657 #endif /* DT_MIPS_RLD_MAP */
5658
5659 if (dyn->d_tag == DT_DEBUG && map == -1)
5660 map = dyn->d_un.d_val;
5661
5662 if (dyn->d_tag == DT_NULL)
5663 break;
5664 }
5665 else
5666 {
5667 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5668 #ifdef DT_MIPS_RLD_MAP
5669 union
5670 {
5671 Elf32_Word map;
5672 unsigned char buf[sizeof (Elf32_Word)];
5673 }
5674 rld_map;
5675
5676 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5677 {
5678 if (linux_read_memory (dyn->d_un.d_val,
5679 rld_map.buf, sizeof (rld_map.buf)) == 0)
5680 return rld_map.map;
5681 else
5682 break;
5683 }
5684 #endif /* DT_MIPS_RLD_MAP */
5685
5686 if (dyn->d_tag == DT_DEBUG && map == -1)
5687 map = dyn->d_un.d_val;
5688
5689 if (dyn->d_tag == DT_NULL)
5690 break;
5691 }
5692
5693 dynamic_memaddr += dyn_size;
5694 }
5695
5696 return map;
5697 }
5698
5699 /* Read one pointer from MEMADDR in the inferior. */
5700
5701 static int
5702 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5703 {
5704 int ret;
5705
5706 /* Go through a union so this works on either big or little endian
5707 hosts, when the inferior's pointer size is smaller than the size
5708 of CORE_ADDR. It is assumed the inferior's endianness is the
5709 same of the superior's. */
5710 union
5711 {
5712 CORE_ADDR core_addr;
5713 unsigned int ui;
5714 unsigned char uc;
5715 } addr;
5716
5717 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5718 if (ret == 0)
5719 {
5720 if (ptr_size == sizeof (CORE_ADDR))
5721 *ptr = addr.core_addr;
5722 else if (ptr_size == sizeof (unsigned int))
5723 *ptr = addr.ui;
5724 else
5725 gdb_assert_not_reached ("unhandled pointer size");
5726 }
5727 return ret;
5728 }
5729
5730 struct link_map_offsets
5731 {
5732 /* Offset and size of r_debug.r_version. */
5733 int r_version_offset;
5734
5735 /* Offset and size of r_debug.r_map. */
5736 int r_map_offset;
5737
5738 /* Offset to l_addr field in struct link_map. */
5739 int l_addr_offset;
5740
5741 /* Offset to l_name field in struct link_map. */
5742 int l_name_offset;
5743
5744 /* Offset to l_ld field in struct link_map. */
5745 int l_ld_offset;
5746
5747 /* Offset to l_next field in struct link_map. */
5748 int l_next_offset;
5749
5750 /* Offset to l_prev field in struct link_map. */
5751 int l_prev_offset;
5752 };
5753
5754 /* Construct qXfer:libraries-svr4:read reply. */
5755
5756 static int
5757 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5758 unsigned const char *writebuf,
5759 CORE_ADDR offset, int len)
5760 {
5761 char *document;
5762 unsigned document_len;
5763 struct process_info_private *const priv = current_process ()->private;
5764 char filename[PATH_MAX];
5765 int pid, is_elf64;
5766
5767 static const struct link_map_offsets lmo_32bit_offsets =
5768 {
5769 0, /* r_version offset. */
5770 4, /* r_debug.r_map offset. */
5771 0, /* l_addr offset in link_map. */
5772 4, /* l_name offset in link_map. */
5773 8, /* l_ld offset in link_map. */
5774 12, /* l_next offset in link_map. */
5775 16 /* l_prev offset in link_map. */
5776 };
5777
5778 static const struct link_map_offsets lmo_64bit_offsets =
5779 {
5780 0, /* r_version offset. */
5781 8, /* r_debug.r_map offset. */
5782 0, /* l_addr offset in link_map. */
5783 8, /* l_name offset in link_map. */
5784 16, /* l_ld offset in link_map. */
5785 24, /* l_next offset in link_map. */
5786 32 /* l_prev offset in link_map. */
5787 };
5788 const struct link_map_offsets *lmo;
5789 unsigned int machine;
5790 int ptr_size;
5791 CORE_ADDR lm_addr = 0, lm_prev = 0;
5792 int allocated = 1024;
5793 char *p;
5794 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
5795 int header_done = 0;
5796
5797 if (writebuf != NULL)
5798 return -2;
5799 if (readbuf == NULL)
5800 return -1;
5801
5802 pid = lwpid_of (current_thread);
5803 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5804 is_elf64 = elf_64_file_p (filename, &machine);
5805 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5806 ptr_size = is_elf64 ? 8 : 4;
5807
5808 while (annex[0] != '\0')
5809 {
5810 const char *sep;
5811 CORE_ADDR *addrp;
5812 int len;
5813
5814 sep = strchr (annex, '=');
5815 if (sep == NULL)
5816 break;
5817
5818 len = sep - annex;
5819 if (len == 5 && strncmp (annex, "start", 5) == 0)
5820 addrp = &lm_addr;
5821 else if (len == 4 && strncmp (annex, "prev", 4) == 0)
5822 addrp = &lm_prev;
5823 else
5824 {
5825 annex = strchr (sep, ';');
5826 if (annex == NULL)
5827 break;
5828 annex++;
5829 continue;
5830 }
5831
5832 annex = decode_address_to_semicolon (addrp, sep + 1);
5833 }
5834
5835 if (lm_addr == 0)
5836 {
5837 int r_version = 0;
5838
5839 if (priv->r_debug == 0)
5840 priv->r_debug = get_r_debug (pid, is_elf64);
5841
5842 /* We failed to find DT_DEBUG. Such situation will not change
5843 for this inferior - do not retry it. Report it to GDB as
5844 E01, see for the reasons at the GDB solib-svr4.c side. */
5845 if (priv->r_debug == (CORE_ADDR) -1)
5846 return -1;
5847
5848 if (priv->r_debug != 0)
5849 {
5850 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5851 (unsigned char *) &r_version,
5852 sizeof (r_version)) != 0
5853 || r_version != 1)
5854 {
5855 warning ("unexpected r_debug version %d", r_version);
5856 }
5857 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5858 &lm_addr, ptr_size) != 0)
5859 {
5860 warning ("unable to read r_map from 0x%lx",
5861 (long) priv->r_debug + lmo->r_map_offset);
5862 }
5863 }
5864 }
5865
5866 document = xmalloc (allocated);
5867 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5868 p = document + strlen (document);
5869
5870 while (lm_addr
5871 && read_one_ptr (lm_addr + lmo->l_name_offset,
5872 &l_name, ptr_size) == 0
5873 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5874 &l_addr, ptr_size) == 0
5875 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5876 &l_ld, ptr_size) == 0
5877 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5878 &l_prev, ptr_size) == 0
5879 && read_one_ptr (lm_addr + lmo->l_next_offset,
5880 &l_next, ptr_size) == 0)
5881 {
5882 unsigned char libname[PATH_MAX];
5883
5884 if (lm_prev != l_prev)
5885 {
5886 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5887 (long) lm_prev, (long) l_prev);
5888 break;
5889 }
5890
5891 /* Ignore the first entry even if it has valid name as the first entry
5892 corresponds to the main executable. The first entry should not be
5893 skipped if the dynamic loader was loaded late by a static executable
5894 (see solib-svr4.c parameter ignore_first). But in such case the main
5895 executable does not have PT_DYNAMIC present and this function already
5896 exited above due to failed get_r_debug. */
5897 if (lm_prev == 0)
5898 {
5899 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5900 p = p + strlen (p);
5901 }
5902 else
5903 {
5904 /* Not checking for error because reading may stop before
5905 we've got PATH_MAX worth of characters. */
5906 libname[0] = '\0';
5907 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5908 libname[sizeof (libname) - 1] = '\0';
5909 if (libname[0] != '\0')
5910 {
5911 /* 6x the size for xml_escape_text below. */
5912 size_t len = 6 * strlen ((char *) libname);
5913 char *name;
5914
5915 if (!header_done)
5916 {
5917 /* Terminate `<library-list-svr4'. */
5918 *p++ = '>';
5919 header_done = 1;
5920 }
5921
5922 while (allocated < p - document + len + 200)
5923 {
5924 /* Expand to guarantee sufficient storage. */
5925 uintptr_t document_len = p - document;
5926
5927 document = xrealloc (document, 2 * allocated);
5928 allocated *= 2;
5929 p = document + document_len;
5930 }
5931
5932 name = xml_escape_text ((char *) libname);
5933 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5934 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5935 name, (unsigned long) lm_addr,
5936 (unsigned long) l_addr, (unsigned long) l_ld);
5937 free (name);
5938 }
5939 }
5940
5941 lm_prev = lm_addr;
5942 lm_addr = l_next;
5943 }
5944
5945 if (!header_done)
5946 {
5947 /* Empty list; terminate `<library-list-svr4'. */
5948 strcpy (p, "/>");
5949 }
5950 else
5951 strcpy (p, "</library-list-svr4>");
5952
5953 document_len = strlen (document);
5954 if (offset < document_len)
5955 document_len -= offset;
5956 else
5957 document_len = 0;
5958 if (len > document_len)
5959 len = document_len;
5960
5961 memcpy (readbuf, document + offset, len);
5962 xfree (document);
5963
5964 return len;
5965 }
5966
5967 #ifdef HAVE_LINUX_BTRACE
5968
5969 /* See to_enable_btrace target method. */
5970
5971 static struct btrace_target_info *
5972 linux_low_enable_btrace (ptid_t ptid)
5973 {
5974 struct btrace_target_info *tinfo;
5975
5976 tinfo = linux_enable_btrace (ptid);
5977
5978 if (tinfo != NULL)
5979 {
5980 struct thread_info *thread = find_thread_ptid (ptid);
5981 struct regcache *regcache = get_thread_regcache (thread, 0);
5982
5983 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
5984 }
5985
5986 return tinfo;
5987 }
5988
5989 /* See to_disable_btrace target method. */
5990
5991 static int
5992 linux_low_disable_btrace (struct btrace_target_info *tinfo)
5993 {
5994 enum btrace_error err;
5995
5996 err = linux_disable_btrace (tinfo);
5997 return (err == BTRACE_ERR_NONE ? 0 : -1);
5998 }
5999
6000 /* See to_read_btrace target method. */
6001
6002 static int
6003 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
6004 int type)
6005 {
6006 VEC (btrace_block_s) *btrace;
6007 struct btrace_block *block;
6008 enum btrace_error err;
6009 int i;
6010
6011 btrace = NULL;
6012 err = linux_read_btrace (&btrace, tinfo, type);
6013 if (err != BTRACE_ERR_NONE)
6014 {
6015 if (err == BTRACE_ERR_OVERFLOW)
6016 buffer_grow_str0 (buffer, "E.Overflow.");
6017 else
6018 buffer_grow_str0 (buffer, "E.Generic Error.");
6019
6020 return -1;
6021 }
6022
6023 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6024 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6025
6026 for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
6027 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6028 paddress (block->begin), paddress (block->end));
6029
6030 buffer_grow_str0 (buffer, "</btrace>\n");
6031
6032 VEC_free (btrace_block_s, btrace);
6033
6034 return 0;
6035 }
6036 #endif /* HAVE_LINUX_BTRACE */
6037
6038 static struct target_ops linux_target_ops = {
6039 linux_create_inferior,
6040 linux_attach,
6041 linux_kill,
6042 linux_detach,
6043 linux_mourn,
6044 linux_join,
6045 linux_thread_alive,
6046 linux_resume,
6047 linux_wait,
6048 linux_fetch_registers,
6049 linux_store_registers,
6050 linux_prepare_to_access_memory,
6051 linux_done_accessing_memory,
6052 linux_read_memory,
6053 linux_write_memory,
6054 linux_look_up_symbols,
6055 linux_request_interrupt,
6056 linux_read_auxv,
6057 linux_supports_z_point_type,
6058 linux_insert_point,
6059 linux_remove_point,
6060 linux_stopped_by_watchpoint,
6061 linux_stopped_data_address,
6062 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6063 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6064 && defined(PT_TEXT_END_ADDR)
6065 linux_read_offsets,
6066 #else
6067 NULL,
6068 #endif
6069 #ifdef USE_THREAD_DB
6070 thread_db_get_tls_address,
6071 #else
6072 NULL,
6073 #endif
6074 linux_qxfer_spu,
6075 hostio_last_error_from_errno,
6076 linux_qxfer_osdata,
6077 linux_xfer_siginfo,
6078 linux_supports_non_stop,
6079 linux_async,
6080 linux_start_non_stop,
6081 linux_supports_multi_process,
6082 #ifdef USE_THREAD_DB
6083 thread_db_handle_monitor_command,
6084 #else
6085 NULL,
6086 #endif
6087 linux_common_core_of_thread,
6088 linux_read_loadmap,
6089 linux_process_qsupported,
6090 linux_supports_tracepoints,
6091 linux_read_pc,
6092 linux_write_pc,
6093 linux_thread_stopped,
6094 NULL,
6095 linux_pause_all,
6096 linux_unpause_all,
6097 linux_cancel_breakpoints,
6098 linux_stabilize_threads,
6099 linux_install_fast_tracepoint_jump_pad,
6100 linux_emit_ops,
6101 linux_supports_disable_randomization,
6102 linux_get_min_fast_tracepoint_insn_len,
6103 linux_qxfer_libraries_svr4,
6104 linux_supports_agent,
6105 #ifdef HAVE_LINUX_BTRACE
6106 linux_supports_btrace,
6107 linux_low_enable_btrace,
6108 linux_low_disable_btrace,
6109 linux_low_read_btrace,
6110 #else
6111 NULL,
6112 NULL,
6113 NULL,
6114 NULL,
6115 #endif
6116 linux_supports_range_stepping,
6117 };
6118
6119 static void
6120 linux_init_signals ()
6121 {
6122 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6123 to find what the cancel signal actually is. */
6124 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6125 signal (__SIGRTMIN+1, SIG_IGN);
6126 #endif
6127 }
6128
6129 #ifdef HAVE_LINUX_REGSETS
6130 void
6131 initialize_regsets_info (struct regsets_info *info)
6132 {
6133 for (info->num_regsets = 0;
6134 info->regsets[info->num_regsets].size >= 0;
6135 info->num_regsets++)
6136 ;
6137 }
6138 #endif
6139
6140 void
6141 initialize_low (void)
6142 {
6143 struct sigaction sigchld_action;
6144 memset (&sigchld_action, 0, sizeof (sigchld_action));
6145 set_target_ops (&linux_target_ops);
6146 set_breakpoint_data (the_low_target.breakpoint,
6147 the_low_target.breakpoint_len);
6148 linux_init_signals ();
6149 linux_ptrace_init_warnings ();
6150
6151 sigchld_action.sa_handler = sigchld_handler;
6152 sigemptyset (&sigchld_action.sa_mask);
6153 sigchld_action.sa_flags = SA_RESTART;
6154 sigaction (SIGCHLD, &sigchld_action, NULL);
6155
6156 initialize_low_arch ();
6157 }
This page took 0.161079 seconds and 4 git commands to generate.