* linux-low.c (linux_wait): Unblock async I/O.
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "server.h"
23 #include "linux-low.h"
24
25 #include <sys/wait.h>
26 #include <stdio.h>
27 #include <sys/param.h>
28 #include <sys/dir.h>
29 #include <sys/ptrace.h>
30 #include <sys/user.h>
31 #include <signal.h>
32 #include <sys/ioctl.h>
33 #include <fcntl.h>
34 #include <string.h>
35 #include <stdlib.h>
36 #include <unistd.h>
37
38 /* ``all_threads'' is keyed by the LWP ID - it should be the thread ID instead,
39 however. This requires changing the ID in place when we go from !using_threads
40 to using_threads, immediately.
41
42 ``all_processes'' is keyed by the process ID - which on Linux is (presently)
43 the same as the LWP ID. */
44
45 struct inferior_list all_processes;
46
47 /* FIXME this is a bit of a hack, and could be removed. */
48 int stopping_threads;
49
50 /* FIXME make into a target method? */
51 int using_threads;
52
53 static void linux_resume_one_process (struct inferior_list_entry *entry,
54 int step, int signal);
55 static void linux_resume (struct thread_resume *resume_info);
56 static void stop_all_processes (void);
57 static int linux_wait_for_event (struct thread_info *child);
58
59 struct pending_signals
60 {
61 int signal;
62 struct pending_signals *prev;
63 };
64
65 #define PTRACE_ARG3_TYPE long
66 #define PTRACE_XFER_TYPE long
67
68 #ifdef HAVE_LINUX_REGSETS
69 static int use_regsets_p = 1;
70 #endif
71
72 extern int errno;
73
74 int debug_threads = 0;
75
76 #define pid_of(proc) ((proc)->head.id)
77
78 /* FIXME: Delete eventually. */
79 #define inferior_pid (pid_of (get_thread_process (current_inferior)))
80
81 /* This function should only be called if the process got a SIGTRAP.
82 The SIGTRAP could mean several things.
83
84 On i386, where decr_pc_after_break is non-zero:
85 If we were single-stepping this process using PTRACE_SINGLESTEP,
86 we will get only the one SIGTRAP (even if the instruction we
87 stepped over was a breakpoint). The value of $eip will be the
88 next instruction.
89 If we continue the process using PTRACE_CONT, we will get a
90 SIGTRAP when we hit a breakpoint. The value of $eip will be
91 the instruction after the breakpoint (i.e. needs to be
92 decremented). If we report the SIGTRAP to GDB, we must also
93 report the undecremented PC. If we cancel the SIGTRAP, we
94 must resume at the decremented PC.
95
96 (Presumably, not yet tested) On a non-decr_pc_after_break machine
97 with hardware or kernel single-step:
98 If we single-step over a breakpoint instruction, our PC will
99 point at the following instruction. If we continue and hit a
100 breakpoint instruction, our PC will point at the breakpoint
101 instruction. */
102
103 static CORE_ADDR
104 get_stop_pc (void)
105 {
106 CORE_ADDR stop_pc = (*the_low_target.get_pc) ();
107
108 if (get_thread_process (current_inferior)->stepping)
109 return stop_pc;
110 else
111 return stop_pc - the_low_target.decr_pc_after_break;
112 }
113
114 static void *
115 add_process (int pid)
116 {
117 struct process_info *process;
118
119 process = (struct process_info *) malloc (sizeof (*process));
120 memset (process, 0, sizeof (*process));
121
122 process->head.id = pid;
123
124 /* Default to tid == lwpid == pid. */
125 process->tid = pid;
126 process->lwpid = pid;
127
128 add_inferior_to_list (&all_processes, &process->head);
129
130 return process;
131 }
132
133 /* Start an inferior process and returns its pid.
134 ALLARGS is a vector of program-name and args. */
135
136 static int
137 linux_create_inferior (char *program, char **allargs)
138 {
139 void *new_process;
140 int pid;
141
142 pid = fork ();
143 if (pid < 0)
144 perror_with_name ("fork");
145
146 if (pid == 0)
147 {
148 ptrace (PTRACE_TRACEME, 0, 0, 0);
149
150 signal (__SIGRTMIN + 1, SIG_DFL);
151
152 setpgid (0, 0);
153
154 execv (program, allargs);
155
156 fprintf (stderr, "Cannot exec %s: %s.\n", program,
157 strerror (errno));
158 fflush (stderr);
159 _exit (0177);
160 }
161
162 new_process = add_process (pid);
163 add_thread (pid, new_process);
164
165 return pid;
166 }
167
168 /* Attach to an inferior process. */
169
170 void
171 linux_attach_lwp (int pid, int tid)
172 {
173 struct process_info *new_process;
174
175 if (ptrace (PTRACE_ATTACH, pid, 0, 0) != 0)
176 {
177 fprintf (stderr, "Cannot attach to process %d: %s (%d)\n", pid,
178 strerror (errno), errno);
179 fflush (stderr);
180
181 /* If we fail to attach to an LWP, just return. */
182 if (!using_threads)
183 _exit (0177);
184 return;
185 }
186
187 new_process = (struct process_info *) add_process (pid);
188 add_thread (tid, new_process);
189
190 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
191 brings it to a halt. We should ignore that SIGSTOP and resume the process
192 (unless this is the first process, in which case the flag will be cleared
193 in linux_attach).
194
195 On the other hand, if we are currently trying to stop all threads, we
196 should treat the new thread as if we had sent it a SIGSTOP. This works
197 because we are guaranteed that add_process added us to the end of the
198 list, and so the new thread has not yet reached wait_for_sigstop (but
199 will). */
200 if (! stopping_threads)
201 new_process->stop_expected = 1;
202 }
203
204 int
205 linux_attach (int pid)
206 {
207 struct process_info *process;
208
209 linux_attach_lwp (pid, pid);
210
211 /* Don't ignore the initial SIGSTOP if we just attached to this process. */
212 process = (struct process_info *) find_inferior_id (&all_processes, pid);
213 process->stop_expected = 0;
214
215 return 0;
216 }
217
218 /* Kill the inferior process. Make us have no inferior. */
219
220 static void
221 linux_kill_one_process (struct inferior_list_entry *entry)
222 {
223 struct thread_info *thread = (struct thread_info *) entry;
224 struct process_info *process = get_thread_process (thread);
225 int wstat;
226
227 do
228 {
229 ptrace (PTRACE_KILL, pid_of (process), 0, 0);
230
231 /* Make sure it died. The loop is most likely unnecessary. */
232 wstat = linux_wait_for_event (thread);
233 } while (WIFSTOPPED (wstat));
234 }
235
236 static void
237 linux_kill (void)
238 {
239 for_each_inferior (&all_threads, linux_kill_one_process);
240 }
241
242 static void
243 linux_detach_one_process (struct inferior_list_entry *entry)
244 {
245 struct thread_info *thread = (struct thread_info *) entry;
246 struct process_info *process = get_thread_process (thread);
247
248 ptrace (PTRACE_DETACH, pid_of (process), 0, 0);
249 }
250
251 static void
252 linux_detach (void)
253 {
254 for_each_inferior (&all_threads, linux_detach_one_process);
255 }
256
257 /* Return nonzero if the given thread is still alive. */
258 static int
259 linux_thread_alive (int tid)
260 {
261 if (find_inferior_id (&all_threads, tid) != NULL)
262 return 1;
263 else
264 return 0;
265 }
266
267 /* Return nonzero if this process stopped at a breakpoint which
268 no longer appears to be inserted. Also adjust the PC
269 appropriately to resume where the breakpoint used to be. */
270 static int
271 check_removed_breakpoint (struct process_info *event_child)
272 {
273 CORE_ADDR stop_pc;
274 struct thread_info *saved_inferior;
275
276 if (event_child->pending_is_breakpoint == 0)
277 return 0;
278
279 if (debug_threads)
280 fprintf (stderr, "Checking for breakpoint.\n");
281
282 saved_inferior = current_inferior;
283 current_inferior = get_process_thread (event_child);
284
285 stop_pc = get_stop_pc ();
286
287 /* If the PC has changed since we stopped, then we shouldn't do
288 anything. This happens if, for instance, GDB handled the
289 decr_pc_after_break subtraction itself. */
290 if (stop_pc != event_child->pending_stop_pc)
291 {
292 if (debug_threads)
293 fprintf (stderr, "Ignoring, PC was changed.\n");
294
295 event_child->pending_is_breakpoint = 0;
296 current_inferior = saved_inferior;
297 return 0;
298 }
299
300 /* If the breakpoint is still there, we will report hitting it. */
301 if ((*the_low_target.breakpoint_at) (stop_pc))
302 {
303 if (debug_threads)
304 fprintf (stderr, "Ignoring, breakpoint is still present.\n");
305 current_inferior = saved_inferior;
306 return 0;
307 }
308
309 if (debug_threads)
310 fprintf (stderr, "Removed breakpoint.\n");
311
312 /* For decr_pc_after_break targets, here is where we perform the
313 decrement. We go immediately from this function to resuming,
314 and can not safely call get_stop_pc () again. */
315 if (the_low_target.set_pc != NULL)
316 (*the_low_target.set_pc) (stop_pc);
317
318 /* We consumed the pending SIGTRAP. */
319 event_child->pending_is_breakpoint = 0;
320 event_child->status_pending_p = 0;
321 event_child->status_pending = 0;
322
323 current_inferior = saved_inferior;
324 return 1;
325 }
326
327 /* Return 1 if this process has an interesting status pending. This function
328 may silently resume an inferior process. */
329 static int
330 status_pending_p (struct inferior_list_entry *entry, void *dummy)
331 {
332 struct process_info *process = (struct process_info *) entry;
333
334 if (process->status_pending_p)
335 if (check_removed_breakpoint (process))
336 {
337 /* This thread was stopped at a breakpoint, and the breakpoint
338 is now gone. We were told to continue (or step...) all threads,
339 so GDB isn't trying to single-step past this breakpoint.
340 So instead of reporting the old SIGTRAP, pretend we got to
341 the breakpoint just after it was removed instead of just
342 before; resume the process. */
343 linux_resume_one_process (&process->head, 0, 0);
344 return 0;
345 }
346
347 return process->status_pending_p;
348 }
349
350 static void
351 linux_wait_for_process (struct process_info **childp, int *wstatp)
352 {
353 int ret;
354 int to_wait_for = -1;
355
356 if (*childp != NULL)
357 to_wait_for = (*childp)->lwpid;
358
359 while (1)
360 {
361 ret = waitpid (to_wait_for, wstatp, WNOHANG);
362
363 if (ret == -1)
364 {
365 if (errno != ECHILD)
366 perror_with_name ("waitpid");
367 }
368 else if (ret > 0)
369 break;
370
371 ret = waitpid (to_wait_for, wstatp, WNOHANG | __WCLONE);
372
373 if (ret == -1)
374 {
375 if (errno != ECHILD)
376 perror_with_name ("waitpid (WCLONE)");
377 }
378 else if (ret > 0)
379 break;
380
381 usleep (1000);
382 }
383
384 if (debug_threads
385 && (!WIFSTOPPED (*wstatp)
386 || (WSTOPSIG (*wstatp) != 32
387 && WSTOPSIG (*wstatp) != 33)))
388 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
389
390 if (to_wait_for == -1)
391 *childp = (struct process_info *) find_inferior_id (&all_processes, ret);
392
393 (*childp)->stopped = 1;
394 (*childp)->pending_is_breakpoint = 0;
395
396 if (debug_threads
397 && WIFSTOPPED (*wstatp))
398 {
399 current_inferior = (struct thread_info *)
400 find_inferior_id (&all_threads, (*childp)->tid);
401 /* For testing only; i386_stop_pc prints out a diagnostic. */
402 if (the_low_target.get_pc != NULL)
403 get_stop_pc ();
404 }
405 }
406
407 static int
408 linux_wait_for_event (struct thread_info *child)
409 {
410 CORE_ADDR stop_pc;
411 struct process_info *event_child;
412 int wstat;
413
414 /* Check for a process with a pending status. */
415 /* It is possible that the user changed the pending task's registers since
416 it stopped. We correctly handle the change of PC if we hit a breakpoint
417 (in check_removed_breakpoint); signals should be reported anyway. */
418 if (child == NULL)
419 {
420 event_child = (struct process_info *)
421 find_inferior (&all_processes, status_pending_p, NULL);
422 if (debug_threads && event_child)
423 fprintf (stderr, "Got a pending child %d\n", event_child->lwpid);
424 }
425 else
426 {
427 event_child = get_thread_process (child);
428 if (event_child->status_pending_p
429 && check_removed_breakpoint (event_child))
430 event_child = NULL;
431 }
432
433 if (event_child != NULL)
434 {
435 if (event_child->status_pending_p)
436 {
437 if (debug_threads)
438 fprintf (stderr, "Got an event from pending child %d (%04x)\n",
439 event_child->lwpid, event_child->status_pending);
440 wstat = event_child->status_pending;
441 event_child->status_pending_p = 0;
442 event_child->status_pending = 0;
443 current_inferior = get_process_thread (event_child);
444 return wstat;
445 }
446 }
447
448 /* We only enter this loop if no process has a pending wait status. Thus
449 any action taken in response to a wait status inside this loop is
450 responding as soon as we detect the status, not after any pending
451 events. */
452 while (1)
453 {
454 if (child == NULL)
455 event_child = NULL;
456 else
457 event_child = get_thread_process (child);
458
459 linux_wait_for_process (&event_child, &wstat);
460
461 if (event_child == NULL)
462 error ("event from unknown child");
463
464 current_inferior = (struct thread_info *)
465 find_inferior_id (&all_threads, event_child->tid);
466
467 if (using_threads)
468 {
469 /* Check for thread exit. */
470 if (! WIFSTOPPED (wstat))
471 {
472 if (debug_threads)
473 fprintf (stderr, "Thread %d (LWP %d) exiting\n",
474 event_child->tid, event_child->head.id);
475
476 /* If the last thread is exiting, just return. */
477 if (all_threads.head == all_threads.tail)
478 return wstat;
479
480 dead_thread_notify (event_child->tid);
481
482 remove_inferior (&all_processes, &event_child->head);
483 free (event_child);
484 remove_thread (current_inferior);
485 current_inferior = (struct thread_info *) all_threads.head;
486
487 /* If we were waiting for this particular child to do something...
488 well, it did something. */
489 if (child != NULL)
490 return wstat;
491
492 /* Wait for a more interesting event. */
493 continue;
494 }
495
496 if (WIFSTOPPED (wstat)
497 && WSTOPSIG (wstat) == SIGSTOP
498 && event_child->stop_expected)
499 {
500 if (debug_threads)
501 fprintf (stderr, "Expected stop.\n");
502 event_child->stop_expected = 0;
503 linux_resume_one_process (&event_child->head,
504 event_child->stepping, 0);
505 continue;
506 }
507
508 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
509 thread library? */
510 if (WIFSTOPPED (wstat)
511 && (WSTOPSIG (wstat) == __SIGRTMIN
512 || WSTOPSIG (wstat) == __SIGRTMIN + 1))
513 {
514 if (debug_threads)
515 fprintf (stderr, "Ignored signal %d for %d (LWP %d).\n",
516 WSTOPSIG (wstat), event_child->tid,
517 event_child->head.id);
518 linux_resume_one_process (&event_child->head,
519 event_child->stepping,
520 WSTOPSIG (wstat));
521 continue;
522 }
523 }
524
525 /* If this event was not handled above, and is not a SIGTRAP, report
526 it. */
527 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGTRAP)
528 return wstat;
529
530 /* If this target does not support breakpoints, we simply report the
531 SIGTRAP; it's of no concern to us. */
532 if (the_low_target.get_pc == NULL)
533 return wstat;
534
535 stop_pc = get_stop_pc ();
536
537 /* bp_reinsert will only be set if we were single-stepping.
538 Notice that we will resume the process after hitting
539 a gdbserver breakpoint; single-stepping to/over one
540 is not supported (yet). */
541 if (event_child->bp_reinsert != 0)
542 {
543 if (debug_threads)
544 fprintf (stderr, "Reinserted breakpoint.\n");
545 reinsert_breakpoint (event_child->bp_reinsert);
546 event_child->bp_reinsert = 0;
547
548 /* Clear the single-stepping flag and SIGTRAP as we resume. */
549 linux_resume_one_process (&event_child->head, 0, 0);
550 continue;
551 }
552
553 if (debug_threads)
554 fprintf (stderr, "Hit a (non-reinsert) breakpoint.\n");
555
556 if (check_breakpoints (stop_pc) != 0)
557 {
558 /* We hit one of our own breakpoints. We mark it as a pending
559 breakpoint, so that check_removed_breakpoint () will do the PC
560 adjustment for us at the appropriate time. */
561 event_child->pending_is_breakpoint = 1;
562 event_child->pending_stop_pc = stop_pc;
563
564 /* Now we need to put the breakpoint back. We continue in the event
565 loop instead of simply replacing the breakpoint right away,
566 in order to not lose signals sent to the thread that hit the
567 breakpoint. Unfortunately this increases the window where another
568 thread could sneak past the removed breakpoint. For the current
569 use of server-side breakpoints (thread creation) this is
570 acceptable; but it needs to be considered before this breakpoint
571 mechanism can be used in more general ways. For some breakpoints
572 it may be necessary to stop all other threads, but that should
573 be avoided where possible.
574
575 If breakpoint_reinsert_addr is NULL, that means that we can
576 use PTRACE_SINGLESTEP on this platform. Uninsert the breakpoint,
577 mark it for reinsertion, and single-step.
578
579 Otherwise, call the target function to figure out where we need
580 our temporary breakpoint, create it, and continue executing this
581 process. */
582 if (the_low_target.breakpoint_reinsert_addr == NULL)
583 {
584 event_child->bp_reinsert = stop_pc;
585 uninsert_breakpoint (stop_pc);
586 linux_resume_one_process (&event_child->head, 1, 0);
587 }
588 else
589 {
590 reinsert_breakpoint_by_bp
591 (stop_pc, (*the_low_target.breakpoint_reinsert_addr) ());
592 linux_resume_one_process (&event_child->head, 0, 0);
593 }
594
595 continue;
596 }
597
598 /* If we were single-stepping, we definitely want to report the
599 SIGTRAP. The single-step operation has completed, so also
600 clear the stepping flag; in general this does not matter,
601 because the SIGTRAP will be reported to the client, which
602 will give us a new action for this thread, but clear it for
603 consistency anyway. It's safe to clear the stepping flag
604 because the only consumer of get_stop_pc () after this point
605 is check_removed_breakpoint, and pending_is_breakpoint is not
606 set. It might be wiser to use a step_completed flag instead. */
607 if (event_child->stepping)
608 {
609 event_child->stepping = 0;
610 return wstat;
611 }
612
613 /* A SIGTRAP that we can't explain. It may have been a breakpoint.
614 Check if it is a breakpoint, and if so mark the process information
615 accordingly. This will handle both the necessary fiddling with the
616 PC on decr_pc_after_break targets and suppressing extra threads
617 hitting a breakpoint if two hit it at once and then GDB removes it
618 after the first is reported. Arguably it would be better to report
619 multiple threads hitting breakpoints simultaneously, but the current
620 remote protocol does not allow this. */
621 if ((*the_low_target.breakpoint_at) (stop_pc))
622 {
623 event_child->pending_is_breakpoint = 1;
624 event_child->pending_stop_pc = stop_pc;
625 }
626
627 return wstat;
628 }
629
630 /* NOTREACHED */
631 return 0;
632 }
633
634 /* Wait for process, returns status. */
635
636 static unsigned char
637 linux_wait (char *status)
638 {
639 int w;
640 struct thread_info *child = NULL;
641
642 retry:
643 /* If we were only supposed to resume one thread, only wait for
644 that thread - if it's still alive. If it died, however - which
645 can happen if we're coming from the thread death case below -
646 then we need to make sure we restart the other threads. We could
647 pick a thread at random or restart all; restarting all is less
648 arbitrary. */
649 if (cont_thread > 0)
650 {
651 child = (struct thread_info *) find_inferior_id (&all_threads,
652 cont_thread);
653
654 /* No stepping, no signal - unless one is pending already, of course. */
655 if (child == NULL)
656 {
657 struct thread_resume resume_info;
658 resume_info.thread = -1;
659 resume_info.step = resume_info.sig = resume_info.leave_stopped = 0;
660 linux_resume (&resume_info);
661 }
662 }
663
664 enable_async_io ();
665 unblock_async_io ();
666 w = linux_wait_for_event (child);
667 stop_all_processes ();
668 disable_async_io ();
669
670 /* If we are waiting for a particular child, and it exited,
671 linux_wait_for_event will return its exit status. Similarly if
672 the last child exited. If this is not the last child, however,
673 do not report it as exited until there is a 'thread exited' response
674 available in the remote protocol. Instead, just wait for another event.
675 This should be safe, because if the thread crashed we will already
676 have reported the termination signal to GDB; that should stop any
677 in-progress stepping operations, etc.
678
679 Report the exit status of the last thread to exit. This matches
680 LinuxThreads' behavior. */
681
682 if (all_threads.head == all_threads.tail)
683 {
684 if (WIFEXITED (w))
685 {
686 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
687 *status = 'W';
688 clear_inferiors ();
689 return ((unsigned char) WEXITSTATUS (w));
690 }
691 else if (!WIFSTOPPED (w))
692 {
693 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
694 clear_inferiors ();
695 *status = 'X';
696 return ((unsigned char) WTERMSIG (w));
697 }
698 }
699 else
700 {
701 if (!WIFSTOPPED (w))
702 goto retry;
703 }
704
705 *status = 'T';
706 return ((unsigned char) WSTOPSIG (w));
707 }
708
709 static void
710 send_sigstop (struct inferior_list_entry *entry)
711 {
712 struct process_info *process = (struct process_info *) entry;
713
714 if (process->stopped)
715 return;
716
717 /* If we already have a pending stop signal for this process, don't
718 send another. */
719 if (process->stop_expected)
720 {
721 process->stop_expected = 0;
722 return;
723 }
724
725 if (debug_threads)
726 fprintf (stderr, "Sending sigstop to process %d\n", process->head.id);
727
728 kill (process->head.id, SIGSTOP);
729 process->sigstop_sent = 1;
730 }
731
732 static void
733 wait_for_sigstop (struct inferior_list_entry *entry)
734 {
735 struct process_info *process = (struct process_info *) entry;
736 struct thread_info *saved_inferior, *thread;
737 int wstat, saved_tid;
738
739 if (process->stopped)
740 return;
741
742 saved_inferior = current_inferior;
743 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
744 thread = (struct thread_info *) find_inferior_id (&all_threads,
745 process->tid);
746 wstat = linux_wait_for_event (thread);
747
748 /* If we stopped with a non-SIGSTOP signal, save it for later
749 and record the pending SIGSTOP. If the process exited, just
750 return. */
751 if (WIFSTOPPED (wstat)
752 && WSTOPSIG (wstat) != SIGSTOP)
753 {
754 if (debug_threads)
755 fprintf (stderr, "Stopped with non-sigstop signal\n");
756 process->status_pending_p = 1;
757 process->status_pending = wstat;
758 process->stop_expected = 1;
759 }
760
761 if (linux_thread_alive (saved_tid))
762 current_inferior = saved_inferior;
763 else
764 {
765 if (debug_threads)
766 fprintf (stderr, "Previously current thread died.\n");
767
768 /* Set a valid thread as current. */
769 set_desired_inferior (0);
770 }
771 }
772
773 static void
774 stop_all_processes (void)
775 {
776 stopping_threads = 1;
777 for_each_inferior (&all_processes, send_sigstop);
778 for_each_inferior (&all_processes, wait_for_sigstop);
779 stopping_threads = 0;
780 }
781
782 /* Resume execution of the inferior process.
783 If STEP is nonzero, single-step it.
784 If SIGNAL is nonzero, give it that signal. */
785
786 static void
787 linux_resume_one_process (struct inferior_list_entry *entry,
788 int step, int signal)
789 {
790 struct process_info *process = (struct process_info *) entry;
791 struct thread_info *saved_inferior;
792
793 if (process->stopped == 0)
794 return;
795
796 /* If we have pending signals or status, and a new signal, enqueue the
797 signal. Also enqueue the signal if we are waiting to reinsert a
798 breakpoint; it will be picked up again below. */
799 if (signal != 0
800 && (process->status_pending_p || process->pending_signals != NULL
801 || process->bp_reinsert != 0))
802 {
803 struct pending_signals *p_sig;
804 p_sig = malloc (sizeof (*p_sig));
805 p_sig->prev = process->pending_signals;
806 p_sig->signal = signal;
807 process->pending_signals = p_sig;
808 }
809
810 if (process->status_pending_p && !check_removed_breakpoint (process))
811 return;
812
813 saved_inferior = current_inferior;
814 current_inferior = get_process_thread (process);
815
816 if (debug_threads)
817 fprintf (stderr, "Resuming process %d (%s, signal %d, stop %s)\n", inferior_pid,
818 step ? "step" : "continue", signal,
819 process->stop_expected ? "expected" : "not expected");
820
821 /* This bit needs some thinking about. If we get a signal that
822 we must report while a single-step reinsert is still pending,
823 we often end up resuming the thread. It might be better to
824 (ew) allow a stack of pending events; then we could be sure that
825 the reinsert happened right away and not lose any signals.
826
827 Making this stack would also shrink the window in which breakpoints are
828 uninserted (see comment in linux_wait_for_process) but not enough for
829 complete correctness, so it won't solve that problem. It may be
830 worthwhile just to solve this one, however. */
831 if (process->bp_reinsert != 0)
832 {
833 if (debug_threads)
834 fprintf (stderr, " pending reinsert at %08lx", (long)process->bp_reinsert);
835 if (step == 0)
836 fprintf (stderr, "BAD - reinserting but not stepping.\n");
837 step = 1;
838
839 /* Postpone any pending signal. It was enqueued above. */
840 signal = 0;
841 }
842
843 check_removed_breakpoint (process);
844
845 if (debug_threads && the_low_target.get_pc != NULL)
846 {
847 fprintf (stderr, " ");
848 (long) (*the_low_target.get_pc) ();
849 }
850
851 /* If we have pending signals, consume one unless we are trying to reinsert
852 a breakpoint. */
853 if (process->pending_signals != NULL && process->bp_reinsert == 0)
854 {
855 struct pending_signals **p_sig;
856
857 p_sig = &process->pending_signals;
858 while ((*p_sig)->prev != NULL)
859 p_sig = &(*p_sig)->prev;
860
861 signal = (*p_sig)->signal;
862 free (*p_sig);
863 *p_sig = NULL;
864 }
865
866 regcache_invalidate_one ((struct inferior_list_entry *)
867 get_process_thread (process));
868 errno = 0;
869 process->stopped = 0;
870 process->stepping = step;
871 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, process->lwpid, 0, signal);
872
873 current_inferior = saved_inferior;
874 if (errno)
875 perror_with_name ("ptrace");
876 }
877
878 static struct thread_resume *resume_ptr;
879
880 /* This function is called once per thread. We look up the thread
881 in RESUME_PTR, and mark the thread with a pointer to the appropriate
882 resume request.
883
884 This algorithm is O(threads * resume elements), but resume elements
885 is small (and will remain small at least until GDB supports thread
886 suspension). */
887 static void
888 linux_set_resume_request (struct inferior_list_entry *entry)
889 {
890 struct process_info *process;
891 struct thread_info *thread;
892 int ndx;
893
894 thread = (struct thread_info *) entry;
895 process = get_thread_process (thread);
896
897 ndx = 0;
898 while (resume_ptr[ndx].thread != -1 && resume_ptr[ndx].thread != entry->id)
899 ndx++;
900
901 process->resume = &resume_ptr[ndx];
902 }
903
904 /* This function is called once per thread. We check the thread's resume
905 request, which will tell us whether to resume, step, or leave the thread
906 stopped; and what signal, if any, it should be sent. For threads which
907 we aren't explicitly told otherwise, we preserve the stepping flag; this
908 is used for stepping over gdbserver-placed breakpoints. */
909
910 static void
911 linux_continue_one_thread (struct inferior_list_entry *entry)
912 {
913 struct process_info *process;
914 struct thread_info *thread;
915 int step;
916
917 thread = (struct thread_info *) entry;
918 process = get_thread_process (thread);
919
920 if (process->resume->leave_stopped)
921 return;
922
923 if (process->resume->thread == -1)
924 step = process->stepping || process->resume->step;
925 else
926 step = process->resume->step;
927
928 linux_resume_one_process (&process->head, step, process->resume->sig);
929
930 process->resume = NULL;
931 }
932
933 /* This function is called once per thread. We check the thread's resume
934 request, which will tell us whether to resume, step, or leave the thread
935 stopped; and what signal, if any, it should be sent. We queue any needed
936 signals, since we won't actually resume. We already have a pending event
937 to report, so we don't need to preserve any step requests; they should
938 be re-issued if necessary. */
939
940 static void
941 linux_queue_one_thread (struct inferior_list_entry *entry)
942 {
943 struct process_info *process;
944 struct thread_info *thread;
945
946 thread = (struct thread_info *) entry;
947 process = get_thread_process (thread);
948
949 if (process->resume->leave_stopped)
950 return;
951
952 /* If we have a new signal, enqueue the signal. */
953 if (process->resume->sig != 0)
954 {
955 struct pending_signals *p_sig;
956 p_sig = malloc (sizeof (*p_sig));
957 p_sig->prev = process->pending_signals;
958 p_sig->signal = process->resume->sig;
959 process->pending_signals = p_sig;
960 }
961
962 process->resume = NULL;
963 }
964
965 /* Set DUMMY if this process has an interesting status pending. */
966 static int
967 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
968 {
969 struct process_info *process = (struct process_info *) entry;
970
971 /* Processes which will not be resumed are not interesting, because
972 we might not wait for them next time through linux_wait. */
973 if (process->resume->leave_stopped)
974 return 0;
975
976 /* If this thread has a removed breakpoint, we won't have any
977 events to report later, so check now. check_removed_breakpoint
978 may clear status_pending_p. We avoid calling check_removed_breakpoint
979 for any thread that we are not otherwise going to resume - this
980 lets us preserve stopped status when two threads hit a breakpoint.
981 GDB removes the breakpoint to single-step a particular thread
982 past it, then re-inserts it and resumes all threads. We want
983 to report the second thread without resuming it in the interim. */
984 if (process->status_pending_p)
985 check_removed_breakpoint (process);
986
987 if (process->status_pending_p)
988 * (int *) flag_p = 1;
989
990 return 0;
991 }
992
993 static void
994 linux_resume (struct thread_resume *resume_info)
995 {
996 int pending_flag;
997
998 /* Yes, the use of a global here is rather ugly. */
999 resume_ptr = resume_info;
1000
1001 for_each_inferior (&all_threads, linux_set_resume_request);
1002
1003 /* If there is a thread which would otherwise be resumed, which
1004 has a pending status, then don't resume any threads - we can just
1005 report the pending status. Make sure to queue any signals
1006 that would otherwise be sent. */
1007 pending_flag = 0;
1008 find_inferior (&all_processes, resume_status_pending_p, &pending_flag);
1009
1010 if (debug_threads)
1011 {
1012 if (pending_flag)
1013 fprintf (stderr, "Not resuming, pending status\n");
1014 else
1015 fprintf (stderr, "Resuming, no pending status\n");
1016 }
1017
1018 if (pending_flag)
1019 for_each_inferior (&all_threads, linux_queue_one_thread);
1020 else
1021 {
1022 block_async_io ();
1023 enable_async_io ();
1024 for_each_inferior (&all_threads, linux_continue_one_thread);
1025 }
1026 }
1027
1028 #ifdef HAVE_LINUX_USRREGS
1029
1030 int
1031 register_addr (int regnum)
1032 {
1033 int addr;
1034
1035 if (regnum < 0 || regnum >= the_low_target.num_regs)
1036 error ("Invalid register number %d.", regnum);
1037
1038 addr = the_low_target.regmap[regnum];
1039
1040 return addr;
1041 }
1042
1043 /* Fetch one register. */
1044 static void
1045 fetch_register (int regno)
1046 {
1047 CORE_ADDR regaddr;
1048 register int i;
1049 char *buf;
1050
1051 if (regno >= the_low_target.num_regs)
1052 return;
1053 if ((*the_low_target.cannot_fetch_register) (regno))
1054 return;
1055
1056 regaddr = register_addr (regno);
1057 if (regaddr == -1)
1058 return;
1059 buf = alloca (register_size (regno));
1060 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
1061 {
1062 errno = 0;
1063 *(PTRACE_XFER_TYPE *) (buf + i) =
1064 ptrace (PTRACE_PEEKUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr, 0);
1065 regaddr += sizeof (PTRACE_XFER_TYPE);
1066 if (errno != 0)
1067 {
1068 /* Warning, not error, in case we are attached; sometimes the
1069 kernel doesn't let us at the registers. */
1070 char *err = strerror (errno);
1071 char *msg = alloca (strlen (err) + 128);
1072 sprintf (msg, "reading register %d: %s", regno, err);
1073 error (msg);
1074 goto error_exit;
1075 }
1076 }
1077 supply_register (regno, buf);
1078
1079 error_exit:;
1080 }
1081
1082 /* Fetch all registers, or just one, from the child process. */
1083 static void
1084 usr_fetch_inferior_registers (int regno)
1085 {
1086 if (regno == -1 || regno == 0)
1087 for (regno = 0; regno < the_low_target.num_regs; regno++)
1088 fetch_register (regno);
1089 else
1090 fetch_register (regno);
1091 }
1092
1093 /* Store our register values back into the inferior.
1094 If REGNO is -1, do this for all registers.
1095 Otherwise, REGNO specifies which register (so we can save time). */
1096 static void
1097 usr_store_inferior_registers (int regno)
1098 {
1099 CORE_ADDR regaddr;
1100 int i;
1101 char *buf;
1102
1103 if (regno >= 0)
1104 {
1105 if (regno >= the_low_target.num_regs)
1106 return;
1107
1108 if ((*the_low_target.cannot_store_register) (regno) == 1)
1109 return;
1110
1111 regaddr = register_addr (regno);
1112 if (regaddr == -1)
1113 return;
1114 errno = 0;
1115 buf = alloca (register_size (regno));
1116 collect_register (regno, buf);
1117 for (i = 0; i < register_size (regno); i += sizeof (PTRACE_XFER_TYPE))
1118 {
1119 errno = 0;
1120 ptrace (PTRACE_POKEUSER, inferior_pid, (PTRACE_ARG3_TYPE) regaddr,
1121 *(PTRACE_XFER_TYPE *) (buf + i));
1122 if (errno != 0)
1123 {
1124 if ((*the_low_target.cannot_store_register) (regno) == 0)
1125 {
1126 char *err = strerror (errno);
1127 char *msg = alloca (strlen (err) + 128);
1128 sprintf (msg, "writing register %d: %s",
1129 regno, err);
1130 error (msg);
1131 return;
1132 }
1133 }
1134 regaddr += sizeof (PTRACE_XFER_TYPE);
1135 }
1136 }
1137 else
1138 for (regno = 0; regno < the_low_target.num_regs; regno++)
1139 usr_store_inferior_registers (regno);
1140 }
1141 #endif /* HAVE_LINUX_USRREGS */
1142
1143
1144
1145 #ifdef HAVE_LINUX_REGSETS
1146
1147 static int
1148 regsets_fetch_inferior_registers ()
1149 {
1150 struct regset_info *regset;
1151
1152 regset = target_regsets;
1153
1154 while (regset->size >= 0)
1155 {
1156 void *buf;
1157 int res;
1158
1159 if (regset->size == 0)
1160 {
1161 regset ++;
1162 continue;
1163 }
1164
1165 buf = malloc (regset->size);
1166 res = ptrace (regset->get_request, inferior_pid, 0, buf);
1167 if (res < 0)
1168 {
1169 if (errno == EIO)
1170 {
1171 /* If we get EIO on the first regset, do not try regsets again.
1172 If we get EIO on a later regset, disable that regset. */
1173 if (regset == target_regsets)
1174 {
1175 use_regsets_p = 0;
1176 return -1;
1177 }
1178 else
1179 {
1180 regset->size = 0;
1181 continue;
1182 }
1183 }
1184 else
1185 {
1186 char s[256];
1187 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
1188 inferior_pid);
1189 perror (s);
1190 }
1191 }
1192 regset->store_function (buf);
1193 regset ++;
1194 }
1195 return 0;
1196 }
1197
1198 static int
1199 regsets_store_inferior_registers ()
1200 {
1201 struct regset_info *regset;
1202
1203 regset = target_regsets;
1204
1205 while (regset->size >= 0)
1206 {
1207 void *buf;
1208 int res;
1209
1210 if (regset->size == 0)
1211 {
1212 regset ++;
1213 continue;
1214 }
1215
1216 buf = malloc (regset->size);
1217 regset->fill_function (buf);
1218 res = ptrace (regset->set_request, inferior_pid, 0, buf);
1219 if (res < 0)
1220 {
1221 if (errno == EIO)
1222 {
1223 /* If we get EIO on the first regset, do not try regsets again.
1224 If we get EIO on a later regset, disable that regset. */
1225 if (regset == target_regsets)
1226 {
1227 use_regsets_p = 0;
1228 return -1;
1229 }
1230 else
1231 {
1232 regset->size = 0;
1233 continue;
1234 }
1235 }
1236 else
1237 {
1238 perror ("Warning: ptrace(regsets_store_inferior_registers)");
1239 }
1240 }
1241 regset ++;
1242 free (buf);
1243 }
1244 return 0;
1245 }
1246
1247 #endif /* HAVE_LINUX_REGSETS */
1248
1249
1250 void
1251 linux_fetch_registers (int regno)
1252 {
1253 #ifdef HAVE_LINUX_REGSETS
1254 if (use_regsets_p)
1255 {
1256 if (regsets_fetch_inferior_registers () == 0)
1257 return;
1258 }
1259 #endif
1260 #ifdef HAVE_LINUX_USRREGS
1261 usr_fetch_inferior_registers (regno);
1262 #endif
1263 }
1264
1265 void
1266 linux_store_registers (int regno)
1267 {
1268 #ifdef HAVE_LINUX_REGSETS
1269 if (use_regsets_p)
1270 {
1271 if (regsets_store_inferior_registers () == 0)
1272 return;
1273 }
1274 #endif
1275 #ifdef HAVE_LINUX_USRREGS
1276 usr_store_inferior_registers (regno);
1277 #endif
1278 }
1279
1280
1281 /* Copy LEN bytes from inferior's memory starting at MEMADDR
1282 to debugger memory starting at MYADDR. */
1283
1284 static void
1285 linux_read_memory (CORE_ADDR memaddr, char *myaddr, int len)
1286 {
1287 register int i;
1288 /* Round starting address down to longword boundary. */
1289 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1290 /* Round ending address up; get number of longwords that makes. */
1291 register int count
1292 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
1293 / sizeof (PTRACE_XFER_TYPE);
1294 /* Allocate buffer of that many longwords. */
1295 register PTRACE_XFER_TYPE *buffer
1296 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1297
1298 /* Read all the longwords */
1299 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1300 {
1301 buffer[i] = ptrace (PTRACE_PEEKTEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, 0);
1302 }
1303
1304 /* Copy appropriate bytes out of the buffer. */
1305 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), len);
1306 }
1307
1308 /* Copy LEN bytes of data from debugger memory at MYADDR
1309 to inferior's memory at MEMADDR.
1310 On failure (cannot write the inferior)
1311 returns the value of errno. */
1312
1313 static int
1314 linux_write_memory (CORE_ADDR memaddr, const char *myaddr, int len)
1315 {
1316 register int i;
1317 /* Round starting address down to longword boundary. */
1318 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
1319 /* Round ending address up; get number of longwords that makes. */
1320 register int count
1321 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
1322 /* Allocate buffer of that many longwords. */
1323 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
1324 extern int errno;
1325
1326 if (debug_threads)
1327 {
1328 fprintf (stderr, "Writing %02x to %08lx\n", (unsigned)myaddr[0], (long)memaddr);
1329 }
1330
1331 /* Fill start and end extra bytes of buffer with existing memory data. */
1332
1333 buffer[0] = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1334 (PTRACE_ARG3_TYPE) addr, 0);
1335
1336 if (count > 1)
1337 {
1338 buffer[count - 1]
1339 = ptrace (PTRACE_PEEKTEXT, inferior_pid,
1340 (PTRACE_ARG3_TYPE) (addr + (count - 1)
1341 * sizeof (PTRACE_XFER_TYPE)),
1342 0);
1343 }
1344
1345 /* Copy data to be written over corresponding part of buffer */
1346
1347 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
1348
1349 /* Write the entire buffer. */
1350
1351 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
1352 {
1353 errno = 0;
1354 ptrace (PTRACE_POKETEXT, inferior_pid, (PTRACE_ARG3_TYPE) addr, buffer[i]);
1355 if (errno)
1356 return errno;
1357 }
1358
1359 return 0;
1360 }
1361
1362 static void
1363 linux_look_up_symbols (void)
1364 {
1365 #ifdef USE_THREAD_DB
1366 if (using_threads)
1367 return;
1368
1369 using_threads = thread_db_init ();
1370 #endif
1371 }
1372
1373 static void
1374 linux_send_signal (int signum)
1375 {
1376 extern int signal_pid;
1377
1378 if (cont_thread > 0)
1379 {
1380 struct process_info *process;
1381
1382 process = get_thread_process (current_inferior);
1383 kill (process->lwpid, signum);
1384 }
1385 else
1386 kill (signal_pid, signum);
1387 }
1388
1389 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
1390 to debugger memory starting at MYADDR. */
1391
1392 static int
1393 linux_read_auxv (CORE_ADDR offset, char *myaddr, unsigned int len)
1394 {
1395 char filename[PATH_MAX];
1396 int fd, n;
1397
1398 snprintf (filename, sizeof filename, "/proc/%d/auxv", inferior_pid);
1399
1400 fd = open (filename, O_RDONLY);
1401 if (fd < 0)
1402 return -1;
1403
1404 if (offset != (CORE_ADDR) 0
1405 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
1406 n = -1;
1407 else
1408 n = read (fd, myaddr, len);
1409
1410 close (fd);
1411
1412 return n;
1413 }
1414
1415 \f
1416 static struct target_ops linux_target_ops = {
1417 linux_create_inferior,
1418 linux_attach,
1419 linux_kill,
1420 linux_detach,
1421 linux_thread_alive,
1422 linux_resume,
1423 linux_wait,
1424 linux_fetch_registers,
1425 linux_store_registers,
1426 linux_read_memory,
1427 linux_write_memory,
1428 linux_look_up_symbols,
1429 linux_send_signal,
1430 linux_read_auxv,
1431 };
1432
1433 static void
1434 linux_init_signals ()
1435 {
1436 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
1437 to find what the cancel signal actually is. */
1438 signal (__SIGRTMIN+1, SIG_IGN);
1439 }
1440
1441 void
1442 initialize_low (void)
1443 {
1444 using_threads = 0;
1445 set_target_ops (&linux_target_ops);
1446 set_breakpoint_data (the_low_target.breakpoint,
1447 the_low_target.breakpoint_len);
1448 init_registers ();
1449 linux_init_signals ();
1450 }
This page took 0.061308 seconds and 4 git commands to generate.