2004-12-05 Randolph Chung <tausq@debian.org>
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "server.h"
23 #include "linux-low.h"
24
25 #include <sys/wait.h>
26 #include <stdio.h>
27 #include <sys/param.h>
28 #include <sys/dir.h>
29 #include <sys/ptrace.h>
30 #include <sys/user.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37 #include <errno.h>
38 #include <sys/syscall.h>
39
40 /* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead,
41 however. This requires changing the ID in place when we go from !using_threads
42 to using_threads, immediately.
43
44 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
45 the same as the LWP ID. */
46
47 struct inferior_list all_processes;
48
49 /* FIXME this is a bit of a hack, and could be removed. */
50 int stopping_threads;
51
52 /* FIXME make into a target method? */
53 int using_threads;
54
55 static void linux_resume_one_process (struct inferior_list_entry *entry,
56 int step, int signal);
57 static void linux_resume (struct thread_resume *resume_info);
58 static void stop_all_processes (void);
59 static int linux_wait_for_event (struct thread_info *child);
60
61 struct pending_signals
62 {
63 int signal;
64 struct pending_signals *prev;
65 };
66
67 #define PTRACE_ARG3_TYPE long
68 #define PTRACE_XFER_TYPE long
69
70 #ifdef HAVE_LINUX_REGSETS
71 static int use_regsets_p = 1;
72 #endif
73
74 int debug_threads = 0;
75
76 #define pid_of(proc) ((proc)->head.id)
77
78 /* FIXME: Delete eventually. */
79 #define inferior_pid (pid_of (get_thread_process (current_inferior)))
80
81 /* This function should only be called if the process got a SIGTRAP.
82 The SIGTRAP could mean several things.
83
84 On i386, where decr_pc_after_break is non-zero:
85 If we were single-stepping this process using PTRACE_SINGLESTEP,
86 we will get only the one SIGTRAP (even if the instruction we
87 stepped over was a breakpoint). The value of $eip will be the
88 next instruction.
89 If we continue the process using PTRACE_CONT, we will get a
90 SIGTRAP when we hit a breakpoint. The value of $eip will be
91 the instruction after the breakpoint (i.e. needs to be
92 decremented). If we report the SIGTRAP to GDB, we must also
93 report the undecremented PC. If we cancel the SIGTRAP, we
94 must resume at the decremented PC.
95
96 (Presumably, not yet tested) On a non-decr_pc_after_break machine
97 with hardware or kernel single-step:
98 If we single-step over a breakpoint instruction, our PC will
99 point at the following instruction. If we continue and hit a
100 breakpoint instruction, our PC will point at the breakpoint
101 instruction. */
102
103 static CORE_ADDR
104 get_stop_pc (void)
105 {
106 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
107
108 if (get_thread_process (current_inferior)->stepping)
109 return stop_pc;
110 else
111 return stop_pc - the_low_target.decr_pc_after_break;
112 }
113
114 static void *
115 add_process (int pid)
116 {
117 struct process_info *process;
118
119 process = (struct process_info *) malloc (sizeof (*process));
120 memset (process, 0, sizeof (*process));
121
122 process->head.id = pid;
123
124 /* Default to tid == lwpid == pid. */
125 process->tid = pid;
126 process->lwpid = pid;
127
128 add_inferior_to_list (&all_processes, &process->head);
129
130 return process;
131 }
132
133 /* Start an inferior process and returns its pid.
134 ALLARGS is a vector of program-name and args. */
135
136 static int
137 linux_create_inferior (char *program, char **allargs)
138 {
139 void *new_process;
140 int pid;
141
142 pid = fork ();
143 if (pid < 0)
144 perror_with_name ("fork");
145
146 if (pid == 0)
147 {
148 ptrace (PTRACE_TRACEME, 0, 0, 0);
149
150 signal (__SIGRTMIN + 1, SIG_DFL);
151
152 setpgid (0, 0);
153
154 execv (program, allargs);
155
156 fprintf (stderr, "Cannot exec %s: %s.\n", program,
157 strerror (errno));
158 fflush (stderr);
159 _exit (0177);
160 }
161
162 new_process = add_process (pid);
163 add_thread (pid, new_process);
164
165 return pid;
166 }
167
168 /* Attach to an inferior process. */
169
170 void
171 linux_attach_lwp (int pid, int tid)
172 {
173 struct process_info *new_process;
174
175 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
176 {
177 fprintf (stderr, "Cannot attach to process %d: %s (%d)\n", pid,
178 strerror (errno), errno);
179 fflush (stderr);
180
181 /* If we fail to attach to an LWP, just return. */
182 if (!using_threads)
183 _exit (0177);
184 return;
185 }
186
187 new_process = (struct process_info *) add_process (pid);
188 add_thread (tid, new_process);
189
190 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
191 brings it to a halt. We should ignore that SIGSTOP and resume the process
192 (unless this is the first process, in which case the flag will be cleared
193 in linux_attach).
194
195 On the other hand, if we are currently trying to stop all threads, we
196 should treat the new thread as if we had sent it a SIGSTOP. This works
197 because we are guaranteed that add_process added us to the end of the
198 list, and so the new thread has not yet reached wait_for_sigstop (but
199 will). */
200 if (! stopping_threads)
201 new_process->stop_expected = 1;
202 }
203
204 int
205 linux_attach (int pid)
206 {
207 struct process_info *process;
208
209 linux_attach_lwp (pid, pid);
210
211 /* Don't ignore the initial SIGSTOP if we just attached to this process. */
212 process = (struct process_info *) find_inferior_id (&all_processes, pid);
213 process->stop_expected = 0;
214
215 return 0;
216 }
217
218 /* Kill the inferior process. Make us have no inferior. */
219
220 static void
221 linux_kill_one_process (struct inferior_list_entry *entry)
222 {
223 struct thread_info *thread = (struct thread_info *) entry;
224 struct process_info *process = get_thread_process (thread);
225 int wstat;
226
227 /* We avoid killing the first thread here, because of a Linux kernel (at
228 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
229 the children get a chance to be reaped, it will remain a zombie
230 forever. */
231 if (entry == all_threads.head)
232 return;
233
234 do
235 {
236 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
237
238 /* Make sure it died. The loop is most likely unnecessary. */
239 wstat = linux_wait_for_event (thread);
240 } while (WIFSTOPPED (wstat));
241 }
242
243 static void
244 linux_kill (void)
245 {
246 struct thread_info *thread = (struct thread_info *) all_threads.head;
247 struct process_info *process = get_thread_process (thread);
248 int wstat;
249
250 for_each_inferior (&all_threads, linux_kill_one_process);
251
252 /* See the comment in linux_kill_one_process. We did not kill the first
253 thread in the list, so do so now. */
254 do
255 {
256 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
257
258 /* Make sure it died. The loop is most likely unnecessary. */
259 wstat = linux_wait_for_event (thread);
260 } while (WIFSTOPPED (wstat));
261 }
262
263 static void
264 linux_detach_one_process (struct inferior_list_entry *entry)
265 {
266 struct thread_info *thread = (struct thread_info *) entry;
267 struct process_info *process = get_thread_process (thread);
268
269 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
270 }
271
272 static void
273 linux_detach (void)
274 {
275 for_each_inferior (&all_threads, linux_detach_one_process);
276 }
277
278 /* Return nonzero if the given thread is still alive. */
279 static int
280 linux_thread_alive (int tid)
281 {
282 if (find_inferior_id (&all_threads, tid) != NULL)
283 return 1;
284 else
285 return 0;
286 }
287
288 /* Return nonzero if this process stopped at a breakpoint which
289 no longer appears to be inserted. Also adjust the PC
290 appropriately to resume where the breakpoint used to be. */
291 static int
292 check_removed_breakpoint (struct process_info *event_child)
293 {
294 CORE_ADDR stop_pc;
295 struct thread_info *saved_inferior;
296
297 if (event_child->pending_is_breakpoint == 0)
298 return 0;
299
300 if (debug_threads)
301 fprintf (stderr, "Checking for breakpoint.\n");
302
303 saved_inferior = current_inferior;
304 current_inferior = get_process_thread (event_child);
305
306 stop_pc = get_stop_pc ();
307
308 /* If the PC has changed since we stopped, then we shouldn't do
309 anything. This happens if, for instance, GDB handled the
310 decr_pc_after_break subtraction itself. */
311 if (stop_pc != event_child->pending_stop_pc)
312 {
313 if (debug_threads)
314 fprintf (stderr, "Ignoring, PC was changed.\n");
315
316 event_child->pending_is_breakpoint = 0;
317 current_inferior = saved_inferior;
318 return 0;
319 }
320
321 /* If the breakpoint is still there, we will report hitting it. */
322 if ((*the_low_target.breakpoint_at) (stop_pc))
323 {
324 if (debug_threads)
325 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
326 current_inferior = saved_inferior;
327 return 0;
328 }
329
330 if (debug_threads)
331 fprintf (stderr, "Removed breakpoint.\n");
332
333 /* For decr_pc_after_break targets, here is where we perform the
334 decrement. We go immediately from this function to resuming,
335 and can not safely call get_stop_pc () again. */
336 if (the_low_target.set_pc != NULL)
337 (*the_low_target.set_pc) (stop_pc);
338
339 /* We consumed the pending SIGTRAP. */
340 event_child->pending_is_breakpoint = 0;
341 event_child->status_pending_p = 0;
342 event_child->status_pending = 0;
343
344 current_inferior = saved_inferior;
345 return 1;
346 }
347
348 /* Return 1 if this process has an interesting status pending. This function
349 may silently resume an inferior process. */
350 static int
351 status_pending_p (struct inferior_list_entry *entry, void *dummy)
352 {
353 struct process_info *process = (struct process_info *) entry;
354
355 if (process->status_pending_p)
356 if (check_removed_breakpoint (process))
357 {
358 /* This thread was stopped at a breakpoint, and the breakpoint
359 is now gone. We were told to continue (or step...) all threads,
360 so GDB isn't trying to single-step past this breakpoint.
361 So instead of reporting the old SIGTRAP, pretend we got to
362 the breakpoint just after it was removed instead of just
363 before; resume the process. */
364 linux_resume_one_process (&process->head, 0, 0);
365 return 0;
366 }
367
368 return process->status_pending_p;
369 }
370
371 static void
372 linux_wait_for_process (struct process_info **childp, int *wstatp)
373 {
374 int ret;
375 int to_wait_for = -1;
376
377 if (*childp != NULL)
378 to_wait_for = (*childp)->lwpid;
379
380 while (1)
381 {
382 ret = waitpid (to_wait_for, wstatp, WNOHANG);
383
384 if (ret == -1)
385 {
386 if (errno != ECHILD)
387 perror_with_name ("waitpid");
388 }
389 else if (ret > 0)
390 break;
391
392 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
393
394 if (ret == -1)
395 {
396 if (errno != ECHILD)
397 perror_with_name ("waitpid (WCLONE)");
398 }
399 else if (ret > 0)
400 break;
401
402 usleep (1000);
403 }
404
405 if (debug_threads
406 && (!WIFSTOPPED (*wstatp)
407 || (WSTOPSIG (*wstatp) != 32
408 && WSTOPSIG (*wstatp) != 33)))
409 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
410
411 if (to_wait_for == -1)
412 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
413
414 (*childp)->stopped = 1;
415 (*childp)->pending_is_breakpoint = 0;
416
417 if (debug_threads
418 && WIFSTOPPED (*wstatp))
419 {
420 current_inferior = (struct thread_info *)
421 find_inferior_id (&all_threads, (*childp)->tid);
422 /* For testing only; i386_stop_pc prints out a diagnostic. */
423 if (the_low_target.get_pc != NULL)
424 get_stop_pc ();
425 }
426 }
427
428 static int
429 linux_wait_for_event (struct thread_info *child)
430 {
431 CORE_ADDR stop_pc;
432 struct process_info *event_child;
433 int wstat;
434
435 /* Check for a process with a pending status. */
436 /* It is possible that the user changed the pending task's registers since
437 it stopped. We correctly handle the change of PC if we hit a breakpoint
438 (in check_removed_breakpoint); signals should be reported anyway. */
439 if (child == NULL)
440 {
441 event_child = (struct process_info *)
442 find_inferior (&all_processes, status_pending_p, NULL);
443 if (debug_threads && event_child)
444 fprintf (stderr, "Got a pending child %d\n", event_child->lwpid);
445 }
446 else
447 {
448 event_child = get_thread_process (child);
449 if (event_child->status_pending_p
450 && check_removed_breakpoint (event_child))
451 event_child = NULL;
452 }
453
454 if (event_child != NULL)
455 {
456 if (event_child->status_pending_p)
457 {
458 if (debug_threads)
459 fprintf (stderr, "Got an event from pending child %d (%04x)\n",
460 event_child->lwpid, event_child->status_pending);
461 wstat = event_child->status_pending;
462 event_child->status_pending_p = 0;
463 event_child->status_pending = 0;
464 current_inferior = get_process_thread (event_child);
465 return wstat;
466 }
467 }
468
469 /* We only enter this loop if no process has a pending wait status. Thus
470 any action taken in response to a wait status inside this loop is
471 responding as soon as we detect the status, not after any pending
472 events. */
473 while (1)
474 {
475 if (child == NULL)
476 event_child = NULL;
477 else
478 event_child = get_thread_process (child);
479
480 linux_wait_for_process (&event_child, &wstat);
481
482 if (event_child == NULL)
483 error ("event from unknown child");
484
485 current_inferior = (struct thread_info *)
486 find_inferior_id (&all_threads, event_child->tid);
487
488 if (using_threads)
489 {
490 /* Check for thread exit. */
491 if (! WIFSTOPPED (wstat))
492 {
493 if (debug_threads)
494 fprintf (stderr, "Thread %d (LWP %d) exiting\n",
495 event_child->tid, event_child->head.id);
496
497 /* If the last thread is exiting, just return. */
498 if (all_threads.head == all_threads.tail)
499 return wstat;
500
501 dead_thread_notify (event_child->tid);
502
503 remove_inferior (&all_processes, &event_child->head);
504 free (event_child);
505 remove_thread (current_inferior);
506 current_inferior = (struct thread_info *) all_threads.head;
507
508 /* If we were waiting for this particular child to do something...
509 well, it did something. */
510 if (child != NULL)
511 return wstat;
512
513 /* Wait for a more interesting event. */
514 continue;
515 }
516
517 if (WIFSTOPPED (wstat)
518 && WSTOPSIG (wstat) == SIGSTOP
519 && event_child->stop_expected)
520 {
521 if (debug_threads)
522 fprintf (stderr, "Expected stop.\n");
523 event_child->stop_expected = 0;
524 linux_resume_one_process (&event_child->head,
525 event_child->stepping, 0);
526 continue;
527 }
528
529 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
530 thread library? */
531 if (WIFSTOPPED (wstat)
532 && (WSTOPSIG (wstat) == __SIGRTMIN
533 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
534 {
535 if (debug_threads)
536 fprintf (stderr, "Ignored signal %d for %d (LWP %d).\n",
537 WSTOPSIG (wstat), event_child->tid,
538 event_child->head.id);
539 linux_resume_one_process (&event_child->head,
540 event_child->stepping,
541 WSTOPSIG (wstat));
542 continue;
543 }
544 }
545
546 /* If this event was not handled above, and is not a SIGTRAP, report
547 it. */
548 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
549 return wstat;
550
551 /* If this target does not support breakpoints, we simply report the
552 SIGTRAP; it's of no concern to us. */
553 if (the_low_target.get_pc == NULL)
554 return wstat;
555
556 stop_pc = get_stop_pc ();
557
558 /* bp_reinsert will only be set if we were single-stepping.
559 Notice that we will resume the process after hitting
560 a gdbserver breakpoint; single-stepping to/over one
561 is not supported (yet). */
562 if (event_child->bp_reinsert != 0)
563 {
564 if (debug_threads)
565 fprintf (stderr, "Reinserted breakpoint.\n");
566 reinsert_breakpoint (event_child->bp_reinsert);
567 event_child->bp_reinsert = 0;
568
569 /* Clear the single-stepping flag and SIGTRAP as we resume. */
570 linux_resume_one_process (&event_child->head, 0, 0);
571 continue;
572 }
573
574 if (debug_threads)
575 fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n");
576
577 if (check_breakpoints (stop_pc) != 0)
578 {
579 /* We hit one of our own breakpoints. We mark it as a pending
580 breakpoint, so that check_removed_breakpoint () will do the PC
581 adjustment for us at the appropriate time. */
582 event_child->pending_is_breakpoint = 1;
583 event_child->pending_stop_pc = stop_pc;
584
585 /* Now we need to put the breakpoint back. We continue in the event
586 loop instead of simply replacing the breakpoint right away,
587 in order to not lose signals sent to the thread that hit the
588 breakpoint. Unfortunately this increases the window where another
589 thread could sneak past the removed breakpoint. For the current
590 use of server-side breakpoints (thread creation) this is
591 acceptable; but it needs to be considered before this breakpoint
592 mechanism can be used in more general ways. For some breakpoints
593 it may be necessary to stop all other threads, but that should
594 be avoided where possible.
595
596 If breakpoint_reinsert_addr is NULL, that means that we can
597 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
598 mark it for reinsertion, and single-step.
599
600 Otherwise, call the target function to figure out where we need
601 our temporary breakpoint, create it, and continue executing this
602 process. */
603 if (the_low_target.breakpoint_reinsert_addr == NULL)
604 {
605 event_child->bp_reinsert = stop_pc;
606 uninsert_breakpoint (stop_pc);
607 linux_resume_one_process (&event_child->head, 1, 0);
608 }
609 else
610 {
611 reinsert_breakpoint_by_bp
612 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
613 linux_resume_one_process (&event_child->head, 0, 0);
614 }
615
616 continue;
617 }
618
619 /* If we were single-stepping, we definitely want to report the
620 SIGTRAP. The single-step operation has completed, so also
621 clear the stepping flag; in general this does not matter,
622 because the SIGTRAP will be reported to the client, which
623 will give us a new action for this thread, but clear it for
624 consistency anyway. It's safe to clear the stepping flag
625 because the only consumer of get_stop_pc () after this point
626 is check_removed_breakpoint, and pending_is_breakpoint is not
627 set. It might be wiser to use a step_completed flag instead. */
628 if (event_child->stepping)
629 {
630 event_child->stepping = 0;
631 return wstat;
632 }
633
634 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
635 Check if it is a breakpoint, and if so mark the process information
636 accordingly. This will handle both the necessary fiddling with the
637 PC on decr_pc_after_break targets and suppressing extra threads
638 hitting a breakpoint if two hit it at once and then GDB removes it
639 after the first is reported. Arguably it would be better to report
640 multiple threads hitting breakpoints simultaneously, but the current
641 remote protocol does not allow this. */
642 if ((*the_low_target.breakpoint_at) (stop_pc))
643 {
644 event_child->pending_is_breakpoint = 1;
645 event_child->pending_stop_pc = stop_pc;
646 }
647
648 return wstat;
649 }
650
651 /* NOTREACHED */
652 return 0;
653 }
654
655 /* Wait for process, returns status. */
656
657 static unsigned char
658 linux_wait (char *status)
659 {
660 int w;
661 struct thread_info *child = NULL;
662
663 retry:
664 /* If we were only supposed to resume one thread, only wait for
665 that thread - if it's still alive. If it died, however - which
666 can happen if we're coming from the thread death case below -
667 then we need to make sure we restart the other threads. We could
668 pick a thread at random or restart all; restarting all is less
669 arbitrary. */
670 if (cont_thread > 0)
671 {
672 child = (struct thread_info *) find_inferior_id (&all_threads,
673 cont_thread);
674
675 /* No stepping, no signal - unless one is pending already, of course. */
676 if (child == NULL)
677 {
678 struct thread_resume resume_info;
679 resume_info.thread = -1;
680 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
681 linux_resume (&resume_info);
682 }
683 }
684
685 enable_async_io ();
686 unblock_async_io ();
687 w = linux_wait_for_event (child);
688 stop_all_processes ();
689 disable_async_io ();
690
691 /* If we are waiting for a particular child, and it exited,
692 linux_wait_for_event will return its exit status. Similarly if
693 the last child exited. If this is not the last child, however,
694 do not report it as exited until there is a 'thread exited' response
695 available in the remote protocol. Instead, just wait for another event.
696 This should be safe, because if the thread crashed we will already
697 have reported the termination signal to GDB; that should stop any
698 in-progress stepping operations, etc.
699
700 Report the exit status of the last thread to exit. This matches
701 LinuxThreads' behavior. */
702
703 if (all_threads.head == all_threads.tail)
704 {
705 if (WIFEXITED (w))
706 {
707 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
708 *status = 'W';
709 clear_inferiors ();
710 free (all_processes.head);
711 all_processes.head = all_processes.tail = NULL;
712 return ((unsigned char) WEXITSTATUS (w));
713 }
714 else if (!WIFSTOPPED (w))
715 {
716 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
717 *status = 'X';
718 clear_inferiors ();
719 free (all_processes.head);
720 all_processes.head = all_processes.tail = NULL;
721 return ((unsigned char) WTERMSIG (w));
722 }
723 }
724 else
725 {
726 if (!WIFSTOPPED (w))
727 goto retry;
728 }
729
730 *status = 'T';
731 return ((unsigned char) WSTOPSIG (w));
732 }
733
734 /* Send a signal to an LWP. For LinuxThreads, kill is enough; however, if
735 thread groups are in use, we need to use tkill. */
736
737 static int
738 kill_lwp (int lwpid, int signo)
739 {
740 static int tkill_failed;
741
742 errno = 0;
743
744 #ifdef SYS_tkill
745 if (!tkill_failed)
746 {
747 int ret = syscall (SYS_tkill, lwpid, signo);
748 if (errno != ENOSYS)
749 return ret;
750 errno = 0;
751 tkill_failed = 1;
752 }
753 #endif
754
755 return kill (lwpid, signo);
756 }
757
758 static void
759 send_sigstop (struct inferior_list_entry *entry)
760 {
761 struct process_info *process = (struct process_info *) entry;
762
763 if (process->stopped)
764 return;
765
766 /* If we already have a pending stop signal for this process, don't
767 send another. */
768 if (process->stop_expected)
769 {
770 process->stop_expected = 0;
771 return;
772 }
773
774 if (debug_threads)
775 fprintf (stderr, "Sending sigstop to process %d\n", process->head.id);
776
777 kill_lwp (process->head.id, SIGSTOP);
778 process->sigstop_sent = 1;
779 }
780
781 static void
782 wait_for_sigstop (struct inferior_list_entry *entry)
783 {
784 struct process_info *process = (struct process_info *) entry;
785 struct thread_info *saved_inferior, *thread;
786 int wstat, saved_tid;
787
788 if (process->stopped)
789 return;
790
791 saved_inferior = current_inferior;
792 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
793 thread = (struct thread_info *) find_inferior_id (&all_threads,
794 process->tid);
795 wstat = linux_wait_for_event (thread);
796
797 /* If we stopped with a non-SIGSTOP signal, save it for later
798 and record the pending SIGSTOP. If the process exited, just
799 return. */
800 if (WIFSTOPPED (wstat)
801 && WSTOPSIG (wstat) != SIGSTOP)
802 {
803 if (debug_threads)
804 fprintf (stderr, "Stopped with non-sigstop signal\n");
805 process->status_pending_p = 1;
806 process->status_pending = wstat;
807 process->stop_expected = 1;
808 }
809
810 if (linux_thread_alive (saved_tid))
811 current_inferior = saved_inferior;
812 else
813 {
814 if (debug_threads)
815 fprintf (stderr, "Previously current thread died.\n");
816
817 /* Set a valid thread as current. */
818 set_desired_inferior (0);
819 }
820 }
821
822 static void
823 stop_all_processes (void)
824 {
825 stopping_threads = 1;
826 for_each_inferior (&all_processes, send_sigstop);
827 for_each_inferior (&all_processes, wait_for_sigstop);
828 stopping_threads = 0;
829 }
830
831 /* Resume execution of the inferior process.
832 If STEP is nonzero, single-step it.
833 If SIGNAL is nonzero, give it that signal. */
834
835 static void
836 linux_resume_one_process (struct inferior_list_entry *entry,
837 int step, int signal)
838 {
839 struct process_info *process = (struct process_info *) entry;
840 struct thread_info *saved_inferior;
841
842 if (process->stopped == 0)
843 return;
844
845 /* If we have pending signals or status, and a new signal, enqueue the
846 signal. Also enqueue the signal if we are waiting to reinsert a
847 breakpoint; it will be picked up again below. */
848 if (signal != 0
849 && (process->status_pending_p || process->pending_signals != NULL
850 || process->bp_reinsert != 0))
851 {
852 struct pending_signals *p_sig;
853 p_sig = malloc (sizeof (*p_sig));
854 p_sig->prev = process->pending_signals;
855 p_sig->signal = signal;
856 process->pending_signals = p_sig;
857 }
858
859 if (process->status_pending_p && !check_removed_breakpoint (process))
860 return;
861
862 saved_inferior = current_inferior;
863 current_inferior = get_process_thread (process);
864
865 if (debug_threads)
866 fprintf (stderr, "Resuming process %d (%s, signal %d, stop %s)\n", inferior_pid,
867 step ? "step" : "continue", signal,
868 process->stop_expected ? "expected" : "not expected");
869
870 /* This bit needs some thinking about. If we get a signal that
871 we must report while a single-step reinsert is still pending,
872 we often end up resuming the thread. It might be better to
873 (ew) allow a stack of pending events; then we could be sure that
874 the reinsert happened right away and not lose any signals.
875
876 Making this stack would also shrink the window in which breakpoints are
877 uninserted (see comment in linux_wait_for_process) but not enough for
878 complete correctness, so it won't solve that problem. It may be
879 worthwhile just to solve this one, however. */
880 if (process->bp_reinsert != 0)
881 {
882 if (debug_threads)
883 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
884 if (step == 0)
885 fprintf (stderr, "BAD - reinserting but not stepping.\n");
886 step = 1;
887
888 /* Postpone any pending signal. It was enqueued above. */
889 signal = 0;
890 }
891
892 check_removed_breakpoint (process);
893
894 if (debug_threads && the_low_target.get_pc != NULL)
895 {
896 fprintf (stderr, " ");
897 (long) (*the_low_target.get_pc) ();
898 }
899
900 /* If we have pending signals, consume one unless we are trying to reinsert
901 a breakpoint. */
902 if (process->pending_signals != NULL && process->bp_reinsert == 0)
903 {
904 struct pending_signals **p_sig;
905
906 p_sig = &process->pending_signals;
907 while ((*p_sig)->prev != NULL)
908 p_sig = &(*p_sig)->prev;
909
910 signal = (*p_sig)->signal;
911 free (*p_sig);
912 *p_sig = NULL;
913 }
914
915 regcache_invalidate_one ((struct inferior_list_entry *)
916 get_process_thread (process));
917 errno = 0;
918 process->stopped = 0;
919 process->stepping = step;
920 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
921
922 current_inferior = saved_inferior;
923 if (errno)
924 perror_with_name ("ptrace");
925 }
926
927 static struct thread_resume *resume_ptr;
928
929 /* This function is called once per thread. We look up the thread
930 in RESUME_PTR, and mark the thread with a pointer to the appropriate
931 resume request.
932
933 This algorithm is O(threads * resume elements), but resume elements
934 is small (and will remain small at least until GDB supports thread
935 suspension). */
936 static void
937 linux_set_resume_request (struct inferior_list_entry *entry)
938 {
939 struct process_info *process;
940 struct thread_info *thread;
941 int ndx;
942
943 thread = (struct thread_info *) entry;
944 process = get_thread_process (thread);
945
946 ndx = 0;
947 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
948 ndx++;
949
950 process->resume = &resume_ptr[ndx];
951 }
952
953 /* This function is called once per thread. We check the thread's resume
954 request, which will tell us whether to resume, step, or leave the thread
955 stopped; and what signal, if any, it should be sent. For threads which
956 we aren't explicitly told otherwise, we preserve the stepping flag; this
957 is used for stepping over gdbserver-placed breakpoints. */
958
959 static void
960 linux_continue_one_thread (struct inferior_list_entry *entry)
961 {
962 struct process_info *process;
963 struct thread_info *thread;
964 int step;
965
966 thread = (struct thread_info *) entry;
967 process = get_thread_process (thread);
968
969 if (process->resume->leave_stopped)
970 return;
971
972 if (process->resume->thread == -1)
973 step = process->stepping || process->resume->step;
974 else
975 step = process->resume->step;
976
977 linux_resume_one_process (&process->head, step, process->resume->sig);
978
979 process->resume = NULL;
980 }
981
982 /* This function is called once per thread. We check the thread's resume
983 request, which will tell us whether to resume, step, or leave the thread
984 stopped; and what signal, if any, it should be sent. We queue any needed
985 signals, since we won't actually resume. We already have a pending event
986 to report, so we don't need to preserve any step requests; they should
987 be re-issued if necessary. */
988
989 static void
990 linux_queue_one_thread (struct inferior_list_entry *entry)
991 {
992 struct process_info *process;
993 struct thread_info *thread;
994
995 thread = (struct thread_info *) entry;
996 process = get_thread_process (thread);
997
998 if (process->resume->leave_stopped)
999 return;
1000
1001 /* If we have a new signal, enqueue the signal. */
1002 if (process->resume->sig != 0)
1003 {
1004 struct pending_signals *p_sig;
1005 p_sig = malloc (sizeof (*p_sig));
1006 p_sig->prev = process->pending_signals;
1007 p_sig->signal = process->resume->sig;
1008 process->pending_signals = p_sig;
1009 }
1010
1011 process->resume = NULL;
1012 }
1013
1014 /* Set DUMMY if this process has an interesting status pending. */
1015 static int
1016 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
1017 {
1018 struct process_info *process = (struct process_info *) entry;
1019
1020 /* Processes which will not be resumed are not interesting, because
1021 we might not wait for them next time through linux_wait. */
1022 if (process->resume->leave_stopped)
1023 return 0;
1024
1025 /* If this thread has a removed breakpoint, we won't have any
1026 events to report later, so check now. check_removed_breakpoint
1027 may clear status_pending_p. We avoid calling check_removed_breakpoint
1028 for any thread that we are not otherwise going to resume - this
1029 lets us preserve stopped status when two threads hit a breakpoint.
1030 GDB removes the breakpoint to single-step a particular thread
1031 past it, then re-inserts it and resumes all threads. We want
1032 to report the second thread without resuming it in the interim. */
1033 if (process->status_pending_p)
1034 check_removed_breakpoint (process);
1035
1036 if (process->status_pending_p)
1037 * (int *) flag_p = 1;
1038
1039 return 0;
1040 }
1041
1042 static void
1043 linux_resume (struct thread_resume *resume_info)
1044 {
1045 int pending_flag;
1046
1047 /* Yes, the use of a global here is rather ugly. */
1048 resume_ptr = resume_info;
1049
1050 for_each_inferior (&all_threads, linux_set_resume_request);
1051
1052 /* If there is a thread which would otherwise be resumed, which
1053 has a pending status, then don't resume any threads - we can just
1054 report the pending status. Make sure to queue any signals
1055 that would otherwise be sent. */
1056 pending_flag = 0;
1057 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1058
1059 if (debug_threads)
1060 {
1061 if (pending_flag)
1062 fprintf (stderr, "Not resuming, pending status\n");
1063 else
1064 fprintf (stderr, "Resuming, no pending status\n");
1065 }
1066
1067 if (pending_flag)
1068 for_each_inferior (&all_threads, linux_queue_one_thread);
1069 else
1070 {
1071 block_async_io ();
1072 enable_async_io ();
1073 for_each_inferior (&all_threads, linux_continue_one_thread);
1074 }
1075 }
1076
1077 #ifdef HAVE_LINUX_USRREGS
1078
1079 int
1080 register_addr (int regnum)
1081 {
1082 int addr;
1083
1084 if (regnum < 0 || regnum >= the_low_target.num_regs)
1085 error ("Invalid register number %d.", regnum);
1086
1087 addr = the_low_target.regmap[regnum];
1088
1089 return addr;
1090 }
1091
1092 /* Fetch one register. */
1093 static void
1094 fetch_register (int regno)
1095 {
1096 CORE_ADDR regaddr;
1097 register int i;
1098 char *buf;
1099
1100 if (regno >= the_low_target.num_regs)
1101 return;
1102 if ((*the_low_target.cannot_fetch_register) (regno))
1103 return;
1104
1105 regaddr = register_addr (regno);
1106 if (regaddr == -1)
1107 return;
1108 buf = alloca (register_size (regno));
1109 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
1110 {
1111 errno = 0;
1112 *(PTRACE_XFER_TYPE *) (buf + i) =
1113 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1114 regaddr += sizeof (PTRACE_XFER_TYPE);
1115 if (errno != 0)
1116 {
1117 /* Warning, not error, in case we are attached; sometimes the
1118 kernel doesn't let us at the registers. */
1119 char *err = strerror (errno);
1120 char *msg = alloca (strlen (err) + 128);
1121 sprintf (msg, "reading register %d: %s", regno, err);
1122 error (msg);
1123 goto error_exit;
1124 }
1125 }
1126 supply_register (regno, buf);
1127
1128 error_exit:;
1129 }
1130
1131 /* Fetch all registers, or just one, from the child process. */
1132 static void
1133 usr_fetch_inferior_registers (int regno)
1134 {
1135 if (regno == -1 || regno == 0)
1136 for (regno = 0; regno < the_low_target.num_regs; regno++)
1137 fetch_register (regno);
1138 else
1139 fetch_register (regno);
1140 }
1141
1142 /* Store our register values back into the inferior.
1143 If REGNO is -1, do this for all registers.
1144 Otherwise, REGNO specifies which register (so we can save time). */
1145 static void
1146 usr_store_inferior_registers (int regno)
1147 {
1148 CORE_ADDR regaddr;
1149 int i;
1150 char *buf;
1151
1152 if (regno >= 0)
1153 {
1154 if (regno >= the_low_target.num_regs)
1155 return;
1156
1157 if ((*the_low_target.cannot_store_register) (regno) == 1)
1158 return;
1159
1160 regaddr = register_addr (regno);
1161 if (regaddr == -1)
1162 return;
1163 errno = 0;
1164 buf = alloca (register_size (regno));
1165 collect_register (regno, buf);
1166 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
1167 {
1168 errno = 0;
1169 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
1170 *(PTRACE_XFER_TYPE *) (buf + i));
1171 if (errno != 0)
1172 {
1173 if ((*the_low_target.cannot_store_register) (regno) == 0)
1174 {
1175 char *err = strerror (errno);
1176 char *msg = alloca (strlen (err) + 128);
1177 sprintf (msg, "writing register %d: %s",
1178 regno, err);
1179 error (msg);
1180 return;
1181 }
1182 }
1183 regaddr += sizeof (PTRACE_XFER_TYPE);
1184 }
1185 }
1186 else
1187 for (regno = 0; regno < the_low_target.num_regs; regno++)
1188 usr_store_inferior_registers (regno);
1189 }
1190 #endif /* HAVE_LINUX_USRREGS */
1191
1192
1193
1194 #ifdef HAVE_LINUX_REGSETS
1195
1196 static int
1197 regsets_fetch_inferior_registers ()
1198 {
1199 struct regset_info *regset;
1200
1201 regset = target_regsets;
1202
1203 while (regset->size >= 0)
1204 {
1205 void *buf;
1206 int res;
1207
1208 if (regset->size == 0)
1209 {
1210 regset ++;
1211 continue;
1212 }
1213
1214 buf = malloc (regset->size);
1215 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1216 if (res < 0)
1217 {
1218 if (errno == EIO)
1219 {
1220 /* If we get EIO on the first regset, do not try regsets again.
1221 If we get EIO on a later regset, disable that regset. */
1222 if (regset == target_regsets)
1223 {
1224 use_regsets_p = 0;
1225 return -1;
1226 }
1227 else
1228 {
1229 regset->size = 0;
1230 continue;
1231 }
1232 }
1233 else
1234 {
1235 char s[256];
1236 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
1237 inferior_pid);
1238 perror (s);
1239 }
1240 }
1241 regset->store_function (buf);
1242 regset ++;
1243 }
1244 return 0;
1245 }
1246
1247 static int
1248 regsets_store_inferior_registers ()
1249 {
1250 struct regset_info *regset;
1251
1252 regset = target_regsets;
1253
1254 while (regset->size >= 0)
1255 {
1256 void *buf;
1257 int res;
1258
1259 if (regset->size == 0)
1260 {
1261 regset ++;
1262 continue;
1263 }
1264
1265 buf = malloc (regset->size);
1266 regset->fill_function (buf);
1267 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1268 if (res < 0)
1269 {
1270 if (errno == EIO)
1271 {
1272 /* If we get EIO on the first regset, do not try regsets again.
1273 If we get EIO on a later regset, disable that regset. */
1274 if (regset == target_regsets)
1275 {
1276 use_regsets_p = 0;
1277 return -1;
1278 }
1279 else
1280 {
1281 regset->size = 0;
1282 continue;
1283 }
1284 }
1285 else
1286 {
1287 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1288 }
1289 }
1290 regset ++;
1291 free (buf);
1292 }
1293 return 0;
1294 }
1295
1296 #endif /* HAVE_LINUX_REGSETS */
1297
1298
1299 void
1300 linux_fetch_registers (int regno)
1301 {
1302 #ifdef HAVE_LINUX_REGSETS
1303 if (use_regsets_p)
1304 {
1305 if (regsets_fetch_inferior_registers () == 0)
1306 return;
1307 }
1308 #endif
1309 #ifdef HAVE_LINUX_USRREGS
1310 usr_fetch_inferior_registers (regno);
1311 #endif
1312 }
1313
1314 void
1315 linux_store_registers (int regno)
1316 {
1317 #ifdef HAVE_LINUX_REGSETS
1318 if (use_regsets_p)
1319 {
1320 if (regsets_store_inferior_registers () == 0)
1321 return;
1322 }
1323 #endif
1324 #ifdef HAVE_LINUX_USRREGS
1325 usr_store_inferior_registers (regno);
1326 #endif
1327 }
1328
1329
1330 /* Copy LEN bytes from inferior's memory starting at MEMADDR
1331 to debugger memory starting at MYADDR. */
1332
1333 static int
1334 linux_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1335 {
1336 register int i;
1337 /* Round starting address down to longword boundary. */
1338 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1339 /* Round ending address up; get number of longwords that makes. */
1340 register int count
1341 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1342 / sizeof (PTRACE_XFER_TYPE);
1343 /* Allocate buffer of that many longwords. */
1344 register PTRACE_XFER_TYPE *buffer
1345 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1346
1347 /* Read all the longwords */
1348 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1349 {
1350 errno = 0;
1351 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1352 if (errno)
1353 return errno;
1354 }
1355
1356 /* Copy appropriate bytes out of the buffer. */
1357 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1358
1359 return 0;
1360 }
1361
1362 /* Copy LEN bytes of data from debugger memory at MYADDR
1363 to inferior's memory at MEMADDR.
1364 On failure (cannot write the inferior)
1365 returns the value of errno. */
1366
1367 static int
1368 linux_write_memory (CORE_ADDR memaddr, const char *myaddr, int len)
1369 {
1370 register int i;
1371 /* Round starting address down to longword boundary. */
1372 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1373 /* Round ending address up; get number of longwords that makes. */
1374 register int count
1375 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1376 /* Allocate buffer of that many longwords. */
1377 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1378 extern int errno;
1379
1380 if (debug_threads)
1381 {
1382 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1383 }
1384
1385 /* Fill start and end extra bytes of buffer with existing memory data. */
1386
1387 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1388 (PTRACE_ARG3_TYPE) addr, 0);
1389
1390 if (count > 1)
1391 {
1392 buffer[count - 1]
1393 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1394 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1395 * sizeof (PTRACE_XFER_TYPE)),
1396 0);
1397 }
1398
1399 /* Copy data to be written over corresponding part of buffer */
1400
1401 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1402
1403 /* Write the entire buffer. */
1404
1405 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1406 {
1407 errno = 0;
1408 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1409 if (errno)
1410 return errno;
1411 }
1412
1413 return 0;
1414 }
1415
1416 static void
1417 linux_look_up_symbols (void)
1418 {
1419 #ifdef USE_THREAD_DB
1420 if (using_threads)
1421 return;
1422
1423 using_threads = thread_db_init ();
1424 #endif
1425 }
1426
1427 static void
1428 linux_send_signal (int signum)
1429 {
1430 extern int signal_pid;
1431
1432 if (cont_thread > 0)
1433 {
1434 struct process_info *process;
1435
1436 process = get_thread_process (current_inferior);
1437 kill_lwp (process->lwpid, signum);
1438 }
1439 else
1440 kill_lwp (signal_pid, signum);
1441 }
1442
1443 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1444 to debugger memory starting at MYADDR. */
1445
1446 static int
1447 linux_read_auxv (CORE_ADDR offset, char *myaddr, unsigned int len)
1448 {
1449 char filename[PATH_MAX];
1450 int fd, n;
1451
1452 snprintf (filename, sizeof filename, "/proc/%d/auxv", inferior_pid);
1453
1454 fd = open (filename, O_RDONLY);
1455 if (fd < 0)
1456 return -1;
1457
1458 if (offset != (CORE_ADDR) 0
1459 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1460 n = -1;
1461 else
1462 n = read (fd, myaddr, len);
1463
1464 close (fd);
1465
1466 return n;
1467 }
1468
1469 \f
1470 static struct target_ops linux_target_ops = {
1471 linux_create_inferior,
1472 linux_attach,
1473 linux_kill,
1474 linux_detach,
1475 linux_thread_alive,
1476 linux_resume,
1477 linux_wait,
1478 linux_fetch_registers,
1479 linux_store_registers,
1480 linux_read_memory,
1481 linux_write_memory,
1482 linux_look_up_symbols,
1483 linux_send_signal,
1484 linux_read_auxv,
1485 };
1486
1487 static void
1488 linux_init_signals ()
1489 {
1490 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
1491 to find what the cancel signal actually is. */
1492 signal (__SIGRTMIN+1, SIG_IGN);
1493 }
1494
1495 void
1496 initialize_low (void)
1497 {
1498 using_threads = 0;
1499 set_target_ops (&linux_target_ops);
1500 set_breakpoint_data (the_low_target.breakpoint,
1501 the_low_target.breakpoint_len);
1502 init_registers ();
1503 linux_init_signals ();
1504 }
This page took 0.061153 seconds and 4 git commands to generate.