8f57ee3407cf7cb6698710bb0767b92a3f1d5d91
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-1996, 1998-2012 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "linux-osdata.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/param.h>
26 #include <sys/ptrace.h>
27 #include "linux-ptrace.h"
28 #include "linux-procfs.h"
29 #include <signal.h>
30 #include <sys/ioctl.h>
31 #include <fcntl.h>
32 #include <string.h>
33 #include <stdlib.h>
34 #include <unistd.h>
35 #include <errno.h>
36 #include <sys/syscall.h>
37 #include <sched.h>
38 #include <ctype.h>
39 #include <pwd.h>
40 #include <sys/types.h>
41 #include <dirent.h>
42 #include <sys/stat.h>
43 #include <sys/vfs.h>
44 #include <sys/uio.h>
45 #ifndef ELFMAG0
46 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
47 then ELFMAG0 will have been defined. If it didn't get included by
48 gdb_proc_service.h then including it will likely introduce a duplicate
49 definition of elf_fpregset_t. */
50 #include <elf.h>
51 #endif
52
53 #ifndef SPUFS_MAGIC
54 #define SPUFS_MAGIC 0x23c9b64e
55 #endif
56
57 #ifdef HAVE_PERSONALITY
58 # include <sys/personality.h>
59 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
60 # define ADDR_NO_RANDOMIZE 0x0040000
61 # endif
62 #endif
63
64 #ifndef O_LARGEFILE
65 #define O_LARGEFILE 0
66 #endif
67
68 #ifndef W_STOPCODE
69 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
70 #endif
71
72 /* This is the kernel's hard limit. Not to be confused with
73 SIGRTMIN. */
74 #ifndef __SIGRTMIN
75 #define __SIGRTMIN 32
76 #endif
77
78 #ifdef __UCLIBC__
79 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
80 #define HAS_NOMMU
81 #endif
82 #endif
83
84 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
85 representation of the thread ID.
86
87 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
88 the same as the LWP ID.
89
90 ``all_processes'' is keyed by the "overall process ID", which
91 GNU/Linux calls tgid, "thread group ID". */
92
93 struct inferior_list all_lwps;
94
95 /* A list of all unknown processes which receive stop signals. Some other
96 process will presumably claim each of these as forked children
97 momentarily. */
98
99 struct inferior_list stopped_pids;
100
101 /* FIXME this is a bit of a hack, and could be removed. */
102 int stopping_threads;
103
104 /* FIXME make into a target method? */
105 int using_threads = 1;
106
107 /* True if we're presently stabilizing threads (moving them out of
108 jump pads). */
109 static int stabilizing_threads;
110
111 /* This flag is true iff we've just created or attached to our first
112 inferior but it has not stopped yet. As soon as it does, we need
113 to call the low target's arch_setup callback. Doing this only on
114 the first inferior avoids reinializing the architecture on every
115 inferior, and avoids messing with the register caches of the
116 already running inferiors. NOTE: this assumes all inferiors under
117 control of gdbserver have the same architecture. */
118 static int new_inferior;
119
120 static void linux_resume_one_lwp (struct lwp_info *lwp,
121 int step, int signal, siginfo_t *info);
122 static void linux_resume (struct thread_resume *resume_info, size_t n);
123 static void stop_all_lwps (int suspend, struct lwp_info *except);
124 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
125 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
126 static void *add_lwp (ptid_t ptid);
127 static int linux_stopped_by_watchpoint (void);
128 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
129 static void proceed_all_lwps (void);
130 static int finish_step_over (struct lwp_info *lwp);
131 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
132 static int kill_lwp (unsigned long lwpid, int signo);
133 static void linux_enable_event_reporting (int pid);
134
135 /* True if the low target can hardware single-step. Such targets
136 don't need a BREAKPOINT_REINSERT_ADDR callback. */
137
138 static int
139 can_hardware_single_step (void)
140 {
141 return (the_low_target.breakpoint_reinsert_addr == NULL);
142 }
143
144 /* True if the low target supports memory breakpoints. If so, we'll
145 have a GET_PC implementation. */
146
147 static int
148 supports_breakpoints (void)
149 {
150 return (the_low_target.get_pc != NULL);
151 }
152
153 /* Returns true if this target can support fast tracepoints. This
154 does not mean that the in-process agent has been loaded in the
155 inferior. */
156
157 static int
158 supports_fast_tracepoints (void)
159 {
160 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
161 }
162
163 struct pending_signals
164 {
165 int signal;
166 siginfo_t info;
167 struct pending_signals *prev;
168 };
169
170 #define PTRACE_ARG3_TYPE void *
171 #define PTRACE_ARG4_TYPE void *
172 #define PTRACE_XFER_TYPE long
173
174 #ifdef HAVE_LINUX_REGSETS
175 static char *disabled_regsets;
176 static int num_regsets;
177 #endif
178
179 /* The read/write ends of the pipe registered as waitable file in the
180 event loop. */
181 static int linux_event_pipe[2] = { -1, -1 };
182
183 /* True if we're currently in async mode. */
184 #define target_is_async_p() (linux_event_pipe[0] != -1)
185
186 static void send_sigstop (struct lwp_info *lwp);
187 static void wait_for_sigstop (struct inferior_list_entry *entry);
188
189 /* Return non-zero if HEADER is a 64-bit ELF file. */
190
191 static int
192 elf_64_header_p (const Elf64_Ehdr *header)
193 {
194 return (header->e_ident[EI_MAG0] == ELFMAG0
195 && header->e_ident[EI_MAG1] == ELFMAG1
196 && header->e_ident[EI_MAG2] == ELFMAG2
197 && header->e_ident[EI_MAG3] == ELFMAG3
198 && header->e_ident[EI_CLASS] == ELFCLASS64);
199 }
200
201 /* Return non-zero if FILE is a 64-bit ELF file,
202 zero if the file is not a 64-bit ELF file,
203 and -1 if the file is not accessible or doesn't exist. */
204
205 static int
206 elf_64_file_p (const char *file)
207 {
208 Elf64_Ehdr header;
209 int fd;
210
211 fd = open (file, O_RDONLY);
212 if (fd < 0)
213 return -1;
214
215 if (read (fd, &header, sizeof (header)) != sizeof (header))
216 {
217 close (fd);
218 return 0;
219 }
220 close (fd);
221
222 return elf_64_header_p (&header);
223 }
224
225 /* Accepts an integer PID; Returns true if the executable PID is
226 running is a 64-bit ELF file.. */
227
228 int
229 linux_pid_exe_is_elf_64_file (int pid)
230 {
231 char file[MAXPATHLEN];
232
233 sprintf (file, "/proc/%d/exe", pid);
234 return elf_64_file_p (file);
235 }
236
237 static void
238 delete_lwp (struct lwp_info *lwp)
239 {
240 remove_thread (get_lwp_thread (lwp));
241 remove_inferior (&all_lwps, &lwp->head);
242 free (lwp->arch_private);
243 free (lwp);
244 }
245
246 /* Add a process to the common process list, and set its private
247 data. */
248
249 static struct process_info *
250 linux_add_process (int pid, int attached)
251 {
252 struct process_info *proc;
253
254 /* Is this the first process? If so, then set the arch. */
255 if (all_processes.head == NULL)
256 new_inferior = 1;
257
258 proc = add_process (pid, attached);
259 proc->private = xcalloc (1, sizeof (*proc->private));
260
261 if (the_low_target.new_process != NULL)
262 proc->private->arch_private = the_low_target.new_process ();
263
264 return proc;
265 }
266
267 /* Wrapper function for waitpid which handles EINTR, and emulates
268 __WALL for systems where that is not available. */
269
270 static int
271 my_waitpid (int pid, int *status, int flags)
272 {
273 int ret, out_errno;
274
275 if (debug_threads)
276 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
277
278 if (flags & __WALL)
279 {
280 sigset_t block_mask, org_mask, wake_mask;
281 int wnohang;
282
283 wnohang = (flags & WNOHANG) != 0;
284 flags &= ~(__WALL | __WCLONE);
285 flags |= WNOHANG;
286
287 /* Block all signals while here. This avoids knowing about
288 LinuxThread's signals. */
289 sigfillset (&block_mask);
290 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
291
292 /* ... except during the sigsuspend below. */
293 sigemptyset (&wake_mask);
294
295 while (1)
296 {
297 /* Since all signals are blocked, there's no need to check
298 for EINTR here. */
299 ret = waitpid (pid, status, flags);
300 out_errno = errno;
301
302 if (ret == -1 && out_errno != ECHILD)
303 break;
304 else if (ret > 0)
305 break;
306
307 if (flags & __WCLONE)
308 {
309 /* We've tried both flavors now. If WNOHANG is set,
310 there's nothing else to do, just bail out. */
311 if (wnohang)
312 break;
313
314 if (debug_threads)
315 fprintf (stderr, "blocking\n");
316
317 /* Block waiting for signals. */
318 sigsuspend (&wake_mask);
319 }
320
321 flags ^= __WCLONE;
322 }
323
324 sigprocmask (SIG_SETMASK, &org_mask, NULL);
325 }
326 else
327 {
328 do
329 ret = waitpid (pid, status, flags);
330 while (ret == -1 && errno == EINTR);
331 out_errno = errno;
332 }
333
334 if (debug_threads)
335 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
336 pid, flags, status ? *status : -1, ret);
337
338 errno = out_errno;
339 return ret;
340 }
341
342 /* Handle a GNU/Linux extended wait response. If we see a clone
343 event, we need to add the new LWP to our list (and not report the
344 trap to higher layers). */
345
346 static void
347 handle_extended_wait (struct lwp_info *event_child, int wstat)
348 {
349 int event = wstat >> 16;
350 struct lwp_info *new_lwp;
351
352 if (event == PTRACE_EVENT_CLONE)
353 {
354 ptid_t ptid;
355 unsigned long new_pid;
356 int ret, status = W_STOPCODE (SIGSTOP);
357
358 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), 0, &new_pid);
359
360 /* If we haven't already seen the new PID stop, wait for it now. */
361 if (! pull_pid_from_list (&stopped_pids, new_pid))
362 {
363 /* The new child has a pending SIGSTOP. We can't affect it until it
364 hits the SIGSTOP, but we're already attached. */
365
366 ret = my_waitpid (new_pid, &status, __WALL);
367
368 if (ret == -1)
369 perror_with_name ("waiting for new child");
370 else if (ret != new_pid)
371 warning ("wait returned unexpected PID %d", ret);
372 else if (!WIFSTOPPED (status))
373 warning ("wait returned unexpected status 0x%x", status);
374 }
375
376 linux_enable_event_reporting (new_pid);
377
378 ptid = ptid_build (pid_of (event_child), new_pid, 0);
379 new_lwp = (struct lwp_info *) add_lwp (ptid);
380 add_thread (ptid, new_lwp);
381
382 /* Either we're going to immediately resume the new thread
383 or leave it stopped. linux_resume_one_lwp is a nop if it
384 thinks the thread is currently running, so set this first
385 before calling linux_resume_one_lwp. */
386 new_lwp->stopped = 1;
387
388 /* Normally we will get the pending SIGSTOP. But in some cases
389 we might get another signal delivered to the group first.
390 If we do get another signal, be sure not to lose it. */
391 if (WSTOPSIG (status) == SIGSTOP)
392 {
393 if (stopping_threads)
394 new_lwp->stop_pc = get_stop_pc (new_lwp);
395 else
396 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
397 }
398 else
399 {
400 new_lwp->stop_expected = 1;
401
402 if (stopping_threads)
403 {
404 new_lwp->stop_pc = get_stop_pc (new_lwp);
405 new_lwp->status_pending_p = 1;
406 new_lwp->status_pending = status;
407 }
408 else
409 /* Pass the signal on. This is what GDB does - except
410 shouldn't we really report it instead? */
411 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
412 }
413
414 /* Always resume the current thread. If we are stopping
415 threads, it will have a pending SIGSTOP; we may as well
416 collect it now. */
417 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
418 }
419 }
420
421 /* Return the PC as read from the regcache of LWP, without any
422 adjustment. */
423
424 static CORE_ADDR
425 get_pc (struct lwp_info *lwp)
426 {
427 struct thread_info *saved_inferior;
428 struct regcache *regcache;
429 CORE_ADDR pc;
430
431 if (the_low_target.get_pc == NULL)
432 return 0;
433
434 saved_inferior = current_inferior;
435 current_inferior = get_lwp_thread (lwp);
436
437 regcache = get_thread_regcache (current_inferior, 1);
438 pc = (*the_low_target.get_pc) (regcache);
439
440 if (debug_threads)
441 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
442
443 current_inferior = saved_inferior;
444 return pc;
445 }
446
447 /* This function should only be called if LWP got a SIGTRAP.
448 The SIGTRAP could mean several things.
449
450 On i386, where decr_pc_after_break is non-zero:
451 If we were single-stepping this process using PTRACE_SINGLESTEP,
452 we will get only the one SIGTRAP (even if the instruction we
453 stepped over was a breakpoint). The value of $eip will be the
454 next instruction.
455 If we continue the process using PTRACE_CONT, we will get a
456 SIGTRAP when we hit a breakpoint. The value of $eip will be
457 the instruction after the breakpoint (i.e. needs to be
458 decremented). If we report the SIGTRAP to GDB, we must also
459 report the undecremented PC. If we cancel the SIGTRAP, we
460 must resume at the decremented PC.
461
462 (Presumably, not yet tested) On a non-decr_pc_after_break machine
463 with hardware or kernel single-step:
464 If we single-step over a breakpoint instruction, our PC will
465 point at the following instruction. If we continue and hit a
466 breakpoint instruction, our PC will point at the breakpoint
467 instruction. */
468
469 static CORE_ADDR
470 get_stop_pc (struct lwp_info *lwp)
471 {
472 CORE_ADDR stop_pc;
473
474 if (the_low_target.get_pc == NULL)
475 return 0;
476
477 stop_pc = get_pc (lwp);
478
479 if (WSTOPSIG (lwp->last_status) == SIGTRAP
480 && !lwp->stepping
481 && !lwp->stopped_by_watchpoint
482 && lwp->last_status >> 16 == 0)
483 stop_pc -= the_low_target.decr_pc_after_break;
484
485 if (debug_threads)
486 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
487
488 return stop_pc;
489 }
490
491 static void *
492 add_lwp (ptid_t ptid)
493 {
494 struct lwp_info *lwp;
495
496 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
497 memset (lwp, 0, sizeof (*lwp));
498
499 lwp->head.id = ptid;
500
501 if (the_low_target.new_thread != NULL)
502 lwp->arch_private = the_low_target.new_thread ();
503
504 add_inferior_to_list (&all_lwps, &lwp->head);
505
506 return lwp;
507 }
508
509 /* Start an inferior process and returns its pid.
510 ALLARGS is a vector of program-name and args. */
511
512 static int
513 linux_create_inferior (char *program, char **allargs)
514 {
515 #ifdef HAVE_PERSONALITY
516 int personality_orig = 0, personality_set = 0;
517 #endif
518 struct lwp_info *new_lwp;
519 int pid;
520 ptid_t ptid;
521
522 #ifdef HAVE_PERSONALITY
523 if (disable_randomization)
524 {
525 errno = 0;
526 personality_orig = personality (0xffffffff);
527 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
528 {
529 personality_set = 1;
530 personality (personality_orig | ADDR_NO_RANDOMIZE);
531 }
532 if (errno != 0 || (personality_set
533 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
534 warning ("Error disabling address space randomization: %s",
535 strerror (errno));
536 }
537 #endif
538
539 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
540 pid = vfork ();
541 #else
542 pid = fork ();
543 #endif
544 if (pid < 0)
545 perror_with_name ("fork");
546
547 if (pid == 0)
548 {
549 ptrace (PTRACE_TRACEME, 0, 0, 0);
550
551 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
552 signal (__SIGRTMIN + 1, SIG_DFL);
553 #endif
554
555 setpgid (0, 0);
556
557 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
558 stdout to stderr so that inferior i/o doesn't corrupt the connection.
559 Also, redirect stdin to /dev/null. */
560 if (remote_connection_is_stdio ())
561 {
562 close (0);
563 open ("/dev/null", O_RDONLY);
564 dup2 (2, 1);
565 if (write (2, "stdin/stdout redirected\n",
566 sizeof ("stdin/stdout redirected\n") - 1) < 0)
567 /* Errors ignored. */;
568 }
569
570 execv (program, allargs);
571 if (errno == ENOENT)
572 execvp (program, allargs);
573
574 fprintf (stderr, "Cannot exec %s: %s.\n", program,
575 strerror (errno));
576 fflush (stderr);
577 _exit (0177);
578 }
579
580 #ifdef HAVE_PERSONALITY
581 if (personality_set)
582 {
583 errno = 0;
584 personality (personality_orig);
585 if (errno != 0)
586 warning ("Error restoring address space randomization: %s",
587 strerror (errno));
588 }
589 #endif
590
591 linux_add_process (pid, 0);
592
593 ptid = ptid_build (pid, pid, 0);
594 new_lwp = add_lwp (ptid);
595 add_thread (ptid, new_lwp);
596 new_lwp->must_set_ptrace_flags = 1;
597
598 return pid;
599 }
600
601 /* Attach to an inferior process. */
602
603 static void
604 linux_attach_lwp_1 (unsigned long lwpid, int initial)
605 {
606 ptid_t ptid;
607 struct lwp_info *new_lwp;
608
609 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) != 0)
610 {
611 if (!initial)
612 {
613 /* If we fail to attach to an LWP, just warn. */
614 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
615 strerror (errno), errno);
616 fflush (stderr);
617 return;
618 }
619 else
620 /* If we fail to attach to a process, report an error. */
621 error ("Cannot attach to lwp %ld: %s (%d)\n", lwpid,
622 strerror (errno), errno);
623 }
624
625 if (initial)
626 /* If lwp is the tgid, we handle adding existing threads later.
627 Otherwise we just add lwp without bothering about any other
628 threads. */
629 ptid = ptid_build (lwpid, lwpid, 0);
630 else
631 {
632 /* Note that extracting the pid from the current inferior is
633 safe, since we're always called in the context of the same
634 process as this new thread. */
635 int pid = pid_of (get_thread_lwp (current_inferior));
636 ptid = ptid_build (pid, lwpid, 0);
637 }
638
639 new_lwp = (struct lwp_info *) add_lwp (ptid);
640 add_thread (ptid, new_lwp);
641
642 /* We need to wait for SIGSTOP before being able to make the next
643 ptrace call on this LWP. */
644 new_lwp->must_set_ptrace_flags = 1;
645
646 if (linux_proc_pid_is_stopped (lwpid))
647 {
648 if (debug_threads)
649 fprintf (stderr,
650 "Attached to a stopped process\n");
651
652 /* The process is definitely stopped. It is in a job control
653 stop, unless the kernel predates the TASK_STOPPED /
654 TASK_TRACED distinction, in which case it might be in a
655 ptrace stop. Make sure it is in a ptrace stop; from there we
656 can kill it, signal it, et cetera.
657
658 First make sure there is a pending SIGSTOP. Since we are
659 already attached, the process can not transition from stopped
660 to running without a PTRACE_CONT; so we know this signal will
661 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
662 probably already in the queue (unless this kernel is old
663 enough to use TASK_STOPPED for ptrace stops); but since
664 SIGSTOP is not an RT signal, it can only be queued once. */
665 kill_lwp (lwpid, SIGSTOP);
666
667 /* Finally, resume the stopped process. This will deliver the
668 SIGSTOP (or a higher priority signal, just like normal
669 PTRACE_ATTACH), which we'll catch later on. */
670 ptrace (PTRACE_CONT, lwpid, 0, 0);
671 }
672
673 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
674 brings it to a halt.
675
676 There are several cases to consider here:
677
678 1) gdbserver has already attached to the process and is being notified
679 of a new thread that is being created.
680 In this case we should ignore that SIGSTOP and resume the
681 process. This is handled below by setting stop_expected = 1,
682 and the fact that add_thread sets last_resume_kind ==
683 resume_continue.
684
685 2) This is the first thread (the process thread), and we're attaching
686 to it via attach_inferior.
687 In this case we want the process thread to stop.
688 This is handled by having linux_attach set last_resume_kind ==
689 resume_stop after we return.
690
691 If the pid we are attaching to is also the tgid, we attach to and
692 stop all the existing threads. Otherwise, we attach to pid and
693 ignore any other threads in the same group as this pid.
694
695 3) GDB is connecting to gdbserver and is requesting an enumeration of all
696 existing threads.
697 In this case we want the thread to stop.
698 FIXME: This case is currently not properly handled.
699 We should wait for the SIGSTOP but don't. Things work apparently
700 because enough time passes between when we ptrace (ATTACH) and when
701 gdb makes the next ptrace call on the thread.
702
703 On the other hand, if we are currently trying to stop all threads, we
704 should treat the new thread as if we had sent it a SIGSTOP. This works
705 because we are guaranteed that the add_lwp call above added us to the
706 end of the list, and so the new thread has not yet reached
707 wait_for_sigstop (but will). */
708 new_lwp->stop_expected = 1;
709 }
710
711 void
712 linux_attach_lwp (unsigned long lwpid)
713 {
714 linux_attach_lwp_1 (lwpid, 0);
715 }
716
717 /* Attach to PID. If PID is the tgid, attach to it and all
718 of its threads. */
719
720 int
721 linux_attach (unsigned long pid)
722 {
723 /* Attach to PID. We will check for other threads
724 soon. */
725 linux_attach_lwp_1 (pid, 1);
726 linux_add_process (pid, 1);
727
728 if (!non_stop)
729 {
730 struct thread_info *thread;
731
732 /* Don't ignore the initial SIGSTOP if we just attached to this
733 process. It will be collected by wait shortly. */
734 thread = find_thread_ptid (ptid_build (pid, pid, 0));
735 thread->last_resume_kind = resume_stop;
736 }
737
738 if (linux_proc_get_tgid (pid) == pid)
739 {
740 DIR *dir;
741 char pathname[128];
742
743 sprintf (pathname, "/proc/%ld/task", pid);
744
745 dir = opendir (pathname);
746
747 if (!dir)
748 {
749 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
750 fflush (stderr);
751 }
752 else
753 {
754 /* At this point we attached to the tgid. Scan the task for
755 existing threads. */
756 unsigned long lwp;
757 int new_threads_found;
758 int iterations = 0;
759 struct dirent *dp;
760
761 while (iterations < 2)
762 {
763 new_threads_found = 0;
764 /* Add all the other threads. While we go through the
765 threads, new threads may be spawned. Cycle through
766 the list of threads until we have done two iterations without
767 finding new threads. */
768 while ((dp = readdir (dir)) != NULL)
769 {
770 /* Fetch one lwp. */
771 lwp = strtoul (dp->d_name, NULL, 10);
772
773 /* Is this a new thread? */
774 if (lwp
775 && find_thread_ptid (ptid_build (pid, lwp, 0)) == NULL)
776 {
777 linux_attach_lwp_1 (lwp, 0);
778 new_threads_found++;
779
780 if (debug_threads)
781 fprintf (stderr, "\
782 Found and attached to new lwp %ld\n", lwp);
783 }
784 }
785
786 if (!new_threads_found)
787 iterations++;
788 else
789 iterations = 0;
790
791 rewinddir (dir);
792 }
793 closedir (dir);
794 }
795 }
796
797 return 0;
798 }
799
800 struct counter
801 {
802 int pid;
803 int count;
804 };
805
806 static int
807 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
808 {
809 struct counter *counter = args;
810
811 if (ptid_get_pid (entry->id) == counter->pid)
812 {
813 if (++counter->count > 1)
814 return 1;
815 }
816
817 return 0;
818 }
819
820 static int
821 last_thread_of_process_p (struct thread_info *thread)
822 {
823 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
824 int pid = ptid_get_pid (ptid);
825 struct counter counter = { pid , 0 };
826
827 return (find_inferior (&all_threads,
828 second_thread_of_pid_p, &counter) == NULL);
829 }
830
831 /* Kill LWP. */
832
833 static void
834 linux_kill_one_lwp (struct lwp_info *lwp)
835 {
836 int pid = lwpid_of (lwp);
837
838 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
839 there is no signal context, and ptrace(PTRACE_KILL) (or
840 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
841 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
842 alternative is to kill with SIGKILL. We only need one SIGKILL
843 per process, not one for each thread. But since we still support
844 linuxthreads, and we also support debugging programs using raw
845 clone without CLONE_THREAD, we send one for each thread. For
846 years, we used PTRACE_KILL only, so we're being a bit paranoid
847 about some old kernels where PTRACE_KILL might work better
848 (dubious if there are any such, but that's why it's paranoia), so
849 we try SIGKILL first, PTRACE_KILL second, and so we're fine
850 everywhere. */
851
852 errno = 0;
853 kill (pid, SIGKILL);
854 if (debug_threads)
855 fprintf (stderr,
856 "LKL: kill (SIGKILL) %s, 0, 0 (%s)\n",
857 target_pid_to_str (ptid_of (lwp)),
858 errno ? strerror (errno) : "OK");
859
860 errno = 0;
861 ptrace (PTRACE_KILL, pid, 0, 0);
862 if (debug_threads)
863 fprintf (stderr,
864 "LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
865 target_pid_to_str (ptid_of (lwp)),
866 errno ? strerror (errno) : "OK");
867 }
868
869 /* Callback for `find_inferior'. Kills an lwp of a given process,
870 except the leader. */
871
872 static int
873 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
874 {
875 struct thread_info *thread = (struct thread_info *) entry;
876 struct lwp_info *lwp = get_thread_lwp (thread);
877 int wstat;
878 int pid = * (int *) args;
879
880 if (ptid_get_pid (entry->id) != pid)
881 return 0;
882
883 /* We avoid killing the first thread here, because of a Linux kernel (at
884 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
885 the children get a chance to be reaped, it will remain a zombie
886 forever. */
887
888 if (lwpid_of (lwp) == pid)
889 {
890 if (debug_threads)
891 fprintf (stderr, "lkop: is last of process %s\n",
892 target_pid_to_str (entry->id));
893 return 0;
894 }
895
896 do
897 {
898 linux_kill_one_lwp (lwp);
899
900 /* Make sure it died. The loop is most likely unnecessary. */
901 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
902 } while (pid > 0 && WIFSTOPPED (wstat));
903
904 return 0;
905 }
906
907 static int
908 linux_kill (int pid)
909 {
910 struct process_info *process;
911 struct lwp_info *lwp;
912 int wstat;
913 int lwpid;
914
915 process = find_process_pid (pid);
916 if (process == NULL)
917 return -1;
918
919 /* If we're killing a running inferior, make sure it is stopped
920 first, as PTRACE_KILL will not work otherwise. */
921 stop_all_lwps (0, NULL);
922
923 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
924
925 /* See the comment in linux_kill_one_lwp. We did not kill the first
926 thread in the list, so do so now. */
927 lwp = find_lwp_pid (pid_to_ptid (pid));
928
929 if (lwp == NULL)
930 {
931 if (debug_threads)
932 fprintf (stderr, "lk_1: cannot find lwp %ld, for pid: %d\n",
933 lwpid_of (lwp), pid);
934 }
935 else
936 {
937 if (debug_threads)
938 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
939 lwpid_of (lwp), pid);
940
941 do
942 {
943 linux_kill_one_lwp (lwp);
944
945 /* Make sure it died. The loop is most likely unnecessary. */
946 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
947 } while (lwpid > 0 && WIFSTOPPED (wstat));
948 }
949
950 the_target->mourn (process);
951
952 /* Since we presently can only stop all lwps of all processes, we
953 need to unstop lwps of other processes. */
954 unstop_all_lwps (0, NULL);
955 return 0;
956 }
957
958 static int
959 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
960 {
961 struct thread_info *thread = (struct thread_info *) entry;
962 struct lwp_info *lwp = get_thread_lwp (thread);
963 int pid = * (int *) args;
964
965 if (ptid_get_pid (entry->id) != pid)
966 return 0;
967
968 /* If this process is stopped but is expecting a SIGSTOP, then make
969 sure we take care of that now. This isn't absolutely guaranteed
970 to collect the SIGSTOP, but is fairly likely to. */
971 if (lwp->stop_expected)
972 {
973 int wstat;
974 /* Clear stop_expected, so that the SIGSTOP will be reported. */
975 lwp->stop_expected = 0;
976 linux_resume_one_lwp (lwp, 0, 0, NULL);
977 linux_wait_for_event (lwp->head.id, &wstat, __WALL);
978 }
979
980 /* Flush any pending changes to the process's registers. */
981 regcache_invalidate_one ((struct inferior_list_entry *)
982 get_lwp_thread (lwp));
983
984 /* Finally, let it resume. */
985 if (the_low_target.prepare_to_resume != NULL)
986 the_low_target.prepare_to_resume (lwp);
987 ptrace (PTRACE_DETACH, lwpid_of (lwp), 0, 0);
988
989 delete_lwp (lwp);
990 return 0;
991 }
992
993 static int
994 linux_detach (int pid)
995 {
996 struct process_info *process;
997
998 process = find_process_pid (pid);
999 if (process == NULL)
1000 return -1;
1001
1002 /* Stop all threads before detaching. First, ptrace requires that
1003 the thread is stopped to sucessfully detach. Second, thread_db
1004 may need to uninstall thread event breakpoints from memory, which
1005 only works with a stopped process anyway. */
1006 stop_all_lwps (0, NULL);
1007
1008 #ifdef USE_THREAD_DB
1009 thread_db_detach (process);
1010 #endif
1011
1012 /* Stabilize threads (move out of jump pads). */
1013 stabilize_threads ();
1014
1015 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1016
1017 the_target->mourn (process);
1018
1019 /* Since we presently can only stop all lwps of all processes, we
1020 need to unstop lwps of other processes. */
1021 unstop_all_lwps (0, NULL);
1022 return 0;
1023 }
1024
1025 /* Remove all LWPs that belong to process PROC from the lwp list. */
1026
1027 static int
1028 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1029 {
1030 struct lwp_info *lwp = (struct lwp_info *) entry;
1031 struct process_info *process = proc;
1032
1033 if (pid_of (lwp) == pid_of (process))
1034 delete_lwp (lwp);
1035
1036 return 0;
1037 }
1038
1039 static void
1040 linux_mourn (struct process_info *process)
1041 {
1042 struct process_info_private *priv;
1043
1044 #ifdef USE_THREAD_DB
1045 thread_db_mourn (process);
1046 #endif
1047
1048 find_inferior (&all_lwps, delete_lwp_callback, process);
1049
1050 /* Freeing all private data. */
1051 priv = process->private;
1052 free (priv->arch_private);
1053 free (priv);
1054 process->private = NULL;
1055
1056 remove_process (process);
1057 }
1058
1059 static void
1060 linux_join (int pid)
1061 {
1062 int status, ret;
1063
1064 do {
1065 ret = my_waitpid (pid, &status, 0);
1066 if (WIFEXITED (status) || WIFSIGNALED (status))
1067 break;
1068 } while (ret != -1 || errno != ECHILD);
1069 }
1070
1071 /* Return nonzero if the given thread is still alive. */
1072 static int
1073 linux_thread_alive (ptid_t ptid)
1074 {
1075 struct lwp_info *lwp = find_lwp_pid (ptid);
1076
1077 /* We assume we always know if a thread exits. If a whole process
1078 exited but we still haven't been able to report it to GDB, we'll
1079 hold on to the last lwp of the dead process. */
1080 if (lwp != NULL)
1081 return !lwp->dead;
1082 else
1083 return 0;
1084 }
1085
1086 /* Return 1 if this lwp has an interesting status pending. */
1087 static int
1088 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1089 {
1090 struct lwp_info *lwp = (struct lwp_info *) entry;
1091 ptid_t ptid = * (ptid_t *) arg;
1092 struct thread_info *thread;
1093
1094 /* Check if we're only interested in events from a specific process
1095 or its lwps. */
1096 if (!ptid_equal (minus_one_ptid, ptid)
1097 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
1098 return 0;
1099
1100 thread = get_lwp_thread (lwp);
1101
1102 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1103 report any status pending the LWP may have. */
1104 if (thread->last_resume_kind == resume_stop
1105 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1106 return 0;
1107
1108 return lwp->status_pending_p;
1109 }
1110
1111 static int
1112 same_lwp (struct inferior_list_entry *entry, void *data)
1113 {
1114 ptid_t ptid = *(ptid_t *) data;
1115 int lwp;
1116
1117 if (ptid_get_lwp (ptid) != 0)
1118 lwp = ptid_get_lwp (ptid);
1119 else
1120 lwp = ptid_get_pid (ptid);
1121
1122 if (ptid_get_lwp (entry->id) == lwp)
1123 return 1;
1124
1125 return 0;
1126 }
1127
1128 struct lwp_info *
1129 find_lwp_pid (ptid_t ptid)
1130 {
1131 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
1132 }
1133
1134 static struct lwp_info *
1135 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
1136 {
1137 int ret;
1138 int to_wait_for = -1;
1139 struct lwp_info *child = NULL;
1140
1141 if (debug_threads)
1142 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
1143
1144 if (ptid_equal (ptid, minus_one_ptid))
1145 to_wait_for = -1; /* any child */
1146 else
1147 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1148
1149 options |= __WALL;
1150
1151 retry:
1152
1153 ret = my_waitpid (to_wait_for, wstatp, options);
1154 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1155 return NULL;
1156 else if (ret == -1)
1157 perror_with_name ("waitpid");
1158
1159 if (debug_threads
1160 && (!WIFSTOPPED (*wstatp)
1161 || (WSTOPSIG (*wstatp) != 32
1162 && WSTOPSIG (*wstatp) != 33)))
1163 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1164
1165 child = find_lwp_pid (pid_to_ptid (ret));
1166
1167 /* If we didn't find a process, one of two things presumably happened:
1168 - A process we started and then detached from has exited. Ignore it.
1169 - A process we are controlling has forked and the new child's stop
1170 was reported to us by the kernel. Save its PID. */
1171 if (child == NULL && WIFSTOPPED (*wstatp))
1172 {
1173 add_pid_to_list (&stopped_pids, ret);
1174 goto retry;
1175 }
1176 else if (child == NULL)
1177 goto retry;
1178
1179 child->stopped = 1;
1180
1181 child->last_status = *wstatp;
1182
1183 /* Architecture-specific setup after inferior is running.
1184 This needs to happen after we have attached to the inferior
1185 and it is stopped for the first time, but before we access
1186 any inferior registers. */
1187 if (new_inferior)
1188 {
1189 the_low_target.arch_setup ();
1190 #ifdef HAVE_LINUX_REGSETS
1191 memset (disabled_regsets, 0, num_regsets);
1192 #endif
1193 new_inferior = 0;
1194 }
1195
1196 /* Fetch the possibly triggered data watchpoint info and store it in
1197 CHILD.
1198
1199 On some archs, like x86, that use debug registers to set
1200 watchpoints, it's possible that the way to know which watched
1201 address trapped, is to check the register that is used to select
1202 which address to watch. Problem is, between setting the
1203 watchpoint and reading back which data address trapped, the user
1204 may change the set of watchpoints, and, as a consequence, GDB
1205 changes the debug registers in the inferior. To avoid reading
1206 back a stale stopped-data-address when that happens, we cache in
1207 LP the fact that a watchpoint trapped, and the corresponding data
1208 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1209 changes the debug registers meanwhile, we have the cached data we
1210 can rely on. */
1211
1212 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1213 {
1214 if (the_low_target.stopped_by_watchpoint == NULL)
1215 {
1216 child->stopped_by_watchpoint = 0;
1217 }
1218 else
1219 {
1220 struct thread_info *saved_inferior;
1221
1222 saved_inferior = current_inferior;
1223 current_inferior = get_lwp_thread (child);
1224
1225 child->stopped_by_watchpoint
1226 = the_low_target.stopped_by_watchpoint ();
1227
1228 if (child->stopped_by_watchpoint)
1229 {
1230 if (the_low_target.stopped_data_address != NULL)
1231 child->stopped_data_address
1232 = the_low_target.stopped_data_address ();
1233 else
1234 child->stopped_data_address = 0;
1235 }
1236
1237 current_inferior = saved_inferior;
1238 }
1239 }
1240
1241 /* Store the STOP_PC, with adjustment applied. This depends on the
1242 architecture being defined already (so that CHILD has a valid
1243 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1244 not). */
1245 if (WIFSTOPPED (*wstatp))
1246 child->stop_pc = get_stop_pc (child);
1247
1248 if (debug_threads
1249 && WIFSTOPPED (*wstatp)
1250 && the_low_target.get_pc != NULL)
1251 {
1252 struct thread_info *saved_inferior = current_inferior;
1253 struct regcache *regcache;
1254 CORE_ADDR pc;
1255
1256 current_inferior = get_lwp_thread (child);
1257 regcache = get_thread_regcache (current_inferior, 1);
1258 pc = (*the_low_target.get_pc) (regcache);
1259 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1260 current_inferior = saved_inferior;
1261 }
1262
1263 return child;
1264 }
1265
1266 /* This function should only be called if the LWP got a SIGTRAP.
1267
1268 Handle any tracepoint steps or hits. Return true if a tracepoint
1269 event was handled, 0 otherwise. */
1270
1271 static int
1272 handle_tracepoints (struct lwp_info *lwp)
1273 {
1274 struct thread_info *tinfo = get_lwp_thread (lwp);
1275 int tpoint_related_event = 0;
1276
1277 /* If this tracepoint hit causes a tracing stop, we'll immediately
1278 uninsert tracepoints. To do this, we temporarily pause all
1279 threads, unpatch away, and then unpause threads. We need to make
1280 sure the unpausing doesn't resume LWP too. */
1281 lwp->suspended++;
1282
1283 /* And we need to be sure that any all-threads-stopping doesn't try
1284 to move threads out of the jump pads, as it could deadlock the
1285 inferior (LWP could be in the jump pad, maybe even holding the
1286 lock.) */
1287
1288 /* Do any necessary step collect actions. */
1289 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1290
1291 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1292
1293 /* See if we just hit a tracepoint and do its main collect
1294 actions. */
1295 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1296
1297 lwp->suspended--;
1298
1299 gdb_assert (lwp->suspended == 0);
1300 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1301
1302 if (tpoint_related_event)
1303 {
1304 if (debug_threads)
1305 fprintf (stderr, "got a tracepoint event\n");
1306 return 1;
1307 }
1308
1309 return 0;
1310 }
1311
1312 /* Convenience wrapper. Returns true if LWP is presently collecting a
1313 fast tracepoint. */
1314
1315 static int
1316 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1317 struct fast_tpoint_collect_status *status)
1318 {
1319 CORE_ADDR thread_area;
1320
1321 if (the_low_target.get_thread_area == NULL)
1322 return 0;
1323
1324 /* Get the thread area address. This is used to recognize which
1325 thread is which when tracing with the in-process agent library.
1326 We don't read anything from the address, and treat it as opaque;
1327 it's the address itself that we assume is unique per-thread. */
1328 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1329 return 0;
1330
1331 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1332 }
1333
1334 /* The reason we resume in the caller, is because we want to be able
1335 to pass lwp->status_pending as WSTAT, and we need to clear
1336 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1337 refuses to resume. */
1338
1339 static int
1340 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1341 {
1342 struct thread_info *saved_inferior;
1343
1344 saved_inferior = current_inferior;
1345 current_inferior = get_lwp_thread (lwp);
1346
1347 if ((wstat == NULL
1348 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1349 && supports_fast_tracepoints ()
1350 && in_process_agent_loaded ())
1351 {
1352 struct fast_tpoint_collect_status status;
1353 int r;
1354
1355 if (debug_threads)
1356 fprintf (stderr, "\
1357 Checking whether LWP %ld needs to move out of the jump pad.\n",
1358 lwpid_of (lwp));
1359
1360 r = linux_fast_tracepoint_collecting (lwp, &status);
1361
1362 if (wstat == NULL
1363 || (WSTOPSIG (*wstat) != SIGILL
1364 && WSTOPSIG (*wstat) != SIGFPE
1365 && WSTOPSIG (*wstat) != SIGSEGV
1366 && WSTOPSIG (*wstat) != SIGBUS))
1367 {
1368 lwp->collecting_fast_tracepoint = r;
1369
1370 if (r != 0)
1371 {
1372 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1373 {
1374 /* Haven't executed the original instruction yet.
1375 Set breakpoint there, and wait till it's hit,
1376 then single-step until exiting the jump pad. */
1377 lwp->exit_jump_pad_bkpt
1378 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1379 }
1380
1381 if (debug_threads)
1382 fprintf (stderr, "\
1383 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1384 lwpid_of (lwp));
1385 current_inferior = saved_inferior;
1386
1387 return 1;
1388 }
1389 }
1390 else
1391 {
1392 /* If we get a synchronous signal while collecting, *and*
1393 while executing the (relocated) original instruction,
1394 reset the PC to point at the tpoint address, before
1395 reporting to GDB. Otherwise, it's an IPA lib bug: just
1396 report the signal to GDB, and pray for the best. */
1397
1398 lwp->collecting_fast_tracepoint = 0;
1399
1400 if (r != 0
1401 && (status.adjusted_insn_addr <= lwp->stop_pc
1402 && lwp->stop_pc < status.adjusted_insn_addr_end))
1403 {
1404 siginfo_t info;
1405 struct regcache *regcache;
1406
1407 /* The si_addr on a few signals references the address
1408 of the faulting instruction. Adjust that as
1409 well. */
1410 if ((WSTOPSIG (*wstat) == SIGILL
1411 || WSTOPSIG (*wstat) == SIGFPE
1412 || WSTOPSIG (*wstat) == SIGBUS
1413 || WSTOPSIG (*wstat) == SIGSEGV)
1414 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &info) == 0
1415 /* Final check just to make sure we don't clobber
1416 the siginfo of non-kernel-sent signals. */
1417 && (uintptr_t) info.si_addr == lwp->stop_pc)
1418 {
1419 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1420 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &info);
1421 }
1422
1423 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1424 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1425 lwp->stop_pc = status.tpoint_addr;
1426
1427 /* Cancel any fast tracepoint lock this thread was
1428 holding. */
1429 force_unlock_trace_buffer ();
1430 }
1431
1432 if (lwp->exit_jump_pad_bkpt != NULL)
1433 {
1434 if (debug_threads)
1435 fprintf (stderr,
1436 "Cancelling fast exit-jump-pad: removing bkpt. "
1437 "stopping all threads momentarily.\n");
1438
1439 stop_all_lwps (1, lwp);
1440 cancel_breakpoints ();
1441
1442 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1443 lwp->exit_jump_pad_bkpt = NULL;
1444
1445 unstop_all_lwps (1, lwp);
1446
1447 gdb_assert (lwp->suspended >= 0);
1448 }
1449 }
1450 }
1451
1452 if (debug_threads)
1453 fprintf (stderr, "\
1454 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1455 lwpid_of (lwp));
1456
1457 current_inferior = saved_inferior;
1458 return 0;
1459 }
1460
1461 /* Enqueue one signal in the "signals to report later when out of the
1462 jump pad" list. */
1463
1464 static void
1465 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1466 {
1467 struct pending_signals *p_sig;
1468
1469 if (debug_threads)
1470 fprintf (stderr, "\
1471 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1472
1473 if (debug_threads)
1474 {
1475 struct pending_signals *sig;
1476
1477 for (sig = lwp->pending_signals_to_report;
1478 sig != NULL;
1479 sig = sig->prev)
1480 fprintf (stderr,
1481 " Already queued %d\n",
1482 sig->signal);
1483
1484 fprintf (stderr, " (no more currently queued signals)\n");
1485 }
1486
1487 /* Don't enqueue non-RT signals if they are already in the deferred
1488 queue. (SIGSTOP being the easiest signal to see ending up here
1489 twice) */
1490 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1491 {
1492 struct pending_signals *sig;
1493
1494 for (sig = lwp->pending_signals_to_report;
1495 sig != NULL;
1496 sig = sig->prev)
1497 {
1498 if (sig->signal == WSTOPSIG (*wstat))
1499 {
1500 if (debug_threads)
1501 fprintf (stderr,
1502 "Not requeuing already queued non-RT signal %d"
1503 " for LWP %ld\n",
1504 sig->signal,
1505 lwpid_of (lwp));
1506 return;
1507 }
1508 }
1509 }
1510
1511 p_sig = xmalloc (sizeof (*p_sig));
1512 p_sig->prev = lwp->pending_signals_to_report;
1513 p_sig->signal = WSTOPSIG (*wstat);
1514 memset (&p_sig->info, 0, sizeof (siginfo_t));
1515 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
1516
1517 lwp->pending_signals_to_report = p_sig;
1518 }
1519
1520 /* Dequeue one signal from the "signals to report later when out of
1521 the jump pad" list. */
1522
1523 static int
1524 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1525 {
1526 if (lwp->pending_signals_to_report != NULL)
1527 {
1528 struct pending_signals **p_sig;
1529
1530 p_sig = &lwp->pending_signals_to_report;
1531 while ((*p_sig)->prev != NULL)
1532 p_sig = &(*p_sig)->prev;
1533
1534 *wstat = W_STOPCODE ((*p_sig)->signal);
1535 if ((*p_sig)->info.si_signo != 0)
1536 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
1537 free (*p_sig);
1538 *p_sig = NULL;
1539
1540 if (debug_threads)
1541 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1542 WSTOPSIG (*wstat), lwpid_of (lwp));
1543
1544 if (debug_threads)
1545 {
1546 struct pending_signals *sig;
1547
1548 for (sig = lwp->pending_signals_to_report;
1549 sig != NULL;
1550 sig = sig->prev)
1551 fprintf (stderr,
1552 " Still queued %d\n",
1553 sig->signal);
1554
1555 fprintf (stderr, " (no more queued signals)\n");
1556 }
1557
1558 return 1;
1559 }
1560
1561 return 0;
1562 }
1563
1564 /* Arrange for a breakpoint to be hit again later. We don't keep the
1565 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1566 will handle the current event, eventually we will resume this LWP,
1567 and this breakpoint will trap again. */
1568
1569 static int
1570 cancel_breakpoint (struct lwp_info *lwp)
1571 {
1572 struct thread_info *saved_inferior;
1573
1574 /* There's nothing to do if we don't support breakpoints. */
1575 if (!supports_breakpoints ())
1576 return 0;
1577
1578 /* breakpoint_at reads from current inferior. */
1579 saved_inferior = current_inferior;
1580 current_inferior = get_lwp_thread (lwp);
1581
1582 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1583 {
1584 if (debug_threads)
1585 fprintf (stderr,
1586 "CB: Push back breakpoint for %s\n",
1587 target_pid_to_str (ptid_of (lwp)));
1588
1589 /* Back up the PC if necessary. */
1590 if (the_low_target.decr_pc_after_break)
1591 {
1592 struct regcache *regcache
1593 = get_thread_regcache (current_inferior, 1);
1594 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1595 }
1596
1597 current_inferior = saved_inferior;
1598 return 1;
1599 }
1600 else
1601 {
1602 if (debug_threads)
1603 fprintf (stderr,
1604 "CB: No breakpoint found at %s for [%s]\n",
1605 paddress (lwp->stop_pc),
1606 target_pid_to_str (ptid_of (lwp)));
1607 }
1608
1609 current_inferior = saved_inferior;
1610 return 0;
1611 }
1612
1613 /* When the event-loop is doing a step-over, this points at the thread
1614 being stepped. */
1615 ptid_t step_over_bkpt;
1616
1617 /* Wait for an event from child PID. If PID is -1, wait for any
1618 child. Store the stop status through the status pointer WSTAT.
1619 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1620 event was found and OPTIONS contains WNOHANG. Return the PID of
1621 the stopped child otherwise. */
1622
1623 static int
1624 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1625 {
1626 struct lwp_info *event_child, *requested_child;
1627 ptid_t wait_ptid;
1628
1629 event_child = NULL;
1630 requested_child = NULL;
1631
1632 /* Check for a lwp with a pending status. */
1633
1634 if (ptid_equal (ptid, minus_one_ptid) || ptid_is_pid (ptid))
1635 {
1636 event_child = (struct lwp_info *)
1637 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1638 if (debug_threads && event_child)
1639 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1640 }
1641 else
1642 {
1643 requested_child = find_lwp_pid (ptid);
1644
1645 if (!stopping_threads
1646 && requested_child->status_pending_p
1647 && requested_child->collecting_fast_tracepoint)
1648 {
1649 enqueue_one_deferred_signal (requested_child,
1650 &requested_child->status_pending);
1651 requested_child->status_pending_p = 0;
1652 requested_child->status_pending = 0;
1653 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1654 }
1655
1656 if (requested_child->suspended
1657 && requested_child->status_pending_p)
1658 fatal ("requesting an event out of a suspended child?");
1659
1660 if (requested_child->status_pending_p)
1661 event_child = requested_child;
1662 }
1663
1664 if (event_child != NULL)
1665 {
1666 if (debug_threads)
1667 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1668 lwpid_of (event_child), event_child->status_pending);
1669 *wstat = event_child->status_pending;
1670 event_child->status_pending_p = 0;
1671 event_child->status_pending = 0;
1672 current_inferior = get_lwp_thread (event_child);
1673 return lwpid_of (event_child);
1674 }
1675
1676 if (ptid_is_pid (ptid))
1677 {
1678 /* A request to wait for a specific tgid. This is not possible
1679 with waitpid, so instead, we wait for any child, and leave
1680 children we're not interested in right now with a pending
1681 status to report later. */
1682 wait_ptid = minus_one_ptid;
1683 }
1684 else
1685 wait_ptid = ptid;
1686
1687 /* We only enter this loop if no process has a pending wait status. Thus
1688 any action taken in response to a wait status inside this loop is
1689 responding as soon as we detect the status, not after any pending
1690 events. */
1691 while (1)
1692 {
1693 event_child = linux_wait_for_lwp (wait_ptid, wstat, options);
1694
1695 if ((options & WNOHANG) && event_child == NULL)
1696 {
1697 if (debug_threads)
1698 fprintf (stderr, "WNOHANG set, no event found\n");
1699 return 0;
1700 }
1701
1702 if (event_child == NULL)
1703 error ("event from unknown child");
1704
1705 if (ptid_is_pid (ptid)
1706 && ptid_get_pid (ptid) != ptid_get_pid (ptid_of (event_child)))
1707 {
1708 if (! WIFSTOPPED (*wstat))
1709 mark_lwp_dead (event_child, *wstat);
1710 else
1711 {
1712 event_child->status_pending_p = 1;
1713 event_child->status_pending = *wstat;
1714 }
1715 continue;
1716 }
1717
1718 current_inferior = get_lwp_thread (event_child);
1719
1720 /* Check for thread exit. */
1721 if (! WIFSTOPPED (*wstat))
1722 {
1723 if (debug_threads)
1724 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1725
1726 /* If the last thread is exiting, just return. */
1727 if (last_thread_of_process_p (current_inferior))
1728 {
1729 if (debug_threads)
1730 fprintf (stderr, "LWP %ld is last lwp of process\n",
1731 lwpid_of (event_child));
1732 return lwpid_of (event_child);
1733 }
1734
1735 if (!non_stop)
1736 {
1737 current_inferior = (struct thread_info *) all_threads.head;
1738 if (debug_threads)
1739 fprintf (stderr, "Current inferior is now %ld\n",
1740 lwpid_of (get_thread_lwp (current_inferior)));
1741 }
1742 else
1743 {
1744 current_inferior = NULL;
1745 if (debug_threads)
1746 fprintf (stderr, "Current inferior is now <NULL>\n");
1747 }
1748
1749 /* If we were waiting for this particular child to do something...
1750 well, it did something. */
1751 if (requested_child != NULL)
1752 {
1753 int lwpid = lwpid_of (event_child);
1754
1755 /* Cancel the step-over operation --- the thread that
1756 started it is gone. */
1757 if (finish_step_over (event_child))
1758 unstop_all_lwps (1, event_child);
1759 delete_lwp (event_child);
1760 return lwpid;
1761 }
1762
1763 delete_lwp (event_child);
1764
1765 /* Wait for a more interesting event. */
1766 continue;
1767 }
1768
1769 if (event_child->must_set_ptrace_flags)
1770 {
1771 linux_enable_event_reporting (lwpid_of (event_child));
1772 event_child->must_set_ptrace_flags = 0;
1773 }
1774
1775 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1776 && *wstat >> 16 != 0)
1777 {
1778 handle_extended_wait (event_child, *wstat);
1779 continue;
1780 }
1781
1782 if (WIFSTOPPED (*wstat)
1783 && WSTOPSIG (*wstat) == SIGSTOP
1784 && event_child->stop_expected)
1785 {
1786 int should_stop;
1787
1788 if (debug_threads)
1789 fprintf (stderr, "Expected stop.\n");
1790 event_child->stop_expected = 0;
1791
1792 should_stop = (current_inferior->last_resume_kind == resume_stop
1793 || stopping_threads);
1794
1795 if (!should_stop)
1796 {
1797 linux_resume_one_lwp (event_child,
1798 event_child->stepping, 0, NULL);
1799 continue;
1800 }
1801 }
1802
1803 return lwpid_of (event_child);
1804 }
1805
1806 /* NOTREACHED */
1807 return 0;
1808 }
1809
1810 /* Count the LWP's that have had events. */
1811
1812 static int
1813 count_events_callback (struct inferior_list_entry *entry, void *data)
1814 {
1815 struct lwp_info *lp = (struct lwp_info *) entry;
1816 struct thread_info *thread = get_lwp_thread (lp);
1817 int *count = data;
1818
1819 gdb_assert (count != NULL);
1820
1821 /* Count only resumed LWPs that have a SIGTRAP event pending that
1822 should be reported to GDB. */
1823 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1824 && thread->last_resume_kind != resume_stop
1825 && lp->status_pending_p
1826 && WIFSTOPPED (lp->status_pending)
1827 && WSTOPSIG (lp->status_pending) == SIGTRAP
1828 && !breakpoint_inserted_here (lp->stop_pc))
1829 (*count)++;
1830
1831 return 0;
1832 }
1833
1834 /* Select the LWP (if any) that is currently being single-stepped. */
1835
1836 static int
1837 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
1838 {
1839 struct lwp_info *lp = (struct lwp_info *) entry;
1840 struct thread_info *thread = get_lwp_thread (lp);
1841
1842 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1843 && thread->last_resume_kind == resume_step
1844 && lp->status_pending_p)
1845 return 1;
1846 else
1847 return 0;
1848 }
1849
1850 /* Select the Nth LWP that has had a SIGTRAP event that should be
1851 reported to GDB. */
1852
1853 static int
1854 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
1855 {
1856 struct lwp_info *lp = (struct lwp_info *) entry;
1857 struct thread_info *thread = get_lwp_thread (lp);
1858 int *selector = data;
1859
1860 gdb_assert (selector != NULL);
1861
1862 /* Select only resumed LWPs that have a SIGTRAP event pending. */
1863 if (thread->last_resume_kind != resume_stop
1864 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1865 && lp->status_pending_p
1866 && WIFSTOPPED (lp->status_pending)
1867 && WSTOPSIG (lp->status_pending) == SIGTRAP
1868 && !breakpoint_inserted_here (lp->stop_pc))
1869 if ((*selector)-- == 0)
1870 return 1;
1871
1872 return 0;
1873 }
1874
1875 static int
1876 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
1877 {
1878 struct lwp_info *lp = (struct lwp_info *) entry;
1879 struct thread_info *thread = get_lwp_thread (lp);
1880 struct lwp_info *event_lp = data;
1881
1882 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
1883 if (lp == event_lp)
1884 return 0;
1885
1886 /* If a LWP other than the LWP that we're reporting an event for has
1887 hit a GDB breakpoint (as opposed to some random trap signal),
1888 then just arrange for it to hit it again later. We don't keep
1889 the SIGTRAP status and don't forward the SIGTRAP signal to the
1890 LWP. We will handle the current event, eventually we will resume
1891 all LWPs, and this one will get its breakpoint trap again.
1892
1893 If we do not do this, then we run the risk that the user will
1894 delete or disable the breakpoint, but the LWP will have already
1895 tripped on it. */
1896
1897 if (thread->last_resume_kind != resume_stop
1898 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1899 && lp->status_pending_p
1900 && WIFSTOPPED (lp->status_pending)
1901 && WSTOPSIG (lp->status_pending) == SIGTRAP
1902 && !lp->stepping
1903 && !lp->stopped_by_watchpoint
1904 && cancel_breakpoint (lp))
1905 /* Throw away the SIGTRAP. */
1906 lp->status_pending_p = 0;
1907
1908 return 0;
1909 }
1910
1911 static void
1912 linux_cancel_breakpoints (void)
1913 {
1914 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
1915 }
1916
1917 /* Select one LWP out of those that have events pending. */
1918
1919 static void
1920 select_event_lwp (struct lwp_info **orig_lp)
1921 {
1922 int num_events = 0;
1923 int random_selector;
1924 struct lwp_info *event_lp;
1925
1926 /* Give preference to any LWP that is being single-stepped. */
1927 event_lp
1928 = (struct lwp_info *) find_inferior (&all_lwps,
1929 select_singlestep_lwp_callback, NULL);
1930 if (event_lp != NULL)
1931 {
1932 if (debug_threads)
1933 fprintf (stderr,
1934 "SEL: Select single-step %s\n",
1935 target_pid_to_str (ptid_of (event_lp)));
1936 }
1937 else
1938 {
1939 /* No single-stepping LWP. Select one at random, out of those
1940 which have had SIGTRAP events. */
1941
1942 /* First see how many SIGTRAP events we have. */
1943 find_inferior (&all_lwps, count_events_callback, &num_events);
1944
1945 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
1946 random_selector = (int)
1947 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
1948
1949 if (debug_threads && num_events > 1)
1950 fprintf (stderr,
1951 "SEL: Found %d SIGTRAP events, selecting #%d\n",
1952 num_events, random_selector);
1953
1954 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
1955 select_event_lwp_callback,
1956 &random_selector);
1957 }
1958
1959 if (event_lp != NULL)
1960 {
1961 /* Switch the event LWP. */
1962 *orig_lp = event_lp;
1963 }
1964 }
1965
1966 /* Decrement the suspend count of an LWP. */
1967
1968 static int
1969 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
1970 {
1971 struct lwp_info *lwp = (struct lwp_info *) entry;
1972
1973 /* Ignore EXCEPT. */
1974 if (lwp == except)
1975 return 0;
1976
1977 lwp->suspended--;
1978
1979 gdb_assert (lwp->suspended >= 0);
1980 return 0;
1981 }
1982
1983 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
1984 NULL. */
1985
1986 static void
1987 unsuspend_all_lwps (struct lwp_info *except)
1988 {
1989 find_inferior (&all_lwps, unsuspend_one_lwp, except);
1990 }
1991
1992 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
1993 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
1994 void *data);
1995 static int lwp_running (struct inferior_list_entry *entry, void *data);
1996 static ptid_t linux_wait_1 (ptid_t ptid,
1997 struct target_waitstatus *ourstatus,
1998 int target_options);
1999
2000 /* Stabilize threads (move out of jump pads).
2001
2002 If a thread is midway collecting a fast tracepoint, we need to
2003 finish the collection and move it out of the jump pad before
2004 reporting the signal.
2005
2006 This avoids recursion while collecting (when a signal arrives
2007 midway, and the signal handler itself collects), which would trash
2008 the trace buffer. In case the user set a breakpoint in a signal
2009 handler, this avoids the backtrace showing the jump pad, etc..
2010 Most importantly, there are certain things we can't do safely if
2011 threads are stopped in a jump pad (or in its callee's). For
2012 example:
2013
2014 - starting a new trace run. A thread still collecting the
2015 previous run, could trash the trace buffer when resumed. The trace
2016 buffer control structures would have been reset but the thread had
2017 no way to tell. The thread could even midway memcpy'ing to the
2018 buffer, which would mean that when resumed, it would clobber the
2019 trace buffer that had been set for a new run.
2020
2021 - we can't rewrite/reuse the jump pads for new tracepoints
2022 safely. Say you do tstart while a thread is stopped midway while
2023 collecting. When the thread is later resumed, it finishes the
2024 collection, and returns to the jump pad, to execute the original
2025 instruction that was under the tracepoint jump at the time the
2026 older run had been started. If the jump pad had been rewritten
2027 since for something else in the new run, the thread would now
2028 execute the wrong / random instructions. */
2029
2030 static void
2031 linux_stabilize_threads (void)
2032 {
2033 struct thread_info *save_inferior;
2034 struct lwp_info *lwp_stuck;
2035
2036 lwp_stuck
2037 = (struct lwp_info *) find_inferior (&all_lwps,
2038 stuck_in_jump_pad_callback, NULL);
2039 if (lwp_stuck != NULL)
2040 {
2041 if (debug_threads)
2042 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
2043 lwpid_of (lwp_stuck));
2044 return;
2045 }
2046
2047 save_inferior = current_inferior;
2048
2049 stabilizing_threads = 1;
2050
2051 /* Kick 'em all. */
2052 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
2053
2054 /* Loop until all are stopped out of the jump pads. */
2055 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
2056 {
2057 struct target_waitstatus ourstatus;
2058 struct lwp_info *lwp;
2059 int wstat;
2060
2061 /* Note that we go through the full wait even loop. While
2062 moving threads out of jump pad, we need to be able to step
2063 over internal breakpoints and such. */
2064 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2065
2066 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2067 {
2068 lwp = get_thread_lwp (current_inferior);
2069
2070 /* Lock it. */
2071 lwp->suspended++;
2072
2073 if (ourstatus.value.sig != TARGET_SIGNAL_0
2074 || current_inferior->last_resume_kind == resume_stop)
2075 {
2076 wstat = W_STOPCODE (target_signal_to_host (ourstatus.value.sig));
2077 enqueue_one_deferred_signal (lwp, &wstat);
2078 }
2079 }
2080 }
2081
2082 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
2083
2084 stabilizing_threads = 0;
2085
2086 current_inferior = save_inferior;
2087
2088 if (debug_threads)
2089 {
2090 lwp_stuck
2091 = (struct lwp_info *) find_inferior (&all_lwps,
2092 stuck_in_jump_pad_callback, NULL);
2093 if (lwp_stuck != NULL)
2094 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
2095 lwpid_of (lwp_stuck));
2096 }
2097 }
2098
2099 /* Wait for process, returns status. */
2100
2101 static ptid_t
2102 linux_wait_1 (ptid_t ptid,
2103 struct target_waitstatus *ourstatus, int target_options)
2104 {
2105 int w;
2106 struct lwp_info *event_child;
2107 int options;
2108 int pid;
2109 int step_over_finished;
2110 int bp_explains_trap;
2111 int maybe_internal_trap;
2112 int report_to_gdb;
2113 int trace_event;
2114
2115 /* Translate generic target options into linux options. */
2116 options = __WALL;
2117 if (target_options & TARGET_WNOHANG)
2118 options |= WNOHANG;
2119
2120 retry:
2121 bp_explains_trap = 0;
2122 trace_event = 0;
2123 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2124
2125 /* If we were only supposed to resume one thread, only wait for
2126 that thread - if it's still alive. If it died, however - which
2127 can happen if we're coming from the thread death case below -
2128 then we need to make sure we restart the other threads. We could
2129 pick a thread at random or restart all; restarting all is less
2130 arbitrary. */
2131 if (!non_stop
2132 && !ptid_equal (cont_thread, null_ptid)
2133 && !ptid_equal (cont_thread, minus_one_ptid))
2134 {
2135 struct thread_info *thread;
2136
2137 thread = (struct thread_info *) find_inferior_id (&all_threads,
2138 cont_thread);
2139
2140 /* No stepping, no signal - unless one is pending already, of course. */
2141 if (thread == NULL)
2142 {
2143 struct thread_resume resume_info;
2144 resume_info.thread = minus_one_ptid;
2145 resume_info.kind = resume_continue;
2146 resume_info.sig = 0;
2147 linux_resume (&resume_info, 1);
2148 }
2149 else
2150 ptid = cont_thread;
2151 }
2152
2153 if (ptid_equal (step_over_bkpt, null_ptid))
2154 pid = linux_wait_for_event (ptid, &w, options);
2155 else
2156 {
2157 if (debug_threads)
2158 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2159 target_pid_to_str (step_over_bkpt));
2160 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2161 }
2162
2163 if (pid == 0) /* only if TARGET_WNOHANG */
2164 return null_ptid;
2165
2166 event_child = get_thread_lwp (current_inferior);
2167
2168 /* If we are waiting for a particular child, and it exited,
2169 linux_wait_for_event will return its exit status. Similarly if
2170 the last child exited. If this is not the last child, however,
2171 do not report it as exited until there is a 'thread exited' response
2172 available in the remote protocol. Instead, just wait for another event.
2173 This should be safe, because if the thread crashed we will already
2174 have reported the termination signal to GDB; that should stop any
2175 in-progress stepping operations, etc.
2176
2177 Report the exit status of the last thread to exit. This matches
2178 LinuxThreads' behavior. */
2179
2180 if (last_thread_of_process_p (current_inferior))
2181 {
2182 if (WIFEXITED (w) || WIFSIGNALED (w))
2183 {
2184 if (WIFEXITED (w))
2185 {
2186 ourstatus->kind = TARGET_WAITKIND_EXITED;
2187 ourstatus->value.integer = WEXITSTATUS (w);
2188
2189 if (debug_threads)
2190 fprintf (stderr,
2191 "\nChild exited with retcode = %x \n",
2192 WEXITSTATUS (w));
2193 }
2194 else
2195 {
2196 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2197 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
2198
2199 if (debug_threads)
2200 fprintf (stderr,
2201 "\nChild terminated with signal = %x \n",
2202 WTERMSIG (w));
2203
2204 }
2205
2206 return ptid_of (event_child);
2207 }
2208 }
2209 else
2210 {
2211 if (!WIFSTOPPED (w))
2212 goto retry;
2213 }
2214
2215 /* If this event was not handled before, and is not a SIGTRAP, we
2216 report it. SIGILL and SIGSEGV are also treated as traps in case
2217 a breakpoint is inserted at the current PC. If this target does
2218 not support internal breakpoints at all, we also report the
2219 SIGTRAP without further processing; it's of no concern to us. */
2220 maybe_internal_trap
2221 = (supports_breakpoints ()
2222 && (WSTOPSIG (w) == SIGTRAP
2223 || ((WSTOPSIG (w) == SIGILL
2224 || WSTOPSIG (w) == SIGSEGV)
2225 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2226
2227 if (maybe_internal_trap)
2228 {
2229 /* Handle anything that requires bookkeeping before deciding to
2230 report the event or continue waiting. */
2231
2232 /* First check if we can explain the SIGTRAP with an internal
2233 breakpoint, or if we should possibly report the event to GDB.
2234 Do this before anything that may remove or insert a
2235 breakpoint. */
2236 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2237
2238 /* We have a SIGTRAP, possibly a step-over dance has just
2239 finished. If so, tweak the state machine accordingly,
2240 reinsert breakpoints and delete any reinsert (software
2241 single-step) breakpoints. */
2242 step_over_finished = finish_step_over (event_child);
2243
2244 /* Now invoke the callbacks of any internal breakpoints there. */
2245 check_breakpoints (event_child->stop_pc);
2246
2247 /* Handle tracepoint data collecting. This may overflow the
2248 trace buffer, and cause a tracing stop, removing
2249 breakpoints. */
2250 trace_event = handle_tracepoints (event_child);
2251
2252 if (bp_explains_trap)
2253 {
2254 /* If we stepped or ran into an internal breakpoint, we've
2255 already handled it. So next time we resume (from this
2256 PC), we should step over it. */
2257 if (debug_threads)
2258 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2259
2260 if (breakpoint_here (event_child->stop_pc))
2261 event_child->need_step_over = 1;
2262 }
2263 }
2264 else
2265 {
2266 /* We have some other signal, possibly a step-over dance was in
2267 progress, and it should be cancelled too. */
2268 step_over_finished = finish_step_over (event_child);
2269 }
2270
2271 /* We have all the data we need. Either report the event to GDB, or
2272 resume threads and keep waiting for more. */
2273
2274 /* If we're collecting a fast tracepoint, finish the collection and
2275 move out of the jump pad before delivering a signal. See
2276 linux_stabilize_threads. */
2277
2278 if (WIFSTOPPED (w)
2279 && WSTOPSIG (w) != SIGTRAP
2280 && supports_fast_tracepoints ()
2281 && in_process_agent_loaded ())
2282 {
2283 if (debug_threads)
2284 fprintf (stderr,
2285 "Got signal %d for LWP %ld. Check if we need "
2286 "to defer or adjust it.\n",
2287 WSTOPSIG (w), lwpid_of (event_child));
2288
2289 /* Allow debugging the jump pad itself. */
2290 if (current_inferior->last_resume_kind != resume_step
2291 && maybe_move_out_of_jump_pad (event_child, &w))
2292 {
2293 enqueue_one_deferred_signal (event_child, &w);
2294
2295 if (debug_threads)
2296 fprintf (stderr,
2297 "Signal %d for LWP %ld deferred (in jump pad)\n",
2298 WSTOPSIG (w), lwpid_of (event_child));
2299
2300 linux_resume_one_lwp (event_child, 0, 0, NULL);
2301 goto retry;
2302 }
2303 }
2304
2305 if (event_child->collecting_fast_tracepoint)
2306 {
2307 if (debug_threads)
2308 fprintf (stderr, "\
2309 LWP %ld was trying to move out of the jump pad (%d). \
2310 Check if we're already there.\n",
2311 lwpid_of (event_child),
2312 event_child->collecting_fast_tracepoint);
2313
2314 trace_event = 1;
2315
2316 event_child->collecting_fast_tracepoint
2317 = linux_fast_tracepoint_collecting (event_child, NULL);
2318
2319 if (event_child->collecting_fast_tracepoint != 1)
2320 {
2321 /* No longer need this breakpoint. */
2322 if (event_child->exit_jump_pad_bkpt != NULL)
2323 {
2324 if (debug_threads)
2325 fprintf (stderr,
2326 "No longer need exit-jump-pad bkpt; removing it."
2327 "stopping all threads momentarily.\n");
2328
2329 /* Other running threads could hit this breakpoint.
2330 We don't handle moribund locations like GDB does,
2331 instead we always pause all threads when removing
2332 breakpoints, so that any step-over or
2333 decr_pc_after_break adjustment is always taken
2334 care of while the breakpoint is still
2335 inserted. */
2336 stop_all_lwps (1, event_child);
2337 cancel_breakpoints ();
2338
2339 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2340 event_child->exit_jump_pad_bkpt = NULL;
2341
2342 unstop_all_lwps (1, event_child);
2343
2344 gdb_assert (event_child->suspended >= 0);
2345 }
2346 }
2347
2348 if (event_child->collecting_fast_tracepoint == 0)
2349 {
2350 if (debug_threads)
2351 fprintf (stderr,
2352 "fast tracepoint finished "
2353 "collecting successfully.\n");
2354
2355 /* We may have a deferred signal to report. */
2356 if (dequeue_one_deferred_signal (event_child, &w))
2357 {
2358 if (debug_threads)
2359 fprintf (stderr, "dequeued one signal.\n");
2360 }
2361 else
2362 {
2363 if (debug_threads)
2364 fprintf (stderr, "no deferred signals.\n");
2365
2366 if (stabilizing_threads)
2367 {
2368 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2369 ourstatus->value.sig = TARGET_SIGNAL_0;
2370 return ptid_of (event_child);
2371 }
2372 }
2373 }
2374 }
2375
2376 /* Check whether GDB would be interested in this event. */
2377
2378 /* If GDB is not interested in this signal, don't stop other
2379 threads, and don't report it to GDB. Just resume the inferior
2380 right away. We do this for threading-related signals as well as
2381 any that GDB specifically requested we ignore. But never ignore
2382 SIGSTOP if we sent it ourselves, and do not ignore signals when
2383 stepping - they may require special handling to skip the signal
2384 handler. */
2385 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2386 thread library? */
2387 if (WIFSTOPPED (w)
2388 && current_inferior->last_resume_kind != resume_step
2389 && (
2390 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2391 (current_process ()->private->thread_db != NULL
2392 && (WSTOPSIG (w) == __SIGRTMIN
2393 || WSTOPSIG (w) == __SIGRTMIN + 1))
2394 ||
2395 #endif
2396 (pass_signals[target_signal_from_host (WSTOPSIG (w))]
2397 && !(WSTOPSIG (w) == SIGSTOP
2398 && current_inferior->last_resume_kind == resume_stop))))
2399 {
2400 siginfo_t info, *info_p;
2401
2402 if (debug_threads)
2403 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2404 WSTOPSIG (w), lwpid_of (event_child));
2405
2406 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child), 0, &info) == 0)
2407 info_p = &info;
2408 else
2409 info_p = NULL;
2410 linux_resume_one_lwp (event_child, event_child->stepping,
2411 WSTOPSIG (w), info_p);
2412 goto retry;
2413 }
2414
2415 /* If GDB wanted this thread to single step, we always want to
2416 report the SIGTRAP, and let GDB handle it. Watchpoints should
2417 always be reported. So should signals we can't explain. A
2418 SIGTRAP we can't explain could be a GDB breakpoint --- we may or
2419 not support Z0 breakpoints. If we do, we're be able to handle
2420 GDB breakpoints on top of internal breakpoints, by handling the
2421 internal breakpoint and still reporting the event to GDB. If we
2422 don't, we're out of luck, GDB won't see the breakpoint hit. */
2423 report_to_gdb = (!maybe_internal_trap
2424 || current_inferior->last_resume_kind == resume_step
2425 || event_child->stopped_by_watchpoint
2426 || (!step_over_finished
2427 && !bp_explains_trap && !trace_event)
2428 || (gdb_breakpoint_here (event_child->stop_pc)
2429 && gdb_condition_true_at_breakpoint (event_child->stop_pc)));
2430
2431 /* We found no reason GDB would want us to stop. We either hit one
2432 of our own breakpoints, or finished an internal step GDB
2433 shouldn't know about. */
2434 if (!report_to_gdb)
2435 {
2436 if (debug_threads)
2437 {
2438 if (bp_explains_trap)
2439 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2440 if (step_over_finished)
2441 fprintf (stderr, "Step-over finished.\n");
2442 if (trace_event)
2443 fprintf (stderr, "Tracepoint event.\n");
2444 }
2445
2446 /* We're not reporting this breakpoint to GDB, so apply the
2447 decr_pc_after_break adjustment to the inferior's regcache
2448 ourselves. */
2449
2450 if (the_low_target.set_pc != NULL)
2451 {
2452 struct regcache *regcache
2453 = get_thread_regcache (get_lwp_thread (event_child), 1);
2454 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2455 }
2456
2457 /* We may have finished stepping over a breakpoint. If so,
2458 we've stopped and suspended all LWPs momentarily except the
2459 stepping one. This is where we resume them all again. We're
2460 going to keep waiting, so use proceed, which handles stepping
2461 over the next breakpoint. */
2462 if (debug_threads)
2463 fprintf (stderr, "proceeding all threads.\n");
2464
2465 if (step_over_finished)
2466 unsuspend_all_lwps (event_child);
2467
2468 proceed_all_lwps ();
2469 goto retry;
2470 }
2471
2472 if (debug_threads)
2473 {
2474 if (current_inferior->last_resume_kind == resume_step)
2475 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2476 if (event_child->stopped_by_watchpoint)
2477 fprintf (stderr, "Stopped by watchpoint.\n");
2478 if (gdb_breakpoint_here (event_child->stop_pc))
2479 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2480 if (debug_threads)
2481 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2482 }
2483
2484 /* Alright, we're going to report a stop. */
2485
2486 if (!non_stop && !stabilizing_threads)
2487 {
2488 /* In all-stop, stop all threads. */
2489 stop_all_lwps (0, NULL);
2490
2491 /* If we're not waiting for a specific LWP, choose an event LWP
2492 from among those that have had events. Giving equal priority
2493 to all LWPs that have had events helps prevent
2494 starvation. */
2495 if (ptid_equal (ptid, minus_one_ptid))
2496 {
2497 event_child->status_pending_p = 1;
2498 event_child->status_pending = w;
2499
2500 select_event_lwp (&event_child);
2501
2502 event_child->status_pending_p = 0;
2503 w = event_child->status_pending;
2504 }
2505
2506 /* Now that we've selected our final event LWP, cancel any
2507 breakpoints in other LWPs that have hit a GDB breakpoint.
2508 See the comment in cancel_breakpoints_callback to find out
2509 why. */
2510 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2511
2512 /* Stabilize threads (move out of jump pads). */
2513 stabilize_threads ();
2514 }
2515 else
2516 {
2517 /* If we just finished a step-over, then all threads had been
2518 momentarily paused. In all-stop, that's fine, we want
2519 threads stopped by now anyway. In non-stop, we need to
2520 re-resume threads that GDB wanted to be running. */
2521 if (step_over_finished)
2522 unstop_all_lwps (1, event_child);
2523 }
2524
2525 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2526
2527 if (current_inferior->last_resume_kind == resume_stop
2528 && WSTOPSIG (w) == SIGSTOP)
2529 {
2530 /* A thread that has been requested to stop by GDB with vCont;t,
2531 and it stopped cleanly, so report as SIG0. The use of
2532 SIGSTOP is an implementation detail. */
2533 ourstatus->value.sig = TARGET_SIGNAL_0;
2534 }
2535 else if (current_inferior->last_resume_kind == resume_stop
2536 && WSTOPSIG (w) != SIGSTOP)
2537 {
2538 /* A thread that has been requested to stop by GDB with vCont;t,
2539 but, it stopped for other reasons. */
2540 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2541 }
2542 else
2543 {
2544 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2545 }
2546
2547 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2548
2549 if (debug_threads)
2550 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2551 target_pid_to_str (ptid_of (event_child)),
2552 ourstatus->kind,
2553 ourstatus->value.sig);
2554
2555 return ptid_of (event_child);
2556 }
2557
2558 /* Get rid of any pending event in the pipe. */
2559 static void
2560 async_file_flush (void)
2561 {
2562 int ret;
2563 char buf;
2564
2565 do
2566 ret = read (linux_event_pipe[0], &buf, 1);
2567 while (ret >= 0 || (ret == -1 && errno == EINTR));
2568 }
2569
2570 /* Put something in the pipe, so the event loop wakes up. */
2571 static void
2572 async_file_mark (void)
2573 {
2574 int ret;
2575
2576 async_file_flush ();
2577
2578 do
2579 ret = write (linux_event_pipe[1], "+", 1);
2580 while (ret == 0 || (ret == -1 && errno == EINTR));
2581
2582 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2583 be awakened anyway. */
2584 }
2585
2586 static ptid_t
2587 linux_wait (ptid_t ptid,
2588 struct target_waitstatus *ourstatus, int target_options)
2589 {
2590 ptid_t event_ptid;
2591
2592 if (debug_threads)
2593 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2594
2595 /* Flush the async file first. */
2596 if (target_is_async_p ())
2597 async_file_flush ();
2598
2599 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2600
2601 /* If at least one stop was reported, there may be more. A single
2602 SIGCHLD can signal more than one child stop. */
2603 if (target_is_async_p ()
2604 && (target_options & TARGET_WNOHANG) != 0
2605 && !ptid_equal (event_ptid, null_ptid))
2606 async_file_mark ();
2607
2608 return event_ptid;
2609 }
2610
2611 /* Send a signal to an LWP. */
2612
2613 static int
2614 kill_lwp (unsigned long lwpid, int signo)
2615 {
2616 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2617 fails, then we are not using nptl threads and we should be using kill. */
2618
2619 #ifdef __NR_tkill
2620 {
2621 static int tkill_failed;
2622
2623 if (!tkill_failed)
2624 {
2625 int ret;
2626
2627 errno = 0;
2628 ret = syscall (__NR_tkill, lwpid, signo);
2629 if (errno != ENOSYS)
2630 return ret;
2631 tkill_failed = 1;
2632 }
2633 }
2634 #endif
2635
2636 return kill (lwpid, signo);
2637 }
2638
2639 void
2640 linux_stop_lwp (struct lwp_info *lwp)
2641 {
2642 send_sigstop (lwp);
2643 }
2644
2645 static void
2646 send_sigstop (struct lwp_info *lwp)
2647 {
2648 int pid;
2649
2650 pid = lwpid_of (lwp);
2651
2652 /* If we already have a pending stop signal for this process, don't
2653 send another. */
2654 if (lwp->stop_expected)
2655 {
2656 if (debug_threads)
2657 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2658
2659 return;
2660 }
2661
2662 if (debug_threads)
2663 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2664
2665 lwp->stop_expected = 1;
2666 kill_lwp (pid, SIGSTOP);
2667 }
2668
2669 static int
2670 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2671 {
2672 struct lwp_info *lwp = (struct lwp_info *) entry;
2673
2674 /* Ignore EXCEPT. */
2675 if (lwp == except)
2676 return 0;
2677
2678 if (lwp->stopped)
2679 return 0;
2680
2681 send_sigstop (lwp);
2682 return 0;
2683 }
2684
2685 /* Increment the suspend count of an LWP, and stop it, if not stopped
2686 yet. */
2687 static int
2688 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2689 void *except)
2690 {
2691 struct lwp_info *lwp = (struct lwp_info *) entry;
2692
2693 /* Ignore EXCEPT. */
2694 if (lwp == except)
2695 return 0;
2696
2697 lwp->suspended++;
2698
2699 return send_sigstop_callback (entry, except);
2700 }
2701
2702 static void
2703 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2704 {
2705 /* It's dead, really. */
2706 lwp->dead = 1;
2707
2708 /* Store the exit status for later. */
2709 lwp->status_pending_p = 1;
2710 lwp->status_pending = wstat;
2711
2712 /* Prevent trying to stop it. */
2713 lwp->stopped = 1;
2714
2715 /* No further stops are expected from a dead lwp. */
2716 lwp->stop_expected = 0;
2717 }
2718
2719 static void
2720 wait_for_sigstop (struct inferior_list_entry *entry)
2721 {
2722 struct lwp_info *lwp = (struct lwp_info *) entry;
2723 struct thread_info *saved_inferior;
2724 int wstat;
2725 ptid_t saved_tid;
2726 ptid_t ptid;
2727 int pid;
2728
2729 if (lwp->stopped)
2730 {
2731 if (debug_threads)
2732 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
2733 lwpid_of (lwp));
2734 return;
2735 }
2736
2737 saved_inferior = current_inferior;
2738 if (saved_inferior != NULL)
2739 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
2740 else
2741 saved_tid = null_ptid; /* avoid bogus unused warning */
2742
2743 ptid = lwp->head.id;
2744
2745 if (debug_threads)
2746 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
2747
2748 pid = linux_wait_for_event (ptid, &wstat, __WALL);
2749
2750 /* If we stopped with a non-SIGSTOP signal, save it for later
2751 and record the pending SIGSTOP. If the process exited, just
2752 return. */
2753 if (WIFSTOPPED (wstat))
2754 {
2755 if (debug_threads)
2756 fprintf (stderr, "LWP %ld stopped with signal %d\n",
2757 lwpid_of (lwp), WSTOPSIG (wstat));
2758
2759 if (WSTOPSIG (wstat) != SIGSTOP)
2760 {
2761 if (debug_threads)
2762 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
2763 lwpid_of (lwp), wstat);
2764
2765 lwp->status_pending_p = 1;
2766 lwp->status_pending = wstat;
2767 }
2768 }
2769 else
2770 {
2771 if (debug_threads)
2772 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
2773
2774 lwp = find_lwp_pid (pid_to_ptid (pid));
2775 if (lwp)
2776 {
2777 /* Leave this status pending for the next time we're able to
2778 report it. In the mean time, we'll report this lwp as
2779 dead to GDB, so GDB doesn't try to read registers and
2780 memory from it. This can only happen if this was the
2781 last thread of the process; otherwise, PID is removed
2782 from the thread tables before linux_wait_for_event
2783 returns. */
2784 mark_lwp_dead (lwp, wstat);
2785 }
2786 }
2787
2788 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
2789 current_inferior = saved_inferior;
2790 else
2791 {
2792 if (debug_threads)
2793 fprintf (stderr, "Previously current thread died.\n");
2794
2795 if (non_stop)
2796 {
2797 /* We can't change the current inferior behind GDB's back,
2798 otherwise, a subsequent command may apply to the wrong
2799 process. */
2800 current_inferior = NULL;
2801 }
2802 else
2803 {
2804 /* Set a valid thread as current. */
2805 set_desired_inferior (0);
2806 }
2807 }
2808 }
2809
2810 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
2811 move it out, because we need to report the stop event to GDB. For
2812 example, if the user puts a breakpoint in the jump pad, it's
2813 because she wants to debug it. */
2814
2815 static int
2816 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
2817 {
2818 struct lwp_info *lwp = (struct lwp_info *) entry;
2819 struct thread_info *thread = get_lwp_thread (lwp);
2820
2821 gdb_assert (lwp->suspended == 0);
2822 gdb_assert (lwp->stopped);
2823
2824 /* Allow debugging the jump pad, gdb_collect, etc.. */
2825 return (supports_fast_tracepoints ()
2826 && in_process_agent_loaded ()
2827 && (gdb_breakpoint_here (lwp->stop_pc)
2828 || lwp->stopped_by_watchpoint
2829 || thread->last_resume_kind == resume_step)
2830 && linux_fast_tracepoint_collecting (lwp, NULL));
2831 }
2832
2833 static void
2834 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
2835 {
2836 struct lwp_info *lwp = (struct lwp_info *) entry;
2837 struct thread_info *thread = get_lwp_thread (lwp);
2838 int *wstat;
2839
2840 gdb_assert (lwp->suspended == 0);
2841 gdb_assert (lwp->stopped);
2842
2843 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
2844
2845 /* Allow debugging the jump pad, gdb_collect, etc. */
2846 if (!gdb_breakpoint_here (lwp->stop_pc)
2847 && !lwp->stopped_by_watchpoint
2848 && thread->last_resume_kind != resume_step
2849 && maybe_move_out_of_jump_pad (lwp, wstat))
2850 {
2851 if (debug_threads)
2852 fprintf (stderr,
2853 "LWP %ld needs stabilizing (in jump pad)\n",
2854 lwpid_of (lwp));
2855
2856 if (wstat)
2857 {
2858 lwp->status_pending_p = 0;
2859 enqueue_one_deferred_signal (lwp, wstat);
2860
2861 if (debug_threads)
2862 fprintf (stderr,
2863 "Signal %d for LWP %ld deferred "
2864 "(in jump pad)\n",
2865 WSTOPSIG (*wstat), lwpid_of (lwp));
2866 }
2867
2868 linux_resume_one_lwp (lwp, 0, 0, NULL);
2869 }
2870 else
2871 lwp->suspended++;
2872 }
2873
2874 static int
2875 lwp_running (struct inferior_list_entry *entry, void *data)
2876 {
2877 struct lwp_info *lwp = (struct lwp_info *) entry;
2878
2879 if (lwp->dead)
2880 return 0;
2881 if (lwp->stopped)
2882 return 0;
2883 return 1;
2884 }
2885
2886 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
2887 If SUSPEND, then also increase the suspend count of every LWP,
2888 except EXCEPT. */
2889
2890 static void
2891 stop_all_lwps (int suspend, struct lwp_info *except)
2892 {
2893 stopping_threads = 1;
2894
2895 if (suspend)
2896 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
2897 else
2898 find_inferior (&all_lwps, send_sigstop_callback, except);
2899 for_each_inferior (&all_lwps, wait_for_sigstop);
2900 stopping_threads = 0;
2901 }
2902
2903 /* Resume execution of the inferior process.
2904 If STEP is nonzero, single-step it.
2905 If SIGNAL is nonzero, give it that signal. */
2906
2907 static void
2908 linux_resume_one_lwp (struct lwp_info *lwp,
2909 int step, int signal, siginfo_t *info)
2910 {
2911 struct thread_info *saved_inferior;
2912 int fast_tp_collecting;
2913
2914 if (lwp->stopped == 0)
2915 return;
2916
2917 fast_tp_collecting = lwp->collecting_fast_tracepoint;
2918
2919 gdb_assert (!stabilizing_threads || fast_tp_collecting);
2920
2921 /* Cancel actions that rely on GDB not changing the PC (e.g., the
2922 user used the "jump" command, or "set $pc = foo"). */
2923 if (lwp->stop_pc != get_pc (lwp))
2924 {
2925 /* Collecting 'while-stepping' actions doesn't make sense
2926 anymore. */
2927 release_while_stepping_state_list (get_lwp_thread (lwp));
2928 }
2929
2930 /* If we have pending signals or status, and a new signal, enqueue the
2931 signal. Also enqueue the signal if we are waiting to reinsert a
2932 breakpoint; it will be picked up again below. */
2933 if (signal != 0
2934 && (lwp->status_pending_p
2935 || lwp->pending_signals != NULL
2936 || lwp->bp_reinsert != 0
2937 || fast_tp_collecting))
2938 {
2939 struct pending_signals *p_sig;
2940 p_sig = xmalloc (sizeof (*p_sig));
2941 p_sig->prev = lwp->pending_signals;
2942 p_sig->signal = signal;
2943 if (info == NULL)
2944 memset (&p_sig->info, 0, sizeof (siginfo_t));
2945 else
2946 memcpy (&p_sig->info, info, sizeof (siginfo_t));
2947 lwp->pending_signals = p_sig;
2948 }
2949
2950 if (lwp->status_pending_p)
2951 {
2952 if (debug_threads)
2953 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
2954 " has pending status\n",
2955 lwpid_of (lwp), step ? "step" : "continue", signal,
2956 lwp->stop_expected ? "expected" : "not expected");
2957 return;
2958 }
2959
2960 saved_inferior = current_inferior;
2961 current_inferior = get_lwp_thread (lwp);
2962
2963 if (debug_threads)
2964 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
2965 lwpid_of (lwp), step ? "step" : "continue", signal,
2966 lwp->stop_expected ? "expected" : "not expected");
2967
2968 /* This bit needs some thinking about. If we get a signal that
2969 we must report while a single-step reinsert is still pending,
2970 we often end up resuming the thread. It might be better to
2971 (ew) allow a stack of pending events; then we could be sure that
2972 the reinsert happened right away and not lose any signals.
2973
2974 Making this stack would also shrink the window in which breakpoints are
2975 uninserted (see comment in linux_wait_for_lwp) but not enough for
2976 complete correctness, so it won't solve that problem. It may be
2977 worthwhile just to solve this one, however. */
2978 if (lwp->bp_reinsert != 0)
2979 {
2980 if (debug_threads)
2981 fprintf (stderr, " pending reinsert at 0x%s\n",
2982 paddress (lwp->bp_reinsert));
2983
2984 if (lwp->bp_reinsert != 0 && can_hardware_single_step ())
2985 {
2986 if (fast_tp_collecting == 0)
2987 {
2988 if (step == 0)
2989 fprintf (stderr, "BAD - reinserting but not stepping.\n");
2990 if (lwp->suspended)
2991 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
2992 lwp->suspended);
2993 }
2994
2995 step = 1;
2996 }
2997
2998 /* Postpone any pending signal. It was enqueued above. */
2999 signal = 0;
3000 }
3001
3002 if (fast_tp_collecting == 1)
3003 {
3004 if (debug_threads)
3005 fprintf (stderr, "\
3006 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
3007 lwpid_of (lwp));
3008
3009 /* Postpone any pending signal. It was enqueued above. */
3010 signal = 0;
3011 }
3012 else if (fast_tp_collecting == 2)
3013 {
3014 if (debug_threads)
3015 fprintf (stderr, "\
3016 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
3017 lwpid_of (lwp));
3018
3019 if (can_hardware_single_step ())
3020 step = 1;
3021 else
3022 fatal ("moving out of jump pad single-stepping"
3023 " not implemented on this target");
3024
3025 /* Postpone any pending signal. It was enqueued above. */
3026 signal = 0;
3027 }
3028
3029 /* If we have while-stepping actions in this thread set it stepping.
3030 If we have a signal to deliver, it may or may not be set to
3031 SIG_IGN, we don't know. Assume so, and allow collecting
3032 while-stepping into a signal handler. A possible smart thing to
3033 do would be to set an internal breakpoint at the signal return
3034 address, continue, and carry on catching this while-stepping
3035 action only when that breakpoint is hit. A future
3036 enhancement. */
3037 if (get_lwp_thread (lwp)->while_stepping != NULL
3038 && can_hardware_single_step ())
3039 {
3040 if (debug_threads)
3041 fprintf (stderr,
3042 "lwp %ld has a while-stepping action -> forcing step.\n",
3043 lwpid_of (lwp));
3044 step = 1;
3045 }
3046
3047 if (debug_threads && the_low_target.get_pc != NULL)
3048 {
3049 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3050 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3051 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
3052 }
3053
3054 /* If we have pending signals, consume one unless we are trying to
3055 reinsert a breakpoint or we're trying to finish a fast tracepoint
3056 collect. */
3057 if (lwp->pending_signals != NULL
3058 && lwp->bp_reinsert == 0
3059 && fast_tp_collecting == 0)
3060 {
3061 struct pending_signals **p_sig;
3062
3063 p_sig = &lwp->pending_signals;
3064 while ((*p_sig)->prev != NULL)
3065 p_sig = &(*p_sig)->prev;
3066
3067 signal = (*p_sig)->signal;
3068 if ((*p_sig)->info.si_signo != 0)
3069 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
3070
3071 free (*p_sig);
3072 *p_sig = NULL;
3073 }
3074
3075 if (the_low_target.prepare_to_resume != NULL)
3076 the_low_target.prepare_to_resume (lwp);
3077
3078 regcache_invalidate_one ((struct inferior_list_entry *)
3079 get_lwp_thread (lwp));
3080 errno = 0;
3081 lwp->stopped = 0;
3082 lwp->stopped_by_watchpoint = 0;
3083 lwp->stepping = step;
3084 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp), 0,
3085 /* Coerce to a uintptr_t first to avoid potential gcc warning
3086 of coercing an 8 byte integer to a 4 byte pointer. */
3087 (PTRACE_ARG4_TYPE) (uintptr_t) signal);
3088
3089 current_inferior = saved_inferior;
3090 if (errno)
3091 {
3092 /* ESRCH from ptrace either means that the thread was already
3093 running (an error) or that it is gone (a race condition). If
3094 it's gone, we will get a notification the next time we wait,
3095 so we can ignore the error. We could differentiate these
3096 two, but it's tricky without waiting; the thread still exists
3097 as a zombie, so sending it signal 0 would succeed. So just
3098 ignore ESRCH. */
3099 if (errno == ESRCH)
3100 return;
3101
3102 perror_with_name ("ptrace");
3103 }
3104 }
3105
3106 struct thread_resume_array
3107 {
3108 struct thread_resume *resume;
3109 size_t n;
3110 };
3111
3112 /* This function is called once per thread. We look up the thread
3113 in RESUME_PTR, and mark the thread with a pointer to the appropriate
3114 resume request.
3115
3116 This algorithm is O(threads * resume elements), but resume elements
3117 is small (and will remain small at least until GDB supports thread
3118 suspension). */
3119 static int
3120 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3121 {
3122 struct lwp_info *lwp;
3123 struct thread_info *thread;
3124 int ndx;
3125 struct thread_resume_array *r;
3126
3127 thread = (struct thread_info *) entry;
3128 lwp = get_thread_lwp (thread);
3129 r = arg;
3130
3131 for (ndx = 0; ndx < r->n; ndx++)
3132 {
3133 ptid_t ptid = r->resume[ndx].thread;
3134 if (ptid_equal (ptid, minus_one_ptid)
3135 || ptid_equal (ptid, entry->id)
3136 || (ptid_is_pid (ptid)
3137 && (ptid_get_pid (ptid) == pid_of (lwp)))
3138 || (ptid_get_lwp (ptid) == -1
3139 && (ptid_get_pid (ptid) == pid_of (lwp))))
3140 {
3141 if (r->resume[ndx].kind == resume_stop
3142 && thread->last_resume_kind == resume_stop)
3143 {
3144 if (debug_threads)
3145 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
3146 thread->last_status.kind == TARGET_WAITKIND_STOPPED
3147 ? "stopped"
3148 : "stopping",
3149 lwpid_of (lwp));
3150
3151 continue;
3152 }
3153
3154 lwp->resume = &r->resume[ndx];
3155 thread->last_resume_kind = lwp->resume->kind;
3156
3157 /* If we had a deferred signal to report, dequeue one now.
3158 This can happen if LWP gets more than one signal while
3159 trying to get out of a jump pad. */
3160 if (lwp->stopped
3161 && !lwp->status_pending_p
3162 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3163 {
3164 lwp->status_pending_p = 1;
3165
3166 if (debug_threads)
3167 fprintf (stderr,
3168 "Dequeueing deferred signal %d for LWP %ld, "
3169 "leaving status pending.\n",
3170 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3171 }
3172
3173 return 0;
3174 }
3175 }
3176
3177 /* No resume action for this thread. */
3178 lwp->resume = NULL;
3179
3180 return 0;
3181 }
3182
3183
3184 /* Set *FLAG_P if this lwp has an interesting status pending. */
3185 static int
3186 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3187 {
3188 struct lwp_info *lwp = (struct lwp_info *) entry;
3189
3190 /* LWPs which will not be resumed are not interesting, because
3191 we might not wait for them next time through linux_wait. */
3192 if (lwp->resume == NULL)
3193 return 0;
3194
3195 if (lwp->status_pending_p)
3196 * (int *) flag_p = 1;
3197
3198 return 0;
3199 }
3200
3201 /* Return 1 if this lwp that GDB wants running is stopped at an
3202 internal breakpoint that we need to step over. It assumes that any
3203 required STOP_PC adjustment has already been propagated to the
3204 inferior's regcache. */
3205
3206 static int
3207 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3208 {
3209 struct lwp_info *lwp = (struct lwp_info *) entry;
3210 struct thread_info *thread;
3211 struct thread_info *saved_inferior;
3212 CORE_ADDR pc;
3213
3214 /* LWPs which will not be resumed are not interesting, because we
3215 might not wait for them next time through linux_wait. */
3216
3217 if (!lwp->stopped)
3218 {
3219 if (debug_threads)
3220 fprintf (stderr,
3221 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3222 lwpid_of (lwp));
3223 return 0;
3224 }
3225
3226 thread = get_lwp_thread (lwp);
3227
3228 if (thread->last_resume_kind == resume_stop)
3229 {
3230 if (debug_threads)
3231 fprintf (stderr,
3232 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3233 lwpid_of (lwp));
3234 return 0;
3235 }
3236
3237 gdb_assert (lwp->suspended >= 0);
3238
3239 if (lwp->suspended)
3240 {
3241 if (debug_threads)
3242 fprintf (stderr,
3243 "Need step over [LWP %ld]? Ignoring, suspended\n",
3244 lwpid_of (lwp));
3245 return 0;
3246 }
3247
3248 if (!lwp->need_step_over)
3249 {
3250 if (debug_threads)
3251 fprintf (stderr,
3252 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3253 }
3254
3255 if (lwp->status_pending_p)
3256 {
3257 if (debug_threads)
3258 fprintf (stderr,
3259 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3260 lwpid_of (lwp));
3261 return 0;
3262 }
3263
3264 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3265 or we have. */
3266 pc = get_pc (lwp);
3267
3268 /* If the PC has changed since we stopped, then don't do anything,
3269 and let the breakpoint/tracepoint be hit. This happens if, for
3270 instance, GDB handled the decr_pc_after_break subtraction itself,
3271 GDB is OOL stepping this thread, or the user has issued a "jump"
3272 command, or poked thread's registers herself. */
3273 if (pc != lwp->stop_pc)
3274 {
3275 if (debug_threads)
3276 fprintf (stderr,
3277 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3278 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3279 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3280
3281 lwp->need_step_over = 0;
3282 return 0;
3283 }
3284
3285 saved_inferior = current_inferior;
3286 current_inferior = thread;
3287
3288 /* We can only step over breakpoints we know about. */
3289 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3290 {
3291 /* Don't step over a breakpoint that GDB expects to hit
3292 though. If the condition is being evaluated on the target's side
3293 and it evaluate to false, step over this breakpoint as well. */
3294 if (gdb_breakpoint_here (pc)
3295 && gdb_condition_true_at_breakpoint (pc))
3296 {
3297 if (debug_threads)
3298 fprintf (stderr,
3299 "Need step over [LWP %ld]? yes, but found"
3300 " GDB breakpoint at 0x%s; skipping step over\n",
3301 lwpid_of (lwp), paddress (pc));
3302
3303 current_inferior = saved_inferior;
3304 return 0;
3305 }
3306 else
3307 {
3308 if (debug_threads)
3309 fprintf (stderr,
3310 "Need step over [LWP %ld]? yes, "
3311 "found breakpoint at 0x%s\n",
3312 lwpid_of (lwp), paddress (pc));
3313
3314 /* We've found an lwp that needs stepping over --- return 1 so
3315 that find_inferior stops looking. */
3316 current_inferior = saved_inferior;
3317
3318 /* If the step over is cancelled, this is set again. */
3319 lwp->need_step_over = 0;
3320 return 1;
3321 }
3322 }
3323
3324 current_inferior = saved_inferior;
3325
3326 if (debug_threads)
3327 fprintf (stderr,
3328 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3329 lwpid_of (lwp), paddress (pc));
3330
3331 return 0;
3332 }
3333
3334 /* Start a step-over operation on LWP. When LWP stopped at a
3335 breakpoint, to make progress, we need to remove the breakpoint out
3336 of the way. If we let other threads run while we do that, they may
3337 pass by the breakpoint location and miss hitting it. To avoid
3338 that, a step-over momentarily stops all threads while LWP is
3339 single-stepped while the breakpoint is temporarily uninserted from
3340 the inferior. When the single-step finishes, we reinsert the
3341 breakpoint, and let all threads that are supposed to be running,
3342 run again.
3343
3344 On targets that don't support hardware single-step, we don't
3345 currently support full software single-stepping. Instead, we only
3346 support stepping over the thread event breakpoint, by asking the
3347 low target where to place a reinsert breakpoint. Since this
3348 routine assumes the breakpoint being stepped over is a thread event
3349 breakpoint, it usually assumes the return address of the current
3350 function is a good enough place to set the reinsert breakpoint. */
3351
3352 static int
3353 start_step_over (struct lwp_info *lwp)
3354 {
3355 struct thread_info *saved_inferior;
3356 CORE_ADDR pc;
3357 int step;
3358
3359 if (debug_threads)
3360 fprintf (stderr,
3361 "Starting step-over on LWP %ld. Stopping all threads\n",
3362 lwpid_of (lwp));
3363
3364 stop_all_lwps (1, lwp);
3365 gdb_assert (lwp->suspended == 0);
3366
3367 if (debug_threads)
3368 fprintf (stderr, "Done stopping all threads for step-over.\n");
3369
3370 /* Note, we should always reach here with an already adjusted PC,
3371 either by GDB (if we're resuming due to GDB's request), or by our
3372 caller, if we just finished handling an internal breakpoint GDB
3373 shouldn't care about. */
3374 pc = get_pc (lwp);
3375
3376 saved_inferior = current_inferior;
3377 current_inferior = get_lwp_thread (lwp);
3378
3379 lwp->bp_reinsert = pc;
3380 uninsert_breakpoints_at (pc);
3381 uninsert_fast_tracepoint_jumps_at (pc);
3382
3383 if (can_hardware_single_step ())
3384 {
3385 step = 1;
3386 }
3387 else
3388 {
3389 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3390 set_reinsert_breakpoint (raddr);
3391 step = 0;
3392 }
3393
3394 current_inferior = saved_inferior;
3395
3396 linux_resume_one_lwp (lwp, step, 0, NULL);
3397
3398 /* Require next event from this LWP. */
3399 step_over_bkpt = lwp->head.id;
3400 return 1;
3401 }
3402
3403 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3404 start_step_over, if still there, and delete any reinsert
3405 breakpoints we've set, on non hardware single-step targets. */
3406
3407 static int
3408 finish_step_over (struct lwp_info *lwp)
3409 {
3410 if (lwp->bp_reinsert != 0)
3411 {
3412 if (debug_threads)
3413 fprintf (stderr, "Finished step over.\n");
3414
3415 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3416 may be no breakpoint to reinsert there by now. */
3417 reinsert_breakpoints_at (lwp->bp_reinsert);
3418 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3419
3420 lwp->bp_reinsert = 0;
3421
3422 /* Delete any software-single-step reinsert breakpoints. No
3423 longer needed. We don't have to worry about other threads
3424 hitting this trap, and later not being able to explain it,
3425 because we were stepping over a breakpoint, and we hold all
3426 threads but LWP stopped while doing that. */
3427 if (!can_hardware_single_step ())
3428 delete_reinsert_breakpoints ();
3429
3430 step_over_bkpt = null_ptid;
3431 return 1;
3432 }
3433 else
3434 return 0;
3435 }
3436
3437 /* This function is called once per thread. We check the thread's resume
3438 request, which will tell us whether to resume, step, or leave the thread
3439 stopped; and what signal, if any, it should be sent.
3440
3441 For threads which we aren't explicitly told otherwise, we preserve
3442 the stepping flag; this is used for stepping over gdbserver-placed
3443 breakpoints.
3444
3445 If pending_flags was set in any thread, we queue any needed
3446 signals, since we won't actually resume. We already have a pending
3447 event to report, so we don't need to preserve any step requests;
3448 they should be re-issued if necessary. */
3449
3450 static int
3451 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3452 {
3453 struct lwp_info *lwp;
3454 struct thread_info *thread;
3455 int step;
3456 int leave_all_stopped = * (int *) arg;
3457 int leave_pending;
3458
3459 thread = (struct thread_info *) entry;
3460 lwp = get_thread_lwp (thread);
3461
3462 if (lwp->resume == NULL)
3463 return 0;
3464
3465 if (lwp->resume->kind == resume_stop)
3466 {
3467 if (debug_threads)
3468 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3469
3470 if (!lwp->stopped)
3471 {
3472 if (debug_threads)
3473 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3474
3475 /* Stop the thread, and wait for the event asynchronously,
3476 through the event loop. */
3477 send_sigstop (lwp);
3478 }
3479 else
3480 {
3481 if (debug_threads)
3482 fprintf (stderr, "already stopped LWP %ld\n",
3483 lwpid_of (lwp));
3484
3485 /* The LWP may have been stopped in an internal event that
3486 was not meant to be notified back to GDB (e.g., gdbserver
3487 breakpoint), so we should be reporting a stop event in
3488 this case too. */
3489
3490 /* If the thread already has a pending SIGSTOP, this is a
3491 no-op. Otherwise, something later will presumably resume
3492 the thread and this will cause it to cancel any pending
3493 operation, due to last_resume_kind == resume_stop. If
3494 the thread already has a pending status to report, we
3495 will still report it the next time we wait - see
3496 status_pending_p_callback. */
3497
3498 /* If we already have a pending signal to report, then
3499 there's no need to queue a SIGSTOP, as this means we're
3500 midway through moving the LWP out of the jumppad, and we
3501 will report the pending signal as soon as that is
3502 finished. */
3503 if (lwp->pending_signals_to_report == NULL)
3504 send_sigstop (lwp);
3505 }
3506
3507 /* For stop requests, we're done. */
3508 lwp->resume = NULL;
3509 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3510 return 0;
3511 }
3512
3513 /* If this thread which is about to be resumed has a pending status,
3514 then don't resume any threads - we can just report the pending
3515 status. Make sure to queue any signals that would otherwise be
3516 sent. In all-stop mode, we do this decision based on if *any*
3517 thread has a pending status. If there's a thread that needs the
3518 step-over-breakpoint dance, then don't resume any other thread
3519 but that particular one. */
3520 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3521
3522 if (!leave_pending)
3523 {
3524 if (debug_threads)
3525 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3526
3527 step = (lwp->resume->kind == resume_step);
3528 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3529 }
3530 else
3531 {
3532 if (debug_threads)
3533 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3534
3535 /* If we have a new signal, enqueue the signal. */
3536 if (lwp->resume->sig != 0)
3537 {
3538 struct pending_signals *p_sig;
3539 p_sig = xmalloc (sizeof (*p_sig));
3540 p_sig->prev = lwp->pending_signals;
3541 p_sig->signal = lwp->resume->sig;
3542 memset (&p_sig->info, 0, sizeof (siginfo_t));
3543
3544 /* If this is the same signal we were previously stopped by,
3545 make sure to queue its siginfo. We can ignore the return
3546 value of ptrace; if it fails, we'll skip
3547 PTRACE_SETSIGINFO. */
3548 if (WIFSTOPPED (lwp->last_status)
3549 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3550 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
3551
3552 lwp->pending_signals = p_sig;
3553 }
3554 }
3555
3556 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3557 lwp->resume = NULL;
3558 return 0;
3559 }
3560
3561 static void
3562 linux_resume (struct thread_resume *resume_info, size_t n)
3563 {
3564 struct thread_resume_array array = { resume_info, n };
3565 struct lwp_info *need_step_over = NULL;
3566 int any_pending;
3567 int leave_all_stopped;
3568
3569 find_inferior (&all_threads, linux_set_resume_request, &array);
3570
3571 /* If there is a thread which would otherwise be resumed, which has
3572 a pending status, then don't resume any threads - we can just
3573 report the pending status. Make sure to queue any signals that
3574 would otherwise be sent. In non-stop mode, we'll apply this
3575 logic to each thread individually. We consume all pending events
3576 before considering to start a step-over (in all-stop). */
3577 any_pending = 0;
3578 if (!non_stop)
3579 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3580
3581 /* If there is a thread which would otherwise be resumed, which is
3582 stopped at a breakpoint that needs stepping over, then don't
3583 resume any threads - have it step over the breakpoint with all
3584 other threads stopped, then resume all threads again. Make sure
3585 to queue any signals that would otherwise be delivered or
3586 queued. */
3587 if (!any_pending && supports_breakpoints ())
3588 need_step_over
3589 = (struct lwp_info *) find_inferior (&all_lwps,
3590 need_step_over_p, NULL);
3591
3592 leave_all_stopped = (need_step_over != NULL || any_pending);
3593
3594 if (debug_threads)
3595 {
3596 if (need_step_over != NULL)
3597 fprintf (stderr, "Not resuming all, need step over\n");
3598 else if (any_pending)
3599 fprintf (stderr,
3600 "Not resuming, all-stop and found "
3601 "an LWP with pending status\n");
3602 else
3603 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3604 }
3605
3606 /* Even if we're leaving threads stopped, queue all signals we'd
3607 otherwise deliver. */
3608 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3609
3610 if (need_step_over)
3611 start_step_over (need_step_over);
3612 }
3613
3614 /* This function is called once per thread. We check the thread's
3615 last resume request, which will tell us whether to resume, step, or
3616 leave the thread stopped. Any signal the client requested to be
3617 delivered has already been enqueued at this point.
3618
3619 If any thread that GDB wants running is stopped at an internal
3620 breakpoint that needs stepping over, we start a step-over operation
3621 on that particular thread, and leave all others stopped. */
3622
3623 static int
3624 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3625 {
3626 struct lwp_info *lwp = (struct lwp_info *) entry;
3627 struct thread_info *thread;
3628 int step;
3629
3630 if (lwp == except)
3631 return 0;
3632
3633 if (debug_threads)
3634 fprintf (stderr,
3635 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3636
3637 if (!lwp->stopped)
3638 {
3639 if (debug_threads)
3640 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3641 return 0;
3642 }
3643
3644 thread = get_lwp_thread (lwp);
3645
3646 if (thread->last_resume_kind == resume_stop
3647 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3648 {
3649 if (debug_threads)
3650 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3651 lwpid_of (lwp));
3652 return 0;
3653 }
3654
3655 if (lwp->status_pending_p)
3656 {
3657 if (debug_threads)
3658 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3659 lwpid_of (lwp));
3660 return 0;
3661 }
3662
3663 gdb_assert (lwp->suspended >= 0);
3664
3665 if (lwp->suspended)
3666 {
3667 if (debug_threads)
3668 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3669 return 0;
3670 }
3671
3672 if (thread->last_resume_kind == resume_stop
3673 && lwp->pending_signals_to_report == NULL
3674 && lwp->collecting_fast_tracepoint == 0)
3675 {
3676 /* We haven't reported this LWP as stopped yet (otherwise, the
3677 last_status.kind check above would catch it, and we wouldn't
3678 reach here. This LWP may have been momentarily paused by a
3679 stop_all_lwps call while handling for example, another LWP's
3680 step-over. In that case, the pending expected SIGSTOP signal
3681 that was queued at vCont;t handling time will have already
3682 been consumed by wait_for_sigstop, and so we need to requeue
3683 another one here. Note that if the LWP already has a SIGSTOP
3684 pending, this is a no-op. */
3685
3686 if (debug_threads)
3687 fprintf (stderr,
3688 "Client wants LWP %ld to stop. "
3689 "Making sure it has a SIGSTOP pending\n",
3690 lwpid_of (lwp));
3691
3692 send_sigstop (lwp);
3693 }
3694
3695 step = thread->last_resume_kind == resume_step;
3696 linux_resume_one_lwp (lwp, step, 0, NULL);
3697 return 0;
3698 }
3699
3700 static int
3701 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3702 {
3703 struct lwp_info *lwp = (struct lwp_info *) entry;
3704
3705 if (lwp == except)
3706 return 0;
3707
3708 lwp->suspended--;
3709 gdb_assert (lwp->suspended >= 0);
3710
3711 return proceed_one_lwp (entry, except);
3712 }
3713
3714 /* When we finish a step-over, set threads running again. If there's
3715 another thread that may need a step-over, now's the time to start
3716 it. Eventually, we'll move all threads past their breakpoints. */
3717
3718 static void
3719 proceed_all_lwps (void)
3720 {
3721 struct lwp_info *need_step_over;
3722
3723 /* If there is a thread which would otherwise be resumed, which is
3724 stopped at a breakpoint that needs stepping over, then don't
3725 resume any threads - have it step over the breakpoint with all
3726 other threads stopped, then resume all threads again. */
3727
3728 if (supports_breakpoints ())
3729 {
3730 need_step_over
3731 = (struct lwp_info *) find_inferior (&all_lwps,
3732 need_step_over_p, NULL);
3733
3734 if (need_step_over != NULL)
3735 {
3736 if (debug_threads)
3737 fprintf (stderr, "proceed_all_lwps: found "
3738 "thread %ld needing a step-over\n",
3739 lwpid_of (need_step_over));
3740
3741 start_step_over (need_step_over);
3742 return;
3743 }
3744 }
3745
3746 if (debug_threads)
3747 fprintf (stderr, "Proceeding, no step-over needed\n");
3748
3749 find_inferior (&all_lwps, proceed_one_lwp, NULL);
3750 }
3751
3752 /* Stopped LWPs that the client wanted to be running, that don't have
3753 pending statuses, are set to run again, except for EXCEPT, if not
3754 NULL. This undoes a stop_all_lwps call. */
3755
3756 static void
3757 unstop_all_lwps (int unsuspend, struct lwp_info *except)
3758 {
3759 if (debug_threads)
3760 {
3761 if (except)
3762 fprintf (stderr,
3763 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
3764 else
3765 fprintf (stderr,
3766 "unstopping all lwps\n");
3767 }
3768
3769 if (unsuspend)
3770 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
3771 else
3772 find_inferior (&all_lwps, proceed_one_lwp, except);
3773 }
3774
3775 #ifdef HAVE_LINUX_USRREGS
3776
3777 int
3778 register_addr (int regnum)
3779 {
3780 int addr;
3781
3782 if (regnum < 0 || regnum >= the_low_target.num_regs)
3783 error ("Invalid register number %d.", regnum);
3784
3785 addr = the_low_target.regmap[regnum];
3786
3787 return addr;
3788 }
3789
3790 /* Fetch one register. */
3791 static void
3792 fetch_register (struct regcache *regcache, int regno)
3793 {
3794 CORE_ADDR regaddr;
3795 int i, size;
3796 char *buf;
3797 int pid;
3798
3799 if (regno >= the_low_target.num_regs)
3800 return;
3801 if ((*the_low_target.cannot_fetch_register) (regno))
3802 return;
3803
3804 regaddr = register_addr (regno);
3805 if (regaddr == -1)
3806 return;
3807
3808 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3809 & -sizeof (PTRACE_XFER_TYPE));
3810 buf = alloca (size);
3811
3812 pid = lwpid_of (get_thread_lwp (current_inferior));
3813 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3814 {
3815 errno = 0;
3816 *(PTRACE_XFER_TYPE *) (buf + i) =
3817 ptrace (PTRACE_PEEKUSER, pid,
3818 /* Coerce to a uintptr_t first to avoid potential gcc warning
3819 of coercing an 8 byte integer to a 4 byte pointer. */
3820 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr, 0);
3821 regaddr += sizeof (PTRACE_XFER_TYPE);
3822 if (errno != 0)
3823 error ("reading register %d: %s", regno, strerror (errno));
3824 }
3825
3826 if (the_low_target.supply_ptrace_register)
3827 the_low_target.supply_ptrace_register (regcache, regno, buf);
3828 else
3829 supply_register (regcache, regno, buf);
3830 }
3831
3832 /* Store one register. */
3833 static void
3834 store_register (struct regcache *regcache, int regno)
3835 {
3836 CORE_ADDR regaddr;
3837 int i, size;
3838 char *buf;
3839 int pid;
3840
3841 if (regno >= the_low_target.num_regs)
3842 return;
3843 if ((*the_low_target.cannot_store_register) (regno))
3844 return;
3845
3846 regaddr = register_addr (regno);
3847 if (regaddr == -1)
3848 return;
3849
3850 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3851 & -sizeof (PTRACE_XFER_TYPE));
3852 buf = alloca (size);
3853 memset (buf, 0, size);
3854
3855 if (the_low_target.collect_ptrace_register)
3856 the_low_target.collect_ptrace_register (regcache, regno, buf);
3857 else
3858 collect_register (regcache, regno, buf);
3859
3860 pid = lwpid_of (get_thread_lwp (current_inferior));
3861 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3862 {
3863 errno = 0;
3864 ptrace (PTRACE_POKEUSER, pid,
3865 /* Coerce to a uintptr_t first to avoid potential gcc warning
3866 about coercing an 8 byte integer to a 4 byte pointer. */
3867 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr,
3868 (PTRACE_ARG4_TYPE) *(PTRACE_XFER_TYPE *) (buf + i));
3869 if (errno != 0)
3870 {
3871 /* At this point, ESRCH should mean the process is
3872 already gone, in which case we simply ignore attempts
3873 to change its registers. See also the related
3874 comment in linux_resume_one_lwp. */
3875 if (errno == ESRCH)
3876 return;
3877
3878 if ((*the_low_target.cannot_store_register) (regno) == 0)
3879 error ("writing register %d: %s", regno, strerror (errno));
3880 }
3881 regaddr += sizeof (PTRACE_XFER_TYPE);
3882 }
3883 }
3884
3885 /* Fetch all registers, or just one, from the child process. */
3886 static void
3887 usr_fetch_inferior_registers (struct regcache *regcache, int regno)
3888 {
3889 if (regno == -1)
3890 for (regno = 0; regno < the_low_target.num_regs; regno++)
3891 fetch_register (regcache, regno);
3892 else
3893 fetch_register (regcache, regno);
3894 }
3895
3896 /* Store our register values back into the inferior.
3897 If REGNO is -1, do this for all registers.
3898 Otherwise, REGNO specifies which register (so we can save time). */
3899 static void
3900 usr_store_inferior_registers (struct regcache *regcache, int regno)
3901 {
3902 if (regno == -1)
3903 for (regno = 0; regno < the_low_target.num_regs; regno++)
3904 store_register (regcache, regno);
3905 else
3906 store_register (regcache, regno);
3907 }
3908 #endif /* HAVE_LINUX_USRREGS */
3909
3910
3911
3912 #ifdef HAVE_LINUX_REGSETS
3913
3914 static int
3915 regsets_fetch_inferior_registers (struct regcache *regcache)
3916 {
3917 struct regset_info *regset;
3918 int saw_general_regs = 0;
3919 int pid;
3920 struct iovec iov;
3921
3922 regset = target_regsets;
3923
3924 pid = lwpid_of (get_thread_lwp (current_inferior));
3925 while (regset->size >= 0)
3926 {
3927 void *buf, *data;
3928 int nt_type, res;
3929
3930 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3931 {
3932 regset ++;
3933 continue;
3934 }
3935
3936 buf = xmalloc (regset->size);
3937
3938 nt_type = regset->nt_type;
3939 if (nt_type)
3940 {
3941 iov.iov_base = buf;
3942 iov.iov_len = regset->size;
3943 data = (void *) &iov;
3944 }
3945 else
3946 data = buf;
3947
3948 #ifndef __sparc__
3949 res = ptrace (regset->get_request, pid, nt_type, data);
3950 #else
3951 res = ptrace (regset->get_request, pid, data, nt_type);
3952 #endif
3953 if (res < 0)
3954 {
3955 if (errno == EIO)
3956 {
3957 /* If we get EIO on a regset, do not try it again for
3958 this process. */
3959 disabled_regsets[regset - target_regsets] = 1;
3960 free (buf);
3961 continue;
3962 }
3963 else
3964 {
3965 char s[256];
3966 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
3967 pid);
3968 perror (s);
3969 }
3970 }
3971 else if (regset->type == GENERAL_REGS)
3972 saw_general_regs = 1;
3973 regset->store_function (regcache, buf);
3974 regset ++;
3975 free (buf);
3976 }
3977 if (saw_general_regs)
3978 return 0;
3979 else
3980 return 1;
3981 }
3982
3983 static int
3984 regsets_store_inferior_registers (struct regcache *regcache)
3985 {
3986 struct regset_info *regset;
3987 int saw_general_regs = 0;
3988 int pid;
3989 struct iovec iov;
3990
3991 regset = target_regsets;
3992
3993 pid = lwpid_of (get_thread_lwp (current_inferior));
3994 while (regset->size >= 0)
3995 {
3996 void *buf, *data;
3997 int nt_type, res;
3998
3999 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
4000 {
4001 regset ++;
4002 continue;
4003 }
4004
4005 buf = xmalloc (regset->size);
4006
4007 /* First fill the buffer with the current register set contents,
4008 in case there are any items in the kernel's regset that are
4009 not in gdbserver's regcache. */
4010
4011 nt_type = regset->nt_type;
4012 if (nt_type)
4013 {
4014 iov.iov_base = buf;
4015 iov.iov_len = regset->size;
4016 data = (void *) &iov;
4017 }
4018 else
4019 data = buf;
4020
4021 #ifndef __sparc__
4022 res = ptrace (regset->get_request, pid, nt_type, data);
4023 #else
4024 res = ptrace (regset->get_request, pid, &iov, data);
4025 #endif
4026
4027 if (res == 0)
4028 {
4029 /* Then overlay our cached registers on that. */
4030 regset->fill_function (regcache, buf);
4031
4032 /* Only now do we write the register set. */
4033 #ifndef __sparc__
4034 res = ptrace (regset->set_request, pid, nt_type, data);
4035 #else
4036 res = ptrace (regset->set_request, pid, data, nt_type);
4037 #endif
4038 }
4039
4040 if (res < 0)
4041 {
4042 if (errno == EIO)
4043 {
4044 /* If we get EIO on a regset, do not try it again for
4045 this process. */
4046 disabled_regsets[regset - target_regsets] = 1;
4047 free (buf);
4048 continue;
4049 }
4050 else if (errno == ESRCH)
4051 {
4052 /* At this point, ESRCH should mean the process is
4053 already gone, in which case we simply ignore attempts
4054 to change its registers. See also the related
4055 comment in linux_resume_one_lwp. */
4056 free (buf);
4057 return 0;
4058 }
4059 else
4060 {
4061 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4062 }
4063 }
4064 else if (regset->type == GENERAL_REGS)
4065 saw_general_regs = 1;
4066 regset ++;
4067 free (buf);
4068 }
4069 if (saw_general_regs)
4070 return 0;
4071 else
4072 return 1;
4073 return 0;
4074 }
4075
4076 #endif /* HAVE_LINUX_REGSETS */
4077
4078
4079 void
4080 linux_fetch_registers (struct regcache *regcache, int regno)
4081 {
4082 #ifdef HAVE_LINUX_REGSETS
4083 if (regsets_fetch_inferior_registers (regcache) == 0)
4084 return;
4085 #endif
4086 #ifdef HAVE_LINUX_USRREGS
4087 usr_fetch_inferior_registers (regcache, regno);
4088 #endif
4089 }
4090
4091 void
4092 linux_store_registers (struct regcache *regcache, int regno)
4093 {
4094 #ifdef HAVE_LINUX_REGSETS
4095 if (regsets_store_inferior_registers (regcache) == 0)
4096 return;
4097 #endif
4098 #ifdef HAVE_LINUX_USRREGS
4099 usr_store_inferior_registers (regcache, regno);
4100 #endif
4101 }
4102
4103
4104 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4105 to debugger memory starting at MYADDR. */
4106
4107 static int
4108 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4109 {
4110 register int i;
4111 /* Round starting address down to longword boundary. */
4112 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4113 /* Round ending address up; get number of longwords that makes. */
4114 register int count
4115 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4116 / sizeof (PTRACE_XFER_TYPE);
4117 /* Allocate buffer of that many longwords. */
4118 register PTRACE_XFER_TYPE *buffer
4119 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4120 int fd;
4121 char filename[64];
4122 int pid = lwpid_of (get_thread_lwp (current_inferior));
4123
4124 /* Try using /proc. Don't bother for one word. */
4125 if (len >= 3 * sizeof (long))
4126 {
4127 /* We could keep this file open and cache it - possibly one per
4128 thread. That requires some juggling, but is even faster. */
4129 sprintf (filename, "/proc/%d/mem", pid);
4130 fd = open (filename, O_RDONLY | O_LARGEFILE);
4131 if (fd == -1)
4132 goto no_proc;
4133
4134 /* If pread64 is available, use it. It's faster if the kernel
4135 supports it (only one syscall), and it's 64-bit safe even on
4136 32-bit platforms (for instance, SPARC debugging a SPARC64
4137 application). */
4138 #ifdef HAVE_PREAD64
4139 if (pread64 (fd, myaddr, len, memaddr) != len)
4140 #else
4141 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, myaddr, len) != len)
4142 #endif
4143 {
4144 close (fd);
4145 goto no_proc;
4146 }
4147
4148 close (fd);
4149 return 0;
4150 }
4151
4152 no_proc:
4153 /* Read all the longwords */
4154 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4155 {
4156 errno = 0;
4157 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4158 about coercing an 8 byte integer to a 4 byte pointer. */
4159 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4160 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4161 if (errno)
4162 return errno;
4163 }
4164
4165 /* Copy appropriate bytes out of the buffer. */
4166 memcpy (myaddr,
4167 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4168 len);
4169
4170 return 0;
4171 }
4172
4173 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4174 memory at MEMADDR. On failure (cannot write to the inferior)
4175 returns the value of errno. */
4176
4177 static int
4178 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4179 {
4180 register int i;
4181 /* Round starting address down to longword boundary. */
4182 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4183 /* Round ending address up; get number of longwords that makes. */
4184 register int count
4185 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4186 / sizeof (PTRACE_XFER_TYPE);
4187
4188 /* Allocate buffer of that many longwords. */
4189 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4190 alloca (count * sizeof (PTRACE_XFER_TYPE));
4191
4192 int pid = lwpid_of (get_thread_lwp (current_inferior));
4193
4194 if (debug_threads)
4195 {
4196 /* Dump up to four bytes. */
4197 unsigned int val = * (unsigned int *) myaddr;
4198 if (len == 1)
4199 val = val & 0xff;
4200 else if (len == 2)
4201 val = val & 0xffff;
4202 else if (len == 3)
4203 val = val & 0xffffff;
4204 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4205 val, (long)memaddr);
4206 }
4207
4208 /* Fill start and end extra bytes of buffer with existing memory data. */
4209
4210 errno = 0;
4211 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4212 about coercing an 8 byte integer to a 4 byte pointer. */
4213 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4214 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4215 if (errno)
4216 return errno;
4217
4218 if (count > 1)
4219 {
4220 errno = 0;
4221 buffer[count - 1]
4222 = ptrace (PTRACE_PEEKTEXT, pid,
4223 /* Coerce to a uintptr_t first to avoid potential gcc warning
4224 about coercing an 8 byte integer to a 4 byte pointer. */
4225 (PTRACE_ARG3_TYPE) (uintptr_t) (addr + (count - 1)
4226 * sizeof (PTRACE_XFER_TYPE)),
4227 0);
4228 if (errno)
4229 return errno;
4230 }
4231
4232 /* Copy data to be written over corresponding part of buffer. */
4233
4234 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4235 myaddr, len);
4236
4237 /* Write the entire buffer. */
4238
4239 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4240 {
4241 errno = 0;
4242 ptrace (PTRACE_POKETEXT, pid,
4243 /* Coerce to a uintptr_t first to avoid potential gcc warning
4244 about coercing an 8 byte integer to a 4 byte pointer. */
4245 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4246 (PTRACE_ARG4_TYPE) buffer[i]);
4247 if (errno)
4248 return errno;
4249 }
4250
4251 return 0;
4252 }
4253
4254 /* Non-zero if the kernel supports PTRACE_O_TRACEFORK. */
4255 static int linux_supports_tracefork_flag;
4256
4257 static void
4258 linux_enable_event_reporting (int pid)
4259 {
4260 if (!linux_supports_tracefork_flag)
4261 return;
4262
4263 ptrace (PTRACE_SETOPTIONS, pid, 0, (PTRACE_ARG4_TYPE) PTRACE_O_TRACECLONE);
4264 }
4265
4266 /* Helper functions for linux_test_for_tracefork, called via clone (). */
4267
4268 static int
4269 linux_tracefork_grandchild (void *arg)
4270 {
4271 _exit (0);
4272 }
4273
4274 #define STACK_SIZE 4096
4275
4276 static int
4277 linux_tracefork_child (void *arg)
4278 {
4279 ptrace (PTRACE_TRACEME, 0, 0, 0);
4280 kill (getpid (), SIGSTOP);
4281
4282 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4283
4284 if (fork () == 0)
4285 linux_tracefork_grandchild (NULL);
4286
4287 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4288
4289 #ifdef __ia64__
4290 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
4291 CLONE_VM | SIGCHLD, NULL);
4292 #else
4293 clone (linux_tracefork_grandchild, (char *) arg + STACK_SIZE,
4294 CLONE_VM | SIGCHLD, NULL);
4295 #endif
4296
4297 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4298
4299 _exit (0);
4300 }
4301
4302 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
4303 sure that we can enable the option, and that it had the desired
4304 effect. */
4305
4306 static void
4307 linux_test_for_tracefork (void)
4308 {
4309 int child_pid, ret, status;
4310 long second_pid;
4311 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4312 char *stack = xmalloc (STACK_SIZE * 4);
4313 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4314
4315 linux_supports_tracefork_flag = 0;
4316
4317 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4318
4319 child_pid = fork ();
4320 if (child_pid == 0)
4321 linux_tracefork_child (NULL);
4322
4323 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4324
4325 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
4326 #ifdef __ia64__
4327 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
4328 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4329 #else /* !__ia64__ */
4330 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
4331 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4332 #endif /* !__ia64__ */
4333
4334 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4335
4336 if (child_pid == -1)
4337 perror_with_name ("clone");
4338
4339 ret = my_waitpid (child_pid, &status, 0);
4340 if (ret == -1)
4341 perror_with_name ("waitpid");
4342 else if (ret != child_pid)
4343 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
4344 if (! WIFSTOPPED (status))
4345 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
4346
4347 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
4348 (PTRACE_ARG4_TYPE) PTRACE_O_TRACEFORK);
4349 if (ret != 0)
4350 {
4351 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4352 if (ret != 0)
4353 {
4354 warning ("linux_test_for_tracefork: failed to kill child");
4355 return;
4356 }
4357
4358 ret = my_waitpid (child_pid, &status, 0);
4359 if (ret != child_pid)
4360 warning ("linux_test_for_tracefork: failed to wait for killed child");
4361 else if (!WIFSIGNALED (status))
4362 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
4363 "killed child", status);
4364
4365 return;
4366 }
4367
4368 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
4369 if (ret != 0)
4370 warning ("linux_test_for_tracefork: failed to resume child");
4371
4372 ret = my_waitpid (child_pid, &status, 0);
4373
4374 if (ret == child_pid && WIFSTOPPED (status)
4375 && status >> 16 == PTRACE_EVENT_FORK)
4376 {
4377 second_pid = 0;
4378 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
4379 if (ret == 0 && second_pid != 0)
4380 {
4381 int second_status;
4382
4383 linux_supports_tracefork_flag = 1;
4384 my_waitpid (second_pid, &second_status, 0);
4385 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
4386 if (ret != 0)
4387 warning ("linux_test_for_tracefork: failed to kill second child");
4388 my_waitpid (second_pid, &status, 0);
4389 }
4390 }
4391 else
4392 warning ("linux_test_for_tracefork: unexpected result from waitpid "
4393 "(%d, status 0x%x)", ret, status);
4394
4395 do
4396 {
4397 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4398 if (ret != 0)
4399 warning ("linux_test_for_tracefork: failed to kill child");
4400 my_waitpid (child_pid, &status, 0);
4401 }
4402 while (WIFSTOPPED (status));
4403
4404 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4405 free (stack);
4406 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4407 }
4408
4409
4410 static void
4411 linux_look_up_symbols (void)
4412 {
4413 #ifdef USE_THREAD_DB
4414 struct process_info *proc = current_process ();
4415
4416 if (proc->private->thread_db != NULL)
4417 return;
4418
4419 /* If the kernel supports tracing forks then it also supports tracing
4420 clones, and then we don't need to use the magic thread event breakpoint
4421 to learn about threads. */
4422 thread_db_init (!linux_supports_tracefork_flag);
4423 #endif
4424 }
4425
4426 static void
4427 linux_request_interrupt (void)
4428 {
4429 extern unsigned long signal_pid;
4430
4431 if (!ptid_equal (cont_thread, null_ptid)
4432 && !ptid_equal (cont_thread, minus_one_ptid))
4433 {
4434 struct lwp_info *lwp;
4435 int lwpid;
4436
4437 lwp = get_thread_lwp (current_inferior);
4438 lwpid = lwpid_of (lwp);
4439 kill_lwp (lwpid, SIGINT);
4440 }
4441 else
4442 kill_lwp (signal_pid, SIGINT);
4443 }
4444
4445 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4446 to debugger memory starting at MYADDR. */
4447
4448 static int
4449 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4450 {
4451 char filename[PATH_MAX];
4452 int fd, n;
4453 int pid = lwpid_of (get_thread_lwp (current_inferior));
4454
4455 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4456
4457 fd = open (filename, O_RDONLY);
4458 if (fd < 0)
4459 return -1;
4460
4461 if (offset != (CORE_ADDR) 0
4462 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4463 n = -1;
4464 else
4465 n = read (fd, myaddr, len);
4466
4467 close (fd);
4468
4469 return n;
4470 }
4471
4472 /* These breakpoint and watchpoint related wrapper functions simply
4473 pass on the function call if the target has registered a
4474 corresponding function. */
4475
4476 static int
4477 linux_insert_point (char type, CORE_ADDR addr, int len)
4478 {
4479 if (the_low_target.insert_point != NULL)
4480 return the_low_target.insert_point (type, addr, len);
4481 else
4482 /* Unsupported (see target.h). */
4483 return 1;
4484 }
4485
4486 static int
4487 linux_remove_point (char type, CORE_ADDR addr, int len)
4488 {
4489 if (the_low_target.remove_point != NULL)
4490 return the_low_target.remove_point (type, addr, len);
4491 else
4492 /* Unsupported (see target.h). */
4493 return 1;
4494 }
4495
4496 static int
4497 linux_stopped_by_watchpoint (void)
4498 {
4499 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4500
4501 return lwp->stopped_by_watchpoint;
4502 }
4503
4504 static CORE_ADDR
4505 linux_stopped_data_address (void)
4506 {
4507 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4508
4509 return lwp->stopped_data_address;
4510 }
4511
4512 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4513 #if defined(__mcoldfire__)
4514 /* These should really be defined in the kernel's ptrace.h header. */
4515 #define PT_TEXT_ADDR 49*4
4516 #define PT_DATA_ADDR 50*4
4517 #define PT_TEXT_END_ADDR 51*4
4518 #elif defined(BFIN)
4519 #define PT_TEXT_ADDR 220
4520 #define PT_TEXT_END_ADDR 224
4521 #define PT_DATA_ADDR 228
4522 #elif defined(__TMS320C6X__)
4523 #define PT_TEXT_ADDR (0x10000*4)
4524 #define PT_DATA_ADDR (0x10004*4)
4525 #define PT_TEXT_END_ADDR (0x10008*4)
4526 #endif
4527
4528 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4529 to tell gdb about. */
4530
4531 static int
4532 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4533 {
4534 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
4535 unsigned long text, text_end, data;
4536 int pid = lwpid_of (get_thread_lwp (current_inferior));
4537
4538 errno = 0;
4539
4540 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
4541 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
4542 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
4543
4544 if (errno == 0)
4545 {
4546 /* Both text and data offsets produced at compile-time (and so
4547 used by gdb) are relative to the beginning of the program,
4548 with the data segment immediately following the text segment.
4549 However, the actual runtime layout in memory may put the data
4550 somewhere else, so when we send gdb a data base-address, we
4551 use the real data base address and subtract the compile-time
4552 data base-address from it (which is just the length of the
4553 text segment). BSS immediately follows data in both
4554 cases. */
4555 *text_p = text;
4556 *data_p = data - (text_end - text);
4557
4558 return 1;
4559 }
4560 #endif
4561 return 0;
4562 }
4563 #endif
4564
4565 static int
4566 linux_qxfer_osdata (const char *annex,
4567 unsigned char *readbuf, unsigned const char *writebuf,
4568 CORE_ADDR offset, int len)
4569 {
4570 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4571 }
4572
4573 /* Convert a native/host siginfo object, into/from the siginfo in the
4574 layout of the inferiors' architecture. */
4575
4576 static void
4577 siginfo_fixup (struct siginfo *siginfo, void *inf_siginfo, int direction)
4578 {
4579 int done = 0;
4580
4581 if (the_low_target.siginfo_fixup != NULL)
4582 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4583
4584 /* If there was no callback, or the callback didn't do anything,
4585 then just do a straight memcpy. */
4586 if (!done)
4587 {
4588 if (direction == 1)
4589 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4590 else
4591 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4592 }
4593 }
4594
4595 static int
4596 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4597 unsigned const char *writebuf, CORE_ADDR offset, int len)
4598 {
4599 int pid;
4600 struct siginfo siginfo;
4601 char inf_siginfo[sizeof (struct siginfo)];
4602
4603 if (current_inferior == NULL)
4604 return -1;
4605
4606 pid = lwpid_of (get_thread_lwp (current_inferior));
4607
4608 if (debug_threads)
4609 fprintf (stderr, "%s siginfo for lwp %d.\n",
4610 readbuf != NULL ? "Reading" : "Writing",
4611 pid);
4612
4613 if (offset >= sizeof (siginfo))
4614 return -1;
4615
4616 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
4617 return -1;
4618
4619 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4620 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4621 inferior with a 64-bit GDBSERVER should look the same as debugging it
4622 with a 32-bit GDBSERVER, we need to convert it. */
4623 siginfo_fixup (&siginfo, inf_siginfo, 0);
4624
4625 if (offset + len > sizeof (siginfo))
4626 len = sizeof (siginfo) - offset;
4627
4628 if (readbuf != NULL)
4629 memcpy (readbuf, inf_siginfo + offset, len);
4630 else
4631 {
4632 memcpy (inf_siginfo + offset, writebuf, len);
4633
4634 /* Convert back to ptrace layout before flushing it out. */
4635 siginfo_fixup (&siginfo, inf_siginfo, 1);
4636
4637 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
4638 return -1;
4639 }
4640
4641 return len;
4642 }
4643
4644 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4645 so we notice when children change state; as the handler for the
4646 sigsuspend in my_waitpid. */
4647
4648 static void
4649 sigchld_handler (int signo)
4650 {
4651 int old_errno = errno;
4652
4653 if (debug_threads)
4654 {
4655 do
4656 {
4657 /* fprintf is not async-signal-safe, so call write
4658 directly. */
4659 if (write (2, "sigchld_handler\n",
4660 sizeof ("sigchld_handler\n") - 1) < 0)
4661 break; /* just ignore */
4662 } while (0);
4663 }
4664
4665 if (target_is_async_p ())
4666 async_file_mark (); /* trigger a linux_wait */
4667
4668 errno = old_errno;
4669 }
4670
4671 static int
4672 linux_supports_non_stop (void)
4673 {
4674 return 1;
4675 }
4676
4677 static int
4678 linux_async (int enable)
4679 {
4680 int previous = (linux_event_pipe[0] != -1);
4681
4682 if (debug_threads)
4683 fprintf (stderr, "linux_async (%d), previous=%d\n",
4684 enable, previous);
4685
4686 if (previous != enable)
4687 {
4688 sigset_t mask;
4689 sigemptyset (&mask);
4690 sigaddset (&mask, SIGCHLD);
4691
4692 sigprocmask (SIG_BLOCK, &mask, NULL);
4693
4694 if (enable)
4695 {
4696 if (pipe (linux_event_pipe) == -1)
4697 fatal ("creating event pipe failed.");
4698
4699 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
4700 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
4701
4702 /* Register the event loop handler. */
4703 add_file_handler (linux_event_pipe[0],
4704 handle_target_event, NULL);
4705
4706 /* Always trigger a linux_wait. */
4707 async_file_mark ();
4708 }
4709 else
4710 {
4711 delete_file_handler (linux_event_pipe[0]);
4712
4713 close (linux_event_pipe[0]);
4714 close (linux_event_pipe[1]);
4715 linux_event_pipe[0] = -1;
4716 linux_event_pipe[1] = -1;
4717 }
4718
4719 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4720 }
4721
4722 return previous;
4723 }
4724
4725 static int
4726 linux_start_non_stop (int nonstop)
4727 {
4728 /* Register or unregister from event-loop accordingly. */
4729 linux_async (nonstop);
4730 return 0;
4731 }
4732
4733 static int
4734 linux_supports_multi_process (void)
4735 {
4736 return 1;
4737 }
4738
4739 static int
4740 linux_supports_disable_randomization (void)
4741 {
4742 #ifdef HAVE_PERSONALITY
4743 return 1;
4744 #else
4745 return 0;
4746 #endif
4747 }
4748
4749 /* Enumerate spufs IDs for process PID. */
4750 static int
4751 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
4752 {
4753 int pos = 0;
4754 int written = 0;
4755 char path[128];
4756 DIR *dir;
4757 struct dirent *entry;
4758
4759 sprintf (path, "/proc/%ld/fd", pid);
4760 dir = opendir (path);
4761 if (!dir)
4762 return -1;
4763
4764 rewinddir (dir);
4765 while ((entry = readdir (dir)) != NULL)
4766 {
4767 struct stat st;
4768 struct statfs stfs;
4769 int fd;
4770
4771 fd = atoi (entry->d_name);
4772 if (!fd)
4773 continue;
4774
4775 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
4776 if (stat (path, &st) != 0)
4777 continue;
4778 if (!S_ISDIR (st.st_mode))
4779 continue;
4780
4781 if (statfs (path, &stfs) != 0)
4782 continue;
4783 if (stfs.f_type != SPUFS_MAGIC)
4784 continue;
4785
4786 if (pos >= offset && pos + 4 <= offset + len)
4787 {
4788 *(unsigned int *)(buf + pos - offset) = fd;
4789 written += 4;
4790 }
4791 pos += 4;
4792 }
4793
4794 closedir (dir);
4795 return written;
4796 }
4797
4798 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
4799 object type, using the /proc file system. */
4800 static int
4801 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
4802 unsigned const char *writebuf,
4803 CORE_ADDR offset, int len)
4804 {
4805 long pid = lwpid_of (get_thread_lwp (current_inferior));
4806 char buf[128];
4807 int fd = 0;
4808 int ret = 0;
4809
4810 if (!writebuf && !readbuf)
4811 return -1;
4812
4813 if (!*annex)
4814 {
4815 if (!readbuf)
4816 return -1;
4817 else
4818 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4819 }
4820
4821 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
4822 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4823 if (fd <= 0)
4824 return -1;
4825
4826 if (offset != 0
4827 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4828 {
4829 close (fd);
4830 return 0;
4831 }
4832
4833 if (writebuf)
4834 ret = write (fd, writebuf, (size_t) len);
4835 else
4836 ret = read (fd, readbuf, (size_t) len);
4837
4838 close (fd);
4839 return ret;
4840 }
4841
4842 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
4843 struct target_loadseg
4844 {
4845 /* Core address to which the segment is mapped. */
4846 Elf32_Addr addr;
4847 /* VMA recorded in the program header. */
4848 Elf32_Addr p_vaddr;
4849 /* Size of this segment in memory. */
4850 Elf32_Word p_memsz;
4851 };
4852
4853 # if defined PT_GETDSBT
4854 struct target_loadmap
4855 {
4856 /* Protocol version number, must be zero. */
4857 Elf32_Word version;
4858 /* Pointer to the DSBT table, its size, and the DSBT index. */
4859 unsigned *dsbt_table;
4860 unsigned dsbt_size, dsbt_index;
4861 /* Number of segments in this map. */
4862 Elf32_Word nsegs;
4863 /* The actual memory map. */
4864 struct target_loadseg segs[/*nsegs*/];
4865 };
4866 # define LINUX_LOADMAP PT_GETDSBT
4867 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
4868 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
4869 # else
4870 struct target_loadmap
4871 {
4872 /* Protocol version number, must be zero. */
4873 Elf32_Half version;
4874 /* Number of segments in this map. */
4875 Elf32_Half nsegs;
4876 /* The actual memory map. */
4877 struct target_loadseg segs[/*nsegs*/];
4878 };
4879 # define LINUX_LOADMAP PTRACE_GETFDPIC
4880 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
4881 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
4882 # endif
4883
4884 static int
4885 linux_read_loadmap (const char *annex, CORE_ADDR offset,
4886 unsigned char *myaddr, unsigned int len)
4887 {
4888 int pid = lwpid_of (get_thread_lwp (current_inferior));
4889 int addr = -1;
4890 struct target_loadmap *data = NULL;
4891 unsigned int actual_length, copy_length;
4892
4893 if (strcmp (annex, "exec") == 0)
4894 addr = (int) LINUX_LOADMAP_EXEC;
4895 else if (strcmp (annex, "interp") == 0)
4896 addr = (int) LINUX_LOADMAP_INTERP;
4897 else
4898 return -1;
4899
4900 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
4901 return -1;
4902
4903 if (data == NULL)
4904 return -1;
4905
4906 actual_length = sizeof (struct target_loadmap)
4907 + sizeof (struct target_loadseg) * data->nsegs;
4908
4909 if (offset < 0 || offset > actual_length)
4910 return -1;
4911
4912 copy_length = actual_length - offset < len ? actual_length - offset : len;
4913 memcpy (myaddr, (char *) data + offset, copy_length);
4914 return copy_length;
4915 }
4916 #else
4917 # define linux_read_loadmap NULL
4918 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
4919
4920 static void
4921 linux_process_qsupported (const char *query)
4922 {
4923 if (the_low_target.process_qsupported != NULL)
4924 the_low_target.process_qsupported (query);
4925 }
4926
4927 static int
4928 linux_supports_tracepoints (void)
4929 {
4930 if (*the_low_target.supports_tracepoints == NULL)
4931 return 0;
4932
4933 return (*the_low_target.supports_tracepoints) ();
4934 }
4935
4936 static CORE_ADDR
4937 linux_read_pc (struct regcache *regcache)
4938 {
4939 if (the_low_target.get_pc == NULL)
4940 return 0;
4941
4942 return (*the_low_target.get_pc) (regcache);
4943 }
4944
4945 static void
4946 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
4947 {
4948 gdb_assert (the_low_target.set_pc != NULL);
4949
4950 (*the_low_target.set_pc) (regcache, pc);
4951 }
4952
4953 static int
4954 linux_thread_stopped (struct thread_info *thread)
4955 {
4956 return get_thread_lwp (thread)->stopped;
4957 }
4958
4959 /* This exposes stop-all-threads functionality to other modules. */
4960
4961 static void
4962 linux_pause_all (int freeze)
4963 {
4964 stop_all_lwps (freeze, NULL);
4965 }
4966
4967 /* This exposes unstop-all-threads functionality to other gdbserver
4968 modules. */
4969
4970 static void
4971 linux_unpause_all (int unfreeze)
4972 {
4973 unstop_all_lwps (unfreeze, NULL);
4974 }
4975
4976 static int
4977 linux_prepare_to_access_memory (void)
4978 {
4979 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
4980 running LWP. */
4981 if (non_stop)
4982 linux_pause_all (1);
4983 return 0;
4984 }
4985
4986 static void
4987 linux_done_accessing_memory (void)
4988 {
4989 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
4990 running LWP. */
4991 if (non_stop)
4992 linux_unpause_all (1);
4993 }
4994
4995 static int
4996 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
4997 CORE_ADDR collector,
4998 CORE_ADDR lockaddr,
4999 ULONGEST orig_size,
5000 CORE_ADDR *jump_entry,
5001 CORE_ADDR *trampoline,
5002 ULONGEST *trampoline_size,
5003 unsigned char *jjump_pad_insn,
5004 ULONGEST *jjump_pad_insn_size,
5005 CORE_ADDR *adjusted_insn_addr,
5006 CORE_ADDR *adjusted_insn_addr_end,
5007 char *err)
5008 {
5009 return (*the_low_target.install_fast_tracepoint_jump_pad)
5010 (tpoint, tpaddr, collector, lockaddr, orig_size,
5011 jump_entry, trampoline, trampoline_size,
5012 jjump_pad_insn, jjump_pad_insn_size,
5013 adjusted_insn_addr, adjusted_insn_addr_end,
5014 err);
5015 }
5016
5017 static struct emit_ops *
5018 linux_emit_ops (void)
5019 {
5020 if (the_low_target.emit_ops != NULL)
5021 return (*the_low_target.emit_ops) ();
5022 else
5023 return NULL;
5024 }
5025
5026 static int
5027 linux_get_min_fast_tracepoint_insn_len (void)
5028 {
5029 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5030 }
5031
5032 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5033
5034 static int
5035 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5036 CORE_ADDR *phdr_memaddr, int *num_phdr)
5037 {
5038 char filename[PATH_MAX];
5039 int fd;
5040 const int auxv_size = is_elf64
5041 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5042 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5043
5044 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5045
5046 fd = open (filename, O_RDONLY);
5047 if (fd < 0)
5048 return 1;
5049
5050 *phdr_memaddr = 0;
5051 *num_phdr = 0;
5052 while (read (fd, buf, auxv_size) == auxv_size
5053 && (*phdr_memaddr == 0 || *num_phdr == 0))
5054 {
5055 if (is_elf64)
5056 {
5057 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5058
5059 switch (aux->a_type)
5060 {
5061 case AT_PHDR:
5062 *phdr_memaddr = aux->a_un.a_val;
5063 break;
5064 case AT_PHNUM:
5065 *num_phdr = aux->a_un.a_val;
5066 break;
5067 }
5068 }
5069 else
5070 {
5071 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5072
5073 switch (aux->a_type)
5074 {
5075 case AT_PHDR:
5076 *phdr_memaddr = aux->a_un.a_val;
5077 break;
5078 case AT_PHNUM:
5079 *num_phdr = aux->a_un.a_val;
5080 break;
5081 }
5082 }
5083 }
5084
5085 close (fd);
5086
5087 if (*phdr_memaddr == 0 || *num_phdr == 0)
5088 {
5089 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5090 "phdr_memaddr = %ld, phdr_num = %d",
5091 (long) *phdr_memaddr, *num_phdr);
5092 return 2;
5093 }
5094
5095 return 0;
5096 }
5097
5098 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5099
5100 static CORE_ADDR
5101 get_dynamic (const int pid, const int is_elf64)
5102 {
5103 CORE_ADDR phdr_memaddr, relocation;
5104 int num_phdr, i;
5105 unsigned char *phdr_buf;
5106 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5107
5108 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5109 return 0;
5110
5111 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5112 phdr_buf = alloca (num_phdr * phdr_size);
5113
5114 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5115 return 0;
5116
5117 /* Compute relocation: it is expected to be 0 for "regular" executables,
5118 non-zero for PIE ones. */
5119 relocation = -1;
5120 for (i = 0; relocation == -1 && i < num_phdr; i++)
5121 if (is_elf64)
5122 {
5123 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5124
5125 if (p->p_type == PT_PHDR)
5126 relocation = phdr_memaddr - p->p_vaddr;
5127 }
5128 else
5129 {
5130 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5131
5132 if (p->p_type == PT_PHDR)
5133 relocation = phdr_memaddr - p->p_vaddr;
5134 }
5135
5136 if (relocation == -1)
5137 {
5138 warning ("Unexpected missing PT_PHDR");
5139 return 0;
5140 }
5141
5142 for (i = 0; i < num_phdr; i++)
5143 {
5144 if (is_elf64)
5145 {
5146 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5147
5148 if (p->p_type == PT_DYNAMIC)
5149 return p->p_vaddr + relocation;
5150 }
5151 else
5152 {
5153 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5154
5155 if (p->p_type == PT_DYNAMIC)
5156 return p->p_vaddr + relocation;
5157 }
5158 }
5159
5160 return 0;
5161 }
5162
5163 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5164 can be 0 if the inferior does not yet have the library list initialized. */
5165
5166 static CORE_ADDR
5167 get_r_debug (const int pid, const int is_elf64)
5168 {
5169 CORE_ADDR dynamic_memaddr;
5170 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5171 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5172
5173 dynamic_memaddr = get_dynamic (pid, is_elf64);
5174 if (dynamic_memaddr == 0)
5175 return (CORE_ADDR) -1;
5176
5177 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5178 {
5179 if (is_elf64)
5180 {
5181 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5182
5183 if (dyn->d_tag == DT_DEBUG)
5184 return dyn->d_un.d_val;
5185
5186 if (dyn->d_tag == DT_NULL)
5187 break;
5188 }
5189 else
5190 {
5191 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5192
5193 if (dyn->d_tag == DT_DEBUG)
5194 return dyn->d_un.d_val;
5195
5196 if (dyn->d_tag == DT_NULL)
5197 break;
5198 }
5199
5200 dynamic_memaddr += dyn_size;
5201 }
5202
5203 return (CORE_ADDR) -1;
5204 }
5205
5206 /* Read one pointer from MEMADDR in the inferior. */
5207
5208 static int
5209 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5210 {
5211 *ptr = 0;
5212 return linux_read_memory (memaddr, (unsigned char *) ptr, ptr_size);
5213 }
5214
5215 struct link_map_offsets
5216 {
5217 /* Offset and size of r_debug.r_version. */
5218 int r_version_offset;
5219
5220 /* Offset and size of r_debug.r_map. */
5221 int r_map_offset;
5222
5223 /* Offset to l_addr field in struct link_map. */
5224 int l_addr_offset;
5225
5226 /* Offset to l_name field in struct link_map. */
5227 int l_name_offset;
5228
5229 /* Offset to l_ld field in struct link_map. */
5230 int l_ld_offset;
5231
5232 /* Offset to l_next field in struct link_map. */
5233 int l_next_offset;
5234
5235 /* Offset to l_prev field in struct link_map. */
5236 int l_prev_offset;
5237 };
5238
5239 /* Construct qXfer:libraries:read reply. */
5240
5241 static int
5242 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5243 unsigned const char *writebuf,
5244 CORE_ADDR offset, int len)
5245 {
5246 char *document;
5247 unsigned document_len;
5248 struct process_info_private *const priv = current_process ()->private;
5249 char filename[PATH_MAX];
5250 int pid, is_elf64;
5251
5252 static const struct link_map_offsets lmo_32bit_offsets =
5253 {
5254 0, /* r_version offset. */
5255 4, /* r_debug.r_map offset. */
5256 0, /* l_addr offset in link_map. */
5257 4, /* l_name offset in link_map. */
5258 8, /* l_ld offset in link_map. */
5259 12, /* l_next offset in link_map. */
5260 16 /* l_prev offset in link_map. */
5261 };
5262
5263 static const struct link_map_offsets lmo_64bit_offsets =
5264 {
5265 0, /* r_version offset. */
5266 8, /* r_debug.r_map offset. */
5267 0, /* l_addr offset in link_map. */
5268 8, /* l_name offset in link_map. */
5269 16, /* l_ld offset in link_map. */
5270 24, /* l_next offset in link_map. */
5271 32 /* l_prev offset in link_map. */
5272 };
5273 const struct link_map_offsets *lmo;
5274
5275 if (writebuf != NULL)
5276 return -2;
5277 if (readbuf == NULL)
5278 return -1;
5279
5280 pid = lwpid_of (get_thread_lwp (current_inferior));
5281 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5282 is_elf64 = elf_64_file_p (filename);
5283 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5284
5285 if (priv->r_debug == 0)
5286 priv->r_debug = get_r_debug (pid, is_elf64);
5287
5288 if (priv->r_debug == (CORE_ADDR) -1 || priv->r_debug == 0)
5289 {
5290 document = xstrdup ("<library-list-svr4 version=\"1.0\"/>\n");
5291 }
5292 else
5293 {
5294 int allocated = 1024;
5295 char *p;
5296 const int ptr_size = is_elf64 ? 8 : 4;
5297 CORE_ADDR lm_addr, lm_prev, l_name, l_addr, l_ld, l_next, l_prev;
5298 int r_version, header_done = 0;
5299
5300 document = xmalloc (allocated);
5301 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5302 p = document + strlen (document);
5303
5304 r_version = 0;
5305 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5306 (unsigned char *) &r_version,
5307 sizeof (r_version)) != 0
5308 || r_version != 1)
5309 {
5310 warning ("unexpected r_debug version %d", r_version);
5311 goto done;
5312 }
5313
5314 if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5315 &lm_addr, ptr_size) != 0)
5316 {
5317 warning ("unable to read r_map from 0x%lx",
5318 (long) priv->r_debug + lmo->r_map_offset);
5319 goto done;
5320 }
5321
5322 lm_prev = 0;
5323 while (read_one_ptr (lm_addr + lmo->l_name_offset,
5324 &l_name, ptr_size) == 0
5325 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5326 &l_addr, ptr_size) == 0
5327 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5328 &l_ld, ptr_size) == 0
5329 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5330 &l_prev, ptr_size) == 0
5331 && read_one_ptr (lm_addr + lmo->l_next_offset,
5332 &l_next, ptr_size) == 0)
5333 {
5334 unsigned char libname[PATH_MAX];
5335
5336 if (lm_prev != l_prev)
5337 {
5338 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5339 (long) lm_prev, (long) l_prev);
5340 break;
5341 }
5342
5343 /* Not checking for error because reading may stop before
5344 we've got PATH_MAX worth of characters. */
5345 libname[0] = '\0';
5346 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5347 libname[sizeof (libname) - 1] = '\0';
5348 if (libname[0] != '\0')
5349 {
5350 /* 6x the size for xml_escape_text below. */
5351 size_t len = 6 * strlen ((char *) libname);
5352 char *name;
5353
5354 if (!header_done)
5355 {
5356 /* Terminate `<library-list-svr4'. */
5357 *p++ = '>';
5358 header_done = 1;
5359 }
5360
5361 while (allocated < p - document + len + 200)
5362 {
5363 /* Expand to guarantee sufficient storage. */
5364 uintptr_t document_len = p - document;
5365
5366 document = xrealloc (document, 2 * allocated);
5367 allocated *= 2;
5368 p = document + document_len;
5369 }
5370
5371 name = xml_escape_text ((char *) libname);
5372 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5373 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5374 name, (unsigned long) lm_addr,
5375 (unsigned long) l_addr, (unsigned long) l_ld);
5376 free (name);
5377 }
5378 else if (lm_prev == 0)
5379 {
5380 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5381 p = p + strlen (p);
5382 }
5383
5384 if (l_next == 0)
5385 break;
5386
5387 lm_prev = lm_addr;
5388 lm_addr = l_next;
5389 }
5390 done:
5391 strcpy (p, "</library-list-svr4>");
5392 }
5393
5394 document_len = strlen (document);
5395 if (offset < document_len)
5396 document_len -= offset;
5397 else
5398 document_len = 0;
5399 if (len > document_len)
5400 len = document_len;
5401
5402 memcpy (readbuf, document + offset, len);
5403 xfree (document);
5404
5405 return len;
5406 }
5407
5408 static struct target_ops linux_target_ops = {
5409 linux_create_inferior,
5410 linux_attach,
5411 linux_kill,
5412 linux_detach,
5413 linux_mourn,
5414 linux_join,
5415 linux_thread_alive,
5416 linux_resume,
5417 linux_wait,
5418 linux_fetch_registers,
5419 linux_store_registers,
5420 linux_prepare_to_access_memory,
5421 linux_done_accessing_memory,
5422 linux_read_memory,
5423 linux_write_memory,
5424 linux_look_up_symbols,
5425 linux_request_interrupt,
5426 linux_read_auxv,
5427 linux_insert_point,
5428 linux_remove_point,
5429 linux_stopped_by_watchpoint,
5430 linux_stopped_data_address,
5431 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
5432 linux_read_offsets,
5433 #else
5434 NULL,
5435 #endif
5436 #ifdef USE_THREAD_DB
5437 thread_db_get_tls_address,
5438 #else
5439 NULL,
5440 #endif
5441 linux_qxfer_spu,
5442 hostio_last_error_from_errno,
5443 linux_qxfer_osdata,
5444 linux_xfer_siginfo,
5445 linux_supports_non_stop,
5446 linux_async,
5447 linux_start_non_stop,
5448 linux_supports_multi_process,
5449 #ifdef USE_THREAD_DB
5450 thread_db_handle_monitor_command,
5451 #else
5452 NULL,
5453 #endif
5454 linux_common_core_of_thread,
5455 linux_read_loadmap,
5456 linux_process_qsupported,
5457 linux_supports_tracepoints,
5458 linux_read_pc,
5459 linux_write_pc,
5460 linux_thread_stopped,
5461 NULL,
5462 linux_pause_all,
5463 linux_unpause_all,
5464 linux_cancel_breakpoints,
5465 linux_stabilize_threads,
5466 linux_install_fast_tracepoint_jump_pad,
5467 linux_emit_ops,
5468 linux_supports_disable_randomization,
5469 linux_get_min_fast_tracepoint_insn_len,
5470 linux_qxfer_libraries_svr4,
5471 };
5472
5473 static void
5474 linux_init_signals ()
5475 {
5476 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
5477 to find what the cancel signal actually is. */
5478 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
5479 signal (__SIGRTMIN+1, SIG_IGN);
5480 #endif
5481 }
5482
5483 void
5484 initialize_low (void)
5485 {
5486 struct sigaction sigchld_action;
5487 memset (&sigchld_action, 0, sizeof (sigchld_action));
5488 set_target_ops (&linux_target_ops);
5489 set_breakpoint_data (the_low_target.breakpoint,
5490 the_low_target.breakpoint_len);
5491 linux_init_signals ();
5492 linux_test_for_tracefork ();
5493 #ifdef HAVE_LINUX_REGSETS
5494 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
5495 ;
5496 disabled_regsets = xmalloc (num_regsets);
5497 #endif
5498
5499 sigchld_action.sa_handler = sigchld_handler;
5500 sigemptyset (&sigchld_action.sa_mask);
5501 sigchld_action.sa_flags = SA_RESTART;
5502 sigaction (SIGCHLD, &sigchld_action, NULL);
5503 }
This page took 0.149544 seconds and 4 git commands to generate.