Remove usage of find_inferior in find_lwp_pid
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int
1245 last_thread_of_process_p (int pid)
1246 {
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265 }
1266
1267 /* Kill LWP. */
1268
1269 static void
1270 linux_kill_one_lwp (struct lwp_info *lwp)
1271 {
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309 }
1310
1311 /* Kill LWP and wait for it to die. */
1312
1313 static void
1314 kill_wait_lwp (struct lwp_info *lwp)
1315 {
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352 }
1353
1354 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357 static void
1358 kill_one_lwp_callback (thread_info *thread, int pid)
1359 {
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376 }
1377
1378 static int
1379 linux_kill (int pid)
1380 {
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416 }
1417
1418 /* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422 static int
1423 get_detach_signal (struct thread_info *thread)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496 }
1497
1498 /* Detach from LWP. */
1499
1500 static void
1501 linux_detach_one_lwp (struct lwp_info *lwp)
1502 {
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582 }
1583
1584 /* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587 static void
1588 linux_detach_lwp_callback (thread_info *thread)
1589 {
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598 }
1599
1600 static int
1601 linux_detach (int pid)
1602 {
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621 #ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623 #endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642 }
1643
1644 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646 static void
1647 linux_mourn (struct process_info *process)
1648 {
1649 struct process_info_private *priv;
1650
1651 #ifdef USE_THREAD_DB
1652 thread_db_mourn (process);
1653 #endif
1654
1655 for_each_thread (process->pid, [] (thread_info *thread)
1656 {
1657 delete_lwp (get_thread_lwp (thread));
1658 });
1659
1660 /* Freeing all private data. */
1661 priv = process->priv;
1662 if (the_low_target.delete_process != NULL)
1663 the_low_target.delete_process (priv->arch_private);
1664 else
1665 gdb_assert (priv->arch_private == NULL);
1666 free (priv);
1667 process->priv = NULL;
1668
1669 remove_process (process);
1670 }
1671
1672 static void
1673 linux_join (int pid)
1674 {
1675 int status, ret;
1676
1677 do {
1678 ret = my_waitpid (pid, &status, 0);
1679 if (WIFEXITED (status) || WIFSIGNALED (status))
1680 break;
1681 } while (ret != -1 || errno != ECHILD);
1682 }
1683
1684 /* Return nonzero if the given thread is still alive. */
1685 static int
1686 linux_thread_alive (ptid_t ptid)
1687 {
1688 struct lwp_info *lwp = find_lwp_pid (ptid);
1689
1690 /* We assume we always know if a thread exits. If a whole process
1691 exited but we still haven't been able to report it to GDB, we'll
1692 hold on to the last lwp of the dead process. */
1693 if (lwp != NULL)
1694 return !lwp_is_marked_dead (lwp);
1695 else
1696 return 0;
1697 }
1698
1699 /* Return 1 if this lwp still has an interesting status pending. If
1700 not (e.g., it had stopped for a breakpoint that is gone), return
1701 false. */
1702
1703 static int
1704 thread_still_has_status_pending_p (struct thread_info *thread)
1705 {
1706 struct lwp_info *lp = get_thread_lwp (thread);
1707
1708 if (!lp->status_pending_p)
1709 return 0;
1710
1711 if (thread->last_resume_kind != resume_stop
1712 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1713 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1714 {
1715 struct thread_info *saved_thread;
1716 CORE_ADDR pc;
1717 int discard = 0;
1718
1719 gdb_assert (lp->last_status != 0);
1720
1721 pc = get_pc (lp);
1722
1723 saved_thread = current_thread;
1724 current_thread = thread;
1725
1726 if (pc != lp->stop_pc)
1727 {
1728 if (debug_threads)
1729 debug_printf ("PC of %ld changed\n",
1730 lwpid_of (thread));
1731 discard = 1;
1732 }
1733
1734 #if !USE_SIGTRAP_SIGINFO
1735 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 && !(*the_low_target.breakpoint_at) (pc))
1737 {
1738 if (debug_threads)
1739 debug_printf ("previous SW breakpoint of %ld gone\n",
1740 lwpid_of (thread));
1741 discard = 1;
1742 }
1743 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1744 && !hardware_breakpoint_inserted_here (pc))
1745 {
1746 if (debug_threads)
1747 debug_printf ("previous HW breakpoint of %ld gone\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751 #endif
1752
1753 current_thread = saved_thread;
1754
1755 if (discard)
1756 {
1757 if (debug_threads)
1758 debug_printf ("discarding pending breakpoint status\n");
1759 lp->status_pending_p = 0;
1760 return 0;
1761 }
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Returns true if LWP is resumed from the client's perspective. */
1768
1769 static int
1770 lwp_resumed (struct lwp_info *lwp)
1771 {
1772 struct thread_info *thread = get_lwp_thread (lwp);
1773
1774 if (thread->last_resume_kind != resume_stop)
1775 return 1;
1776
1777 /* Did gdb send us a `vCont;t', but we haven't reported the
1778 corresponding stop to gdb yet? If so, the thread is still
1779 resumed/running from gdb's perspective. */
1780 if (thread->last_resume_kind == resume_stop
1781 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1782 return 1;
1783
1784 return 0;
1785 }
1786
1787 /* Return true if this lwp has an interesting status pending. */
1788 static bool
1789 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1790 {
1791 struct lwp_info *lp = get_thread_lwp (thread);
1792
1793 /* Check if we're only interested in events from a specific process
1794 or a specific LWP. */
1795 if (!thread->id.matches (ptid))
1796 return 0;
1797
1798 if (!lwp_resumed (lp))
1799 return 0;
1800
1801 if (lp->status_pending_p
1802 && !thread_still_has_status_pending_p (thread))
1803 {
1804 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1805 return 0;
1806 }
1807
1808 return lp->status_pending_p;
1809 }
1810
1811 struct lwp_info *
1812 find_lwp_pid (ptid_t ptid)
1813 {
1814 thread_info *thread = find_thread ([&] (thread_info *thread)
1815 {
1816 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1817 return thread->id.lwp () == lwp;
1818 });
1819
1820 if (thread == NULL)
1821 return NULL;
1822
1823 return get_thread_lwp (thread);
1824 }
1825
1826 /* Return the number of known LWPs in the tgid given by PID. */
1827
1828 static int
1829 num_lwps (int pid)
1830 {
1831 int count = 0;
1832
1833 for_each_thread (pid, [&] (thread_info *thread)
1834 {
1835 count++;
1836 });
1837
1838 return count;
1839 }
1840
1841 /* See nat/linux-nat.h. */
1842
1843 struct lwp_info *
1844 iterate_over_lwps (ptid_t filter,
1845 iterate_over_lwps_ftype callback,
1846 void *data)
1847 {
1848 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1849 {
1850 lwp_info *lwp = get_thread_lwp (thread);
1851
1852 return callback (lwp, data);
1853 });
1854
1855 if (thread == NULL)
1856 return NULL;
1857
1858 return get_thread_lwp (thread);
1859 }
1860
1861 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1862 their exits until all other threads in the group have exited. */
1863
1864 static void
1865 check_zombie_leaders (void)
1866 {
1867 for_each_process ([] (process_info *proc) {
1868 pid_t leader_pid = pid_of (proc);
1869 struct lwp_info *leader_lp;
1870
1871 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1872
1873 if (debug_threads)
1874 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1875 "num_lwps=%d, zombie=%d\n",
1876 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1877 linux_proc_pid_is_zombie (leader_pid));
1878
1879 if (leader_lp != NULL && !leader_lp->stopped
1880 /* Check if there are other threads in the group, as we may
1881 have raced with the inferior simply exiting. */
1882 && !last_thread_of_process_p (leader_pid)
1883 && linux_proc_pid_is_zombie (leader_pid))
1884 {
1885 /* A leader zombie can mean one of two things:
1886
1887 - It exited, and there's an exit status pending
1888 available, or only the leader exited (not the whole
1889 program). In the latter case, we can't waitpid the
1890 leader's exit status until all other threads are gone.
1891
1892 - There are 3 or more threads in the group, and a thread
1893 other than the leader exec'd. On an exec, the Linux
1894 kernel destroys all other threads (except the execing
1895 one) in the thread group, and resets the execing thread's
1896 tid to the tgid. No exit notification is sent for the
1897 execing thread -- from the ptracer's perspective, it
1898 appears as though the execing thread just vanishes.
1899 Until we reap all other threads except the leader and the
1900 execing thread, the leader will be zombie, and the
1901 execing thread will be in `D (disc sleep)'. As soon as
1902 all other threads are reaped, the execing thread changes
1903 it's tid to the tgid, and the previous (zombie) leader
1904 vanishes, giving place to the "new" leader. We could try
1905 distinguishing the exit and exec cases, by waiting once
1906 more, and seeing if something comes out, but it doesn't
1907 sound useful. The previous leader _does_ go away, and
1908 we'll re-add the new one once we see the exec event
1909 (which is just the same as what would happen if the
1910 previous leader did exit voluntarily before some other
1911 thread execs). */
1912
1913 if (debug_threads)
1914 debug_printf ("CZL: Thread group leader %d zombie "
1915 "(it exited, or another thread execd).\n",
1916 leader_pid);
1917
1918 delete_lwp (leader_lp);
1919 }
1920 });
1921 }
1922
1923 /* Callback for `find_inferior'. Returns the first LWP that is not
1924 stopped. ARG is a PTID filter. */
1925
1926 static int
1927 not_stopped_callback (thread_info *thread, void *arg)
1928 {
1929 struct lwp_info *lwp;
1930 ptid_t filter = *(ptid_t *) arg;
1931
1932 if (!ptid_match (ptid_of (thread), filter))
1933 return 0;
1934
1935 lwp = get_thread_lwp (thread);
1936 if (!lwp->stopped)
1937 return 1;
1938
1939 return 0;
1940 }
1941
1942 /* Increment LWP's suspend count. */
1943
1944 static void
1945 lwp_suspended_inc (struct lwp_info *lwp)
1946 {
1947 lwp->suspended++;
1948
1949 if (debug_threads && lwp->suspended > 4)
1950 {
1951 struct thread_info *thread = get_lwp_thread (lwp);
1952
1953 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1954 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1955 }
1956 }
1957
1958 /* Decrement LWP's suspend count. */
1959
1960 static void
1961 lwp_suspended_decr (struct lwp_info *lwp)
1962 {
1963 lwp->suspended--;
1964
1965 if (lwp->suspended < 0)
1966 {
1967 struct thread_info *thread = get_lwp_thread (lwp);
1968
1969 internal_error (__FILE__, __LINE__,
1970 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1971 lwp->suspended);
1972 }
1973 }
1974
1975 /* This function should only be called if the LWP got a SIGTRAP.
1976
1977 Handle any tracepoint steps or hits. Return true if a tracepoint
1978 event was handled, 0 otherwise. */
1979
1980 static int
1981 handle_tracepoints (struct lwp_info *lwp)
1982 {
1983 struct thread_info *tinfo = get_lwp_thread (lwp);
1984 int tpoint_related_event = 0;
1985
1986 gdb_assert (lwp->suspended == 0);
1987
1988 /* If this tracepoint hit causes a tracing stop, we'll immediately
1989 uninsert tracepoints. To do this, we temporarily pause all
1990 threads, unpatch away, and then unpause threads. We need to make
1991 sure the unpausing doesn't resume LWP too. */
1992 lwp_suspended_inc (lwp);
1993
1994 /* And we need to be sure that any all-threads-stopping doesn't try
1995 to move threads out of the jump pads, as it could deadlock the
1996 inferior (LWP could be in the jump pad, maybe even holding the
1997 lock.) */
1998
1999 /* Do any necessary step collect actions. */
2000 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
2001
2002 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
2003
2004 /* See if we just hit a tracepoint and do its main collect
2005 actions. */
2006 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2007
2008 lwp_suspended_decr (lwp);
2009
2010 gdb_assert (lwp->suspended == 0);
2011 gdb_assert (!stabilizing_threads
2012 || (lwp->collecting_fast_tracepoint
2013 != fast_tpoint_collect_result::not_collecting));
2014
2015 if (tpoint_related_event)
2016 {
2017 if (debug_threads)
2018 debug_printf ("got a tracepoint event\n");
2019 return 1;
2020 }
2021
2022 return 0;
2023 }
2024
2025 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2026 collection status. */
2027
2028 static fast_tpoint_collect_result
2029 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2030 struct fast_tpoint_collect_status *status)
2031 {
2032 CORE_ADDR thread_area;
2033 struct thread_info *thread = get_lwp_thread (lwp);
2034
2035 if (the_low_target.get_thread_area == NULL)
2036 return fast_tpoint_collect_result::not_collecting;
2037
2038 /* Get the thread area address. This is used to recognize which
2039 thread is which when tracing with the in-process agent library.
2040 We don't read anything from the address, and treat it as opaque;
2041 it's the address itself that we assume is unique per-thread. */
2042 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2043 return fast_tpoint_collect_result::not_collecting;
2044
2045 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2046 }
2047
2048 /* The reason we resume in the caller, is because we want to be able
2049 to pass lwp->status_pending as WSTAT, and we need to clear
2050 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2051 refuses to resume. */
2052
2053 static int
2054 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2055 {
2056 struct thread_info *saved_thread;
2057
2058 saved_thread = current_thread;
2059 current_thread = get_lwp_thread (lwp);
2060
2061 if ((wstat == NULL
2062 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2063 && supports_fast_tracepoints ()
2064 && agent_loaded_p ())
2065 {
2066 struct fast_tpoint_collect_status status;
2067
2068 if (debug_threads)
2069 debug_printf ("Checking whether LWP %ld needs to move out of the "
2070 "jump pad.\n",
2071 lwpid_of (current_thread));
2072
2073 fast_tpoint_collect_result r
2074 = linux_fast_tracepoint_collecting (lwp, &status);
2075
2076 if (wstat == NULL
2077 || (WSTOPSIG (*wstat) != SIGILL
2078 && WSTOPSIG (*wstat) != SIGFPE
2079 && WSTOPSIG (*wstat) != SIGSEGV
2080 && WSTOPSIG (*wstat) != SIGBUS))
2081 {
2082 lwp->collecting_fast_tracepoint = r;
2083
2084 if (r != fast_tpoint_collect_result::not_collecting)
2085 {
2086 if (r == fast_tpoint_collect_result::before_insn
2087 && lwp->exit_jump_pad_bkpt == NULL)
2088 {
2089 /* Haven't executed the original instruction yet.
2090 Set breakpoint there, and wait till it's hit,
2091 then single-step until exiting the jump pad. */
2092 lwp->exit_jump_pad_bkpt
2093 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2094 }
2095
2096 if (debug_threads)
2097 debug_printf ("Checking whether LWP %ld needs to move out of "
2098 "the jump pad...it does\n",
2099 lwpid_of (current_thread));
2100 current_thread = saved_thread;
2101
2102 return 1;
2103 }
2104 }
2105 else
2106 {
2107 /* If we get a synchronous signal while collecting, *and*
2108 while executing the (relocated) original instruction,
2109 reset the PC to point at the tpoint address, before
2110 reporting to GDB. Otherwise, it's an IPA lib bug: just
2111 report the signal to GDB, and pray for the best. */
2112
2113 lwp->collecting_fast_tracepoint
2114 = fast_tpoint_collect_result::not_collecting;
2115
2116 if (r != fast_tpoint_collect_result::not_collecting
2117 && (status.adjusted_insn_addr <= lwp->stop_pc
2118 && lwp->stop_pc < status.adjusted_insn_addr_end))
2119 {
2120 siginfo_t info;
2121 struct regcache *regcache;
2122
2123 /* The si_addr on a few signals references the address
2124 of the faulting instruction. Adjust that as
2125 well. */
2126 if ((WSTOPSIG (*wstat) == SIGILL
2127 || WSTOPSIG (*wstat) == SIGFPE
2128 || WSTOPSIG (*wstat) == SIGBUS
2129 || WSTOPSIG (*wstat) == SIGSEGV)
2130 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2131 (PTRACE_TYPE_ARG3) 0, &info) == 0
2132 /* Final check just to make sure we don't clobber
2133 the siginfo of non-kernel-sent signals. */
2134 && (uintptr_t) info.si_addr == lwp->stop_pc)
2135 {
2136 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2137 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2138 (PTRACE_TYPE_ARG3) 0, &info);
2139 }
2140
2141 regcache = get_thread_regcache (current_thread, 1);
2142 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2143 lwp->stop_pc = status.tpoint_addr;
2144
2145 /* Cancel any fast tracepoint lock this thread was
2146 holding. */
2147 force_unlock_trace_buffer ();
2148 }
2149
2150 if (lwp->exit_jump_pad_bkpt != NULL)
2151 {
2152 if (debug_threads)
2153 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2154 "stopping all threads momentarily.\n");
2155
2156 stop_all_lwps (1, lwp);
2157
2158 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2159 lwp->exit_jump_pad_bkpt = NULL;
2160
2161 unstop_all_lwps (1, lwp);
2162
2163 gdb_assert (lwp->suspended >= 0);
2164 }
2165 }
2166 }
2167
2168 if (debug_threads)
2169 debug_printf ("Checking whether LWP %ld needs to move out of the "
2170 "jump pad...no\n",
2171 lwpid_of (current_thread));
2172
2173 current_thread = saved_thread;
2174 return 0;
2175 }
2176
2177 /* Enqueue one signal in the "signals to report later when out of the
2178 jump pad" list. */
2179
2180 static void
2181 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2182 {
2183 struct pending_signals *p_sig;
2184 struct thread_info *thread = get_lwp_thread (lwp);
2185
2186 if (debug_threads)
2187 debug_printf ("Deferring signal %d for LWP %ld.\n",
2188 WSTOPSIG (*wstat), lwpid_of (thread));
2189
2190 if (debug_threads)
2191 {
2192 struct pending_signals *sig;
2193
2194 for (sig = lwp->pending_signals_to_report;
2195 sig != NULL;
2196 sig = sig->prev)
2197 debug_printf (" Already queued %d\n",
2198 sig->signal);
2199
2200 debug_printf (" (no more currently queued signals)\n");
2201 }
2202
2203 /* Don't enqueue non-RT signals if they are already in the deferred
2204 queue. (SIGSTOP being the easiest signal to see ending up here
2205 twice) */
2206 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2207 {
2208 struct pending_signals *sig;
2209
2210 for (sig = lwp->pending_signals_to_report;
2211 sig != NULL;
2212 sig = sig->prev)
2213 {
2214 if (sig->signal == WSTOPSIG (*wstat))
2215 {
2216 if (debug_threads)
2217 debug_printf ("Not requeuing already queued non-RT signal %d"
2218 " for LWP %ld\n",
2219 sig->signal,
2220 lwpid_of (thread));
2221 return;
2222 }
2223 }
2224 }
2225
2226 p_sig = XCNEW (struct pending_signals);
2227 p_sig->prev = lwp->pending_signals_to_report;
2228 p_sig->signal = WSTOPSIG (*wstat);
2229
2230 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2231 &p_sig->info);
2232
2233 lwp->pending_signals_to_report = p_sig;
2234 }
2235
2236 /* Dequeue one signal from the "signals to report later when out of
2237 the jump pad" list. */
2238
2239 static int
2240 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2241 {
2242 struct thread_info *thread = get_lwp_thread (lwp);
2243
2244 if (lwp->pending_signals_to_report != NULL)
2245 {
2246 struct pending_signals **p_sig;
2247
2248 p_sig = &lwp->pending_signals_to_report;
2249 while ((*p_sig)->prev != NULL)
2250 p_sig = &(*p_sig)->prev;
2251
2252 *wstat = W_STOPCODE ((*p_sig)->signal);
2253 if ((*p_sig)->info.si_signo != 0)
2254 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2255 &(*p_sig)->info);
2256 free (*p_sig);
2257 *p_sig = NULL;
2258
2259 if (debug_threads)
2260 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2261 WSTOPSIG (*wstat), lwpid_of (thread));
2262
2263 if (debug_threads)
2264 {
2265 struct pending_signals *sig;
2266
2267 for (sig = lwp->pending_signals_to_report;
2268 sig != NULL;
2269 sig = sig->prev)
2270 debug_printf (" Still queued %d\n",
2271 sig->signal);
2272
2273 debug_printf (" (no more queued signals)\n");
2274 }
2275
2276 return 1;
2277 }
2278
2279 return 0;
2280 }
2281
2282 /* Fetch the possibly triggered data watchpoint info and store it in
2283 CHILD.
2284
2285 On some archs, like x86, that use debug registers to set
2286 watchpoints, it's possible that the way to know which watched
2287 address trapped, is to check the register that is used to select
2288 which address to watch. Problem is, between setting the watchpoint
2289 and reading back which data address trapped, the user may change
2290 the set of watchpoints, and, as a consequence, GDB changes the
2291 debug registers in the inferior. To avoid reading back a stale
2292 stopped-data-address when that happens, we cache in LP the fact
2293 that a watchpoint trapped, and the corresponding data address, as
2294 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2295 registers meanwhile, we have the cached data we can rely on. */
2296
2297 static int
2298 check_stopped_by_watchpoint (struct lwp_info *child)
2299 {
2300 if (the_low_target.stopped_by_watchpoint != NULL)
2301 {
2302 struct thread_info *saved_thread;
2303
2304 saved_thread = current_thread;
2305 current_thread = get_lwp_thread (child);
2306
2307 if (the_low_target.stopped_by_watchpoint ())
2308 {
2309 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2310
2311 if (the_low_target.stopped_data_address != NULL)
2312 child->stopped_data_address
2313 = the_low_target.stopped_data_address ();
2314 else
2315 child->stopped_data_address = 0;
2316 }
2317
2318 current_thread = saved_thread;
2319 }
2320
2321 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2322 }
2323
2324 /* Return the ptrace options that we want to try to enable. */
2325
2326 static int
2327 linux_low_ptrace_options (int attached)
2328 {
2329 int options = 0;
2330
2331 if (!attached)
2332 options |= PTRACE_O_EXITKILL;
2333
2334 if (report_fork_events)
2335 options |= PTRACE_O_TRACEFORK;
2336
2337 if (report_vfork_events)
2338 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2339
2340 if (report_exec_events)
2341 options |= PTRACE_O_TRACEEXEC;
2342
2343 options |= PTRACE_O_TRACESYSGOOD;
2344
2345 return options;
2346 }
2347
2348 /* Do low-level handling of the event, and check if we should go on
2349 and pass it to caller code. Return the affected lwp if we are, or
2350 NULL otherwise. */
2351
2352 static struct lwp_info *
2353 linux_low_filter_event (int lwpid, int wstat)
2354 {
2355 struct lwp_info *child;
2356 struct thread_info *thread;
2357 int have_stop_pc = 0;
2358
2359 child = find_lwp_pid (pid_to_ptid (lwpid));
2360
2361 /* Check for stop events reported by a process we didn't already
2362 know about - anything not already in our LWP list.
2363
2364 If we're expecting to receive stopped processes after
2365 fork, vfork, and clone events, then we'll just add the
2366 new one to our list and go back to waiting for the event
2367 to be reported - the stopped process might be returned
2368 from waitpid before or after the event is.
2369
2370 But note the case of a non-leader thread exec'ing after the
2371 leader having exited, and gone from our lists (because
2372 check_zombie_leaders deleted it). The non-leader thread
2373 changes its tid to the tgid. */
2374
2375 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2376 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2377 {
2378 ptid_t child_ptid;
2379
2380 /* A multi-thread exec after we had seen the leader exiting. */
2381 if (debug_threads)
2382 {
2383 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2384 "after exec.\n", lwpid);
2385 }
2386
2387 child_ptid = ptid_build (lwpid, lwpid, 0);
2388 child = add_lwp (child_ptid);
2389 child->stopped = 1;
2390 current_thread = child->thread;
2391 }
2392
2393 /* If we didn't find a process, one of two things presumably happened:
2394 - A process we started and then detached from has exited. Ignore it.
2395 - A process we are controlling has forked and the new child's stop
2396 was reported to us by the kernel. Save its PID. */
2397 if (child == NULL && WIFSTOPPED (wstat))
2398 {
2399 add_to_pid_list (&stopped_pids, lwpid, wstat);
2400 return NULL;
2401 }
2402 else if (child == NULL)
2403 return NULL;
2404
2405 thread = get_lwp_thread (child);
2406
2407 child->stopped = 1;
2408
2409 child->last_status = wstat;
2410
2411 /* Check if the thread has exited. */
2412 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2413 {
2414 if (debug_threads)
2415 debug_printf ("LLFE: %d exited.\n", lwpid);
2416
2417 if (finish_step_over (child))
2418 {
2419 /* Unsuspend all other LWPs, and set them back running again. */
2420 unsuspend_all_lwps (child);
2421 }
2422
2423 /* If there is at least one more LWP, then the exit signal was
2424 not the end of the debugged application and should be
2425 ignored, unless GDB wants to hear about thread exits. */
2426 if (report_thread_events
2427 || last_thread_of_process_p (pid_of (thread)))
2428 {
2429 /* Since events are serialized to GDB core, and we can't
2430 report this one right now. Leave the status pending for
2431 the next time we're able to report it. */
2432 mark_lwp_dead (child, wstat);
2433 return child;
2434 }
2435 else
2436 {
2437 delete_lwp (child);
2438 return NULL;
2439 }
2440 }
2441
2442 gdb_assert (WIFSTOPPED (wstat));
2443
2444 if (WIFSTOPPED (wstat))
2445 {
2446 struct process_info *proc;
2447
2448 /* Architecture-specific setup after inferior is running. */
2449 proc = find_process_pid (pid_of (thread));
2450 if (proc->tdesc == NULL)
2451 {
2452 if (proc->attached)
2453 {
2454 /* This needs to happen after we have attached to the
2455 inferior and it is stopped for the first time, but
2456 before we access any inferior registers. */
2457 linux_arch_setup_thread (thread);
2458 }
2459 else
2460 {
2461 /* The process is started, but GDBserver will do
2462 architecture-specific setup after the program stops at
2463 the first instruction. */
2464 child->status_pending_p = 1;
2465 child->status_pending = wstat;
2466 return child;
2467 }
2468 }
2469 }
2470
2471 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2472 {
2473 struct process_info *proc = find_process_pid (pid_of (thread));
2474 int options = linux_low_ptrace_options (proc->attached);
2475
2476 linux_enable_event_reporting (lwpid, options);
2477 child->must_set_ptrace_flags = 0;
2478 }
2479
2480 /* Always update syscall_state, even if it will be filtered later. */
2481 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2482 {
2483 child->syscall_state
2484 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2485 ? TARGET_WAITKIND_SYSCALL_RETURN
2486 : TARGET_WAITKIND_SYSCALL_ENTRY);
2487 }
2488 else
2489 {
2490 /* Almost all other ptrace-stops are known to be outside of system
2491 calls, with further exceptions in handle_extended_wait. */
2492 child->syscall_state = TARGET_WAITKIND_IGNORE;
2493 }
2494
2495 /* Be careful to not overwrite stop_pc until save_stop_reason is
2496 called. */
2497 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2498 && linux_is_extended_waitstatus (wstat))
2499 {
2500 child->stop_pc = get_pc (child);
2501 if (handle_extended_wait (&child, wstat))
2502 {
2503 /* The event has been handled, so just return without
2504 reporting it. */
2505 return NULL;
2506 }
2507 }
2508
2509 if (linux_wstatus_maybe_breakpoint (wstat))
2510 {
2511 if (save_stop_reason (child))
2512 have_stop_pc = 1;
2513 }
2514
2515 if (!have_stop_pc)
2516 child->stop_pc = get_pc (child);
2517
2518 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2519 && child->stop_expected)
2520 {
2521 if (debug_threads)
2522 debug_printf ("Expected stop.\n");
2523 child->stop_expected = 0;
2524
2525 if (thread->last_resume_kind == resume_stop)
2526 {
2527 /* We want to report the stop to the core. Treat the
2528 SIGSTOP as a normal event. */
2529 if (debug_threads)
2530 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2531 target_pid_to_str (ptid_of (thread)));
2532 }
2533 else if (stopping_threads != NOT_STOPPING_THREADS)
2534 {
2535 /* Stopping threads. We don't want this SIGSTOP to end up
2536 pending. */
2537 if (debug_threads)
2538 debug_printf ("LLW: SIGSTOP caught for %s "
2539 "while stopping threads.\n",
2540 target_pid_to_str (ptid_of (thread)));
2541 return NULL;
2542 }
2543 else
2544 {
2545 /* This is a delayed SIGSTOP. Filter out the event. */
2546 if (debug_threads)
2547 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2548 child->stepping ? "step" : "continue",
2549 target_pid_to_str (ptid_of (thread)));
2550
2551 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2552 return NULL;
2553 }
2554 }
2555
2556 child->status_pending_p = 1;
2557 child->status_pending = wstat;
2558 return child;
2559 }
2560
2561 /* Return true if THREAD is doing hardware single step. */
2562
2563 static int
2564 maybe_hw_step (struct thread_info *thread)
2565 {
2566 if (can_hardware_single_step ())
2567 return 1;
2568 else
2569 {
2570 /* GDBserver must insert single-step breakpoint for software
2571 single step. */
2572 gdb_assert (has_single_step_breakpoints (thread));
2573 return 0;
2574 }
2575 }
2576
2577 /* Resume LWPs that are currently stopped without any pending status
2578 to report, but are resumed from the core's perspective. */
2579
2580 static void
2581 resume_stopped_resumed_lwps (thread_info *thread)
2582 {
2583 struct lwp_info *lp = get_thread_lwp (thread);
2584
2585 if (lp->stopped
2586 && !lp->suspended
2587 && !lp->status_pending_p
2588 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2589 {
2590 int step = 0;
2591
2592 if (thread->last_resume_kind == resume_step)
2593 step = maybe_hw_step (thread);
2594
2595 if (debug_threads)
2596 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2597 target_pid_to_str (ptid_of (thread)),
2598 paddress (lp->stop_pc),
2599 step);
2600
2601 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2602 }
2603 }
2604
2605 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2606 match FILTER_PTID (leaving others pending). The PTIDs can be:
2607 minus_one_ptid, to specify any child; a pid PTID, specifying all
2608 lwps of a thread group; or a PTID representing a single lwp. Store
2609 the stop status through the status pointer WSTAT. OPTIONS is
2610 passed to the waitpid call. Return 0 if no event was found and
2611 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2612 was found. Return the PID of the stopped child otherwise. */
2613
2614 static int
2615 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2616 int *wstatp, int options)
2617 {
2618 struct thread_info *event_thread;
2619 struct lwp_info *event_child, *requested_child;
2620 sigset_t block_mask, prev_mask;
2621
2622 retry:
2623 /* N.B. event_thread points to the thread_info struct that contains
2624 event_child. Keep them in sync. */
2625 event_thread = NULL;
2626 event_child = NULL;
2627 requested_child = NULL;
2628
2629 /* Check for a lwp with a pending status. */
2630
2631 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2632 {
2633 event_thread = find_thread_in_random ([&] (thread_info *thread)
2634 {
2635 return status_pending_p_callback (thread, filter_ptid);
2636 });
2637
2638 if (event_thread != NULL)
2639 event_child = get_thread_lwp (event_thread);
2640 if (debug_threads && event_thread)
2641 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2642 }
2643 else if (!ptid_equal (filter_ptid, null_ptid))
2644 {
2645 requested_child = find_lwp_pid (filter_ptid);
2646
2647 if (stopping_threads == NOT_STOPPING_THREADS
2648 && requested_child->status_pending_p
2649 && (requested_child->collecting_fast_tracepoint
2650 != fast_tpoint_collect_result::not_collecting))
2651 {
2652 enqueue_one_deferred_signal (requested_child,
2653 &requested_child->status_pending);
2654 requested_child->status_pending_p = 0;
2655 requested_child->status_pending = 0;
2656 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2657 }
2658
2659 if (requested_child->suspended
2660 && requested_child->status_pending_p)
2661 {
2662 internal_error (__FILE__, __LINE__,
2663 "requesting an event out of a"
2664 " suspended child?");
2665 }
2666
2667 if (requested_child->status_pending_p)
2668 {
2669 event_child = requested_child;
2670 event_thread = get_lwp_thread (event_child);
2671 }
2672 }
2673
2674 if (event_child != NULL)
2675 {
2676 if (debug_threads)
2677 debug_printf ("Got an event from pending child %ld (%04x)\n",
2678 lwpid_of (event_thread), event_child->status_pending);
2679 *wstatp = event_child->status_pending;
2680 event_child->status_pending_p = 0;
2681 event_child->status_pending = 0;
2682 current_thread = event_thread;
2683 return lwpid_of (event_thread);
2684 }
2685
2686 /* But if we don't find a pending event, we'll have to wait.
2687
2688 We only enter this loop if no process has a pending wait status.
2689 Thus any action taken in response to a wait status inside this
2690 loop is responding as soon as we detect the status, not after any
2691 pending events. */
2692
2693 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2694 all signals while here. */
2695 sigfillset (&block_mask);
2696 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2697
2698 /* Always pull all events out of the kernel. We'll randomly select
2699 an event LWP out of all that have events, to prevent
2700 starvation. */
2701 while (event_child == NULL)
2702 {
2703 pid_t ret = 0;
2704
2705 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2706 quirks:
2707
2708 - If the thread group leader exits while other threads in the
2709 thread group still exist, waitpid(TGID, ...) hangs. That
2710 waitpid won't return an exit status until the other threads
2711 in the group are reaped.
2712
2713 - When a non-leader thread execs, that thread just vanishes
2714 without reporting an exit (so we'd hang if we waited for it
2715 explicitly in that case). The exec event is reported to
2716 the TGID pid. */
2717 errno = 0;
2718 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2719
2720 if (debug_threads)
2721 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2722 ret, errno ? strerror (errno) : "ERRNO-OK");
2723
2724 if (ret > 0)
2725 {
2726 if (debug_threads)
2727 {
2728 debug_printf ("LLW: waitpid %ld received %s\n",
2729 (long) ret, status_to_str (*wstatp));
2730 }
2731
2732 /* Filter all events. IOW, leave all events pending. We'll
2733 randomly select an event LWP out of all that have events
2734 below. */
2735 linux_low_filter_event (ret, *wstatp);
2736 /* Retry until nothing comes out of waitpid. A single
2737 SIGCHLD can indicate more than one child stopped. */
2738 continue;
2739 }
2740
2741 /* Now that we've pulled all events out of the kernel, resume
2742 LWPs that don't have an interesting event to report. */
2743 if (stopping_threads == NOT_STOPPING_THREADS)
2744 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2745
2746 /* ... and find an LWP with a status to report to the core, if
2747 any. */
2748 event_thread = find_thread_in_random ([&] (thread_info *thread)
2749 {
2750 return status_pending_p_callback (thread, filter_ptid);
2751 });
2752
2753 if (event_thread != NULL)
2754 {
2755 event_child = get_thread_lwp (event_thread);
2756 *wstatp = event_child->status_pending;
2757 event_child->status_pending_p = 0;
2758 event_child->status_pending = 0;
2759 break;
2760 }
2761
2762 /* Check for zombie thread group leaders. Those can't be reaped
2763 until all other threads in the thread group are. */
2764 check_zombie_leaders ();
2765
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if ((find_inferior (&all_threads,
2774 not_stopped_callback,
2775 &wait_ptid) == NULL))
2776 {
2777 if (debug_threads)
2778 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2779 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2780 return -1;
2781 }
2782
2783 /* No interesting event to report to the caller. */
2784 if ((options & WNOHANG))
2785 {
2786 if (debug_threads)
2787 debug_printf ("WNOHANG set, no event found\n");
2788
2789 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2790 return 0;
2791 }
2792
2793 /* Block until we get an event reported with SIGCHLD. */
2794 if (debug_threads)
2795 debug_printf ("sigsuspend'ing\n");
2796
2797 sigsuspend (&prev_mask);
2798 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2799 goto retry;
2800 }
2801
2802 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2803
2804 current_thread = event_thread;
2805
2806 return lwpid_of (event_thread);
2807 }
2808
2809 /* Wait for an event from child(ren) PTID. PTIDs can be:
2810 minus_one_ptid, to specify any child; a pid PTID, specifying all
2811 lwps of a thread group; or a PTID representing a single lwp. Store
2812 the stop status through the status pointer WSTAT. OPTIONS is
2813 passed to the waitpid call. Return 0 if no event was found and
2814 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2815 was found. Return the PID of the stopped child otherwise. */
2816
2817 static int
2818 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2819 {
2820 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2821 }
2822
2823 /* Count the LWP's that have had events. */
2824
2825 static int
2826 count_events_callback (thread_info *thread, void *data)
2827 {
2828 struct lwp_info *lp = get_thread_lwp (thread);
2829 int *count = (int *) data;
2830
2831 gdb_assert (count != NULL);
2832
2833 /* Count only resumed LWPs that have an event pending. */
2834 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2835 && lp->status_pending_p)
2836 (*count)++;
2837
2838 return 0;
2839 }
2840
2841 /* Select the LWP (if any) that is currently being single-stepped. */
2842
2843 static int
2844 select_singlestep_lwp_callback (thread_info *thread, void *data)
2845 {
2846 struct lwp_info *lp = get_thread_lwp (thread);
2847
2848 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2849 && thread->last_resume_kind == resume_step
2850 && lp->status_pending_p)
2851 return 1;
2852 else
2853 return 0;
2854 }
2855
2856 /* Select the Nth LWP that has had an event. */
2857
2858 static int
2859 select_event_lwp_callback (thread_info *thread, void *data)
2860 {
2861 struct lwp_info *lp = get_thread_lwp (thread);
2862 int *selector = (int *) data;
2863
2864 gdb_assert (selector != NULL);
2865
2866 /* Select only resumed LWPs that have an event pending. */
2867 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2868 && lp->status_pending_p)
2869 if ((*selector)-- == 0)
2870 return 1;
2871
2872 return 0;
2873 }
2874
2875 /* Select one LWP out of those that have events pending. */
2876
2877 static void
2878 select_event_lwp (struct lwp_info **orig_lp)
2879 {
2880 int num_events = 0;
2881 int random_selector;
2882 struct thread_info *event_thread = NULL;
2883
2884 /* In all-stop, give preference to the LWP that is being
2885 single-stepped. There will be at most one, and it's the LWP that
2886 the core is most interested in. If we didn't do this, then we'd
2887 have to handle pending step SIGTRAPs somehow in case the core
2888 later continues the previously-stepped thread, otherwise we'd
2889 report the pending SIGTRAP, and the core, not having stepped the
2890 thread, wouldn't understand what the trap was for, and therefore
2891 would report it to the user as a random signal. */
2892 if (!non_stop)
2893 {
2894 event_thread
2895 = (struct thread_info *) find_inferior (&all_threads,
2896 select_singlestep_lwp_callback,
2897 NULL);
2898 if (event_thread != NULL)
2899 {
2900 if (debug_threads)
2901 debug_printf ("SEL: Select single-step %s\n",
2902 target_pid_to_str (ptid_of (event_thread)));
2903 }
2904 }
2905 if (event_thread == NULL)
2906 {
2907 /* No single-stepping LWP. Select one at random, out of those
2908 which have had events. */
2909
2910 /* First see how many events we have. */
2911 find_inferior (&all_threads, count_events_callback, &num_events);
2912 gdb_assert (num_events > 0);
2913
2914 /* Now randomly pick a LWP out of those that have had
2915 events. */
2916 random_selector = (int)
2917 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2918
2919 if (debug_threads && num_events > 1)
2920 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2921 num_events, random_selector);
2922
2923 event_thread
2924 = (struct thread_info *) find_inferior (&all_threads,
2925 select_event_lwp_callback,
2926 &random_selector);
2927 }
2928
2929 if (event_thread != NULL)
2930 {
2931 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2932
2933 /* Switch the event LWP. */
2934 *orig_lp = event_lp;
2935 }
2936 }
2937
2938 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2939 NULL. */
2940
2941 static void
2942 unsuspend_all_lwps (struct lwp_info *except)
2943 {
2944 for_each_thread ([&] (thread_info *thread)
2945 {
2946 lwp_info *lwp = get_thread_lwp (thread);
2947
2948 if (lwp != except)
2949 lwp_suspended_decr (lwp);
2950 });
2951 }
2952
2953 static void move_out_of_jump_pad_callback (thread_info *thread);
2954 static bool stuck_in_jump_pad_callback (thread_info *thread);
2955 static int lwp_running (thread_info *thread, void *data);
2956 static ptid_t linux_wait_1 (ptid_t ptid,
2957 struct target_waitstatus *ourstatus,
2958 int target_options);
2959
2960 /* Stabilize threads (move out of jump pads).
2961
2962 If a thread is midway collecting a fast tracepoint, we need to
2963 finish the collection and move it out of the jump pad before
2964 reporting the signal.
2965
2966 This avoids recursion while collecting (when a signal arrives
2967 midway, and the signal handler itself collects), which would trash
2968 the trace buffer. In case the user set a breakpoint in a signal
2969 handler, this avoids the backtrace showing the jump pad, etc..
2970 Most importantly, there are certain things we can't do safely if
2971 threads are stopped in a jump pad (or in its callee's). For
2972 example:
2973
2974 - starting a new trace run. A thread still collecting the
2975 previous run, could trash the trace buffer when resumed. The trace
2976 buffer control structures would have been reset but the thread had
2977 no way to tell. The thread could even midway memcpy'ing to the
2978 buffer, which would mean that when resumed, it would clobber the
2979 trace buffer that had been set for a new run.
2980
2981 - we can't rewrite/reuse the jump pads for new tracepoints
2982 safely. Say you do tstart while a thread is stopped midway while
2983 collecting. When the thread is later resumed, it finishes the
2984 collection, and returns to the jump pad, to execute the original
2985 instruction that was under the tracepoint jump at the time the
2986 older run had been started. If the jump pad had been rewritten
2987 since for something else in the new run, the thread would now
2988 execute the wrong / random instructions. */
2989
2990 static void
2991 linux_stabilize_threads (void)
2992 {
2993 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2994
2995 if (thread_stuck != NULL)
2996 {
2997 if (debug_threads)
2998 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2999 lwpid_of (thread_stuck));
3000 return;
3001 }
3002
3003 thread_info *saved_thread = current_thread;
3004
3005 stabilizing_threads = 1;
3006
3007 /* Kick 'em all. */
3008 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3009
3010 /* Loop until all are stopped out of the jump pads. */
3011 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3012 {
3013 struct target_waitstatus ourstatus;
3014 struct lwp_info *lwp;
3015 int wstat;
3016
3017 /* Note that we go through the full wait even loop. While
3018 moving threads out of jump pad, we need to be able to step
3019 over internal breakpoints and such. */
3020 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3021
3022 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3023 {
3024 lwp = get_thread_lwp (current_thread);
3025
3026 /* Lock it. */
3027 lwp_suspended_inc (lwp);
3028
3029 if (ourstatus.value.sig != GDB_SIGNAL_0
3030 || current_thread->last_resume_kind == resume_stop)
3031 {
3032 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3033 enqueue_one_deferred_signal (lwp, &wstat);
3034 }
3035 }
3036 }
3037
3038 unsuspend_all_lwps (NULL);
3039
3040 stabilizing_threads = 0;
3041
3042 current_thread = saved_thread;
3043
3044 if (debug_threads)
3045 {
3046 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3047
3048 if (thread_stuck != NULL)
3049 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3050 lwpid_of (thread_stuck));
3051 }
3052 }
3053
3054 /* Convenience function that is called when the kernel reports an
3055 event that is not passed out to GDB. */
3056
3057 static ptid_t
3058 ignore_event (struct target_waitstatus *ourstatus)
3059 {
3060 /* If we got an event, there may still be others, as a single
3061 SIGCHLD can indicate more than one child stopped. This forces
3062 another target_wait call. */
3063 async_file_mark ();
3064
3065 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3066 return null_ptid;
3067 }
3068
3069 /* Convenience function that is called when the kernel reports an exit
3070 event. This decides whether to report the event to GDB as a
3071 process exit event, a thread exit event, or to suppress the
3072 event. */
3073
3074 static ptid_t
3075 filter_exit_event (struct lwp_info *event_child,
3076 struct target_waitstatus *ourstatus)
3077 {
3078 struct thread_info *thread = get_lwp_thread (event_child);
3079 ptid_t ptid = ptid_of (thread);
3080
3081 if (!last_thread_of_process_p (pid_of (thread)))
3082 {
3083 if (report_thread_events)
3084 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3085 else
3086 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3087
3088 delete_lwp (event_child);
3089 }
3090 return ptid;
3091 }
3092
3093 /* Returns 1 if GDB is interested in any event_child syscalls. */
3094
3095 static int
3096 gdb_catching_syscalls_p (struct lwp_info *event_child)
3097 {
3098 struct thread_info *thread = get_lwp_thread (event_child);
3099 struct process_info *proc = get_thread_process (thread);
3100
3101 return !proc->syscalls_to_catch.empty ();
3102 }
3103
3104 /* Returns 1 if GDB is interested in the event_child syscall.
3105 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3106
3107 static int
3108 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3109 {
3110 int sysno;
3111 struct thread_info *thread = get_lwp_thread (event_child);
3112 struct process_info *proc = get_thread_process (thread);
3113
3114 if (proc->syscalls_to_catch.empty ())
3115 return 0;
3116
3117 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3118 return 1;
3119
3120 get_syscall_trapinfo (event_child, &sysno);
3121
3122 for (int iter : proc->syscalls_to_catch)
3123 if (iter == sysno)
3124 return 1;
3125
3126 return 0;
3127 }
3128
3129 /* Wait for process, returns status. */
3130
3131 static ptid_t
3132 linux_wait_1 (ptid_t ptid,
3133 struct target_waitstatus *ourstatus, int target_options)
3134 {
3135 int w;
3136 struct lwp_info *event_child;
3137 int options;
3138 int pid;
3139 int step_over_finished;
3140 int bp_explains_trap;
3141 int maybe_internal_trap;
3142 int report_to_gdb;
3143 int trace_event;
3144 int in_step_range;
3145 int any_resumed;
3146
3147 if (debug_threads)
3148 {
3149 debug_enter ();
3150 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3151 }
3152
3153 /* Translate generic target options into linux options. */
3154 options = __WALL;
3155 if (target_options & TARGET_WNOHANG)
3156 options |= WNOHANG;
3157
3158 bp_explains_trap = 0;
3159 trace_event = 0;
3160 in_step_range = 0;
3161 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3162
3163 auto status_pending_p_any = [&] (thread_info *thread)
3164 {
3165 return status_pending_p_callback (thread, minus_one_ptid);
3166 };
3167
3168 /* Find a resumed LWP, if any. */
3169 if (find_thread (status_pending_p_any) != NULL)
3170 any_resumed = 1;
3171 else if ((find_inferior (&all_threads,
3172 not_stopped_callback,
3173 &minus_one_ptid) != NULL))
3174 any_resumed = 1;
3175 else
3176 any_resumed = 0;
3177
3178 if (ptid_equal (step_over_bkpt, null_ptid))
3179 pid = linux_wait_for_event (ptid, &w, options);
3180 else
3181 {
3182 if (debug_threads)
3183 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3184 target_pid_to_str (step_over_bkpt));
3185 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3186 }
3187
3188 if (pid == 0 || (pid == -1 && !any_resumed))
3189 {
3190 gdb_assert (target_options & TARGET_WNOHANG);
3191
3192 if (debug_threads)
3193 {
3194 debug_printf ("linux_wait_1 ret = null_ptid, "
3195 "TARGET_WAITKIND_IGNORE\n");
3196 debug_exit ();
3197 }
3198
3199 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3200 return null_ptid;
3201 }
3202 else if (pid == -1)
3203 {
3204 if (debug_threads)
3205 {
3206 debug_printf ("linux_wait_1 ret = null_ptid, "
3207 "TARGET_WAITKIND_NO_RESUMED\n");
3208 debug_exit ();
3209 }
3210
3211 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3212 return null_ptid;
3213 }
3214
3215 event_child = get_thread_lwp (current_thread);
3216
3217 /* linux_wait_for_event only returns an exit status for the last
3218 child of a process. Report it. */
3219 if (WIFEXITED (w) || WIFSIGNALED (w))
3220 {
3221 if (WIFEXITED (w))
3222 {
3223 ourstatus->kind = TARGET_WAITKIND_EXITED;
3224 ourstatus->value.integer = WEXITSTATUS (w);
3225
3226 if (debug_threads)
3227 {
3228 debug_printf ("linux_wait_1 ret = %s, exited with "
3229 "retcode %d\n",
3230 target_pid_to_str (ptid_of (current_thread)),
3231 WEXITSTATUS (w));
3232 debug_exit ();
3233 }
3234 }
3235 else
3236 {
3237 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3238 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3239
3240 if (debug_threads)
3241 {
3242 debug_printf ("linux_wait_1 ret = %s, terminated with "
3243 "signal %d\n",
3244 target_pid_to_str (ptid_of (current_thread)),
3245 WTERMSIG (w));
3246 debug_exit ();
3247 }
3248 }
3249
3250 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3251 return filter_exit_event (event_child, ourstatus);
3252
3253 return ptid_of (current_thread);
3254 }
3255
3256 /* If step-over executes a breakpoint instruction, in the case of a
3257 hardware single step it means a gdb/gdbserver breakpoint had been
3258 planted on top of a permanent breakpoint, in the case of a software
3259 single step it may just mean that gdbserver hit the reinsert breakpoint.
3260 The PC has been adjusted by save_stop_reason to point at
3261 the breakpoint address.
3262 So in the case of the hardware single step advance the PC manually
3263 past the breakpoint and in the case of software single step advance only
3264 if it's not the single_step_breakpoint we are hitting.
3265 This avoids that a program would keep trapping a permanent breakpoint
3266 forever. */
3267 if (!ptid_equal (step_over_bkpt, null_ptid)
3268 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3269 && (event_child->stepping
3270 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3271 {
3272 int increment_pc = 0;
3273 int breakpoint_kind = 0;
3274 CORE_ADDR stop_pc = event_child->stop_pc;
3275
3276 breakpoint_kind =
3277 the_target->breakpoint_kind_from_current_state (&stop_pc);
3278 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3279
3280 if (debug_threads)
3281 {
3282 debug_printf ("step-over for %s executed software breakpoint\n",
3283 target_pid_to_str (ptid_of (current_thread)));
3284 }
3285
3286 if (increment_pc != 0)
3287 {
3288 struct regcache *regcache
3289 = get_thread_regcache (current_thread, 1);
3290
3291 event_child->stop_pc += increment_pc;
3292 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3293
3294 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3295 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3296 }
3297 }
3298
3299 /* If this event was not handled before, and is not a SIGTRAP, we
3300 report it. SIGILL and SIGSEGV are also treated as traps in case
3301 a breakpoint is inserted at the current PC. If this target does
3302 not support internal breakpoints at all, we also report the
3303 SIGTRAP without further processing; it's of no concern to us. */
3304 maybe_internal_trap
3305 = (supports_breakpoints ()
3306 && (WSTOPSIG (w) == SIGTRAP
3307 || ((WSTOPSIG (w) == SIGILL
3308 || WSTOPSIG (w) == SIGSEGV)
3309 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3310
3311 if (maybe_internal_trap)
3312 {
3313 /* Handle anything that requires bookkeeping before deciding to
3314 report the event or continue waiting. */
3315
3316 /* First check if we can explain the SIGTRAP with an internal
3317 breakpoint, or if we should possibly report the event to GDB.
3318 Do this before anything that may remove or insert a
3319 breakpoint. */
3320 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3321
3322 /* We have a SIGTRAP, possibly a step-over dance has just
3323 finished. If so, tweak the state machine accordingly,
3324 reinsert breakpoints and delete any single-step
3325 breakpoints. */
3326 step_over_finished = finish_step_over (event_child);
3327
3328 /* Now invoke the callbacks of any internal breakpoints there. */
3329 check_breakpoints (event_child->stop_pc);
3330
3331 /* Handle tracepoint data collecting. This may overflow the
3332 trace buffer, and cause a tracing stop, removing
3333 breakpoints. */
3334 trace_event = handle_tracepoints (event_child);
3335
3336 if (bp_explains_trap)
3337 {
3338 if (debug_threads)
3339 debug_printf ("Hit a gdbserver breakpoint.\n");
3340 }
3341 }
3342 else
3343 {
3344 /* We have some other signal, possibly a step-over dance was in
3345 progress, and it should be cancelled too. */
3346 step_over_finished = finish_step_over (event_child);
3347 }
3348
3349 /* We have all the data we need. Either report the event to GDB, or
3350 resume threads and keep waiting for more. */
3351
3352 /* If we're collecting a fast tracepoint, finish the collection and
3353 move out of the jump pad before delivering a signal. See
3354 linux_stabilize_threads. */
3355
3356 if (WIFSTOPPED (w)
3357 && WSTOPSIG (w) != SIGTRAP
3358 && supports_fast_tracepoints ()
3359 && agent_loaded_p ())
3360 {
3361 if (debug_threads)
3362 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3363 "to defer or adjust it.\n",
3364 WSTOPSIG (w), lwpid_of (current_thread));
3365
3366 /* Allow debugging the jump pad itself. */
3367 if (current_thread->last_resume_kind != resume_step
3368 && maybe_move_out_of_jump_pad (event_child, &w))
3369 {
3370 enqueue_one_deferred_signal (event_child, &w);
3371
3372 if (debug_threads)
3373 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3374 WSTOPSIG (w), lwpid_of (current_thread));
3375
3376 linux_resume_one_lwp (event_child, 0, 0, NULL);
3377
3378 if (debug_threads)
3379 debug_exit ();
3380 return ignore_event (ourstatus);
3381 }
3382 }
3383
3384 if (event_child->collecting_fast_tracepoint
3385 != fast_tpoint_collect_result::not_collecting)
3386 {
3387 if (debug_threads)
3388 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3389 "Check if we're already there.\n",
3390 lwpid_of (current_thread),
3391 (int) event_child->collecting_fast_tracepoint);
3392
3393 trace_event = 1;
3394
3395 event_child->collecting_fast_tracepoint
3396 = linux_fast_tracepoint_collecting (event_child, NULL);
3397
3398 if (event_child->collecting_fast_tracepoint
3399 != fast_tpoint_collect_result::before_insn)
3400 {
3401 /* No longer need this breakpoint. */
3402 if (event_child->exit_jump_pad_bkpt != NULL)
3403 {
3404 if (debug_threads)
3405 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3406 "stopping all threads momentarily.\n");
3407
3408 /* Other running threads could hit this breakpoint.
3409 We don't handle moribund locations like GDB does,
3410 instead we always pause all threads when removing
3411 breakpoints, so that any step-over or
3412 decr_pc_after_break adjustment is always taken
3413 care of while the breakpoint is still
3414 inserted. */
3415 stop_all_lwps (1, event_child);
3416
3417 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3418 event_child->exit_jump_pad_bkpt = NULL;
3419
3420 unstop_all_lwps (1, event_child);
3421
3422 gdb_assert (event_child->suspended >= 0);
3423 }
3424 }
3425
3426 if (event_child->collecting_fast_tracepoint
3427 == fast_tpoint_collect_result::not_collecting)
3428 {
3429 if (debug_threads)
3430 debug_printf ("fast tracepoint finished "
3431 "collecting successfully.\n");
3432
3433 /* We may have a deferred signal to report. */
3434 if (dequeue_one_deferred_signal (event_child, &w))
3435 {
3436 if (debug_threads)
3437 debug_printf ("dequeued one signal.\n");
3438 }
3439 else
3440 {
3441 if (debug_threads)
3442 debug_printf ("no deferred signals.\n");
3443
3444 if (stabilizing_threads)
3445 {
3446 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3447 ourstatus->value.sig = GDB_SIGNAL_0;
3448
3449 if (debug_threads)
3450 {
3451 debug_printf ("linux_wait_1 ret = %s, stopped "
3452 "while stabilizing threads\n",
3453 target_pid_to_str (ptid_of (current_thread)));
3454 debug_exit ();
3455 }
3456
3457 return ptid_of (current_thread);
3458 }
3459 }
3460 }
3461 }
3462
3463 /* Check whether GDB would be interested in this event. */
3464
3465 /* Check if GDB is interested in this syscall. */
3466 if (WIFSTOPPED (w)
3467 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3468 && !gdb_catch_this_syscall_p (event_child))
3469 {
3470 if (debug_threads)
3471 {
3472 debug_printf ("Ignored syscall for LWP %ld.\n",
3473 lwpid_of (current_thread));
3474 }
3475
3476 linux_resume_one_lwp (event_child, event_child->stepping,
3477 0, NULL);
3478
3479 if (debug_threads)
3480 debug_exit ();
3481 return ignore_event (ourstatus);
3482 }
3483
3484 /* If GDB is not interested in this signal, don't stop other
3485 threads, and don't report it to GDB. Just resume the inferior
3486 right away. We do this for threading-related signals as well as
3487 any that GDB specifically requested we ignore. But never ignore
3488 SIGSTOP if we sent it ourselves, and do not ignore signals when
3489 stepping - they may require special handling to skip the signal
3490 handler. Also never ignore signals that could be caused by a
3491 breakpoint. */
3492 if (WIFSTOPPED (w)
3493 && current_thread->last_resume_kind != resume_step
3494 && (
3495 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3496 (current_process ()->priv->thread_db != NULL
3497 && (WSTOPSIG (w) == __SIGRTMIN
3498 || WSTOPSIG (w) == __SIGRTMIN + 1))
3499 ||
3500 #endif
3501 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3502 && !(WSTOPSIG (w) == SIGSTOP
3503 && current_thread->last_resume_kind == resume_stop)
3504 && !linux_wstatus_maybe_breakpoint (w))))
3505 {
3506 siginfo_t info, *info_p;
3507
3508 if (debug_threads)
3509 debug_printf ("Ignored signal %d for LWP %ld.\n",
3510 WSTOPSIG (w), lwpid_of (current_thread));
3511
3512 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3513 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3514 info_p = &info;
3515 else
3516 info_p = NULL;
3517
3518 if (step_over_finished)
3519 {
3520 /* We cancelled this thread's step-over above. We still
3521 need to unsuspend all other LWPs, and set them back
3522 running again while the signal handler runs. */
3523 unsuspend_all_lwps (event_child);
3524
3525 /* Enqueue the pending signal info so that proceed_all_lwps
3526 doesn't lose it. */
3527 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3528
3529 proceed_all_lwps ();
3530 }
3531 else
3532 {
3533 linux_resume_one_lwp (event_child, event_child->stepping,
3534 WSTOPSIG (w), info_p);
3535 }
3536
3537 if (debug_threads)
3538 debug_exit ();
3539
3540 return ignore_event (ourstatus);
3541 }
3542
3543 /* Note that all addresses are always "out of the step range" when
3544 there's no range to begin with. */
3545 in_step_range = lwp_in_step_range (event_child);
3546
3547 /* If GDB wanted this thread to single step, and the thread is out
3548 of the step range, we always want to report the SIGTRAP, and let
3549 GDB handle it. Watchpoints should always be reported. So should
3550 signals we can't explain. A SIGTRAP we can't explain could be a
3551 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3552 do, we're be able to handle GDB breakpoints on top of internal
3553 breakpoints, by handling the internal breakpoint and still
3554 reporting the event to GDB. If we don't, we're out of luck, GDB
3555 won't see the breakpoint hit. If we see a single-step event but
3556 the thread should be continuing, don't pass the trap to gdb.
3557 That indicates that we had previously finished a single-step but
3558 left the single-step pending -- see
3559 complete_ongoing_step_over. */
3560 report_to_gdb = (!maybe_internal_trap
3561 || (current_thread->last_resume_kind == resume_step
3562 && !in_step_range)
3563 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3564 || (!in_step_range
3565 && !bp_explains_trap
3566 && !trace_event
3567 && !step_over_finished
3568 && !(current_thread->last_resume_kind == resume_continue
3569 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3570 || (gdb_breakpoint_here (event_child->stop_pc)
3571 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3572 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3573 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3574
3575 run_breakpoint_commands (event_child->stop_pc);
3576
3577 /* We found no reason GDB would want us to stop. We either hit one
3578 of our own breakpoints, or finished an internal step GDB
3579 shouldn't know about. */
3580 if (!report_to_gdb)
3581 {
3582 if (debug_threads)
3583 {
3584 if (bp_explains_trap)
3585 debug_printf ("Hit a gdbserver breakpoint.\n");
3586 if (step_over_finished)
3587 debug_printf ("Step-over finished.\n");
3588 if (trace_event)
3589 debug_printf ("Tracepoint event.\n");
3590 if (lwp_in_step_range (event_child))
3591 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3592 paddress (event_child->stop_pc),
3593 paddress (event_child->step_range_start),
3594 paddress (event_child->step_range_end));
3595 }
3596
3597 /* We're not reporting this breakpoint to GDB, so apply the
3598 decr_pc_after_break adjustment to the inferior's regcache
3599 ourselves. */
3600
3601 if (the_low_target.set_pc != NULL)
3602 {
3603 struct regcache *regcache
3604 = get_thread_regcache (current_thread, 1);
3605 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3606 }
3607
3608 if (step_over_finished)
3609 {
3610 /* If we have finished stepping over a breakpoint, we've
3611 stopped and suspended all LWPs momentarily except the
3612 stepping one. This is where we resume them all again.
3613 We're going to keep waiting, so use proceed, which
3614 handles stepping over the next breakpoint. */
3615 unsuspend_all_lwps (event_child);
3616 }
3617 else
3618 {
3619 /* Remove the single-step breakpoints if any. Note that
3620 there isn't single-step breakpoint if we finished stepping
3621 over. */
3622 if (can_software_single_step ()
3623 && has_single_step_breakpoints (current_thread))
3624 {
3625 stop_all_lwps (0, event_child);
3626 delete_single_step_breakpoints (current_thread);
3627 unstop_all_lwps (0, event_child);
3628 }
3629 }
3630
3631 if (debug_threads)
3632 debug_printf ("proceeding all threads.\n");
3633 proceed_all_lwps ();
3634
3635 if (debug_threads)
3636 debug_exit ();
3637
3638 return ignore_event (ourstatus);
3639 }
3640
3641 if (debug_threads)
3642 {
3643 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3644 {
3645 std::string str
3646 = target_waitstatus_to_string (&event_child->waitstatus);
3647
3648 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3649 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3650 }
3651 if (current_thread->last_resume_kind == resume_step)
3652 {
3653 if (event_child->step_range_start == event_child->step_range_end)
3654 debug_printf ("GDB wanted to single-step, reporting event.\n");
3655 else if (!lwp_in_step_range (event_child))
3656 debug_printf ("Out of step range, reporting event.\n");
3657 }
3658 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3659 debug_printf ("Stopped by watchpoint.\n");
3660 else if (gdb_breakpoint_here (event_child->stop_pc))
3661 debug_printf ("Stopped by GDB breakpoint.\n");
3662 if (debug_threads)
3663 debug_printf ("Hit a non-gdbserver trap event.\n");
3664 }
3665
3666 /* Alright, we're going to report a stop. */
3667
3668 /* Remove single-step breakpoints. */
3669 if (can_software_single_step ())
3670 {
3671 /* Remove single-step breakpoints or not. It it is true, stop all
3672 lwps, so that other threads won't hit the breakpoint in the
3673 staled memory. */
3674 int remove_single_step_breakpoints_p = 0;
3675
3676 if (non_stop)
3677 {
3678 remove_single_step_breakpoints_p
3679 = has_single_step_breakpoints (current_thread);
3680 }
3681 else
3682 {
3683 /* In all-stop, a stop reply cancels all previous resume
3684 requests. Delete all single-step breakpoints. */
3685
3686 find_thread ([&] (thread_info *thread) {
3687 if (has_single_step_breakpoints (thread))
3688 {
3689 remove_single_step_breakpoints_p = 1;
3690 return true;
3691 }
3692
3693 return false;
3694 });
3695 }
3696
3697 if (remove_single_step_breakpoints_p)
3698 {
3699 /* If we remove single-step breakpoints from memory, stop all lwps,
3700 so that other threads won't hit the breakpoint in the staled
3701 memory. */
3702 stop_all_lwps (0, event_child);
3703
3704 if (non_stop)
3705 {
3706 gdb_assert (has_single_step_breakpoints (current_thread));
3707 delete_single_step_breakpoints (current_thread);
3708 }
3709 else
3710 {
3711 for_each_thread ([] (thread_info *thread){
3712 if (has_single_step_breakpoints (thread))
3713 delete_single_step_breakpoints (thread);
3714 });
3715 }
3716
3717 unstop_all_lwps (0, event_child);
3718 }
3719 }
3720
3721 if (!stabilizing_threads)
3722 {
3723 /* In all-stop, stop all threads. */
3724 if (!non_stop)
3725 stop_all_lwps (0, NULL);
3726
3727 if (step_over_finished)
3728 {
3729 if (!non_stop)
3730 {
3731 /* If we were doing a step-over, all other threads but
3732 the stepping one had been paused in start_step_over,
3733 with their suspend counts incremented. We don't want
3734 to do a full unstop/unpause, because we're in
3735 all-stop mode (so we want threads stopped), but we
3736 still need to unsuspend the other threads, to
3737 decrement their `suspended' count back. */
3738 unsuspend_all_lwps (event_child);
3739 }
3740 else
3741 {
3742 /* If we just finished a step-over, then all threads had
3743 been momentarily paused. In all-stop, that's fine,
3744 we want threads stopped by now anyway. In non-stop,
3745 we need to re-resume threads that GDB wanted to be
3746 running. */
3747 unstop_all_lwps (1, event_child);
3748 }
3749 }
3750
3751 /* If we're not waiting for a specific LWP, choose an event LWP
3752 from among those that have had events. Giving equal priority
3753 to all LWPs that have had events helps prevent
3754 starvation. */
3755 if (ptid_equal (ptid, minus_one_ptid))
3756 {
3757 event_child->status_pending_p = 1;
3758 event_child->status_pending = w;
3759
3760 select_event_lwp (&event_child);
3761
3762 /* current_thread and event_child must stay in sync. */
3763 current_thread = get_lwp_thread (event_child);
3764
3765 event_child->status_pending_p = 0;
3766 w = event_child->status_pending;
3767 }
3768
3769
3770 /* Stabilize threads (move out of jump pads). */
3771 if (!non_stop)
3772 stabilize_threads ();
3773 }
3774 else
3775 {
3776 /* If we just finished a step-over, then all threads had been
3777 momentarily paused. In all-stop, that's fine, we want
3778 threads stopped by now anyway. In non-stop, we need to
3779 re-resume threads that GDB wanted to be running. */
3780 if (step_over_finished)
3781 unstop_all_lwps (1, event_child);
3782 }
3783
3784 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3785 {
3786 /* If the reported event is an exit, fork, vfork or exec, let
3787 GDB know. */
3788
3789 /* Break the unreported fork relationship chain. */
3790 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3791 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3792 {
3793 event_child->fork_relative->fork_relative = NULL;
3794 event_child->fork_relative = NULL;
3795 }
3796
3797 *ourstatus = event_child->waitstatus;
3798 /* Clear the event lwp's waitstatus since we handled it already. */
3799 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3800 }
3801 else
3802 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3803
3804 /* Now that we've selected our final event LWP, un-adjust its PC if
3805 it was a software breakpoint, and the client doesn't know we can
3806 adjust the breakpoint ourselves. */
3807 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3808 && !swbreak_feature)
3809 {
3810 int decr_pc = the_low_target.decr_pc_after_break;
3811
3812 if (decr_pc != 0)
3813 {
3814 struct regcache *regcache
3815 = get_thread_regcache (current_thread, 1);
3816 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3817 }
3818 }
3819
3820 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3821 {
3822 get_syscall_trapinfo (event_child,
3823 &ourstatus->value.syscall_number);
3824 ourstatus->kind = event_child->syscall_state;
3825 }
3826 else if (current_thread->last_resume_kind == resume_stop
3827 && WSTOPSIG (w) == SIGSTOP)
3828 {
3829 /* A thread that has been requested to stop by GDB with vCont;t,
3830 and it stopped cleanly, so report as SIG0. The use of
3831 SIGSTOP is an implementation detail. */
3832 ourstatus->value.sig = GDB_SIGNAL_0;
3833 }
3834 else if (current_thread->last_resume_kind == resume_stop
3835 && WSTOPSIG (w) != SIGSTOP)
3836 {
3837 /* A thread that has been requested to stop by GDB with vCont;t,
3838 but, it stopped for other reasons. */
3839 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3840 }
3841 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3842 {
3843 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3844 }
3845
3846 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3847
3848 if (debug_threads)
3849 {
3850 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3851 target_pid_to_str (ptid_of (current_thread)),
3852 ourstatus->kind, ourstatus->value.sig);
3853 debug_exit ();
3854 }
3855
3856 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3857 return filter_exit_event (event_child, ourstatus);
3858
3859 return ptid_of (current_thread);
3860 }
3861
3862 /* Get rid of any pending event in the pipe. */
3863 static void
3864 async_file_flush (void)
3865 {
3866 int ret;
3867 char buf;
3868
3869 do
3870 ret = read (linux_event_pipe[0], &buf, 1);
3871 while (ret >= 0 || (ret == -1 && errno == EINTR));
3872 }
3873
3874 /* Put something in the pipe, so the event loop wakes up. */
3875 static void
3876 async_file_mark (void)
3877 {
3878 int ret;
3879
3880 async_file_flush ();
3881
3882 do
3883 ret = write (linux_event_pipe[1], "+", 1);
3884 while (ret == 0 || (ret == -1 && errno == EINTR));
3885
3886 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3887 be awakened anyway. */
3888 }
3889
3890 static ptid_t
3891 linux_wait (ptid_t ptid,
3892 struct target_waitstatus *ourstatus, int target_options)
3893 {
3894 ptid_t event_ptid;
3895
3896 /* Flush the async file first. */
3897 if (target_is_async_p ())
3898 async_file_flush ();
3899
3900 do
3901 {
3902 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3903 }
3904 while ((target_options & TARGET_WNOHANG) == 0
3905 && ptid_equal (event_ptid, null_ptid)
3906 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3907
3908 /* If at least one stop was reported, there may be more. A single
3909 SIGCHLD can signal more than one child stop. */
3910 if (target_is_async_p ()
3911 && (target_options & TARGET_WNOHANG) != 0
3912 && !ptid_equal (event_ptid, null_ptid))
3913 async_file_mark ();
3914
3915 return event_ptid;
3916 }
3917
3918 /* Send a signal to an LWP. */
3919
3920 static int
3921 kill_lwp (unsigned long lwpid, int signo)
3922 {
3923 int ret;
3924
3925 errno = 0;
3926 ret = syscall (__NR_tkill, lwpid, signo);
3927 if (errno == ENOSYS)
3928 {
3929 /* If tkill fails, then we are not using nptl threads, a
3930 configuration we no longer support. */
3931 perror_with_name (("tkill"));
3932 }
3933 return ret;
3934 }
3935
3936 void
3937 linux_stop_lwp (struct lwp_info *lwp)
3938 {
3939 send_sigstop (lwp);
3940 }
3941
3942 static void
3943 send_sigstop (struct lwp_info *lwp)
3944 {
3945 int pid;
3946
3947 pid = lwpid_of (get_lwp_thread (lwp));
3948
3949 /* If we already have a pending stop signal for this process, don't
3950 send another. */
3951 if (lwp->stop_expected)
3952 {
3953 if (debug_threads)
3954 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3955
3956 return;
3957 }
3958
3959 if (debug_threads)
3960 debug_printf ("Sending sigstop to lwp %d\n", pid);
3961
3962 lwp->stop_expected = 1;
3963 kill_lwp (pid, SIGSTOP);
3964 }
3965
3966 static int
3967 send_sigstop_callback (thread_info *thread, void *except)
3968 {
3969 struct lwp_info *lwp = get_thread_lwp (thread);
3970
3971 /* Ignore EXCEPT. */
3972 if (lwp == except)
3973 return 0;
3974
3975 if (lwp->stopped)
3976 return 0;
3977
3978 send_sigstop (lwp);
3979 return 0;
3980 }
3981
3982 /* Increment the suspend count of an LWP, and stop it, if not stopped
3983 yet. */
3984 static int
3985 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
3986 {
3987 struct lwp_info *lwp = get_thread_lwp (thread);
3988
3989 /* Ignore EXCEPT. */
3990 if (lwp == except)
3991 return 0;
3992
3993 lwp_suspended_inc (lwp);
3994
3995 return send_sigstop_callback (thread, except);
3996 }
3997
3998 static void
3999 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4000 {
4001 /* Store the exit status for later. */
4002 lwp->status_pending_p = 1;
4003 lwp->status_pending = wstat;
4004
4005 /* Store in waitstatus as well, as there's nothing else to process
4006 for this event. */
4007 if (WIFEXITED (wstat))
4008 {
4009 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4010 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4011 }
4012 else if (WIFSIGNALED (wstat))
4013 {
4014 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4015 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4016 }
4017
4018 /* Prevent trying to stop it. */
4019 lwp->stopped = 1;
4020
4021 /* No further stops are expected from a dead lwp. */
4022 lwp->stop_expected = 0;
4023 }
4024
4025 /* Return true if LWP has exited already, and has a pending exit event
4026 to report to GDB. */
4027
4028 static int
4029 lwp_is_marked_dead (struct lwp_info *lwp)
4030 {
4031 return (lwp->status_pending_p
4032 && (WIFEXITED (lwp->status_pending)
4033 || WIFSIGNALED (lwp->status_pending)));
4034 }
4035
4036 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4037
4038 static void
4039 wait_for_sigstop (void)
4040 {
4041 struct thread_info *saved_thread;
4042 ptid_t saved_tid;
4043 int wstat;
4044 int ret;
4045
4046 saved_thread = current_thread;
4047 if (saved_thread != NULL)
4048 saved_tid = saved_thread->id;
4049 else
4050 saved_tid = null_ptid; /* avoid bogus unused warning */
4051
4052 if (debug_threads)
4053 debug_printf ("wait_for_sigstop: pulling events\n");
4054
4055 /* Passing NULL_PTID as filter indicates we want all events to be
4056 left pending. Eventually this returns when there are no
4057 unwaited-for children left. */
4058 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4059 &wstat, __WALL);
4060 gdb_assert (ret == -1);
4061
4062 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4063 current_thread = saved_thread;
4064 else
4065 {
4066 if (debug_threads)
4067 debug_printf ("Previously current thread died.\n");
4068
4069 /* We can't change the current inferior behind GDB's back,
4070 otherwise, a subsequent command may apply to the wrong
4071 process. */
4072 current_thread = NULL;
4073 }
4074 }
4075
4076 /* Returns true if THREAD is stopped in a jump pad, and we can't
4077 move it out, because we need to report the stop event to GDB. For
4078 example, if the user puts a breakpoint in the jump pad, it's
4079 because she wants to debug it. */
4080
4081 static bool
4082 stuck_in_jump_pad_callback (thread_info *thread)
4083 {
4084 struct lwp_info *lwp = get_thread_lwp (thread);
4085
4086 if (lwp->suspended != 0)
4087 {
4088 internal_error (__FILE__, __LINE__,
4089 "LWP %ld is suspended, suspended=%d\n",
4090 lwpid_of (thread), lwp->suspended);
4091 }
4092 gdb_assert (lwp->stopped);
4093
4094 /* Allow debugging the jump pad, gdb_collect, etc.. */
4095 return (supports_fast_tracepoints ()
4096 && agent_loaded_p ()
4097 && (gdb_breakpoint_here (lwp->stop_pc)
4098 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4099 || thread->last_resume_kind == resume_step)
4100 && (linux_fast_tracepoint_collecting (lwp, NULL)
4101 != fast_tpoint_collect_result::not_collecting));
4102 }
4103
4104 static void
4105 move_out_of_jump_pad_callback (thread_info *thread)
4106 {
4107 struct thread_info *saved_thread;
4108 struct lwp_info *lwp = get_thread_lwp (thread);
4109 int *wstat;
4110
4111 if (lwp->suspended != 0)
4112 {
4113 internal_error (__FILE__, __LINE__,
4114 "LWP %ld is suspended, suspended=%d\n",
4115 lwpid_of (thread), lwp->suspended);
4116 }
4117 gdb_assert (lwp->stopped);
4118
4119 /* For gdb_breakpoint_here. */
4120 saved_thread = current_thread;
4121 current_thread = thread;
4122
4123 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4124
4125 /* Allow debugging the jump pad, gdb_collect, etc. */
4126 if (!gdb_breakpoint_here (lwp->stop_pc)
4127 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4128 && thread->last_resume_kind != resume_step
4129 && maybe_move_out_of_jump_pad (lwp, wstat))
4130 {
4131 if (debug_threads)
4132 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4133 lwpid_of (thread));
4134
4135 if (wstat)
4136 {
4137 lwp->status_pending_p = 0;
4138 enqueue_one_deferred_signal (lwp, wstat);
4139
4140 if (debug_threads)
4141 debug_printf ("Signal %d for LWP %ld deferred "
4142 "(in jump pad)\n",
4143 WSTOPSIG (*wstat), lwpid_of (thread));
4144 }
4145
4146 linux_resume_one_lwp (lwp, 0, 0, NULL);
4147 }
4148 else
4149 lwp_suspended_inc (lwp);
4150
4151 current_thread = saved_thread;
4152 }
4153
4154 static int
4155 lwp_running (thread_info *thread, void *data)
4156 {
4157 struct lwp_info *lwp = get_thread_lwp (thread);
4158
4159 if (lwp_is_marked_dead (lwp))
4160 return 0;
4161 if (lwp->stopped)
4162 return 0;
4163 return 1;
4164 }
4165
4166 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4167 If SUSPEND, then also increase the suspend count of every LWP,
4168 except EXCEPT. */
4169
4170 static void
4171 stop_all_lwps (int suspend, struct lwp_info *except)
4172 {
4173 /* Should not be called recursively. */
4174 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4175
4176 if (debug_threads)
4177 {
4178 debug_enter ();
4179 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4180 suspend ? "stop-and-suspend" : "stop",
4181 except != NULL
4182 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4183 : "none");
4184 }
4185
4186 stopping_threads = (suspend
4187 ? STOPPING_AND_SUSPENDING_THREADS
4188 : STOPPING_THREADS);
4189
4190 if (suspend)
4191 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4192 else
4193 find_inferior (&all_threads, send_sigstop_callback, except);
4194 wait_for_sigstop ();
4195 stopping_threads = NOT_STOPPING_THREADS;
4196
4197 if (debug_threads)
4198 {
4199 debug_printf ("stop_all_lwps done, setting stopping_threads "
4200 "back to !stopping\n");
4201 debug_exit ();
4202 }
4203 }
4204
4205 /* Enqueue one signal in the chain of signals which need to be
4206 delivered to this process on next resume. */
4207
4208 static void
4209 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4210 {
4211 struct pending_signals *p_sig = XNEW (struct pending_signals);
4212
4213 p_sig->prev = lwp->pending_signals;
4214 p_sig->signal = signal;
4215 if (info == NULL)
4216 memset (&p_sig->info, 0, sizeof (siginfo_t));
4217 else
4218 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4219 lwp->pending_signals = p_sig;
4220 }
4221
4222 /* Install breakpoints for software single stepping. */
4223
4224 static void
4225 install_software_single_step_breakpoints (struct lwp_info *lwp)
4226 {
4227 struct thread_info *thread = get_lwp_thread (lwp);
4228 struct regcache *regcache = get_thread_regcache (thread, 1);
4229 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4230
4231 current_thread = thread;
4232 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4233
4234 for (CORE_ADDR pc : next_pcs)
4235 set_single_step_breakpoint (pc, current_ptid);
4236
4237 do_cleanups (old_chain);
4238 }
4239
4240 /* Single step via hardware or software single step.
4241 Return 1 if hardware single stepping, 0 if software single stepping
4242 or can't single step. */
4243
4244 static int
4245 single_step (struct lwp_info* lwp)
4246 {
4247 int step = 0;
4248
4249 if (can_hardware_single_step ())
4250 {
4251 step = 1;
4252 }
4253 else if (can_software_single_step ())
4254 {
4255 install_software_single_step_breakpoints (lwp);
4256 step = 0;
4257 }
4258 else
4259 {
4260 if (debug_threads)
4261 debug_printf ("stepping is not implemented on this target");
4262 }
4263
4264 return step;
4265 }
4266
4267 /* The signal can be delivered to the inferior if we are not trying to
4268 finish a fast tracepoint collect. Since signal can be delivered in
4269 the step-over, the program may go to signal handler and trap again
4270 after return from the signal handler. We can live with the spurious
4271 double traps. */
4272
4273 static int
4274 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4275 {
4276 return (lwp->collecting_fast_tracepoint
4277 == fast_tpoint_collect_result::not_collecting);
4278 }
4279
4280 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4281 SIGNAL is nonzero, give it that signal. */
4282
4283 static void
4284 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4285 int step, int signal, siginfo_t *info)
4286 {
4287 struct thread_info *thread = get_lwp_thread (lwp);
4288 struct thread_info *saved_thread;
4289 int ptrace_request;
4290 struct process_info *proc = get_thread_process (thread);
4291
4292 /* Note that target description may not be initialised
4293 (proc->tdesc == NULL) at this point because the program hasn't
4294 stopped at the first instruction yet. It means GDBserver skips
4295 the extra traps from the wrapper program (see option --wrapper).
4296 Code in this function that requires register access should be
4297 guarded by proc->tdesc == NULL or something else. */
4298
4299 if (lwp->stopped == 0)
4300 return;
4301
4302 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4303
4304 fast_tpoint_collect_result fast_tp_collecting
4305 = lwp->collecting_fast_tracepoint;
4306
4307 gdb_assert (!stabilizing_threads
4308 || (fast_tp_collecting
4309 != fast_tpoint_collect_result::not_collecting));
4310
4311 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4312 user used the "jump" command, or "set $pc = foo"). */
4313 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4314 {
4315 /* Collecting 'while-stepping' actions doesn't make sense
4316 anymore. */
4317 release_while_stepping_state_list (thread);
4318 }
4319
4320 /* If we have pending signals or status, and a new signal, enqueue the
4321 signal. Also enqueue the signal if it can't be delivered to the
4322 inferior right now. */
4323 if (signal != 0
4324 && (lwp->status_pending_p
4325 || lwp->pending_signals != NULL
4326 || !lwp_signal_can_be_delivered (lwp)))
4327 {
4328 enqueue_pending_signal (lwp, signal, info);
4329
4330 /* Postpone any pending signal. It was enqueued above. */
4331 signal = 0;
4332 }
4333
4334 if (lwp->status_pending_p)
4335 {
4336 if (debug_threads)
4337 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4338 " has pending status\n",
4339 lwpid_of (thread), step ? "step" : "continue",
4340 lwp->stop_expected ? "expected" : "not expected");
4341 return;
4342 }
4343
4344 saved_thread = current_thread;
4345 current_thread = thread;
4346
4347 /* This bit needs some thinking about. If we get a signal that
4348 we must report while a single-step reinsert is still pending,
4349 we often end up resuming the thread. It might be better to
4350 (ew) allow a stack of pending events; then we could be sure that
4351 the reinsert happened right away and not lose any signals.
4352
4353 Making this stack would also shrink the window in which breakpoints are
4354 uninserted (see comment in linux_wait_for_lwp) but not enough for
4355 complete correctness, so it won't solve that problem. It may be
4356 worthwhile just to solve this one, however. */
4357 if (lwp->bp_reinsert != 0)
4358 {
4359 if (debug_threads)
4360 debug_printf (" pending reinsert at 0x%s\n",
4361 paddress (lwp->bp_reinsert));
4362
4363 if (can_hardware_single_step ())
4364 {
4365 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4366 {
4367 if (step == 0)
4368 warning ("BAD - reinserting but not stepping.");
4369 if (lwp->suspended)
4370 warning ("BAD - reinserting and suspended(%d).",
4371 lwp->suspended);
4372 }
4373 }
4374
4375 step = maybe_hw_step (thread);
4376 }
4377
4378 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4379 {
4380 if (debug_threads)
4381 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4382 " (exit-jump-pad-bkpt)\n",
4383 lwpid_of (thread));
4384 }
4385 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4386 {
4387 if (debug_threads)
4388 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4389 " single-stepping\n",
4390 lwpid_of (thread));
4391
4392 if (can_hardware_single_step ())
4393 step = 1;
4394 else
4395 {
4396 internal_error (__FILE__, __LINE__,
4397 "moving out of jump pad single-stepping"
4398 " not implemented on this target");
4399 }
4400 }
4401
4402 /* If we have while-stepping actions in this thread set it stepping.
4403 If we have a signal to deliver, it may or may not be set to
4404 SIG_IGN, we don't know. Assume so, and allow collecting
4405 while-stepping into a signal handler. A possible smart thing to
4406 do would be to set an internal breakpoint at the signal return
4407 address, continue, and carry on catching this while-stepping
4408 action only when that breakpoint is hit. A future
4409 enhancement. */
4410 if (thread->while_stepping != NULL)
4411 {
4412 if (debug_threads)
4413 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4414 lwpid_of (thread));
4415
4416 step = single_step (lwp);
4417 }
4418
4419 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4420 {
4421 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4422
4423 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4424
4425 if (debug_threads)
4426 {
4427 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4428 (long) lwp->stop_pc);
4429 }
4430 }
4431
4432 /* If we have pending signals, consume one if it can be delivered to
4433 the inferior. */
4434 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4435 {
4436 struct pending_signals **p_sig;
4437
4438 p_sig = &lwp->pending_signals;
4439 while ((*p_sig)->prev != NULL)
4440 p_sig = &(*p_sig)->prev;
4441
4442 signal = (*p_sig)->signal;
4443 if ((*p_sig)->info.si_signo != 0)
4444 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4445 &(*p_sig)->info);
4446
4447 free (*p_sig);
4448 *p_sig = NULL;
4449 }
4450
4451 if (debug_threads)
4452 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4453 lwpid_of (thread), step ? "step" : "continue", signal,
4454 lwp->stop_expected ? "expected" : "not expected");
4455
4456 if (the_low_target.prepare_to_resume != NULL)
4457 the_low_target.prepare_to_resume (lwp);
4458
4459 regcache_invalidate_thread (thread);
4460 errno = 0;
4461 lwp->stepping = step;
4462 if (step)
4463 ptrace_request = PTRACE_SINGLESTEP;
4464 else if (gdb_catching_syscalls_p (lwp))
4465 ptrace_request = PTRACE_SYSCALL;
4466 else
4467 ptrace_request = PTRACE_CONT;
4468 ptrace (ptrace_request,
4469 lwpid_of (thread),
4470 (PTRACE_TYPE_ARG3) 0,
4471 /* Coerce to a uintptr_t first to avoid potential gcc warning
4472 of coercing an 8 byte integer to a 4 byte pointer. */
4473 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4474
4475 current_thread = saved_thread;
4476 if (errno)
4477 perror_with_name ("resuming thread");
4478
4479 /* Successfully resumed. Clear state that no longer makes sense,
4480 and mark the LWP as running. Must not do this before resuming
4481 otherwise if that fails other code will be confused. E.g., we'd
4482 later try to stop the LWP and hang forever waiting for a stop
4483 status. Note that we must not throw after this is cleared,
4484 otherwise handle_zombie_lwp_error would get confused. */
4485 lwp->stopped = 0;
4486 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4487 }
4488
4489 /* Called when we try to resume a stopped LWP and that errors out. If
4490 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4491 or about to become), discard the error, clear any pending status
4492 the LWP may have, and return true (we'll collect the exit status
4493 soon enough). Otherwise, return false. */
4494
4495 static int
4496 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4497 {
4498 struct thread_info *thread = get_lwp_thread (lp);
4499
4500 /* If we get an error after resuming the LWP successfully, we'd
4501 confuse !T state for the LWP being gone. */
4502 gdb_assert (lp->stopped);
4503
4504 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4505 because even if ptrace failed with ESRCH, the tracee may be "not
4506 yet fully dead", but already refusing ptrace requests. In that
4507 case the tracee has 'R (Running)' state for a little bit
4508 (observed in Linux 3.18). See also the note on ESRCH in the
4509 ptrace(2) man page. Instead, check whether the LWP has any state
4510 other than ptrace-stopped. */
4511
4512 /* Don't assume anything if /proc/PID/status can't be read. */
4513 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4514 {
4515 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4516 lp->status_pending_p = 0;
4517 return 1;
4518 }
4519 return 0;
4520 }
4521
4522 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4523 disappears while we try to resume it. */
4524
4525 static void
4526 linux_resume_one_lwp (struct lwp_info *lwp,
4527 int step, int signal, siginfo_t *info)
4528 {
4529 TRY
4530 {
4531 linux_resume_one_lwp_throw (lwp, step, signal, info);
4532 }
4533 CATCH (ex, RETURN_MASK_ERROR)
4534 {
4535 if (!check_ptrace_stopped_lwp_gone (lwp))
4536 throw_exception (ex);
4537 }
4538 END_CATCH
4539 }
4540
4541 /* This function is called once per thread via for_each_thread.
4542 We look up which resume request applies to THREAD and mark it with a
4543 pointer to the appropriate resume request.
4544
4545 This algorithm is O(threads * resume elements), but resume elements
4546 is small (and will remain small at least until GDB supports thread
4547 suspension). */
4548
4549 static void
4550 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4551 {
4552 struct lwp_info *lwp = get_thread_lwp (thread);
4553
4554 for (int ndx = 0; ndx < n; ndx++)
4555 {
4556 ptid_t ptid = resume[ndx].thread;
4557 if (ptid_equal (ptid, minus_one_ptid)
4558 || ptid == thread->id
4559 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4560 of PID'. */
4561 || (ptid_get_pid (ptid) == pid_of (thread)
4562 && (ptid_is_pid (ptid)
4563 || ptid_get_lwp (ptid) == -1)))
4564 {
4565 if (resume[ndx].kind == resume_stop
4566 && thread->last_resume_kind == resume_stop)
4567 {
4568 if (debug_threads)
4569 debug_printf ("already %s LWP %ld at GDB's request\n",
4570 (thread->last_status.kind
4571 == TARGET_WAITKIND_STOPPED)
4572 ? "stopped"
4573 : "stopping",
4574 lwpid_of (thread));
4575
4576 continue;
4577 }
4578
4579 /* Ignore (wildcard) resume requests for already-resumed
4580 threads. */
4581 if (resume[ndx].kind != resume_stop
4582 && thread->last_resume_kind != resume_stop)
4583 {
4584 if (debug_threads)
4585 debug_printf ("already %s LWP %ld at GDB's request\n",
4586 (thread->last_resume_kind
4587 == resume_step)
4588 ? "stepping"
4589 : "continuing",
4590 lwpid_of (thread));
4591 continue;
4592 }
4593
4594 /* Don't let wildcard resumes resume fork children that GDB
4595 does not yet know are new fork children. */
4596 if (lwp->fork_relative != NULL)
4597 {
4598 struct lwp_info *rel = lwp->fork_relative;
4599
4600 if (rel->status_pending_p
4601 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4602 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4603 {
4604 if (debug_threads)
4605 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4606 lwpid_of (thread));
4607 continue;
4608 }
4609 }
4610
4611 /* If the thread has a pending event that has already been
4612 reported to GDBserver core, but GDB has not pulled the
4613 event out of the vStopped queue yet, likewise, ignore the
4614 (wildcard) resume request. */
4615 if (in_queued_stop_replies (thread->id))
4616 {
4617 if (debug_threads)
4618 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4619 lwpid_of (thread));
4620 continue;
4621 }
4622
4623 lwp->resume = &resume[ndx];
4624 thread->last_resume_kind = lwp->resume->kind;
4625
4626 lwp->step_range_start = lwp->resume->step_range_start;
4627 lwp->step_range_end = lwp->resume->step_range_end;
4628
4629 /* If we had a deferred signal to report, dequeue one now.
4630 This can happen if LWP gets more than one signal while
4631 trying to get out of a jump pad. */
4632 if (lwp->stopped
4633 && !lwp->status_pending_p
4634 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4635 {
4636 lwp->status_pending_p = 1;
4637
4638 if (debug_threads)
4639 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4640 "leaving status pending.\n",
4641 WSTOPSIG (lwp->status_pending),
4642 lwpid_of (thread));
4643 }
4644
4645 return;
4646 }
4647 }
4648
4649 /* No resume action for this thread. */
4650 lwp->resume = NULL;
4651 }
4652
4653 /* find_inferior callback for linux_resume.
4654 Set *FLAG_P if this lwp has an interesting status pending. */
4655
4656 static bool
4657 resume_status_pending_p (thread_info *thread)
4658 {
4659 struct lwp_info *lwp = get_thread_lwp (thread);
4660
4661 /* LWPs which will not be resumed are not interesting, because
4662 we might not wait for them next time through linux_wait. */
4663 if (lwp->resume == NULL)
4664 return false;
4665
4666 return thread_still_has_status_pending_p (thread);
4667 }
4668
4669 /* Return 1 if this lwp that GDB wants running is stopped at an
4670 internal breakpoint that we need to step over. It assumes that any
4671 required STOP_PC adjustment has already been propagated to the
4672 inferior's regcache. */
4673
4674 static bool
4675 need_step_over_p (thread_info *thread)
4676 {
4677 struct lwp_info *lwp = get_thread_lwp (thread);
4678 struct thread_info *saved_thread;
4679 CORE_ADDR pc;
4680 struct process_info *proc = get_thread_process (thread);
4681
4682 /* GDBserver is skipping the extra traps from the wrapper program,
4683 don't have to do step over. */
4684 if (proc->tdesc == NULL)
4685 return false;
4686
4687 /* LWPs which will not be resumed are not interesting, because we
4688 might not wait for them next time through linux_wait. */
4689
4690 if (!lwp->stopped)
4691 {
4692 if (debug_threads)
4693 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4694 lwpid_of (thread));
4695 return false;
4696 }
4697
4698 if (thread->last_resume_kind == resume_stop)
4699 {
4700 if (debug_threads)
4701 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4702 " stopped\n",
4703 lwpid_of (thread));
4704 return false;
4705 }
4706
4707 gdb_assert (lwp->suspended >= 0);
4708
4709 if (lwp->suspended)
4710 {
4711 if (debug_threads)
4712 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4713 lwpid_of (thread));
4714 return false;
4715 }
4716
4717 if (lwp->status_pending_p)
4718 {
4719 if (debug_threads)
4720 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4721 " status.\n",
4722 lwpid_of (thread));
4723 return false;
4724 }
4725
4726 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4727 or we have. */
4728 pc = get_pc (lwp);
4729
4730 /* If the PC has changed since we stopped, then don't do anything,
4731 and let the breakpoint/tracepoint be hit. This happens if, for
4732 instance, GDB handled the decr_pc_after_break subtraction itself,
4733 GDB is OOL stepping this thread, or the user has issued a "jump"
4734 command, or poked thread's registers herself. */
4735 if (pc != lwp->stop_pc)
4736 {
4737 if (debug_threads)
4738 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4739 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4740 lwpid_of (thread),
4741 paddress (lwp->stop_pc), paddress (pc));
4742 return false;
4743 }
4744
4745 /* On software single step target, resume the inferior with signal
4746 rather than stepping over. */
4747 if (can_software_single_step ()
4748 && lwp->pending_signals != NULL
4749 && lwp_signal_can_be_delivered (lwp))
4750 {
4751 if (debug_threads)
4752 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4753 " signals.\n",
4754 lwpid_of (thread));
4755
4756 return false;
4757 }
4758
4759 saved_thread = current_thread;
4760 current_thread = thread;
4761
4762 /* We can only step over breakpoints we know about. */
4763 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4764 {
4765 /* Don't step over a breakpoint that GDB expects to hit
4766 though. If the condition is being evaluated on the target's side
4767 and it evaluate to false, step over this breakpoint as well. */
4768 if (gdb_breakpoint_here (pc)
4769 && gdb_condition_true_at_breakpoint (pc)
4770 && gdb_no_commands_at_breakpoint (pc))
4771 {
4772 if (debug_threads)
4773 debug_printf ("Need step over [LWP %ld]? yes, but found"
4774 " GDB breakpoint at 0x%s; skipping step over\n",
4775 lwpid_of (thread), paddress (pc));
4776
4777 current_thread = saved_thread;
4778 return false;
4779 }
4780 else
4781 {
4782 if (debug_threads)
4783 debug_printf ("Need step over [LWP %ld]? yes, "
4784 "found breakpoint at 0x%s\n",
4785 lwpid_of (thread), paddress (pc));
4786
4787 /* We've found an lwp that needs stepping over --- return 1 so
4788 that find_inferior stops looking. */
4789 current_thread = saved_thread;
4790
4791 return true;
4792 }
4793 }
4794
4795 current_thread = saved_thread;
4796
4797 if (debug_threads)
4798 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4799 " at 0x%s\n",
4800 lwpid_of (thread), paddress (pc));
4801
4802 return false;
4803 }
4804
4805 /* Start a step-over operation on LWP. When LWP stopped at a
4806 breakpoint, to make progress, we need to remove the breakpoint out
4807 of the way. If we let other threads run while we do that, they may
4808 pass by the breakpoint location and miss hitting it. To avoid
4809 that, a step-over momentarily stops all threads while LWP is
4810 single-stepped by either hardware or software while the breakpoint
4811 is temporarily uninserted from the inferior. When the single-step
4812 finishes, we reinsert the breakpoint, and let all threads that are
4813 supposed to be running, run again. */
4814
4815 static int
4816 start_step_over (struct lwp_info *lwp)
4817 {
4818 struct thread_info *thread = get_lwp_thread (lwp);
4819 struct thread_info *saved_thread;
4820 CORE_ADDR pc;
4821 int step;
4822
4823 if (debug_threads)
4824 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4825 lwpid_of (thread));
4826
4827 stop_all_lwps (1, lwp);
4828
4829 if (lwp->suspended != 0)
4830 {
4831 internal_error (__FILE__, __LINE__,
4832 "LWP %ld suspended=%d\n", lwpid_of (thread),
4833 lwp->suspended);
4834 }
4835
4836 if (debug_threads)
4837 debug_printf ("Done stopping all threads for step-over.\n");
4838
4839 /* Note, we should always reach here with an already adjusted PC,
4840 either by GDB (if we're resuming due to GDB's request), or by our
4841 caller, if we just finished handling an internal breakpoint GDB
4842 shouldn't care about. */
4843 pc = get_pc (lwp);
4844
4845 saved_thread = current_thread;
4846 current_thread = thread;
4847
4848 lwp->bp_reinsert = pc;
4849 uninsert_breakpoints_at (pc);
4850 uninsert_fast_tracepoint_jumps_at (pc);
4851
4852 step = single_step (lwp);
4853
4854 current_thread = saved_thread;
4855
4856 linux_resume_one_lwp (lwp, step, 0, NULL);
4857
4858 /* Require next event from this LWP. */
4859 step_over_bkpt = thread->id;
4860 return 1;
4861 }
4862
4863 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4864 start_step_over, if still there, and delete any single-step
4865 breakpoints we've set, on non hardware single-step targets. */
4866
4867 static int
4868 finish_step_over (struct lwp_info *lwp)
4869 {
4870 if (lwp->bp_reinsert != 0)
4871 {
4872 struct thread_info *saved_thread = current_thread;
4873
4874 if (debug_threads)
4875 debug_printf ("Finished step over.\n");
4876
4877 current_thread = get_lwp_thread (lwp);
4878
4879 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4880 may be no breakpoint to reinsert there by now. */
4881 reinsert_breakpoints_at (lwp->bp_reinsert);
4882 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4883
4884 lwp->bp_reinsert = 0;
4885
4886 /* Delete any single-step breakpoints. No longer needed. We
4887 don't have to worry about other threads hitting this trap,
4888 and later not being able to explain it, because we were
4889 stepping over a breakpoint, and we hold all threads but
4890 LWP stopped while doing that. */
4891 if (!can_hardware_single_step ())
4892 {
4893 gdb_assert (has_single_step_breakpoints (current_thread));
4894 delete_single_step_breakpoints (current_thread);
4895 }
4896
4897 step_over_bkpt = null_ptid;
4898 current_thread = saved_thread;
4899 return 1;
4900 }
4901 else
4902 return 0;
4903 }
4904
4905 /* If there's a step over in progress, wait until all threads stop
4906 (that is, until the stepping thread finishes its step), and
4907 unsuspend all lwps. The stepping thread ends with its status
4908 pending, which is processed later when we get back to processing
4909 events. */
4910
4911 static void
4912 complete_ongoing_step_over (void)
4913 {
4914 if (!ptid_equal (step_over_bkpt, null_ptid))
4915 {
4916 struct lwp_info *lwp;
4917 int wstat;
4918 int ret;
4919
4920 if (debug_threads)
4921 debug_printf ("detach: step over in progress, finish it first\n");
4922
4923 /* Passing NULL_PTID as filter indicates we want all events to
4924 be left pending. Eventually this returns when there are no
4925 unwaited-for children left. */
4926 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4927 &wstat, __WALL);
4928 gdb_assert (ret == -1);
4929
4930 lwp = find_lwp_pid (step_over_bkpt);
4931 if (lwp != NULL)
4932 finish_step_over (lwp);
4933 step_over_bkpt = null_ptid;
4934 unsuspend_all_lwps (lwp);
4935 }
4936 }
4937
4938 /* This function is called once per thread. We check the thread's resume
4939 request, which will tell us whether to resume, step, or leave the thread
4940 stopped; and what signal, if any, it should be sent.
4941
4942 For threads which we aren't explicitly told otherwise, we preserve
4943 the stepping flag; this is used for stepping over gdbserver-placed
4944 breakpoints.
4945
4946 If pending_flags was set in any thread, we queue any needed
4947 signals, since we won't actually resume. We already have a pending
4948 event to report, so we don't need to preserve any step requests;
4949 they should be re-issued if necessary. */
4950
4951 static int
4952 linux_resume_one_thread (thread_info *thread, void *arg)
4953 {
4954 struct lwp_info *lwp = get_thread_lwp (thread);
4955 int leave_all_stopped = * (int *) arg;
4956 int leave_pending;
4957
4958 if (lwp->resume == NULL)
4959 return 0;
4960
4961 if (lwp->resume->kind == resume_stop)
4962 {
4963 if (debug_threads)
4964 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4965
4966 if (!lwp->stopped)
4967 {
4968 if (debug_threads)
4969 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4970
4971 /* Stop the thread, and wait for the event asynchronously,
4972 through the event loop. */
4973 send_sigstop (lwp);
4974 }
4975 else
4976 {
4977 if (debug_threads)
4978 debug_printf ("already stopped LWP %ld\n",
4979 lwpid_of (thread));
4980
4981 /* The LWP may have been stopped in an internal event that
4982 was not meant to be notified back to GDB (e.g., gdbserver
4983 breakpoint), so we should be reporting a stop event in
4984 this case too. */
4985
4986 /* If the thread already has a pending SIGSTOP, this is a
4987 no-op. Otherwise, something later will presumably resume
4988 the thread and this will cause it to cancel any pending
4989 operation, due to last_resume_kind == resume_stop. If
4990 the thread already has a pending status to report, we
4991 will still report it the next time we wait - see
4992 status_pending_p_callback. */
4993
4994 /* If we already have a pending signal to report, then
4995 there's no need to queue a SIGSTOP, as this means we're
4996 midway through moving the LWP out of the jumppad, and we
4997 will report the pending signal as soon as that is
4998 finished. */
4999 if (lwp->pending_signals_to_report == NULL)
5000 send_sigstop (lwp);
5001 }
5002
5003 /* For stop requests, we're done. */
5004 lwp->resume = NULL;
5005 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5006 return 0;
5007 }
5008
5009 /* If this thread which is about to be resumed has a pending status,
5010 then don't resume it - we can just report the pending status.
5011 Likewise if it is suspended, because e.g., another thread is
5012 stepping past a breakpoint. Make sure to queue any signals that
5013 would otherwise be sent. In all-stop mode, we do this decision
5014 based on if *any* thread has a pending status. If there's a
5015 thread that needs the step-over-breakpoint dance, then don't
5016 resume any other thread but that particular one. */
5017 leave_pending = (lwp->suspended
5018 || lwp->status_pending_p
5019 || leave_all_stopped);
5020
5021 /* If we have a new signal, enqueue the signal. */
5022 if (lwp->resume->sig != 0)
5023 {
5024 siginfo_t info, *info_p;
5025
5026 /* If this is the same signal we were previously stopped by,
5027 make sure to queue its siginfo. */
5028 if (WIFSTOPPED (lwp->last_status)
5029 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5030 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5031 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5032 info_p = &info;
5033 else
5034 info_p = NULL;
5035
5036 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5037 }
5038
5039 if (!leave_pending)
5040 {
5041 if (debug_threads)
5042 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5043
5044 proceed_one_lwp (thread, NULL);
5045 }
5046 else
5047 {
5048 if (debug_threads)
5049 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5050 }
5051
5052 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5053 lwp->resume = NULL;
5054 return 0;
5055 }
5056
5057 static void
5058 linux_resume (struct thread_resume *resume_info, size_t n)
5059 {
5060 struct thread_info *need_step_over = NULL;
5061 int leave_all_stopped;
5062
5063 if (debug_threads)
5064 {
5065 debug_enter ();
5066 debug_printf ("linux_resume:\n");
5067 }
5068
5069 for_each_thread ([&] (thread_info *thread)
5070 {
5071 linux_set_resume_request (thread, resume_info, n);
5072 });
5073
5074 /* If there is a thread which would otherwise be resumed, which has
5075 a pending status, then don't resume any threads - we can just
5076 report the pending status. Make sure to queue any signals that
5077 would otherwise be sent. In non-stop mode, we'll apply this
5078 logic to each thread individually. We consume all pending events
5079 before considering to start a step-over (in all-stop). */
5080 bool any_pending = false;
5081 if (!non_stop)
5082 any_pending = find_thread (resume_status_pending_p) != NULL;
5083
5084 /* If there is a thread which would otherwise be resumed, which is
5085 stopped at a breakpoint that needs stepping over, then don't
5086 resume any threads - have it step over the breakpoint with all
5087 other threads stopped, then resume all threads again. Make sure
5088 to queue any signals that would otherwise be delivered or
5089 queued. */
5090 if (!any_pending && supports_breakpoints ())
5091 need_step_over = find_thread (need_step_over_p);
5092
5093 leave_all_stopped = (need_step_over != NULL || any_pending);
5094
5095 if (debug_threads)
5096 {
5097 if (need_step_over != NULL)
5098 debug_printf ("Not resuming all, need step over\n");
5099 else if (any_pending)
5100 debug_printf ("Not resuming, all-stop and found "
5101 "an LWP with pending status\n");
5102 else
5103 debug_printf ("Resuming, no pending status or step over needed\n");
5104 }
5105
5106 /* Even if we're leaving threads stopped, queue all signals we'd
5107 otherwise deliver. */
5108 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5109
5110 if (need_step_over)
5111 start_step_over (get_thread_lwp (need_step_over));
5112
5113 if (debug_threads)
5114 {
5115 debug_printf ("linux_resume done\n");
5116 debug_exit ();
5117 }
5118
5119 /* We may have events that were pending that can/should be sent to
5120 the client now. Trigger a linux_wait call. */
5121 if (target_is_async_p ())
5122 async_file_mark ();
5123 }
5124
5125 /* This function is called once per thread. We check the thread's
5126 last resume request, which will tell us whether to resume, step, or
5127 leave the thread stopped. Any signal the client requested to be
5128 delivered has already been enqueued at this point.
5129
5130 If any thread that GDB wants running is stopped at an internal
5131 breakpoint that needs stepping over, we start a step-over operation
5132 on that particular thread, and leave all others stopped. */
5133
5134 static int
5135 proceed_one_lwp (thread_info *thread, void *except)
5136 {
5137 struct lwp_info *lwp = get_thread_lwp (thread);
5138 int step;
5139
5140 if (lwp == except)
5141 return 0;
5142
5143 if (debug_threads)
5144 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5145
5146 if (!lwp->stopped)
5147 {
5148 if (debug_threads)
5149 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5150 return 0;
5151 }
5152
5153 if (thread->last_resume_kind == resume_stop
5154 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5155 {
5156 if (debug_threads)
5157 debug_printf (" client wants LWP to remain %ld stopped\n",
5158 lwpid_of (thread));
5159 return 0;
5160 }
5161
5162 if (lwp->status_pending_p)
5163 {
5164 if (debug_threads)
5165 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5166 lwpid_of (thread));
5167 return 0;
5168 }
5169
5170 gdb_assert (lwp->suspended >= 0);
5171
5172 if (lwp->suspended)
5173 {
5174 if (debug_threads)
5175 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5176 return 0;
5177 }
5178
5179 if (thread->last_resume_kind == resume_stop
5180 && lwp->pending_signals_to_report == NULL
5181 && (lwp->collecting_fast_tracepoint
5182 == fast_tpoint_collect_result::not_collecting))
5183 {
5184 /* We haven't reported this LWP as stopped yet (otherwise, the
5185 last_status.kind check above would catch it, and we wouldn't
5186 reach here. This LWP may have been momentarily paused by a
5187 stop_all_lwps call while handling for example, another LWP's
5188 step-over. In that case, the pending expected SIGSTOP signal
5189 that was queued at vCont;t handling time will have already
5190 been consumed by wait_for_sigstop, and so we need to requeue
5191 another one here. Note that if the LWP already has a SIGSTOP
5192 pending, this is a no-op. */
5193
5194 if (debug_threads)
5195 debug_printf ("Client wants LWP %ld to stop. "
5196 "Making sure it has a SIGSTOP pending\n",
5197 lwpid_of (thread));
5198
5199 send_sigstop (lwp);
5200 }
5201
5202 if (thread->last_resume_kind == resume_step)
5203 {
5204 if (debug_threads)
5205 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5206 lwpid_of (thread));
5207
5208 /* If resume_step is requested by GDB, install single-step
5209 breakpoints when the thread is about to be actually resumed if
5210 the single-step breakpoints weren't removed. */
5211 if (can_software_single_step ()
5212 && !has_single_step_breakpoints (thread))
5213 install_software_single_step_breakpoints (lwp);
5214
5215 step = maybe_hw_step (thread);
5216 }
5217 else if (lwp->bp_reinsert != 0)
5218 {
5219 if (debug_threads)
5220 debug_printf (" stepping LWP %ld, reinsert set\n",
5221 lwpid_of (thread));
5222
5223 step = maybe_hw_step (thread);
5224 }
5225 else
5226 step = 0;
5227
5228 linux_resume_one_lwp (lwp, step, 0, NULL);
5229 return 0;
5230 }
5231
5232 static int
5233 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5234 {
5235 struct lwp_info *lwp = get_thread_lwp (thread);
5236
5237 if (lwp == except)
5238 return 0;
5239
5240 lwp_suspended_decr (lwp);
5241
5242 return proceed_one_lwp (thread, except);
5243 }
5244
5245 /* When we finish a step-over, set threads running again. If there's
5246 another thread that may need a step-over, now's the time to start
5247 it. Eventually, we'll move all threads past their breakpoints. */
5248
5249 static void
5250 proceed_all_lwps (void)
5251 {
5252 struct thread_info *need_step_over;
5253
5254 /* If there is a thread which would otherwise be resumed, which is
5255 stopped at a breakpoint that needs stepping over, then don't
5256 resume any threads - have it step over the breakpoint with all
5257 other threads stopped, then resume all threads again. */
5258
5259 if (supports_breakpoints ())
5260 {
5261 need_step_over = find_thread (need_step_over_p);
5262
5263 if (need_step_over != NULL)
5264 {
5265 if (debug_threads)
5266 debug_printf ("proceed_all_lwps: found "
5267 "thread %ld needing a step-over\n",
5268 lwpid_of (need_step_over));
5269
5270 start_step_over (get_thread_lwp (need_step_over));
5271 return;
5272 }
5273 }
5274
5275 if (debug_threads)
5276 debug_printf ("Proceeding, no step-over needed\n");
5277
5278 find_inferior (&all_threads, proceed_one_lwp, NULL);
5279 }
5280
5281 /* Stopped LWPs that the client wanted to be running, that don't have
5282 pending statuses, are set to run again, except for EXCEPT, if not
5283 NULL. This undoes a stop_all_lwps call. */
5284
5285 static void
5286 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5287 {
5288 if (debug_threads)
5289 {
5290 debug_enter ();
5291 if (except)
5292 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5293 lwpid_of (get_lwp_thread (except)));
5294 else
5295 debug_printf ("unstopping all lwps\n");
5296 }
5297
5298 if (unsuspend)
5299 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5300 else
5301 find_inferior (&all_threads, proceed_one_lwp, except);
5302
5303 if (debug_threads)
5304 {
5305 debug_printf ("unstop_all_lwps done\n");
5306 debug_exit ();
5307 }
5308 }
5309
5310
5311 #ifdef HAVE_LINUX_REGSETS
5312
5313 #define use_linux_regsets 1
5314
5315 /* Returns true if REGSET has been disabled. */
5316
5317 static int
5318 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5319 {
5320 return (info->disabled_regsets != NULL
5321 && info->disabled_regsets[regset - info->regsets]);
5322 }
5323
5324 /* Disable REGSET. */
5325
5326 static void
5327 disable_regset (struct regsets_info *info, struct regset_info *regset)
5328 {
5329 int dr_offset;
5330
5331 dr_offset = regset - info->regsets;
5332 if (info->disabled_regsets == NULL)
5333 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5334 info->disabled_regsets[dr_offset] = 1;
5335 }
5336
5337 static int
5338 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5339 struct regcache *regcache)
5340 {
5341 struct regset_info *regset;
5342 int saw_general_regs = 0;
5343 int pid;
5344 struct iovec iov;
5345
5346 pid = lwpid_of (current_thread);
5347 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5348 {
5349 void *buf, *data;
5350 int nt_type, res;
5351
5352 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5353 continue;
5354
5355 buf = xmalloc (regset->size);
5356
5357 nt_type = regset->nt_type;
5358 if (nt_type)
5359 {
5360 iov.iov_base = buf;
5361 iov.iov_len = regset->size;
5362 data = (void *) &iov;
5363 }
5364 else
5365 data = buf;
5366
5367 #ifndef __sparc__
5368 res = ptrace (regset->get_request, pid,
5369 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5370 #else
5371 res = ptrace (regset->get_request, pid, data, nt_type);
5372 #endif
5373 if (res < 0)
5374 {
5375 if (errno == EIO)
5376 {
5377 /* If we get EIO on a regset, do not try it again for
5378 this process mode. */
5379 disable_regset (regsets_info, regset);
5380 }
5381 else if (errno == ENODATA)
5382 {
5383 /* ENODATA may be returned if the regset is currently
5384 not "active". This can happen in normal operation,
5385 so suppress the warning in this case. */
5386 }
5387 else if (errno == ESRCH)
5388 {
5389 /* At this point, ESRCH should mean the process is
5390 already gone, in which case we simply ignore attempts
5391 to read its registers. */
5392 }
5393 else
5394 {
5395 char s[256];
5396 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5397 pid);
5398 perror (s);
5399 }
5400 }
5401 else
5402 {
5403 if (regset->type == GENERAL_REGS)
5404 saw_general_regs = 1;
5405 regset->store_function (regcache, buf);
5406 }
5407 free (buf);
5408 }
5409 if (saw_general_regs)
5410 return 0;
5411 else
5412 return 1;
5413 }
5414
5415 static int
5416 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5417 struct regcache *regcache)
5418 {
5419 struct regset_info *regset;
5420 int saw_general_regs = 0;
5421 int pid;
5422 struct iovec iov;
5423
5424 pid = lwpid_of (current_thread);
5425 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5426 {
5427 void *buf, *data;
5428 int nt_type, res;
5429
5430 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5431 || regset->fill_function == NULL)
5432 continue;
5433
5434 buf = xmalloc (regset->size);
5435
5436 /* First fill the buffer with the current register set contents,
5437 in case there are any items in the kernel's regset that are
5438 not in gdbserver's regcache. */
5439
5440 nt_type = regset->nt_type;
5441 if (nt_type)
5442 {
5443 iov.iov_base = buf;
5444 iov.iov_len = regset->size;
5445 data = (void *) &iov;
5446 }
5447 else
5448 data = buf;
5449
5450 #ifndef __sparc__
5451 res = ptrace (regset->get_request, pid,
5452 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5453 #else
5454 res = ptrace (regset->get_request, pid, data, nt_type);
5455 #endif
5456
5457 if (res == 0)
5458 {
5459 /* Then overlay our cached registers on that. */
5460 regset->fill_function (regcache, buf);
5461
5462 /* Only now do we write the register set. */
5463 #ifndef __sparc__
5464 res = ptrace (regset->set_request, pid,
5465 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5466 #else
5467 res = ptrace (regset->set_request, pid, data, nt_type);
5468 #endif
5469 }
5470
5471 if (res < 0)
5472 {
5473 if (errno == EIO)
5474 {
5475 /* If we get EIO on a regset, do not try it again for
5476 this process mode. */
5477 disable_regset (regsets_info, regset);
5478 }
5479 else if (errno == ESRCH)
5480 {
5481 /* At this point, ESRCH should mean the process is
5482 already gone, in which case we simply ignore attempts
5483 to change its registers. See also the related
5484 comment in linux_resume_one_lwp. */
5485 free (buf);
5486 return 0;
5487 }
5488 else
5489 {
5490 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5491 }
5492 }
5493 else if (regset->type == GENERAL_REGS)
5494 saw_general_regs = 1;
5495 free (buf);
5496 }
5497 if (saw_general_regs)
5498 return 0;
5499 else
5500 return 1;
5501 }
5502
5503 #else /* !HAVE_LINUX_REGSETS */
5504
5505 #define use_linux_regsets 0
5506 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5507 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5508
5509 #endif
5510
5511 /* Return 1 if register REGNO is supported by one of the regset ptrace
5512 calls or 0 if it has to be transferred individually. */
5513
5514 static int
5515 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5516 {
5517 unsigned char mask = 1 << (regno % 8);
5518 size_t index = regno / 8;
5519
5520 return (use_linux_regsets
5521 && (regs_info->regset_bitmap == NULL
5522 || (regs_info->regset_bitmap[index] & mask) != 0));
5523 }
5524
5525 #ifdef HAVE_LINUX_USRREGS
5526
5527 static int
5528 register_addr (const struct usrregs_info *usrregs, int regnum)
5529 {
5530 int addr;
5531
5532 if (regnum < 0 || regnum >= usrregs->num_regs)
5533 error ("Invalid register number %d.", regnum);
5534
5535 addr = usrregs->regmap[regnum];
5536
5537 return addr;
5538 }
5539
5540 /* Fetch one register. */
5541 static void
5542 fetch_register (const struct usrregs_info *usrregs,
5543 struct regcache *regcache, int regno)
5544 {
5545 CORE_ADDR regaddr;
5546 int i, size;
5547 char *buf;
5548 int pid;
5549
5550 if (regno >= usrregs->num_regs)
5551 return;
5552 if ((*the_low_target.cannot_fetch_register) (regno))
5553 return;
5554
5555 regaddr = register_addr (usrregs, regno);
5556 if (regaddr == -1)
5557 return;
5558
5559 size = ((register_size (regcache->tdesc, regno)
5560 + sizeof (PTRACE_XFER_TYPE) - 1)
5561 & -sizeof (PTRACE_XFER_TYPE));
5562 buf = (char *) alloca (size);
5563
5564 pid = lwpid_of (current_thread);
5565 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5566 {
5567 errno = 0;
5568 *(PTRACE_XFER_TYPE *) (buf + i) =
5569 ptrace (PTRACE_PEEKUSER, pid,
5570 /* Coerce to a uintptr_t first to avoid potential gcc warning
5571 of coercing an 8 byte integer to a 4 byte pointer. */
5572 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5573 regaddr += sizeof (PTRACE_XFER_TYPE);
5574 if (errno != 0)
5575 error ("reading register %d: %s", regno, strerror (errno));
5576 }
5577
5578 if (the_low_target.supply_ptrace_register)
5579 the_low_target.supply_ptrace_register (regcache, regno, buf);
5580 else
5581 supply_register (regcache, regno, buf);
5582 }
5583
5584 /* Store one register. */
5585 static void
5586 store_register (const struct usrregs_info *usrregs,
5587 struct regcache *regcache, int regno)
5588 {
5589 CORE_ADDR regaddr;
5590 int i, size;
5591 char *buf;
5592 int pid;
5593
5594 if (regno >= usrregs->num_regs)
5595 return;
5596 if ((*the_low_target.cannot_store_register) (regno))
5597 return;
5598
5599 regaddr = register_addr (usrregs, regno);
5600 if (regaddr == -1)
5601 return;
5602
5603 size = ((register_size (regcache->tdesc, regno)
5604 + sizeof (PTRACE_XFER_TYPE) - 1)
5605 & -sizeof (PTRACE_XFER_TYPE));
5606 buf = (char *) alloca (size);
5607 memset (buf, 0, size);
5608
5609 if (the_low_target.collect_ptrace_register)
5610 the_low_target.collect_ptrace_register (regcache, regno, buf);
5611 else
5612 collect_register (regcache, regno, buf);
5613
5614 pid = lwpid_of (current_thread);
5615 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5616 {
5617 errno = 0;
5618 ptrace (PTRACE_POKEUSER, pid,
5619 /* Coerce to a uintptr_t first to avoid potential gcc warning
5620 about coercing an 8 byte integer to a 4 byte pointer. */
5621 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5622 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5623 if (errno != 0)
5624 {
5625 /* At this point, ESRCH should mean the process is
5626 already gone, in which case we simply ignore attempts
5627 to change its registers. See also the related
5628 comment in linux_resume_one_lwp. */
5629 if (errno == ESRCH)
5630 return;
5631
5632 if ((*the_low_target.cannot_store_register) (regno) == 0)
5633 error ("writing register %d: %s", regno, strerror (errno));
5634 }
5635 regaddr += sizeof (PTRACE_XFER_TYPE);
5636 }
5637 }
5638
5639 /* Fetch all registers, or just one, from the child process.
5640 If REGNO is -1, do this for all registers, skipping any that are
5641 assumed to have been retrieved by regsets_fetch_inferior_registers,
5642 unless ALL is non-zero.
5643 Otherwise, REGNO specifies which register (so we can save time). */
5644 static void
5645 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5646 struct regcache *regcache, int regno, int all)
5647 {
5648 struct usrregs_info *usr = regs_info->usrregs;
5649
5650 if (regno == -1)
5651 {
5652 for (regno = 0; regno < usr->num_regs; regno++)
5653 if (all || !linux_register_in_regsets (regs_info, regno))
5654 fetch_register (usr, regcache, regno);
5655 }
5656 else
5657 fetch_register (usr, regcache, regno);
5658 }
5659
5660 /* Store our register values back into the inferior.
5661 If REGNO is -1, do this for all registers, skipping any that are
5662 assumed to have been saved by regsets_store_inferior_registers,
5663 unless ALL is non-zero.
5664 Otherwise, REGNO specifies which register (so we can save time). */
5665 static void
5666 usr_store_inferior_registers (const struct regs_info *regs_info,
5667 struct regcache *regcache, int regno, int all)
5668 {
5669 struct usrregs_info *usr = regs_info->usrregs;
5670
5671 if (regno == -1)
5672 {
5673 for (regno = 0; regno < usr->num_regs; regno++)
5674 if (all || !linux_register_in_regsets (regs_info, regno))
5675 store_register (usr, regcache, regno);
5676 }
5677 else
5678 store_register (usr, regcache, regno);
5679 }
5680
5681 #else /* !HAVE_LINUX_USRREGS */
5682
5683 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5684 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5685
5686 #endif
5687
5688
5689 static void
5690 linux_fetch_registers (struct regcache *regcache, int regno)
5691 {
5692 int use_regsets;
5693 int all = 0;
5694 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5695
5696 if (regno == -1)
5697 {
5698 if (the_low_target.fetch_register != NULL
5699 && regs_info->usrregs != NULL)
5700 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5701 (*the_low_target.fetch_register) (regcache, regno);
5702
5703 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5704 if (regs_info->usrregs != NULL)
5705 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5706 }
5707 else
5708 {
5709 if (the_low_target.fetch_register != NULL
5710 && (*the_low_target.fetch_register) (regcache, regno))
5711 return;
5712
5713 use_regsets = linux_register_in_regsets (regs_info, regno);
5714 if (use_regsets)
5715 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5716 regcache);
5717 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5718 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5719 }
5720 }
5721
5722 static void
5723 linux_store_registers (struct regcache *regcache, int regno)
5724 {
5725 int use_regsets;
5726 int all = 0;
5727 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5728
5729 if (regno == -1)
5730 {
5731 all = regsets_store_inferior_registers (regs_info->regsets_info,
5732 regcache);
5733 if (regs_info->usrregs != NULL)
5734 usr_store_inferior_registers (regs_info, regcache, regno, all);
5735 }
5736 else
5737 {
5738 use_regsets = linux_register_in_regsets (regs_info, regno);
5739 if (use_regsets)
5740 all = regsets_store_inferior_registers (regs_info->regsets_info,
5741 regcache);
5742 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5743 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5744 }
5745 }
5746
5747
5748 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5749 to debugger memory starting at MYADDR. */
5750
5751 static int
5752 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5753 {
5754 int pid = lwpid_of (current_thread);
5755 PTRACE_XFER_TYPE *buffer;
5756 CORE_ADDR addr;
5757 int count;
5758 char filename[64];
5759 int i;
5760 int ret;
5761 int fd;
5762
5763 /* Try using /proc. Don't bother for one word. */
5764 if (len >= 3 * sizeof (long))
5765 {
5766 int bytes;
5767
5768 /* We could keep this file open and cache it - possibly one per
5769 thread. That requires some juggling, but is even faster. */
5770 sprintf (filename, "/proc/%d/mem", pid);
5771 fd = open (filename, O_RDONLY | O_LARGEFILE);
5772 if (fd == -1)
5773 goto no_proc;
5774
5775 /* If pread64 is available, use it. It's faster if the kernel
5776 supports it (only one syscall), and it's 64-bit safe even on
5777 32-bit platforms (for instance, SPARC debugging a SPARC64
5778 application). */
5779 #ifdef HAVE_PREAD64
5780 bytes = pread64 (fd, myaddr, len, memaddr);
5781 #else
5782 bytes = -1;
5783 if (lseek (fd, memaddr, SEEK_SET) != -1)
5784 bytes = read (fd, myaddr, len);
5785 #endif
5786
5787 close (fd);
5788 if (bytes == len)
5789 return 0;
5790
5791 /* Some data was read, we'll try to get the rest with ptrace. */
5792 if (bytes > 0)
5793 {
5794 memaddr += bytes;
5795 myaddr += bytes;
5796 len -= bytes;
5797 }
5798 }
5799
5800 no_proc:
5801 /* Round starting address down to longword boundary. */
5802 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5803 /* Round ending address up; get number of longwords that makes. */
5804 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5805 / sizeof (PTRACE_XFER_TYPE));
5806 /* Allocate buffer of that many longwords. */
5807 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5808
5809 /* Read all the longwords */
5810 errno = 0;
5811 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5812 {
5813 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5814 about coercing an 8 byte integer to a 4 byte pointer. */
5815 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5816 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5817 (PTRACE_TYPE_ARG4) 0);
5818 if (errno)
5819 break;
5820 }
5821 ret = errno;
5822
5823 /* Copy appropriate bytes out of the buffer. */
5824 if (i > 0)
5825 {
5826 i *= sizeof (PTRACE_XFER_TYPE);
5827 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5828 memcpy (myaddr,
5829 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5830 i < len ? i : len);
5831 }
5832
5833 return ret;
5834 }
5835
5836 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5837 memory at MEMADDR. On failure (cannot write to the inferior)
5838 returns the value of errno. Always succeeds if LEN is zero. */
5839
5840 static int
5841 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5842 {
5843 int i;
5844 /* Round starting address down to longword boundary. */
5845 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5846 /* Round ending address up; get number of longwords that makes. */
5847 int count
5848 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5849 / sizeof (PTRACE_XFER_TYPE);
5850
5851 /* Allocate buffer of that many longwords. */
5852 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5853
5854 int pid = lwpid_of (current_thread);
5855
5856 if (len == 0)
5857 {
5858 /* Zero length write always succeeds. */
5859 return 0;
5860 }
5861
5862 if (debug_threads)
5863 {
5864 /* Dump up to four bytes. */
5865 char str[4 * 2 + 1];
5866 char *p = str;
5867 int dump = len < 4 ? len : 4;
5868
5869 for (i = 0; i < dump; i++)
5870 {
5871 sprintf (p, "%02x", myaddr[i]);
5872 p += 2;
5873 }
5874 *p = '\0';
5875
5876 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5877 str, (long) memaddr, pid);
5878 }
5879
5880 /* Fill start and end extra bytes of buffer with existing memory data. */
5881
5882 errno = 0;
5883 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5884 about coercing an 8 byte integer to a 4 byte pointer. */
5885 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5886 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5887 (PTRACE_TYPE_ARG4) 0);
5888 if (errno)
5889 return errno;
5890
5891 if (count > 1)
5892 {
5893 errno = 0;
5894 buffer[count - 1]
5895 = ptrace (PTRACE_PEEKTEXT, pid,
5896 /* Coerce to a uintptr_t first to avoid potential gcc warning
5897 about coercing an 8 byte integer to a 4 byte pointer. */
5898 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5899 * sizeof (PTRACE_XFER_TYPE)),
5900 (PTRACE_TYPE_ARG4) 0);
5901 if (errno)
5902 return errno;
5903 }
5904
5905 /* Copy data to be written over corresponding part of buffer. */
5906
5907 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5908 myaddr, len);
5909
5910 /* Write the entire buffer. */
5911
5912 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5913 {
5914 errno = 0;
5915 ptrace (PTRACE_POKETEXT, pid,
5916 /* Coerce to a uintptr_t first to avoid potential gcc warning
5917 about coercing an 8 byte integer to a 4 byte pointer. */
5918 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5919 (PTRACE_TYPE_ARG4) buffer[i]);
5920 if (errno)
5921 return errno;
5922 }
5923
5924 return 0;
5925 }
5926
5927 static void
5928 linux_look_up_symbols (void)
5929 {
5930 #ifdef USE_THREAD_DB
5931 struct process_info *proc = current_process ();
5932
5933 if (proc->priv->thread_db != NULL)
5934 return;
5935
5936 thread_db_init ();
5937 #endif
5938 }
5939
5940 static void
5941 linux_request_interrupt (void)
5942 {
5943 /* Send a SIGINT to the process group. This acts just like the user
5944 typed a ^C on the controlling terminal. */
5945 kill (-signal_pid, SIGINT);
5946 }
5947
5948 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5949 to debugger memory starting at MYADDR. */
5950
5951 static int
5952 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5953 {
5954 char filename[PATH_MAX];
5955 int fd, n;
5956 int pid = lwpid_of (current_thread);
5957
5958 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5959
5960 fd = open (filename, O_RDONLY);
5961 if (fd < 0)
5962 return -1;
5963
5964 if (offset != (CORE_ADDR) 0
5965 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5966 n = -1;
5967 else
5968 n = read (fd, myaddr, len);
5969
5970 close (fd);
5971
5972 return n;
5973 }
5974
5975 /* These breakpoint and watchpoint related wrapper functions simply
5976 pass on the function call if the target has registered a
5977 corresponding function. */
5978
5979 static int
5980 linux_supports_z_point_type (char z_type)
5981 {
5982 return (the_low_target.supports_z_point_type != NULL
5983 && the_low_target.supports_z_point_type (z_type));
5984 }
5985
5986 static int
5987 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5988 int size, struct raw_breakpoint *bp)
5989 {
5990 if (type == raw_bkpt_type_sw)
5991 return insert_memory_breakpoint (bp);
5992 else if (the_low_target.insert_point != NULL)
5993 return the_low_target.insert_point (type, addr, size, bp);
5994 else
5995 /* Unsupported (see target.h). */
5996 return 1;
5997 }
5998
5999 static int
6000 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6001 int size, struct raw_breakpoint *bp)
6002 {
6003 if (type == raw_bkpt_type_sw)
6004 return remove_memory_breakpoint (bp);
6005 else if (the_low_target.remove_point != NULL)
6006 return the_low_target.remove_point (type, addr, size, bp);
6007 else
6008 /* Unsupported (see target.h). */
6009 return 1;
6010 }
6011
6012 /* Implement the to_stopped_by_sw_breakpoint target_ops
6013 method. */
6014
6015 static int
6016 linux_stopped_by_sw_breakpoint (void)
6017 {
6018 struct lwp_info *lwp = get_thread_lwp (current_thread);
6019
6020 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6021 }
6022
6023 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6024 method. */
6025
6026 static int
6027 linux_supports_stopped_by_sw_breakpoint (void)
6028 {
6029 return USE_SIGTRAP_SIGINFO;
6030 }
6031
6032 /* Implement the to_stopped_by_hw_breakpoint target_ops
6033 method. */
6034
6035 static int
6036 linux_stopped_by_hw_breakpoint (void)
6037 {
6038 struct lwp_info *lwp = get_thread_lwp (current_thread);
6039
6040 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6041 }
6042
6043 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6044 method. */
6045
6046 static int
6047 linux_supports_stopped_by_hw_breakpoint (void)
6048 {
6049 return USE_SIGTRAP_SIGINFO;
6050 }
6051
6052 /* Implement the supports_hardware_single_step target_ops method. */
6053
6054 static int
6055 linux_supports_hardware_single_step (void)
6056 {
6057 return can_hardware_single_step ();
6058 }
6059
6060 static int
6061 linux_supports_software_single_step (void)
6062 {
6063 return can_software_single_step ();
6064 }
6065
6066 static int
6067 linux_stopped_by_watchpoint (void)
6068 {
6069 struct lwp_info *lwp = get_thread_lwp (current_thread);
6070
6071 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6072 }
6073
6074 static CORE_ADDR
6075 linux_stopped_data_address (void)
6076 {
6077 struct lwp_info *lwp = get_thread_lwp (current_thread);
6078
6079 return lwp->stopped_data_address;
6080 }
6081
6082 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6083 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6084 && defined(PT_TEXT_END_ADDR)
6085
6086 /* This is only used for targets that define PT_TEXT_ADDR,
6087 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6088 the target has different ways of acquiring this information, like
6089 loadmaps. */
6090
6091 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6092 to tell gdb about. */
6093
6094 static int
6095 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6096 {
6097 unsigned long text, text_end, data;
6098 int pid = lwpid_of (current_thread);
6099
6100 errno = 0;
6101
6102 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6103 (PTRACE_TYPE_ARG4) 0);
6104 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6105 (PTRACE_TYPE_ARG4) 0);
6106 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6107 (PTRACE_TYPE_ARG4) 0);
6108
6109 if (errno == 0)
6110 {
6111 /* Both text and data offsets produced at compile-time (and so
6112 used by gdb) are relative to the beginning of the program,
6113 with the data segment immediately following the text segment.
6114 However, the actual runtime layout in memory may put the data
6115 somewhere else, so when we send gdb a data base-address, we
6116 use the real data base address and subtract the compile-time
6117 data base-address from it (which is just the length of the
6118 text segment). BSS immediately follows data in both
6119 cases. */
6120 *text_p = text;
6121 *data_p = data - (text_end - text);
6122
6123 return 1;
6124 }
6125 return 0;
6126 }
6127 #endif
6128
6129 static int
6130 linux_qxfer_osdata (const char *annex,
6131 unsigned char *readbuf, unsigned const char *writebuf,
6132 CORE_ADDR offset, int len)
6133 {
6134 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6135 }
6136
6137 /* Convert a native/host siginfo object, into/from the siginfo in the
6138 layout of the inferiors' architecture. */
6139
6140 static void
6141 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6142 {
6143 int done = 0;
6144
6145 if (the_low_target.siginfo_fixup != NULL)
6146 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6147
6148 /* If there was no callback, or the callback didn't do anything,
6149 then just do a straight memcpy. */
6150 if (!done)
6151 {
6152 if (direction == 1)
6153 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6154 else
6155 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6156 }
6157 }
6158
6159 static int
6160 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6161 unsigned const char *writebuf, CORE_ADDR offset, int len)
6162 {
6163 int pid;
6164 siginfo_t siginfo;
6165 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6166
6167 if (current_thread == NULL)
6168 return -1;
6169
6170 pid = lwpid_of (current_thread);
6171
6172 if (debug_threads)
6173 debug_printf ("%s siginfo for lwp %d.\n",
6174 readbuf != NULL ? "Reading" : "Writing",
6175 pid);
6176
6177 if (offset >= sizeof (siginfo))
6178 return -1;
6179
6180 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6181 return -1;
6182
6183 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6184 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6185 inferior with a 64-bit GDBSERVER should look the same as debugging it
6186 with a 32-bit GDBSERVER, we need to convert it. */
6187 siginfo_fixup (&siginfo, inf_siginfo, 0);
6188
6189 if (offset + len > sizeof (siginfo))
6190 len = sizeof (siginfo) - offset;
6191
6192 if (readbuf != NULL)
6193 memcpy (readbuf, inf_siginfo + offset, len);
6194 else
6195 {
6196 memcpy (inf_siginfo + offset, writebuf, len);
6197
6198 /* Convert back to ptrace layout before flushing it out. */
6199 siginfo_fixup (&siginfo, inf_siginfo, 1);
6200
6201 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6202 return -1;
6203 }
6204
6205 return len;
6206 }
6207
6208 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6209 so we notice when children change state; as the handler for the
6210 sigsuspend in my_waitpid. */
6211
6212 static void
6213 sigchld_handler (int signo)
6214 {
6215 int old_errno = errno;
6216
6217 if (debug_threads)
6218 {
6219 do
6220 {
6221 /* fprintf is not async-signal-safe, so call write
6222 directly. */
6223 if (write (2, "sigchld_handler\n",
6224 sizeof ("sigchld_handler\n") - 1) < 0)
6225 break; /* just ignore */
6226 } while (0);
6227 }
6228
6229 if (target_is_async_p ())
6230 async_file_mark (); /* trigger a linux_wait */
6231
6232 errno = old_errno;
6233 }
6234
6235 static int
6236 linux_supports_non_stop (void)
6237 {
6238 return 1;
6239 }
6240
6241 static int
6242 linux_async (int enable)
6243 {
6244 int previous = target_is_async_p ();
6245
6246 if (debug_threads)
6247 debug_printf ("linux_async (%d), previous=%d\n",
6248 enable, previous);
6249
6250 if (previous != enable)
6251 {
6252 sigset_t mask;
6253 sigemptyset (&mask);
6254 sigaddset (&mask, SIGCHLD);
6255
6256 sigprocmask (SIG_BLOCK, &mask, NULL);
6257
6258 if (enable)
6259 {
6260 if (pipe (linux_event_pipe) == -1)
6261 {
6262 linux_event_pipe[0] = -1;
6263 linux_event_pipe[1] = -1;
6264 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6265
6266 warning ("creating event pipe failed.");
6267 return previous;
6268 }
6269
6270 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6271 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6272
6273 /* Register the event loop handler. */
6274 add_file_handler (linux_event_pipe[0],
6275 handle_target_event, NULL);
6276
6277 /* Always trigger a linux_wait. */
6278 async_file_mark ();
6279 }
6280 else
6281 {
6282 delete_file_handler (linux_event_pipe[0]);
6283
6284 close (linux_event_pipe[0]);
6285 close (linux_event_pipe[1]);
6286 linux_event_pipe[0] = -1;
6287 linux_event_pipe[1] = -1;
6288 }
6289
6290 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6291 }
6292
6293 return previous;
6294 }
6295
6296 static int
6297 linux_start_non_stop (int nonstop)
6298 {
6299 /* Register or unregister from event-loop accordingly. */
6300 linux_async (nonstop);
6301
6302 if (target_is_async_p () != (nonstop != 0))
6303 return -1;
6304
6305 return 0;
6306 }
6307
6308 static int
6309 linux_supports_multi_process (void)
6310 {
6311 return 1;
6312 }
6313
6314 /* Check if fork events are supported. */
6315
6316 static int
6317 linux_supports_fork_events (void)
6318 {
6319 return linux_supports_tracefork ();
6320 }
6321
6322 /* Check if vfork events are supported. */
6323
6324 static int
6325 linux_supports_vfork_events (void)
6326 {
6327 return linux_supports_tracefork ();
6328 }
6329
6330 /* Check if exec events are supported. */
6331
6332 static int
6333 linux_supports_exec_events (void)
6334 {
6335 return linux_supports_traceexec ();
6336 }
6337
6338 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6339 ptrace flags for all inferiors. This is in case the new GDB connection
6340 doesn't support the same set of events that the previous one did. */
6341
6342 static void
6343 linux_handle_new_gdb_connection (void)
6344 {
6345 /* Request that all the lwps reset their ptrace options. */
6346 for_each_thread ([] (thread_info *thread)
6347 {
6348 struct lwp_info *lwp = get_thread_lwp (thread);
6349
6350 if (!lwp->stopped)
6351 {
6352 /* Stop the lwp so we can modify its ptrace options. */
6353 lwp->must_set_ptrace_flags = 1;
6354 linux_stop_lwp (lwp);
6355 }
6356 else
6357 {
6358 /* Already stopped; go ahead and set the ptrace options. */
6359 struct process_info *proc = find_process_pid (pid_of (thread));
6360 int options = linux_low_ptrace_options (proc->attached);
6361
6362 linux_enable_event_reporting (lwpid_of (thread), options);
6363 lwp->must_set_ptrace_flags = 0;
6364 }
6365 });
6366 }
6367
6368 static int
6369 linux_supports_disable_randomization (void)
6370 {
6371 #ifdef HAVE_PERSONALITY
6372 return 1;
6373 #else
6374 return 0;
6375 #endif
6376 }
6377
6378 static int
6379 linux_supports_agent (void)
6380 {
6381 return 1;
6382 }
6383
6384 static int
6385 linux_supports_range_stepping (void)
6386 {
6387 if (can_software_single_step ())
6388 return 1;
6389 if (*the_low_target.supports_range_stepping == NULL)
6390 return 0;
6391
6392 return (*the_low_target.supports_range_stepping) ();
6393 }
6394
6395 /* Enumerate spufs IDs for process PID. */
6396 static int
6397 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6398 {
6399 int pos = 0;
6400 int written = 0;
6401 char path[128];
6402 DIR *dir;
6403 struct dirent *entry;
6404
6405 sprintf (path, "/proc/%ld/fd", pid);
6406 dir = opendir (path);
6407 if (!dir)
6408 return -1;
6409
6410 rewinddir (dir);
6411 while ((entry = readdir (dir)) != NULL)
6412 {
6413 struct stat st;
6414 struct statfs stfs;
6415 int fd;
6416
6417 fd = atoi (entry->d_name);
6418 if (!fd)
6419 continue;
6420
6421 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6422 if (stat (path, &st) != 0)
6423 continue;
6424 if (!S_ISDIR (st.st_mode))
6425 continue;
6426
6427 if (statfs (path, &stfs) != 0)
6428 continue;
6429 if (stfs.f_type != SPUFS_MAGIC)
6430 continue;
6431
6432 if (pos >= offset && pos + 4 <= offset + len)
6433 {
6434 *(unsigned int *)(buf + pos - offset) = fd;
6435 written += 4;
6436 }
6437 pos += 4;
6438 }
6439
6440 closedir (dir);
6441 return written;
6442 }
6443
6444 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6445 object type, using the /proc file system. */
6446 static int
6447 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6448 unsigned const char *writebuf,
6449 CORE_ADDR offset, int len)
6450 {
6451 long pid = lwpid_of (current_thread);
6452 char buf[128];
6453 int fd = 0;
6454 int ret = 0;
6455
6456 if (!writebuf && !readbuf)
6457 return -1;
6458
6459 if (!*annex)
6460 {
6461 if (!readbuf)
6462 return -1;
6463 else
6464 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6465 }
6466
6467 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6468 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6469 if (fd <= 0)
6470 return -1;
6471
6472 if (offset != 0
6473 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6474 {
6475 close (fd);
6476 return 0;
6477 }
6478
6479 if (writebuf)
6480 ret = write (fd, writebuf, (size_t) len);
6481 else
6482 ret = read (fd, readbuf, (size_t) len);
6483
6484 close (fd);
6485 return ret;
6486 }
6487
6488 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6489 struct target_loadseg
6490 {
6491 /* Core address to which the segment is mapped. */
6492 Elf32_Addr addr;
6493 /* VMA recorded in the program header. */
6494 Elf32_Addr p_vaddr;
6495 /* Size of this segment in memory. */
6496 Elf32_Word p_memsz;
6497 };
6498
6499 # if defined PT_GETDSBT
6500 struct target_loadmap
6501 {
6502 /* Protocol version number, must be zero. */
6503 Elf32_Word version;
6504 /* Pointer to the DSBT table, its size, and the DSBT index. */
6505 unsigned *dsbt_table;
6506 unsigned dsbt_size, dsbt_index;
6507 /* Number of segments in this map. */
6508 Elf32_Word nsegs;
6509 /* The actual memory map. */
6510 struct target_loadseg segs[/*nsegs*/];
6511 };
6512 # define LINUX_LOADMAP PT_GETDSBT
6513 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6514 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6515 # else
6516 struct target_loadmap
6517 {
6518 /* Protocol version number, must be zero. */
6519 Elf32_Half version;
6520 /* Number of segments in this map. */
6521 Elf32_Half nsegs;
6522 /* The actual memory map. */
6523 struct target_loadseg segs[/*nsegs*/];
6524 };
6525 # define LINUX_LOADMAP PTRACE_GETFDPIC
6526 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6527 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6528 # endif
6529
6530 static int
6531 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6532 unsigned char *myaddr, unsigned int len)
6533 {
6534 int pid = lwpid_of (current_thread);
6535 int addr = -1;
6536 struct target_loadmap *data = NULL;
6537 unsigned int actual_length, copy_length;
6538
6539 if (strcmp (annex, "exec") == 0)
6540 addr = (int) LINUX_LOADMAP_EXEC;
6541 else if (strcmp (annex, "interp") == 0)
6542 addr = (int) LINUX_LOADMAP_INTERP;
6543 else
6544 return -1;
6545
6546 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6547 return -1;
6548
6549 if (data == NULL)
6550 return -1;
6551
6552 actual_length = sizeof (struct target_loadmap)
6553 + sizeof (struct target_loadseg) * data->nsegs;
6554
6555 if (offset < 0 || offset > actual_length)
6556 return -1;
6557
6558 copy_length = actual_length - offset < len ? actual_length - offset : len;
6559 memcpy (myaddr, (char *) data + offset, copy_length);
6560 return copy_length;
6561 }
6562 #else
6563 # define linux_read_loadmap NULL
6564 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6565
6566 static void
6567 linux_process_qsupported (char **features, int count)
6568 {
6569 if (the_low_target.process_qsupported != NULL)
6570 the_low_target.process_qsupported (features, count);
6571 }
6572
6573 static int
6574 linux_supports_catch_syscall (void)
6575 {
6576 return (the_low_target.get_syscall_trapinfo != NULL
6577 && linux_supports_tracesysgood ());
6578 }
6579
6580 static int
6581 linux_get_ipa_tdesc_idx (void)
6582 {
6583 if (the_low_target.get_ipa_tdesc_idx == NULL)
6584 return 0;
6585
6586 return (*the_low_target.get_ipa_tdesc_idx) ();
6587 }
6588
6589 static int
6590 linux_supports_tracepoints (void)
6591 {
6592 if (*the_low_target.supports_tracepoints == NULL)
6593 return 0;
6594
6595 return (*the_low_target.supports_tracepoints) ();
6596 }
6597
6598 static CORE_ADDR
6599 linux_read_pc (struct regcache *regcache)
6600 {
6601 if (the_low_target.get_pc == NULL)
6602 return 0;
6603
6604 return (*the_low_target.get_pc) (regcache);
6605 }
6606
6607 static void
6608 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6609 {
6610 gdb_assert (the_low_target.set_pc != NULL);
6611
6612 (*the_low_target.set_pc) (regcache, pc);
6613 }
6614
6615 static int
6616 linux_thread_stopped (struct thread_info *thread)
6617 {
6618 return get_thread_lwp (thread)->stopped;
6619 }
6620
6621 /* This exposes stop-all-threads functionality to other modules. */
6622
6623 static void
6624 linux_pause_all (int freeze)
6625 {
6626 stop_all_lwps (freeze, NULL);
6627 }
6628
6629 /* This exposes unstop-all-threads functionality to other gdbserver
6630 modules. */
6631
6632 static void
6633 linux_unpause_all (int unfreeze)
6634 {
6635 unstop_all_lwps (unfreeze, NULL);
6636 }
6637
6638 static int
6639 linux_prepare_to_access_memory (void)
6640 {
6641 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6642 running LWP. */
6643 if (non_stop)
6644 linux_pause_all (1);
6645 return 0;
6646 }
6647
6648 static void
6649 linux_done_accessing_memory (void)
6650 {
6651 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6652 running LWP. */
6653 if (non_stop)
6654 linux_unpause_all (1);
6655 }
6656
6657 static int
6658 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6659 CORE_ADDR collector,
6660 CORE_ADDR lockaddr,
6661 ULONGEST orig_size,
6662 CORE_ADDR *jump_entry,
6663 CORE_ADDR *trampoline,
6664 ULONGEST *trampoline_size,
6665 unsigned char *jjump_pad_insn,
6666 ULONGEST *jjump_pad_insn_size,
6667 CORE_ADDR *adjusted_insn_addr,
6668 CORE_ADDR *adjusted_insn_addr_end,
6669 char *err)
6670 {
6671 return (*the_low_target.install_fast_tracepoint_jump_pad)
6672 (tpoint, tpaddr, collector, lockaddr, orig_size,
6673 jump_entry, trampoline, trampoline_size,
6674 jjump_pad_insn, jjump_pad_insn_size,
6675 adjusted_insn_addr, adjusted_insn_addr_end,
6676 err);
6677 }
6678
6679 static struct emit_ops *
6680 linux_emit_ops (void)
6681 {
6682 if (the_low_target.emit_ops != NULL)
6683 return (*the_low_target.emit_ops) ();
6684 else
6685 return NULL;
6686 }
6687
6688 static int
6689 linux_get_min_fast_tracepoint_insn_len (void)
6690 {
6691 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6692 }
6693
6694 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6695
6696 static int
6697 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6698 CORE_ADDR *phdr_memaddr, int *num_phdr)
6699 {
6700 char filename[PATH_MAX];
6701 int fd;
6702 const int auxv_size = is_elf64
6703 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6704 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6705
6706 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6707
6708 fd = open (filename, O_RDONLY);
6709 if (fd < 0)
6710 return 1;
6711
6712 *phdr_memaddr = 0;
6713 *num_phdr = 0;
6714 while (read (fd, buf, auxv_size) == auxv_size
6715 && (*phdr_memaddr == 0 || *num_phdr == 0))
6716 {
6717 if (is_elf64)
6718 {
6719 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6720
6721 switch (aux->a_type)
6722 {
6723 case AT_PHDR:
6724 *phdr_memaddr = aux->a_un.a_val;
6725 break;
6726 case AT_PHNUM:
6727 *num_phdr = aux->a_un.a_val;
6728 break;
6729 }
6730 }
6731 else
6732 {
6733 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6734
6735 switch (aux->a_type)
6736 {
6737 case AT_PHDR:
6738 *phdr_memaddr = aux->a_un.a_val;
6739 break;
6740 case AT_PHNUM:
6741 *num_phdr = aux->a_un.a_val;
6742 break;
6743 }
6744 }
6745 }
6746
6747 close (fd);
6748
6749 if (*phdr_memaddr == 0 || *num_phdr == 0)
6750 {
6751 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6752 "phdr_memaddr = %ld, phdr_num = %d",
6753 (long) *phdr_memaddr, *num_phdr);
6754 return 2;
6755 }
6756
6757 return 0;
6758 }
6759
6760 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6761
6762 static CORE_ADDR
6763 get_dynamic (const int pid, const int is_elf64)
6764 {
6765 CORE_ADDR phdr_memaddr, relocation;
6766 int num_phdr, i;
6767 unsigned char *phdr_buf;
6768 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6769
6770 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6771 return 0;
6772
6773 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6774 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6775
6776 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6777 return 0;
6778
6779 /* Compute relocation: it is expected to be 0 for "regular" executables,
6780 non-zero for PIE ones. */
6781 relocation = -1;
6782 for (i = 0; relocation == -1 && i < num_phdr; i++)
6783 if (is_elf64)
6784 {
6785 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6786
6787 if (p->p_type == PT_PHDR)
6788 relocation = phdr_memaddr - p->p_vaddr;
6789 }
6790 else
6791 {
6792 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6793
6794 if (p->p_type == PT_PHDR)
6795 relocation = phdr_memaddr - p->p_vaddr;
6796 }
6797
6798 if (relocation == -1)
6799 {
6800 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6801 any real world executables, including PIE executables, have always
6802 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6803 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6804 or present DT_DEBUG anyway (fpc binaries are statically linked).
6805
6806 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6807
6808 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6809
6810 return 0;
6811 }
6812
6813 for (i = 0; i < num_phdr; i++)
6814 {
6815 if (is_elf64)
6816 {
6817 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6818
6819 if (p->p_type == PT_DYNAMIC)
6820 return p->p_vaddr + relocation;
6821 }
6822 else
6823 {
6824 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6825
6826 if (p->p_type == PT_DYNAMIC)
6827 return p->p_vaddr + relocation;
6828 }
6829 }
6830
6831 return 0;
6832 }
6833
6834 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6835 can be 0 if the inferior does not yet have the library list initialized.
6836 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6837 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6838
6839 static CORE_ADDR
6840 get_r_debug (const int pid, const int is_elf64)
6841 {
6842 CORE_ADDR dynamic_memaddr;
6843 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6844 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6845 CORE_ADDR map = -1;
6846
6847 dynamic_memaddr = get_dynamic (pid, is_elf64);
6848 if (dynamic_memaddr == 0)
6849 return map;
6850
6851 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6852 {
6853 if (is_elf64)
6854 {
6855 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6856 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6857 union
6858 {
6859 Elf64_Xword map;
6860 unsigned char buf[sizeof (Elf64_Xword)];
6861 }
6862 rld_map;
6863 #endif
6864 #ifdef DT_MIPS_RLD_MAP
6865 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6866 {
6867 if (linux_read_memory (dyn->d_un.d_val,
6868 rld_map.buf, sizeof (rld_map.buf)) == 0)
6869 return rld_map.map;
6870 else
6871 break;
6872 }
6873 #endif /* DT_MIPS_RLD_MAP */
6874 #ifdef DT_MIPS_RLD_MAP_REL
6875 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6876 {
6877 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6878 rld_map.buf, sizeof (rld_map.buf)) == 0)
6879 return rld_map.map;
6880 else
6881 break;
6882 }
6883 #endif /* DT_MIPS_RLD_MAP_REL */
6884
6885 if (dyn->d_tag == DT_DEBUG && map == -1)
6886 map = dyn->d_un.d_val;
6887
6888 if (dyn->d_tag == DT_NULL)
6889 break;
6890 }
6891 else
6892 {
6893 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6894 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6895 union
6896 {
6897 Elf32_Word map;
6898 unsigned char buf[sizeof (Elf32_Word)];
6899 }
6900 rld_map;
6901 #endif
6902 #ifdef DT_MIPS_RLD_MAP
6903 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6904 {
6905 if (linux_read_memory (dyn->d_un.d_val,
6906 rld_map.buf, sizeof (rld_map.buf)) == 0)
6907 return rld_map.map;
6908 else
6909 break;
6910 }
6911 #endif /* DT_MIPS_RLD_MAP */
6912 #ifdef DT_MIPS_RLD_MAP_REL
6913 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6914 {
6915 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6916 rld_map.buf, sizeof (rld_map.buf)) == 0)
6917 return rld_map.map;
6918 else
6919 break;
6920 }
6921 #endif /* DT_MIPS_RLD_MAP_REL */
6922
6923 if (dyn->d_tag == DT_DEBUG && map == -1)
6924 map = dyn->d_un.d_val;
6925
6926 if (dyn->d_tag == DT_NULL)
6927 break;
6928 }
6929
6930 dynamic_memaddr += dyn_size;
6931 }
6932
6933 return map;
6934 }
6935
6936 /* Read one pointer from MEMADDR in the inferior. */
6937
6938 static int
6939 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6940 {
6941 int ret;
6942
6943 /* Go through a union so this works on either big or little endian
6944 hosts, when the inferior's pointer size is smaller than the size
6945 of CORE_ADDR. It is assumed the inferior's endianness is the
6946 same of the superior's. */
6947 union
6948 {
6949 CORE_ADDR core_addr;
6950 unsigned int ui;
6951 unsigned char uc;
6952 } addr;
6953
6954 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6955 if (ret == 0)
6956 {
6957 if (ptr_size == sizeof (CORE_ADDR))
6958 *ptr = addr.core_addr;
6959 else if (ptr_size == sizeof (unsigned int))
6960 *ptr = addr.ui;
6961 else
6962 gdb_assert_not_reached ("unhandled pointer size");
6963 }
6964 return ret;
6965 }
6966
6967 struct link_map_offsets
6968 {
6969 /* Offset and size of r_debug.r_version. */
6970 int r_version_offset;
6971
6972 /* Offset and size of r_debug.r_map. */
6973 int r_map_offset;
6974
6975 /* Offset to l_addr field in struct link_map. */
6976 int l_addr_offset;
6977
6978 /* Offset to l_name field in struct link_map. */
6979 int l_name_offset;
6980
6981 /* Offset to l_ld field in struct link_map. */
6982 int l_ld_offset;
6983
6984 /* Offset to l_next field in struct link_map. */
6985 int l_next_offset;
6986
6987 /* Offset to l_prev field in struct link_map. */
6988 int l_prev_offset;
6989 };
6990
6991 /* Construct qXfer:libraries-svr4:read reply. */
6992
6993 static int
6994 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6995 unsigned const char *writebuf,
6996 CORE_ADDR offset, int len)
6997 {
6998 char *document;
6999 unsigned document_len;
7000 struct process_info_private *const priv = current_process ()->priv;
7001 char filename[PATH_MAX];
7002 int pid, is_elf64;
7003
7004 static const struct link_map_offsets lmo_32bit_offsets =
7005 {
7006 0, /* r_version offset. */
7007 4, /* r_debug.r_map offset. */
7008 0, /* l_addr offset in link_map. */
7009 4, /* l_name offset in link_map. */
7010 8, /* l_ld offset in link_map. */
7011 12, /* l_next offset in link_map. */
7012 16 /* l_prev offset in link_map. */
7013 };
7014
7015 static const struct link_map_offsets lmo_64bit_offsets =
7016 {
7017 0, /* r_version offset. */
7018 8, /* r_debug.r_map offset. */
7019 0, /* l_addr offset in link_map. */
7020 8, /* l_name offset in link_map. */
7021 16, /* l_ld offset in link_map. */
7022 24, /* l_next offset in link_map. */
7023 32 /* l_prev offset in link_map. */
7024 };
7025 const struct link_map_offsets *lmo;
7026 unsigned int machine;
7027 int ptr_size;
7028 CORE_ADDR lm_addr = 0, lm_prev = 0;
7029 int allocated = 1024;
7030 char *p;
7031 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7032 int header_done = 0;
7033
7034 if (writebuf != NULL)
7035 return -2;
7036 if (readbuf == NULL)
7037 return -1;
7038
7039 pid = lwpid_of (current_thread);
7040 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7041 is_elf64 = elf_64_file_p (filename, &machine);
7042 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7043 ptr_size = is_elf64 ? 8 : 4;
7044
7045 while (annex[0] != '\0')
7046 {
7047 const char *sep;
7048 CORE_ADDR *addrp;
7049 int len;
7050
7051 sep = strchr (annex, '=');
7052 if (sep == NULL)
7053 break;
7054
7055 len = sep - annex;
7056 if (len == 5 && startswith (annex, "start"))
7057 addrp = &lm_addr;
7058 else if (len == 4 && startswith (annex, "prev"))
7059 addrp = &lm_prev;
7060 else
7061 {
7062 annex = strchr (sep, ';');
7063 if (annex == NULL)
7064 break;
7065 annex++;
7066 continue;
7067 }
7068
7069 annex = decode_address_to_semicolon (addrp, sep + 1);
7070 }
7071
7072 if (lm_addr == 0)
7073 {
7074 int r_version = 0;
7075
7076 if (priv->r_debug == 0)
7077 priv->r_debug = get_r_debug (pid, is_elf64);
7078
7079 /* We failed to find DT_DEBUG. Such situation will not change
7080 for this inferior - do not retry it. Report it to GDB as
7081 E01, see for the reasons at the GDB solib-svr4.c side. */
7082 if (priv->r_debug == (CORE_ADDR) -1)
7083 return -1;
7084
7085 if (priv->r_debug != 0)
7086 {
7087 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7088 (unsigned char *) &r_version,
7089 sizeof (r_version)) != 0
7090 || r_version != 1)
7091 {
7092 warning ("unexpected r_debug version %d", r_version);
7093 }
7094 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7095 &lm_addr, ptr_size) != 0)
7096 {
7097 warning ("unable to read r_map from 0x%lx",
7098 (long) priv->r_debug + lmo->r_map_offset);
7099 }
7100 }
7101 }
7102
7103 document = (char *) xmalloc (allocated);
7104 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7105 p = document + strlen (document);
7106
7107 while (lm_addr
7108 && read_one_ptr (lm_addr + lmo->l_name_offset,
7109 &l_name, ptr_size) == 0
7110 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7111 &l_addr, ptr_size) == 0
7112 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7113 &l_ld, ptr_size) == 0
7114 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7115 &l_prev, ptr_size) == 0
7116 && read_one_ptr (lm_addr + lmo->l_next_offset,
7117 &l_next, ptr_size) == 0)
7118 {
7119 unsigned char libname[PATH_MAX];
7120
7121 if (lm_prev != l_prev)
7122 {
7123 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7124 (long) lm_prev, (long) l_prev);
7125 break;
7126 }
7127
7128 /* Ignore the first entry even if it has valid name as the first entry
7129 corresponds to the main executable. The first entry should not be
7130 skipped if the dynamic loader was loaded late by a static executable
7131 (see solib-svr4.c parameter ignore_first). But in such case the main
7132 executable does not have PT_DYNAMIC present and this function already
7133 exited above due to failed get_r_debug. */
7134 if (lm_prev == 0)
7135 {
7136 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7137 p = p + strlen (p);
7138 }
7139 else
7140 {
7141 /* Not checking for error because reading may stop before
7142 we've got PATH_MAX worth of characters. */
7143 libname[0] = '\0';
7144 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7145 libname[sizeof (libname) - 1] = '\0';
7146 if (libname[0] != '\0')
7147 {
7148 /* 6x the size for xml_escape_text below. */
7149 size_t len = 6 * strlen ((char *) libname);
7150
7151 if (!header_done)
7152 {
7153 /* Terminate `<library-list-svr4'. */
7154 *p++ = '>';
7155 header_done = 1;
7156 }
7157
7158 while (allocated < p - document + len + 200)
7159 {
7160 /* Expand to guarantee sufficient storage. */
7161 uintptr_t document_len = p - document;
7162
7163 document = (char *) xrealloc (document, 2 * allocated);
7164 allocated *= 2;
7165 p = document + document_len;
7166 }
7167
7168 std::string name = xml_escape_text ((char *) libname);
7169 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7170 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7171 name.c_str (), (unsigned long) lm_addr,
7172 (unsigned long) l_addr, (unsigned long) l_ld);
7173 }
7174 }
7175
7176 lm_prev = lm_addr;
7177 lm_addr = l_next;
7178 }
7179
7180 if (!header_done)
7181 {
7182 /* Empty list; terminate `<library-list-svr4'. */
7183 strcpy (p, "/>");
7184 }
7185 else
7186 strcpy (p, "</library-list-svr4>");
7187
7188 document_len = strlen (document);
7189 if (offset < document_len)
7190 document_len -= offset;
7191 else
7192 document_len = 0;
7193 if (len > document_len)
7194 len = document_len;
7195
7196 memcpy (readbuf, document + offset, len);
7197 xfree (document);
7198
7199 return len;
7200 }
7201
7202 #ifdef HAVE_LINUX_BTRACE
7203
7204 /* See to_disable_btrace target method. */
7205
7206 static int
7207 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7208 {
7209 enum btrace_error err;
7210
7211 err = linux_disable_btrace (tinfo);
7212 return (err == BTRACE_ERR_NONE ? 0 : -1);
7213 }
7214
7215 /* Encode an Intel Processor Trace configuration. */
7216
7217 static void
7218 linux_low_encode_pt_config (struct buffer *buffer,
7219 const struct btrace_data_pt_config *config)
7220 {
7221 buffer_grow_str (buffer, "<pt-config>\n");
7222
7223 switch (config->cpu.vendor)
7224 {
7225 case CV_INTEL:
7226 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7227 "model=\"%u\" stepping=\"%u\"/>\n",
7228 config->cpu.family, config->cpu.model,
7229 config->cpu.stepping);
7230 break;
7231
7232 default:
7233 break;
7234 }
7235
7236 buffer_grow_str (buffer, "</pt-config>\n");
7237 }
7238
7239 /* Encode a raw buffer. */
7240
7241 static void
7242 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7243 unsigned int size)
7244 {
7245 if (size == 0)
7246 return;
7247
7248 /* We use hex encoding - see common/rsp-low.h. */
7249 buffer_grow_str (buffer, "<raw>\n");
7250
7251 while (size-- > 0)
7252 {
7253 char elem[2];
7254
7255 elem[0] = tohex ((*data >> 4) & 0xf);
7256 elem[1] = tohex (*data++ & 0xf);
7257
7258 buffer_grow (buffer, elem, 2);
7259 }
7260
7261 buffer_grow_str (buffer, "</raw>\n");
7262 }
7263
7264 /* See to_read_btrace target method. */
7265
7266 static int
7267 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7268 enum btrace_read_type type)
7269 {
7270 struct btrace_data btrace;
7271 struct btrace_block *block;
7272 enum btrace_error err;
7273 int i;
7274
7275 btrace_data_init (&btrace);
7276
7277 err = linux_read_btrace (&btrace, tinfo, type);
7278 if (err != BTRACE_ERR_NONE)
7279 {
7280 if (err == BTRACE_ERR_OVERFLOW)
7281 buffer_grow_str0 (buffer, "E.Overflow.");
7282 else
7283 buffer_grow_str0 (buffer, "E.Generic Error.");
7284
7285 goto err;
7286 }
7287
7288 switch (btrace.format)
7289 {
7290 case BTRACE_FORMAT_NONE:
7291 buffer_grow_str0 (buffer, "E.No Trace.");
7292 goto err;
7293
7294 case BTRACE_FORMAT_BTS:
7295 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7296 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7297
7298 for (i = 0;
7299 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7300 i++)
7301 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7302 paddress (block->begin), paddress (block->end));
7303
7304 buffer_grow_str0 (buffer, "</btrace>\n");
7305 break;
7306
7307 case BTRACE_FORMAT_PT:
7308 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7309 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7310 buffer_grow_str (buffer, "<pt>\n");
7311
7312 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7313
7314 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7315 btrace.variant.pt.size);
7316
7317 buffer_grow_str (buffer, "</pt>\n");
7318 buffer_grow_str0 (buffer, "</btrace>\n");
7319 break;
7320
7321 default:
7322 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7323 goto err;
7324 }
7325
7326 btrace_data_fini (&btrace);
7327 return 0;
7328
7329 err:
7330 btrace_data_fini (&btrace);
7331 return -1;
7332 }
7333
7334 /* See to_btrace_conf target method. */
7335
7336 static int
7337 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7338 struct buffer *buffer)
7339 {
7340 const struct btrace_config *conf;
7341
7342 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7343 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7344
7345 conf = linux_btrace_conf (tinfo);
7346 if (conf != NULL)
7347 {
7348 switch (conf->format)
7349 {
7350 case BTRACE_FORMAT_NONE:
7351 break;
7352
7353 case BTRACE_FORMAT_BTS:
7354 buffer_xml_printf (buffer, "<bts");
7355 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7356 buffer_xml_printf (buffer, " />\n");
7357 break;
7358
7359 case BTRACE_FORMAT_PT:
7360 buffer_xml_printf (buffer, "<pt");
7361 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7362 buffer_xml_printf (buffer, "/>\n");
7363 break;
7364 }
7365 }
7366
7367 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7368 return 0;
7369 }
7370 #endif /* HAVE_LINUX_BTRACE */
7371
7372 /* See nat/linux-nat.h. */
7373
7374 ptid_t
7375 current_lwp_ptid (void)
7376 {
7377 return ptid_of (current_thread);
7378 }
7379
7380 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7381
7382 static int
7383 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7384 {
7385 if (the_low_target.breakpoint_kind_from_pc != NULL)
7386 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7387 else
7388 return default_breakpoint_kind_from_pc (pcptr);
7389 }
7390
7391 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7392
7393 static const gdb_byte *
7394 linux_sw_breakpoint_from_kind (int kind, int *size)
7395 {
7396 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7397
7398 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7399 }
7400
7401 /* Implementation of the target_ops method
7402 "breakpoint_kind_from_current_state". */
7403
7404 static int
7405 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7406 {
7407 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7408 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7409 else
7410 return linux_breakpoint_kind_from_pc (pcptr);
7411 }
7412
7413 /* Default implementation of linux_target_ops method "set_pc" for
7414 32-bit pc register which is literally named "pc". */
7415
7416 void
7417 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7418 {
7419 uint32_t newpc = pc;
7420
7421 supply_register_by_name (regcache, "pc", &newpc);
7422 }
7423
7424 /* Default implementation of linux_target_ops method "get_pc" for
7425 32-bit pc register which is literally named "pc". */
7426
7427 CORE_ADDR
7428 linux_get_pc_32bit (struct regcache *regcache)
7429 {
7430 uint32_t pc;
7431
7432 collect_register_by_name (regcache, "pc", &pc);
7433 if (debug_threads)
7434 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7435 return pc;
7436 }
7437
7438 /* Default implementation of linux_target_ops method "set_pc" for
7439 64-bit pc register which is literally named "pc". */
7440
7441 void
7442 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7443 {
7444 uint64_t newpc = pc;
7445
7446 supply_register_by_name (regcache, "pc", &newpc);
7447 }
7448
7449 /* Default implementation of linux_target_ops method "get_pc" for
7450 64-bit pc register which is literally named "pc". */
7451
7452 CORE_ADDR
7453 linux_get_pc_64bit (struct regcache *regcache)
7454 {
7455 uint64_t pc;
7456
7457 collect_register_by_name (regcache, "pc", &pc);
7458 if (debug_threads)
7459 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7460 return pc;
7461 }
7462
7463
7464 static struct target_ops linux_target_ops = {
7465 linux_create_inferior,
7466 linux_post_create_inferior,
7467 linux_attach,
7468 linux_kill,
7469 linux_detach,
7470 linux_mourn,
7471 linux_join,
7472 linux_thread_alive,
7473 linux_resume,
7474 linux_wait,
7475 linux_fetch_registers,
7476 linux_store_registers,
7477 linux_prepare_to_access_memory,
7478 linux_done_accessing_memory,
7479 linux_read_memory,
7480 linux_write_memory,
7481 linux_look_up_symbols,
7482 linux_request_interrupt,
7483 linux_read_auxv,
7484 linux_supports_z_point_type,
7485 linux_insert_point,
7486 linux_remove_point,
7487 linux_stopped_by_sw_breakpoint,
7488 linux_supports_stopped_by_sw_breakpoint,
7489 linux_stopped_by_hw_breakpoint,
7490 linux_supports_stopped_by_hw_breakpoint,
7491 linux_supports_hardware_single_step,
7492 linux_stopped_by_watchpoint,
7493 linux_stopped_data_address,
7494 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7495 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7496 && defined(PT_TEXT_END_ADDR)
7497 linux_read_offsets,
7498 #else
7499 NULL,
7500 #endif
7501 #ifdef USE_THREAD_DB
7502 thread_db_get_tls_address,
7503 #else
7504 NULL,
7505 #endif
7506 linux_qxfer_spu,
7507 hostio_last_error_from_errno,
7508 linux_qxfer_osdata,
7509 linux_xfer_siginfo,
7510 linux_supports_non_stop,
7511 linux_async,
7512 linux_start_non_stop,
7513 linux_supports_multi_process,
7514 linux_supports_fork_events,
7515 linux_supports_vfork_events,
7516 linux_supports_exec_events,
7517 linux_handle_new_gdb_connection,
7518 #ifdef USE_THREAD_DB
7519 thread_db_handle_monitor_command,
7520 #else
7521 NULL,
7522 #endif
7523 linux_common_core_of_thread,
7524 linux_read_loadmap,
7525 linux_process_qsupported,
7526 linux_supports_tracepoints,
7527 linux_read_pc,
7528 linux_write_pc,
7529 linux_thread_stopped,
7530 NULL,
7531 linux_pause_all,
7532 linux_unpause_all,
7533 linux_stabilize_threads,
7534 linux_install_fast_tracepoint_jump_pad,
7535 linux_emit_ops,
7536 linux_supports_disable_randomization,
7537 linux_get_min_fast_tracepoint_insn_len,
7538 linux_qxfer_libraries_svr4,
7539 linux_supports_agent,
7540 #ifdef HAVE_LINUX_BTRACE
7541 linux_supports_btrace,
7542 linux_enable_btrace,
7543 linux_low_disable_btrace,
7544 linux_low_read_btrace,
7545 linux_low_btrace_conf,
7546 #else
7547 NULL,
7548 NULL,
7549 NULL,
7550 NULL,
7551 NULL,
7552 #endif
7553 linux_supports_range_stepping,
7554 linux_proc_pid_to_exec_file,
7555 linux_mntns_open_cloexec,
7556 linux_mntns_unlink,
7557 linux_mntns_readlink,
7558 linux_breakpoint_kind_from_pc,
7559 linux_sw_breakpoint_from_kind,
7560 linux_proc_tid_get_name,
7561 linux_breakpoint_kind_from_current_state,
7562 linux_supports_software_single_step,
7563 linux_supports_catch_syscall,
7564 linux_get_ipa_tdesc_idx,
7565 #if USE_THREAD_DB
7566 thread_db_thread_handle,
7567 #else
7568 NULL,
7569 #endif
7570 };
7571
7572 #ifdef HAVE_LINUX_REGSETS
7573 void
7574 initialize_regsets_info (struct regsets_info *info)
7575 {
7576 for (info->num_regsets = 0;
7577 info->regsets[info->num_regsets].size >= 0;
7578 info->num_regsets++)
7579 ;
7580 }
7581 #endif
7582
7583 void
7584 initialize_low (void)
7585 {
7586 struct sigaction sigchld_action;
7587
7588 memset (&sigchld_action, 0, sizeof (sigchld_action));
7589 set_target_ops (&linux_target_ops);
7590
7591 linux_ptrace_init_warnings ();
7592
7593 sigchld_action.sa_handler = sigchld_handler;
7594 sigemptyset (&sigchld_action.sa_mask);
7595 sigchld_action.sa_flags = SA_RESTART;
7596 sigaction (SIGCHLD, &sigchld_action, NULL);
7597
7598 initialize_low_arch ();
7599
7600 linux_check_ptrace_features ();
7601 }
This page took 0.201667 seconds and 5 git commands to generate.