Downgrade fatal to warning in linux_async
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2014 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23
24 #include "nat/linux-nat.h"
25 #include "nat/linux-waitpid.h"
26 #include "gdb_wait.h"
27 #include <sys/ptrace.h>
28 #include "nat/linux-ptrace.h"
29 #include "nat/linux-procfs.h"
30 #include <signal.h>
31 #include <sys/ioctl.h>
32 #include <fcntl.h>
33 #include <unistd.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <sys/vfs.h>
42 #include <sys/uio.h>
43 #include "filestuff.h"
44 #include "tracepoint.h"
45 #include "hostio.h"
46 #ifndef ELFMAG0
47 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
48 then ELFMAG0 will have been defined. If it didn't get included by
49 gdb_proc_service.h then including it will likely introduce a duplicate
50 definition of elf_fpregset_t. */
51 #include <elf.h>
52 #endif
53
54 #ifndef SPUFS_MAGIC
55 #define SPUFS_MAGIC 0x23c9b64e
56 #endif
57
58 #ifdef HAVE_PERSONALITY
59 # include <sys/personality.h>
60 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
61 # define ADDR_NO_RANDOMIZE 0x0040000
62 # endif
63 #endif
64
65 #ifndef O_LARGEFILE
66 #define O_LARGEFILE 0
67 #endif
68
69 #ifndef W_STOPCODE
70 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
71 #endif
72
73 /* This is the kernel's hard limit. Not to be confused with
74 SIGRTMIN. */
75 #ifndef __SIGRTMIN
76 #define __SIGRTMIN 32
77 #endif
78
79 /* Some targets did not define these ptrace constants from the start,
80 so gdbserver defines them locally here. In the future, these may
81 be removed after they are added to asm/ptrace.h. */
82 #if !(defined(PT_TEXT_ADDR) \
83 || defined(PT_DATA_ADDR) \
84 || defined(PT_TEXT_END_ADDR))
85 #if defined(__mcoldfire__)
86 /* These are still undefined in 3.10 kernels. */
87 #define PT_TEXT_ADDR 49*4
88 #define PT_DATA_ADDR 50*4
89 #define PT_TEXT_END_ADDR 51*4
90 /* BFIN already defines these since at least 2.6.32 kernels. */
91 #elif defined(BFIN)
92 #define PT_TEXT_ADDR 220
93 #define PT_TEXT_END_ADDR 224
94 #define PT_DATA_ADDR 228
95 /* These are still undefined in 3.10 kernels. */
96 #elif defined(__TMS320C6X__)
97 #define PT_TEXT_ADDR (0x10000*4)
98 #define PT_DATA_ADDR (0x10004*4)
99 #define PT_TEXT_END_ADDR (0x10008*4)
100 #endif
101 #endif
102
103 #ifdef HAVE_LINUX_BTRACE
104 # include "nat/linux-btrace.h"
105 #endif
106
107 #ifndef HAVE_ELF32_AUXV_T
108 /* Copied from glibc's elf.h. */
109 typedef struct
110 {
111 uint32_t a_type; /* Entry type */
112 union
113 {
114 uint32_t a_val; /* Integer value */
115 /* We use to have pointer elements added here. We cannot do that,
116 though, since it does not work when using 32-bit definitions
117 on 64-bit platforms and vice versa. */
118 } a_un;
119 } Elf32_auxv_t;
120 #endif
121
122 #ifndef HAVE_ELF64_AUXV_T
123 /* Copied from glibc's elf.h. */
124 typedef struct
125 {
126 uint64_t a_type; /* Entry type */
127 union
128 {
129 uint64_t a_val; /* Integer value */
130 /* We use to have pointer elements added here. We cannot do that,
131 though, since it does not work when using 32-bit definitions
132 on 64-bit platforms and vice versa. */
133 } a_un;
134 } Elf64_auxv_t;
135 #endif
136
137 /* A list of all unknown processes which receive stop signals. Some
138 other process will presumably claim each of these as forked
139 children momentarily. */
140
141 struct simple_pid_list
142 {
143 /* The process ID. */
144 int pid;
145
146 /* The status as reported by waitpid. */
147 int status;
148
149 /* Next in chain. */
150 struct simple_pid_list *next;
151 };
152 struct simple_pid_list *stopped_pids;
153
154 /* Trivial list manipulation functions to keep track of a list of new
155 stopped processes. */
156
157 static void
158 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
159 {
160 struct simple_pid_list *new_pid = xmalloc (sizeof (struct simple_pid_list));
161
162 new_pid->pid = pid;
163 new_pid->status = status;
164 new_pid->next = *listp;
165 *listp = new_pid;
166 }
167
168 static int
169 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
170 {
171 struct simple_pid_list **p;
172
173 for (p = listp; *p != NULL; p = &(*p)->next)
174 if ((*p)->pid == pid)
175 {
176 struct simple_pid_list *next = (*p)->next;
177
178 *statusp = (*p)->status;
179 xfree (*p);
180 *p = next;
181 return 1;
182 }
183 return 0;
184 }
185
186 enum stopping_threads_kind
187 {
188 /* Not stopping threads presently. */
189 NOT_STOPPING_THREADS,
190
191 /* Stopping threads. */
192 STOPPING_THREADS,
193
194 /* Stopping and suspending threads. */
195 STOPPING_AND_SUSPENDING_THREADS
196 };
197
198 /* This is set while stop_all_lwps is in effect. */
199 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
200
201 /* FIXME make into a target method? */
202 int using_threads = 1;
203
204 /* True if we're presently stabilizing threads (moving them out of
205 jump pads). */
206 static int stabilizing_threads;
207
208 static void linux_resume_one_lwp (struct lwp_info *lwp,
209 int step, int signal, siginfo_t *info);
210 static void linux_resume (struct thread_resume *resume_info, size_t n);
211 static void stop_all_lwps (int suspend, struct lwp_info *except);
212 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
213 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
214 int *wstat, int options);
215 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
216 static struct lwp_info *add_lwp (ptid_t ptid);
217 static int linux_stopped_by_watchpoint (void);
218 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
219 static void proceed_all_lwps (void);
220 static int finish_step_over (struct lwp_info *lwp);
221 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
222 static int kill_lwp (unsigned long lwpid, int signo);
223
224 /* True if the low target can hardware single-step. Such targets
225 don't need a BREAKPOINT_REINSERT_ADDR callback. */
226
227 static int
228 can_hardware_single_step (void)
229 {
230 return (the_low_target.breakpoint_reinsert_addr == NULL);
231 }
232
233 /* True if the low target supports memory breakpoints. If so, we'll
234 have a GET_PC implementation. */
235
236 static int
237 supports_breakpoints (void)
238 {
239 return (the_low_target.get_pc != NULL);
240 }
241
242 /* Returns true if this target can support fast tracepoints. This
243 does not mean that the in-process agent has been loaded in the
244 inferior. */
245
246 static int
247 supports_fast_tracepoints (void)
248 {
249 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
250 }
251
252 /* True if LWP is stopped in its stepping range. */
253
254 static int
255 lwp_in_step_range (struct lwp_info *lwp)
256 {
257 CORE_ADDR pc = lwp->stop_pc;
258
259 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
260 }
261
262 struct pending_signals
263 {
264 int signal;
265 siginfo_t info;
266 struct pending_signals *prev;
267 };
268
269 /* The read/write ends of the pipe registered as waitable file in the
270 event loop. */
271 static int linux_event_pipe[2] = { -1, -1 };
272
273 /* True if we're currently in async mode. */
274 #define target_is_async_p() (linux_event_pipe[0] != -1)
275
276 static void send_sigstop (struct lwp_info *lwp);
277 static void wait_for_sigstop (void);
278
279 /* Return non-zero if HEADER is a 64-bit ELF file. */
280
281 static int
282 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
283 {
284 if (header->e_ident[EI_MAG0] == ELFMAG0
285 && header->e_ident[EI_MAG1] == ELFMAG1
286 && header->e_ident[EI_MAG2] == ELFMAG2
287 && header->e_ident[EI_MAG3] == ELFMAG3)
288 {
289 *machine = header->e_machine;
290 return header->e_ident[EI_CLASS] == ELFCLASS64;
291
292 }
293 *machine = EM_NONE;
294 return -1;
295 }
296
297 /* Return non-zero if FILE is a 64-bit ELF file,
298 zero if the file is not a 64-bit ELF file,
299 and -1 if the file is not accessible or doesn't exist. */
300
301 static int
302 elf_64_file_p (const char *file, unsigned int *machine)
303 {
304 Elf64_Ehdr header;
305 int fd;
306
307 fd = open (file, O_RDONLY);
308 if (fd < 0)
309 return -1;
310
311 if (read (fd, &header, sizeof (header)) != sizeof (header))
312 {
313 close (fd);
314 return 0;
315 }
316 close (fd);
317
318 return elf_64_header_p (&header, machine);
319 }
320
321 /* Accepts an integer PID; Returns true if the executable PID is
322 running is a 64-bit ELF file.. */
323
324 int
325 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
326 {
327 char file[PATH_MAX];
328
329 sprintf (file, "/proc/%d/exe", pid);
330 return elf_64_file_p (file, machine);
331 }
332
333 static void
334 delete_lwp (struct lwp_info *lwp)
335 {
336 struct thread_info *thr = get_lwp_thread (lwp);
337
338 if (debug_threads)
339 debug_printf ("deleting %ld\n", lwpid_of (thr));
340
341 remove_thread (thr);
342 free (lwp->arch_private);
343 free (lwp);
344 }
345
346 /* Add a process to the common process list, and set its private
347 data. */
348
349 static struct process_info *
350 linux_add_process (int pid, int attached)
351 {
352 struct process_info *proc;
353
354 proc = add_process (pid, attached);
355 proc->private = xcalloc (1, sizeof (*proc->private));
356
357 /* Set the arch when the first LWP stops. */
358 proc->private->new_inferior = 1;
359
360 if (the_low_target.new_process != NULL)
361 proc->private->arch_private = the_low_target.new_process ();
362
363 return proc;
364 }
365
366 /* Handle a GNU/Linux extended wait response. If we see a clone
367 event, we need to add the new LWP to our list (and not report the
368 trap to higher layers). */
369
370 static void
371 handle_extended_wait (struct lwp_info *event_child, int wstat)
372 {
373 int event = wstat >> 16;
374 struct thread_info *event_thr = get_lwp_thread (event_child);
375 struct lwp_info *new_lwp;
376
377 if (event == PTRACE_EVENT_CLONE)
378 {
379 ptid_t ptid;
380 unsigned long new_pid;
381 int ret, status;
382
383 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
384 &new_pid);
385
386 /* If we haven't already seen the new PID stop, wait for it now. */
387 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
388 {
389 /* The new child has a pending SIGSTOP. We can't affect it until it
390 hits the SIGSTOP, but we're already attached. */
391
392 ret = my_waitpid (new_pid, &status, __WALL);
393
394 if (ret == -1)
395 perror_with_name ("waiting for new child");
396 else if (ret != new_pid)
397 warning ("wait returned unexpected PID %d", ret);
398 else if (!WIFSTOPPED (status))
399 warning ("wait returned unexpected status 0x%x", status);
400 }
401
402 if (debug_threads)
403 debug_printf ("HEW: Got clone event "
404 "from LWP %ld, new child is LWP %ld\n",
405 lwpid_of (event_thr), new_pid);
406
407 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
408 new_lwp = add_lwp (ptid);
409
410 /* Either we're going to immediately resume the new thread
411 or leave it stopped. linux_resume_one_lwp is a nop if it
412 thinks the thread is currently running, so set this first
413 before calling linux_resume_one_lwp. */
414 new_lwp->stopped = 1;
415
416 /* If we're suspending all threads, leave this one suspended
417 too. */
418 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS)
419 new_lwp->suspended = 1;
420
421 /* Normally we will get the pending SIGSTOP. But in some cases
422 we might get another signal delivered to the group first.
423 If we do get another signal, be sure not to lose it. */
424 if (WSTOPSIG (status) == SIGSTOP)
425 {
426 if (stopping_threads != NOT_STOPPING_THREADS)
427 new_lwp->stop_pc = get_stop_pc (new_lwp);
428 else
429 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
430 }
431 else
432 {
433 new_lwp->stop_expected = 1;
434
435 if (stopping_threads != NOT_STOPPING_THREADS)
436 {
437 new_lwp->stop_pc = get_stop_pc (new_lwp);
438 new_lwp->status_pending_p = 1;
439 new_lwp->status_pending = status;
440 }
441 else
442 /* Pass the signal on. This is what GDB does - except
443 shouldn't we really report it instead? */
444 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
445 }
446
447 /* Always resume the current thread. If we are stopping
448 threads, it will have a pending SIGSTOP; we may as well
449 collect it now. */
450 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
451 }
452 }
453
454 /* Return the PC as read from the regcache of LWP, without any
455 adjustment. */
456
457 static CORE_ADDR
458 get_pc (struct lwp_info *lwp)
459 {
460 struct thread_info *saved_inferior;
461 struct regcache *regcache;
462 CORE_ADDR pc;
463
464 if (the_low_target.get_pc == NULL)
465 return 0;
466
467 saved_inferior = current_inferior;
468 current_inferior = get_lwp_thread (lwp);
469
470 regcache = get_thread_regcache (current_inferior, 1);
471 pc = (*the_low_target.get_pc) (regcache);
472
473 if (debug_threads)
474 debug_printf ("pc is 0x%lx\n", (long) pc);
475
476 current_inferior = saved_inferior;
477 return pc;
478 }
479
480 /* This function should only be called if LWP got a SIGTRAP.
481 The SIGTRAP could mean several things.
482
483 On i386, where decr_pc_after_break is non-zero:
484 If we were single-stepping this process using PTRACE_SINGLESTEP,
485 we will get only the one SIGTRAP (even if the instruction we
486 stepped over was a breakpoint). The value of $eip will be the
487 next instruction.
488 If we continue the process using PTRACE_CONT, we will get a
489 SIGTRAP when we hit a breakpoint. The value of $eip will be
490 the instruction after the breakpoint (i.e. needs to be
491 decremented). If we report the SIGTRAP to GDB, we must also
492 report the undecremented PC. If we cancel the SIGTRAP, we
493 must resume at the decremented PC.
494
495 (Presumably, not yet tested) On a non-decr_pc_after_break machine
496 with hardware or kernel single-step:
497 If we single-step over a breakpoint instruction, our PC will
498 point at the following instruction. If we continue and hit a
499 breakpoint instruction, our PC will point at the breakpoint
500 instruction. */
501
502 static CORE_ADDR
503 get_stop_pc (struct lwp_info *lwp)
504 {
505 CORE_ADDR stop_pc;
506
507 if (the_low_target.get_pc == NULL)
508 return 0;
509
510 stop_pc = get_pc (lwp);
511
512 if (WSTOPSIG (lwp->last_status) == SIGTRAP
513 && !lwp->stepping
514 && !lwp->stopped_by_watchpoint
515 && lwp->last_status >> 16 == 0)
516 stop_pc -= the_low_target.decr_pc_after_break;
517
518 if (debug_threads)
519 debug_printf ("stop pc is 0x%lx\n", (long) stop_pc);
520
521 return stop_pc;
522 }
523
524 static struct lwp_info *
525 add_lwp (ptid_t ptid)
526 {
527 struct lwp_info *lwp;
528
529 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
530 memset (lwp, 0, sizeof (*lwp));
531
532 if (the_low_target.new_thread != NULL)
533 lwp->arch_private = the_low_target.new_thread ();
534
535 lwp->thread = add_thread (ptid, lwp);
536
537 return lwp;
538 }
539
540 /* Start an inferior process and returns its pid.
541 ALLARGS is a vector of program-name and args. */
542
543 static int
544 linux_create_inferior (char *program, char **allargs)
545 {
546 #ifdef HAVE_PERSONALITY
547 int personality_orig = 0, personality_set = 0;
548 #endif
549 struct lwp_info *new_lwp;
550 int pid;
551 ptid_t ptid;
552
553 #ifdef HAVE_PERSONALITY
554 if (disable_randomization)
555 {
556 errno = 0;
557 personality_orig = personality (0xffffffff);
558 if (errno == 0 && !(personality_orig & ADDR_NO_RANDOMIZE))
559 {
560 personality_set = 1;
561 personality (personality_orig | ADDR_NO_RANDOMIZE);
562 }
563 if (errno != 0 || (personality_set
564 && !(personality (0xffffffff) & ADDR_NO_RANDOMIZE)))
565 warning ("Error disabling address space randomization: %s",
566 strerror (errno));
567 }
568 #endif
569
570 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
571 pid = vfork ();
572 #else
573 pid = fork ();
574 #endif
575 if (pid < 0)
576 perror_with_name ("fork");
577
578 if (pid == 0)
579 {
580 close_most_fds ();
581 ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
582
583 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
584 signal (__SIGRTMIN + 1, SIG_DFL);
585 #endif
586
587 setpgid (0, 0);
588
589 /* If gdbserver is connected to gdb via stdio, redirect the inferior's
590 stdout to stderr so that inferior i/o doesn't corrupt the connection.
591 Also, redirect stdin to /dev/null. */
592 if (remote_connection_is_stdio ())
593 {
594 close (0);
595 open ("/dev/null", O_RDONLY);
596 dup2 (2, 1);
597 if (write (2, "stdin/stdout redirected\n",
598 sizeof ("stdin/stdout redirected\n") - 1) < 0)
599 {
600 /* Errors ignored. */;
601 }
602 }
603
604 execv (program, allargs);
605 if (errno == ENOENT)
606 execvp (program, allargs);
607
608 fprintf (stderr, "Cannot exec %s: %s.\n", program,
609 strerror (errno));
610 fflush (stderr);
611 _exit (0177);
612 }
613
614 #ifdef HAVE_PERSONALITY
615 if (personality_set)
616 {
617 errno = 0;
618 personality (personality_orig);
619 if (errno != 0)
620 warning ("Error restoring address space randomization: %s",
621 strerror (errno));
622 }
623 #endif
624
625 linux_add_process (pid, 0);
626
627 ptid = ptid_build (pid, pid, 0);
628 new_lwp = add_lwp (ptid);
629 new_lwp->must_set_ptrace_flags = 1;
630
631 return pid;
632 }
633
634 char *
635 linux_attach_fail_reason_string (ptid_t ptid, int err)
636 {
637 static char *reason_string;
638 struct buffer buffer;
639 char *warnings;
640 long lwpid = ptid_get_lwp (ptid);
641
642 xfree (reason_string);
643
644 buffer_init (&buffer);
645 linux_ptrace_attach_fail_reason (lwpid, &buffer);
646 buffer_grow_str0 (&buffer, "");
647 warnings = buffer_finish (&buffer);
648 if (warnings[0] != '\0')
649 reason_string = xstrprintf ("%s (%d), %s",
650 strerror (err), err, warnings);
651 else
652 reason_string = xstrprintf ("%s (%d)",
653 strerror (err), err);
654 xfree (warnings);
655 return reason_string;
656 }
657
658 /* Attach to an inferior process. */
659
660 int
661 linux_attach_lwp (ptid_t ptid)
662 {
663 struct lwp_info *new_lwp;
664 int lwpid = ptid_get_lwp (ptid);
665
666 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
667 != 0)
668 return errno;
669
670 new_lwp = add_lwp (ptid);
671
672 /* We need to wait for SIGSTOP before being able to make the next
673 ptrace call on this LWP. */
674 new_lwp->must_set_ptrace_flags = 1;
675
676 if (linux_proc_pid_is_stopped (lwpid))
677 {
678 if (debug_threads)
679 debug_printf ("Attached to a stopped process\n");
680
681 /* The process is definitely stopped. It is in a job control
682 stop, unless the kernel predates the TASK_STOPPED /
683 TASK_TRACED distinction, in which case it might be in a
684 ptrace stop. Make sure it is in a ptrace stop; from there we
685 can kill it, signal it, et cetera.
686
687 First make sure there is a pending SIGSTOP. Since we are
688 already attached, the process can not transition from stopped
689 to running without a PTRACE_CONT; so we know this signal will
690 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
691 probably already in the queue (unless this kernel is old
692 enough to use TASK_STOPPED for ptrace stops); but since
693 SIGSTOP is not an RT signal, it can only be queued once. */
694 kill_lwp (lwpid, SIGSTOP);
695
696 /* Finally, resume the stopped process. This will deliver the
697 SIGSTOP (or a higher priority signal, just like normal
698 PTRACE_ATTACH), which we'll catch later on. */
699 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
700 }
701
702 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
703 brings it to a halt.
704
705 There are several cases to consider here:
706
707 1) gdbserver has already attached to the process and is being notified
708 of a new thread that is being created.
709 In this case we should ignore that SIGSTOP and resume the
710 process. This is handled below by setting stop_expected = 1,
711 and the fact that add_thread sets last_resume_kind ==
712 resume_continue.
713
714 2) This is the first thread (the process thread), and we're attaching
715 to it via attach_inferior.
716 In this case we want the process thread to stop.
717 This is handled by having linux_attach set last_resume_kind ==
718 resume_stop after we return.
719
720 If the pid we are attaching to is also the tgid, we attach to and
721 stop all the existing threads. Otherwise, we attach to pid and
722 ignore any other threads in the same group as this pid.
723
724 3) GDB is connecting to gdbserver and is requesting an enumeration of all
725 existing threads.
726 In this case we want the thread to stop.
727 FIXME: This case is currently not properly handled.
728 We should wait for the SIGSTOP but don't. Things work apparently
729 because enough time passes between when we ptrace (ATTACH) and when
730 gdb makes the next ptrace call on the thread.
731
732 On the other hand, if we are currently trying to stop all threads, we
733 should treat the new thread as if we had sent it a SIGSTOP. This works
734 because we are guaranteed that the add_lwp call above added us to the
735 end of the list, and so the new thread has not yet reached
736 wait_for_sigstop (but will). */
737 new_lwp->stop_expected = 1;
738
739 return 0;
740 }
741
742 /* Attach to PID. If PID is the tgid, attach to it and all
743 of its threads. */
744
745 static int
746 linux_attach (unsigned long pid)
747 {
748 ptid_t ptid = ptid_build (pid, pid, 0);
749 int err;
750
751 /* Attach to PID. We will check for other threads
752 soon. */
753 err = linux_attach_lwp (ptid);
754 if (err != 0)
755 error ("Cannot attach to process %ld: %s",
756 pid, linux_attach_fail_reason_string (ptid, err));
757
758 linux_add_process (pid, 1);
759
760 if (!non_stop)
761 {
762 struct thread_info *thread;
763
764 /* Don't ignore the initial SIGSTOP if we just attached to this
765 process. It will be collected by wait shortly. */
766 thread = find_thread_ptid (ptid_build (pid, pid, 0));
767 thread->last_resume_kind = resume_stop;
768 }
769
770 if (linux_proc_get_tgid (pid) == pid)
771 {
772 DIR *dir;
773 char pathname[128];
774
775 sprintf (pathname, "/proc/%ld/task", pid);
776
777 dir = opendir (pathname);
778
779 if (!dir)
780 {
781 fprintf (stderr, "Could not open /proc/%ld/task.\n", pid);
782 fflush (stderr);
783 }
784 else
785 {
786 /* At this point we attached to the tgid. Scan the task for
787 existing threads. */
788 int new_threads_found;
789 int iterations = 0;
790
791 while (iterations < 2)
792 {
793 struct dirent *dp;
794
795 new_threads_found = 0;
796 /* Add all the other threads. While we go through the
797 threads, new threads may be spawned. Cycle through
798 the list of threads until we have done two iterations without
799 finding new threads. */
800 while ((dp = readdir (dir)) != NULL)
801 {
802 unsigned long lwp;
803 ptid_t ptid;
804
805 /* Fetch one lwp. */
806 lwp = strtoul (dp->d_name, NULL, 10);
807
808 ptid = ptid_build (pid, lwp, 0);
809
810 /* Is this a new thread? */
811 if (lwp != 0 && find_thread_ptid (ptid) == NULL)
812 {
813 int err;
814
815 if (debug_threads)
816 debug_printf ("Found new lwp %ld\n", lwp);
817
818 err = linux_attach_lwp (ptid);
819 if (err != 0)
820 warning ("Cannot attach to lwp %ld: %s",
821 lwp,
822 linux_attach_fail_reason_string (ptid, err));
823
824 new_threads_found++;
825 }
826 }
827
828 if (!new_threads_found)
829 iterations++;
830 else
831 iterations = 0;
832
833 rewinddir (dir);
834 }
835 closedir (dir);
836 }
837 }
838
839 return 0;
840 }
841
842 struct counter
843 {
844 int pid;
845 int count;
846 };
847
848 static int
849 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
850 {
851 struct counter *counter = args;
852
853 if (ptid_get_pid (entry->id) == counter->pid)
854 {
855 if (++counter->count > 1)
856 return 1;
857 }
858
859 return 0;
860 }
861
862 static int
863 last_thread_of_process_p (int pid)
864 {
865 struct counter counter = { pid , 0 };
866
867 return (find_inferior (&all_threads,
868 second_thread_of_pid_p, &counter) == NULL);
869 }
870
871 /* Kill LWP. */
872
873 static void
874 linux_kill_one_lwp (struct lwp_info *lwp)
875 {
876 struct thread_info *thr = get_lwp_thread (lwp);
877 int pid = lwpid_of (thr);
878
879 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
880 there is no signal context, and ptrace(PTRACE_KILL) (or
881 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
882 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
883 alternative is to kill with SIGKILL. We only need one SIGKILL
884 per process, not one for each thread. But since we still support
885 linuxthreads, and we also support debugging programs using raw
886 clone without CLONE_THREAD, we send one for each thread. For
887 years, we used PTRACE_KILL only, so we're being a bit paranoid
888 about some old kernels where PTRACE_KILL might work better
889 (dubious if there are any such, but that's why it's paranoia), so
890 we try SIGKILL first, PTRACE_KILL second, and so we're fine
891 everywhere. */
892
893 errno = 0;
894 kill_lwp (pid, SIGKILL);
895 if (debug_threads)
896 {
897 int save_errno = errno;
898
899 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
900 target_pid_to_str (ptid_of (thr)),
901 save_errno ? strerror (save_errno) : "OK");
902 }
903
904 errno = 0;
905 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
906 if (debug_threads)
907 {
908 int save_errno = errno;
909
910 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
911 target_pid_to_str (ptid_of (thr)),
912 save_errno ? strerror (save_errno) : "OK");
913 }
914 }
915
916 /* Kill LWP and wait for it to die. */
917
918 static void
919 kill_wait_lwp (struct lwp_info *lwp)
920 {
921 struct thread_info *thr = get_lwp_thread (lwp);
922 int pid = ptid_get_pid (ptid_of (thr));
923 int lwpid = ptid_get_lwp (ptid_of (thr));
924 int wstat;
925 int res;
926
927 if (debug_threads)
928 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
929
930 do
931 {
932 linux_kill_one_lwp (lwp);
933
934 /* Make sure it died. Notes:
935
936 - The loop is most likely unnecessary.
937
938 - We don't use linux_wait_for_event as that could delete lwps
939 while we're iterating over them. We're not interested in
940 any pending status at this point, only in making sure all
941 wait status on the kernel side are collected until the
942 process is reaped.
943
944 - We don't use __WALL here as the __WALL emulation relies on
945 SIGCHLD, and killing a stopped process doesn't generate
946 one, nor an exit status.
947 */
948 res = my_waitpid (lwpid, &wstat, 0);
949 if (res == -1 && errno == ECHILD)
950 res = my_waitpid (lwpid, &wstat, __WCLONE);
951 } while (res > 0 && WIFSTOPPED (wstat));
952
953 gdb_assert (res > 0);
954 }
955
956 /* Callback for `find_inferior'. Kills an lwp of a given process,
957 except the leader. */
958
959 static int
960 kill_one_lwp_callback (struct inferior_list_entry *entry, void *args)
961 {
962 struct thread_info *thread = (struct thread_info *) entry;
963 struct lwp_info *lwp = get_thread_lwp (thread);
964 int pid = * (int *) args;
965
966 if (ptid_get_pid (entry->id) != pid)
967 return 0;
968
969 /* We avoid killing the first thread here, because of a Linux kernel (at
970 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
971 the children get a chance to be reaped, it will remain a zombie
972 forever. */
973
974 if (lwpid_of (thread) == pid)
975 {
976 if (debug_threads)
977 debug_printf ("lkop: is last of process %s\n",
978 target_pid_to_str (entry->id));
979 return 0;
980 }
981
982 kill_wait_lwp (lwp);
983 return 0;
984 }
985
986 static int
987 linux_kill (int pid)
988 {
989 struct process_info *process;
990 struct lwp_info *lwp;
991
992 process = find_process_pid (pid);
993 if (process == NULL)
994 return -1;
995
996 /* If we're killing a running inferior, make sure it is stopped
997 first, as PTRACE_KILL will not work otherwise. */
998 stop_all_lwps (0, NULL);
999
1000 find_inferior (&all_threads, kill_one_lwp_callback , &pid);
1001
1002 /* See the comment in linux_kill_one_lwp. We did not kill the first
1003 thread in the list, so do so now. */
1004 lwp = find_lwp_pid (pid_to_ptid (pid));
1005
1006 if (lwp == NULL)
1007 {
1008 if (debug_threads)
1009 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1010 pid);
1011 }
1012 else
1013 kill_wait_lwp (lwp);
1014
1015 the_target->mourn (process);
1016
1017 /* Since we presently can only stop all lwps of all processes, we
1018 need to unstop lwps of other processes. */
1019 unstop_all_lwps (0, NULL);
1020 return 0;
1021 }
1022
1023 /* Get pending signal of THREAD, for detaching purposes. This is the
1024 signal the thread last stopped for, which we need to deliver to the
1025 thread when detaching, otherwise, it'd be suppressed/lost. */
1026
1027 static int
1028 get_detach_signal (struct thread_info *thread)
1029 {
1030 enum gdb_signal signo = GDB_SIGNAL_0;
1031 int status;
1032 struct lwp_info *lp = get_thread_lwp (thread);
1033
1034 if (lp->status_pending_p)
1035 status = lp->status_pending;
1036 else
1037 {
1038 /* If the thread had been suspended by gdbserver, and it stopped
1039 cleanly, then it'll have stopped with SIGSTOP. But we don't
1040 want to deliver that SIGSTOP. */
1041 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1042 || thread->last_status.value.sig == GDB_SIGNAL_0)
1043 return 0;
1044
1045 /* Otherwise, we may need to deliver the signal we
1046 intercepted. */
1047 status = lp->last_status;
1048 }
1049
1050 if (!WIFSTOPPED (status))
1051 {
1052 if (debug_threads)
1053 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1054 target_pid_to_str (ptid_of (thread)));
1055 return 0;
1056 }
1057
1058 /* Extended wait statuses aren't real SIGTRAPs. */
1059 if (WSTOPSIG (status) == SIGTRAP && status >> 16 != 0)
1060 {
1061 if (debug_threads)
1062 debug_printf ("GPS: lwp %s had stopped with extended "
1063 "status: no pending signal\n",
1064 target_pid_to_str (ptid_of (thread)));
1065 return 0;
1066 }
1067
1068 signo = gdb_signal_from_host (WSTOPSIG (status));
1069
1070 if (program_signals_p && !program_signals[signo])
1071 {
1072 if (debug_threads)
1073 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1074 target_pid_to_str (ptid_of (thread)),
1075 gdb_signal_to_string (signo));
1076 return 0;
1077 }
1078 else if (!program_signals_p
1079 /* If we have no way to know which signals GDB does not
1080 want to have passed to the program, assume
1081 SIGTRAP/SIGINT, which is GDB's default. */
1082 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1083 {
1084 if (debug_threads)
1085 debug_printf ("GPS: lwp %s had signal %s, "
1086 "but we don't know if we should pass it. "
1087 "Default to not.\n",
1088 target_pid_to_str (ptid_of (thread)),
1089 gdb_signal_to_string (signo));
1090 return 0;
1091 }
1092 else
1093 {
1094 if (debug_threads)
1095 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1096 target_pid_to_str (ptid_of (thread)),
1097 gdb_signal_to_string (signo));
1098
1099 return WSTOPSIG (status);
1100 }
1101 }
1102
1103 static int
1104 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
1105 {
1106 struct thread_info *thread = (struct thread_info *) entry;
1107 struct lwp_info *lwp = get_thread_lwp (thread);
1108 int pid = * (int *) args;
1109 int sig;
1110
1111 if (ptid_get_pid (entry->id) != pid)
1112 return 0;
1113
1114 /* If there is a pending SIGSTOP, get rid of it. */
1115 if (lwp->stop_expected)
1116 {
1117 if (debug_threads)
1118 debug_printf ("Sending SIGCONT to %s\n",
1119 target_pid_to_str (ptid_of (thread)));
1120
1121 kill_lwp (lwpid_of (thread), SIGCONT);
1122 lwp->stop_expected = 0;
1123 }
1124
1125 /* Flush any pending changes to the process's registers. */
1126 regcache_invalidate_thread (thread);
1127
1128 /* Pass on any pending signal for this thread. */
1129 sig = get_detach_signal (thread);
1130
1131 /* Finally, let it resume. */
1132 if (the_low_target.prepare_to_resume != NULL)
1133 the_low_target.prepare_to_resume (lwp);
1134 if (ptrace (PTRACE_DETACH, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1135 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1136 error (_("Can't detach %s: %s"),
1137 target_pid_to_str (ptid_of (thread)),
1138 strerror (errno));
1139
1140 delete_lwp (lwp);
1141 return 0;
1142 }
1143
1144 static int
1145 linux_detach (int pid)
1146 {
1147 struct process_info *process;
1148
1149 process = find_process_pid (pid);
1150 if (process == NULL)
1151 return -1;
1152
1153 /* Stop all threads before detaching. First, ptrace requires that
1154 the thread is stopped to sucessfully detach. Second, thread_db
1155 may need to uninstall thread event breakpoints from memory, which
1156 only works with a stopped process anyway. */
1157 stop_all_lwps (0, NULL);
1158
1159 #ifdef USE_THREAD_DB
1160 thread_db_detach (process);
1161 #endif
1162
1163 /* Stabilize threads (move out of jump pads). */
1164 stabilize_threads ();
1165
1166 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
1167
1168 the_target->mourn (process);
1169
1170 /* Since we presently can only stop all lwps of all processes, we
1171 need to unstop lwps of other processes. */
1172 unstop_all_lwps (0, NULL);
1173 return 0;
1174 }
1175
1176 /* Remove all LWPs that belong to process PROC from the lwp list. */
1177
1178 static int
1179 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
1180 {
1181 struct thread_info *thread = (struct thread_info *) entry;
1182 struct lwp_info *lwp = get_thread_lwp (thread);
1183 struct process_info *process = proc;
1184
1185 if (pid_of (thread) == pid_of (process))
1186 delete_lwp (lwp);
1187
1188 return 0;
1189 }
1190
1191 static void
1192 linux_mourn (struct process_info *process)
1193 {
1194 struct process_info_private *priv;
1195
1196 #ifdef USE_THREAD_DB
1197 thread_db_mourn (process);
1198 #endif
1199
1200 find_inferior (&all_threads, delete_lwp_callback, process);
1201
1202 /* Freeing all private data. */
1203 priv = process->private;
1204 free (priv->arch_private);
1205 free (priv);
1206 process->private = NULL;
1207
1208 remove_process (process);
1209 }
1210
1211 static void
1212 linux_join (int pid)
1213 {
1214 int status, ret;
1215
1216 do {
1217 ret = my_waitpid (pid, &status, 0);
1218 if (WIFEXITED (status) || WIFSIGNALED (status))
1219 break;
1220 } while (ret != -1 || errno != ECHILD);
1221 }
1222
1223 /* Return nonzero if the given thread is still alive. */
1224 static int
1225 linux_thread_alive (ptid_t ptid)
1226 {
1227 struct lwp_info *lwp = find_lwp_pid (ptid);
1228
1229 /* We assume we always know if a thread exits. If a whole process
1230 exited but we still haven't been able to report it to GDB, we'll
1231 hold on to the last lwp of the dead process. */
1232 if (lwp != NULL)
1233 return !lwp->dead;
1234 else
1235 return 0;
1236 }
1237
1238 /* Return 1 if this lwp has an interesting status pending. */
1239 static int
1240 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
1241 {
1242 struct thread_info *thread = (struct thread_info *) entry;
1243 struct lwp_info *lwp = get_thread_lwp (thread);
1244 ptid_t ptid = * (ptid_t *) arg;
1245
1246 /* Check if we're only interested in events from a specific process
1247 or its lwps. */
1248 if (!ptid_equal (minus_one_ptid, ptid)
1249 && ptid_get_pid (ptid) != ptid_get_pid (thread->entry.id))
1250 return 0;
1251
1252 /* If we got a `vCont;t', but we haven't reported a stop yet, do
1253 report any status pending the LWP may have. */
1254 if (thread->last_resume_kind == resume_stop
1255 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
1256 return 0;
1257
1258 return lwp->status_pending_p;
1259 }
1260
1261 static int
1262 same_lwp (struct inferior_list_entry *entry, void *data)
1263 {
1264 ptid_t ptid = *(ptid_t *) data;
1265 int lwp;
1266
1267 if (ptid_get_lwp (ptid) != 0)
1268 lwp = ptid_get_lwp (ptid);
1269 else
1270 lwp = ptid_get_pid (ptid);
1271
1272 if (ptid_get_lwp (entry->id) == lwp)
1273 return 1;
1274
1275 return 0;
1276 }
1277
1278 struct lwp_info *
1279 find_lwp_pid (ptid_t ptid)
1280 {
1281 struct inferior_list_entry *thread
1282 = find_inferior (&all_threads, same_lwp, &ptid);
1283
1284 if (thread == NULL)
1285 return NULL;
1286
1287 return get_thread_lwp ((struct thread_info *) thread);
1288 }
1289
1290 /* Return the number of known LWPs in the tgid given by PID. */
1291
1292 static int
1293 num_lwps (int pid)
1294 {
1295 struct inferior_list_entry *inf, *tmp;
1296 int count = 0;
1297
1298 ALL_INFERIORS (&all_threads, inf, tmp)
1299 {
1300 if (ptid_get_pid (inf->id) == pid)
1301 count++;
1302 }
1303
1304 return count;
1305 }
1306
1307 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1308 their exits until all other threads in the group have exited. */
1309
1310 static void
1311 check_zombie_leaders (void)
1312 {
1313 struct process_info *proc, *tmp;
1314
1315 ALL_PROCESSES (proc, tmp)
1316 {
1317 pid_t leader_pid = pid_of (proc);
1318 struct lwp_info *leader_lp;
1319
1320 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1321
1322 if (debug_threads)
1323 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1324 "num_lwps=%d, zombie=%d\n",
1325 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1326 linux_proc_pid_is_zombie (leader_pid));
1327
1328 if (leader_lp != NULL
1329 /* Check if there are other threads in the group, as we may
1330 have raced with the inferior simply exiting. */
1331 && !last_thread_of_process_p (leader_pid)
1332 && linux_proc_pid_is_zombie (leader_pid))
1333 {
1334 /* A leader zombie can mean one of two things:
1335
1336 - It exited, and there's an exit status pending
1337 available, or only the leader exited (not the whole
1338 program). In the latter case, we can't waitpid the
1339 leader's exit status until all other threads are gone.
1340
1341 - There are 3 or more threads in the group, and a thread
1342 other than the leader exec'd. On an exec, the Linux
1343 kernel destroys all other threads (except the execing
1344 one) in the thread group, and resets the execing thread's
1345 tid to the tgid. No exit notification is sent for the
1346 execing thread -- from the ptracer's perspective, it
1347 appears as though the execing thread just vanishes.
1348 Until we reap all other threads except the leader and the
1349 execing thread, the leader will be zombie, and the
1350 execing thread will be in `D (disc sleep)'. As soon as
1351 all other threads are reaped, the execing thread changes
1352 it's tid to the tgid, and the previous (zombie) leader
1353 vanishes, giving place to the "new" leader. We could try
1354 distinguishing the exit and exec cases, by waiting once
1355 more, and seeing if something comes out, but it doesn't
1356 sound useful. The previous leader _does_ go away, and
1357 we'll re-add the new one once we see the exec event
1358 (which is just the same as what would happen if the
1359 previous leader did exit voluntarily before some other
1360 thread execs). */
1361
1362 if (debug_threads)
1363 fprintf (stderr,
1364 "CZL: Thread group leader %d zombie "
1365 "(it exited, or another thread execd).\n",
1366 leader_pid);
1367
1368 delete_lwp (leader_lp);
1369 }
1370 }
1371 }
1372
1373 /* Callback for `find_inferior'. Returns the first LWP that is not
1374 stopped. ARG is a PTID filter. */
1375
1376 static int
1377 not_stopped_callback (struct inferior_list_entry *entry, void *arg)
1378 {
1379 struct thread_info *thr = (struct thread_info *) entry;
1380 struct lwp_info *lwp;
1381 ptid_t filter = *(ptid_t *) arg;
1382
1383 if (!ptid_match (ptid_of (thr), filter))
1384 return 0;
1385
1386 lwp = get_thread_lwp (thr);
1387 if (!lwp->stopped)
1388 return 1;
1389
1390 return 0;
1391 }
1392
1393 /* This function should only be called if the LWP got a SIGTRAP.
1394
1395 Handle any tracepoint steps or hits. Return true if a tracepoint
1396 event was handled, 0 otherwise. */
1397
1398 static int
1399 handle_tracepoints (struct lwp_info *lwp)
1400 {
1401 struct thread_info *tinfo = get_lwp_thread (lwp);
1402 int tpoint_related_event = 0;
1403
1404 /* If this tracepoint hit causes a tracing stop, we'll immediately
1405 uninsert tracepoints. To do this, we temporarily pause all
1406 threads, unpatch away, and then unpause threads. We need to make
1407 sure the unpausing doesn't resume LWP too. */
1408 lwp->suspended++;
1409
1410 /* And we need to be sure that any all-threads-stopping doesn't try
1411 to move threads out of the jump pads, as it could deadlock the
1412 inferior (LWP could be in the jump pad, maybe even holding the
1413 lock.) */
1414
1415 /* Do any necessary step collect actions. */
1416 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1417
1418 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1419
1420 /* See if we just hit a tracepoint and do its main collect
1421 actions. */
1422 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1423
1424 lwp->suspended--;
1425
1426 gdb_assert (lwp->suspended == 0);
1427 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1428
1429 if (tpoint_related_event)
1430 {
1431 if (debug_threads)
1432 debug_printf ("got a tracepoint event\n");
1433 return 1;
1434 }
1435
1436 return 0;
1437 }
1438
1439 /* Convenience wrapper. Returns true if LWP is presently collecting a
1440 fast tracepoint. */
1441
1442 static int
1443 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1444 struct fast_tpoint_collect_status *status)
1445 {
1446 CORE_ADDR thread_area;
1447 struct thread_info *thread = get_lwp_thread (lwp);
1448
1449 if (the_low_target.get_thread_area == NULL)
1450 return 0;
1451
1452 /* Get the thread area address. This is used to recognize which
1453 thread is which when tracing with the in-process agent library.
1454 We don't read anything from the address, and treat it as opaque;
1455 it's the address itself that we assume is unique per-thread. */
1456 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
1457 return 0;
1458
1459 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1460 }
1461
1462 /* The reason we resume in the caller, is because we want to be able
1463 to pass lwp->status_pending as WSTAT, and we need to clear
1464 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1465 refuses to resume. */
1466
1467 static int
1468 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1469 {
1470 struct thread_info *saved_inferior;
1471
1472 saved_inferior = current_inferior;
1473 current_inferior = get_lwp_thread (lwp);
1474
1475 if ((wstat == NULL
1476 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1477 && supports_fast_tracepoints ()
1478 && agent_loaded_p ())
1479 {
1480 struct fast_tpoint_collect_status status;
1481 int r;
1482
1483 if (debug_threads)
1484 debug_printf ("Checking whether LWP %ld needs to move out of the "
1485 "jump pad.\n",
1486 lwpid_of (current_inferior));
1487
1488 r = linux_fast_tracepoint_collecting (lwp, &status);
1489
1490 if (wstat == NULL
1491 || (WSTOPSIG (*wstat) != SIGILL
1492 && WSTOPSIG (*wstat) != SIGFPE
1493 && WSTOPSIG (*wstat) != SIGSEGV
1494 && WSTOPSIG (*wstat) != SIGBUS))
1495 {
1496 lwp->collecting_fast_tracepoint = r;
1497
1498 if (r != 0)
1499 {
1500 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1501 {
1502 /* Haven't executed the original instruction yet.
1503 Set breakpoint there, and wait till it's hit,
1504 then single-step until exiting the jump pad. */
1505 lwp->exit_jump_pad_bkpt
1506 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1507 }
1508
1509 if (debug_threads)
1510 debug_printf ("Checking whether LWP %ld needs to move out of "
1511 "the jump pad...it does\n",
1512 lwpid_of (current_inferior));
1513 current_inferior = saved_inferior;
1514
1515 return 1;
1516 }
1517 }
1518 else
1519 {
1520 /* If we get a synchronous signal while collecting, *and*
1521 while executing the (relocated) original instruction,
1522 reset the PC to point at the tpoint address, before
1523 reporting to GDB. Otherwise, it's an IPA lib bug: just
1524 report the signal to GDB, and pray for the best. */
1525
1526 lwp->collecting_fast_tracepoint = 0;
1527
1528 if (r != 0
1529 && (status.adjusted_insn_addr <= lwp->stop_pc
1530 && lwp->stop_pc < status.adjusted_insn_addr_end))
1531 {
1532 siginfo_t info;
1533 struct regcache *regcache;
1534
1535 /* The si_addr on a few signals references the address
1536 of the faulting instruction. Adjust that as
1537 well. */
1538 if ((WSTOPSIG (*wstat) == SIGILL
1539 || WSTOPSIG (*wstat) == SIGFPE
1540 || WSTOPSIG (*wstat) == SIGBUS
1541 || WSTOPSIG (*wstat) == SIGSEGV)
1542 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior),
1543 (PTRACE_TYPE_ARG3) 0, &info) == 0
1544 /* Final check just to make sure we don't clobber
1545 the siginfo of non-kernel-sent signals. */
1546 && (uintptr_t) info.si_addr == lwp->stop_pc)
1547 {
1548 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1549 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_inferior),
1550 (PTRACE_TYPE_ARG3) 0, &info);
1551 }
1552
1553 regcache = get_thread_regcache (current_inferior, 1);
1554 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1555 lwp->stop_pc = status.tpoint_addr;
1556
1557 /* Cancel any fast tracepoint lock this thread was
1558 holding. */
1559 force_unlock_trace_buffer ();
1560 }
1561
1562 if (lwp->exit_jump_pad_bkpt != NULL)
1563 {
1564 if (debug_threads)
1565 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
1566 "stopping all threads momentarily.\n");
1567
1568 stop_all_lwps (1, lwp);
1569 cancel_breakpoints ();
1570
1571 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1572 lwp->exit_jump_pad_bkpt = NULL;
1573
1574 unstop_all_lwps (1, lwp);
1575
1576 gdb_assert (lwp->suspended >= 0);
1577 }
1578 }
1579 }
1580
1581 if (debug_threads)
1582 debug_printf ("Checking whether LWP %ld needs to move out of the "
1583 "jump pad...no\n",
1584 lwpid_of (current_inferior));
1585
1586 current_inferior = saved_inferior;
1587 return 0;
1588 }
1589
1590 /* Enqueue one signal in the "signals to report later when out of the
1591 jump pad" list. */
1592
1593 static void
1594 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1595 {
1596 struct pending_signals *p_sig;
1597 struct thread_info *thread = get_lwp_thread (lwp);
1598
1599 if (debug_threads)
1600 debug_printf ("Deferring signal %d for LWP %ld.\n",
1601 WSTOPSIG (*wstat), lwpid_of (thread));
1602
1603 if (debug_threads)
1604 {
1605 struct pending_signals *sig;
1606
1607 for (sig = lwp->pending_signals_to_report;
1608 sig != NULL;
1609 sig = sig->prev)
1610 debug_printf (" Already queued %d\n",
1611 sig->signal);
1612
1613 debug_printf (" (no more currently queued signals)\n");
1614 }
1615
1616 /* Don't enqueue non-RT signals if they are already in the deferred
1617 queue. (SIGSTOP being the easiest signal to see ending up here
1618 twice) */
1619 if (WSTOPSIG (*wstat) < __SIGRTMIN)
1620 {
1621 struct pending_signals *sig;
1622
1623 for (sig = lwp->pending_signals_to_report;
1624 sig != NULL;
1625 sig = sig->prev)
1626 {
1627 if (sig->signal == WSTOPSIG (*wstat))
1628 {
1629 if (debug_threads)
1630 debug_printf ("Not requeuing already queued non-RT signal %d"
1631 " for LWP %ld\n",
1632 sig->signal,
1633 lwpid_of (thread));
1634 return;
1635 }
1636 }
1637 }
1638
1639 p_sig = xmalloc (sizeof (*p_sig));
1640 p_sig->prev = lwp->pending_signals_to_report;
1641 p_sig->signal = WSTOPSIG (*wstat);
1642 memset (&p_sig->info, 0, sizeof (siginfo_t));
1643 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1644 &p_sig->info);
1645
1646 lwp->pending_signals_to_report = p_sig;
1647 }
1648
1649 /* Dequeue one signal from the "signals to report later when out of
1650 the jump pad" list. */
1651
1652 static int
1653 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1654 {
1655 struct thread_info *thread = get_lwp_thread (lwp);
1656
1657 if (lwp->pending_signals_to_report != NULL)
1658 {
1659 struct pending_signals **p_sig;
1660
1661 p_sig = &lwp->pending_signals_to_report;
1662 while ((*p_sig)->prev != NULL)
1663 p_sig = &(*p_sig)->prev;
1664
1665 *wstat = W_STOPCODE ((*p_sig)->signal);
1666 if ((*p_sig)->info.si_signo != 0)
1667 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
1668 &(*p_sig)->info);
1669 free (*p_sig);
1670 *p_sig = NULL;
1671
1672 if (debug_threads)
1673 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
1674 WSTOPSIG (*wstat), lwpid_of (thread));
1675
1676 if (debug_threads)
1677 {
1678 struct pending_signals *sig;
1679
1680 for (sig = lwp->pending_signals_to_report;
1681 sig != NULL;
1682 sig = sig->prev)
1683 debug_printf (" Still queued %d\n",
1684 sig->signal);
1685
1686 debug_printf (" (no more queued signals)\n");
1687 }
1688
1689 return 1;
1690 }
1691
1692 return 0;
1693 }
1694
1695 /* Arrange for a breakpoint to be hit again later. We don't keep the
1696 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1697 will handle the current event, eventually we will resume this LWP,
1698 and this breakpoint will trap again. */
1699
1700 static int
1701 cancel_breakpoint (struct lwp_info *lwp)
1702 {
1703 struct thread_info *saved_inferior;
1704
1705 /* There's nothing to do if we don't support breakpoints. */
1706 if (!supports_breakpoints ())
1707 return 0;
1708
1709 /* breakpoint_at reads from current inferior. */
1710 saved_inferior = current_inferior;
1711 current_inferior = get_lwp_thread (lwp);
1712
1713 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1714 {
1715 if (debug_threads)
1716 debug_printf ("CB: Push back breakpoint for %s\n",
1717 target_pid_to_str (ptid_of (current_inferior)));
1718
1719 /* Back up the PC if necessary. */
1720 if (the_low_target.decr_pc_after_break)
1721 {
1722 struct regcache *regcache
1723 = get_thread_regcache (current_inferior, 1);
1724 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1725 }
1726
1727 current_inferior = saved_inferior;
1728 return 1;
1729 }
1730 else
1731 {
1732 if (debug_threads)
1733 debug_printf ("CB: No breakpoint found at %s for [%s]\n",
1734 paddress (lwp->stop_pc),
1735 target_pid_to_str (ptid_of (current_inferior)));
1736 }
1737
1738 current_inferior = saved_inferior;
1739 return 0;
1740 }
1741
1742 /* Do low-level handling of the event, and check if we should go on
1743 and pass it to caller code. Return the affected lwp if we are, or
1744 NULL otherwise. */
1745
1746 static struct lwp_info *
1747 linux_low_filter_event (ptid_t filter_ptid, int lwpid, int wstat)
1748 {
1749 struct lwp_info *child;
1750 struct thread_info *thread;
1751
1752 child = find_lwp_pid (pid_to_ptid (lwpid));
1753
1754 /* If we didn't find a process, one of two things presumably happened:
1755 - A process we started and then detached from has exited. Ignore it.
1756 - A process we are controlling has forked and the new child's stop
1757 was reported to us by the kernel. Save its PID. */
1758 if (child == NULL && WIFSTOPPED (wstat))
1759 {
1760 add_to_pid_list (&stopped_pids, lwpid, wstat);
1761 return NULL;
1762 }
1763 else if (child == NULL)
1764 return NULL;
1765
1766 thread = get_lwp_thread (child);
1767
1768 child->stopped = 1;
1769
1770 child->last_status = wstat;
1771
1772 if (WIFSTOPPED (wstat))
1773 {
1774 struct process_info *proc;
1775
1776 /* Architecture-specific setup after inferior is running. This
1777 needs to happen after we have attached to the inferior and it
1778 is stopped for the first time, but before we access any
1779 inferior registers. */
1780 proc = find_process_pid (pid_of (thread));
1781 if (proc->private->new_inferior)
1782 {
1783 struct thread_info *saved_inferior;
1784
1785 saved_inferior = current_inferior;
1786 current_inferior = thread;
1787
1788 the_low_target.arch_setup ();
1789
1790 current_inferior = saved_inferior;
1791
1792 proc->private->new_inferior = 0;
1793 }
1794 }
1795
1796 /* Store the STOP_PC, with adjustment applied. This depends on the
1797 architecture being defined already (so that CHILD has a valid
1798 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1799 not). */
1800 if (WIFSTOPPED (wstat))
1801 {
1802 if (debug_threads
1803 && the_low_target.get_pc != NULL)
1804 {
1805 struct thread_info *saved_inferior;
1806 struct regcache *regcache;
1807 CORE_ADDR pc;
1808
1809 saved_inferior = current_inferior;
1810 current_inferior = thread;
1811 regcache = get_thread_regcache (current_inferior, 1);
1812 pc = (*the_low_target.get_pc) (regcache);
1813 debug_printf ("linux_low_filter_event: pc is 0x%lx\n", (long) pc);
1814 current_inferior = saved_inferior;
1815 }
1816
1817 child->stop_pc = get_stop_pc (child);
1818 }
1819
1820 /* Fetch the possibly triggered data watchpoint info and store it in
1821 CHILD.
1822
1823 On some archs, like x86, that use debug registers to set
1824 watchpoints, it's possible that the way to know which watched
1825 address trapped, is to check the register that is used to select
1826 which address to watch. Problem is, between setting the
1827 watchpoint and reading back which data address trapped, the user
1828 may change the set of watchpoints, and, as a consequence, GDB
1829 changes the debug registers in the inferior. To avoid reading
1830 back a stale stopped-data-address when that happens, we cache in
1831 LP the fact that a watchpoint trapped, and the corresponding data
1832 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1833 changes the debug registers meanwhile, we have the cached data we
1834 can rely on. */
1835
1836 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP)
1837 {
1838 if (the_low_target.stopped_by_watchpoint == NULL)
1839 {
1840 child->stopped_by_watchpoint = 0;
1841 }
1842 else
1843 {
1844 struct thread_info *saved_inferior;
1845
1846 saved_inferior = current_inferior;
1847 current_inferior = thread;
1848
1849 child->stopped_by_watchpoint
1850 = the_low_target.stopped_by_watchpoint ();
1851
1852 if (child->stopped_by_watchpoint)
1853 {
1854 if (the_low_target.stopped_data_address != NULL)
1855 child->stopped_data_address
1856 = the_low_target.stopped_data_address ();
1857 else
1858 child->stopped_data_address = 0;
1859 }
1860
1861 current_inferior = saved_inferior;
1862 }
1863 }
1864
1865 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
1866 {
1867 linux_enable_event_reporting (lwpid);
1868 child->must_set_ptrace_flags = 0;
1869 }
1870
1871 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
1872 && wstat >> 16 != 0)
1873 {
1874 handle_extended_wait (child, wstat);
1875 return NULL;
1876 }
1877
1878 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
1879 && child->stop_expected)
1880 {
1881 if (debug_threads)
1882 debug_printf ("Expected stop.\n");
1883 child->stop_expected = 0;
1884
1885 if (thread->last_resume_kind == resume_stop)
1886 {
1887 /* We want to report the stop to the core. Treat the
1888 SIGSTOP as a normal event. */
1889 }
1890 else if (stopping_threads != NOT_STOPPING_THREADS)
1891 {
1892 /* Stopping threads. We don't want this SIGSTOP to end up
1893 pending in the FILTER_PTID handling below. */
1894 return NULL;
1895 }
1896 else
1897 {
1898 /* Filter out the event. */
1899 linux_resume_one_lwp (child, child->stepping, 0, NULL);
1900 return NULL;
1901 }
1902 }
1903
1904 /* Check if the thread has exited. */
1905 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat))
1906 && num_lwps (pid_of (thread)) > 1)
1907 {
1908 if (debug_threads)
1909 debug_printf ("LLW: %d exited.\n", lwpid);
1910
1911 /* If there is at least one more LWP, then the exit signal
1912 was not the end of the debugged application and should be
1913 ignored. */
1914 delete_lwp (child);
1915 return NULL;
1916 }
1917
1918 if (!ptid_match (ptid_of (thread), filter_ptid))
1919 {
1920 if (debug_threads)
1921 debug_printf ("LWP %d got an event %06x, leaving pending.\n",
1922 lwpid, wstat);
1923
1924 if (WIFSTOPPED (wstat))
1925 {
1926 child->status_pending_p = 1;
1927 child->status_pending = wstat;
1928
1929 if (WSTOPSIG (wstat) != SIGSTOP)
1930 {
1931 /* Cancel breakpoint hits. The breakpoint may be
1932 removed before we fetch events from this process to
1933 report to the core. It is best not to assume the
1934 moribund breakpoints heuristic always handles these
1935 cases --- it could be too many events go through to
1936 the core before this one is handled. All-stop always
1937 cancels breakpoint hits in all threads. */
1938 if (non_stop
1939 && WSTOPSIG (wstat) == SIGTRAP
1940 && cancel_breakpoint (child))
1941 {
1942 /* Throw away the SIGTRAP. */
1943 child->status_pending_p = 0;
1944
1945 if (debug_threads)
1946 debug_printf ("LLW: LWP %d hit a breakpoint while"
1947 " waiting for another process;"
1948 " cancelled it\n", lwpid);
1949 }
1950 }
1951 }
1952 else if (WIFEXITED (wstat) || WIFSIGNALED (wstat))
1953 {
1954 if (debug_threads)
1955 debug_printf ("LLWE: process %d exited while fetching "
1956 "event from another LWP\n", lwpid);
1957
1958 /* This was the last lwp in the process. Since events are
1959 serialized to GDB core, and we can't report this one
1960 right now, but GDB core and the other target layers will
1961 want to be notified about the exit code/signal, leave the
1962 status pending for the next time we're able to report
1963 it. */
1964 mark_lwp_dead (child, wstat);
1965 }
1966
1967 return NULL;
1968 }
1969
1970 return child;
1971 }
1972
1973 /* When the event-loop is doing a step-over, this points at the thread
1974 being stepped. */
1975 ptid_t step_over_bkpt;
1976
1977 /* Wait for an event from child(ren) WAIT_PTID, and return any that
1978 match FILTER_PTID (leaving others pending). The PTIDs can be:
1979 minus_one_ptid, to specify any child; a pid PTID, specifying all
1980 lwps of a thread group; or a PTID representing a single lwp. Store
1981 the stop status through the status pointer WSTAT. OPTIONS is
1982 passed to the waitpid call. Return 0 if no event was found and
1983 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
1984 was found. Return the PID of the stopped child otherwise. */
1985
1986 static int
1987 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
1988 int *wstatp, int options)
1989 {
1990 struct thread_info *event_thread;
1991 struct lwp_info *event_child, *requested_child;
1992 sigset_t block_mask, prev_mask;
1993
1994 retry:
1995 /* N.B. event_thread points to the thread_info struct that contains
1996 event_child. Keep them in sync. */
1997 event_thread = NULL;
1998 event_child = NULL;
1999 requested_child = NULL;
2000
2001 /* Check for a lwp with a pending status. */
2002
2003 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2004 {
2005 event_thread = (struct thread_info *)
2006 find_inferior (&all_threads, status_pending_p_callback, &filter_ptid);
2007 if (event_thread != NULL)
2008 event_child = get_thread_lwp (event_thread);
2009 if (debug_threads && event_thread)
2010 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2011 }
2012 else if (!ptid_equal (filter_ptid, null_ptid))
2013 {
2014 requested_child = find_lwp_pid (filter_ptid);
2015
2016 if (stopping_threads == NOT_STOPPING_THREADS
2017 && requested_child->status_pending_p
2018 && requested_child->collecting_fast_tracepoint)
2019 {
2020 enqueue_one_deferred_signal (requested_child,
2021 &requested_child->status_pending);
2022 requested_child->status_pending_p = 0;
2023 requested_child->status_pending = 0;
2024 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2025 }
2026
2027 if (requested_child->suspended
2028 && requested_child->status_pending_p)
2029 {
2030 internal_error (__FILE__, __LINE__,
2031 "requesting an event out of a"
2032 " suspended child?");
2033 }
2034
2035 if (requested_child->status_pending_p)
2036 {
2037 event_child = requested_child;
2038 event_thread = get_lwp_thread (event_child);
2039 }
2040 }
2041
2042 if (event_child != NULL)
2043 {
2044 if (debug_threads)
2045 debug_printf ("Got an event from pending child %ld (%04x)\n",
2046 lwpid_of (event_thread), event_child->status_pending);
2047 *wstatp = event_child->status_pending;
2048 event_child->status_pending_p = 0;
2049 event_child->status_pending = 0;
2050 current_inferior = event_thread;
2051 return lwpid_of (event_thread);
2052 }
2053
2054 /* But if we don't find a pending event, we'll have to wait.
2055
2056 We only enter this loop if no process has a pending wait status.
2057 Thus any action taken in response to a wait status inside this
2058 loop is responding as soon as we detect the status, not after any
2059 pending events. */
2060
2061 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2062 all signals while here. */
2063 sigfillset (&block_mask);
2064 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2065
2066 while (event_child == NULL)
2067 {
2068 pid_t ret = 0;
2069
2070 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2071 quirks:
2072
2073 - If the thread group leader exits while other threads in the
2074 thread group still exist, waitpid(TGID, ...) hangs. That
2075 waitpid won't return an exit status until the other threads
2076 in the group are reaped.
2077
2078 - When a non-leader thread execs, that thread just vanishes
2079 without reporting an exit (so we'd hang if we waited for it
2080 explicitly in that case). The exec event is reported to
2081 the TGID pid (although we don't currently enable exec
2082 events). */
2083 errno = 0;
2084 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2085
2086 if (debug_threads)
2087 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2088 ret, errno ? strerror (errno) : "ERRNO-OK");
2089
2090 if (ret > 0)
2091 {
2092 if (debug_threads)
2093 {
2094 debug_printf ("LLW: waitpid %ld received %s\n",
2095 (long) ret, status_to_str (*wstatp));
2096 }
2097
2098 event_child = linux_low_filter_event (filter_ptid,
2099 ret, *wstatp);
2100 if (event_child != NULL)
2101 {
2102 /* We got an event to report to the core. */
2103 event_thread = get_lwp_thread (event_child);
2104 break;
2105 }
2106
2107 /* Retry until nothing comes out of waitpid. A single
2108 SIGCHLD can indicate more than one child stopped. */
2109 continue;
2110 }
2111
2112 /* Check for zombie thread group leaders. Those can't be reaped
2113 until all other threads in the thread group are. */
2114 check_zombie_leaders ();
2115
2116 /* If there are no resumed children left in the set of LWPs we
2117 want to wait for, bail. We can't just block in
2118 waitpid/sigsuspend, because lwps might have been left stopped
2119 in trace-stop state, and we'd be stuck forever waiting for
2120 their status to change (which would only happen if we resumed
2121 them). Even if WNOHANG is set, this return code is preferred
2122 over 0 (below), as it is more detailed. */
2123 if ((find_inferior (&all_threads,
2124 not_stopped_callback,
2125 &wait_ptid) == NULL))
2126 {
2127 if (debug_threads)
2128 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2129 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2130 return -1;
2131 }
2132
2133 /* No interesting event to report to the caller. */
2134 if ((options & WNOHANG))
2135 {
2136 if (debug_threads)
2137 debug_printf ("WNOHANG set, no event found\n");
2138
2139 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2140 return 0;
2141 }
2142
2143 /* Block until we get an event reported with SIGCHLD. */
2144 if (debug_threads)
2145 debug_printf ("sigsuspend'ing\n");
2146
2147 sigsuspend (&prev_mask);
2148 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2149 goto retry;
2150 }
2151
2152 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2153
2154 current_inferior = event_thread;
2155
2156 /* Check for thread exit. */
2157 if (! WIFSTOPPED (*wstatp))
2158 {
2159 gdb_assert (last_thread_of_process_p (pid_of (event_thread)));
2160
2161 if (debug_threads)
2162 debug_printf ("LWP %d is the last lwp of process. "
2163 "Process %ld exiting.\n",
2164 pid_of (event_thread), lwpid_of (event_thread));
2165 return lwpid_of (event_thread);
2166 }
2167
2168 return lwpid_of (event_thread);
2169 }
2170
2171 /* Wait for an event from child(ren) PTID. PTIDs can be:
2172 minus_one_ptid, to specify any child; a pid PTID, specifying all
2173 lwps of a thread group; or a PTID representing a single lwp. Store
2174 the stop status through the status pointer WSTAT. OPTIONS is
2175 passed to the waitpid call. Return 0 if no event was found and
2176 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2177 was found. Return the PID of the stopped child otherwise. */
2178
2179 static int
2180 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2181 {
2182 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2183 }
2184
2185 /* Count the LWP's that have had events. */
2186
2187 static int
2188 count_events_callback (struct inferior_list_entry *entry, void *data)
2189 {
2190 struct thread_info *thread = (struct thread_info *) entry;
2191 struct lwp_info *lp = get_thread_lwp (thread);
2192 int *count = data;
2193
2194 gdb_assert (count != NULL);
2195
2196 /* Count only resumed LWPs that have a SIGTRAP event pending that
2197 should be reported to GDB. */
2198 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2199 && thread->last_resume_kind != resume_stop
2200 && lp->status_pending_p
2201 && WIFSTOPPED (lp->status_pending)
2202 && WSTOPSIG (lp->status_pending) == SIGTRAP
2203 && !breakpoint_inserted_here (lp->stop_pc))
2204 (*count)++;
2205
2206 return 0;
2207 }
2208
2209 /* Select the LWP (if any) that is currently being single-stepped. */
2210
2211 static int
2212 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
2213 {
2214 struct thread_info *thread = (struct thread_info *) entry;
2215 struct lwp_info *lp = get_thread_lwp (thread);
2216
2217 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2218 && thread->last_resume_kind == resume_step
2219 && lp->status_pending_p)
2220 return 1;
2221 else
2222 return 0;
2223 }
2224
2225 /* Select the Nth LWP that has had a SIGTRAP event that should be
2226 reported to GDB. */
2227
2228 static int
2229 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
2230 {
2231 struct thread_info *thread = (struct thread_info *) entry;
2232 struct lwp_info *lp = get_thread_lwp (thread);
2233 int *selector = data;
2234
2235 gdb_assert (selector != NULL);
2236
2237 /* Select only resumed LWPs that have a SIGTRAP event pending. */
2238 if (thread->last_resume_kind != resume_stop
2239 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2240 && lp->status_pending_p
2241 && WIFSTOPPED (lp->status_pending)
2242 && WSTOPSIG (lp->status_pending) == SIGTRAP
2243 && !breakpoint_inserted_here (lp->stop_pc))
2244 if ((*selector)-- == 0)
2245 return 1;
2246
2247 return 0;
2248 }
2249
2250 static int
2251 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
2252 {
2253 struct thread_info *thread = (struct thread_info *) entry;
2254 struct lwp_info *lp = get_thread_lwp (thread);
2255 struct lwp_info *event_lp = data;
2256
2257 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
2258 if (lp == event_lp)
2259 return 0;
2260
2261 /* If a LWP other than the LWP that we're reporting an event for has
2262 hit a GDB breakpoint (as opposed to some random trap signal),
2263 then just arrange for it to hit it again later. We don't keep
2264 the SIGTRAP status and don't forward the SIGTRAP signal to the
2265 LWP. We will handle the current event, eventually we will resume
2266 all LWPs, and this one will get its breakpoint trap again.
2267
2268 If we do not do this, then we run the risk that the user will
2269 delete or disable the breakpoint, but the LWP will have already
2270 tripped on it. */
2271
2272 if (thread->last_resume_kind != resume_stop
2273 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
2274 && lp->status_pending_p
2275 && WIFSTOPPED (lp->status_pending)
2276 && WSTOPSIG (lp->status_pending) == SIGTRAP
2277 && !lp->stepping
2278 && !lp->stopped_by_watchpoint
2279 && cancel_breakpoint (lp))
2280 /* Throw away the SIGTRAP. */
2281 lp->status_pending_p = 0;
2282
2283 return 0;
2284 }
2285
2286 static void
2287 linux_cancel_breakpoints (void)
2288 {
2289 find_inferior (&all_threads, cancel_breakpoints_callback, NULL);
2290 }
2291
2292 /* Select one LWP out of those that have events pending. */
2293
2294 static void
2295 select_event_lwp (struct lwp_info **orig_lp)
2296 {
2297 int num_events = 0;
2298 int random_selector;
2299 struct thread_info *event_thread;
2300
2301 /* Give preference to any LWP that is being single-stepped. */
2302 event_thread
2303 = (struct thread_info *) find_inferior (&all_threads,
2304 select_singlestep_lwp_callback,
2305 NULL);
2306 if (event_thread != NULL)
2307 {
2308 if (debug_threads)
2309 debug_printf ("SEL: Select single-step %s\n",
2310 target_pid_to_str (ptid_of (event_thread)));
2311 }
2312 else
2313 {
2314 /* No single-stepping LWP. Select one at random, out of those
2315 which have had SIGTRAP events. */
2316
2317 /* First see how many SIGTRAP events we have. */
2318 find_inferior (&all_threads, count_events_callback, &num_events);
2319
2320 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
2321 random_selector = (int)
2322 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2323
2324 if (debug_threads && num_events > 1)
2325 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2326 num_events, random_selector);
2327
2328 event_thread
2329 = (struct thread_info *) find_inferior (&all_threads,
2330 select_event_lwp_callback,
2331 &random_selector);
2332 }
2333
2334 if (event_thread != NULL)
2335 {
2336 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2337
2338 /* Switch the event LWP. */
2339 *orig_lp = event_lp;
2340 }
2341 }
2342
2343 /* Decrement the suspend count of an LWP. */
2344
2345 static int
2346 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
2347 {
2348 struct thread_info *thread = (struct thread_info *) entry;
2349 struct lwp_info *lwp = get_thread_lwp (thread);
2350
2351 /* Ignore EXCEPT. */
2352 if (lwp == except)
2353 return 0;
2354
2355 lwp->suspended--;
2356
2357 gdb_assert (lwp->suspended >= 0);
2358 return 0;
2359 }
2360
2361 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2362 NULL. */
2363
2364 static void
2365 unsuspend_all_lwps (struct lwp_info *except)
2366 {
2367 find_inferior (&all_threads, unsuspend_one_lwp, except);
2368 }
2369
2370 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
2371 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
2372 void *data);
2373 static int lwp_running (struct inferior_list_entry *entry, void *data);
2374 static ptid_t linux_wait_1 (ptid_t ptid,
2375 struct target_waitstatus *ourstatus,
2376 int target_options);
2377
2378 /* Stabilize threads (move out of jump pads).
2379
2380 If a thread is midway collecting a fast tracepoint, we need to
2381 finish the collection and move it out of the jump pad before
2382 reporting the signal.
2383
2384 This avoids recursion while collecting (when a signal arrives
2385 midway, and the signal handler itself collects), which would trash
2386 the trace buffer. In case the user set a breakpoint in a signal
2387 handler, this avoids the backtrace showing the jump pad, etc..
2388 Most importantly, there are certain things we can't do safely if
2389 threads are stopped in a jump pad (or in its callee's). For
2390 example:
2391
2392 - starting a new trace run. A thread still collecting the
2393 previous run, could trash the trace buffer when resumed. The trace
2394 buffer control structures would have been reset but the thread had
2395 no way to tell. The thread could even midway memcpy'ing to the
2396 buffer, which would mean that when resumed, it would clobber the
2397 trace buffer that had been set for a new run.
2398
2399 - we can't rewrite/reuse the jump pads for new tracepoints
2400 safely. Say you do tstart while a thread is stopped midway while
2401 collecting. When the thread is later resumed, it finishes the
2402 collection, and returns to the jump pad, to execute the original
2403 instruction that was under the tracepoint jump at the time the
2404 older run had been started. If the jump pad had been rewritten
2405 since for something else in the new run, the thread would now
2406 execute the wrong / random instructions. */
2407
2408 static void
2409 linux_stabilize_threads (void)
2410 {
2411 struct thread_info *save_inferior;
2412 struct thread_info *thread_stuck;
2413
2414 thread_stuck
2415 = (struct thread_info *) find_inferior (&all_threads,
2416 stuck_in_jump_pad_callback,
2417 NULL);
2418 if (thread_stuck != NULL)
2419 {
2420 if (debug_threads)
2421 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2422 lwpid_of (thread_stuck));
2423 return;
2424 }
2425
2426 save_inferior = current_inferior;
2427
2428 stabilizing_threads = 1;
2429
2430 /* Kick 'em all. */
2431 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
2432
2433 /* Loop until all are stopped out of the jump pads. */
2434 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
2435 {
2436 struct target_waitstatus ourstatus;
2437 struct lwp_info *lwp;
2438 int wstat;
2439
2440 /* Note that we go through the full wait even loop. While
2441 moving threads out of jump pad, we need to be able to step
2442 over internal breakpoints and such. */
2443 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
2444
2445 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2446 {
2447 lwp = get_thread_lwp (current_inferior);
2448
2449 /* Lock it. */
2450 lwp->suspended++;
2451
2452 if (ourstatus.value.sig != GDB_SIGNAL_0
2453 || current_inferior->last_resume_kind == resume_stop)
2454 {
2455 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2456 enqueue_one_deferred_signal (lwp, &wstat);
2457 }
2458 }
2459 }
2460
2461 find_inferior (&all_threads, unsuspend_one_lwp, NULL);
2462
2463 stabilizing_threads = 0;
2464
2465 current_inferior = save_inferior;
2466
2467 if (debug_threads)
2468 {
2469 thread_stuck
2470 = (struct thread_info *) find_inferior (&all_threads,
2471 stuck_in_jump_pad_callback,
2472 NULL);
2473 if (thread_stuck != NULL)
2474 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2475 lwpid_of (thread_stuck));
2476 }
2477 }
2478
2479 /* Wait for process, returns status. */
2480
2481 static ptid_t
2482 linux_wait_1 (ptid_t ptid,
2483 struct target_waitstatus *ourstatus, int target_options)
2484 {
2485 int w;
2486 struct lwp_info *event_child;
2487 int options;
2488 int pid;
2489 int step_over_finished;
2490 int bp_explains_trap;
2491 int maybe_internal_trap;
2492 int report_to_gdb;
2493 int trace_event;
2494 int in_step_range;
2495
2496 if (debug_threads)
2497 {
2498 debug_enter ();
2499 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
2500 }
2501
2502 /* Translate generic target options into linux options. */
2503 options = __WALL;
2504 if (target_options & TARGET_WNOHANG)
2505 options |= WNOHANG;
2506
2507 retry:
2508 bp_explains_trap = 0;
2509 trace_event = 0;
2510 in_step_range = 0;
2511 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2512
2513 /* If we were only supposed to resume one thread, only wait for
2514 that thread - if it's still alive. If it died, however - which
2515 can happen if we're coming from the thread death case below -
2516 then we need to make sure we restart the other threads. We could
2517 pick a thread at random or restart all; restarting all is less
2518 arbitrary. */
2519 if (!non_stop
2520 && !ptid_equal (cont_thread, null_ptid)
2521 && !ptid_equal (cont_thread, minus_one_ptid))
2522 {
2523 struct thread_info *thread;
2524
2525 thread = (struct thread_info *) find_inferior_id (&all_threads,
2526 cont_thread);
2527
2528 /* No stepping, no signal - unless one is pending already, of course. */
2529 if (thread == NULL)
2530 {
2531 struct thread_resume resume_info;
2532 resume_info.thread = minus_one_ptid;
2533 resume_info.kind = resume_continue;
2534 resume_info.sig = 0;
2535 linux_resume (&resume_info, 1);
2536 }
2537 else
2538 ptid = cont_thread;
2539 }
2540
2541 if (ptid_equal (step_over_bkpt, null_ptid))
2542 pid = linux_wait_for_event (ptid, &w, options);
2543 else
2544 {
2545 if (debug_threads)
2546 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
2547 target_pid_to_str (step_over_bkpt));
2548 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2549 }
2550
2551 if (pid == 0)
2552 {
2553 gdb_assert (target_options & TARGET_WNOHANG);
2554
2555 if (debug_threads)
2556 {
2557 debug_printf ("linux_wait_1 ret = null_ptid, "
2558 "TARGET_WAITKIND_IGNORE\n");
2559 debug_exit ();
2560 }
2561
2562 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2563 return null_ptid;
2564 }
2565 else if (pid == -1)
2566 {
2567 if (debug_threads)
2568 {
2569 debug_printf ("linux_wait_1 ret = null_ptid, "
2570 "TARGET_WAITKIND_NO_RESUMED\n");
2571 debug_exit ();
2572 }
2573
2574 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
2575 return null_ptid;
2576 }
2577
2578 event_child = get_thread_lwp (current_inferior);
2579
2580 /* linux_wait_for_event only returns an exit status for the last
2581 child of a process. Report it. */
2582 if (WIFEXITED (w) || WIFSIGNALED (w))
2583 {
2584 if (WIFEXITED (w))
2585 {
2586 ourstatus->kind = TARGET_WAITKIND_EXITED;
2587 ourstatus->value.integer = WEXITSTATUS (w);
2588
2589 if (debug_threads)
2590 {
2591 debug_printf ("linux_wait_1 ret = %s, exited with "
2592 "retcode %d\n",
2593 target_pid_to_str (ptid_of (current_inferior)),
2594 WEXITSTATUS (w));
2595 debug_exit ();
2596 }
2597 }
2598 else
2599 {
2600 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2601 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
2602
2603 if (debug_threads)
2604 {
2605 debug_printf ("linux_wait_1 ret = %s, terminated with "
2606 "signal %d\n",
2607 target_pid_to_str (ptid_of (current_inferior)),
2608 WTERMSIG (w));
2609 debug_exit ();
2610 }
2611 }
2612
2613 return ptid_of (current_inferior);
2614 }
2615
2616 /* If this event was not handled before, and is not a SIGTRAP, we
2617 report it. SIGILL and SIGSEGV are also treated as traps in case
2618 a breakpoint is inserted at the current PC. If this target does
2619 not support internal breakpoints at all, we also report the
2620 SIGTRAP without further processing; it's of no concern to us. */
2621 maybe_internal_trap
2622 = (supports_breakpoints ()
2623 && (WSTOPSIG (w) == SIGTRAP
2624 || ((WSTOPSIG (w) == SIGILL
2625 || WSTOPSIG (w) == SIGSEGV)
2626 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2627
2628 if (maybe_internal_trap)
2629 {
2630 /* Handle anything that requires bookkeeping before deciding to
2631 report the event or continue waiting. */
2632
2633 /* First check if we can explain the SIGTRAP with an internal
2634 breakpoint, or if we should possibly report the event to GDB.
2635 Do this before anything that may remove or insert a
2636 breakpoint. */
2637 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2638
2639 /* We have a SIGTRAP, possibly a step-over dance has just
2640 finished. If so, tweak the state machine accordingly,
2641 reinsert breakpoints and delete any reinsert (software
2642 single-step) breakpoints. */
2643 step_over_finished = finish_step_over (event_child);
2644
2645 /* Now invoke the callbacks of any internal breakpoints there. */
2646 check_breakpoints (event_child->stop_pc);
2647
2648 /* Handle tracepoint data collecting. This may overflow the
2649 trace buffer, and cause a tracing stop, removing
2650 breakpoints. */
2651 trace_event = handle_tracepoints (event_child);
2652
2653 if (bp_explains_trap)
2654 {
2655 /* If we stepped or ran into an internal breakpoint, we've
2656 already handled it. So next time we resume (from this
2657 PC), we should step over it. */
2658 if (debug_threads)
2659 debug_printf ("Hit a gdbserver breakpoint.\n");
2660
2661 if (breakpoint_here (event_child->stop_pc))
2662 event_child->need_step_over = 1;
2663 }
2664 }
2665 else
2666 {
2667 /* We have some other signal, possibly a step-over dance was in
2668 progress, and it should be cancelled too. */
2669 step_over_finished = finish_step_over (event_child);
2670 }
2671
2672 /* We have all the data we need. Either report the event to GDB, or
2673 resume threads and keep waiting for more. */
2674
2675 /* If we're collecting a fast tracepoint, finish the collection and
2676 move out of the jump pad before delivering a signal. See
2677 linux_stabilize_threads. */
2678
2679 if (WIFSTOPPED (w)
2680 && WSTOPSIG (w) != SIGTRAP
2681 && supports_fast_tracepoints ()
2682 && agent_loaded_p ())
2683 {
2684 if (debug_threads)
2685 debug_printf ("Got signal %d for LWP %ld. Check if we need "
2686 "to defer or adjust it.\n",
2687 WSTOPSIG (w), lwpid_of (current_inferior));
2688
2689 /* Allow debugging the jump pad itself. */
2690 if (current_inferior->last_resume_kind != resume_step
2691 && maybe_move_out_of_jump_pad (event_child, &w))
2692 {
2693 enqueue_one_deferred_signal (event_child, &w);
2694
2695 if (debug_threads)
2696 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
2697 WSTOPSIG (w), lwpid_of (current_inferior));
2698
2699 linux_resume_one_lwp (event_child, 0, 0, NULL);
2700 goto retry;
2701 }
2702 }
2703
2704 if (event_child->collecting_fast_tracepoint)
2705 {
2706 if (debug_threads)
2707 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
2708 "Check if we're already there.\n",
2709 lwpid_of (current_inferior),
2710 event_child->collecting_fast_tracepoint);
2711
2712 trace_event = 1;
2713
2714 event_child->collecting_fast_tracepoint
2715 = linux_fast_tracepoint_collecting (event_child, NULL);
2716
2717 if (event_child->collecting_fast_tracepoint != 1)
2718 {
2719 /* No longer need this breakpoint. */
2720 if (event_child->exit_jump_pad_bkpt != NULL)
2721 {
2722 if (debug_threads)
2723 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
2724 "stopping all threads momentarily.\n");
2725
2726 /* Other running threads could hit this breakpoint.
2727 We don't handle moribund locations like GDB does,
2728 instead we always pause all threads when removing
2729 breakpoints, so that any step-over or
2730 decr_pc_after_break adjustment is always taken
2731 care of while the breakpoint is still
2732 inserted. */
2733 stop_all_lwps (1, event_child);
2734 cancel_breakpoints ();
2735
2736 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2737 event_child->exit_jump_pad_bkpt = NULL;
2738
2739 unstop_all_lwps (1, event_child);
2740
2741 gdb_assert (event_child->suspended >= 0);
2742 }
2743 }
2744
2745 if (event_child->collecting_fast_tracepoint == 0)
2746 {
2747 if (debug_threads)
2748 debug_printf ("fast tracepoint finished "
2749 "collecting successfully.\n");
2750
2751 /* We may have a deferred signal to report. */
2752 if (dequeue_one_deferred_signal (event_child, &w))
2753 {
2754 if (debug_threads)
2755 debug_printf ("dequeued one signal.\n");
2756 }
2757 else
2758 {
2759 if (debug_threads)
2760 debug_printf ("no deferred signals.\n");
2761
2762 if (stabilizing_threads)
2763 {
2764 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2765 ourstatus->value.sig = GDB_SIGNAL_0;
2766
2767 if (debug_threads)
2768 {
2769 debug_printf ("linux_wait_1 ret = %s, stopped "
2770 "while stabilizing threads\n",
2771 target_pid_to_str (ptid_of (current_inferior)));
2772 debug_exit ();
2773 }
2774
2775 return ptid_of (current_inferior);
2776 }
2777 }
2778 }
2779 }
2780
2781 /* Check whether GDB would be interested in this event. */
2782
2783 /* If GDB is not interested in this signal, don't stop other
2784 threads, and don't report it to GDB. Just resume the inferior
2785 right away. We do this for threading-related signals as well as
2786 any that GDB specifically requested we ignore. But never ignore
2787 SIGSTOP if we sent it ourselves, and do not ignore signals when
2788 stepping - they may require special handling to skip the signal
2789 handler. */
2790 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2791 thread library? */
2792 if (WIFSTOPPED (w)
2793 && current_inferior->last_resume_kind != resume_step
2794 && (
2795 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
2796 (current_process ()->private->thread_db != NULL
2797 && (WSTOPSIG (w) == __SIGRTMIN
2798 || WSTOPSIG (w) == __SIGRTMIN + 1))
2799 ||
2800 #endif
2801 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
2802 && !(WSTOPSIG (w) == SIGSTOP
2803 && current_inferior->last_resume_kind == resume_stop))))
2804 {
2805 siginfo_t info, *info_p;
2806
2807 if (debug_threads)
2808 debug_printf ("Ignored signal %d for LWP %ld.\n",
2809 WSTOPSIG (w), lwpid_of (current_inferior));
2810
2811 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_inferior),
2812 (PTRACE_TYPE_ARG3) 0, &info) == 0)
2813 info_p = &info;
2814 else
2815 info_p = NULL;
2816 linux_resume_one_lwp (event_child, event_child->stepping,
2817 WSTOPSIG (w), info_p);
2818 goto retry;
2819 }
2820
2821 /* Note that all addresses are always "out of the step range" when
2822 there's no range to begin with. */
2823 in_step_range = lwp_in_step_range (event_child);
2824
2825 /* If GDB wanted this thread to single step, and the thread is out
2826 of the step range, we always want to report the SIGTRAP, and let
2827 GDB handle it. Watchpoints should always be reported. So should
2828 signals we can't explain. A SIGTRAP we can't explain could be a
2829 GDB breakpoint --- we may or not support Z0 breakpoints. If we
2830 do, we're be able to handle GDB breakpoints on top of internal
2831 breakpoints, by handling the internal breakpoint and still
2832 reporting the event to GDB. If we don't, we're out of luck, GDB
2833 won't see the breakpoint hit. */
2834 report_to_gdb = (!maybe_internal_trap
2835 || (current_inferior->last_resume_kind == resume_step
2836 && !in_step_range)
2837 || event_child->stopped_by_watchpoint
2838 || (!step_over_finished && !in_step_range
2839 && !bp_explains_trap && !trace_event)
2840 || (gdb_breakpoint_here (event_child->stop_pc)
2841 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
2842 && gdb_no_commands_at_breakpoint (event_child->stop_pc)));
2843
2844 run_breakpoint_commands (event_child->stop_pc);
2845
2846 /* We found no reason GDB would want us to stop. We either hit one
2847 of our own breakpoints, or finished an internal step GDB
2848 shouldn't know about. */
2849 if (!report_to_gdb)
2850 {
2851 if (debug_threads)
2852 {
2853 if (bp_explains_trap)
2854 debug_printf ("Hit a gdbserver breakpoint.\n");
2855 if (step_over_finished)
2856 debug_printf ("Step-over finished.\n");
2857 if (trace_event)
2858 debug_printf ("Tracepoint event.\n");
2859 if (lwp_in_step_range (event_child))
2860 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
2861 paddress (event_child->stop_pc),
2862 paddress (event_child->step_range_start),
2863 paddress (event_child->step_range_end));
2864 }
2865
2866 /* We're not reporting this breakpoint to GDB, so apply the
2867 decr_pc_after_break adjustment to the inferior's regcache
2868 ourselves. */
2869
2870 if (the_low_target.set_pc != NULL)
2871 {
2872 struct regcache *regcache
2873 = get_thread_regcache (current_inferior, 1);
2874 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2875 }
2876
2877 /* We may have finished stepping over a breakpoint. If so,
2878 we've stopped and suspended all LWPs momentarily except the
2879 stepping one. This is where we resume them all again. We're
2880 going to keep waiting, so use proceed, which handles stepping
2881 over the next breakpoint. */
2882 if (debug_threads)
2883 debug_printf ("proceeding all threads.\n");
2884
2885 if (step_over_finished)
2886 unsuspend_all_lwps (event_child);
2887
2888 proceed_all_lwps ();
2889 goto retry;
2890 }
2891
2892 if (debug_threads)
2893 {
2894 if (current_inferior->last_resume_kind == resume_step)
2895 {
2896 if (event_child->step_range_start == event_child->step_range_end)
2897 debug_printf ("GDB wanted to single-step, reporting event.\n");
2898 else if (!lwp_in_step_range (event_child))
2899 debug_printf ("Out of step range, reporting event.\n");
2900 }
2901 if (event_child->stopped_by_watchpoint)
2902 debug_printf ("Stopped by watchpoint.\n");
2903 if (gdb_breakpoint_here (event_child->stop_pc))
2904 debug_printf ("Stopped by GDB breakpoint.\n");
2905 if (debug_threads)
2906 debug_printf ("Hit a non-gdbserver trap event.\n");
2907 }
2908
2909 /* Alright, we're going to report a stop. */
2910
2911 if (!non_stop && !stabilizing_threads)
2912 {
2913 /* In all-stop, stop all threads. */
2914 stop_all_lwps (0, NULL);
2915
2916 /* If we're not waiting for a specific LWP, choose an event LWP
2917 from among those that have had events. Giving equal priority
2918 to all LWPs that have had events helps prevent
2919 starvation. */
2920 if (ptid_equal (ptid, minus_one_ptid))
2921 {
2922 event_child->status_pending_p = 1;
2923 event_child->status_pending = w;
2924
2925 select_event_lwp (&event_child);
2926
2927 /* current_inferior and event_child must stay in sync. */
2928 current_inferior = get_lwp_thread (event_child);
2929
2930 event_child->status_pending_p = 0;
2931 w = event_child->status_pending;
2932 }
2933
2934 /* Now that we've selected our final event LWP, cancel any
2935 breakpoints in other LWPs that have hit a GDB breakpoint.
2936 See the comment in cancel_breakpoints_callback to find out
2937 why. */
2938 find_inferior (&all_threads, cancel_breakpoints_callback, event_child);
2939
2940 /* If we were going a step-over, all other threads but the stepping one
2941 had been paused in start_step_over, with their suspend counts
2942 incremented. We don't want to do a full unstop/unpause, because we're
2943 in all-stop mode (so we want threads stopped), but we still need to
2944 unsuspend the other threads, to decrement their `suspended' count
2945 back. */
2946 if (step_over_finished)
2947 unsuspend_all_lwps (event_child);
2948
2949 /* Stabilize threads (move out of jump pads). */
2950 stabilize_threads ();
2951 }
2952 else
2953 {
2954 /* If we just finished a step-over, then all threads had been
2955 momentarily paused. In all-stop, that's fine, we want
2956 threads stopped by now anyway. In non-stop, we need to
2957 re-resume threads that GDB wanted to be running. */
2958 if (step_over_finished)
2959 unstop_all_lwps (1, event_child);
2960 }
2961
2962 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2963
2964 if (current_inferior->last_resume_kind == resume_stop
2965 && WSTOPSIG (w) == SIGSTOP)
2966 {
2967 /* A thread that has been requested to stop by GDB with vCont;t,
2968 and it stopped cleanly, so report as SIG0. The use of
2969 SIGSTOP is an implementation detail. */
2970 ourstatus->value.sig = GDB_SIGNAL_0;
2971 }
2972 else if (current_inferior->last_resume_kind == resume_stop
2973 && WSTOPSIG (w) != SIGSTOP)
2974 {
2975 /* A thread that has been requested to stop by GDB with vCont;t,
2976 but, it stopped for other reasons. */
2977 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2978 }
2979 else
2980 {
2981 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
2982 }
2983
2984 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2985
2986 if (debug_threads)
2987 {
2988 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
2989 target_pid_to_str (ptid_of (current_inferior)),
2990 ourstatus->kind, ourstatus->value.sig);
2991 debug_exit ();
2992 }
2993
2994 return ptid_of (current_inferior);
2995 }
2996
2997 /* Get rid of any pending event in the pipe. */
2998 static void
2999 async_file_flush (void)
3000 {
3001 int ret;
3002 char buf;
3003
3004 do
3005 ret = read (linux_event_pipe[0], &buf, 1);
3006 while (ret >= 0 || (ret == -1 && errno == EINTR));
3007 }
3008
3009 /* Put something in the pipe, so the event loop wakes up. */
3010 static void
3011 async_file_mark (void)
3012 {
3013 int ret;
3014
3015 async_file_flush ();
3016
3017 do
3018 ret = write (linux_event_pipe[1], "+", 1);
3019 while (ret == 0 || (ret == -1 && errno == EINTR));
3020
3021 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3022 be awakened anyway. */
3023 }
3024
3025 static ptid_t
3026 linux_wait (ptid_t ptid,
3027 struct target_waitstatus *ourstatus, int target_options)
3028 {
3029 ptid_t event_ptid;
3030
3031 /* Flush the async file first. */
3032 if (target_is_async_p ())
3033 async_file_flush ();
3034
3035 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3036
3037 /* If at least one stop was reported, there may be more. A single
3038 SIGCHLD can signal more than one child stop. */
3039 if (target_is_async_p ()
3040 && (target_options & TARGET_WNOHANG) != 0
3041 && !ptid_equal (event_ptid, null_ptid))
3042 async_file_mark ();
3043
3044 return event_ptid;
3045 }
3046
3047 /* Send a signal to an LWP. */
3048
3049 static int
3050 kill_lwp (unsigned long lwpid, int signo)
3051 {
3052 /* Use tkill, if possible, in case we are using nptl threads. If tkill
3053 fails, then we are not using nptl threads and we should be using kill. */
3054
3055 #ifdef __NR_tkill
3056 {
3057 static int tkill_failed;
3058
3059 if (!tkill_failed)
3060 {
3061 int ret;
3062
3063 errno = 0;
3064 ret = syscall (__NR_tkill, lwpid, signo);
3065 if (errno != ENOSYS)
3066 return ret;
3067 tkill_failed = 1;
3068 }
3069 }
3070 #endif
3071
3072 return kill (lwpid, signo);
3073 }
3074
3075 void
3076 linux_stop_lwp (struct lwp_info *lwp)
3077 {
3078 send_sigstop (lwp);
3079 }
3080
3081 static void
3082 send_sigstop (struct lwp_info *lwp)
3083 {
3084 int pid;
3085
3086 pid = lwpid_of (get_lwp_thread (lwp));
3087
3088 /* If we already have a pending stop signal for this process, don't
3089 send another. */
3090 if (lwp->stop_expected)
3091 {
3092 if (debug_threads)
3093 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3094
3095 return;
3096 }
3097
3098 if (debug_threads)
3099 debug_printf ("Sending sigstop to lwp %d\n", pid);
3100
3101 lwp->stop_expected = 1;
3102 kill_lwp (pid, SIGSTOP);
3103 }
3104
3105 static int
3106 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
3107 {
3108 struct thread_info *thread = (struct thread_info *) entry;
3109 struct lwp_info *lwp = get_thread_lwp (thread);
3110
3111 /* Ignore EXCEPT. */
3112 if (lwp == except)
3113 return 0;
3114
3115 if (lwp->stopped)
3116 return 0;
3117
3118 send_sigstop (lwp);
3119 return 0;
3120 }
3121
3122 /* Increment the suspend count of an LWP, and stop it, if not stopped
3123 yet. */
3124 static int
3125 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
3126 void *except)
3127 {
3128 struct thread_info *thread = (struct thread_info *) entry;
3129 struct lwp_info *lwp = get_thread_lwp (thread);
3130
3131 /* Ignore EXCEPT. */
3132 if (lwp == except)
3133 return 0;
3134
3135 lwp->suspended++;
3136
3137 return send_sigstop_callback (entry, except);
3138 }
3139
3140 static void
3141 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3142 {
3143 /* It's dead, really. */
3144 lwp->dead = 1;
3145
3146 /* Store the exit status for later. */
3147 lwp->status_pending_p = 1;
3148 lwp->status_pending = wstat;
3149
3150 /* Prevent trying to stop it. */
3151 lwp->stopped = 1;
3152
3153 /* No further stops are expected from a dead lwp. */
3154 lwp->stop_expected = 0;
3155 }
3156
3157 /* Wait for all children to stop for the SIGSTOPs we just queued. */
3158
3159 static void
3160 wait_for_sigstop (void)
3161 {
3162 struct thread_info *saved_inferior;
3163 ptid_t saved_tid;
3164 int wstat;
3165 int ret;
3166
3167 saved_inferior = current_inferior;
3168 if (saved_inferior != NULL)
3169 saved_tid = saved_inferior->entry.id;
3170 else
3171 saved_tid = null_ptid; /* avoid bogus unused warning */
3172
3173 if (debug_threads)
3174 debug_printf ("wait_for_sigstop: pulling events\n");
3175
3176 /* Passing NULL_PTID as filter indicates we want all events to be
3177 left pending. Eventually this returns when there are no
3178 unwaited-for children left. */
3179 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
3180 &wstat, __WALL);
3181 gdb_assert (ret == -1);
3182
3183 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
3184 current_inferior = saved_inferior;
3185 else
3186 {
3187 if (debug_threads)
3188 debug_printf ("Previously current thread died.\n");
3189
3190 if (non_stop)
3191 {
3192 /* We can't change the current inferior behind GDB's back,
3193 otherwise, a subsequent command may apply to the wrong
3194 process. */
3195 current_inferior = NULL;
3196 }
3197 else
3198 {
3199 /* Set a valid thread as current. */
3200 set_desired_inferior (0);
3201 }
3202 }
3203 }
3204
3205 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
3206 move it out, because we need to report the stop event to GDB. For
3207 example, if the user puts a breakpoint in the jump pad, it's
3208 because she wants to debug it. */
3209
3210 static int
3211 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
3212 {
3213 struct thread_info *thread = (struct thread_info *) entry;
3214 struct lwp_info *lwp = get_thread_lwp (thread);
3215
3216 gdb_assert (lwp->suspended == 0);
3217 gdb_assert (lwp->stopped);
3218
3219 /* Allow debugging the jump pad, gdb_collect, etc.. */
3220 return (supports_fast_tracepoints ()
3221 && agent_loaded_p ()
3222 && (gdb_breakpoint_here (lwp->stop_pc)
3223 || lwp->stopped_by_watchpoint
3224 || thread->last_resume_kind == resume_step)
3225 && linux_fast_tracepoint_collecting (lwp, NULL));
3226 }
3227
3228 static void
3229 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
3230 {
3231 struct thread_info *thread = (struct thread_info *) entry;
3232 struct lwp_info *lwp = get_thread_lwp (thread);
3233 int *wstat;
3234
3235 gdb_assert (lwp->suspended == 0);
3236 gdb_assert (lwp->stopped);
3237
3238 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3239
3240 /* Allow debugging the jump pad, gdb_collect, etc. */
3241 if (!gdb_breakpoint_here (lwp->stop_pc)
3242 && !lwp->stopped_by_watchpoint
3243 && thread->last_resume_kind != resume_step
3244 && maybe_move_out_of_jump_pad (lwp, wstat))
3245 {
3246 if (debug_threads)
3247 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3248 lwpid_of (thread));
3249
3250 if (wstat)
3251 {
3252 lwp->status_pending_p = 0;
3253 enqueue_one_deferred_signal (lwp, wstat);
3254
3255 if (debug_threads)
3256 debug_printf ("Signal %d for LWP %ld deferred "
3257 "(in jump pad)\n",
3258 WSTOPSIG (*wstat), lwpid_of (thread));
3259 }
3260
3261 linux_resume_one_lwp (lwp, 0, 0, NULL);
3262 }
3263 else
3264 lwp->suspended++;
3265 }
3266
3267 static int
3268 lwp_running (struct inferior_list_entry *entry, void *data)
3269 {
3270 struct thread_info *thread = (struct thread_info *) entry;
3271 struct lwp_info *lwp = get_thread_lwp (thread);
3272
3273 if (lwp->dead)
3274 return 0;
3275 if (lwp->stopped)
3276 return 0;
3277 return 1;
3278 }
3279
3280 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
3281 If SUSPEND, then also increase the suspend count of every LWP,
3282 except EXCEPT. */
3283
3284 static void
3285 stop_all_lwps (int suspend, struct lwp_info *except)
3286 {
3287 /* Should not be called recursively. */
3288 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
3289
3290 if (debug_threads)
3291 {
3292 debug_enter ();
3293 debug_printf ("stop_all_lwps (%s, except=%s)\n",
3294 suspend ? "stop-and-suspend" : "stop",
3295 except != NULL
3296 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
3297 : "none");
3298 }
3299
3300 stopping_threads = (suspend
3301 ? STOPPING_AND_SUSPENDING_THREADS
3302 : STOPPING_THREADS);
3303
3304 if (suspend)
3305 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
3306 else
3307 find_inferior (&all_threads, send_sigstop_callback, except);
3308 wait_for_sigstop ();
3309 stopping_threads = NOT_STOPPING_THREADS;
3310
3311 if (debug_threads)
3312 {
3313 debug_printf ("stop_all_lwps done, setting stopping_threads "
3314 "back to !stopping\n");
3315 debug_exit ();
3316 }
3317 }
3318
3319 /* Resume execution of the inferior process.
3320 If STEP is nonzero, single-step it.
3321 If SIGNAL is nonzero, give it that signal. */
3322
3323 static void
3324 linux_resume_one_lwp (struct lwp_info *lwp,
3325 int step, int signal, siginfo_t *info)
3326 {
3327 struct thread_info *thread = get_lwp_thread (lwp);
3328 struct thread_info *saved_inferior;
3329 int fast_tp_collecting;
3330
3331 if (lwp->stopped == 0)
3332 return;
3333
3334 fast_tp_collecting = lwp->collecting_fast_tracepoint;
3335
3336 gdb_assert (!stabilizing_threads || fast_tp_collecting);
3337
3338 /* Cancel actions that rely on GDB not changing the PC (e.g., the
3339 user used the "jump" command, or "set $pc = foo"). */
3340 if (lwp->stop_pc != get_pc (lwp))
3341 {
3342 /* Collecting 'while-stepping' actions doesn't make sense
3343 anymore. */
3344 release_while_stepping_state_list (thread);
3345 }
3346
3347 /* If we have pending signals or status, and a new signal, enqueue the
3348 signal. Also enqueue the signal if we are waiting to reinsert a
3349 breakpoint; it will be picked up again below. */
3350 if (signal != 0
3351 && (lwp->status_pending_p
3352 || lwp->pending_signals != NULL
3353 || lwp->bp_reinsert != 0
3354 || fast_tp_collecting))
3355 {
3356 struct pending_signals *p_sig;
3357 p_sig = xmalloc (sizeof (*p_sig));
3358 p_sig->prev = lwp->pending_signals;
3359 p_sig->signal = signal;
3360 if (info == NULL)
3361 memset (&p_sig->info, 0, sizeof (siginfo_t));
3362 else
3363 memcpy (&p_sig->info, info, sizeof (siginfo_t));
3364 lwp->pending_signals = p_sig;
3365 }
3366
3367 if (lwp->status_pending_p)
3368 {
3369 if (debug_threads)
3370 debug_printf ("Not resuming lwp %ld (%s, signal %d, stop %s);"
3371 " has pending status\n",
3372 lwpid_of (thread), step ? "step" : "continue", signal,
3373 lwp->stop_expected ? "expected" : "not expected");
3374 return;
3375 }
3376
3377 saved_inferior = current_inferior;
3378 current_inferior = thread;
3379
3380 if (debug_threads)
3381 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
3382 lwpid_of (thread), step ? "step" : "continue", signal,
3383 lwp->stop_expected ? "expected" : "not expected");
3384
3385 /* This bit needs some thinking about. If we get a signal that
3386 we must report while a single-step reinsert is still pending,
3387 we often end up resuming the thread. It might be better to
3388 (ew) allow a stack of pending events; then we could be sure that
3389 the reinsert happened right away and not lose any signals.
3390
3391 Making this stack would also shrink the window in which breakpoints are
3392 uninserted (see comment in linux_wait_for_lwp) but not enough for
3393 complete correctness, so it won't solve that problem. It may be
3394 worthwhile just to solve this one, however. */
3395 if (lwp->bp_reinsert != 0)
3396 {
3397 if (debug_threads)
3398 debug_printf (" pending reinsert at 0x%s\n",
3399 paddress (lwp->bp_reinsert));
3400
3401 if (can_hardware_single_step ())
3402 {
3403 if (fast_tp_collecting == 0)
3404 {
3405 if (step == 0)
3406 fprintf (stderr, "BAD - reinserting but not stepping.\n");
3407 if (lwp->suspended)
3408 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
3409 lwp->suspended);
3410 }
3411
3412 step = 1;
3413 }
3414
3415 /* Postpone any pending signal. It was enqueued above. */
3416 signal = 0;
3417 }
3418
3419 if (fast_tp_collecting == 1)
3420 {
3421 if (debug_threads)
3422 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3423 " (exit-jump-pad-bkpt)\n",
3424 lwpid_of (thread));
3425
3426 /* Postpone any pending signal. It was enqueued above. */
3427 signal = 0;
3428 }
3429 else if (fast_tp_collecting == 2)
3430 {
3431 if (debug_threads)
3432 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
3433 " single-stepping\n",
3434 lwpid_of (thread));
3435
3436 if (can_hardware_single_step ())
3437 step = 1;
3438 else
3439 {
3440 internal_error (__FILE__, __LINE__,
3441 "moving out of jump pad single-stepping"
3442 " not implemented on this target");
3443 }
3444
3445 /* Postpone any pending signal. It was enqueued above. */
3446 signal = 0;
3447 }
3448
3449 /* If we have while-stepping actions in this thread set it stepping.
3450 If we have a signal to deliver, it may or may not be set to
3451 SIG_IGN, we don't know. Assume so, and allow collecting
3452 while-stepping into a signal handler. A possible smart thing to
3453 do would be to set an internal breakpoint at the signal return
3454 address, continue, and carry on catching this while-stepping
3455 action only when that breakpoint is hit. A future
3456 enhancement. */
3457 if (thread->while_stepping != NULL
3458 && can_hardware_single_step ())
3459 {
3460 if (debug_threads)
3461 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
3462 lwpid_of (thread));
3463 step = 1;
3464 }
3465
3466 if (debug_threads && the_low_target.get_pc != NULL)
3467 {
3468 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
3469 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
3470 debug_printf (" resuming from pc 0x%lx\n", (long) pc);
3471 }
3472
3473 /* If we have pending signals, consume one unless we are trying to
3474 reinsert a breakpoint or we're trying to finish a fast tracepoint
3475 collect. */
3476 if (lwp->pending_signals != NULL
3477 && lwp->bp_reinsert == 0
3478 && fast_tp_collecting == 0)
3479 {
3480 struct pending_signals **p_sig;
3481
3482 p_sig = &lwp->pending_signals;
3483 while ((*p_sig)->prev != NULL)
3484 p_sig = &(*p_sig)->prev;
3485
3486 signal = (*p_sig)->signal;
3487 if ((*p_sig)->info.si_signo != 0)
3488 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3489 &(*p_sig)->info);
3490
3491 free (*p_sig);
3492 *p_sig = NULL;
3493 }
3494
3495 if (the_low_target.prepare_to_resume != NULL)
3496 the_low_target.prepare_to_resume (lwp);
3497
3498 regcache_invalidate_thread (thread);
3499 errno = 0;
3500 lwp->stopped = 0;
3501 lwp->stopped_by_watchpoint = 0;
3502 lwp->stepping = step;
3503 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (thread),
3504 (PTRACE_TYPE_ARG3) 0,
3505 /* Coerce to a uintptr_t first to avoid potential gcc warning
3506 of coercing an 8 byte integer to a 4 byte pointer. */
3507 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
3508
3509 current_inferior = saved_inferior;
3510 if (errno)
3511 {
3512 /* ESRCH from ptrace either means that the thread was already
3513 running (an error) or that it is gone (a race condition). If
3514 it's gone, we will get a notification the next time we wait,
3515 so we can ignore the error. We could differentiate these
3516 two, but it's tricky without waiting; the thread still exists
3517 as a zombie, so sending it signal 0 would succeed. So just
3518 ignore ESRCH. */
3519 if (errno == ESRCH)
3520 return;
3521
3522 perror_with_name ("ptrace");
3523 }
3524 }
3525
3526 struct thread_resume_array
3527 {
3528 struct thread_resume *resume;
3529 size_t n;
3530 };
3531
3532 /* This function is called once per thread via find_inferior.
3533 ARG is a pointer to a thread_resume_array struct.
3534 We look up the thread specified by ENTRY in ARG, and mark the thread
3535 with a pointer to the appropriate resume request.
3536
3537 This algorithm is O(threads * resume elements), but resume elements
3538 is small (and will remain small at least until GDB supports thread
3539 suspension). */
3540
3541 static int
3542 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
3543 {
3544 struct thread_info *thread = (struct thread_info *) entry;
3545 struct lwp_info *lwp = get_thread_lwp (thread);
3546 int ndx;
3547 struct thread_resume_array *r;
3548
3549 r = arg;
3550
3551 for (ndx = 0; ndx < r->n; ndx++)
3552 {
3553 ptid_t ptid = r->resume[ndx].thread;
3554 if (ptid_equal (ptid, minus_one_ptid)
3555 || ptid_equal (ptid, entry->id)
3556 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
3557 of PID'. */
3558 || (ptid_get_pid (ptid) == pid_of (thread)
3559 && (ptid_is_pid (ptid)
3560 || ptid_get_lwp (ptid) == -1)))
3561 {
3562 if (r->resume[ndx].kind == resume_stop
3563 && thread->last_resume_kind == resume_stop)
3564 {
3565 if (debug_threads)
3566 debug_printf ("already %s LWP %ld at GDB's request\n",
3567 (thread->last_status.kind
3568 == TARGET_WAITKIND_STOPPED)
3569 ? "stopped"
3570 : "stopping",
3571 lwpid_of (thread));
3572
3573 continue;
3574 }
3575
3576 lwp->resume = &r->resume[ndx];
3577 thread->last_resume_kind = lwp->resume->kind;
3578
3579 lwp->step_range_start = lwp->resume->step_range_start;
3580 lwp->step_range_end = lwp->resume->step_range_end;
3581
3582 /* If we had a deferred signal to report, dequeue one now.
3583 This can happen if LWP gets more than one signal while
3584 trying to get out of a jump pad. */
3585 if (lwp->stopped
3586 && !lwp->status_pending_p
3587 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
3588 {
3589 lwp->status_pending_p = 1;
3590
3591 if (debug_threads)
3592 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
3593 "leaving status pending.\n",
3594 WSTOPSIG (lwp->status_pending),
3595 lwpid_of (thread));
3596 }
3597
3598 return 0;
3599 }
3600 }
3601
3602 /* No resume action for this thread. */
3603 lwp->resume = NULL;
3604
3605 return 0;
3606 }
3607
3608 /* find_inferior callback for linux_resume.
3609 Set *FLAG_P if this lwp has an interesting status pending. */
3610
3611 static int
3612 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3613 {
3614 struct thread_info *thread = (struct thread_info *) entry;
3615 struct lwp_info *lwp = get_thread_lwp (thread);
3616
3617 /* LWPs which will not be resumed are not interesting, because
3618 we might not wait for them next time through linux_wait. */
3619 if (lwp->resume == NULL)
3620 return 0;
3621
3622 if (lwp->status_pending_p)
3623 * (int *) flag_p = 1;
3624
3625 return 0;
3626 }
3627
3628 /* Return 1 if this lwp that GDB wants running is stopped at an
3629 internal breakpoint that we need to step over. It assumes that any
3630 required STOP_PC adjustment has already been propagated to the
3631 inferior's regcache. */
3632
3633 static int
3634 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3635 {
3636 struct thread_info *thread = (struct thread_info *) entry;
3637 struct lwp_info *lwp = get_thread_lwp (thread);
3638 struct thread_info *saved_inferior;
3639 CORE_ADDR pc;
3640
3641 /* LWPs which will not be resumed are not interesting, because we
3642 might not wait for them next time through linux_wait. */
3643
3644 if (!lwp->stopped)
3645 {
3646 if (debug_threads)
3647 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
3648 lwpid_of (thread));
3649 return 0;
3650 }
3651
3652 if (thread->last_resume_kind == resume_stop)
3653 {
3654 if (debug_threads)
3655 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
3656 " stopped\n",
3657 lwpid_of (thread));
3658 return 0;
3659 }
3660
3661 gdb_assert (lwp->suspended >= 0);
3662
3663 if (lwp->suspended)
3664 {
3665 if (debug_threads)
3666 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
3667 lwpid_of (thread));
3668 return 0;
3669 }
3670
3671 if (!lwp->need_step_over)
3672 {
3673 if (debug_threads)
3674 debug_printf ("Need step over [LWP %ld]? No\n", lwpid_of (thread));
3675 }
3676
3677 if (lwp->status_pending_p)
3678 {
3679 if (debug_threads)
3680 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
3681 " status.\n",
3682 lwpid_of (thread));
3683 return 0;
3684 }
3685
3686 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3687 or we have. */
3688 pc = get_pc (lwp);
3689
3690 /* If the PC has changed since we stopped, then don't do anything,
3691 and let the breakpoint/tracepoint be hit. This happens if, for
3692 instance, GDB handled the decr_pc_after_break subtraction itself,
3693 GDB is OOL stepping this thread, or the user has issued a "jump"
3694 command, or poked thread's registers herself. */
3695 if (pc != lwp->stop_pc)
3696 {
3697 if (debug_threads)
3698 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
3699 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3700 lwpid_of (thread),
3701 paddress (lwp->stop_pc), paddress (pc));
3702
3703 lwp->need_step_over = 0;
3704 return 0;
3705 }
3706
3707 saved_inferior = current_inferior;
3708 current_inferior = thread;
3709
3710 /* We can only step over breakpoints we know about. */
3711 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3712 {
3713 /* Don't step over a breakpoint that GDB expects to hit
3714 though. If the condition is being evaluated on the target's side
3715 and it evaluate to false, step over this breakpoint as well. */
3716 if (gdb_breakpoint_here (pc)
3717 && gdb_condition_true_at_breakpoint (pc)
3718 && gdb_no_commands_at_breakpoint (pc))
3719 {
3720 if (debug_threads)
3721 debug_printf ("Need step over [LWP %ld]? yes, but found"
3722 " GDB breakpoint at 0x%s; skipping step over\n",
3723 lwpid_of (thread), paddress (pc));
3724
3725 current_inferior = saved_inferior;
3726 return 0;
3727 }
3728 else
3729 {
3730 if (debug_threads)
3731 debug_printf ("Need step over [LWP %ld]? yes, "
3732 "found breakpoint at 0x%s\n",
3733 lwpid_of (thread), paddress (pc));
3734
3735 /* We've found an lwp that needs stepping over --- return 1 so
3736 that find_inferior stops looking. */
3737 current_inferior = saved_inferior;
3738
3739 /* If the step over is cancelled, this is set again. */
3740 lwp->need_step_over = 0;
3741 return 1;
3742 }
3743 }
3744
3745 current_inferior = saved_inferior;
3746
3747 if (debug_threads)
3748 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
3749 " at 0x%s\n",
3750 lwpid_of (thread), paddress (pc));
3751
3752 return 0;
3753 }
3754
3755 /* Start a step-over operation on LWP. When LWP stopped at a
3756 breakpoint, to make progress, we need to remove the breakpoint out
3757 of the way. If we let other threads run while we do that, they may
3758 pass by the breakpoint location and miss hitting it. To avoid
3759 that, a step-over momentarily stops all threads while LWP is
3760 single-stepped while the breakpoint is temporarily uninserted from
3761 the inferior. When the single-step finishes, we reinsert the
3762 breakpoint, and let all threads that are supposed to be running,
3763 run again.
3764
3765 On targets that don't support hardware single-step, we don't
3766 currently support full software single-stepping. Instead, we only
3767 support stepping over the thread event breakpoint, by asking the
3768 low target where to place a reinsert breakpoint. Since this
3769 routine assumes the breakpoint being stepped over is a thread event
3770 breakpoint, it usually assumes the return address of the current
3771 function is a good enough place to set the reinsert breakpoint. */
3772
3773 static int
3774 start_step_over (struct lwp_info *lwp)
3775 {
3776 struct thread_info *thread = get_lwp_thread (lwp);
3777 struct thread_info *saved_inferior;
3778 CORE_ADDR pc;
3779 int step;
3780
3781 if (debug_threads)
3782 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
3783 lwpid_of (thread));
3784
3785 stop_all_lwps (1, lwp);
3786 gdb_assert (lwp->suspended == 0);
3787
3788 if (debug_threads)
3789 debug_printf ("Done stopping all threads for step-over.\n");
3790
3791 /* Note, we should always reach here with an already adjusted PC,
3792 either by GDB (if we're resuming due to GDB's request), or by our
3793 caller, if we just finished handling an internal breakpoint GDB
3794 shouldn't care about. */
3795 pc = get_pc (lwp);
3796
3797 saved_inferior = current_inferior;
3798 current_inferior = thread;
3799
3800 lwp->bp_reinsert = pc;
3801 uninsert_breakpoints_at (pc);
3802 uninsert_fast_tracepoint_jumps_at (pc);
3803
3804 if (can_hardware_single_step ())
3805 {
3806 step = 1;
3807 }
3808 else
3809 {
3810 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3811 set_reinsert_breakpoint (raddr);
3812 step = 0;
3813 }
3814
3815 current_inferior = saved_inferior;
3816
3817 linux_resume_one_lwp (lwp, step, 0, NULL);
3818
3819 /* Require next event from this LWP. */
3820 step_over_bkpt = thread->entry.id;
3821 return 1;
3822 }
3823
3824 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3825 start_step_over, if still there, and delete any reinsert
3826 breakpoints we've set, on non hardware single-step targets. */
3827
3828 static int
3829 finish_step_over (struct lwp_info *lwp)
3830 {
3831 if (lwp->bp_reinsert != 0)
3832 {
3833 if (debug_threads)
3834 debug_printf ("Finished step over.\n");
3835
3836 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3837 may be no breakpoint to reinsert there by now. */
3838 reinsert_breakpoints_at (lwp->bp_reinsert);
3839 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3840
3841 lwp->bp_reinsert = 0;
3842
3843 /* Delete any software-single-step reinsert breakpoints. No
3844 longer needed. We don't have to worry about other threads
3845 hitting this trap, and later not being able to explain it,
3846 because we were stepping over a breakpoint, and we hold all
3847 threads but LWP stopped while doing that. */
3848 if (!can_hardware_single_step ())
3849 delete_reinsert_breakpoints ();
3850
3851 step_over_bkpt = null_ptid;
3852 return 1;
3853 }
3854 else
3855 return 0;
3856 }
3857
3858 /* This function is called once per thread. We check the thread's resume
3859 request, which will tell us whether to resume, step, or leave the thread
3860 stopped; and what signal, if any, it should be sent.
3861
3862 For threads which we aren't explicitly told otherwise, we preserve
3863 the stepping flag; this is used for stepping over gdbserver-placed
3864 breakpoints.
3865
3866 If pending_flags was set in any thread, we queue any needed
3867 signals, since we won't actually resume. We already have a pending
3868 event to report, so we don't need to preserve any step requests;
3869 they should be re-issued if necessary. */
3870
3871 static int
3872 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3873 {
3874 struct thread_info *thread = (struct thread_info *) entry;
3875 struct lwp_info *lwp = get_thread_lwp (thread);
3876 int step;
3877 int leave_all_stopped = * (int *) arg;
3878 int leave_pending;
3879
3880 if (lwp->resume == NULL)
3881 return 0;
3882
3883 if (lwp->resume->kind == resume_stop)
3884 {
3885 if (debug_threads)
3886 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
3887
3888 if (!lwp->stopped)
3889 {
3890 if (debug_threads)
3891 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
3892
3893 /* Stop the thread, and wait for the event asynchronously,
3894 through the event loop. */
3895 send_sigstop (lwp);
3896 }
3897 else
3898 {
3899 if (debug_threads)
3900 debug_printf ("already stopped LWP %ld\n",
3901 lwpid_of (thread));
3902
3903 /* The LWP may have been stopped in an internal event that
3904 was not meant to be notified back to GDB (e.g., gdbserver
3905 breakpoint), so we should be reporting a stop event in
3906 this case too. */
3907
3908 /* If the thread already has a pending SIGSTOP, this is a
3909 no-op. Otherwise, something later will presumably resume
3910 the thread and this will cause it to cancel any pending
3911 operation, due to last_resume_kind == resume_stop. If
3912 the thread already has a pending status to report, we
3913 will still report it the next time we wait - see
3914 status_pending_p_callback. */
3915
3916 /* If we already have a pending signal to report, then
3917 there's no need to queue a SIGSTOP, as this means we're
3918 midway through moving the LWP out of the jumppad, and we
3919 will report the pending signal as soon as that is
3920 finished. */
3921 if (lwp->pending_signals_to_report == NULL)
3922 send_sigstop (lwp);
3923 }
3924
3925 /* For stop requests, we're done. */
3926 lwp->resume = NULL;
3927 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3928 return 0;
3929 }
3930
3931 /* If this thread which is about to be resumed has a pending status,
3932 then don't resume any threads - we can just report the pending
3933 status. Make sure to queue any signals that would otherwise be
3934 sent. In all-stop mode, we do this decision based on if *any*
3935 thread has a pending status. If there's a thread that needs the
3936 step-over-breakpoint dance, then don't resume any other thread
3937 but that particular one. */
3938 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3939
3940 if (!leave_pending)
3941 {
3942 if (debug_threads)
3943 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
3944
3945 step = (lwp->resume->kind == resume_step);
3946 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3947 }
3948 else
3949 {
3950 if (debug_threads)
3951 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
3952
3953 /* If we have a new signal, enqueue the signal. */
3954 if (lwp->resume->sig != 0)
3955 {
3956 struct pending_signals *p_sig;
3957 p_sig = xmalloc (sizeof (*p_sig));
3958 p_sig->prev = lwp->pending_signals;
3959 p_sig->signal = lwp->resume->sig;
3960 memset (&p_sig->info, 0, sizeof (siginfo_t));
3961
3962 /* If this is the same signal we were previously stopped by,
3963 make sure to queue its siginfo. We can ignore the return
3964 value of ptrace; if it fails, we'll skip
3965 PTRACE_SETSIGINFO. */
3966 if (WIFSTOPPED (lwp->last_status)
3967 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3968 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
3969 &p_sig->info);
3970
3971 lwp->pending_signals = p_sig;
3972 }
3973 }
3974
3975 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3976 lwp->resume = NULL;
3977 return 0;
3978 }
3979
3980 static void
3981 linux_resume (struct thread_resume *resume_info, size_t n)
3982 {
3983 struct thread_resume_array array = { resume_info, n };
3984 struct thread_info *need_step_over = NULL;
3985 int any_pending;
3986 int leave_all_stopped;
3987
3988 if (debug_threads)
3989 {
3990 debug_enter ();
3991 debug_printf ("linux_resume:\n");
3992 }
3993
3994 find_inferior (&all_threads, linux_set_resume_request, &array);
3995
3996 /* If there is a thread which would otherwise be resumed, which has
3997 a pending status, then don't resume any threads - we can just
3998 report the pending status. Make sure to queue any signals that
3999 would otherwise be sent. In non-stop mode, we'll apply this
4000 logic to each thread individually. We consume all pending events
4001 before considering to start a step-over (in all-stop). */
4002 any_pending = 0;
4003 if (!non_stop)
4004 find_inferior (&all_threads, resume_status_pending_p, &any_pending);
4005
4006 /* If there is a thread which would otherwise be resumed, which is
4007 stopped at a breakpoint that needs stepping over, then don't
4008 resume any threads - have it step over the breakpoint with all
4009 other threads stopped, then resume all threads again. Make sure
4010 to queue any signals that would otherwise be delivered or
4011 queued. */
4012 if (!any_pending && supports_breakpoints ())
4013 need_step_over
4014 = (struct thread_info *) find_inferior (&all_threads,
4015 need_step_over_p, NULL);
4016
4017 leave_all_stopped = (need_step_over != NULL || any_pending);
4018
4019 if (debug_threads)
4020 {
4021 if (need_step_over != NULL)
4022 debug_printf ("Not resuming all, need step over\n");
4023 else if (any_pending)
4024 debug_printf ("Not resuming, all-stop and found "
4025 "an LWP with pending status\n");
4026 else
4027 debug_printf ("Resuming, no pending status or step over needed\n");
4028 }
4029
4030 /* Even if we're leaving threads stopped, queue all signals we'd
4031 otherwise deliver. */
4032 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
4033
4034 if (need_step_over)
4035 start_step_over (get_thread_lwp (need_step_over));
4036
4037 if (debug_threads)
4038 {
4039 debug_printf ("linux_resume done\n");
4040 debug_exit ();
4041 }
4042 }
4043
4044 /* This function is called once per thread. We check the thread's
4045 last resume request, which will tell us whether to resume, step, or
4046 leave the thread stopped. Any signal the client requested to be
4047 delivered has already been enqueued at this point.
4048
4049 If any thread that GDB wants running is stopped at an internal
4050 breakpoint that needs stepping over, we start a step-over operation
4051 on that particular thread, and leave all others stopped. */
4052
4053 static int
4054 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4055 {
4056 struct thread_info *thread = (struct thread_info *) entry;
4057 struct lwp_info *lwp = get_thread_lwp (thread);
4058 int step;
4059
4060 if (lwp == except)
4061 return 0;
4062
4063 if (debug_threads)
4064 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4065
4066 if (!lwp->stopped)
4067 {
4068 if (debug_threads)
4069 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4070 return 0;
4071 }
4072
4073 if (thread->last_resume_kind == resume_stop
4074 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4075 {
4076 if (debug_threads)
4077 debug_printf (" client wants LWP to remain %ld stopped\n",
4078 lwpid_of (thread));
4079 return 0;
4080 }
4081
4082 if (lwp->status_pending_p)
4083 {
4084 if (debug_threads)
4085 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4086 lwpid_of (thread));
4087 return 0;
4088 }
4089
4090 gdb_assert (lwp->suspended >= 0);
4091
4092 if (lwp->suspended)
4093 {
4094 if (debug_threads)
4095 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4096 return 0;
4097 }
4098
4099 if (thread->last_resume_kind == resume_stop
4100 && lwp->pending_signals_to_report == NULL
4101 && lwp->collecting_fast_tracepoint == 0)
4102 {
4103 /* We haven't reported this LWP as stopped yet (otherwise, the
4104 last_status.kind check above would catch it, and we wouldn't
4105 reach here. This LWP may have been momentarily paused by a
4106 stop_all_lwps call while handling for example, another LWP's
4107 step-over. In that case, the pending expected SIGSTOP signal
4108 that was queued at vCont;t handling time will have already
4109 been consumed by wait_for_sigstop, and so we need to requeue
4110 another one here. Note that if the LWP already has a SIGSTOP
4111 pending, this is a no-op. */
4112
4113 if (debug_threads)
4114 debug_printf ("Client wants LWP %ld to stop. "
4115 "Making sure it has a SIGSTOP pending\n",
4116 lwpid_of (thread));
4117
4118 send_sigstop (lwp);
4119 }
4120
4121 step = thread->last_resume_kind == resume_step;
4122 linux_resume_one_lwp (lwp, step, 0, NULL);
4123 return 0;
4124 }
4125
4126 static int
4127 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
4128 {
4129 struct thread_info *thread = (struct thread_info *) entry;
4130 struct lwp_info *lwp = get_thread_lwp (thread);
4131
4132 if (lwp == except)
4133 return 0;
4134
4135 lwp->suspended--;
4136 gdb_assert (lwp->suspended >= 0);
4137
4138 return proceed_one_lwp (entry, except);
4139 }
4140
4141 /* When we finish a step-over, set threads running again. If there's
4142 another thread that may need a step-over, now's the time to start
4143 it. Eventually, we'll move all threads past their breakpoints. */
4144
4145 static void
4146 proceed_all_lwps (void)
4147 {
4148 struct thread_info *need_step_over;
4149
4150 /* If there is a thread which would otherwise be resumed, which is
4151 stopped at a breakpoint that needs stepping over, then don't
4152 resume any threads - have it step over the breakpoint with all
4153 other threads stopped, then resume all threads again. */
4154
4155 if (supports_breakpoints ())
4156 {
4157 need_step_over
4158 = (struct thread_info *) find_inferior (&all_threads,
4159 need_step_over_p, NULL);
4160
4161 if (need_step_over != NULL)
4162 {
4163 if (debug_threads)
4164 debug_printf ("proceed_all_lwps: found "
4165 "thread %ld needing a step-over\n",
4166 lwpid_of (need_step_over));
4167
4168 start_step_over (get_thread_lwp (need_step_over));
4169 return;
4170 }
4171 }
4172
4173 if (debug_threads)
4174 debug_printf ("Proceeding, no step-over needed\n");
4175
4176 find_inferior (&all_threads, proceed_one_lwp, NULL);
4177 }
4178
4179 /* Stopped LWPs that the client wanted to be running, that don't have
4180 pending statuses, are set to run again, except for EXCEPT, if not
4181 NULL. This undoes a stop_all_lwps call. */
4182
4183 static void
4184 unstop_all_lwps (int unsuspend, struct lwp_info *except)
4185 {
4186 if (debug_threads)
4187 {
4188 debug_enter ();
4189 if (except)
4190 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
4191 lwpid_of (get_lwp_thread (except)));
4192 else
4193 debug_printf ("unstopping all lwps\n");
4194 }
4195
4196 if (unsuspend)
4197 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
4198 else
4199 find_inferior (&all_threads, proceed_one_lwp, except);
4200
4201 if (debug_threads)
4202 {
4203 debug_printf ("unstop_all_lwps done\n");
4204 debug_exit ();
4205 }
4206 }
4207
4208
4209 #ifdef HAVE_LINUX_REGSETS
4210
4211 #define use_linux_regsets 1
4212
4213 /* Returns true if REGSET has been disabled. */
4214
4215 static int
4216 regset_disabled (struct regsets_info *info, struct regset_info *regset)
4217 {
4218 return (info->disabled_regsets != NULL
4219 && info->disabled_regsets[regset - info->regsets]);
4220 }
4221
4222 /* Disable REGSET. */
4223
4224 static void
4225 disable_regset (struct regsets_info *info, struct regset_info *regset)
4226 {
4227 int dr_offset;
4228
4229 dr_offset = regset - info->regsets;
4230 if (info->disabled_regsets == NULL)
4231 info->disabled_regsets = xcalloc (1, info->num_regsets);
4232 info->disabled_regsets[dr_offset] = 1;
4233 }
4234
4235 static int
4236 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
4237 struct regcache *regcache)
4238 {
4239 struct regset_info *regset;
4240 int saw_general_regs = 0;
4241 int pid;
4242 struct iovec iov;
4243
4244 regset = regsets_info->regsets;
4245
4246 pid = lwpid_of (current_inferior);
4247 while (regset->size >= 0)
4248 {
4249 void *buf, *data;
4250 int nt_type, res;
4251
4252 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4253 {
4254 regset ++;
4255 continue;
4256 }
4257
4258 buf = xmalloc (regset->size);
4259
4260 nt_type = regset->nt_type;
4261 if (nt_type)
4262 {
4263 iov.iov_base = buf;
4264 iov.iov_len = regset->size;
4265 data = (void *) &iov;
4266 }
4267 else
4268 data = buf;
4269
4270 #ifndef __sparc__
4271 res = ptrace (regset->get_request, pid,
4272 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4273 #else
4274 res = ptrace (regset->get_request, pid, data, nt_type);
4275 #endif
4276 if (res < 0)
4277 {
4278 if (errno == EIO)
4279 {
4280 /* If we get EIO on a regset, do not try it again for
4281 this process mode. */
4282 disable_regset (regsets_info, regset);
4283 free (buf);
4284 continue;
4285 }
4286 else
4287 {
4288 char s[256];
4289 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
4290 pid);
4291 perror (s);
4292 }
4293 }
4294 else if (regset->type == GENERAL_REGS)
4295 saw_general_regs = 1;
4296 regset->store_function (regcache, buf);
4297 regset ++;
4298 free (buf);
4299 }
4300 if (saw_general_regs)
4301 return 0;
4302 else
4303 return 1;
4304 }
4305
4306 static int
4307 regsets_store_inferior_registers (struct regsets_info *regsets_info,
4308 struct regcache *regcache)
4309 {
4310 struct regset_info *regset;
4311 int saw_general_regs = 0;
4312 int pid;
4313 struct iovec iov;
4314
4315 regset = regsets_info->regsets;
4316
4317 pid = lwpid_of (current_inferior);
4318 while (regset->size >= 0)
4319 {
4320 void *buf, *data;
4321 int nt_type, res;
4322
4323 if (regset->size == 0 || regset_disabled (regsets_info, regset))
4324 {
4325 regset ++;
4326 continue;
4327 }
4328
4329 buf = xmalloc (regset->size);
4330
4331 /* First fill the buffer with the current register set contents,
4332 in case there are any items in the kernel's regset that are
4333 not in gdbserver's regcache. */
4334
4335 nt_type = regset->nt_type;
4336 if (nt_type)
4337 {
4338 iov.iov_base = buf;
4339 iov.iov_len = regset->size;
4340 data = (void *) &iov;
4341 }
4342 else
4343 data = buf;
4344
4345 #ifndef __sparc__
4346 res = ptrace (regset->get_request, pid,
4347 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4348 #else
4349 res = ptrace (regset->get_request, pid, data, nt_type);
4350 #endif
4351
4352 if (res == 0)
4353 {
4354 /* Then overlay our cached registers on that. */
4355 regset->fill_function (regcache, buf);
4356
4357 /* Only now do we write the register set. */
4358 #ifndef __sparc__
4359 res = ptrace (regset->set_request, pid,
4360 (PTRACE_TYPE_ARG3) (long) nt_type, data);
4361 #else
4362 res = ptrace (regset->set_request, pid, data, nt_type);
4363 #endif
4364 }
4365
4366 if (res < 0)
4367 {
4368 if (errno == EIO)
4369 {
4370 /* If we get EIO on a regset, do not try it again for
4371 this process mode. */
4372 disable_regset (regsets_info, regset);
4373 free (buf);
4374 continue;
4375 }
4376 else if (errno == ESRCH)
4377 {
4378 /* At this point, ESRCH should mean the process is
4379 already gone, in which case we simply ignore attempts
4380 to change its registers. See also the related
4381 comment in linux_resume_one_lwp. */
4382 free (buf);
4383 return 0;
4384 }
4385 else
4386 {
4387 perror ("Warning: ptrace(regsets_store_inferior_registers)");
4388 }
4389 }
4390 else if (regset->type == GENERAL_REGS)
4391 saw_general_regs = 1;
4392 regset ++;
4393 free (buf);
4394 }
4395 if (saw_general_regs)
4396 return 0;
4397 else
4398 return 1;
4399 }
4400
4401 #else /* !HAVE_LINUX_REGSETS */
4402
4403 #define use_linux_regsets 0
4404 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
4405 #define regsets_store_inferior_registers(regsets_info, regcache) 1
4406
4407 #endif
4408
4409 /* Return 1 if register REGNO is supported by one of the regset ptrace
4410 calls or 0 if it has to be transferred individually. */
4411
4412 static int
4413 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
4414 {
4415 unsigned char mask = 1 << (regno % 8);
4416 size_t index = regno / 8;
4417
4418 return (use_linux_regsets
4419 && (regs_info->regset_bitmap == NULL
4420 || (regs_info->regset_bitmap[index] & mask) != 0));
4421 }
4422
4423 #ifdef HAVE_LINUX_USRREGS
4424
4425 int
4426 register_addr (const struct usrregs_info *usrregs, int regnum)
4427 {
4428 int addr;
4429
4430 if (regnum < 0 || regnum >= usrregs->num_regs)
4431 error ("Invalid register number %d.", regnum);
4432
4433 addr = usrregs->regmap[regnum];
4434
4435 return addr;
4436 }
4437
4438 /* Fetch one register. */
4439 static void
4440 fetch_register (const struct usrregs_info *usrregs,
4441 struct regcache *regcache, int regno)
4442 {
4443 CORE_ADDR regaddr;
4444 int i, size;
4445 char *buf;
4446 int pid;
4447
4448 if (regno >= usrregs->num_regs)
4449 return;
4450 if ((*the_low_target.cannot_fetch_register) (regno))
4451 return;
4452
4453 regaddr = register_addr (usrregs, regno);
4454 if (regaddr == -1)
4455 return;
4456
4457 size = ((register_size (regcache->tdesc, regno)
4458 + sizeof (PTRACE_XFER_TYPE) - 1)
4459 & -sizeof (PTRACE_XFER_TYPE));
4460 buf = alloca (size);
4461
4462 pid = lwpid_of (current_inferior);
4463 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4464 {
4465 errno = 0;
4466 *(PTRACE_XFER_TYPE *) (buf + i) =
4467 ptrace (PTRACE_PEEKUSER, pid,
4468 /* Coerce to a uintptr_t first to avoid potential gcc warning
4469 of coercing an 8 byte integer to a 4 byte pointer. */
4470 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
4471 regaddr += sizeof (PTRACE_XFER_TYPE);
4472 if (errno != 0)
4473 error ("reading register %d: %s", regno, strerror (errno));
4474 }
4475
4476 if (the_low_target.supply_ptrace_register)
4477 the_low_target.supply_ptrace_register (regcache, regno, buf);
4478 else
4479 supply_register (regcache, regno, buf);
4480 }
4481
4482 /* Store one register. */
4483 static void
4484 store_register (const struct usrregs_info *usrregs,
4485 struct regcache *regcache, int regno)
4486 {
4487 CORE_ADDR regaddr;
4488 int i, size;
4489 char *buf;
4490 int pid;
4491
4492 if (regno >= usrregs->num_regs)
4493 return;
4494 if ((*the_low_target.cannot_store_register) (regno))
4495 return;
4496
4497 regaddr = register_addr (usrregs, regno);
4498 if (regaddr == -1)
4499 return;
4500
4501 size = ((register_size (regcache->tdesc, regno)
4502 + sizeof (PTRACE_XFER_TYPE) - 1)
4503 & -sizeof (PTRACE_XFER_TYPE));
4504 buf = alloca (size);
4505 memset (buf, 0, size);
4506
4507 if (the_low_target.collect_ptrace_register)
4508 the_low_target.collect_ptrace_register (regcache, regno, buf);
4509 else
4510 collect_register (regcache, regno, buf);
4511
4512 pid = lwpid_of (current_inferior);
4513 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
4514 {
4515 errno = 0;
4516 ptrace (PTRACE_POKEUSER, pid,
4517 /* Coerce to a uintptr_t first to avoid potential gcc warning
4518 about coercing an 8 byte integer to a 4 byte pointer. */
4519 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
4520 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
4521 if (errno != 0)
4522 {
4523 /* At this point, ESRCH should mean the process is
4524 already gone, in which case we simply ignore attempts
4525 to change its registers. See also the related
4526 comment in linux_resume_one_lwp. */
4527 if (errno == ESRCH)
4528 return;
4529
4530 if ((*the_low_target.cannot_store_register) (regno) == 0)
4531 error ("writing register %d: %s", regno, strerror (errno));
4532 }
4533 regaddr += sizeof (PTRACE_XFER_TYPE);
4534 }
4535 }
4536
4537 /* Fetch all registers, or just one, from the child process.
4538 If REGNO is -1, do this for all registers, skipping any that are
4539 assumed to have been retrieved by regsets_fetch_inferior_registers,
4540 unless ALL is non-zero.
4541 Otherwise, REGNO specifies which register (so we can save time). */
4542 static void
4543 usr_fetch_inferior_registers (const struct regs_info *regs_info,
4544 struct regcache *regcache, int regno, int all)
4545 {
4546 struct usrregs_info *usr = regs_info->usrregs;
4547
4548 if (regno == -1)
4549 {
4550 for (regno = 0; regno < usr->num_regs; regno++)
4551 if (all || !linux_register_in_regsets (regs_info, regno))
4552 fetch_register (usr, regcache, regno);
4553 }
4554 else
4555 fetch_register (usr, regcache, regno);
4556 }
4557
4558 /* Store our register values back into the inferior.
4559 If REGNO is -1, do this for all registers, skipping any that are
4560 assumed to have been saved by regsets_store_inferior_registers,
4561 unless ALL is non-zero.
4562 Otherwise, REGNO specifies which register (so we can save time). */
4563 static void
4564 usr_store_inferior_registers (const struct regs_info *regs_info,
4565 struct regcache *regcache, int regno, int all)
4566 {
4567 struct usrregs_info *usr = regs_info->usrregs;
4568
4569 if (regno == -1)
4570 {
4571 for (regno = 0; regno < usr->num_regs; regno++)
4572 if (all || !linux_register_in_regsets (regs_info, regno))
4573 store_register (usr, regcache, regno);
4574 }
4575 else
4576 store_register (usr, regcache, regno);
4577 }
4578
4579 #else /* !HAVE_LINUX_USRREGS */
4580
4581 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4582 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
4583
4584 #endif
4585
4586
4587 void
4588 linux_fetch_registers (struct regcache *regcache, int regno)
4589 {
4590 int use_regsets;
4591 int all = 0;
4592 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4593
4594 if (regno == -1)
4595 {
4596 if (the_low_target.fetch_register != NULL
4597 && regs_info->usrregs != NULL)
4598 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
4599 (*the_low_target.fetch_register) (regcache, regno);
4600
4601 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
4602 if (regs_info->usrregs != NULL)
4603 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
4604 }
4605 else
4606 {
4607 if (the_low_target.fetch_register != NULL
4608 && (*the_low_target.fetch_register) (regcache, regno))
4609 return;
4610
4611 use_regsets = linux_register_in_regsets (regs_info, regno);
4612 if (use_regsets)
4613 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
4614 regcache);
4615 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4616 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
4617 }
4618 }
4619
4620 void
4621 linux_store_registers (struct regcache *regcache, int regno)
4622 {
4623 int use_regsets;
4624 int all = 0;
4625 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
4626
4627 if (regno == -1)
4628 {
4629 all = regsets_store_inferior_registers (regs_info->regsets_info,
4630 regcache);
4631 if (regs_info->usrregs != NULL)
4632 usr_store_inferior_registers (regs_info, regcache, regno, all);
4633 }
4634 else
4635 {
4636 use_regsets = linux_register_in_regsets (regs_info, regno);
4637 if (use_regsets)
4638 all = regsets_store_inferior_registers (regs_info->regsets_info,
4639 regcache);
4640 if ((!use_regsets || all) && regs_info->usrregs != NULL)
4641 usr_store_inferior_registers (regs_info, regcache, regno, 1);
4642 }
4643 }
4644
4645
4646 /* Copy LEN bytes from inferior's memory starting at MEMADDR
4647 to debugger memory starting at MYADDR. */
4648
4649 static int
4650 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
4651 {
4652 int pid = lwpid_of (current_inferior);
4653 register PTRACE_XFER_TYPE *buffer;
4654 register CORE_ADDR addr;
4655 register int count;
4656 char filename[64];
4657 register int i;
4658 int ret;
4659 int fd;
4660
4661 /* Try using /proc. Don't bother for one word. */
4662 if (len >= 3 * sizeof (long))
4663 {
4664 int bytes;
4665
4666 /* We could keep this file open and cache it - possibly one per
4667 thread. That requires some juggling, but is even faster. */
4668 sprintf (filename, "/proc/%d/mem", pid);
4669 fd = open (filename, O_RDONLY | O_LARGEFILE);
4670 if (fd == -1)
4671 goto no_proc;
4672
4673 /* If pread64 is available, use it. It's faster if the kernel
4674 supports it (only one syscall), and it's 64-bit safe even on
4675 32-bit platforms (for instance, SPARC debugging a SPARC64
4676 application). */
4677 #ifdef HAVE_PREAD64
4678 bytes = pread64 (fd, myaddr, len, memaddr);
4679 #else
4680 bytes = -1;
4681 if (lseek (fd, memaddr, SEEK_SET) != -1)
4682 bytes = read (fd, myaddr, len);
4683 #endif
4684
4685 close (fd);
4686 if (bytes == len)
4687 return 0;
4688
4689 /* Some data was read, we'll try to get the rest with ptrace. */
4690 if (bytes > 0)
4691 {
4692 memaddr += bytes;
4693 myaddr += bytes;
4694 len -= bytes;
4695 }
4696 }
4697
4698 no_proc:
4699 /* Round starting address down to longword boundary. */
4700 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4701 /* Round ending address up; get number of longwords that makes. */
4702 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4703 / sizeof (PTRACE_XFER_TYPE));
4704 /* Allocate buffer of that many longwords. */
4705 buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4706
4707 /* Read all the longwords */
4708 errno = 0;
4709 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4710 {
4711 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4712 about coercing an 8 byte integer to a 4 byte pointer. */
4713 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
4714 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4715 (PTRACE_TYPE_ARG4) 0);
4716 if (errno)
4717 break;
4718 }
4719 ret = errno;
4720
4721 /* Copy appropriate bytes out of the buffer. */
4722 if (i > 0)
4723 {
4724 i *= sizeof (PTRACE_XFER_TYPE);
4725 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
4726 memcpy (myaddr,
4727 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4728 i < len ? i : len);
4729 }
4730
4731 return ret;
4732 }
4733
4734 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
4735 memory at MEMADDR. On failure (cannot write to the inferior)
4736 returns the value of errno. Always succeeds if LEN is zero. */
4737
4738 static int
4739 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
4740 {
4741 register int i;
4742 /* Round starting address down to longword boundary. */
4743 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4744 /* Round ending address up; get number of longwords that makes. */
4745 register int count
4746 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
4747 / sizeof (PTRACE_XFER_TYPE);
4748
4749 /* Allocate buffer of that many longwords. */
4750 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *)
4751 alloca (count * sizeof (PTRACE_XFER_TYPE));
4752
4753 int pid = lwpid_of (current_inferior);
4754
4755 if (len == 0)
4756 {
4757 /* Zero length write always succeeds. */
4758 return 0;
4759 }
4760
4761 if (debug_threads)
4762 {
4763 /* Dump up to four bytes. */
4764 unsigned int val = * (unsigned int *) myaddr;
4765 if (len == 1)
4766 val = val & 0xff;
4767 else if (len == 2)
4768 val = val & 0xffff;
4769 else if (len == 3)
4770 val = val & 0xffffff;
4771 debug_printf ("Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4772 val, (long)memaddr);
4773 }
4774
4775 /* Fill start and end extra bytes of buffer with existing memory data. */
4776
4777 errno = 0;
4778 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4779 about coercing an 8 byte integer to a 4 byte pointer. */
4780 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4781 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4782 (PTRACE_TYPE_ARG4) 0);
4783 if (errno)
4784 return errno;
4785
4786 if (count > 1)
4787 {
4788 errno = 0;
4789 buffer[count - 1]
4790 = ptrace (PTRACE_PEEKTEXT, pid,
4791 /* Coerce to a uintptr_t first to avoid potential gcc warning
4792 about coercing an 8 byte integer to a 4 byte pointer. */
4793 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
4794 * sizeof (PTRACE_XFER_TYPE)),
4795 (PTRACE_TYPE_ARG4) 0);
4796 if (errno)
4797 return errno;
4798 }
4799
4800 /* Copy data to be written over corresponding part of buffer. */
4801
4802 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
4803 myaddr, len);
4804
4805 /* Write the entire buffer. */
4806
4807 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4808 {
4809 errno = 0;
4810 ptrace (PTRACE_POKETEXT, pid,
4811 /* Coerce to a uintptr_t first to avoid potential gcc warning
4812 about coercing an 8 byte integer to a 4 byte pointer. */
4813 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
4814 (PTRACE_TYPE_ARG4) buffer[i]);
4815 if (errno)
4816 return errno;
4817 }
4818
4819 return 0;
4820 }
4821
4822 static void
4823 linux_look_up_symbols (void)
4824 {
4825 #ifdef USE_THREAD_DB
4826 struct process_info *proc = current_process ();
4827
4828 if (proc->private->thread_db != NULL)
4829 return;
4830
4831 /* If the kernel supports tracing clones, then we don't need to
4832 use the magic thread event breakpoint to learn about
4833 threads. */
4834 thread_db_init (!linux_supports_traceclone ());
4835 #endif
4836 }
4837
4838 static void
4839 linux_request_interrupt (void)
4840 {
4841 extern unsigned long signal_pid;
4842
4843 if (!ptid_equal (cont_thread, null_ptid)
4844 && !ptid_equal (cont_thread, minus_one_ptid))
4845 {
4846 int lwpid;
4847
4848 lwpid = lwpid_of (current_inferior);
4849 kill_lwp (lwpid, SIGINT);
4850 }
4851 else
4852 kill_lwp (signal_pid, SIGINT);
4853 }
4854
4855 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4856 to debugger memory starting at MYADDR. */
4857
4858 static int
4859 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4860 {
4861 char filename[PATH_MAX];
4862 int fd, n;
4863 int pid = lwpid_of (current_inferior);
4864
4865 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4866
4867 fd = open (filename, O_RDONLY);
4868 if (fd < 0)
4869 return -1;
4870
4871 if (offset != (CORE_ADDR) 0
4872 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4873 n = -1;
4874 else
4875 n = read (fd, myaddr, len);
4876
4877 close (fd);
4878
4879 return n;
4880 }
4881
4882 /* These breakpoint and watchpoint related wrapper functions simply
4883 pass on the function call if the target has registered a
4884 corresponding function. */
4885
4886 static int
4887 linux_supports_z_point_type (char z_type)
4888 {
4889 return (the_low_target.supports_z_point_type != NULL
4890 && the_low_target.supports_z_point_type (z_type));
4891 }
4892
4893 static int
4894 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
4895 int size, struct raw_breakpoint *bp)
4896 {
4897 if (the_low_target.insert_point != NULL)
4898 return the_low_target.insert_point (type, addr, size, bp);
4899 else
4900 /* Unsupported (see target.h). */
4901 return 1;
4902 }
4903
4904 static int
4905 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
4906 int size, struct raw_breakpoint *bp)
4907 {
4908 if (the_low_target.remove_point != NULL)
4909 return the_low_target.remove_point (type, addr, size, bp);
4910 else
4911 /* Unsupported (see target.h). */
4912 return 1;
4913 }
4914
4915 static int
4916 linux_stopped_by_watchpoint (void)
4917 {
4918 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4919
4920 return lwp->stopped_by_watchpoint;
4921 }
4922
4923 static CORE_ADDR
4924 linux_stopped_data_address (void)
4925 {
4926 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4927
4928 return lwp->stopped_data_address;
4929 }
4930
4931 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
4932 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
4933 && defined(PT_TEXT_END_ADDR)
4934
4935 /* This is only used for targets that define PT_TEXT_ADDR,
4936 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
4937 the target has different ways of acquiring this information, like
4938 loadmaps. */
4939
4940 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4941 to tell gdb about. */
4942
4943 static int
4944 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4945 {
4946 unsigned long text, text_end, data;
4947 int pid = lwpid_of (get_thread_lwp (current_inferior));
4948
4949 errno = 0;
4950
4951 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
4952 (PTRACE_TYPE_ARG4) 0);
4953 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
4954 (PTRACE_TYPE_ARG4) 0);
4955 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
4956 (PTRACE_TYPE_ARG4) 0);
4957
4958 if (errno == 0)
4959 {
4960 /* Both text and data offsets produced at compile-time (and so
4961 used by gdb) are relative to the beginning of the program,
4962 with the data segment immediately following the text segment.
4963 However, the actual runtime layout in memory may put the data
4964 somewhere else, so when we send gdb a data base-address, we
4965 use the real data base address and subtract the compile-time
4966 data base-address from it (which is just the length of the
4967 text segment). BSS immediately follows data in both
4968 cases. */
4969 *text_p = text;
4970 *data_p = data - (text_end - text);
4971
4972 return 1;
4973 }
4974 return 0;
4975 }
4976 #endif
4977
4978 static int
4979 linux_qxfer_osdata (const char *annex,
4980 unsigned char *readbuf, unsigned const char *writebuf,
4981 CORE_ADDR offset, int len)
4982 {
4983 return linux_common_xfer_osdata (annex, readbuf, offset, len);
4984 }
4985
4986 /* Convert a native/host siginfo object, into/from the siginfo in the
4987 layout of the inferiors' architecture. */
4988
4989 static void
4990 siginfo_fixup (siginfo_t *siginfo, void *inf_siginfo, int direction)
4991 {
4992 int done = 0;
4993
4994 if (the_low_target.siginfo_fixup != NULL)
4995 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4996
4997 /* If there was no callback, or the callback didn't do anything,
4998 then just do a straight memcpy. */
4999 if (!done)
5000 {
5001 if (direction == 1)
5002 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
5003 else
5004 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
5005 }
5006 }
5007
5008 static int
5009 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
5010 unsigned const char *writebuf, CORE_ADDR offset, int len)
5011 {
5012 int pid;
5013 siginfo_t siginfo;
5014 char inf_siginfo[sizeof (siginfo_t)];
5015
5016 if (current_inferior == NULL)
5017 return -1;
5018
5019 pid = lwpid_of (current_inferior);
5020
5021 if (debug_threads)
5022 debug_printf ("%s siginfo for lwp %d.\n",
5023 readbuf != NULL ? "Reading" : "Writing",
5024 pid);
5025
5026 if (offset >= sizeof (siginfo))
5027 return -1;
5028
5029 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5030 return -1;
5031
5032 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
5033 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
5034 inferior with a 64-bit GDBSERVER should look the same as debugging it
5035 with a 32-bit GDBSERVER, we need to convert it. */
5036 siginfo_fixup (&siginfo, inf_siginfo, 0);
5037
5038 if (offset + len > sizeof (siginfo))
5039 len = sizeof (siginfo) - offset;
5040
5041 if (readbuf != NULL)
5042 memcpy (readbuf, inf_siginfo + offset, len);
5043 else
5044 {
5045 memcpy (inf_siginfo + offset, writebuf, len);
5046
5047 /* Convert back to ptrace layout before flushing it out. */
5048 siginfo_fixup (&siginfo, inf_siginfo, 1);
5049
5050 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
5051 return -1;
5052 }
5053
5054 return len;
5055 }
5056
5057 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
5058 so we notice when children change state; as the handler for the
5059 sigsuspend in my_waitpid. */
5060
5061 static void
5062 sigchld_handler (int signo)
5063 {
5064 int old_errno = errno;
5065
5066 if (debug_threads)
5067 {
5068 do
5069 {
5070 /* fprintf is not async-signal-safe, so call write
5071 directly. */
5072 if (write (2, "sigchld_handler\n",
5073 sizeof ("sigchld_handler\n") - 1) < 0)
5074 break; /* just ignore */
5075 } while (0);
5076 }
5077
5078 if (target_is_async_p ())
5079 async_file_mark (); /* trigger a linux_wait */
5080
5081 errno = old_errno;
5082 }
5083
5084 static int
5085 linux_supports_non_stop (void)
5086 {
5087 return 1;
5088 }
5089
5090 static int
5091 linux_async (int enable)
5092 {
5093 int previous = target_is_async_p ();
5094
5095 if (debug_threads)
5096 debug_printf ("linux_async (%d), previous=%d\n",
5097 enable, previous);
5098
5099 if (previous != enable)
5100 {
5101 sigset_t mask;
5102 sigemptyset (&mask);
5103 sigaddset (&mask, SIGCHLD);
5104
5105 sigprocmask (SIG_BLOCK, &mask, NULL);
5106
5107 if (enable)
5108 {
5109 if (pipe (linux_event_pipe) == -1)
5110 {
5111 linux_event_pipe[0] = -1;
5112 linux_event_pipe[1] = -1;
5113 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5114
5115 warning ("creating event pipe failed.");
5116 return previous;
5117 }
5118
5119 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
5120 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
5121
5122 /* Register the event loop handler. */
5123 add_file_handler (linux_event_pipe[0],
5124 handle_target_event, NULL);
5125
5126 /* Always trigger a linux_wait. */
5127 async_file_mark ();
5128 }
5129 else
5130 {
5131 delete_file_handler (linux_event_pipe[0]);
5132
5133 close (linux_event_pipe[0]);
5134 close (linux_event_pipe[1]);
5135 linux_event_pipe[0] = -1;
5136 linux_event_pipe[1] = -1;
5137 }
5138
5139 sigprocmask (SIG_UNBLOCK, &mask, NULL);
5140 }
5141
5142 return previous;
5143 }
5144
5145 static int
5146 linux_start_non_stop (int nonstop)
5147 {
5148 /* Register or unregister from event-loop accordingly. */
5149 linux_async (nonstop);
5150
5151 if (target_is_async_p () != (nonstop != 0))
5152 return -1;
5153
5154 return 0;
5155 }
5156
5157 static int
5158 linux_supports_multi_process (void)
5159 {
5160 return 1;
5161 }
5162
5163 static int
5164 linux_supports_disable_randomization (void)
5165 {
5166 #ifdef HAVE_PERSONALITY
5167 return 1;
5168 #else
5169 return 0;
5170 #endif
5171 }
5172
5173 static int
5174 linux_supports_agent (void)
5175 {
5176 return 1;
5177 }
5178
5179 static int
5180 linux_supports_range_stepping (void)
5181 {
5182 if (*the_low_target.supports_range_stepping == NULL)
5183 return 0;
5184
5185 return (*the_low_target.supports_range_stepping) ();
5186 }
5187
5188 /* Enumerate spufs IDs for process PID. */
5189 static int
5190 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
5191 {
5192 int pos = 0;
5193 int written = 0;
5194 char path[128];
5195 DIR *dir;
5196 struct dirent *entry;
5197
5198 sprintf (path, "/proc/%ld/fd", pid);
5199 dir = opendir (path);
5200 if (!dir)
5201 return -1;
5202
5203 rewinddir (dir);
5204 while ((entry = readdir (dir)) != NULL)
5205 {
5206 struct stat st;
5207 struct statfs stfs;
5208 int fd;
5209
5210 fd = atoi (entry->d_name);
5211 if (!fd)
5212 continue;
5213
5214 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
5215 if (stat (path, &st) != 0)
5216 continue;
5217 if (!S_ISDIR (st.st_mode))
5218 continue;
5219
5220 if (statfs (path, &stfs) != 0)
5221 continue;
5222 if (stfs.f_type != SPUFS_MAGIC)
5223 continue;
5224
5225 if (pos >= offset && pos + 4 <= offset + len)
5226 {
5227 *(unsigned int *)(buf + pos - offset) = fd;
5228 written += 4;
5229 }
5230 pos += 4;
5231 }
5232
5233 closedir (dir);
5234 return written;
5235 }
5236
5237 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
5238 object type, using the /proc file system. */
5239 static int
5240 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
5241 unsigned const char *writebuf,
5242 CORE_ADDR offset, int len)
5243 {
5244 long pid = lwpid_of (current_inferior);
5245 char buf[128];
5246 int fd = 0;
5247 int ret = 0;
5248
5249 if (!writebuf && !readbuf)
5250 return -1;
5251
5252 if (!*annex)
5253 {
5254 if (!readbuf)
5255 return -1;
5256 else
5257 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
5258 }
5259
5260 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
5261 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
5262 if (fd <= 0)
5263 return -1;
5264
5265 if (offset != 0
5266 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5267 {
5268 close (fd);
5269 return 0;
5270 }
5271
5272 if (writebuf)
5273 ret = write (fd, writebuf, (size_t) len);
5274 else
5275 ret = read (fd, readbuf, (size_t) len);
5276
5277 close (fd);
5278 return ret;
5279 }
5280
5281 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
5282 struct target_loadseg
5283 {
5284 /* Core address to which the segment is mapped. */
5285 Elf32_Addr addr;
5286 /* VMA recorded in the program header. */
5287 Elf32_Addr p_vaddr;
5288 /* Size of this segment in memory. */
5289 Elf32_Word p_memsz;
5290 };
5291
5292 # if defined PT_GETDSBT
5293 struct target_loadmap
5294 {
5295 /* Protocol version number, must be zero. */
5296 Elf32_Word version;
5297 /* Pointer to the DSBT table, its size, and the DSBT index. */
5298 unsigned *dsbt_table;
5299 unsigned dsbt_size, dsbt_index;
5300 /* Number of segments in this map. */
5301 Elf32_Word nsegs;
5302 /* The actual memory map. */
5303 struct target_loadseg segs[/*nsegs*/];
5304 };
5305 # define LINUX_LOADMAP PT_GETDSBT
5306 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
5307 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
5308 # else
5309 struct target_loadmap
5310 {
5311 /* Protocol version number, must be zero. */
5312 Elf32_Half version;
5313 /* Number of segments in this map. */
5314 Elf32_Half nsegs;
5315 /* The actual memory map. */
5316 struct target_loadseg segs[/*nsegs*/];
5317 };
5318 # define LINUX_LOADMAP PTRACE_GETFDPIC
5319 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
5320 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
5321 # endif
5322
5323 static int
5324 linux_read_loadmap (const char *annex, CORE_ADDR offset,
5325 unsigned char *myaddr, unsigned int len)
5326 {
5327 int pid = lwpid_of (current_inferior);
5328 int addr = -1;
5329 struct target_loadmap *data = NULL;
5330 unsigned int actual_length, copy_length;
5331
5332 if (strcmp (annex, "exec") == 0)
5333 addr = (int) LINUX_LOADMAP_EXEC;
5334 else if (strcmp (annex, "interp") == 0)
5335 addr = (int) LINUX_LOADMAP_INTERP;
5336 else
5337 return -1;
5338
5339 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
5340 return -1;
5341
5342 if (data == NULL)
5343 return -1;
5344
5345 actual_length = sizeof (struct target_loadmap)
5346 + sizeof (struct target_loadseg) * data->nsegs;
5347
5348 if (offset < 0 || offset > actual_length)
5349 return -1;
5350
5351 copy_length = actual_length - offset < len ? actual_length - offset : len;
5352 memcpy (myaddr, (char *) data + offset, copy_length);
5353 return copy_length;
5354 }
5355 #else
5356 # define linux_read_loadmap NULL
5357 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
5358
5359 static void
5360 linux_process_qsupported (const char *query)
5361 {
5362 if (the_low_target.process_qsupported != NULL)
5363 the_low_target.process_qsupported (query);
5364 }
5365
5366 static int
5367 linux_supports_tracepoints (void)
5368 {
5369 if (*the_low_target.supports_tracepoints == NULL)
5370 return 0;
5371
5372 return (*the_low_target.supports_tracepoints) ();
5373 }
5374
5375 static CORE_ADDR
5376 linux_read_pc (struct regcache *regcache)
5377 {
5378 if (the_low_target.get_pc == NULL)
5379 return 0;
5380
5381 return (*the_low_target.get_pc) (regcache);
5382 }
5383
5384 static void
5385 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
5386 {
5387 gdb_assert (the_low_target.set_pc != NULL);
5388
5389 (*the_low_target.set_pc) (regcache, pc);
5390 }
5391
5392 static int
5393 linux_thread_stopped (struct thread_info *thread)
5394 {
5395 return get_thread_lwp (thread)->stopped;
5396 }
5397
5398 /* This exposes stop-all-threads functionality to other modules. */
5399
5400 static void
5401 linux_pause_all (int freeze)
5402 {
5403 stop_all_lwps (freeze, NULL);
5404 }
5405
5406 /* This exposes unstop-all-threads functionality to other gdbserver
5407 modules. */
5408
5409 static void
5410 linux_unpause_all (int unfreeze)
5411 {
5412 unstop_all_lwps (unfreeze, NULL);
5413 }
5414
5415 static int
5416 linux_prepare_to_access_memory (void)
5417 {
5418 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5419 running LWP. */
5420 if (non_stop)
5421 linux_pause_all (1);
5422 return 0;
5423 }
5424
5425 static void
5426 linux_done_accessing_memory (void)
5427 {
5428 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
5429 running LWP. */
5430 if (non_stop)
5431 linux_unpause_all (1);
5432 }
5433
5434 static int
5435 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
5436 CORE_ADDR collector,
5437 CORE_ADDR lockaddr,
5438 ULONGEST orig_size,
5439 CORE_ADDR *jump_entry,
5440 CORE_ADDR *trampoline,
5441 ULONGEST *trampoline_size,
5442 unsigned char *jjump_pad_insn,
5443 ULONGEST *jjump_pad_insn_size,
5444 CORE_ADDR *adjusted_insn_addr,
5445 CORE_ADDR *adjusted_insn_addr_end,
5446 char *err)
5447 {
5448 return (*the_low_target.install_fast_tracepoint_jump_pad)
5449 (tpoint, tpaddr, collector, lockaddr, orig_size,
5450 jump_entry, trampoline, trampoline_size,
5451 jjump_pad_insn, jjump_pad_insn_size,
5452 adjusted_insn_addr, adjusted_insn_addr_end,
5453 err);
5454 }
5455
5456 static struct emit_ops *
5457 linux_emit_ops (void)
5458 {
5459 if (the_low_target.emit_ops != NULL)
5460 return (*the_low_target.emit_ops) ();
5461 else
5462 return NULL;
5463 }
5464
5465 static int
5466 linux_get_min_fast_tracepoint_insn_len (void)
5467 {
5468 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
5469 }
5470
5471 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
5472
5473 static int
5474 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
5475 CORE_ADDR *phdr_memaddr, int *num_phdr)
5476 {
5477 char filename[PATH_MAX];
5478 int fd;
5479 const int auxv_size = is_elf64
5480 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
5481 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
5482
5483 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5484
5485 fd = open (filename, O_RDONLY);
5486 if (fd < 0)
5487 return 1;
5488
5489 *phdr_memaddr = 0;
5490 *num_phdr = 0;
5491 while (read (fd, buf, auxv_size) == auxv_size
5492 && (*phdr_memaddr == 0 || *num_phdr == 0))
5493 {
5494 if (is_elf64)
5495 {
5496 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
5497
5498 switch (aux->a_type)
5499 {
5500 case AT_PHDR:
5501 *phdr_memaddr = aux->a_un.a_val;
5502 break;
5503 case AT_PHNUM:
5504 *num_phdr = aux->a_un.a_val;
5505 break;
5506 }
5507 }
5508 else
5509 {
5510 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
5511
5512 switch (aux->a_type)
5513 {
5514 case AT_PHDR:
5515 *phdr_memaddr = aux->a_un.a_val;
5516 break;
5517 case AT_PHNUM:
5518 *num_phdr = aux->a_un.a_val;
5519 break;
5520 }
5521 }
5522 }
5523
5524 close (fd);
5525
5526 if (*phdr_memaddr == 0 || *num_phdr == 0)
5527 {
5528 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
5529 "phdr_memaddr = %ld, phdr_num = %d",
5530 (long) *phdr_memaddr, *num_phdr);
5531 return 2;
5532 }
5533
5534 return 0;
5535 }
5536
5537 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
5538
5539 static CORE_ADDR
5540 get_dynamic (const int pid, const int is_elf64)
5541 {
5542 CORE_ADDR phdr_memaddr, relocation;
5543 int num_phdr, i;
5544 unsigned char *phdr_buf;
5545 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
5546
5547 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
5548 return 0;
5549
5550 gdb_assert (num_phdr < 100); /* Basic sanity check. */
5551 phdr_buf = alloca (num_phdr * phdr_size);
5552
5553 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
5554 return 0;
5555
5556 /* Compute relocation: it is expected to be 0 for "regular" executables,
5557 non-zero for PIE ones. */
5558 relocation = -1;
5559 for (i = 0; relocation == -1 && i < num_phdr; i++)
5560 if (is_elf64)
5561 {
5562 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5563
5564 if (p->p_type == PT_PHDR)
5565 relocation = phdr_memaddr - p->p_vaddr;
5566 }
5567 else
5568 {
5569 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5570
5571 if (p->p_type == PT_PHDR)
5572 relocation = phdr_memaddr - p->p_vaddr;
5573 }
5574
5575 if (relocation == -1)
5576 {
5577 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
5578 any real world executables, including PIE executables, have always
5579 PT_PHDR present. PT_PHDR is not present in some shared libraries or
5580 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
5581 or present DT_DEBUG anyway (fpc binaries are statically linked).
5582
5583 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
5584
5585 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
5586
5587 return 0;
5588 }
5589
5590 for (i = 0; i < num_phdr; i++)
5591 {
5592 if (is_elf64)
5593 {
5594 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
5595
5596 if (p->p_type == PT_DYNAMIC)
5597 return p->p_vaddr + relocation;
5598 }
5599 else
5600 {
5601 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
5602
5603 if (p->p_type == PT_DYNAMIC)
5604 return p->p_vaddr + relocation;
5605 }
5606 }
5607
5608 return 0;
5609 }
5610
5611 /* Return &_r_debug in the inferior, or -1 if not present. Return value
5612 can be 0 if the inferior does not yet have the library list initialized.
5613 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
5614 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
5615
5616 static CORE_ADDR
5617 get_r_debug (const int pid, const int is_elf64)
5618 {
5619 CORE_ADDR dynamic_memaddr;
5620 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
5621 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
5622 CORE_ADDR map = -1;
5623
5624 dynamic_memaddr = get_dynamic (pid, is_elf64);
5625 if (dynamic_memaddr == 0)
5626 return map;
5627
5628 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
5629 {
5630 if (is_elf64)
5631 {
5632 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
5633 #ifdef DT_MIPS_RLD_MAP
5634 union
5635 {
5636 Elf64_Xword map;
5637 unsigned char buf[sizeof (Elf64_Xword)];
5638 }
5639 rld_map;
5640
5641 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5642 {
5643 if (linux_read_memory (dyn->d_un.d_val,
5644 rld_map.buf, sizeof (rld_map.buf)) == 0)
5645 return rld_map.map;
5646 else
5647 break;
5648 }
5649 #endif /* DT_MIPS_RLD_MAP */
5650
5651 if (dyn->d_tag == DT_DEBUG && map == -1)
5652 map = dyn->d_un.d_val;
5653
5654 if (dyn->d_tag == DT_NULL)
5655 break;
5656 }
5657 else
5658 {
5659 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
5660 #ifdef DT_MIPS_RLD_MAP
5661 union
5662 {
5663 Elf32_Word map;
5664 unsigned char buf[sizeof (Elf32_Word)];
5665 }
5666 rld_map;
5667
5668 if (dyn->d_tag == DT_MIPS_RLD_MAP)
5669 {
5670 if (linux_read_memory (dyn->d_un.d_val,
5671 rld_map.buf, sizeof (rld_map.buf)) == 0)
5672 return rld_map.map;
5673 else
5674 break;
5675 }
5676 #endif /* DT_MIPS_RLD_MAP */
5677
5678 if (dyn->d_tag == DT_DEBUG && map == -1)
5679 map = dyn->d_un.d_val;
5680
5681 if (dyn->d_tag == DT_NULL)
5682 break;
5683 }
5684
5685 dynamic_memaddr += dyn_size;
5686 }
5687
5688 return map;
5689 }
5690
5691 /* Read one pointer from MEMADDR in the inferior. */
5692
5693 static int
5694 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
5695 {
5696 int ret;
5697
5698 /* Go through a union so this works on either big or little endian
5699 hosts, when the inferior's pointer size is smaller than the size
5700 of CORE_ADDR. It is assumed the inferior's endianness is the
5701 same of the superior's. */
5702 union
5703 {
5704 CORE_ADDR core_addr;
5705 unsigned int ui;
5706 unsigned char uc;
5707 } addr;
5708
5709 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
5710 if (ret == 0)
5711 {
5712 if (ptr_size == sizeof (CORE_ADDR))
5713 *ptr = addr.core_addr;
5714 else if (ptr_size == sizeof (unsigned int))
5715 *ptr = addr.ui;
5716 else
5717 gdb_assert_not_reached ("unhandled pointer size");
5718 }
5719 return ret;
5720 }
5721
5722 struct link_map_offsets
5723 {
5724 /* Offset and size of r_debug.r_version. */
5725 int r_version_offset;
5726
5727 /* Offset and size of r_debug.r_map. */
5728 int r_map_offset;
5729
5730 /* Offset to l_addr field in struct link_map. */
5731 int l_addr_offset;
5732
5733 /* Offset to l_name field in struct link_map. */
5734 int l_name_offset;
5735
5736 /* Offset to l_ld field in struct link_map. */
5737 int l_ld_offset;
5738
5739 /* Offset to l_next field in struct link_map. */
5740 int l_next_offset;
5741
5742 /* Offset to l_prev field in struct link_map. */
5743 int l_prev_offset;
5744 };
5745
5746 /* Construct qXfer:libraries-svr4:read reply. */
5747
5748 static int
5749 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
5750 unsigned const char *writebuf,
5751 CORE_ADDR offset, int len)
5752 {
5753 char *document;
5754 unsigned document_len;
5755 struct process_info_private *const priv = current_process ()->private;
5756 char filename[PATH_MAX];
5757 int pid, is_elf64;
5758
5759 static const struct link_map_offsets lmo_32bit_offsets =
5760 {
5761 0, /* r_version offset. */
5762 4, /* r_debug.r_map offset. */
5763 0, /* l_addr offset in link_map. */
5764 4, /* l_name offset in link_map. */
5765 8, /* l_ld offset in link_map. */
5766 12, /* l_next offset in link_map. */
5767 16 /* l_prev offset in link_map. */
5768 };
5769
5770 static const struct link_map_offsets lmo_64bit_offsets =
5771 {
5772 0, /* r_version offset. */
5773 8, /* r_debug.r_map offset. */
5774 0, /* l_addr offset in link_map. */
5775 8, /* l_name offset in link_map. */
5776 16, /* l_ld offset in link_map. */
5777 24, /* l_next offset in link_map. */
5778 32 /* l_prev offset in link_map. */
5779 };
5780 const struct link_map_offsets *lmo;
5781 unsigned int machine;
5782 int ptr_size;
5783 CORE_ADDR lm_addr = 0, lm_prev = 0;
5784 int allocated = 1024;
5785 char *p;
5786 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
5787 int header_done = 0;
5788
5789 if (writebuf != NULL)
5790 return -2;
5791 if (readbuf == NULL)
5792 return -1;
5793
5794 pid = lwpid_of (current_inferior);
5795 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
5796 is_elf64 = elf_64_file_p (filename, &machine);
5797 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
5798 ptr_size = is_elf64 ? 8 : 4;
5799
5800 while (annex[0] != '\0')
5801 {
5802 const char *sep;
5803 CORE_ADDR *addrp;
5804 int len;
5805
5806 sep = strchr (annex, '=');
5807 if (sep == NULL)
5808 break;
5809
5810 len = sep - annex;
5811 if (len == 5 && strncmp (annex, "start", 5) == 0)
5812 addrp = &lm_addr;
5813 else if (len == 4 && strncmp (annex, "prev", 4) == 0)
5814 addrp = &lm_prev;
5815 else
5816 {
5817 annex = strchr (sep, ';');
5818 if (annex == NULL)
5819 break;
5820 annex++;
5821 continue;
5822 }
5823
5824 annex = decode_address_to_semicolon (addrp, sep + 1);
5825 }
5826
5827 if (lm_addr == 0)
5828 {
5829 int r_version = 0;
5830
5831 if (priv->r_debug == 0)
5832 priv->r_debug = get_r_debug (pid, is_elf64);
5833
5834 /* We failed to find DT_DEBUG. Such situation will not change
5835 for this inferior - do not retry it. Report it to GDB as
5836 E01, see for the reasons at the GDB solib-svr4.c side. */
5837 if (priv->r_debug == (CORE_ADDR) -1)
5838 return -1;
5839
5840 if (priv->r_debug != 0)
5841 {
5842 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
5843 (unsigned char *) &r_version,
5844 sizeof (r_version)) != 0
5845 || r_version != 1)
5846 {
5847 warning ("unexpected r_debug version %d", r_version);
5848 }
5849 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
5850 &lm_addr, ptr_size) != 0)
5851 {
5852 warning ("unable to read r_map from 0x%lx",
5853 (long) priv->r_debug + lmo->r_map_offset);
5854 }
5855 }
5856 }
5857
5858 document = xmalloc (allocated);
5859 strcpy (document, "<library-list-svr4 version=\"1.0\"");
5860 p = document + strlen (document);
5861
5862 while (lm_addr
5863 && read_one_ptr (lm_addr + lmo->l_name_offset,
5864 &l_name, ptr_size) == 0
5865 && read_one_ptr (lm_addr + lmo->l_addr_offset,
5866 &l_addr, ptr_size) == 0
5867 && read_one_ptr (lm_addr + lmo->l_ld_offset,
5868 &l_ld, ptr_size) == 0
5869 && read_one_ptr (lm_addr + lmo->l_prev_offset,
5870 &l_prev, ptr_size) == 0
5871 && read_one_ptr (lm_addr + lmo->l_next_offset,
5872 &l_next, ptr_size) == 0)
5873 {
5874 unsigned char libname[PATH_MAX];
5875
5876 if (lm_prev != l_prev)
5877 {
5878 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
5879 (long) lm_prev, (long) l_prev);
5880 break;
5881 }
5882
5883 /* Ignore the first entry even if it has valid name as the first entry
5884 corresponds to the main executable. The first entry should not be
5885 skipped if the dynamic loader was loaded late by a static executable
5886 (see solib-svr4.c parameter ignore_first). But in such case the main
5887 executable does not have PT_DYNAMIC present and this function already
5888 exited above due to failed get_r_debug. */
5889 if (lm_prev == 0)
5890 {
5891 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
5892 p = p + strlen (p);
5893 }
5894 else
5895 {
5896 /* Not checking for error because reading may stop before
5897 we've got PATH_MAX worth of characters. */
5898 libname[0] = '\0';
5899 linux_read_memory (l_name, libname, sizeof (libname) - 1);
5900 libname[sizeof (libname) - 1] = '\0';
5901 if (libname[0] != '\0')
5902 {
5903 /* 6x the size for xml_escape_text below. */
5904 size_t len = 6 * strlen ((char *) libname);
5905 char *name;
5906
5907 if (!header_done)
5908 {
5909 /* Terminate `<library-list-svr4'. */
5910 *p++ = '>';
5911 header_done = 1;
5912 }
5913
5914 while (allocated < p - document + len + 200)
5915 {
5916 /* Expand to guarantee sufficient storage. */
5917 uintptr_t document_len = p - document;
5918
5919 document = xrealloc (document, 2 * allocated);
5920 allocated *= 2;
5921 p = document + document_len;
5922 }
5923
5924 name = xml_escape_text ((char *) libname);
5925 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
5926 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
5927 name, (unsigned long) lm_addr,
5928 (unsigned long) l_addr, (unsigned long) l_ld);
5929 free (name);
5930 }
5931 }
5932
5933 lm_prev = lm_addr;
5934 lm_addr = l_next;
5935 }
5936
5937 if (!header_done)
5938 {
5939 /* Empty list; terminate `<library-list-svr4'. */
5940 strcpy (p, "/>");
5941 }
5942 else
5943 strcpy (p, "</library-list-svr4>");
5944
5945 document_len = strlen (document);
5946 if (offset < document_len)
5947 document_len -= offset;
5948 else
5949 document_len = 0;
5950 if (len > document_len)
5951 len = document_len;
5952
5953 memcpy (readbuf, document + offset, len);
5954 xfree (document);
5955
5956 return len;
5957 }
5958
5959 #ifdef HAVE_LINUX_BTRACE
5960
5961 /* See to_enable_btrace target method. */
5962
5963 static struct btrace_target_info *
5964 linux_low_enable_btrace (ptid_t ptid)
5965 {
5966 struct btrace_target_info *tinfo;
5967
5968 tinfo = linux_enable_btrace (ptid);
5969
5970 if (tinfo != NULL)
5971 {
5972 struct thread_info *thread = find_thread_ptid (ptid);
5973 struct regcache *regcache = get_thread_regcache (thread, 0);
5974
5975 tinfo->ptr_bits = register_size (regcache->tdesc, 0) * 8;
5976 }
5977
5978 return tinfo;
5979 }
5980
5981 /* See to_disable_btrace target method. */
5982
5983 static int
5984 linux_low_disable_btrace (struct btrace_target_info *tinfo)
5985 {
5986 enum btrace_error err;
5987
5988 err = linux_disable_btrace (tinfo);
5989 return (err == BTRACE_ERR_NONE ? 0 : -1);
5990 }
5991
5992 /* See to_read_btrace target method. */
5993
5994 static int
5995 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
5996 int type)
5997 {
5998 VEC (btrace_block_s) *btrace;
5999 struct btrace_block *block;
6000 enum btrace_error err;
6001 int i;
6002
6003 btrace = NULL;
6004 err = linux_read_btrace (&btrace, tinfo, type);
6005 if (err != BTRACE_ERR_NONE)
6006 {
6007 if (err == BTRACE_ERR_OVERFLOW)
6008 buffer_grow_str0 (buffer, "E.Overflow.");
6009 else
6010 buffer_grow_str0 (buffer, "E.Generic Error.");
6011
6012 return -1;
6013 }
6014
6015 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
6016 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
6017
6018 for (i = 0; VEC_iterate (btrace_block_s, btrace, i, block); i++)
6019 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
6020 paddress (block->begin), paddress (block->end));
6021
6022 buffer_grow_str0 (buffer, "</btrace>\n");
6023
6024 VEC_free (btrace_block_s, btrace);
6025
6026 return 0;
6027 }
6028 #endif /* HAVE_LINUX_BTRACE */
6029
6030 static struct target_ops linux_target_ops = {
6031 linux_create_inferior,
6032 linux_attach,
6033 linux_kill,
6034 linux_detach,
6035 linux_mourn,
6036 linux_join,
6037 linux_thread_alive,
6038 linux_resume,
6039 linux_wait,
6040 linux_fetch_registers,
6041 linux_store_registers,
6042 linux_prepare_to_access_memory,
6043 linux_done_accessing_memory,
6044 linux_read_memory,
6045 linux_write_memory,
6046 linux_look_up_symbols,
6047 linux_request_interrupt,
6048 linux_read_auxv,
6049 linux_supports_z_point_type,
6050 linux_insert_point,
6051 linux_remove_point,
6052 linux_stopped_by_watchpoint,
6053 linux_stopped_data_address,
6054 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6055 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6056 && defined(PT_TEXT_END_ADDR)
6057 linux_read_offsets,
6058 #else
6059 NULL,
6060 #endif
6061 #ifdef USE_THREAD_DB
6062 thread_db_get_tls_address,
6063 #else
6064 NULL,
6065 #endif
6066 linux_qxfer_spu,
6067 hostio_last_error_from_errno,
6068 linux_qxfer_osdata,
6069 linux_xfer_siginfo,
6070 linux_supports_non_stop,
6071 linux_async,
6072 linux_start_non_stop,
6073 linux_supports_multi_process,
6074 #ifdef USE_THREAD_DB
6075 thread_db_handle_monitor_command,
6076 #else
6077 NULL,
6078 #endif
6079 linux_common_core_of_thread,
6080 linux_read_loadmap,
6081 linux_process_qsupported,
6082 linux_supports_tracepoints,
6083 linux_read_pc,
6084 linux_write_pc,
6085 linux_thread_stopped,
6086 NULL,
6087 linux_pause_all,
6088 linux_unpause_all,
6089 linux_cancel_breakpoints,
6090 linux_stabilize_threads,
6091 linux_install_fast_tracepoint_jump_pad,
6092 linux_emit_ops,
6093 linux_supports_disable_randomization,
6094 linux_get_min_fast_tracepoint_insn_len,
6095 linux_qxfer_libraries_svr4,
6096 linux_supports_agent,
6097 #ifdef HAVE_LINUX_BTRACE
6098 linux_supports_btrace,
6099 linux_low_enable_btrace,
6100 linux_low_disable_btrace,
6101 linux_low_read_btrace,
6102 #else
6103 NULL,
6104 NULL,
6105 NULL,
6106 NULL,
6107 #endif
6108 linux_supports_range_stepping,
6109 };
6110
6111 static void
6112 linux_init_signals ()
6113 {
6114 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
6115 to find what the cancel signal actually is. */
6116 #ifndef __ANDROID__ /* Bionic doesn't use SIGRTMIN the way glibc does. */
6117 signal (__SIGRTMIN+1, SIG_IGN);
6118 #endif
6119 }
6120
6121 #ifdef HAVE_LINUX_REGSETS
6122 void
6123 initialize_regsets_info (struct regsets_info *info)
6124 {
6125 for (info->num_regsets = 0;
6126 info->regsets[info->num_regsets].size >= 0;
6127 info->num_regsets++)
6128 ;
6129 }
6130 #endif
6131
6132 void
6133 initialize_low (void)
6134 {
6135 struct sigaction sigchld_action;
6136 memset (&sigchld_action, 0, sizeof (sigchld_action));
6137 set_target_ops (&linux_target_ops);
6138 set_breakpoint_data (the_low_target.breakpoint,
6139 the_low_target.breakpoint_len);
6140 linux_init_signals ();
6141 linux_ptrace_init_warnings ();
6142
6143 sigchld_action.sa_handler = sigchld_handler;
6144 sigemptyset (&sigchld_action.sa_mask);
6145 sigchld_action.sa_flags = SA_RESTART;
6146 sigaction (SIGCHLD, &sigchld_action, NULL);
6147
6148 initialize_low_arch ();
6149 }
This page took 0.283453 seconds and 4 git commands to generate.