* linux-arm-low.c:
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 51 Franklin Street, Fifth Floor,
20 Boston, MA 02110-1301, USA. */
21
22 #include "server.h"
23 #include "linux-low.h"
24
25 #include <sys/wait.h>
26 #include <stdio.h>
27 #include <sys/param.h>
28 #include <sys/dir.h>
29 #include <sys/ptrace.h>
30 #include <sys/user.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <errno.h>
38 #include <sys/syscall.h>
39
40 /* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead,
41 however. This requires changing the ID in place when we go from !using_threads
42 to using_threads, immediately.
43
44 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
45 the same as the LWP ID. */
46
47 struct inferior_list all_processes;
48
49 /* FIXME this is a bit of a hack, and could be removed. */
50 int stopping_threads;
51
52 /* FIXME make into a target method? */
53 int using_threads;
54
55 static void linux_resume_one_process (struct inferior_list_entry *entry,
56 int step, int signal);
57 static void linux_resume (struct thread_resume *resume_info);
58 static void stop_all_processes (void);
59 static int linux_wait_for_event (struct thread_info *child);
60
61 struct pending_signals
62 {
63 int signal;
64 struct pending_signals *prev;
65 };
66
67 #define PTRACE_ARG3_TYPE long
68 #define PTRACE_XFER_TYPE long
69
70 #ifdef HAVE_LINUX_REGSETS
71 static int use_regsets_p = 1;
72 #endif
73
74 int debug_threads = 0;
75
76 #define pid_of(proc) ((proc)->head.id)
77
78 /* FIXME: Delete eventually. */
79 #define inferior_pid (pid_of (get_thread_process (current_inferior)))
80
81 /* This function should only be called if the process got a SIGTRAP.
82 The SIGTRAP could mean several things.
83
84 On i386, where decr_pc_after_break is non-zero:
85 If we were single-stepping this process using PTRACE_SINGLESTEP,
86 we will get only the one SIGTRAP (even if the instruction we
87 stepped over was a breakpoint). The value of $eip will be the
88 next instruction.
89 If we continue the process using PTRACE_CONT, we will get a
90 SIGTRAP when we hit a breakpoint. The value of $eip will be
91 the instruction after the breakpoint (i.e. needs to be
92 decremented). If we report the SIGTRAP to GDB, we must also
93 report the undecremented PC. If we cancel the SIGTRAP, we
94 must resume at the decremented PC.
95
96 (Presumably, not yet tested) On a non-decr_pc_after_break machine
97 with hardware or kernel single-step:
98 If we single-step over a breakpoint instruction, our PC will
99 point at the following instruction. If we continue and hit a
100 breakpoint instruction, our PC will point at the breakpoint
101 instruction. */
102
103 static CORE_ADDR
104 get_stop_pc (void)
105 {
106 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
107
108 if (get_thread_process (current_inferior)->stepping)
109 return stop_pc;
110 else
111 return stop_pc - the_low_target.decr_pc_after_break;
112 }
113
114 static void *
115 add_process (unsigned long pid)
116 {
117 struct process_info *process;
118
119 process = (struct process_info *) malloc (sizeof (*process));
120 memset (process, 0, sizeof (*process));
121
122 process->head.id = pid;
123
124 /* Default to tid == lwpid == pid. */
125 process->tid = pid;
126 process->lwpid = pid;
127
128 add_inferior_to_list (&all_processes, &process->head);
129
130 return process;
131 }
132
133 /* Start an inferior process and returns its pid.
134 ALLARGS is a vector of program-name and args. */
135
136 static int
137 linux_create_inferior (char *program, char **allargs)
138 {
139 void *new_process;
140 int pid;
141
142 pid = fork ();
143 if (pid < 0)
144 perror_with_name ("fork");
145
146 if (pid == 0)
147 {
148 ptrace (PTRACE_TRACEME, 0, 0, 0);
149
150 signal (__SIGRTMIN + 1, SIG_DFL);
151
152 setpgid (0, 0);
153
154 execv (program, allargs);
155
156 fprintf (stderr, "Cannot exec %s: %s.\n", program,
157 strerror (errno));
158 fflush (stderr);
159 _exit (0177);
160 }
161
162 new_process = add_process (pid);
163 add_thread (pid, new_process, pid);
164
165 return pid;
166 }
167
168 /* Attach to an inferior process. */
169
170 void
171 linux_attach_lwp (unsigned long pid, unsigned long tid)
172 {
173 struct process_info *new_process;
174
175 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
176 {
177 fprintf (stderr, "Cannot attach to process %ld: %s (%d)\n", pid,
178 strerror (errno), errno);
179 fflush (stderr);
180
181 /* If we fail to attach to an LWP, just return. */
182 if (!using_threads)
183 _exit (0177);
184 return;
185 }
186
187 new_process = (struct process_info *) add_process (pid);
188 add_thread (tid, new_process, pid);
189
190 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
191 brings it to a halt. We should ignore that SIGSTOP and resume the process
192 (unless this is the first process, in which case the flag will be cleared
193 in linux_attach).
194
195 On the other hand, if we are currently trying to stop all threads, we
196 should treat the new thread as if we had sent it a SIGSTOP. This works
197 because we are guaranteed that add_process added us to the end of the
198 list, and so the new thread has not yet reached wait_for_sigstop (but
199 will). */
200 if (! stopping_threads)
201 new_process->stop_expected = 1;
202 }
203
204 int
205 linux_attach (unsigned long pid)
206 {
207 struct process_info *process;
208
209 linux_attach_lwp (pid, pid);
210
211 /* Don't ignore the initial SIGSTOP if we just attached to this process. */
212 process = (struct process_info *) find_inferior_id (&all_processes, pid);
213 process->stop_expected = 0;
214
215 return 0;
216 }
217
218 /* Kill the inferior process. Make us have no inferior. */
219
220 static void
221 linux_kill_one_process (struct inferior_list_entry *entry)
222 {
223 struct thread_info *thread = (struct thread_info *) entry;
224 struct process_info *process = get_thread_process (thread);
225 int wstat;
226
227 /* We avoid killing the first thread here, because of a Linux kernel (at
228 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
229 the children get a chance to be reaped, it will remain a zombie
230 forever. */
231 if (entry == all_threads.head)
232 return;
233
234 do
235 {
236 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
237
238 /* Make sure it died. The loop is most likely unnecessary. */
239 wstat = linux_wait_for_event (thread);
240 } while (WIFSTOPPED (wstat));
241 }
242
243 static void
244 linux_kill (void)
245 {
246 struct thread_info *thread = (struct thread_info *) all_threads.head;
247 struct process_info *process = get_thread_process (thread);
248 int wstat;
249
250 for_each_inferior (&all_threads, linux_kill_one_process);
251
252 /* See the comment in linux_kill_one_process. We did not kill the first
253 thread in the list, so do so now. */
254 do
255 {
256 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
257
258 /* Make sure it died. The loop is most likely unnecessary. */
259 wstat = linux_wait_for_event (thread);
260 } while (WIFSTOPPED (wstat));
261 }
262
263 static void
264 linux_detach_one_process (struct inferior_list_entry *entry)
265 {
266 struct thread_info *thread = (struct thread_info *) entry;
267 struct process_info *process = get_thread_process (thread);
268
269 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
270 }
271
272 static void
273 linux_detach (void)
274 {
275 for_each_inferior (&all_threads, linux_detach_one_process);
276 }
277
278 /* Return nonzero if the given thread is still alive. */
279 static int
280 linux_thread_alive (unsigned long tid)
281 {
282 if (find_inferior_id (&all_threads, tid) != NULL)
283 return 1;
284 else
285 return 0;
286 }
287
288 /* Return nonzero if this process stopped at a breakpoint which
289 no longer appears to be inserted. Also adjust the PC
290 appropriately to resume where the breakpoint used to be. */
291 static int
292 check_removed_breakpoint (struct process_info *event_child)
293 {
294 CORE_ADDR stop_pc;
295 struct thread_info *saved_inferior;
296
297 if (event_child->pending_is_breakpoint == 0)
298 return 0;
299
300 if (debug_threads)
301 fprintf (stderr, "Checking for breakpoint.\n");
302
303 saved_inferior = current_inferior;
304 current_inferior = get_process_thread (event_child);
305
306 stop_pc = get_stop_pc ();
307
308 /* If the PC has changed since we stopped, then we shouldn't do
309 anything. This happens if, for instance, GDB handled the
310 decr_pc_after_break subtraction itself. */
311 if (stop_pc != event_child->pending_stop_pc)
312 {
313 if (debug_threads)
314 fprintf (stderr, "Ignoring, PC was changed.\n");
315
316 event_child->pending_is_breakpoint = 0;
317 current_inferior = saved_inferior;
318 return 0;
319 }
320
321 /* If the breakpoint is still there, we will report hitting it. */
322 if ((*the_low_target.breakpoint_at) (stop_pc))
323 {
324 if (debug_threads)
325 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
326 current_inferior = saved_inferior;
327 return 0;
328 }
329
330 if (debug_threads)
331 fprintf (stderr, "Removed breakpoint.\n");
332
333 /* For decr_pc_after_break targets, here is where we perform the
334 decrement. We go immediately from this function to resuming,
335 and can not safely call get_stop_pc () again. */
336 if (the_low_target.set_pc != NULL)
337 (*the_low_target.set_pc) (stop_pc);
338
339 /* We consumed the pending SIGTRAP. */
340 event_child->pending_is_breakpoint = 0;
341 event_child->status_pending_p = 0;
342 event_child->status_pending = 0;
343
344 current_inferior = saved_inferior;
345 return 1;
346 }
347
348 /* Return 1 if this process has an interesting status pending. This function
349 may silently resume an inferior process. */
350 static int
351 status_pending_p (struct inferior_list_entry *entry, void *dummy)
352 {
353 struct process_info *process = (struct process_info *) entry;
354
355 if (process->status_pending_p)
356 if (check_removed_breakpoint (process))
357 {
358 /* This thread was stopped at a breakpoint, and the breakpoint
359 is now gone. We were told to continue (or step...) all threads,
360 so GDB isn't trying to single-step past this breakpoint.
361 So instead of reporting the old SIGTRAP, pretend we got to
362 the breakpoint just after it was removed instead of just
363 before; resume the process. */
364 linux_resume_one_process (&process->head, 0, 0);
365 return 0;
366 }
367
368 return process->status_pending_p;
369 }
370
371 static void
372 linux_wait_for_process (struct process_info **childp, int *wstatp)
373 {
374 int ret;
375 int to_wait_for = -1;
376
377 if (*childp != NULL)
378 to_wait_for = (*childp)->lwpid;
379
380 while (1)
381 {
382 ret = waitpid (to_wait_for, wstatp, WNOHANG);
383
384 if (ret == -1)
385 {
386 if (errno != ECHILD)
387 perror_with_name ("waitpid");
388 }
389 else if (ret > 0)
390 break;
391
392 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
393
394 if (ret == -1)
395 {
396 if (errno != ECHILD)
397 perror_with_name ("waitpid (WCLONE)");
398 }
399 else if (ret > 0)
400 break;
401
402 usleep (1000);
403 }
404
405 if (debug_threads
406 && (!WIFSTOPPED (*wstatp)
407 || (WSTOPSIG (*wstatp) != 32
408 && WSTOPSIG (*wstatp) != 33)))
409 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
410
411 if (to_wait_for == -1)
412 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
413
414 (*childp)->stopped = 1;
415 (*childp)->pending_is_breakpoint = 0;
416
417 if (debug_threads
418 && WIFSTOPPED (*wstatp))
419 {
420 current_inferior = (struct thread_info *)
421 find_inferior_id (&all_threads, (*childp)->tid);
422 /* For testing only; i386_stop_pc prints out a diagnostic. */
423 if (the_low_target.get_pc != NULL)
424 get_stop_pc ();
425 }
426 }
427
428 static int
429 linux_wait_for_event (struct thread_info *child)
430 {
431 CORE_ADDR stop_pc;
432 struct process_info *event_child;
433 int wstat;
434
435 /* Check for a process with a pending status. */
436 /* It is possible that the user changed the pending task's registers since
437 it stopped. We correctly handle the change of PC if we hit a breakpoint
438 (in check_removed_breakpoint); signals should be reported anyway. */
439 if (child == NULL)
440 {
441 event_child = (struct process_info *)
442 find_inferior (&all_processes, status_pending_p, NULL);
443 if (debug_threads && event_child)
444 fprintf (stderr, "Got a pending child %ld\n", event_child->lwpid);
445 }
446 else
447 {
448 event_child = get_thread_process (child);
449 if (event_child->status_pending_p
450 && check_removed_breakpoint (event_child))
451 event_child = NULL;
452 }
453
454 if (event_child != NULL)
455 {
456 if (event_child->status_pending_p)
457 {
458 if (debug_threads)
459 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
460 event_child->lwpid, event_child->status_pending);
461 wstat = event_child->status_pending;
462 event_child->status_pending_p = 0;
463 event_child->status_pending = 0;
464 current_inferior = get_process_thread (event_child);
465 return wstat;
466 }
467 }
468
469 /* We only enter this loop if no process has a pending wait status. Thus
470 any action taken in response to a wait status inside this loop is
471 responding as soon as we detect the status, not after any pending
472 events. */
473 while (1)
474 {
475 if (child == NULL)
476 event_child = NULL;
477 else
478 event_child = get_thread_process (child);
479
480 linux_wait_for_process (&event_child, &wstat);
481
482 if (event_child == NULL)
483 error ("event from unknown child");
484
485 current_inferior = (struct thread_info *)
486 find_inferior_id (&all_threads, event_child->tid);
487
488 if (using_threads)
489 {
490 /* Check for thread exit. */
491 if (! WIFSTOPPED (wstat))
492 {
493 if (debug_threads)
494 fprintf (stderr, "Thread %ld (LWP %ld) exiting\n",
495 event_child->tid, event_child->head.id);
496
497 /* If the last thread is exiting, just return. */
498 if (all_threads.head == all_threads.tail)
499 return wstat;
500
501 dead_thread_notify (event_child->tid);
502
503 remove_inferior (&all_processes, &event_child->head);
504 free (event_child);
505 remove_thread (current_inferior);
506 current_inferior = (struct thread_info *) all_threads.head;
507
508 /* If we were waiting for this particular child to do something...
509 well, it did something. */
510 if (child != NULL)
511 return wstat;
512
513 /* Wait for a more interesting event. */
514 continue;
515 }
516
517 if (WIFSTOPPED (wstat)
518 && WSTOPSIG (wstat) == SIGSTOP
519 && event_child->stop_expected)
520 {
521 if (debug_threads)
522 fprintf (stderr, "Expected stop.\n");
523 event_child->stop_expected = 0;
524 linux_resume_one_process (&event_child->head,
525 event_child->stepping, 0);
526 continue;
527 }
528
529 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
530 thread library? */
531 if (WIFSTOPPED (wstat)
532 && (WSTOPSIG (wstat) == __SIGRTMIN
533 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
534 {
535 if (debug_threads)
536 fprintf (stderr, "Ignored signal %d for %ld (LWP %ld).\n",
537 WSTOPSIG (wstat), event_child->tid,
538 event_child->head.id);
539 linux_resume_one_process (&event_child->head,
540 event_child->stepping,
541 WSTOPSIG (wstat));
542 continue;
543 }
544 }
545
546 /* If this event was not handled above, and is not a SIGTRAP, report
547 it. */
548 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
549 return wstat;
550
551 /* If this target does not support breakpoints, we simply report the
552 SIGTRAP; it's of no concern to us. */
553 if (the_low_target.get_pc == NULL)
554 return wstat;
555
556 stop_pc = get_stop_pc ();
557
558 /* bp_reinsert will only be set if we were single-stepping.
559 Notice that we will resume the process after hitting
560 a gdbserver breakpoint; single-stepping to/over one
561 is not supported (yet). */
562 if (event_child->bp_reinsert != 0)
563 {
564 if (debug_threads)
565 fprintf (stderr, "Reinserted breakpoint.\n");
566 reinsert_breakpoint (event_child->bp_reinsert);
567 event_child->bp_reinsert = 0;
568
569 /* Clear the single-stepping flag and SIGTRAP as we resume. */
570 linux_resume_one_process (&event_child->head, 0, 0);
571 continue;
572 }
573
574 if (debug_threads)
575 fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n");
576
577 if (check_breakpoints (stop_pc) != 0)
578 {
579 /* We hit one of our own breakpoints. We mark it as a pending
580 breakpoint, so that check_removed_breakpoint () will do the PC
581 adjustment for us at the appropriate time. */
582 event_child->pending_is_breakpoint = 1;
583 event_child->pending_stop_pc = stop_pc;
584
585 /* Now we need to put the breakpoint back. We continue in the event
586 loop instead of simply replacing the breakpoint right away,
587 in order to not lose signals sent to the thread that hit the
588 breakpoint. Unfortunately this increases the window where another
589 thread could sneak past the removed breakpoint. For the current
590 use of server-side breakpoints (thread creation) this is
591 acceptable; but it needs to be considered before this breakpoint
592 mechanism can be used in more general ways. For some breakpoints
593 it may be necessary to stop all other threads, but that should
594 be avoided where possible.
595
596 If breakpoint_reinsert_addr is NULL, that means that we can
597 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
598 mark it for reinsertion, and single-step.
599
600 Otherwise, call the target function to figure out where we need
601 our temporary breakpoint, create it, and continue executing this
602 process. */
603 if (the_low_target.breakpoint_reinsert_addr == NULL)
604 {
605 event_child->bp_reinsert = stop_pc;
606 uninsert_breakpoint (stop_pc);
607 linux_resume_one_process (&event_child->head, 1, 0);
608 }
609 else
610 {
611 reinsert_breakpoint_by_bp
612 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
613 linux_resume_one_process (&event_child->head, 0, 0);
614 }
615
616 continue;
617 }
618
619 /* If we were single-stepping, we definitely want to report the
620 SIGTRAP. The single-step operation has completed, so also
621 clear the stepping flag; in general this does not matter,
622 because the SIGTRAP will be reported to the client, which
623 will give us a new action for this thread, but clear it for
624 consistency anyway. It's safe to clear the stepping flag
625 because the only consumer of get_stop_pc () after this point
626 is check_removed_breakpoint, and pending_is_breakpoint is not
627 set. It might be wiser to use a step_completed flag instead. */
628 if (event_child->stepping)
629 {
630 event_child->stepping = 0;
631 return wstat;
632 }
633
634 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
635 Check if it is a breakpoint, and if so mark the process information
636 accordingly. This will handle both the necessary fiddling with the
637 PC on decr_pc_after_break targets and suppressing extra threads
638 hitting a breakpoint if two hit it at once and then GDB removes it
639 after the first is reported. Arguably it would be better to report
640 multiple threads hitting breakpoints simultaneously, but the current
641 remote protocol does not allow this. */
642 if ((*the_low_target.breakpoint_at) (stop_pc))
643 {
644 event_child->pending_is_breakpoint = 1;
645 event_child->pending_stop_pc = stop_pc;
646 }
647
648 return wstat;
649 }
650
651 /* NOTREACHED */
652 return 0;
653 }
654
655 /* Wait for process, returns status. */
656
657 static unsigned char
658 linux_wait (char *status)
659 {
660 int w;
661 struct thread_info *child = NULL;
662
663 retry:
664 /* If we were only supposed to resume one thread, only wait for
665 that thread - if it's still alive. If it died, however - which
666 can happen if we're coming from the thread death case below -
667 then we need to make sure we restart the other threads. We could
668 pick a thread at random or restart all; restarting all is less
669 arbitrary. */
670 if (cont_thread != 0 && cont_thread != -1)
671 {
672 child = (struct thread_info *) find_inferior_id (&all_threads,
673 cont_thread);
674
675 /* No stepping, no signal - unless one is pending already, of course. */
676 if (child == NULL)
677 {
678 struct thread_resume resume_info;
679 resume_info.thread = -1;
680 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
681 linux_resume (&resume_info);
682 }
683 }
684
685 enable_async_io ();
686 unblock_async_io ();
687 w = linux_wait_for_event (child);
688 stop_all_processes ();
689 disable_async_io ();
690
691 /* If we are waiting for a particular child, and it exited,
692 linux_wait_for_event will return its exit status. Similarly if
693 the last child exited. If this is not the last child, however,
694 do not report it as exited until there is a 'thread exited' response
695 available in the remote protocol. Instead, just wait for another event.
696 This should be safe, because if the thread crashed we will already
697 have reported the termination signal to GDB; that should stop any
698 in-progress stepping operations, etc.
699
700 Report the exit status of the last thread to exit. This matches
701 LinuxThreads' behavior. */
702
703 if (all_threads.head == all_threads.tail)
704 {
705 if (WIFEXITED (w))
706 {
707 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
708 *status = 'W';
709 clear_inferiors ();
710 free (all_processes.head);
711 all_processes.head = all_processes.tail = NULL;
712 return ((unsigned char) WEXITSTATUS (w));
713 }
714 else if (!WIFSTOPPED (w))
715 {
716 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
717 *status = 'X';
718 clear_inferiors ();
719 free (all_processes.head);
720 all_processes.head = all_processes.tail = NULL;
721 return ((unsigned char) WTERMSIG (w));
722 }
723 }
724 else
725 {
726 if (!WIFSTOPPED (w))
727 goto retry;
728 }
729
730 *status = 'T';
731 return ((unsigned char) WSTOPSIG (w));
732 }
733
734 /* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
735 thread groups are in use, we need to use tkill. */
736
737 static int
738 kill_lwp (unsigned long lwpid, int signo)
739 {
740 static int tkill_failed;
741
742 errno = 0;
743
744 #ifdef SYS_tkill
745 if (!tkill_failed)
746 {
747 int ret = syscall (SYS_tkill, lwpid, signo);
748 if (errno != ENOSYS)
749 return ret;
750 errno = 0;
751 tkill_failed = 1;
752 }
753 #endif
754
755 return kill (lwpid, signo);
756 }
757
758 static void
759 send_sigstop (struct inferior_list_entry *entry)
760 {
761 struct process_info *process = (struct process_info *) entry;
762
763 if (process->stopped)
764 return;
765
766 /* If we already have a pending stop signal for this process, don't
767 send another. */
768 if (process->stop_expected)
769 {
770 process->stop_expected = 0;
771 return;
772 }
773
774 if (debug_threads)
775 fprintf (stderr, "Sending sigstop to process %ld\n", process->head.id);
776
777 kill_lwp (process->head.id, SIGSTOP);
778 process->sigstop_sent = 1;
779 }
780
781 static void
782 wait_for_sigstop (struct inferior_list_entry *entry)
783 {
784 struct process_info *process = (struct process_info *) entry;
785 struct thread_info *saved_inferior, *thread;
786 int wstat;
787 unsigned long saved_tid;
788
789 if (process->stopped)
790 return;
791
792 saved_inferior = current_inferior;
793 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
794 thread = (struct thread_info *) find_inferior_id (&all_threads,
795 process->tid);
796 wstat = linux_wait_for_event (thread);
797
798 /* If we stopped with a non-SIGSTOP signal, save it for later
799 and record the pending SIGSTOP. If the process exited, just
800 return. */
801 if (WIFSTOPPED (wstat)
802 && WSTOPSIG (wstat) != SIGSTOP)
803 {
804 if (debug_threads)
805 fprintf (stderr, "Stopped with non-sigstop signal\n");
806 process->status_pending_p = 1;
807 process->status_pending = wstat;
808 process->stop_expected = 1;
809 }
810
811 if (linux_thread_alive (saved_tid))
812 current_inferior = saved_inferior;
813 else
814 {
815 if (debug_threads)
816 fprintf (stderr, "Previously current thread died.\n");
817
818 /* Set a valid thread as current. */
819 set_desired_inferior (0);
820 }
821 }
822
823 static void
824 stop_all_processes (void)
825 {
826 stopping_threads = 1;
827 for_each_inferior (&all_processes, send_sigstop);
828 for_each_inferior (&all_processes, wait_for_sigstop);
829 stopping_threads = 0;
830 }
831
832 /* Resume execution of the inferior process.
833 If STEP is nonzero, single-step it.
834 If SIGNAL is nonzero, give it that signal. */
835
836 static void
837 linux_resume_one_process (struct inferior_list_entry *entry,
838 int step, int signal)
839 {
840 struct process_info *process = (struct process_info *) entry;
841 struct thread_info *saved_inferior;
842
843 if (process->stopped == 0)
844 return;
845
846 /* If we have pending signals or status, and a new signal, enqueue the
847 signal. Also enqueue the signal if we are waiting to reinsert a
848 breakpoint; it will be picked up again below. */
849 if (signal != 0
850 && (process->status_pending_p || process->pending_signals != NULL
851 || process->bp_reinsert != 0))
852 {
853 struct pending_signals *p_sig;
854 p_sig = malloc (sizeof (*p_sig));
855 p_sig->prev = process->pending_signals;
856 p_sig->signal = signal;
857 process->pending_signals = p_sig;
858 }
859
860 if (process->status_pending_p && !check_removed_breakpoint (process))
861 return;
862
863 saved_inferior = current_inferior;
864 current_inferior = get_process_thread (process);
865
866 if (debug_threads)
867 fprintf (stderr, "Resuming process %ld (%s, signal %d, stop %s)\n", inferior_pid,
868 step ? "step" : "continue", signal,
869 process->stop_expected ? "expected" : "not expected");
870
871 /* This bit needs some thinking about. If we get a signal that
872 we must report while a single-step reinsert is still pending,
873 we often end up resuming the thread. It might be better to
874 (ew) allow a stack of pending events; then we could be sure that
875 the reinsert happened right away and not lose any signals.
876
877 Making this stack would also shrink the window in which breakpoints are
878 uninserted (see comment in linux_wait_for_process) but not enough for
879 complete correctness, so it won't solve that problem. It may be
880 worthwhile just to solve this one, however. */
881 if (process->bp_reinsert != 0)
882 {
883 if (debug_threads)
884 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
885 if (step == 0)
886 fprintf (stderr, "BAD - reinserting but not stepping.\n");
887 step = 1;
888
889 /* Postpone any pending signal. It was enqueued above. */
890 signal = 0;
891 }
892
893 check_removed_breakpoint (process);
894
895 if (debug_threads && the_low_target.get_pc != NULL)
896 {
897 fprintf (stderr, " ");
898 (long) (*the_low_target.get_pc) ();
899 }
900
901 /* If we have pending signals, consume one unless we are trying to reinsert
902 a breakpoint. */
903 if (process->pending_signals != NULL && process->bp_reinsert == 0)
904 {
905 struct pending_signals **p_sig;
906
907 p_sig = &process->pending_signals;
908 while ((*p_sig)->prev != NULL)
909 p_sig = &(*p_sig)->prev;
910
911 signal = (*p_sig)->signal;
912 free (*p_sig);
913 *p_sig = NULL;
914 }
915
916 regcache_invalidate_one ((struct inferior_list_entry *)
917 get_process_thread (process));
918 errno = 0;
919 process->stopped = 0;
920 process->stepping = step;
921 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
922
923 current_inferior = saved_inferior;
924 if (errno)
925 perror_with_name ("ptrace");
926 }
927
928 static struct thread_resume *resume_ptr;
929
930 /* This function is called once per thread. We look up the thread
931 in RESUME_PTR, and mark the thread with a pointer to the appropriate
932 resume request.
933
934 This algorithm is O(threads * resume elements), but resume elements
935 is small (and will remain small at least until GDB supports thread
936 suspension). */
937 static void
938 linux_set_resume_request (struct inferior_list_entry *entry)
939 {
940 struct process_info *process;
941 struct thread_info *thread;
942 int ndx;
943
944 thread = (struct thread_info *) entry;
945 process = get_thread_process (thread);
946
947 ndx = 0;
948 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
949 ndx++;
950
951 process->resume = &resume_ptr[ndx];
952 }
953
954 /* This function is called once per thread. We check the thread's resume
955 request, which will tell us whether to resume, step, or leave the thread
956 stopped; and what signal, if any, it should be sent. For threads which
957 we aren't explicitly told otherwise, we preserve the stepping flag; this
958 is used for stepping over gdbserver-placed breakpoints. */
959
960 static void
961 linux_continue_one_thread (struct inferior_list_entry *entry)
962 {
963 struct process_info *process;
964 struct thread_info *thread;
965 int step;
966
967 thread = (struct thread_info *) entry;
968 process = get_thread_process (thread);
969
970 if (process->resume->leave_stopped)
971 return;
972
973 if (process->resume->thread == -1)
974 step = process->stepping || process->resume->step;
975 else
976 step = process->resume->step;
977
978 linux_resume_one_process (&process->head, step, process->resume->sig);
979
980 process->resume = NULL;
981 }
982
983 /* This function is called once per thread. We check the thread's resume
984 request, which will tell us whether to resume, step, or leave the thread
985 stopped; and what signal, if any, it should be sent. We queue any needed
986 signals, since we won't actually resume. We already have a pending event
987 to report, so we don't need to preserve any step requests; they should
988 be re-issued if necessary. */
989
990 static void
991 linux_queue_one_thread (struct inferior_list_entry *entry)
992 {
993 struct process_info *process;
994 struct thread_info *thread;
995
996 thread = (struct thread_info *) entry;
997 process = get_thread_process (thread);
998
999 if (process->resume->leave_stopped)
1000 return;
1001
1002 /* If we have a new signal, enqueue the signal. */
1003 if (process->resume->sig != 0)
1004 {
1005 struct pending_signals *p_sig;
1006 p_sig = malloc (sizeof (*p_sig));
1007 p_sig->prev = process->pending_signals;
1008 p_sig->signal = process->resume->sig;
1009 process->pending_signals = p_sig;
1010 }
1011
1012 process->resume = NULL;
1013 }
1014
1015 /* Set DUMMY if this process has an interesting status pending. */
1016 static int
1017 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1018 {
1019 struct process_info *process = (struct process_info *) entry;
1020
1021 /* Processes which will not be resumed are not interesting, because
1022 we might not wait for them next time through linux_wait. */
1023 if (process->resume->leave_stopped)
1024 return 0;
1025
1026 /* If this thread has a removed breakpoint, we won't have any
1027 events to report later, so check now. check_removed_breakpoint
1028 may clear status_pending_p. We avoid calling check_removed_breakpoint
1029 for any thread that we are not otherwise going to resume - this
1030 lets us preserve stopped status when two threads hit a breakpoint.
1031 GDB removes the breakpoint to single-step a particular thread
1032 past it, then re-inserts it and resumes all threads. We want
1033 to report the second thread without resuming it in the interim. */
1034 if (process->status_pending_p)
1035 check_removed_breakpoint (process);
1036
1037 if (process->status_pending_p)
1038 * (int *) flag_p = 1;
1039
1040 return 0;
1041 }
1042
1043 static void
1044 linux_resume (struct thread_resume *resume_info)
1045 {
1046 int pending_flag;
1047
1048 /* Yes, the use of a global here is rather ugly. */
1049 resume_ptr = resume_info;
1050
1051 for_each_inferior (&all_threads, linux_set_resume_request);
1052
1053 /* If there is a thread which would otherwise be resumed, which
1054 has a pending status, then don't resume any threads - we can just
1055 report the pending status. Make sure to queue any signals
1056 that would otherwise be sent. */
1057 pending_flag = 0;
1058 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1059
1060 if (debug_threads)
1061 {
1062 if (pending_flag)
1063 fprintf (stderr, "Not resuming, pending status\n");
1064 else
1065 fprintf (stderr, "Resuming, no pending status\n");
1066 }
1067
1068 if (pending_flag)
1069 for_each_inferior (&all_threads, linux_queue_one_thread);
1070 else
1071 {
1072 block_async_io ();
1073 enable_async_io ();
1074 for_each_inferior (&all_threads, linux_continue_one_thread);
1075 }
1076 }
1077
1078 #ifdef HAVE_LINUX_USRREGS
1079
1080 int
1081 register_addr (int regnum)
1082 {
1083 int addr;
1084
1085 if (regnum < 0 || regnum >= the_low_target.num_regs)
1086 error ("Invalid register number %d.", regnum);
1087
1088 addr = the_low_target.regmap[regnum];
1089
1090 return addr;
1091 }
1092
1093 /* Fetch one register. */
1094 static void
1095 fetch_register (int regno)
1096 {
1097 CORE_ADDR regaddr;
1098 int i, size;
1099 char *buf;
1100
1101 if (regno >= the_low_target.num_regs)
1102 return;
1103 if ((*the_low_target.cannot_fetch_register) (regno))
1104 return;
1105
1106 regaddr = register_addr (regno);
1107 if (regaddr == -1)
1108 return;
1109 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1110 & - sizeof (PTRACE_XFER_TYPE);
1111 buf = alloca (size);
1112 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
1113 {
1114 errno = 0;
1115 *(PTRACE_XFER_TYPE *) (buf + i) =
1116 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1117 regaddr += sizeof (PTRACE_XFER_TYPE);
1118 if (errno != 0)
1119 {
1120 /* Warning, not error, in case we are attached; sometimes the
1121 kernel doesn't let us at the registers. */
1122 char *err = strerror (errno);
1123 char *msg = alloca (strlen (err) + 128);
1124 sprintf (msg, "reading register %d: %s", regno, err);
1125 error (msg);
1126 goto error_exit;
1127 }
1128 }
1129 if (the_low_target.left_pad_xfer
1130 && register_size (regno) < sizeof (PTRACE_XFER_TYPE))
1131 supply_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
1132 - register_size (regno)));
1133 else
1134 supply_register (regno, buf);
1135
1136 error_exit:;
1137 }
1138
1139 /* Fetch all registers, or just one, from the child process. */
1140 static void
1141 usr_fetch_inferior_registers (int regno)
1142 {
1143 if (regno == -1 || regno == 0)
1144 for (regno = 0; regno < the_low_target.num_regs; regno++)
1145 fetch_register (regno);
1146 else
1147 fetch_register (regno);
1148 }
1149
1150 /* Store our register values back into the inferior.
1151 If REGNO is -1, do this for all registers.
1152 Otherwise, REGNO specifies which register (so we can save time). */
1153 static void
1154 usr_store_inferior_registers (int regno)
1155 {
1156 CORE_ADDR regaddr;
1157 int i, size;
1158 char *buf;
1159
1160 if (regno >= 0)
1161 {
1162 if (regno >= the_low_target.num_regs)
1163 return;
1164
1165 if ((*the_low_target.cannot_store_register) (regno) == 1)
1166 return;
1167
1168 regaddr = register_addr (regno);
1169 if (regaddr == -1)
1170 return;
1171 errno = 0;
1172 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
1173 & - sizeof (PTRACE_XFER_TYPE);
1174 buf = alloca (size);
1175 memset (buf, 0, size);
1176 if (the_low_target.left_pad_xfer
1177 && register_size (regno) < sizeof (PTRACE_XFER_TYPE))
1178 collect_register (regno, (buf + sizeof (PTRACE_XFER_TYPE)
1179 - register_size (regno)));
1180 else
1181 collect_register (regno, buf);
1182 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
1183 {
1184 errno = 0;
1185 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
1186 *(PTRACE_XFER_TYPE *) (buf + i));
1187 if (errno != 0)
1188 {
1189 if ((*the_low_target.cannot_store_register) (regno) == 0)
1190 {
1191 char *err = strerror (errno);
1192 char *msg = alloca (strlen (err) + 128);
1193 sprintf (msg, "writing register %d: %s",
1194 regno, err);
1195 error (msg);
1196 return;
1197 }
1198 }
1199 regaddr += sizeof (PTRACE_XFER_TYPE);
1200 }
1201 }
1202 else
1203 for (regno = 0; regno < the_low_target.num_regs; regno++)
1204 usr_store_inferior_registers (regno);
1205 }
1206 #endif /* HAVE_LINUX_USRREGS */
1207
1208
1209
1210 #ifdef HAVE_LINUX_REGSETS
1211
1212 static int
1213 regsets_fetch_inferior_registers ()
1214 {
1215 struct regset_info *regset;
1216 int saw_general_regs = 0;
1217
1218 regset = target_regsets;
1219
1220 while (regset->size >= 0)
1221 {
1222 void *buf;
1223 int res;
1224
1225 if (regset->size == 0)
1226 {
1227 regset ++;
1228 continue;
1229 }
1230
1231 buf = malloc (regset->size);
1232 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1233 if (res < 0)
1234 {
1235 if (errno == EIO)
1236 {
1237 /* If we get EIO on the first regset, do not try regsets again.
1238 If we get EIO on a later regset, disable that regset. */
1239 if (regset == target_regsets)
1240 {
1241 use_regsets_p = 0;
1242 return -1;
1243 }
1244 else
1245 {
1246 regset->size = 0;
1247 continue;
1248 }
1249 }
1250 else
1251 {
1252 char s[256];
1253 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%ld",
1254 inferior_pid);
1255 perror (s);
1256 }
1257 }
1258 else if (regset->type == GENERAL_REGS)
1259 saw_general_regs = 1;
1260 regset->store_function (buf);
1261 regset ++;
1262 }
1263 if (saw_general_regs)
1264 return 0;
1265 else
1266 return 1;
1267 }
1268
1269 static int
1270 regsets_store_inferior_registers ()
1271 {
1272 struct regset_info *regset;
1273 int saw_general_regs = 0;
1274
1275 regset = target_regsets;
1276
1277 while (regset->size >= 0)
1278 {
1279 void *buf;
1280 int res;
1281
1282 if (regset->size == 0)
1283 {
1284 regset ++;
1285 continue;
1286 }
1287
1288 buf = malloc (regset->size);
1289 regset->fill_function (buf);
1290 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1291 if (res < 0)
1292 {
1293 if (errno == EIO)
1294 {
1295 /* If we get EIO on the first regset, do not try regsets again.
1296 If we get EIO on a later regset, disable that regset. */
1297 if (regset == target_regsets)
1298 {
1299 use_regsets_p = 0;
1300 return -1;
1301 }
1302 else
1303 {
1304 regset->size = 0;
1305 continue;
1306 }
1307 }
1308 else
1309 {
1310 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1311 }
1312 }
1313 else if (regset->type == GENERAL_REGS)
1314 saw_general_regs = 1;
1315 regset ++;
1316 free (buf);
1317 }
1318 if (saw_general_regs)
1319 return 0;
1320 else
1321 return 1;
1322 return 0;
1323 }
1324
1325 #endif /* HAVE_LINUX_REGSETS */
1326
1327
1328 void
1329 linux_fetch_registers (int regno)
1330 {
1331 #ifdef HAVE_LINUX_REGSETS
1332 if (use_regsets_p)
1333 {
1334 if (regsets_fetch_inferior_registers () == 0)
1335 return;
1336 }
1337 #endif
1338 #ifdef HAVE_LINUX_USRREGS
1339 usr_fetch_inferior_registers (regno);
1340 #endif
1341 }
1342
1343 void
1344 linux_store_registers (int regno)
1345 {
1346 #ifdef HAVE_LINUX_REGSETS
1347 if (use_regsets_p)
1348 {
1349 if (regsets_store_inferior_registers () == 0)
1350 return;
1351 }
1352 #endif
1353 #ifdef HAVE_LINUX_USRREGS
1354 usr_store_inferior_registers (regno);
1355 #endif
1356 }
1357
1358
1359 /* Copy LEN bytes from inferior's memory starting at MEMADDR
1360 to debugger memory starting at MYADDR. */
1361
1362 static int
1363 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
1364 {
1365 register int i;
1366 /* Round starting address down to longword boundary. */
1367 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1368 /* Round ending address up; get number of longwords that makes. */
1369 register int count
1370 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1371 / sizeof (PTRACE_XFER_TYPE);
1372 /* Allocate buffer of that many longwords. */
1373 register PTRACE_XFER_TYPE *buffer
1374 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1375
1376 /* Read all the longwords */
1377 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1378 {
1379 errno = 0;
1380 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1381 if (errno)
1382 return errno;
1383 }
1384
1385 /* Copy appropriate bytes out of the buffer. */
1386 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1387
1388 return 0;
1389 }
1390
1391 /* Copy LEN bytes of data from debugger memory at MYADDR
1392 to inferior's memory at MEMADDR.
1393 On failure (cannot write the inferior)
1394 returns the value of errno. */
1395
1396 static int
1397 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
1398 {
1399 register int i;
1400 /* Round starting address down to longword boundary. */
1401 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1402 /* Round ending address up; get number of longwords that makes. */
1403 register int count
1404 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1405 /* Allocate buffer of that many longwords. */
1406 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1407 extern int errno;
1408
1409 if (debug_threads)
1410 {
1411 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1412 }
1413
1414 /* Fill start and end extra bytes of buffer with existing memory data. */
1415
1416 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1417 (PTRACE_ARG3_TYPE) addr, 0);
1418
1419 if (count > 1)
1420 {
1421 buffer[count - 1]
1422 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1423 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1424 * sizeof (PTRACE_XFER_TYPE)),
1425 0);
1426 }
1427
1428 /* Copy data to be written over corresponding part of buffer */
1429
1430 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1431
1432 /* Write the entire buffer. */
1433
1434 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1435 {
1436 errno = 0;
1437 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1438 if (errno)
1439 return errno;
1440 }
1441
1442 return 0;
1443 }
1444
1445 static void
1446 linux_look_up_symbols (void)
1447 {
1448 #ifdef USE_THREAD_DB
1449 if (using_threads)
1450 return;
1451
1452 using_threads = thread_db_init ();
1453 #endif
1454 }
1455
1456 static void
1457 linux_send_signal (int signum)
1458 {
1459 extern unsigned long signal_pid;
1460
1461 if (cont_thread != 0 && cont_thread != -1)
1462 {
1463 struct process_info *process;
1464
1465 process = get_thread_process (current_inferior);
1466 kill_lwp (process->lwpid, signum);
1467 }
1468 else
1469 kill_lwp (signal_pid, signum);
1470 }
1471
1472 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1473 to debugger memory starting at MYADDR. */
1474
1475 static int
1476 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
1477 {
1478 char filename[PATH_MAX];
1479 int fd, n;
1480
1481 snprintf (filename, sizeof filename, "/proc/%ld/auxv", inferior_pid);
1482
1483 fd = open (filename, O_RDONLY);
1484 if (fd < 0)
1485 return -1;
1486
1487 if (offset != (CORE_ADDR) 0
1488 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1489 n = -1;
1490 else
1491 n = read (fd, myaddr, len);
1492
1493 close (fd);
1494
1495 return n;
1496 }
1497
1498 /* These watchpoint related wrapper functions simply pass on the function call
1499 if the target has registered a corresponding function. */
1500
1501 static int
1502 linux_insert_watchpoint (char type, CORE_ADDR addr, int len)
1503 {
1504 if (the_low_target.insert_watchpoint != NULL)
1505 return the_low_target.insert_watchpoint (type, addr, len);
1506 else
1507 /* Unsupported (see target.h). */
1508 return 1;
1509 }
1510
1511 static int
1512 linux_remove_watchpoint (char type, CORE_ADDR addr, int len)
1513 {
1514 if (the_low_target.remove_watchpoint != NULL)
1515 return the_low_target.remove_watchpoint (type, addr, len);
1516 else
1517 /* Unsupported (see target.h). */
1518 return 1;
1519 }
1520
1521 static int
1522 linux_stopped_by_watchpoint (void)
1523 {
1524 if (the_low_target.stopped_by_watchpoint != NULL)
1525 return the_low_target.stopped_by_watchpoint ();
1526 else
1527 return 0;
1528 }
1529
1530 static CORE_ADDR
1531 linux_stopped_data_address (void)
1532 {
1533 if (the_low_target.stopped_data_address != NULL)
1534 return the_low_target.stopped_data_address ();
1535 else
1536 return 0;
1537 }
1538
1539 static struct target_ops linux_target_ops = {
1540 linux_create_inferior,
1541 linux_attach,
1542 linux_kill,
1543 linux_detach,
1544 linux_thread_alive,
1545 linux_resume,
1546 linux_wait,
1547 linux_fetch_registers,
1548 linux_store_registers,
1549 linux_read_memory,
1550 linux_write_memory,
1551 linux_look_up_symbols,
1552 linux_send_signal,
1553 linux_read_auxv,
1554 linux_insert_watchpoint,
1555 linux_remove_watchpoint,
1556 linux_stopped_by_watchpoint,
1557 linux_stopped_data_address,
1558 };
1559
1560 static void
1561 linux_init_signals ()
1562 {
1563 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
1564 to find what the cancel signal actually is. */
1565 signal (__SIGRTMIN+1, SIG_IGN);
1566 }
1567
1568 void
1569 initialize_low (void)
1570 {
1571 using_threads = 0;
1572 set_target_ops (&linux_target_ops);
1573 set_breakpoint_data (the_low_target.breakpoint,
1574 the_low_target.breakpoint_len);
1575 init_registers ();
1576 linux_init_signals ();
1577 }
This page took 0.079379 seconds and 4 git commands to generate.