bfd/
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995, 1996, 1998, 1999, 2000, 2001, 2002, 2003, 2004, 2005,
3 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "server.h"
21 #include "linux-low.h"
22
23 #include <sys/wait.h>
24 #include <stdio.h>
25 #include <sys/param.h>
26 #include <sys/ptrace.h>
27 #include <signal.h>
28 #include <sys/ioctl.h>
29 #include <fcntl.h>
30 #include <string.h>
31 #include <stdlib.h>
32 #include <unistd.h>
33 #include <errno.h>
34 #include <sys/syscall.h>
35 #include <sched.h>
36 #include <ctype.h>
37 #include <pwd.h>
38 #include <sys/types.h>
39 #include <dirent.h>
40 #include <sys/stat.h>
41 #include <sys/vfs.h>
42 #include <sys/uio.h>
43 #ifndef ELFMAG0
44 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
45 then ELFMAG0 will have been defined. If it didn't get included by
46 gdb_proc_service.h then including it will likely introduce a duplicate
47 definition of elf_fpregset_t. */
48 #include <elf.h>
49 #endif
50
51 #ifndef SPUFS_MAGIC
52 #define SPUFS_MAGIC 0x23c9b64e
53 #endif
54
55 #ifndef PTRACE_GETSIGINFO
56 # define PTRACE_GETSIGINFO 0x4202
57 # define PTRACE_SETSIGINFO 0x4203
58 #endif
59
60 #ifndef O_LARGEFILE
61 #define O_LARGEFILE 0
62 #endif
63
64 /* If the system headers did not provide the constants, hard-code the normal
65 values. */
66 #ifndef PTRACE_EVENT_FORK
67
68 #define PTRACE_SETOPTIONS 0x4200
69 #define PTRACE_GETEVENTMSG 0x4201
70
71 /* options set using PTRACE_SETOPTIONS */
72 #define PTRACE_O_TRACESYSGOOD 0x00000001
73 #define PTRACE_O_TRACEFORK 0x00000002
74 #define PTRACE_O_TRACEVFORK 0x00000004
75 #define PTRACE_O_TRACECLONE 0x00000008
76 #define PTRACE_O_TRACEEXEC 0x00000010
77 #define PTRACE_O_TRACEVFORKDONE 0x00000020
78 #define PTRACE_O_TRACEEXIT 0x00000040
79
80 /* Wait extended result codes for the above trace options. */
81 #define PTRACE_EVENT_FORK 1
82 #define PTRACE_EVENT_VFORK 2
83 #define PTRACE_EVENT_CLONE 3
84 #define PTRACE_EVENT_EXEC 4
85 #define PTRACE_EVENT_VFORK_DONE 5
86 #define PTRACE_EVENT_EXIT 6
87
88 #endif /* PTRACE_EVENT_FORK */
89
90 /* We can't always assume that this flag is available, but all systems
91 with the ptrace event handlers also have __WALL, so it's safe to use
92 in some contexts. */
93 #ifndef __WALL
94 #define __WALL 0x40000000 /* Wait for any child. */
95 #endif
96
97 #ifndef W_STOPCODE
98 #define W_STOPCODE(sig) ((sig) << 8 | 0x7f)
99 #endif
100
101 #ifdef __UCLIBC__
102 #if !(defined(__UCLIBC_HAS_MMU__) || defined(__ARCH_HAS_MMU__))
103 #define HAS_NOMMU
104 #endif
105 #endif
106
107 /* ``all_threads'' is keyed by the LWP ID, which we use as the GDB protocol
108 representation of the thread ID.
109
110 ``all_lwps'' is keyed by the process ID - which on Linux is (presently)
111 the same as the LWP ID.
112
113 ``all_processes'' is keyed by the "overall process ID", which
114 GNU/Linux calls tgid, "thread group ID". */
115
116 struct inferior_list all_lwps;
117
118 /* A list of all unknown processes which receive stop signals. Some other
119 process will presumably claim each of these as forked children
120 momentarily. */
121
122 struct inferior_list stopped_pids;
123
124 /* FIXME this is a bit of a hack, and could be removed. */
125 int stopping_threads;
126
127 /* FIXME make into a target method? */
128 int using_threads = 1;
129
130 /* True if we're presently stabilizing threads (moving them out of
131 jump pads). */
132 static int stabilizing_threads;
133
134 /* This flag is true iff we've just created or attached to our first
135 inferior but it has not stopped yet. As soon as it does, we need
136 to call the low target's arch_setup callback. Doing this only on
137 the first inferior avoids reinializing the architecture on every
138 inferior, and avoids messing with the register caches of the
139 already running inferiors. NOTE: this assumes all inferiors under
140 control of gdbserver have the same architecture. */
141 static int new_inferior;
142
143 static void linux_resume_one_lwp (struct lwp_info *lwp,
144 int step, int signal, siginfo_t *info);
145 static void linux_resume (struct thread_resume *resume_info, size_t n);
146 static void stop_all_lwps (int suspend, struct lwp_info *except);
147 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
148 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
149 static void *add_lwp (ptid_t ptid);
150 static int linux_stopped_by_watchpoint (void);
151 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
152 static int linux_core_of_thread (ptid_t ptid);
153 static void proceed_all_lwps (void);
154 static int finish_step_over (struct lwp_info *lwp);
155 static CORE_ADDR get_stop_pc (struct lwp_info *lwp);
156 static int kill_lwp (unsigned long lwpid, int signo);
157 static void linux_enable_event_reporting (int pid);
158
159 /* True if the low target can hardware single-step. Such targets
160 don't need a BREAKPOINT_REINSERT_ADDR callback. */
161
162 static int
163 can_hardware_single_step (void)
164 {
165 return (the_low_target.breakpoint_reinsert_addr == NULL);
166 }
167
168 /* True if the low target supports memory breakpoints. If so, we'll
169 have a GET_PC implementation. */
170
171 static int
172 supports_breakpoints (void)
173 {
174 return (the_low_target.get_pc != NULL);
175 }
176
177 /* Returns true if this target can support fast tracepoints. This
178 does not mean that the in-process agent has been loaded in the
179 inferior. */
180
181 static int
182 supports_fast_tracepoints (void)
183 {
184 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
185 }
186
187 struct pending_signals
188 {
189 int signal;
190 siginfo_t info;
191 struct pending_signals *prev;
192 };
193
194 #define PTRACE_ARG3_TYPE void *
195 #define PTRACE_ARG4_TYPE void *
196 #define PTRACE_XFER_TYPE long
197
198 #ifdef HAVE_LINUX_REGSETS
199 static char *disabled_regsets;
200 static int num_regsets;
201 #endif
202
203 /* The read/write ends of the pipe registered as waitable file in the
204 event loop. */
205 static int linux_event_pipe[2] = { -1, -1 };
206
207 /* True if we're currently in async mode. */
208 #define target_is_async_p() (linux_event_pipe[0] != -1)
209
210 static void send_sigstop (struct lwp_info *lwp);
211 static void wait_for_sigstop (struct inferior_list_entry *entry);
212
213 /* Accepts an integer PID; Returns a string representing a file that
214 can be opened to get info for the child process.
215 Space for the result is malloc'd, caller must free. */
216
217 char *
218 linux_child_pid_to_exec_file (int pid)
219 {
220 char *name1, *name2;
221
222 name1 = xmalloc (MAXPATHLEN);
223 name2 = xmalloc (MAXPATHLEN);
224 memset (name2, 0, MAXPATHLEN);
225
226 sprintf (name1, "/proc/%d/exe", pid);
227 if (readlink (name1, name2, MAXPATHLEN) > 0)
228 {
229 free (name1);
230 return name2;
231 }
232 else
233 {
234 free (name2);
235 return name1;
236 }
237 }
238
239 /* Return non-zero if HEADER is a 64-bit ELF file. */
240
241 static int
242 elf_64_header_p (const Elf64_Ehdr *header)
243 {
244 return (header->e_ident[EI_MAG0] == ELFMAG0
245 && header->e_ident[EI_MAG1] == ELFMAG1
246 && header->e_ident[EI_MAG2] == ELFMAG2
247 && header->e_ident[EI_MAG3] == ELFMAG3
248 && header->e_ident[EI_CLASS] == ELFCLASS64);
249 }
250
251 /* Return non-zero if FILE is a 64-bit ELF file,
252 zero if the file is not a 64-bit ELF file,
253 and -1 if the file is not accessible or doesn't exist. */
254
255 int
256 elf_64_file_p (const char *file)
257 {
258 Elf64_Ehdr header;
259 int fd;
260
261 fd = open (file, O_RDONLY);
262 if (fd < 0)
263 return -1;
264
265 if (read (fd, &header, sizeof (header)) != sizeof (header))
266 {
267 close (fd);
268 return 0;
269 }
270 close (fd);
271
272 return elf_64_header_p (&header);
273 }
274
275 static void
276 delete_lwp (struct lwp_info *lwp)
277 {
278 remove_thread (get_lwp_thread (lwp));
279 remove_inferior (&all_lwps, &lwp->head);
280 free (lwp->arch_private);
281 free (lwp);
282 }
283
284 /* Add a process to the common process list, and set its private
285 data. */
286
287 static struct process_info *
288 linux_add_process (int pid, int attached)
289 {
290 struct process_info *proc;
291
292 /* Is this the first process? If so, then set the arch. */
293 if (all_processes.head == NULL)
294 new_inferior = 1;
295
296 proc = add_process (pid, attached);
297 proc->private = xcalloc (1, sizeof (*proc->private));
298
299 if (the_low_target.new_process != NULL)
300 proc->private->arch_private = the_low_target.new_process ();
301
302 return proc;
303 }
304
305 /* Wrapper function for waitpid which handles EINTR, and emulates
306 __WALL for systems where that is not available. */
307
308 static int
309 my_waitpid (int pid, int *status, int flags)
310 {
311 int ret, out_errno;
312
313 if (debug_threads)
314 fprintf (stderr, "my_waitpid (%d, 0x%x)\n", pid, flags);
315
316 if (flags & __WALL)
317 {
318 sigset_t block_mask, org_mask, wake_mask;
319 int wnohang;
320
321 wnohang = (flags & WNOHANG) != 0;
322 flags &= ~(__WALL | __WCLONE);
323 flags |= WNOHANG;
324
325 /* Block all signals while here. This avoids knowing about
326 LinuxThread's signals. */
327 sigfillset (&block_mask);
328 sigprocmask (SIG_BLOCK, &block_mask, &org_mask);
329
330 /* ... except during the sigsuspend below. */
331 sigemptyset (&wake_mask);
332
333 while (1)
334 {
335 /* Since all signals are blocked, there's no need to check
336 for EINTR here. */
337 ret = waitpid (pid, status, flags);
338 out_errno = errno;
339
340 if (ret == -1 && out_errno != ECHILD)
341 break;
342 else if (ret > 0)
343 break;
344
345 if (flags & __WCLONE)
346 {
347 /* We've tried both flavors now. If WNOHANG is set,
348 there's nothing else to do, just bail out. */
349 if (wnohang)
350 break;
351
352 if (debug_threads)
353 fprintf (stderr, "blocking\n");
354
355 /* Block waiting for signals. */
356 sigsuspend (&wake_mask);
357 }
358
359 flags ^= __WCLONE;
360 }
361
362 sigprocmask (SIG_SETMASK, &org_mask, NULL);
363 }
364 else
365 {
366 do
367 ret = waitpid (pid, status, flags);
368 while (ret == -1 && errno == EINTR);
369 out_errno = errno;
370 }
371
372 if (debug_threads)
373 fprintf (stderr, "my_waitpid (%d, 0x%x): status(%x), %d\n",
374 pid, flags, status ? *status : -1, ret);
375
376 errno = out_errno;
377 return ret;
378 }
379
380 /* Handle a GNU/Linux extended wait response. If we see a clone
381 event, we need to add the new LWP to our list (and not report the
382 trap to higher layers). */
383
384 static void
385 handle_extended_wait (struct lwp_info *event_child, int wstat)
386 {
387 int event = wstat >> 16;
388 struct lwp_info *new_lwp;
389
390 if (event == PTRACE_EVENT_CLONE)
391 {
392 ptid_t ptid;
393 unsigned long new_pid;
394 int ret, status = W_STOPCODE (SIGSTOP);
395
396 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_child), 0, &new_pid);
397
398 /* If we haven't already seen the new PID stop, wait for it now. */
399 if (! pull_pid_from_list (&stopped_pids, new_pid))
400 {
401 /* The new child has a pending SIGSTOP. We can't affect it until it
402 hits the SIGSTOP, but we're already attached. */
403
404 ret = my_waitpid (new_pid, &status, __WALL);
405
406 if (ret == -1)
407 perror_with_name ("waiting for new child");
408 else if (ret != new_pid)
409 warning ("wait returned unexpected PID %d", ret);
410 else if (!WIFSTOPPED (status))
411 warning ("wait returned unexpected status 0x%x", status);
412 }
413
414 linux_enable_event_reporting (new_pid);
415
416 ptid = ptid_build (pid_of (event_child), new_pid, 0);
417 new_lwp = (struct lwp_info *) add_lwp (ptid);
418 add_thread (ptid, new_lwp);
419
420 /* Either we're going to immediately resume the new thread
421 or leave it stopped. linux_resume_one_lwp is a nop if it
422 thinks the thread is currently running, so set this first
423 before calling linux_resume_one_lwp. */
424 new_lwp->stopped = 1;
425
426 /* Normally we will get the pending SIGSTOP. But in some cases
427 we might get another signal delivered to the group first.
428 If we do get another signal, be sure not to lose it. */
429 if (WSTOPSIG (status) == SIGSTOP)
430 {
431 if (stopping_threads)
432 new_lwp->stop_pc = get_stop_pc (new_lwp);
433 else
434 linux_resume_one_lwp (new_lwp, 0, 0, NULL);
435 }
436 else
437 {
438 new_lwp->stop_expected = 1;
439
440 if (stopping_threads)
441 {
442 new_lwp->stop_pc = get_stop_pc (new_lwp);
443 new_lwp->status_pending_p = 1;
444 new_lwp->status_pending = status;
445 }
446 else
447 /* Pass the signal on. This is what GDB does - except
448 shouldn't we really report it instead? */
449 linux_resume_one_lwp (new_lwp, 0, WSTOPSIG (status), NULL);
450 }
451
452 /* Always resume the current thread. If we are stopping
453 threads, it will have a pending SIGSTOP; we may as well
454 collect it now. */
455 linux_resume_one_lwp (event_child, event_child->stepping, 0, NULL);
456 }
457 }
458
459 /* Return the PC as read from the regcache of LWP, without any
460 adjustment. */
461
462 static CORE_ADDR
463 get_pc (struct lwp_info *lwp)
464 {
465 struct thread_info *saved_inferior;
466 struct regcache *regcache;
467 CORE_ADDR pc;
468
469 if (the_low_target.get_pc == NULL)
470 return 0;
471
472 saved_inferior = current_inferior;
473 current_inferior = get_lwp_thread (lwp);
474
475 regcache = get_thread_regcache (current_inferior, 1);
476 pc = (*the_low_target.get_pc) (regcache);
477
478 if (debug_threads)
479 fprintf (stderr, "pc is 0x%lx\n", (long) pc);
480
481 current_inferior = saved_inferior;
482 return pc;
483 }
484
485 /* This function should only be called if LWP got a SIGTRAP.
486 The SIGTRAP could mean several things.
487
488 On i386, where decr_pc_after_break is non-zero:
489 If we were single-stepping this process using PTRACE_SINGLESTEP,
490 we will get only the one SIGTRAP (even if the instruction we
491 stepped over was a breakpoint). The value of $eip will be the
492 next instruction.
493 If we continue the process using PTRACE_CONT, we will get a
494 SIGTRAP when we hit a breakpoint. The value of $eip will be
495 the instruction after the breakpoint (i.e. needs to be
496 decremented). If we report the SIGTRAP to GDB, we must also
497 report the undecremented PC. If we cancel the SIGTRAP, we
498 must resume at the decremented PC.
499
500 (Presumably, not yet tested) On a non-decr_pc_after_break machine
501 with hardware or kernel single-step:
502 If we single-step over a breakpoint instruction, our PC will
503 point at the following instruction. If we continue and hit a
504 breakpoint instruction, our PC will point at the breakpoint
505 instruction. */
506
507 static CORE_ADDR
508 get_stop_pc (struct lwp_info *lwp)
509 {
510 CORE_ADDR stop_pc;
511
512 if (the_low_target.get_pc == NULL)
513 return 0;
514
515 stop_pc = get_pc (lwp);
516
517 if (WSTOPSIG (lwp->last_status) == SIGTRAP
518 && !lwp->stepping
519 && !lwp->stopped_by_watchpoint
520 && lwp->last_status >> 16 == 0)
521 stop_pc -= the_low_target.decr_pc_after_break;
522
523 if (debug_threads)
524 fprintf (stderr, "stop pc is 0x%lx\n", (long) stop_pc);
525
526 return stop_pc;
527 }
528
529 static void *
530 add_lwp (ptid_t ptid)
531 {
532 struct lwp_info *lwp;
533
534 lwp = (struct lwp_info *) xmalloc (sizeof (*lwp));
535 memset (lwp, 0, sizeof (*lwp));
536
537 lwp->head.id = ptid;
538
539 if (the_low_target.new_thread != NULL)
540 lwp->arch_private = the_low_target.new_thread ();
541
542 add_inferior_to_list (&all_lwps, &lwp->head);
543
544 return lwp;
545 }
546
547 /* Start an inferior process and returns its pid.
548 ALLARGS is a vector of program-name and args. */
549
550 static int
551 linux_create_inferior (char *program, char **allargs)
552 {
553 struct lwp_info *new_lwp;
554 int pid;
555 ptid_t ptid;
556
557 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
558 pid = vfork ();
559 #else
560 pid = fork ();
561 #endif
562 if (pid < 0)
563 perror_with_name ("fork");
564
565 if (pid == 0)
566 {
567 ptrace (PTRACE_TRACEME, 0, 0, 0);
568
569 #ifdef __SIGRTMIN /* Bionic doesn't use SIGRTMIN the way glibc does. */
570 signal (__SIGRTMIN + 1, SIG_DFL);
571 #endif
572
573 setpgid (0, 0);
574
575 execv (program, allargs);
576 if (errno == ENOENT)
577 execvp (program, allargs);
578
579 fprintf (stderr, "Cannot exec %s: %s.\n", program,
580 strerror (errno));
581 fflush (stderr);
582 _exit (0177);
583 }
584
585 linux_add_process (pid, 0);
586
587 ptid = ptid_build (pid, pid, 0);
588 new_lwp = add_lwp (ptid);
589 add_thread (ptid, new_lwp);
590 new_lwp->must_set_ptrace_flags = 1;
591
592 return pid;
593 }
594
595 /* Attach to an inferior process. */
596
597 static void
598 linux_attach_lwp_1 (unsigned long lwpid, int initial)
599 {
600 ptid_t ptid;
601 struct lwp_info *new_lwp;
602
603 if (ptrace (PTRACE_ATTACH, lwpid, 0, 0) != 0)
604 {
605 if (!initial)
606 {
607 /* If we fail to attach to an LWP, just warn. */
608 fprintf (stderr, "Cannot attach to lwp %ld: %s (%d)\n", lwpid,
609 strerror (errno), errno);
610 fflush (stderr);
611 return;
612 }
613 else
614 /* If we fail to attach to a process, report an error. */
615 error ("Cannot attach to lwp %ld: %s (%d)\n", lwpid,
616 strerror (errno), errno);
617 }
618
619 if (initial)
620 /* NOTE/FIXME: This lwp might have not been the tgid. */
621 ptid = ptid_build (lwpid, lwpid, 0);
622 else
623 {
624 /* Note that extracting the pid from the current inferior is
625 safe, since we're always called in the context of the same
626 process as this new thread. */
627 int pid = pid_of (get_thread_lwp (current_inferior));
628 ptid = ptid_build (pid, lwpid, 0);
629 }
630
631 new_lwp = (struct lwp_info *) add_lwp (ptid);
632 add_thread (ptid, new_lwp);
633
634 /* We need to wait for SIGSTOP before being able to make the next
635 ptrace call on this LWP. */
636 new_lwp->must_set_ptrace_flags = 1;
637
638 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
639 brings it to a halt.
640
641 There are several cases to consider here:
642
643 1) gdbserver has already attached to the process and is being notified
644 of a new thread that is being created.
645 In this case we should ignore that SIGSTOP and resume the
646 process. This is handled below by setting stop_expected = 1,
647 and the fact that add_thread sets last_resume_kind ==
648 resume_continue.
649
650 2) This is the first thread (the process thread), and we're attaching
651 to it via attach_inferior.
652 In this case we want the process thread to stop.
653 This is handled by having linux_attach set last_resume_kind ==
654 resume_stop after we return.
655 ??? If the process already has several threads we leave the other
656 threads running.
657
658 3) GDB is connecting to gdbserver and is requesting an enumeration of all
659 existing threads.
660 In this case we want the thread to stop.
661 FIXME: This case is currently not properly handled.
662 We should wait for the SIGSTOP but don't. Things work apparently
663 because enough time passes between when we ptrace (ATTACH) and when
664 gdb makes the next ptrace call on the thread.
665
666 On the other hand, if we are currently trying to stop all threads, we
667 should treat the new thread as if we had sent it a SIGSTOP. This works
668 because we are guaranteed that the add_lwp call above added us to the
669 end of the list, and so the new thread has not yet reached
670 wait_for_sigstop (but will). */
671 new_lwp->stop_expected = 1;
672 }
673
674 void
675 linux_attach_lwp (unsigned long lwpid)
676 {
677 linux_attach_lwp_1 (lwpid, 0);
678 }
679
680 int
681 linux_attach (unsigned long pid)
682 {
683 linux_attach_lwp_1 (pid, 1);
684 linux_add_process (pid, 1);
685
686 if (!non_stop)
687 {
688 struct thread_info *thread;
689
690 /* Don't ignore the initial SIGSTOP if we just attached to this
691 process. It will be collected by wait shortly. */
692 thread = find_thread_ptid (ptid_build (pid, pid, 0));
693 thread->last_resume_kind = resume_stop;
694 }
695
696 return 0;
697 }
698
699 struct counter
700 {
701 int pid;
702 int count;
703 };
704
705 static int
706 second_thread_of_pid_p (struct inferior_list_entry *entry, void *args)
707 {
708 struct counter *counter = args;
709
710 if (ptid_get_pid (entry->id) == counter->pid)
711 {
712 if (++counter->count > 1)
713 return 1;
714 }
715
716 return 0;
717 }
718
719 static int
720 last_thread_of_process_p (struct thread_info *thread)
721 {
722 ptid_t ptid = ((struct inferior_list_entry *)thread)->id;
723 int pid = ptid_get_pid (ptid);
724 struct counter counter = { pid , 0 };
725
726 return (find_inferior (&all_threads,
727 second_thread_of_pid_p, &counter) == NULL);
728 }
729
730 /* Kill the inferior lwp. */
731
732 static int
733 linux_kill_one_lwp (struct inferior_list_entry *entry, void *args)
734 {
735 struct thread_info *thread = (struct thread_info *) entry;
736 struct lwp_info *lwp = get_thread_lwp (thread);
737 int wstat;
738 int pid = * (int *) args;
739
740 if (ptid_get_pid (entry->id) != pid)
741 return 0;
742
743 /* We avoid killing the first thread here, because of a Linux kernel (at
744 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
745 the children get a chance to be reaped, it will remain a zombie
746 forever. */
747
748 if (lwpid_of (lwp) == pid)
749 {
750 if (debug_threads)
751 fprintf (stderr, "lkop: is last of process %s\n",
752 target_pid_to_str (entry->id));
753 return 0;
754 }
755
756 do
757 {
758 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
759
760 /* Make sure it died. The loop is most likely unnecessary. */
761 pid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
762 } while (pid > 0 && WIFSTOPPED (wstat));
763
764 return 0;
765 }
766
767 static int
768 linux_kill (int pid)
769 {
770 struct process_info *process;
771 struct lwp_info *lwp;
772 struct thread_info *thread;
773 int wstat;
774 int lwpid;
775
776 process = find_process_pid (pid);
777 if (process == NULL)
778 return -1;
779
780 /* If we're killing a running inferior, make sure it is stopped
781 first, as PTRACE_KILL will not work otherwise. */
782 stop_all_lwps (0, NULL);
783
784 find_inferior (&all_threads, linux_kill_one_lwp, &pid);
785
786 /* See the comment in linux_kill_one_lwp. We did not kill the first
787 thread in the list, so do so now. */
788 lwp = find_lwp_pid (pid_to_ptid (pid));
789 thread = get_lwp_thread (lwp);
790
791 if (debug_threads)
792 fprintf (stderr, "lk_1: killing lwp %ld, for pid: %d\n",
793 lwpid_of (lwp), pid);
794
795 do
796 {
797 ptrace (PTRACE_KILL, lwpid_of (lwp), 0, 0);
798
799 /* Make sure it died. The loop is most likely unnecessary. */
800 lwpid = linux_wait_for_event (lwp->head.id, &wstat, __WALL);
801 } while (lwpid > 0 && WIFSTOPPED (wstat));
802
803 the_target->mourn (process);
804
805 /* Since we presently can only stop all lwps of all processes, we
806 need to unstop lwps of other processes. */
807 unstop_all_lwps (0, NULL);
808 return 0;
809 }
810
811 static int
812 linux_detach_one_lwp (struct inferior_list_entry *entry, void *args)
813 {
814 struct thread_info *thread = (struct thread_info *) entry;
815 struct lwp_info *lwp = get_thread_lwp (thread);
816 int pid = * (int *) args;
817
818 if (ptid_get_pid (entry->id) != pid)
819 return 0;
820
821 /* If this process is stopped but is expecting a SIGSTOP, then make
822 sure we take care of that now. This isn't absolutely guaranteed
823 to collect the SIGSTOP, but is fairly likely to. */
824 if (lwp->stop_expected)
825 {
826 int wstat;
827 /* Clear stop_expected, so that the SIGSTOP will be reported. */
828 lwp->stop_expected = 0;
829 linux_resume_one_lwp (lwp, 0, 0, NULL);
830 linux_wait_for_event (lwp->head.id, &wstat, __WALL);
831 }
832
833 /* Flush any pending changes to the process's registers. */
834 regcache_invalidate_one ((struct inferior_list_entry *)
835 get_lwp_thread (lwp));
836
837 /* Finally, let it resume. */
838 ptrace (PTRACE_DETACH, lwpid_of (lwp), 0, 0);
839
840 delete_lwp (lwp);
841 return 0;
842 }
843
844 static int
845 linux_detach (int pid)
846 {
847 struct process_info *process;
848
849 process = find_process_pid (pid);
850 if (process == NULL)
851 return -1;
852
853 /* Stop all threads before detaching. First, ptrace requires that
854 the thread is stopped to sucessfully detach. Second, thread_db
855 may need to uninstall thread event breakpoints from memory, which
856 only works with a stopped process anyway. */
857 stop_all_lwps (0, NULL);
858
859 #ifdef USE_THREAD_DB
860 thread_db_detach (process);
861 #endif
862
863 /* Stabilize threads (move out of jump pads). */
864 stabilize_threads ();
865
866 find_inferior (&all_threads, linux_detach_one_lwp, &pid);
867
868 the_target->mourn (process);
869
870 /* Since we presently can only stop all lwps of all processes, we
871 need to unstop lwps of other processes. */
872 unstop_all_lwps (0, NULL);
873 return 0;
874 }
875
876 /* Remove all LWPs that belong to process PROC from the lwp list. */
877
878 static int
879 delete_lwp_callback (struct inferior_list_entry *entry, void *proc)
880 {
881 struct lwp_info *lwp = (struct lwp_info *) entry;
882 struct process_info *process = proc;
883
884 if (pid_of (lwp) == pid_of (process))
885 delete_lwp (lwp);
886
887 return 0;
888 }
889
890 static void
891 linux_mourn (struct process_info *process)
892 {
893 struct process_info_private *priv;
894
895 #ifdef USE_THREAD_DB
896 thread_db_mourn (process);
897 #endif
898
899 find_inferior (&all_lwps, delete_lwp_callback, process);
900
901 /* Freeing all private data. */
902 priv = process->private;
903 free (priv->arch_private);
904 free (priv);
905 process->private = NULL;
906
907 remove_process (process);
908 }
909
910 static void
911 linux_join (int pid)
912 {
913 int status, ret;
914 struct process_info *process;
915
916 process = find_process_pid (pid);
917 if (process == NULL)
918 return;
919
920 do {
921 ret = my_waitpid (pid, &status, 0);
922 if (WIFEXITED (status) || WIFSIGNALED (status))
923 break;
924 } while (ret != -1 || errno != ECHILD);
925 }
926
927 /* Return nonzero if the given thread is still alive. */
928 static int
929 linux_thread_alive (ptid_t ptid)
930 {
931 struct lwp_info *lwp = find_lwp_pid (ptid);
932
933 /* We assume we always know if a thread exits. If a whole process
934 exited but we still haven't been able to report it to GDB, we'll
935 hold on to the last lwp of the dead process. */
936 if (lwp != NULL)
937 return !lwp->dead;
938 else
939 return 0;
940 }
941
942 /* Return 1 if this lwp has an interesting status pending. */
943 static int
944 status_pending_p_callback (struct inferior_list_entry *entry, void *arg)
945 {
946 struct lwp_info *lwp = (struct lwp_info *) entry;
947 ptid_t ptid = * (ptid_t *) arg;
948 struct thread_info *thread;
949
950 /* Check if we're only interested in events from a specific process
951 or its lwps. */
952 if (!ptid_equal (minus_one_ptid, ptid)
953 && ptid_get_pid (ptid) != ptid_get_pid (lwp->head.id))
954 return 0;
955
956 thread = get_lwp_thread (lwp);
957
958 /* If we got a `vCont;t', but we haven't reported a stop yet, do
959 report any status pending the LWP may have. */
960 if (thread->last_resume_kind == resume_stop
961 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
962 return 0;
963
964 return lwp->status_pending_p;
965 }
966
967 static int
968 same_lwp (struct inferior_list_entry *entry, void *data)
969 {
970 ptid_t ptid = *(ptid_t *) data;
971 int lwp;
972
973 if (ptid_get_lwp (ptid) != 0)
974 lwp = ptid_get_lwp (ptid);
975 else
976 lwp = ptid_get_pid (ptid);
977
978 if (ptid_get_lwp (entry->id) == lwp)
979 return 1;
980
981 return 0;
982 }
983
984 struct lwp_info *
985 find_lwp_pid (ptid_t ptid)
986 {
987 return (struct lwp_info*) find_inferior (&all_lwps, same_lwp, &ptid);
988 }
989
990 static struct lwp_info *
991 linux_wait_for_lwp (ptid_t ptid, int *wstatp, int options)
992 {
993 int ret;
994 int to_wait_for = -1;
995 struct lwp_info *child = NULL;
996
997 if (debug_threads)
998 fprintf (stderr, "linux_wait_for_lwp: %s\n", target_pid_to_str (ptid));
999
1000 if (ptid_equal (ptid, minus_one_ptid))
1001 to_wait_for = -1; /* any child */
1002 else
1003 to_wait_for = ptid_get_lwp (ptid); /* this lwp only */
1004
1005 options |= __WALL;
1006
1007 retry:
1008
1009 ret = my_waitpid (to_wait_for, wstatp, options);
1010 if (ret == 0 || (ret == -1 && errno == ECHILD && (options & WNOHANG)))
1011 return NULL;
1012 else if (ret == -1)
1013 perror_with_name ("waitpid");
1014
1015 if (debug_threads
1016 && (!WIFSTOPPED (*wstatp)
1017 || (WSTOPSIG (*wstatp) != 32
1018 && WSTOPSIG (*wstatp) != 33)))
1019 fprintf (stderr, "Got an event from %d (%x)\n", ret, *wstatp);
1020
1021 child = find_lwp_pid (pid_to_ptid (ret));
1022
1023 /* If we didn't find a process, one of two things presumably happened:
1024 - A process we started and then detached from has exited. Ignore it.
1025 - A process we are controlling has forked and the new child's stop
1026 was reported to us by the kernel. Save its PID. */
1027 if (child == NULL && WIFSTOPPED (*wstatp))
1028 {
1029 add_pid_to_list (&stopped_pids, ret);
1030 goto retry;
1031 }
1032 else if (child == NULL)
1033 goto retry;
1034
1035 child->stopped = 1;
1036
1037 child->last_status = *wstatp;
1038
1039 /* Architecture-specific setup after inferior is running.
1040 This needs to happen after we have attached to the inferior
1041 and it is stopped for the first time, but before we access
1042 any inferior registers. */
1043 if (new_inferior)
1044 {
1045 the_low_target.arch_setup ();
1046 #ifdef HAVE_LINUX_REGSETS
1047 memset (disabled_regsets, 0, num_regsets);
1048 #endif
1049 new_inferior = 0;
1050 }
1051
1052 /* Fetch the possibly triggered data watchpoint info and store it in
1053 CHILD.
1054
1055 On some archs, like x86, that use debug registers to set
1056 watchpoints, it's possible that the way to know which watched
1057 address trapped, is to check the register that is used to select
1058 which address to watch. Problem is, between setting the
1059 watchpoint and reading back which data address trapped, the user
1060 may change the set of watchpoints, and, as a consequence, GDB
1061 changes the debug registers in the inferior. To avoid reading
1062 back a stale stopped-data-address when that happens, we cache in
1063 LP the fact that a watchpoint trapped, and the corresponding data
1064 address, as soon as we see CHILD stop with a SIGTRAP. If GDB
1065 changes the debug registers meanwhile, we have the cached data we
1066 can rely on. */
1067
1068 if (WIFSTOPPED (*wstatp) && WSTOPSIG (*wstatp) == SIGTRAP)
1069 {
1070 if (the_low_target.stopped_by_watchpoint == NULL)
1071 {
1072 child->stopped_by_watchpoint = 0;
1073 }
1074 else
1075 {
1076 struct thread_info *saved_inferior;
1077
1078 saved_inferior = current_inferior;
1079 current_inferior = get_lwp_thread (child);
1080
1081 child->stopped_by_watchpoint
1082 = the_low_target.stopped_by_watchpoint ();
1083
1084 if (child->stopped_by_watchpoint)
1085 {
1086 if (the_low_target.stopped_data_address != NULL)
1087 child->stopped_data_address
1088 = the_low_target.stopped_data_address ();
1089 else
1090 child->stopped_data_address = 0;
1091 }
1092
1093 current_inferior = saved_inferior;
1094 }
1095 }
1096
1097 /* Store the STOP_PC, with adjustment applied. This depends on the
1098 architecture being defined already (so that CHILD has a valid
1099 regcache), and on LAST_STATUS being set (to check for SIGTRAP or
1100 not). */
1101 if (WIFSTOPPED (*wstatp))
1102 child->stop_pc = get_stop_pc (child);
1103
1104 if (debug_threads
1105 && WIFSTOPPED (*wstatp)
1106 && the_low_target.get_pc != NULL)
1107 {
1108 struct thread_info *saved_inferior = current_inferior;
1109 struct regcache *regcache;
1110 CORE_ADDR pc;
1111
1112 current_inferior = get_lwp_thread (child);
1113 regcache = get_thread_regcache (current_inferior, 1);
1114 pc = (*the_low_target.get_pc) (regcache);
1115 fprintf (stderr, "linux_wait_for_lwp: pc is 0x%lx\n", (long) pc);
1116 current_inferior = saved_inferior;
1117 }
1118
1119 return child;
1120 }
1121
1122 /* This function should only be called if the LWP got a SIGTRAP.
1123
1124 Handle any tracepoint steps or hits. Return true if a tracepoint
1125 event was handled, 0 otherwise. */
1126
1127 static int
1128 handle_tracepoints (struct lwp_info *lwp)
1129 {
1130 struct thread_info *tinfo = get_lwp_thread (lwp);
1131 int tpoint_related_event = 0;
1132
1133 /* If this tracepoint hit causes a tracing stop, we'll immediately
1134 uninsert tracepoints. To do this, we temporarily pause all
1135 threads, unpatch away, and then unpause threads. We need to make
1136 sure the unpausing doesn't resume LWP too. */
1137 lwp->suspended++;
1138
1139 /* And we need to be sure that any all-threads-stopping doesn't try
1140 to move threads out of the jump pads, as it could deadlock the
1141 inferior (LWP could be in the jump pad, maybe even holding the
1142 lock.) */
1143
1144 /* Do any necessary step collect actions. */
1145 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1146
1147 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1148
1149 /* See if we just hit a tracepoint and do its main collect
1150 actions. */
1151 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1152
1153 lwp->suspended--;
1154
1155 gdb_assert (lwp->suspended == 0);
1156 gdb_assert (!stabilizing_threads || lwp->collecting_fast_tracepoint);
1157
1158 if (tpoint_related_event)
1159 {
1160 if (debug_threads)
1161 fprintf (stderr, "got a tracepoint event\n");
1162 return 1;
1163 }
1164
1165 return 0;
1166 }
1167
1168 /* Convenience wrapper. Returns true if LWP is presently collecting a
1169 fast tracepoint. */
1170
1171 static int
1172 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
1173 struct fast_tpoint_collect_status *status)
1174 {
1175 CORE_ADDR thread_area;
1176
1177 if (the_low_target.get_thread_area == NULL)
1178 return 0;
1179
1180 /* Get the thread area address. This is used to recognize which
1181 thread is which when tracing with the in-process agent library.
1182 We don't read anything from the address, and treat it as opaque;
1183 it's the address itself that we assume is unique per-thread. */
1184 if ((*the_low_target.get_thread_area) (lwpid_of (lwp), &thread_area) == -1)
1185 return 0;
1186
1187 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1188 }
1189
1190 /* The reason we resume in the caller, is because we want to be able
1191 to pass lwp->status_pending as WSTAT, and we need to clear
1192 status_pending_p before resuming, otherwise, linux_resume_one_lwp
1193 refuses to resume. */
1194
1195 static int
1196 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
1197 {
1198 struct thread_info *saved_inferior;
1199
1200 saved_inferior = current_inferior;
1201 current_inferior = get_lwp_thread (lwp);
1202
1203 if ((wstat == NULL
1204 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
1205 && supports_fast_tracepoints ()
1206 && in_process_agent_loaded ())
1207 {
1208 struct fast_tpoint_collect_status status;
1209 int r;
1210
1211 if (debug_threads)
1212 fprintf (stderr, "\
1213 Checking whether LWP %ld needs to move out of the jump pad.\n",
1214 lwpid_of (lwp));
1215
1216 r = linux_fast_tracepoint_collecting (lwp, &status);
1217
1218 if (wstat == NULL
1219 || (WSTOPSIG (*wstat) != SIGILL
1220 && WSTOPSIG (*wstat) != SIGFPE
1221 && WSTOPSIG (*wstat) != SIGSEGV
1222 && WSTOPSIG (*wstat) != SIGBUS))
1223 {
1224 lwp->collecting_fast_tracepoint = r;
1225
1226 if (r != 0)
1227 {
1228 if (r == 1 && lwp->exit_jump_pad_bkpt == NULL)
1229 {
1230 /* Haven't executed the original instruction yet.
1231 Set breakpoint there, and wait till it's hit,
1232 then single-step until exiting the jump pad. */
1233 lwp->exit_jump_pad_bkpt
1234 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
1235 }
1236
1237 if (debug_threads)
1238 fprintf (stderr, "\
1239 Checking whether LWP %ld needs to move out of the jump pad...it does\n",
1240 lwpid_of (lwp));
1241
1242 return 1;
1243 }
1244 }
1245 else
1246 {
1247 /* If we get a synchronous signal while collecting, *and*
1248 while executing the (relocated) original instruction,
1249 reset the PC to point at the tpoint address, before
1250 reporting to GDB. Otherwise, it's an IPA lib bug: just
1251 report the signal to GDB, and pray for the best. */
1252
1253 lwp->collecting_fast_tracepoint = 0;
1254
1255 if (r != 0
1256 && (status.adjusted_insn_addr <= lwp->stop_pc
1257 && lwp->stop_pc < status.adjusted_insn_addr_end))
1258 {
1259 siginfo_t info;
1260 struct regcache *regcache;
1261
1262 /* The si_addr on a few signals references the address
1263 of the faulting instruction. Adjust that as
1264 well. */
1265 if ((WSTOPSIG (*wstat) == SIGILL
1266 || WSTOPSIG (*wstat) == SIGFPE
1267 || WSTOPSIG (*wstat) == SIGBUS
1268 || WSTOPSIG (*wstat) == SIGSEGV)
1269 && ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &info) == 0
1270 /* Final check just to make sure we don't clobber
1271 the siginfo of non-kernel-sent signals. */
1272 && (uintptr_t) info.si_addr == lwp->stop_pc)
1273 {
1274 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
1275 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &info);
1276 }
1277
1278 regcache = get_thread_regcache (get_lwp_thread (lwp), 1);
1279 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
1280 lwp->stop_pc = status.tpoint_addr;
1281
1282 /* Cancel any fast tracepoint lock this thread was
1283 holding. */
1284 force_unlock_trace_buffer ();
1285 }
1286
1287 if (lwp->exit_jump_pad_bkpt != NULL)
1288 {
1289 if (debug_threads)
1290 fprintf (stderr,
1291 "Cancelling fast exit-jump-pad: removing bkpt. "
1292 "stopping all threads momentarily.\n");
1293
1294 stop_all_lwps (1, lwp);
1295 cancel_breakpoints ();
1296
1297 delete_breakpoint (lwp->exit_jump_pad_bkpt);
1298 lwp->exit_jump_pad_bkpt = NULL;
1299
1300 unstop_all_lwps (1, lwp);
1301
1302 gdb_assert (lwp->suspended >= 0);
1303 }
1304 }
1305 }
1306
1307 if (debug_threads)
1308 fprintf (stderr, "\
1309 Checking whether LWP %ld needs to move out of the jump pad...no\n",
1310 lwpid_of (lwp));
1311 return 0;
1312 }
1313
1314 /* Enqueue one signal in the "signals to report later when out of the
1315 jump pad" list. */
1316
1317 static void
1318 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1319 {
1320 struct pending_signals *p_sig;
1321
1322 if (debug_threads)
1323 fprintf (stderr, "\
1324 Deferring signal %d for LWP %ld.\n", WSTOPSIG (*wstat), lwpid_of (lwp));
1325
1326 if (debug_threads)
1327 {
1328 struct pending_signals *sig;
1329
1330 for (sig = lwp->pending_signals_to_report;
1331 sig != NULL;
1332 sig = sig->prev)
1333 fprintf (stderr,
1334 " Already queued %d\n",
1335 sig->signal);
1336
1337 fprintf (stderr, " (no more currently queued signals)\n");
1338 }
1339
1340 p_sig = xmalloc (sizeof (*p_sig));
1341 p_sig->prev = lwp->pending_signals_to_report;
1342 p_sig->signal = WSTOPSIG (*wstat);
1343 memset (&p_sig->info, 0, sizeof (siginfo_t));
1344 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
1345
1346 lwp->pending_signals_to_report = p_sig;
1347 }
1348
1349 /* Dequeue one signal from the "signals to report later when out of
1350 the jump pad" list. */
1351
1352 static int
1353 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
1354 {
1355 if (lwp->pending_signals_to_report != NULL)
1356 {
1357 struct pending_signals **p_sig;
1358
1359 p_sig = &lwp->pending_signals_to_report;
1360 while ((*p_sig)->prev != NULL)
1361 p_sig = &(*p_sig)->prev;
1362
1363 *wstat = W_STOPCODE ((*p_sig)->signal);
1364 if ((*p_sig)->info.si_signo != 0)
1365 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
1366 free (*p_sig);
1367 *p_sig = NULL;
1368
1369 if (debug_threads)
1370 fprintf (stderr, "Reporting deferred signal %d for LWP %ld.\n",
1371 WSTOPSIG (*wstat), lwpid_of (lwp));
1372
1373 if (debug_threads)
1374 {
1375 struct pending_signals *sig;
1376
1377 for (sig = lwp->pending_signals_to_report;
1378 sig != NULL;
1379 sig = sig->prev)
1380 fprintf (stderr,
1381 " Still queued %d\n",
1382 sig->signal);
1383
1384 fprintf (stderr, " (no more queued signals)\n");
1385 }
1386
1387 return 1;
1388 }
1389
1390 return 0;
1391 }
1392
1393 /* Arrange for a breakpoint to be hit again later. We don't keep the
1394 SIGTRAP status and don't forward the SIGTRAP signal to the LWP. We
1395 will handle the current event, eventually we will resume this LWP,
1396 and this breakpoint will trap again. */
1397
1398 static int
1399 cancel_breakpoint (struct lwp_info *lwp)
1400 {
1401 struct thread_info *saved_inferior;
1402
1403 /* There's nothing to do if we don't support breakpoints. */
1404 if (!supports_breakpoints ())
1405 return 0;
1406
1407 /* breakpoint_at reads from current inferior. */
1408 saved_inferior = current_inferior;
1409 current_inferior = get_lwp_thread (lwp);
1410
1411 if ((*the_low_target.breakpoint_at) (lwp->stop_pc))
1412 {
1413 if (debug_threads)
1414 fprintf (stderr,
1415 "CB: Push back breakpoint for %s\n",
1416 target_pid_to_str (ptid_of (lwp)));
1417
1418 /* Back up the PC if necessary. */
1419 if (the_low_target.decr_pc_after_break)
1420 {
1421 struct regcache *regcache
1422 = get_thread_regcache (current_inferior, 1);
1423 (*the_low_target.set_pc) (regcache, lwp->stop_pc);
1424 }
1425
1426 current_inferior = saved_inferior;
1427 return 1;
1428 }
1429 else
1430 {
1431 if (debug_threads)
1432 fprintf (stderr,
1433 "CB: No breakpoint found at %s for [%s]\n",
1434 paddress (lwp->stop_pc),
1435 target_pid_to_str (ptid_of (lwp)));
1436 }
1437
1438 current_inferior = saved_inferior;
1439 return 0;
1440 }
1441
1442 /* When the event-loop is doing a step-over, this points at the thread
1443 being stepped. */
1444 ptid_t step_over_bkpt;
1445
1446 /* Wait for an event from child PID. If PID is -1, wait for any
1447 child. Store the stop status through the status pointer WSTAT.
1448 OPTIONS is passed to the waitpid call. Return 0 if no child stop
1449 event was found and OPTIONS contains WNOHANG. Return the PID of
1450 the stopped child otherwise. */
1451
1452 static int
1453 linux_wait_for_event_1 (ptid_t ptid, int *wstat, int options)
1454 {
1455 struct lwp_info *event_child, *requested_child;
1456
1457 event_child = NULL;
1458 requested_child = NULL;
1459
1460 /* Check for a lwp with a pending status. */
1461
1462 if (ptid_equal (ptid, minus_one_ptid)
1463 || ptid_equal (pid_to_ptid (ptid_get_pid (ptid)), ptid))
1464 {
1465 event_child = (struct lwp_info *)
1466 find_inferior (&all_lwps, status_pending_p_callback, &ptid);
1467 if (debug_threads && event_child)
1468 fprintf (stderr, "Got a pending child %ld\n", lwpid_of (event_child));
1469 }
1470 else
1471 {
1472 requested_child = find_lwp_pid (ptid);
1473
1474 if (!stopping_threads
1475 && requested_child->status_pending_p
1476 && requested_child->collecting_fast_tracepoint)
1477 {
1478 enqueue_one_deferred_signal (requested_child,
1479 &requested_child->status_pending);
1480 requested_child->status_pending_p = 0;
1481 requested_child->status_pending = 0;
1482 linux_resume_one_lwp (requested_child, 0, 0, NULL);
1483 }
1484
1485 if (requested_child->suspended
1486 && requested_child->status_pending_p)
1487 fatal ("requesting an event out of a suspended child?");
1488
1489 if (requested_child->status_pending_p)
1490 event_child = requested_child;
1491 }
1492
1493 if (event_child != NULL)
1494 {
1495 if (debug_threads)
1496 fprintf (stderr, "Got an event from pending child %ld (%04x)\n",
1497 lwpid_of (event_child), event_child->status_pending);
1498 *wstat = event_child->status_pending;
1499 event_child->status_pending_p = 0;
1500 event_child->status_pending = 0;
1501 current_inferior = get_lwp_thread (event_child);
1502 return lwpid_of (event_child);
1503 }
1504
1505 /* We only enter this loop if no process has a pending wait status. Thus
1506 any action taken in response to a wait status inside this loop is
1507 responding as soon as we detect the status, not after any pending
1508 events. */
1509 while (1)
1510 {
1511 event_child = linux_wait_for_lwp (ptid, wstat, options);
1512
1513 if ((options & WNOHANG) && event_child == NULL)
1514 {
1515 if (debug_threads)
1516 fprintf (stderr, "WNOHANG set, no event found\n");
1517 return 0;
1518 }
1519
1520 if (event_child == NULL)
1521 error ("event from unknown child");
1522
1523 current_inferior = get_lwp_thread (event_child);
1524
1525 /* Check for thread exit. */
1526 if (! WIFSTOPPED (*wstat))
1527 {
1528 if (debug_threads)
1529 fprintf (stderr, "LWP %ld exiting\n", lwpid_of (event_child));
1530
1531 /* If the last thread is exiting, just return. */
1532 if (last_thread_of_process_p (current_inferior))
1533 {
1534 if (debug_threads)
1535 fprintf (stderr, "LWP %ld is last lwp of process\n",
1536 lwpid_of (event_child));
1537 return lwpid_of (event_child);
1538 }
1539
1540 if (!non_stop)
1541 {
1542 current_inferior = (struct thread_info *) all_threads.head;
1543 if (debug_threads)
1544 fprintf (stderr, "Current inferior is now %ld\n",
1545 lwpid_of (get_thread_lwp (current_inferior)));
1546 }
1547 else
1548 {
1549 current_inferior = NULL;
1550 if (debug_threads)
1551 fprintf (stderr, "Current inferior is now <NULL>\n");
1552 }
1553
1554 /* If we were waiting for this particular child to do something...
1555 well, it did something. */
1556 if (requested_child != NULL)
1557 {
1558 int lwpid = lwpid_of (event_child);
1559
1560 /* Cancel the step-over operation --- the thread that
1561 started it is gone. */
1562 if (finish_step_over (event_child))
1563 unstop_all_lwps (1, event_child);
1564 delete_lwp (event_child);
1565 return lwpid;
1566 }
1567
1568 delete_lwp (event_child);
1569
1570 /* Wait for a more interesting event. */
1571 continue;
1572 }
1573
1574 if (event_child->must_set_ptrace_flags)
1575 {
1576 linux_enable_event_reporting (lwpid_of (event_child));
1577 event_child->must_set_ptrace_flags = 0;
1578 }
1579
1580 if (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) == SIGTRAP
1581 && *wstat >> 16 != 0)
1582 {
1583 handle_extended_wait (event_child, *wstat);
1584 continue;
1585 }
1586
1587 if (WIFSTOPPED (*wstat)
1588 && WSTOPSIG (*wstat) == SIGSTOP
1589 && event_child->stop_expected)
1590 {
1591 int should_stop;
1592
1593 if (debug_threads)
1594 fprintf (stderr, "Expected stop.\n");
1595 event_child->stop_expected = 0;
1596
1597 should_stop = (current_inferior->last_resume_kind == resume_stop
1598 || stopping_threads);
1599
1600 if (!should_stop)
1601 {
1602 linux_resume_one_lwp (event_child,
1603 event_child->stepping, 0, NULL);
1604 continue;
1605 }
1606 }
1607
1608 return lwpid_of (event_child);
1609 }
1610
1611 /* NOTREACHED */
1612 return 0;
1613 }
1614
1615 static int
1616 linux_wait_for_event (ptid_t ptid, int *wstat, int options)
1617 {
1618 ptid_t wait_ptid;
1619
1620 if (ptid_is_pid (ptid))
1621 {
1622 /* A request to wait for a specific tgid. This is not possible
1623 with waitpid, so instead, we wait for any child, and leave
1624 children we're not interested in right now with a pending
1625 status to report later. */
1626 wait_ptid = minus_one_ptid;
1627 }
1628 else
1629 wait_ptid = ptid;
1630
1631 while (1)
1632 {
1633 int event_pid;
1634
1635 event_pid = linux_wait_for_event_1 (wait_ptid, wstat, options);
1636
1637 if (event_pid > 0
1638 && ptid_is_pid (ptid) && ptid_get_pid (ptid) != event_pid)
1639 {
1640 struct lwp_info *event_child = find_lwp_pid (pid_to_ptid (event_pid));
1641
1642 if (! WIFSTOPPED (*wstat))
1643 mark_lwp_dead (event_child, *wstat);
1644 else
1645 {
1646 event_child->status_pending_p = 1;
1647 event_child->status_pending = *wstat;
1648 }
1649 }
1650 else
1651 return event_pid;
1652 }
1653 }
1654
1655
1656 /* Count the LWP's that have had events. */
1657
1658 static int
1659 count_events_callback (struct inferior_list_entry *entry, void *data)
1660 {
1661 struct lwp_info *lp = (struct lwp_info *) entry;
1662 struct thread_info *thread = get_lwp_thread (lp);
1663 int *count = data;
1664
1665 gdb_assert (count != NULL);
1666
1667 /* Count only resumed LWPs that have a SIGTRAP event pending that
1668 should be reported to GDB. */
1669 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1670 && thread->last_resume_kind != resume_stop
1671 && lp->status_pending_p
1672 && WIFSTOPPED (lp->status_pending)
1673 && WSTOPSIG (lp->status_pending) == SIGTRAP
1674 && !breakpoint_inserted_here (lp->stop_pc))
1675 (*count)++;
1676
1677 return 0;
1678 }
1679
1680 /* Select the LWP (if any) that is currently being single-stepped. */
1681
1682 static int
1683 select_singlestep_lwp_callback (struct inferior_list_entry *entry, void *data)
1684 {
1685 struct lwp_info *lp = (struct lwp_info *) entry;
1686 struct thread_info *thread = get_lwp_thread (lp);
1687
1688 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
1689 && thread->last_resume_kind == resume_step
1690 && lp->status_pending_p)
1691 return 1;
1692 else
1693 return 0;
1694 }
1695
1696 /* Select the Nth LWP that has had a SIGTRAP event that should be
1697 reported to GDB. */
1698
1699 static int
1700 select_event_lwp_callback (struct inferior_list_entry *entry, void *data)
1701 {
1702 struct lwp_info *lp = (struct lwp_info *) entry;
1703 struct thread_info *thread = get_lwp_thread (lp);
1704 int *selector = data;
1705
1706 gdb_assert (selector != NULL);
1707
1708 /* Select only resumed LWPs that have a SIGTRAP event pending. */
1709 if (thread->last_resume_kind != resume_stop
1710 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1711 && lp->status_pending_p
1712 && WIFSTOPPED (lp->status_pending)
1713 && WSTOPSIG (lp->status_pending) == SIGTRAP
1714 && !breakpoint_inserted_here (lp->stop_pc))
1715 if ((*selector)-- == 0)
1716 return 1;
1717
1718 return 0;
1719 }
1720
1721 static int
1722 cancel_breakpoints_callback (struct inferior_list_entry *entry, void *data)
1723 {
1724 struct lwp_info *lp = (struct lwp_info *) entry;
1725 struct thread_info *thread = get_lwp_thread (lp);
1726 struct lwp_info *event_lp = data;
1727
1728 /* Leave the LWP that has been elected to receive a SIGTRAP alone. */
1729 if (lp == event_lp)
1730 return 0;
1731
1732 /* If a LWP other than the LWP that we're reporting an event for has
1733 hit a GDB breakpoint (as opposed to some random trap signal),
1734 then just arrange for it to hit it again later. We don't keep
1735 the SIGTRAP status and don't forward the SIGTRAP signal to the
1736 LWP. We will handle the current event, eventually we will resume
1737 all LWPs, and this one will get its breakpoint trap again.
1738
1739 If we do not do this, then we run the risk that the user will
1740 delete or disable the breakpoint, but the LWP will have already
1741 tripped on it. */
1742
1743 if (thread->last_resume_kind != resume_stop
1744 && thread->last_status.kind == TARGET_WAITKIND_IGNORE
1745 && lp->status_pending_p
1746 && WIFSTOPPED (lp->status_pending)
1747 && WSTOPSIG (lp->status_pending) == SIGTRAP
1748 && !lp->stepping
1749 && !lp->stopped_by_watchpoint
1750 && cancel_breakpoint (lp))
1751 /* Throw away the SIGTRAP. */
1752 lp->status_pending_p = 0;
1753
1754 return 0;
1755 }
1756
1757 static void
1758 linux_cancel_breakpoints (void)
1759 {
1760 find_inferior (&all_lwps, cancel_breakpoints_callback, NULL);
1761 }
1762
1763 /* Select one LWP out of those that have events pending. */
1764
1765 static void
1766 select_event_lwp (struct lwp_info **orig_lp)
1767 {
1768 int num_events = 0;
1769 int random_selector;
1770 struct lwp_info *event_lp;
1771
1772 /* Give preference to any LWP that is being single-stepped. */
1773 event_lp
1774 = (struct lwp_info *) find_inferior (&all_lwps,
1775 select_singlestep_lwp_callback, NULL);
1776 if (event_lp != NULL)
1777 {
1778 if (debug_threads)
1779 fprintf (stderr,
1780 "SEL: Select single-step %s\n",
1781 target_pid_to_str (ptid_of (event_lp)));
1782 }
1783 else
1784 {
1785 /* No single-stepping LWP. Select one at random, out of those
1786 which have had SIGTRAP events. */
1787
1788 /* First see how many SIGTRAP events we have. */
1789 find_inferior (&all_lwps, count_events_callback, &num_events);
1790
1791 /* Now randomly pick a LWP out of those that have had a SIGTRAP. */
1792 random_selector = (int)
1793 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
1794
1795 if (debug_threads && num_events > 1)
1796 fprintf (stderr,
1797 "SEL: Found %d SIGTRAP events, selecting #%d\n",
1798 num_events, random_selector);
1799
1800 event_lp = (struct lwp_info *) find_inferior (&all_lwps,
1801 select_event_lwp_callback,
1802 &random_selector);
1803 }
1804
1805 if (event_lp != NULL)
1806 {
1807 /* Switch the event LWP. */
1808 *orig_lp = event_lp;
1809 }
1810 }
1811
1812 /* Decrement the suspend count of an LWP. */
1813
1814 static int
1815 unsuspend_one_lwp (struct inferior_list_entry *entry, void *except)
1816 {
1817 struct lwp_info *lwp = (struct lwp_info *) entry;
1818
1819 /* Ignore EXCEPT. */
1820 if (lwp == except)
1821 return 0;
1822
1823 lwp->suspended--;
1824
1825 gdb_assert (lwp->suspended >= 0);
1826 return 0;
1827 }
1828
1829 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
1830 NULL. */
1831
1832 static void
1833 unsuspend_all_lwps (struct lwp_info *except)
1834 {
1835 find_inferior (&all_lwps, unsuspend_one_lwp, except);
1836 }
1837
1838 static void move_out_of_jump_pad_callback (struct inferior_list_entry *entry);
1839 static int stuck_in_jump_pad_callback (struct inferior_list_entry *entry,
1840 void *data);
1841 static int lwp_running (struct inferior_list_entry *entry, void *data);
1842 static ptid_t linux_wait_1 (ptid_t ptid,
1843 struct target_waitstatus *ourstatus,
1844 int target_options);
1845
1846 /* Stabilize threads (move out of jump pads).
1847
1848 If a thread is midway collecting a fast tracepoint, we need to
1849 finish the collection and move it out of the jump pad before
1850 reporting the signal.
1851
1852 This avoids recursion while collecting (when a signal arrives
1853 midway, and the signal handler itself collects), which would trash
1854 the trace buffer. In case the user set a breakpoint in a signal
1855 handler, this avoids the backtrace showing the jump pad, etc..
1856 Most importantly, there are certain things we can't do safely if
1857 threads are stopped in a jump pad (or in its callee's). For
1858 example:
1859
1860 - starting a new trace run. A thread still collecting the
1861 previous run, could trash the trace buffer when resumed. The trace
1862 buffer control structures would have been reset but the thread had
1863 no way to tell. The thread could even midway memcpy'ing to the
1864 buffer, which would mean that when resumed, it would clobber the
1865 trace buffer that had been set for a new run.
1866
1867 - we can't rewrite/reuse the jump pads for new tracepoints
1868 safely. Say you do tstart while a thread is stopped midway while
1869 collecting. When the thread is later resumed, it finishes the
1870 collection, and returns to the jump pad, to execute the original
1871 instruction that was under the tracepoint jump at the time the
1872 older run had been started. If the jump pad had been rewritten
1873 since for something else in the new run, the thread would now
1874 execute the wrong / random instructions. */
1875
1876 static void
1877 linux_stabilize_threads (void)
1878 {
1879 struct thread_info *save_inferior;
1880 struct lwp_info *lwp_stuck;
1881
1882 lwp_stuck
1883 = (struct lwp_info *) find_inferior (&all_lwps,
1884 stuck_in_jump_pad_callback, NULL);
1885 if (lwp_stuck != NULL)
1886 {
1887 fprintf (stderr, "can't stabilize, LWP %ld is stuck in jump pad\n",
1888 lwpid_of (lwp_stuck));
1889 return;
1890 }
1891
1892 save_inferior = current_inferior;
1893
1894 stabilizing_threads = 1;
1895
1896 /* Kick 'em all. */
1897 for_each_inferior (&all_lwps, move_out_of_jump_pad_callback);
1898
1899 /* Loop until all are stopped out of the jump pads. */
1900 while (find_inferior (&all_lwps, lwp_running, NULL) != NULL)
1901 {
1902 struct target_waitstatus ourstatus;
1903 struct lwp_info *lwp;
1904 ptid_t ptid;
1905 int wstat;
1906
1907 /* Note that we go through the full wait even loop. While
1908 moving threads out of jump pad, we need to be able to step
1909 over internal breakpoints and such. */
1910 ptid = linux_wait_1 (minus_one_ptid, &ourstatus, 0);
1911
1912 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
1913 {
1914 lwp = get_thread_lwp (current_inferior);
1915
1916 /* Lock it. */
1917 lwp->suspended++;
1918
1919 if (ourstatus.value.sig != TARGET_SIGNAL_0
1920 || current_inferior->last_resume_kind == resume_stop)
1921 {
1922 wstat = W_STOPCODE (target_signal_to_host (ourstatus.value.sig));
1923 enqueue_one_deferred_signal (lwp, &wstat);
1924 }
1925 }
1926 }
1927
1928 find_inferior (&all_lwps, unsuspend_one_lwp, NULL);
1929
1930 stabilizing_threads = 0;
1931
1932 current_inferior = save_inferior;
1933
1934 lwp_stuck
1935 = (struct lwp_info *) find_inferior (&all_lwps,
1936 stuck_in_jump_pad_callback, NULL);
1937 if (lwp_stuck != NULL)
1938 {
1939 if (debug_threads)
1940 fprintf (stderr, "couldn't stabilize, LWP %ld got stuck in jump pad\n",
1941 lwpid_of (lwp_stuck));
1942 }
1943 }
1944
1945 /* Wait for process, returns status. */
1946
1947 static ptid_t
1948 linux_wait_1 (ptid_t ptid,
1949 struct target_waitstatus *ourstatus, int target_options)
1950 {
1951 int w;
1952 struct lwp_info *event_child;
1953 int options;
1954 int pid;
1955 int step_over_finished;
1956 int bp_explains_trap;
1957 int maybe_internal_trap;
1958 int report_to_gdb;
1959 int trace_event;
1960
1961 /* Translate generic target options into linux options. */
1962 options = __WALL;
1963 if (target_options & TARGET_WNOHANG)
1964 options |= WNOHANG;
1965
1966 retry:
1967 bp_explains_trap = 0;
1968 trace_event = 0;
1969 ourstatus->kind = TARGET_WAITKIND_IGNORE;
1970
1971 /* If we were only supposed to resume one thread, only wait for
1972 that thread - if it's still alive. If it died, however - which
1973 can happen if we're coming from the thread death case below -
1974 then we need to make sure we restart the other threads. We could
1975 pick a thread at random or restart all; restarting all is less
1976 arbitrary. */
1977 if (!non_stop
1978 && !ptid_equal (cont_thread, null_ptid)
1979 && !ptid_equal (cont_thread, minus_one_ptid))
1980 {
1981 struct thread_info *thread;
1982
1983 thread = (struct thread_info *) find_inferior_id (&all_threads,
1984 cont_thread);
1985
1986 /* No stepping, no signal - unless one is pending already, of course. */
1987 if (thread == NULL)
1988 {
1989 struct thread_resume resume_info;
1990 resume_info.thread = minus_one_ptid;
1991 resume_info.kind = resume_continue;
1992 resume_info.sig = 0;
1993 linux_resume (&resume_info, 1);
1994 }
1995 else
1996 ptid = cont_thread;
1997 }
1998
1999 if (ptid_equal (step_over_bkpt, null_ptid))
2000 pid = linux_wait_for_event (ptid, &w, options);
2001 else
2002 {
2003 if (debug_threads)
2004 fprintf (stderr, "step_over_bkpt set [%s], doing a blocking wait\n",
2005 target_pid_to_str (step_over_bkpt));
2006 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
2007 }
2008
2009 if (pid == 0) /* only if TARGET_WNOHANG */
2010 return null_ptid;
2011
2012 event_child = get_thread_lwp (current_inferior);
2013
2014 /* If we are waiting for a particular child, and it exited,
2015 linux_wait_for_event will return its exit status. Similarly if
2016 the last child exited. If this is not the last child, however,
2017 do not report it as exited until there is a 'thread exited' response
2018 available in the remote protocol. Instead, just wait for another event.
2019 This should be safe, because if the thread crashed we will already
2020 have reported the termination signal to GDB; that should stop any
2021 in-progress stepping operations, etc.
2022
2023 Report the exit status of the last thread to exit. This matches
2024 LinuxThreads' behavior. */
2025
2026 if (last_thread_of_process_p (current_inferior))
2027 {
2028 if (WIFEXITED (w) || WIFSIGNALED (w))
2029 {
2030 if (WIFEXITED (w))
2031 {
2032 ourstatus->kind = TARGET_WAITKIND_EXITED;
2033 ourstatus->value.integer = WEXITSTATUS (w);
2034
2035 if (debug_threads)
2036 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
2037 }
2038 else
2039 {
2040 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
2041 ourstatus->value.sig = target_signal_from_host (WTERMSIG (w));
2042
2043 if (debug_threads)
2044 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
2045
2046 }
2047
2048 return ptid_of (event_child);
2049 }
2050 }
2051 else
2052 {
2053 if (!WIFSTOPPED (w))
2054 goto retry;
2055 }
2056
2057 /* If this event was not handled before, and is not a SIGTRAP, we
2058 report it. SIGILL and SIGSEGV are also treated as traps in case
2059 a breakpoint is inserted at the current PC. If this target does
2060 not support internal breakpoints at all, we also report the
2061 SIGTRAP without further processing; it's of no concern to us. */
2062 maybe_internal_trap
2063 = (supports_breakpoints ()
2064 && (WSTOPSIG (w) == SIGTRAP
2065 || ((WSTOPSIG (w) == SIGILL
2066 || WSTOPSIG (w) == SIGSEGV)
2067 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
2068
2069 if (maybe_internal_trap)
2070 {
2071 /* Handle anything that requires bookkeeping before deciding to
2072 report the event or continue waiting. */
2073
2074 /* First check if we can explain the SIGTRAP with an internal
2075 breakpoint, or if we should possibly report the event to GDB.
2076 Do this before anything that may remove or insert a
2077 breakpoint. */
2078 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
2079
2080 /* We have a SIGTRAP, possibly a step-over dance has just
2081 finished. If so, tweak the state machine accordingly,
2082 reinsert breakpoints and delete any reinsert (software
2083 single-step) breakpoints. */
2084 step_over_finished = finish_step_over (event_child);
2085
2086 /* Now invoke the callbacks of any internal breakpoints there. */
2087 check_breakpoints (event_child->stop_pc);
2088
2089 /* Handle tracepoint data collecting. This may overflow the
2090 trace buffer, and cause a tracing stop, removing
2091 breakpoints. */
2092 trace_event = handle_tracepoints (event_child);
2093
2094 if (bp_explains_trap)
2095 {
2096 /* If we stepped or ran into an internal breakpoint, we've
2097 already handled it. So next time we resume (from this
2098 PC), we should step over it. */
2099 if (debug_threads)
2100 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2101
2102 if (breakpoint_here (event_child->stop_pc))
2103 event_child->need_step_over = 1;
2104 }
2105 }
2106 else
2107 {
2108 /* We have some other signal, possibly a step-over dance was in
2109 progress, and it should be cancelled too. */
2110 step_over_finished = finish_step_over (event_child);
2111 }
2112
2113 /* We have all the data we need. Either report the event to GDB, or
2114 resume threads and keep waiting for more. */
2115
2116 /* If we're collecting a fast tracepoint, finish the collection and
2117 move out of the jump pad before delivering a signal. See
2118 linux_stabilize_threads. */
2119
2120 if (WIFSTOPPED (w)
2121 && WSTOPSIG (w) != SIGTRAP
2122 && supports_fast_tracepoints ()
2123 && in_process_agent_loaded ())
2124 {
2125 if (debug_threads)
2126 fprintf (stderr,
2127 "Got signal %d for LWP %ld. Check if we need "
2128 "to defer or adjust it.\n",
2129 WSTOPSIG (w), lwpid_of (event_child));
2130
2131 /* Allow debugging the jump pad itself. */
2132 if (current_inferior->last_resume_kind != resume_step
2133 && maybe_move_out_of_jump_pad (event_child, &w))
2134 {
2135 enqueue_one_deferred_signal (event_child, &w);
2136
2137 if (debug_threads)
2138 fprintf (stderr,
2139 "Signal %d for LWP %ld deferred (in jump pad)\n",
2140 WSTOPSIG (w), lwpid_of (event_child));
2141
2142 linux_resume_one_lwp (event_child, 0, 0, NULL);
2143 goto retry;
2144 }
2145 }
2146
2147 if (event_child->collecting_fast_tracepoint)
2148 {
2149 if (debug_threads)
2150 fprintf (stderr, "\
2151 LWP %ld was trying to move out of the jump pad (%d). \
2152 Check if we're already there.\n",
2153 lwpid_of (event_child),
2154 event_child->collecting_fast_tracepoint);
2155
2156 trace_event = 1;
2157
2158 event_child->collecting_fast_tracepoint
2159 = linux_fast_tracepoint_collecting (event_child, NULL);
2160
2161 if (event_child->collecting_fast_tracepoint != 1)
2162 {
2163 /* No longer need this breakpoint. */
2164 if (event_child->exit_jump_pad_bkpt != NULL)
2165 {
2166 if (debug_threads)
2167 fprintf (stderr,
2168 "No longer need exit-jump-pad bkpt; removing it."
2169 "stopping all threads momentarily.\n");
2170
2171 /* Other running threads could hit this breakpoint.
2172 We don't handle moribund locations like GDB does,
2173 instead we always pause all threads when removing
2174 breakpoints, so that any step-over or
2175 decr_pc_after_break adjustment is always taken
2176 care of while the breakpoint is still
2177 inserted. */
2178 stop_all_lwps (1, event_child);
2179 cancel_breakpoints ();
2180
2181 delete_breakpoint (event_child->exit_jump_pad_bkpt);
2182 event_child->exit_jump_pad_bkpt = NULL;
2183
2184 unstop_all_lwps (1, event_child);
2185
2186 gdb_assert (event_child->suspended >= 0);
2187 }
2188 }
2189
2190 if (event_child->collecting_fast_tracepoint == 0)
2191 {
2192 if (debug_threads)
2193 fprintf (stderr,
2194 "fast tracepoint finished "
2195 "collecting successfully.\n");
2196
2197 /* We may have a deferred signal to report. */
2198 if (dequeue_one_deferred_signal (event_child, &w))
2199 {
2200 if (debug_threads)
2201 fprintf (stderr, "dequeued one signal.\n");
2202 }
2203 else if (debug_threads)
2204 {
2205 fprintf (stderr, "no deferred signals.\n");
2206
2207 if (stabilizing_threads)
2208 {
2209 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2210 ourstatus->value.sig = TARGET_SIGNAL_0;
2211 return ptid_of (event_child);
2212 }
2213 }
2214 }
2215 }
2216
2217 /* Check whether GDB would be interested in this event. */
2218
2219 /* If GDB is not interested in this signal, don't stop other
2220 threads, and don't report it to GDB. Just resume the inferior
2221 right away. We do this for threading-related signals as well as
2222 any that GDB specifically requested we ignore. But never ignore
2223 SIGSTOP if we sent it ourselves, and do not ignore signals when
2224 stepping - they may require special handling to skip the signal
2225 handler. */
2226 /* FIXME drow/2002-06-09: Get signal numbers from the inferior's
2227 thread library? */
2228 if (WIFSTOPPED (w)
2229 && current_inferior->last_resume_kind != resume_step
2230 && (
2231 #if defined (USE_THREAD_DB) && defined (__SIGRTMIN)
2232 (current_process ()->private->thread_db != NULL
2233 && (WSTOPSIG (w) == __SIGRTMIN
2234 || WSTOPSIG (w) == __SIGRTMIN + 1))
2235 ||
2236 #endif
2237 (pass_signals[target_signal_from_host (WSTOPSIG (w))]
2238 && !(WSTOPSIG (w) == SIGSTOP
2239 && current_inferior->last_resume_kind == resume_stop))))
2240 {
2241 siginfo_t info, *info_p;
2242
2243 if (debug_threads)
2244 fprintf (stderr, "Ignored signal %d for LWP %ld.\n",
2245 WSTOPSIG (w), lwpid_of (event_child));
2246
2247 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (event_child), 0, &info) == 0)
2248 info_p = &info;
2249 else
2250 info_p = NULL;
2251 linux_resume_one_lwp (event_child, event_child->stepping,
2252 WSTOPSIG (w), info_p);
2253 goto retry;
2254 }
2255
2256 /* If GDB wanted this thread to single step, we always want to
2257 report the SIGTRAP, and let GDB handle it. Watchpoints should
2258 always be reported. So should signals we can't explain. A
2259 SIGTRAP we can't explain could be a GDB breakpoint --- we may or
2260 not support Z0 breakpoints. If we do, we're be able to handle
2261 GDB breakpoints on top of internal breakpoints, by handling the
2262 internal breakpoint and still reporting the event to GDB. If we
2263 don't, we're out of luck, GDB won't see the breakpoint hit. */
2264 report_to_gdb = (!maybe_internal_trap
2265 || current_inferior->last_resume_kind == resume_step
2266 || event_child->stopped_by_watchpoint
2267 || (!step_over_finished && !bp_explains_trap && !trace_event)
2268 || gdb_breakpoint_here (event_child->stop_pc));
2269
2270 /* We found no reason GDB would want us to stop. We either hit one
2271 of our own breakpoints, or finished an internal step GDB
2272 shouldn't know about. */
2273 if (!report_to_gdb)
2274 {
2275 if (debug_threads)
2276 {
2277 if (bp_explains_trap)
2278 fprintf (stderr, "Hit a gdbserver breakpoint.\n");
2279 if (step_over_finished)
2280 fprintf (stderr, "Step-over finished.\n");
2281 if (trace_event)
2282 fprintf (stderr, "Tracepoint event.\n");
2283 }
2284
2285 /* We're not reporting this breakpoint to GDB, so apply the
2286 decr_pc_after_break adjustment to the inferior's regcache
2287 ourselves. */
2288
2289 if (the_low_target.set_pc != NULL)
2290 {
2291 struct regcache *regcache
2292 = get_thread_regcache (get_lwp_thread (event_child), 1);
2293 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
2294 }
2295
2296 /* We may have finished stepping over a breakpoint. If so,
2297 we've stopped and suspended all LWPs momentarily except the
2298 stepping one. This is where we resume them all again. We're
2299 going to keep waiting, so use proceed, which handles stepping
2300 over the next breakpoint. */
2301 if (debug_threads)
2302 fprintf (stderr, "proceeding all threads.\n");
2303
2304 if (step_over_finished)
2305 unsuspend_all_lwps (event_child);
2306
2307 proceed_all_lwps ();
2308 goto retry;
2309 }
2310
2311 if (debug_threads)
2312 {
2313 if (current_inferior->last_resume_kind == resume_step)
2314 fprintf (stderr, "GDB wanted to single-step, reporting event.\n");
2315 if (event_child->stopped_by_watchpoint)
2316 fprintf (stderr, "Stopped by watchpoint.\n");
2317 if (gdb_breakpoint_here (event_child->stop_pc))
2318 fprintf (stderr, "Stopped by GDB breakpoint.\n");
2319 if (debug_threads)
2320 fprintf (stderr, "Hit a non-gdbserver trap event.\n");
2321 }
2322
2323 /* Alright, we're going to report a stop. */
2324
2325 if (!non_stop && !stabilizing_threads)
2326 {
2327 /* In all-stop, stop all threads. */
2328 stop_all_lwps (0, NULL);
2329
2330 /* If we're not waiting for a specific LWP, choose an event LWP
2331 from among those that have had events. Giving equal priority
2332 to all LWPs that have had events helps prevent
2333 starvation. */
2334 if (ptid_equal (ptid, minus_one_ptid))
2335 {
2336 event_child->status_pending_p = 1;
2337 event_child->status_pending = w;
2338
2339 select_event_lwp (&event_child);
2340
2341 event_child->status_pending_p = 0;
2342 w = event_child->status_pending;
2343 }
2344
2345 /* Now that we've selected our final event LWP, cancel any
2346 breakpoints in other LWPs that have hit a GDB breakpoint.
2347 See the comment in cancel_breakpoints_callback to find out
2348 why. */
2349 find_inferior (&all_lwps, cancel_breakpoints_callback, event_child);
2350
2351 /* Stabilize threads (move out of jump pads). */
2352 stabilize_threads ();
2353 }
2354 else
2355 {
2356 /* If we just finished a step-over, then all threads had been
2357 momentarily paused. In all-stop, that's fine, we want
2358 threads stopped by now anyway. In non-stop, we need to
2359 re-resume threads that GDB wanted to be running. */
2360 if (step_over_finished)
2361 unstop_all_lwps (1, event_child);
2362 }
2363
2364 ourstatus->kind = TARGET_WAITKIND_STOPPED;
2365
2366 if (current_inferior->last_resume_kind == resume_stop
2367 && WSTOPSIG (w) == SIGSTOP)
2368 {
2369 /* A thread that has been requested to stop by GDB with vCont;t,
2370 and it stopped cleanly, so report as SIG0. The use of
2371 SIGSTOP is an implementation detail. */
2372 ourstatus->value.sig = TARGET_SIGNAL_0;
2373 }
2374 else if (current_inferior->last_resume_kind == resume_stop
2375 && WSTOPSIG (w) != SIGSTOP)
2376 {
2377 /* A thread that has been requested to stop by GDB with vCont;t,
2378 but, it stopped for other reasons. */
2379 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2380 }
2381 else
2382 {
2383 ourstatus->value.sig = target_signal_from_host (WSTOPSIG (w));
2384 }
2385
2386 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
2387
2388 if (debug_threads)
2389 fprintf (stderr, "linux_wait ret = %s, %d, %d\n",
2390 target_pid_to_str (ptid_of (event_child)),
2391 ourstatus->kind,
2392 ourstatus->value.sig);
2393
2394 if (!stabilizing_threads)
2395 current_inferior->last_status = *ourstatus;
2396
2397 return ptid_of (event_child);
2398 }
2399
2400 /* Get rid of any pending event in the pipe. */
2401 static void
2402 async_file_flush (void)
2403 {
2404 int ret;
2405 char buf;
2406
2407 do
2408 ret = read (linux_event_pipe[0], &buf, 1);
2409 while (ret >= 0 || (ret == -1 && errno == EINTR));
2410 }
2411
2412 /* Put something in the pipe, so the event loop wakes up. */
2413 static void
2414 async_file_mark (void)
2415 {
2416 int ret;
2417
2418 async_file_flush ();
2419
2420 do
2421 ret = write (linux_event_pipe[1], "+", 1);
2422 while (ret == 0 || (ret == -1 && errno == EINTR));
2423
2424 /* Ignore EAGAIN. If the pipe is full, the event loop will already
2425 be awakened anyway. */
2426 }
2427
2428 static ptid_t
2429 linux_wait (ptid_t ptid,
2430 struct target_waitstatus *ourstatus, int target_options)
2431 {
2432 ptid_t event_ptid;
2433
2434 if (debug_threads)
2435 fprintf (stderr, "linux_wait: [%s]\n", target_pid_to_str (ptid));
2436
2437 /* Flush the async file first. */
2438 if (target_is_async_p ())
2439 async_file_flush ();
2440
2441 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
2442
2443 /* If at least one stop was reported, there may be more. A single
2444 SIGCHLD can signal more than one child stop. */
2445 if (target_is_async_p ()
2446 && (target_options & TARGET_WNOHANG) != 0
2447 && !ptid_equal (event_ptid, null_ptid))
2448 async_file_mark ();
2449
2450 return event_ptid;
2451 }
2452
2453 /* Send a signal to an LWP. */
2454
2455 static int
2456 kill_lwp (unsigned long lwpid, int signo)
2457 {
2458 /* Use tkill, if possible, in case we are using nptl threads. If tkill
2459 fails, then we are not using nptl threads and we should be using kill. */
2460
2461 #ifdef __NR_tkill
2462 {
2463 static int tkill_failed;
2464
2465 if (!tkill_failed)
2466 {
2467 int ret;
2468
2469 errno = 0;
2470 ret = syscall (__NR_tkill, lwpid, signo);
2471 if (errno != ENOSYS)
2472 return ret;
2473 tkill_failed = 1;
2474 }
2475 }
2476 #endif
2477
2478 return kill (lwpid, signo);
2479 }
2480
2481 static void
2482 send_sigstop (struct lwp_info *lwp)
2483 {
2484 int pid;
2485
2486 pid = lwpid_of (lwp);
2487
2488 /* If we already have a pending stop signal for this process, don't
2489 send another. */
2490 if (lwp->stop_expected)
2491 {
2492 if (debug_threads)
2493 fprintf (stderr, "Have pending sigstop for lwp %d\n", pid);
2494
2495 return;
2496 }
2497
2498 if (debug_threads)
2499 fprintf (stderr, "Sending sigstop to lwp %d\n", pid);
2500
2501 lwp->stop_expected = 1;
2502 kill_lwp (pid, SIGSTOP);
2503 }
2504
2505 static int
2506 send_sigstop_callback (struct inferior_list_entry *entry, void *except)
2507 {
2508 struct lwp_info *lwp = (struct lwp_info *) entry;
2509
2510 /* Ignore EXCEPT. */
2511 if (lwp == except)
2512 return 0;
2513
2514 if (lwp->stopped)
2515 return 0;
2516
2517 send_sigstop (lwp);
2518 return 0;
2519 }
2520
2521 /* Increment the suspend count of an LWP, and stop it, if not stopped
2522 yet. */
2523 static int
2524 suspend_and_send_sigstop_callback (struct inferior_list_entry *entry,
2525 void *except)
2526 {
2527 struct lwp_info *lwp = (struct lwp_info *) entry;
2528
2529 /* Ignore EXCEPT. */
2530 if (lwp == except)
2531 return 0;
2532
2533 lwp->suspended++;
2534
2535 return send_sigstop_callback (entry, except);
2536 }
2537
2538 static void
2539 mark_lwp_dead (struct lwp_info *lwp, int wstat)
2540 {
2541 /* It's dead, really. */
2542 lwp->dead = 1;
2543
2544 /* Store the exit status for later. */
2545 lwp->status_pending_p = 1;
2546 lwp->status_pending = wstat;
2547
2548 /* Prevent trying to stop it. */
2549 lwp->stopped = 1;
2550
2551 /* No further stops are expected from a dead lwp. */
2552 lwp->stop_expected = 0;
2553 }
2554
2555 static void
2556 wait_for_sigstop (struct inferior_list_entry *entry)
2557 {
2558 struct lwp_info *lwp = (struct lwp_info *) entry;
2559 struct thread_info *saved_inferior;
2560 int wstat;
2561 ptid_t saved_tid;
2562 ptid_t ptid;
2563 int pid;
2564
2565 if (lwp->stopped)
2566 {
2567 if (debug_threads)
2568 fprintf (stderr, "wait_for_sigstop: LWP %ld already stopped\n",
2569 lwpid_of (lwp));
2570 return;
2571 }
2572
2573 saved_inferior = current_inferior;
2574 if (saved_inferior != NULL)
2575 saved_tid = ((struct inferior_list_entry *) saved_inferior)->id;
2576 else
2577 saved_tid = null_ptid; /* avoid bogus unused warning */
2578
2579 ptid = lwp->head.id;
2580
2581 if (debug_threads)
2582 fprintf (stderr, "wait_for_sigstop: pulling one event\n");
2583
2584 pid = linux_wait_for_event (ptid, &wstat, __WALL);
2585
2586 /* If we stopped with a non-SIGSTOP signal, save it for later
2587 and record the pending SIGSTOP. If the process exited, just
2588 return. */
2589 if (WIFSTOPPED (wstat))
2590 {
2591 if (debug_threads)
2592 fprintf (stderr, "LWP %ld stopped with signal %d\n",
2593 lwpid_of (lwp), WSTOPSIG (wstat));
2594
2595 if (WSTOPSIG (wstat) != SIGSTOP)
2596 {
2597 if (debug_threads)
2598 fprintf (stderr, "LWP %ld stopped with non-sigstop status %06x\n",
2599 lwpid_of (lwp), wstat);
2600
2601 lwp->status_pending_p = 1;
2602 lwp->status_pending = wstat;
2603 }
2604 }
2605 else
2606 {
2607 if (debug_threads)
2608 fprintf (stderr, "Process %d exited while stopping LWPs\n", pid);
2609
2610 lwp = find_lwp_pid (pid_to_ptid (pid));
2611 if (lwp)
2612 {
2613 /* Leave this status pending for the next time we're able to
2614 report it. In the mean time, we'll report this lwp as
2615 dead to GDB, so GDB doesn't try to read registers and
2616 memory from it. This can only happen if this was the
2617 last thread of the process; otherwise, PID is removed
2618 from the thread tables before linux_wait_for_event
2619 returns. */
2620 mark_lwp_dead (lwp, wstat);
2621 }
2622 }
2623
2624 if (saved_inferior == NULL || linux_thread_alive (saved_tid))
2625 current_inferior = saved_inferior;
2626 else
2627 {
2628 if (debug_threads)
2629 fprintf (stderr, "Previously current thread died.\n");
2630
2631 if (non_stop)
2632 {
2633 /* We can't change the current inferior behind GDB's back,
2634 otherwise, a subsequent command may apply to the wrong
2635 process. */
2636 current_inferior = NULL;
2637 }
2638 else
2639 {
2640 /* Set a valid thread as current. */
2641 set_desired_inferior (0);
2642 }
2643 }
2644 }
2645
2646 /* Returns true if LWP ENTRY is stopped in a jump pad, and we can't
2647 move it out, because we need to report the stop event to GDB. For
2648 example, if the user puts a breakpoint in the jump pad, it's
2649 because she wants to debug it. */
2650
2651 static int
2652 stuck_in_jump_pad_callback (struct inferior_list_entry *entry, void *data)
2653 {
2654 struct lwp_info *lwp = (struct lwp_info *) entry;
2655 struct thread_info *thread = get_lwp_thread (lwp);
2656
2657 gdb_assert (lwp->suspended == 0);
2658 gdb_assert (lwp->stopped);
2659
2660 /* Allow debugging the jump pad, gdb_collect, etc.. */
2661 return (supports_fast_tracepoints ()
2662 && in_process_agent_loaded ()
2663 && (gdb_breakpoint_here (lwp->stop_pc)
2664 || lwp->stopped_by_watchpoint
2665 || thread->last_resume_kind == resume_step)
2666 && linux_fast_tracepoint_collecting (lwp, NULL));
2667 }
2668
2669 static void
2670 move_out_of_jump_pad_callback (struct inferior_list_entry *entry)
2671 {
2672 struct lwp_info *lwp = (struct lwp_info *) entry;
2673 struct thread_info *thread = get_lwp_thread (lwp);
2674 int *wstat;
2675
2676 gdb_assert (lwp->suspended == 0);
2677 gdb_assert (lwp->stopped);
2678
2679 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
2680
2681 /* Allow debugging the jump pad, gdb_collect, etc. */
2682 if (!gdb_breakpoint_here (lwp->stop_pc)
2683 && !lwp->stopped_by_watchpoint
2684 && thread->last_resume_kind != resume_step
2685 && maybe_move_out_of_jump_pad (lwp, wstat))
2686 {
2687 if (debug_threads)
2688 fprintf (stderr,
2689 "LWP %ld needs stabilizing (in jump pad)\n",
2690 lwpid_of (lwp));
2691
2692 if (wstat)
2693 {
2694 lwp->status_pending_p = 0;
2695 enqueue_one_deferred_signal (lwp, wstat);
2696
2697 if (debug_threads)
2698 fprintf (stderr,
2699 "Signal %d for LWP %ld deferred "
2700 "(in jump pad)\n",
2701 WSTOPSIG (*wstat), lwpid_of (lwp));
2702 }
2703
2704 linux_resume_one_lwp (lwp, 0, 0, NULL);
2705 }
2706 else
2707 lwp->suspended++;
2708 }
2709
2710 static int
2711 lwp_running (struct inferior_list_entry *entry, void *data)
2712 {
2713 struct lwp_info *lwp = (struct lwp_info *) entry;
2714
2715 if (lwp->dead)
2716 return 0;
2717 if (lwp->stopped)
2718 return 0;
2719 return 1;
2720 }
2721
2722 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
2723 If SUSPEND, then also increase the suspend count of every LWP,
2724 except EXCEPT. */
2725
2726 static void
2727 stop_all_lwps (int suspend, struct lwp_info *except)
2728 {
2729 stopping_threads = 1;
2730
2731 if (suspend)
2732 find_inferior (&all_lwps, suspend_and_send_sigstop_callback, except);
2733 else
2734 find_inferior (&all_lwps, send_sigstop_callback, except);
2735 for_each_inferior (&all_lwps, wait_for_sigstop);
2736 stopping_threads = 0;
2737 }
2738
2739 /* Resume execution of the inferior process.
2740 If STEP is nonzero, single-step it.
2741 If SIGNAL is nonzero, give it that signal. */
2742
2743 static void
2744 linux_resume_one_lwp (struct lwp_info *lwp,
2745 int step, int signal, siginfo_t *info)
2746 {
2747 struct thread_info *saved_inferior;
2748 int fast_tp_collecting;
2749
2750 if (lwp->stopped == 0)
2751 return;
2752
2753 fast_tp_collecting = lwp->collecting_fast_tracepoint;
2754
2755 gdb_assert (!stabilizing_threads || fast_tp_collecting);
2756
2757 /* Cancel actions that rely on GDB not changing the PC (e.g., the
2758 user used the "jump" command, or "set $pc = foo"). */
2759 if (lwp->stop_pc != get_pc (lwp))
2760 {
2761 /* Collecting 'while-stepping' actions doesn't make sense
2762 anymore. */
2763 release_while_stepping_state_list (get_lwp_thread (lwp));
2764 }
2765
2766 /* If we have pending signals or status, and a new signal, enqueue the
2767 signal. Also enqueue the signal if we are waiting to reinsert a
2768 breakpoint; it will be picked up again below. */
2769 if (signal != 0
2770 && (lwp->status_pending_p
2771 || lwp->pending_signals != NULL
2772 || lwp->bp_reinsert != 0
2773 || fast_tp_collecting))
2774 {
2775 struct pending_signals *p_sig;
2776 p_sig = xmalloc (sizeof (*p_sig));
2777 p_sig->prev = lwp->pending_signals;
2778 p_sig->signal = signal;
2779 if (info == NULL)
2780 memset (&p_sig->info, 0, sizeof (siginfo_t));
2781 else
2782 memcpy (&p_sig->info, info, sizeof (siginfo_t));
2783 lwp->pending_signals = p_sig;
2784 }
2785
2786 if (lwp->status_pending_p)
2787 {
2788 if (debug_threads)
2789 fprintf (stderr, "Not resuming lwp %ld (%s, signal %d, stop %s);"
2790 " has pending status\n",
2791 lwpid_of (lwp), step ? "step" : "continue", signal,
2792 lwp->stop_expected ? "expected" : "not expected");
2793 return;
2794 }
2795
2796 saved_inferior = current_inferior;
2797 current_inferior = get_lwp_thread (lwp);
2798
2799 if (debug_threads)
2800 fprintf (stderr, "Resuming lwp %ld (%s, signal %d, stop %s)\n",
2801 lwpid_of (lwp), step ? "step" : "continue", signal,
2802 lwp->stop_expected ? "expected" : "not expected");
2803
2804 /* This bit needs some thinking about. If we get a signal that
2805 we must report while a single-step reinsert is still pending,
2806 we often end up resuming the thread. It might be better to
2807 (ew) allow a stack of pending events; then we could be sure that
2808 the reinsert happened right away and not lose any signals.
2809
2810 Making this stack would also shrink the window in which breakpoints are
2811 uninserted (see comment in linux_wait_for_lwp) but not enough for
2812 complete correctness, so it won't solve that problem. It may be
2813 worthwhile just to solve this one, however. */
2814 if (lwp->bp_reinsert != 0)
2815 {
2816 if (debug_threads)
2817 fprintf (stderr, " pending reinsert at 0x%s\n",
2818 paddress (lwp->bp_reinsert));
2819
2820 if (lwp->bp_reinsert != 0 && can_hardware_single_step ())
2821 {
2822 if (fast_tp_collecting == 0)
2823 {
2824 if (step == 0)
2825 fprintf (stderr, "BAD - reinserting but not stepping.\n");
2826 if (lwp->suspended)
2827 fprintf (stderr, "BAD - reinserting and suspended(%d).\n",
2828 lwp->suspended);
2829 }
2830
2831 step = 1;
2832 }
2833
2834 /* Postpone any pending signal. It was enqueued above. */
2835 signal = 0;
2836 }
2837
2838 if (fast_tp_collecting == 1)
2839 {
2840 if (debug_threads)
2841 fprintf (stderr, "\
2842 lwp %ld wants to get out of fast tracepoint jump pad (exit-jump-pad-bkpt)\n",
2843 lwpid_of (lwp));
2844
2845 /* Postpone any pending signal. It was enqueued above. */
2846 signal = 0;
2847 }
2848 else if (fast_tp_collecting == 2)
2849 {
2850 if (debug_threads)
2851 fprintf (stderr, "\
2852 lwp %ld wants to get out of fast tracepoint jump pad single-stepping\n",
2853 lwpid_of (lwp));
2854
2855 if (can_hardware_single_step ())
2856 step = 1;
2857 else
2858 fatal ("moving out of jump pad single-stepping"
2859 " not implemented on this target");
2860
2861 /* Postpone any pending signal. It was enqueued above. */
2862 signal = 0;
2863 }
2864
2865 /* If we have while-stepping actions in this thread set it stepping.
2866 If we have a signal to deliver, it may or may not be set to
2867 SIG_IGN, we don't know. Assume so, and allow collecting
2868 while-stepping into a signal handler. A possible smart thing to
2869 do would be to set an internal breakpoint at the signal return
2870 address, continue, and carry on catching this while-stepping
2871 action only when that breakpoint is hit. A future
2872 enhancement. */
2873 if (get_lwp_thread (lwp)->while_stepping != NULL
2874 && can_hardware_single_step ())
2875 {
2876 if (debug_threads)
2877 fprintf (stderr,
2878 "lwp %ld has a while-stepping action -> forcing step.\n",
2879 lwpid_of (lwp));
2880 step = 1;
2881 }
2882
2883 if (debug_threads && the_low_target.get_pc != NULL)
2884 {
2885 struct regcache *regcache = get_thread_regcache (current_inferior, 1);
2886 CORE_ADDR pc = (*the_low_target.get_pc) (regcache);
2887 fprintf (stderr, " resuming from pc 0x%lx\n", (long) pc);
2888 }
2889
2890 /* If we have pending signals, consume one unless we are trying to
2891 reinsert a breakpoint or we're trying to finish a fast tracepoint
2892 collect. */
2893 if (lwp->pending_signals != NULL
2894 && lwp->bp_reinsert == 0
2895 && fast_tp_collecting == 0)
2896 {
2897 struct pending_signals **p_sig;
2898
2899 p_sig = &lwp->pending_signals;
2900 while ((*p_sig)->prev != NULL)
2901 p_sig = &(*p_sig)->prev;
2902
2903 signal = (*p_sig)->signal;
2904 if ((*p_sig)->info.si_signo != 0)
2905 ptrace (PTRACE_SETSIGINFO, lwpid_of (lwp), 0, &(*p_sig)->info);
2906
2907 free (*p_sig);
2908 *p_sig = NULL;
2909 }
2910
2911 if (the_low_target.prepare_to_resume != NULL)
2912 the_low_target.prepare_to_resume (lwp);
2913
2914 regcache_invalidate_one ((struct inferior_list_entry *)
2915 get_lwp_thread (lwp));
2916 errno = 0;
2917 lwp->stopped = 0;
2918 lwp->stopped_by_watchpoint = 0;
2919 lwp->stepping = step;
2920 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, lwpid_of (lwp), 0,
2921 /* Coerce to a uintptr_t first to avoid potential gcc warning
2922 of coercing an 8 byte integer to a 4 byte pointer. */
2923 (PTRACE_ARG4_TYPE) (uintptr_t) signal);
2924
2925 current_inferior = saved_inferior;
2926 if (errno)
2927 {
2928 /* ESRCH from ptrace either means that the thread was already
2929 running (an error) or that it is gone (a race condition). If
2930 it's gone, we will get a notification the next time we wait,
2931 so we can ignore the error. We could differentiate these
2932 two, but it's tricky without waiting; the thread still exists
2933 as a zombie, so sending it signal 0 would succeed. So just
2934 ignore ESRCH. */
2935 if (errno == ESRCH)
2936 return;
2937
2938 perror_with_name ("ptrace");
2939 }
2940 }
2941
2942 struct thread_resume_array
2943 {
2944 struct thread_resume *resume;
2945 size_t n;
2946 };
2947
2948 /* This function is called once per thread. We look up the thread
2949 in RESUME_PTR, and mark the thread with a pointer to the appropriate
2950 resume request.
2951
2952 This algorithm is O(threads * resume elements), but resume elements
2953 is small (and will remain small at least until GDB supports thread
2954 suspension). */
2955 static int
2956 linux_set_resume_request (struct inferior_list_entry *entry, void *arg)
2957 {
2958 struct lwp_info *lwp;
2959 struct thread_info *thread;
2960 int ndx;
2961 struct thread_resume_array *r;
2962
2963 thread = (struct thread_info *) entry;
2964 lwp = get_thread_lwp (thread);
2965 r = arg;
2966
2967 for (ndx = 0; ndx < r->n; ndx++)
2968 {
2969 ptid_t ptid = r->resume[ndx].thread;
2970 if (ptid_equal (ptid, minus_one_ptid)
2971 || ptid_equal (ptid, entry->id)
2972 || (ptid_is_pid (ptid)
2973 && (ptid_get_pid (ptid) == pid_of (lwp)))
2974 || (ptid_get_lwp (ptid) == -1
2975 && (ptid_get_pid (ptid) == pid_of (lwp))))
2976 {
2977 if (r->resume[ndx].kind == resume_stop
2978 && thread->last_resume_kind == resume_stop)
2979 {
2980 if (debug_threads)
2981 fprintf (stderr, "already %s LWP %ld at GDB's request\n",
2982 thread->last_status.kind == TARGET_WAITKIND_STOPPED
2983 ? "stopped"
2984 : "stopping",
2985 lwpid_of (lwp));
2986
2987 continue;
2988 }
2989
2990 lwp->resume = &r->resume[ndx];
2991 thread->last_resume_kind = lwp->resume->kind;
2992
2993 /* If we had a deferred signal to report, dequeue one now.
2994 This can happen if LWP gets more than one signal while
2995 trying to get out of a jump pad. */
2996 if (lwp->stopped
2997 && !lwp->status_pending_p
2998 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
2999 {
3000 lwp->status_pending_p = 1;
3001
3002 if (debug_threads)
3003 fprintf (stderr,
3004 "Dequeueing deferred signal %d for LWP %ld, "
3005 "leaving status pending.\n",
3006 WSTOPSIG (lwp->status_pending), lwpid_of (lwp));
3007 }
3008
3009 return 0;
3010 }
3011 }
3012
3013 /* No resume action for this thread. */
3014 lwp->resume = NULL;
3015
3016 return 0;
3017 }
3018
3019
3020 /* Set *FLAG_P if this lwp has an interesting status pending. */
3021 static int
3022 resume_status_pending_p (struct inferior_list_entry *entry, void *flag_p)
3023 {
3024 struct lwp_info *lwp = (struct lwp_info *) entry;
3025
3026 /* LWPs which will not be resumed are not interesting, because
3027 we might not wait for them next time through linux_wait. */
3028 if (lwp->resume == NULL)
3029 return 0;
3030
3031 if (lwp->status_pending_p)
3032 * (int *) flag_p = 1;
3033
3034 return 0;
3035 }
3036
3037 /* Return 1 if this lwp that GDB wants running is stopped at an
3038 internal breakpoint that we need to step over. It assumes that any
3039 required STOP_PC adjustment has already been propagated to the
3040 inferior's regcache. */
3041
3042 static int
3043 need_step_over_p (struct inferior_list_entry *entry, void *dummy)
3044 {
3045 struct lwp_info *lwp = (struct lwp_info *) entry;
3046 struct thread_info *thread;
3047 struct thread_info *saved_inferior;
3048 CORE_ADDR pc;
3049
3050 /* LWPs which will not be resumed are not interesting, because we
3051 might not wait for them next time through linux_wait. */
3052
3053 if (!lwp->stopped)
3054 {
3055 if (debug_threads)
3056 fprintf (stderr,
3057 "Need step over [LWP %ld]? Ignoring, not stopped\n",
3058 lwpid_of (lwp));
3059 return 0;
3060 }
3061
3062 thread = get_lwp_thread (lwp);
3063
3064 if (thread->last_resume_kind == resume_stop)
3065 {
3066 if (debug_threads)
3067 fprintf (stderr,
3068 "Need step over [LWP %ld]? Ignoring, should remain stopped\n",
3069 lwpid_of (lwp));
3070 return 0;
3071 }
3072
3073 gdb_assert (lwp->suspended >= 0);
3074
3075 if (lwp->suspended)
3076 {
3077 if (debug_threads)
3078 fprintf (stderr,
3079 "Need step over [LWP %ld]? Ignoring, suspended\n",
3080 lwpid_of (lwp));
3081 return 0;
3082 }
3083
3084 if (!lwp->need_step_over)
3085 {
3086 if (debug_threads)
3087 fprintf (stderr,
3088 "Need step over [LWP %ld]? No\n", lwpid_of (lwp));
3089 }
3090
3091 if (lwp->status_pending_p)
3092 {
3093 if (debug_threads)
3094 fprintf (stderr,
3095 "Need step over [LWP %ld]? Ignoring, has pending status.\n",
3096 lwpid_of (lwp));
3097 return 0;
3098 }
3099
3100 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
3101 or we have. */
3102 pc = get_pc (lwp);
3103
3104 /* If the PC has changed since we stopped, then don't do anything,
3105 and let the breakpoint/tracepoint be hit. This happens if, for
3106 instance, GDB handled the decr_pc_after_break subtraction itself,
3107 GDB is OOL stepping this thread, or the user has issued a "jump"
3108 command, or poked thread's registers herself. */
3109 if (pc != lwp->stop_pc)
3110 {
3111 if (debug_threads)
3112 fprintf (stderr,
3113 "Need step over [LWP %ld]? Cancelling, PC was changed. "
3114 "Old stop_pc was 0x%s, PC is now 0x%s\n",
3115 lwpid_of (lwp), paddress (lwp->stop_pc), paddress (pc));
3116
3117 lwp->need_step_over = 0;
3118 return 0;
3119 }
3120
3121 saved_inferior = current_inferior;
3122 current_inferior = thread;
3123
3124 /* We can only step over breakpoints we know about. */
3125 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
3126 {
3127 /* Don't step over a breakpoint that GDB expects to hit
3128 though. */
3129 if (gdb_breakpoint_here (pc))
3130 {
3131 if (debug_threads)
3132 fprintf (stderr,
3133 "Need step over [LWP %ld]? yes, but found"
3134 " GDB breakpoint at 0x%s; skipping step over\n",
3135 lwpid_of (lwp), paddress (pc));
3136
3137 current_inferior = saved_inferior;
3138 return 0;
3139 }
3140 else
3141 {
3142 if (debug_threads)
3143 fprintf (stderr,
3144 "Need step over [LWP %ld]? yes, found breakpoint at 0x%s\n",
3145 lwpid_of (lwp), paddress (pc));
3146
3147 /* We've found an lwp that needs stepping over --- return 1 so
3148 that find_inferior stops looking. */
3149 current_inferior = saved_inferior;
3150
3151 /* If the step over is cancelled, this is set again. */
3152 lwp->need_step_over = 0;
3153 return 1;
3154 }
3155 }
3156
3157 current_inferior = saved_inferior;
3158
3159 if (debug_threads)
3160 fprintf (stderr,
3161 "Need step over [LWP %ld]? No, no breakpoint found at 0x%s\n",
3162 lwpid_of (lwp), paddress (pc));
3163
3164 return 0;
3165 }
3166
3167 /* Start a step-over operation on LWP. When LWP stopped at a
3168 breakpoint, to make progress, we need to remove the breakpoint out
3169 of the way. If we let other threads run while we do that, they may
3170 pass by the breakpoint location and miss hitting it. To avoid
3171 that, a step-over momentarily stops all threads while LWP is
3172 single-stepped while the breakpoint is temporarily uninserted from
3173 the inferior. When the single-step finishes, we reinsert the
3174 breakpoint, and let all threads that are supposed to be running,
3175 run again.
3176
3177 On targets that don't support hardware single-step, we don't
3178 currently support full software single-stepping. Instead, we only
3179 support stepping over the thread event breakpoint, by asking the
3180 low target where to place a reinsert breakpoint. Since this
3181 routine assumes the breakpoint being stepped over is a thread event
3182 breakpoint, it usually assumes the return address of the current
3183 function is a good enough place to set the reinsert breakpoint. */
3184
3185 static int
3186 start_step_over (struct lwp_info *lwp)
3187 {
3188 struct thread_info *saved_inferior;
3189 CORE_ADDR pc;
3190 int step;
3191
3192 if (debug_threads)
3193 fprintf (stderr,
3194 "Starting step-over on LWP %ld. Stopping all threads\n",
3195 lwpid_of (lwp));
3196
3197 stop_all_lwps (1, lwp);
3198 gdb_assert (lwp->suspended == 0);
3199
3200 if (debug_threads)
3201 fprintf (stderr, "Done stopping all threads for step-over.\n");
3202
3203 /* Note, we should always reach here with an already adjusted PC,
3204 either by GDB (if we're resuming due to GDB's request), or by our
3205 caller, if we just finished handling an internal breakpoint GDB
3206 shouldn't care about. */
3207 pc = get_pc (lwp);
3208
3209 saved_inferior = current_inferior;
3210 current_inferior = get_lwp_thread (lwp);
3211
3212 lwp->bp_reinsert = pc;
3213 uninsert_breakpoints_at (pc);
3214 uninsert_fast_tracepoint_jumps_at (pc);
3215
3216 if (can_hardware_single_step ())
3217 {
3218 step = 1;
3219 }
3220 else
3221 {
3222 CORE_ADDR raddr = (*the_low_target.breakpoint_reinsert_addr) ();
3223 set_reinsert_breakpoint (raddr);
3224 step = 0;
3225 }
3226
3227 current_inferior = saved_inferior;
3228
3229 linux_resume_one_lwp (lwp, step, 0, NULL);
3230
3231 /* Require next event from this LWP. */
3232 step_over_bkpt = lwp->head.id;
3233 return 1;
3234 }
3235
3236 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
3237 start_step_over, if still there, and delete any reinsert
3238 breakpoints we've set, on non hardware single-step targets. */
3239
3240 static int
3241 finish_step_over (struct lwp_info *lwp)
3242 {
3243 if (lwp->bp_reinsert != 0)
3244 {
3245 if (debug_threads)
3246 fprintf (stderr, "Finished step over.\n");
3247
3248 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
3249 may be no breakpoint to reinsert there by now. */
3250 reinsert_breakpoints_at (lwp->bp_reinsert);
3251 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
3252
3253 lwp->bp_reinsert = 0;
3254
3255 /* Delete any software-single-step reinsert breakpoints. No
3256 longer needed. We don't have to worry about other threads
3257 hitting this trap, and later not being able to explain it,
3258 because we were stepping over a breakpoint, and we hold all
3259 threads but LWP stopped while doing that. */
3260 if (!can_hardware_single_step ())
3261 delete_reinsert_breakpoints ();
3262
3263 step_over_bkpt = null_ptid;
3264 return 1;
3265 }
3266 else
3267 return 0;
3268 }
3269
3270 /* This function is called once per thread. We check the thread's resume
3271 request, which will tell us whether to resume, step, or leave the thread
3272 stopped; and what signal, if any, it should be sent.
3273
3274 For threads which we aren't explicitly told otherwise, we preserve
3275 the stepping flag; this is used for stepping over gdbserver-placed
3276 breakpoints.
3277
3278 If pending_flags was set in any thread, we queue any needed
3279 signals, since we won't actually resume. We already have a pending
3280 event to report, so we don't need to preserve any step requests;
3281 they should be re-issued if necessary. */
3282
3283 static int
3284 linux_resume_one_thread (struct inferior_list_entry *entry, void *arg)
3285 {
3286 struct lwp_info *lwp;
3287 struct thread_info *thread;
3288 int step;
3289 int leave_all_stopped = * (int *) arg;
3290 int leave_pending;
3291
3292 thread = (struct thread_info *) entry;
3293 lwp = get_thread_lwp (thread);
3294
3295 if (lwp->resume == NULL)
3296 return 0;
3297
3298 if (lwp->resume->kind == resume_stop)
3299 {
3300 if (debug_threads)
3301 fprintf (stderr, "resume_stop request for LWP %ld\n", lwpid_of (lwp));
3302
3303 if (!lwp->stopped)
3304 {
3305 if (debug_threads)
3306 fprintf (stderr, "stopping LWP %ld\n", lwpid_of (lwp));
3307
3308 /* Stop the thread, and wait for the event asynchronously,
3309 through the event loop. */
3310 send_sigstop (lwp);
3311 }
3312 else
3313 {
3314 if (debug_threads)
3315 fprintf (stderr, "already stopped LWP %ld\n",
3316 lwpid_of (lwp));
3317
3318 /* The LWP may have been stopped in an internal event that
3319 was not meant to be notified back to GDB (e.g., gdbserver
3320 breakpoint), so we should be reporting a stop event in
3321 this case too. */
3322
3323 /* If the thread already has a pending SIGSTOP, this is a
3324 no-op. Otherwise, something later will presumably resume
3325 the thread and this will cause it to cancel any pending
3326 operation, due to last_resume_kind == resume_stop. If
3327 the thread already has a pending status to report, we
3328 will still report it the next time we wait - see
3329 status_pending_p_callback. */
3330 send_sigstop (lwp);
3331 }
3332
3333 /* For stop requests, we're done. */
3334 lwp->resume = NULL;
3335 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3336 return 0;
3337 }
3338
3339 /* If this thread which is about to be resumed has a pending status,
3340 then don't resume any threads - we can just report the pending
3341 status. Make sure to queue any signals that would otherwise be
3342 sent. In all-stop mode, we do this decision based on if *any*
3343 thread has a pending status. If there's a thread that needs the
3344 step-over-breakpoint dance, then don't resume any other thread
3345 but that particular one. */
3346 leave_pending = (lwp->status_pending_p || leave_all_stopped);
3347
3348 if (!leave_pending)
3349 {
3350 if (debug_threads)
3351 fprintf (stderr, "resuming LWP %ld\n", lwpid_of (lwp));
3352
3353 step = (lwp->resume->kind == resume_step);
3354 linux_resume_one_lwp (lwp, step, lwp->resume->sig, NULL);
3355 }
3356 else
3357 {
3358 if (debug_threads)
3359 fprintf (stderr, "leaving LWP %ld stopped\n", lwpid_of (lwp));
3360
3361 /* If we have a new signal, enqueue the signal. */
3362 if (lwp->resume->sig != 0)
3363 {
3364 struct pending_signals *p_sig;
3365 p_sig = xmalloc (sizeof (*p_sig));
3366 p_sig->prev = lwp->pending_signals;
3367 p_sig->signal = lwp->resume->sig;
3368 memset (&p_sig->info, 0, sizeof (siginfo_t));
3369
3370 /* If this is the same signal we were previously stopped by,
3371 make sure to queue its siginfo. We can ignore the return
3372 value of ptrace; if it fails, we'll skip
3373 PTRACE_SETSIGINFO. */
3374 if (WIFSTOPPED (lwp->last_status)
3375 && WSTOPSIG (lwp->last_status) == lwp->resume->sig)
3376 ptrace (PTRACE_GETSIGINFO, lwpid_of (lwp), 0, &p_sig->info);
3377
3378 lwp->pending_signals = p_sig;
3379 }
3380 }
3381
3382 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
3383 lwp->resume = NULL;
3384 return 0;
3385 }
3386
3387 static void
3388 linux_resume (struct thread_resume *resume_info, size_t n)
3389 {
3390 struct thread_resume_array array = { resume_info, n };
3391 struct lwp_info *need_step_over = NULL;
3392 int any_pending;
3393 int leave_all_stopped;
3394
3395 find_inferior (&all_threads, linux_set_resume_request, &array);
3396
3397 /* If there is a thread which would otherwise be resumed, which has
3398 a pending status, then don't resume any threads - we can just
3399 report the pending status. Make sure to queue any signals that
3400 would otherwise be sent. In non-stop mode, we'll apply this
3401 logic to each thread individually. We consume all pending events
3402 before considering to start a step-over (in all-stop). */
3403 any_pending = 0;
3404 if (!non_stop)
3405 find_inferior (&all_lwps, resume_status_pending_p, &any_pending);
3406
3407 /* If there is a thread which would otherwise be resumed, which is
3408 stopped at a breakpoint that needs stepping over, then don't
3409 resume any threads - have it step over the breakpoint with all
3410 other threads stopped, then resume all threads again. Make sure
3411 to queue any signals that would otherwise be delivered or
3412 queued. */
3413 if (!any_pending && supports_breakpoints ())
3414 need_step_over
3415 = (struct lwp_info *) find_inferior (&all_lwps,
3416 need_step_over_p, NULL);
3417
3418 leave_all_stopped = (need_step_over != NULL || any_pending);
3419
3420 if (debug_threads)
3421 {
3422 if (need_step_over != NULL)
3423 fprintf (stderr, "Not resuming all, need step over\n");
3424 else if (any_pending)
3425 fprintf (stderr,
3426 "Not resuming, all-stop and found "
3427 "an LWP with pending status\n");
3428 else
3429 fprintf (stderr, "Resuming, no pending status or step over needed\n");
3430 }
3431
3432 /* Even if we're leaving threads stopped, queue all signals we'd
3433 otherwise deliver. */
3434 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
3435
3436 if (need_step_over)
3437 start_step_over (need_step_over);
3438 }
3439
3440 /* This function is called once per thread. We check the thread's
3441 last resume request, which will tell us whether to resume, step, or
3442 leave the thread stopped. Any signal the client requested to be
3443 delivered has already been enqueued at this point.
3444
3445 If any thread that GDB wants running is stopped at an internal
3446 breakpoint that needs stepping over, we start a step-over operation
3447 on that particular thread, and leave all others stopped. */
3448
3449 static int
3450 proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3451 {
3452 struct lwp_info *lwp = (struct lwp_info *) entry;
3453 struct thread_info *thread;
3454 int step;
3455
3456 if (lwp == except)
3457 return 0;
3458
3459 if (debug_threads)
3460 fprintf (stderr,
3461 "proceed_one_lwp: lwp %ld\n", lwpid_of (lwp));
3462
3463 if (!lwp->stopped)
3464 {
3465 if (debug_threads)
3466 fprintf (stderr, " LWP %ld already running\n", lwpid_of (lwp));
3467 return 0;
3468 }
3469
3470 thread = get_lwp_thread (lwp);
3471
3472 if (thread->last_resume_kind == resume_stop
3473 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
3474 {
3475 if (debug_threads)
3476 fprintf (stderr, " client wants LWP to remain %ld stopped\n",
3477 lwpid_of (lwp));
3478 return 0;
3479 }
3480
3481 if (lwp->status_pending_p)
3482 {
3483 if (debug_threads)
3484 fprintf (stderr, " LWP %ld has pending status, leaving stopped\n",
3485 lwpid_of (lwp));
3486 return 0;
3487 }
3488
3489 gdb_assert (lwp->suspended >= 0);
3490
3491 if (lwp->suspended)
3492 {
3493 if (debug_threads)
3494 fprintf (stderr, " LWP %ld is suspended\n", lwpid_of (lwp));
3495 return 0;
3496 }
3497
3498 if (thread->last_resume_kind == resume_stop)
3499 {
3500 /* We haven't reported this LWP as stopped yet (otherwise, the
3501 last_status.kind check above would catch it, and we wouldn't
3502 reach here. This LWP may have been momentarily paused by a
3503 stop_all_lwps call while handling for example, another LWP's
3504 step-over. In that case, the pending expected SIGSTOP signal
3505 that was queued at vCont;t handling time will have already
3506 been consumed by wait_for_sigstop, and so we need to requeue
3507 another one here. Note that if the LWP already has a SIGSTOP
3508 pending, this is a no-op. */
3509
3510 if (debug_threads)
3511 fprintf (stderr,
3512 "Client wants LWP %ld to stop. "
3513 "Making sure it has a SIGSTOP pending\n",
3514 lwpid_of (lwp));
3515
3516 send_sigstop (lwp);
3517 }
3518
3519 step = thread->last_resume_kind == resume_step;
3520 linux_resume_one_lwp (lwp, step, 0, NULL);
3521 return 0;
3522 }
3523
3524 static int
3525 unsuspend_and_proceed_one_lwp (struct inferior_list_entry *entry, void *except)
3526 {
3527 struct lwp_info *lwp = (struct lwp_info *) entry;
3528
3529 if (lwp == except)
3530 return 0;
3531
3532 lwp->suspended--;
3533 gdb_assert (lwp->suspended >= 0);
3534
3535 return proceed_one_lwp (entry, except);
3536 }
3537
3538 /* When we finish a step-over, set threads running again. If there's
3539 another thread that may need a step-over, now's the time to start
3540 it. Eventually, we'll move all threads past their breakpoints. */
3541
3542 static void
3543 proceed_all_lwps (void)
3544 {
3545 struct lwp_info *need_step_over;
3546
3547 /* If there is a thread which would otherwise be resumed, which is
3548 stopped at a breakpoint that needs stepping over, then don't
3549 resume any threads - have it step over the breakpoint with all
3550 other threads stopped, then resume all threads again. */
3551
3552 if (supports_breakpoints ())
3553 {
3554 need_step_over
3555 = (struct lwp_info *) find_inferior (&all_lwps,
3556 need_step_over_p, NULL);
3557
3558 if (need_step_over != NULL)
3559 {
3560 if (debug_threads)
3561 fprintf (stderr, "proceed_all_lwps: found "
3562 "thread %ld needing a step-over\n",
3563 lwpid_of (need_step_over));
3564
3565 start_step_over (need_step_over);
3566 return;
3567 }
3568 }
3569
3570 if (debug_threads)
3571 fprintf (stderr, "Proceeding, no step-over needed\n");
3572
3573 find_inferior (&all_lwps, proceed_one_lwp, NULL);
3574 }
3575
3576 /* Stopped LWPs that the client wanted to be running, that don't have
3577 pending statuses, are set to run again, except for EXCEPT, if not
3578 NULL. This undoes a stop_all_lwps call. */
3579
3580 static void
3581 unstop_all_lwps (int unsuspend, struct lwp_info *except)
3582 {
3583 if (debug_threads)
3584 {
3585 if (except)
3586 fprintf (stderr,
3587 "unstopping all lwps, except=(LWP %ld)\n", lwpid_of (except));
3588 else
3589 fprintf (stderr,
3590 "unstopping all lwps\n");
3591 }
3592
3593 if (unsuspend)
3594 find_inferior (&all_lwps, unsuspend_and_proceed_one_lwp, except);
3595 else
3596 find_inferior (&all_lwps, proceed_one_lwp, except);
3597 }
3598
3599 #ifdef HAVE_LINUX_USRREGS
3600
3601 int
3602 register_addr (int regnum)
3603 {
3604 int addr;
3605
3606 if (regnum < 0 || regnum >= the_low_target.num_regs)
3607 error ("Invalid register number %d.", regnum);
3608
3609 addr = the_low_target.regmap[regnum];
3610
3611 return addr;
3612 }
3613
3614 /* Fetch one register. */
3615 static void
3616 fetch_register (struct regcache *regcache, int regno)
3617 {
3618 CORE_ADDR regaddr;
3619 int i, size;
3620 char *buf;
3621 int pid;
3622
3623 if (regno >= the_low_target.num_regs)
3624 return;
3625 if ((*the_low_target.cannot_fetch_register) (regno))
3626 return;
3627
3628 regaddr = register_addr (regno);
3629 if (regaddr == -1)
3630 return;
3631
3632 pid = lwpid_of (get_thread_lwp (current_inferior));
3633 size = ((register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3634 & - sizeof (PTRACE_XFER_TYPE));
3635 buf = alloca (size);
3636 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3637 {
3638 errno = 0;
3639 *(PTRACE_XFER_TYPE *) (buf + i) =
3640 ptrace (PTRACE_PEEKUSER, pid,
3641 /* Coerce to a uintptr_t first to avoid potential gcc warning
3642 of coercing an 8 byte integer to a 4 byte pointer. */
3643 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr, 0);
3644 regaddr += sizeof (PTRACE_XFER_TYPE);
3645 if (errno != 0)
3646 error ("reading register %d: %s", regno, strerror (errno));
3647 }
3648
3649 if (the_low_target.supply_ptrace_register)
3650 the_low_target.supply_ptrace_register (regcache, regno, buf);
3651 else
3652 supply_register (regcache, regno, buf);
3653 }
3654
3655 /* Fetch all registers, or just one, from the child process. */
3656 static void
3657 usr_fetch_inferior_registers (struct regcache *regcache, int regno)
3658 {
3659 if (regno == -1)
3660 for (regno = 0; regno < the_low_target.num_regs; regno++)
3661 fetch_register (regcache, regno);
3662 else
3663 fetch_register (regcache, regno);
3664 }
3665
3666 /* Store our register values back into the inferior.
3667 If REGNO is -1, do this for all registers.
3668 Otherwise, REGNO specifies which register (so we can save time). */
3669 static void
3670 usr_store_inferior_registers (struct regcache *regcache, int regno)
3671 {
3672 CORE_ADDR regaddr;
3673 int i, size;
3674 char *buf;
3675 int pid;
3676
3677 if (regno >= 0)
3678 {
3679 if (regno >= the_low_target.num_regs)
3680 return;
3681
3682 if ((*the_low_target.cannot_store_register) (regno) == 1)
3683 return;
3684
3685 regaddr = register_addr (regno);
3686 if (regaddr == -1)
3687 return;
3688 errno = 0;
3689 size = (register_size (regno) + sizeof (PTRACE_XFER_TYPE) - 1)
3690 & - sizeof (PTRACE_XFER_TYPE);
3691 buf = alloca (size);
3692 memset (buf, 0, size);
3693
3694 if (the_low_target.collect_ptrace_register)
3695 the_low_target.collect_ptrace_register (regcache, regno, buf);
3696 else
3697 collect_register (regcache, regno, buf);
3698
3699 pid = lwpid_of (get_thread_lwp (current_inferior));
3700 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
3701 {
3702 errno = 0;
3703 ptrace (PTRACE_POKEUSER, pid,
3704 /* Coerce to a uintptr_t first to avoid potential gcc warning
3705 about coercing an 8 byte integer to a 4 byte pointer. */
3706 (PTRACE_ARG3_TYPE) (uintptr_t) regaddr,
3707 (PTRACE_ARG4_TYPE) *(PTRACE_XFER_TYPE *) (buf + i));
3708 if (errno != 0)
3709 {
3710 /* At this point, ESRCH should mean the process is
3711 already gone, in which case we simply ignore attempts
3712 to change its registers. See also the related
3713 comment in linux_resume_one_lwp. */
3714 if (errno == ESRCH)
3715 return;
3716
3717 if ((*the_low_target.cannot_store_register) (regno) == 0)
3718 error ("writing register %d: %s", regno, strerror (errno));
3719 }
3720 regaddr += sizeof (PTRACE_XFER_TYPE);
3721 }
3722 }
3723 else
3724 for (regno = 0; regno < the_low_target.num_regs; regno++)
3725 usr_store_inferior_registers (regcache, regno);
3726 }
3727 #endif /* HAVE_LINUX_USRREGS */
3728
3729
3730
3731 #ifdef HAVE_LINUX_REGSETS
3732
3733 static int
3734 regsets_fetch_inferior_registers (struct regcache *regcache)
3735 {
3736 struct regset_info *regset;
3737 int saw_general_regs = 0;
3738 int pid;
3739 struct iovec iov;
3740
3741 regset = target_regsets;
3742
3743 pid = lwpid_of (get_thread_lwp (current_inferior));
3744 while (regset->size >= 0)
3745 {
3746 void *buf, *data;
3747 int nt_type, res;
3748
3749 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3750 {
3751 regset ++;
3752 continue;
3753 }
3754
3755 buf = xmalloc (regset->size);
3756
3757 nt_type = regset->nt_type;
3758 if (nt_type)
3759 {
3760 iov.iov_base = buf;
3761 iov.iov_len = regset->size;
3762 data = (void *) &iov;
3763 }
3764 else
3765 data = buf;
3766
3767 #ifndef __sparc__
3768 res = ptrace (regset->get_request, pid, nt_type, data);
3769 #else
3770 res = ptrace (regset->get_request, pid, data, nt_type);
3771 #endif
3772 if (res < 0)
3773 {
3774 if (errno == EIO)
3775 {
3776 /* If we get EIO on a regset, do not try it again for
3777 this process. */
3778 disabled_regsets[regset - target_regsets] = 1;
3779 free (buf);
3780 continue;
3781 }
3782 else
3783 {
3784 char s[256];
3785 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
3786 pid);
3787 perror (s);
3788 }
3789 }
3790 else if (regset->type == GENERAL_REGS)
3791 saw_general_regs = 1;
3792 regset->store_function (regcache, buf);
3793 regset ++;
3794 free (buf);
3795 }
3796 if (saw_general_regs)
3797 return 0;
3798 else
3799 return 1;
3800 }
3801
3802 static int
3803 regsets_store_inferior_registers (struct regcache *regcache)
3804 {
3805 struct regset_info *regset;
3806 int saw_general_regs = 0;
3807 int pid;
3808 struct iovec iov;
3809
3810 regset = target_regsets;
3811
3812 pid = lwpid_of (get_thread_lwp (current_inferior));
3813 while (regset->size >= 0)
3814 {
3815 void *buf, *data;
3816 int nt_type, res;
3817
3818 if (regset->size == 0 || disabled_regsets[regset - target_regsets])
3819 {
3820 regset ++;
3821 continue;
3822 }
3823
3824 buf = xmalloc (regset->size);
3825
3826 /* First fill the buffer with the current register set contents,
3827 in case there are any items in the kernel's regset that are
3828 not in gdbserver's regcache. */
3829
3830 nt_type = regset->nt_type;
3831 if (nt_type)
3832 {
3833 iov.iov_base = buf;
3834 iov.iov_len = regset->size;
3835 data = (void *) &iov;
3836 }
3837 else
3838 data = buf;
3839
3840 #ifndef __sparc__
3841 res = ptrace (regset->get_request, pid, nt_type, data);
3842 #else
3843 res = ptrace (regset->get_request, pid, &iov, data);
3844 #endif
3845
3846 if (res == 0)
3847 {
3848 /* Then overlay our cached registers on that. */
3849 regset->fill_function (regcache, buf);
3850
3851 /* Only now do we write the register set. */
3852 #ifndef __sparc__
3853 res = ptrace (regset->set_request, pid, nt_type, data);
3854 #else
3855 res = ptrace (regset->set_request, pid, data, nt_type);
3856 #endif
3857 }
3858
3859 if (res < 0)
3860 {
3861 if (errno == EIO)
3862 {
3863 /* If we get EIO on a regset, do not try it again for
3864 this process. */
3865 disabled_regsets[regset - target_regsets] = 1;
3866 free (buf);
3867 continue;
3868 }
3869 else if (errno == ESRCH)
3870 {
3871 /* At this point, ESRCH should mean the process is
3872 already gone, in which case we simply ignore attempts
3873 to change its registers. See also the related
3874 comment in linux_resume_one_lwp. */
3875 free (buf);
3876 return 0;
3877 }
3878 else
3879 {
3880 perror ("Warning: ptrace(regsets_store_inferior_registers)");
3881 }
3882 }
3883 else if (regset->type == GENERAL_REGS)
3884 saw_general_regs = 1;
3885 regset ++;
3886 free (buf);
3887 }
3888 if (saw_general_regs)
3889 return 0;
3890 else
3891 return 1;
3892 return 0;
3893 }
3894
3895 #endif /* HAVE_LINUX_REGSETS */
3896
3897
3898 void
3899 linux_fetch_registers (struct regcache *regcache, int regno)
3900 {
3901 #ifdef HAVE_LINUX_REGSETS
3902 if (regsets_fetch_inferior_registers (regcache) == 0)
3903 return;
3904 #endif
3905 #ifdef HAVE_LINUX_USRREGS
3906 usr_fetch_inferior_registers (regcache, regno);
3907 #endif
3908 }
3909
3910 void
3911 linux_store_registers (struct regcache *regcache, int regno)
3912 {
3913 #ifdef HAVE_LINUX_REGSETS
3914 if (regsets_store_inferior_registers (regcache) == 0)
3915 return;
3916 #endif
3917 #ifdef HAVE_LINUX_USRREGS
3918 usr_store_inferior_registers (regcache, regno);
3919 #endif
3920 }
3921
3922
3923 /* Copy LEN bytes from inferior's memory starting at MEMADDR
3924 to debugger memory starting at MYADDR. */
3925
3926 static int
3927 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
3928 {
3929 register int i;
3930 /* Round starting address down to longword boundary. */
3931 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
3932 /* Round ending address up; get number of longwords that makes. */
3933 register int count
3934 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
3935 / sizeof (PTRACE_XFER_TYPE);
3936 /* Allocate buffer of that many longwords. */
3937 register PTRACE_XFER_TYPE *buffer
3938 = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
3939 int fd;
3940 char filename[64];
3941 int pid = lwpid_of (get_thread_lwp (current_inferior));
3942
3943 /* Try using /proc. Don't bother for one word. */
3944 if (len >= 3 * sizeof (long))
3945 {
3946 /* We could keep this file open and cache it - possibly one per
3947 thread. That requires some juggling, but is even faster. */
3948 sprintf (filename, "/proc/%d/mem", pid);
3949 fd = open (filename, O_RDONLY | O_LARGEFILE);
3950 if (fd == -1)
3951 goto no_proc;
3952
3953 /* If pread64 is available, use it. It's faster if the kernel
3954 supports it (only one syscall), and it's 64-bit safe even on
3955 32-bit platforms (for instance, SPARC debugging a SPARC64
3956 application). */
3957 #ifdef HAVE_PREAD64
3958 if (pread64 (fd, myaddr, len, memaddr) != len)
3959 #else
3960 if (lseek (fd, memaddr, SEEK_SET) == -1 || read (fd, myaddr, len) != len)
3961 #endif
3962 {
3963 close (fd);
3964 goto no_proc;
3965 }
3966
3967 close (fd);
3968 return 0;
3969 }
3970
3971 no_proc:
3972 /* Read all the longwords */
3973 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
3974 {
3975 errno = 0;
3976 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
3977 about coercing an 8 byte integer to a 4 byte pointer. */
3978 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
3979 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
3980 if (errno)
3981 return errno;
3982 }
3983
3984 /* Copy appropriate bytes out of the buffer. */
3985 memcpy (myaddr,
3986 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
3987 len);
3988
3989 return 0;
3990 }
3991
3992 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
3993 memory at MEMADDR. On failure (cannot write to the inferior)
3994 returns the value of errno. */
3995
3996 static int
3997 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
3998 {
3999 register int i;
4000 /* Round starting address down to longword boundary. */
4001 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
4002 /* Round ending address up; get number of longwords that makes. */
4003 register int count
4004 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1) / sizeof (PTRACE_XFER_TYPE);
4005 /* Allocate buffer of that many longwords. */
4006 register PTRACE_XFER_TYPE *buffer = (PTRACE_XFER_TYPE *) alloca (count * sizeof (PTRACE_XFER_TYPE));
4007 int pid = lwpid_of (get_thread_lwp (current_inferior));
4008
4009 if (debug_threads)
4010 {
4011 /* Dump up to four bytes. */
4012 unsigned int val = * (unsigned int *) myaddr;
4013 if (len == 1)
4014 val = val & 0xff;
4015 else if (len == 2)
4016 val = val & 0xffff;
4017 else if (len == 3)
4018 val = val & 0xffffff;
4019 fprintf (stderr, "Writing %0*x to 0x%08lx\n", 2 * ((len < 4) ? len : 4),
4020 val, (long)memaddr);
4021 }
4022
4023 /* Fill start and end extra bytes of buffer with existing memory data. */
4024
4025 errno = 0;
4026 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
4027 about coercing an 8 byte integer to a 4 byte pointer. */
4028 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
4029 (PTRACE_ARG3_TYPE) (uintptr_t) addr, 0);
4030 if (errno)
4031 return errno;
4032
4033 if (count > 1)
4034 {
4035 errno = 0;
4036 buffer[count - 1]
4037 = ptrace (PTRACE_PEEKTEXT, pid,
4038 /* Coerce to a uintptr_t first to avoid potential gcc warning
4039 about coercing an 8 byte integer to a 4 byte pointer. */
4040 (PTRACE_ARG3_TYPE) (uintptr_t) (addr + (count - 1)
4041 * sizeof (PTRACE_XFER_TYPE)),
4042 0);
4043 if (errno)
4044 return errno;
4045 }
4046
4047 /* Copy data to be written over corresponding part of buffer. */
4048
4049 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)), myaddr, len);
4050
4051 /* Write the entire buffer. */
4052
4053 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
4054 {
4055 errno = 0;
4056 ptrace (PTRACE_POKETEXT, pid,
4057 /* Coerce to a uintptr_t first to avoid potential gcc warning
4058 about coercing an 8 byte integer to a 4 byte pointer. */
4059 (PTRACE_ARG3_TYPE) (uintptr_t) addr,
4060 (PTRACE_ARG4_TYPE) buffer[i]);
4061 if (errno)
4062 return errno;
4063 }
4064
4065 return 0;
4066 }
4067
4068 /* Non-zero if the kernel supports PTRACE_O_TRACEFORK. */
4069 static int linux_supports_tracefork_flag;
4070
4071 static void
4072 linux_enable_event_reporting (int pid)
4073 {
4074 if (!linux_supports_tracefork_flag)
4075 return;
4076
4077 ptrace (PTRACE_SETOPTIONS, pid, 0, (PTRACE_ARG4_TYPE) PTRACE_O_TRACECLONE);
4078 }
4079
4080 /* Helper functions for linux_test_for_tracefork, called via clone (). */
4081
4082 static int
4083 linux_tracefork_grandchild (void *arg)
4084 {
4085 _exit (0);
4086 }
4087
4088 #define STACK_SIZE 4096
4089
4090 static int
4091 linux_tracefork_child (void *arg)
4092 {
4093 ptrace (PTRACE_TRACEME, 0, 0, 0);
4094 kill (getpid (), SIGSTOP);
4095
4096 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4097
4098 if (fork () == 0)
4099 linux_tracefork_grandchild (NULL);
4100
4101 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4102
4103 #ifdef __ia64__
4104 __clone2 (linux_tracefork_grandchild, arg, STACK_SIZE,
4105 CLONE_VM | SIGCHLD, NULL);
4106 #else
4107 clone (linux_tracefork_grandchild, arg + STACK_SIZE,
4108 CLONE_VM | SIGCHLD, NULL);
4109 #endif
4110
4111 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4112
4113 _exit (0);
4114 }
4115
4116 /* Determine if PTRACE_O_TRACEFORK can be used to follow fork events. Make
4117 sure that we can enable the option, and that it had the desired
4118 effect. */
4119
4120 static void
4121 linux_test_for_tracefork (void)
4122 {
4123 int child_pid, ret, status;
4124 long second_pid;
4125 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4126 char *stack = xmalloc (STACK_SIZE * 4);
4127 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4128
4129 linux_supports_tracefork_flag = 0;
4130
4131 #if !(defined(__UCLIBC__) && defined(HAS_NOMMU))
4132
4133 child_pid = fork ();
4134 if (child_pid == 0)
4135 linux_tracefork_child (NULL);
4136
4137 #else /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4138
4139 /* Use CLONE_VM instead of fork, to support uClinux (no MMU). */
4140 #ifdef __ia64__
4141 child_pid = __clone2 (linux_tracefork_child, stack, STACK_SIZE,
4142 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4143 #else /* !__ia64__ */
4144 child_pid = clone (linux_tracefork_child, stack + STACK_SIZE,
4145 CLONE_VM | SIGCHLD, stack + STACK_SIZE * 2);
4146 #endif /* !__ia64__ */
4147
4148 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4149
4150 if (child_pid == -1)
4151 perror_with_name ("clone");
4152
4153 ret = my_waitpid (child_pid, &status, 0);
4154 if (ret == -1)
4155 perror_with_name ("waitpid");
4156 else if (ret != child_pid)
4157 error ("linux_test_for_tracefork: waitpid: unexpected result %d.", ret);
4158 if (! WIFSTOPPED (status))
4159 error ("linux_test_for_tracefork: waitpid: unexpected status %d.", status);
4160
4161 ret = ptrace (PTRACE_SETOPTIONS, child_pid, 0,
4162 (PTRACE_ARG4_TYPE) PTRACE_O_TRACEFORK);
4163 if (ret != 0)
4164 {
4165 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4166 if (ret != 0)
4167 {
4168 warning ("linux_test_for_tracefork: failed to kill child");
4169 return;
4170 }
4171
4172 ret = my_waitpid (child_pid, &status, 0);
4173 if (ret != child_pid)
4174 warning ("linux_test_for_tracefork: failed to wait for killed child");
4175 else if (!WIFSIGNALED (status))
4176 warning ("linux_test_for_tracefork: unexpected wait status 0x%x from "
4177 "killed child", status);
4178
4179 return;
4180 }
4181
4182 ret = ptrace (PTRACE_CONT, child_pid, 0, 0);
4183 if (ret != 0)
4184 warning ("linux_test_for_tracefork: failed to resume child");
4185
4186 ret = my_waitpid (child_pid, &status, 0);
4187
4188 if (ret == child_pid && WIFSTOPPED (status)
4189 && status >> 16 == PTRACE_EVENT_FORK)
4190 {
4191 second_pid = 0;
4192 ret = ptrace (PTRACE_GETEVENTMSG, child_pid, 0, &second_pid);
4193 if (ret == 0 && second_pid != 0)
4194 {
4195 int second_status;
4196
4197 linux_supports_tracefork_flag = 1;
4198 my_waitpid (second_pid, &second_status, 0);
4199 ret = ptrace (PTRACE_KILL, second_pid, 0, 0);
4200 if (ret != 0)
4201 warning ("linux_test_for_tracefork: failed to kill second child");
4202 my_waitpid (second_pid, &status, 0);
4203 }
4204 }
4205 else
4206 warning ("linux_test_for_tracefork: unexpected result from waitpid "
4207 "(%d, status 0x%x)", ret, status);
4208
4209 do
4210 {
4211 ret = ptrace (PTRACE_KILL, child_pid, 0, 0);
4212 if (ret != 0)
4213 warning ("linux_test_for_tracefork: failed to kill child");
4214 my_waitpid (child_pid, &status, 0);
4215 }
4216 while (WIFSTOPPED (status));
4217
4218 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4219 free (stack);
4220 #endif /* defined(__UCLIBC__) && defined(HAS_NOMMU) */
4221 }
4222
4223
4224 static void
4225 linux_look_up_symbols (void)
4226 {
4227 #ifdef USE_THREAD_DB
4228 struct process_info *proc = current_process ();
4229
4230 if (proc->private->thread_db != NULL)
4231 return;
4232
4233 /* If the kernel supports tracing forks then it also supports tracing
4234 clones, and then we don't need to use the magic thread event breakpoint
4235 to learn about threads. */
4236 thread_db_init (!linux_supports_tracefork_flag);
4237 #endif
4238 }
4239
4240 static void
4241 linux_request_interrupt (void)
4242 {
4243 extern unsigned long signal_pid;
4244
4245 if (!ptid_equal (cont_thread, null_ptid)
4246 && !ptid_equal (cont_thread, minus_one_ptid))
4247 {
4248 struct lwp_info *lwp;
4249 int lwpid;
4250
4251 lwp = get_thread_lwp (current_inferior);
4252 lwpid = lwpid_of (lwp);
4253 kill_lwp (lwpid, SIGINT);
4254 }
4255 else
4256 kill_lwp (signal_pid, SIGINT);
4257 }
4258
4259 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
4260 to debugger memory starting at MYADDR. */
4261
4262 static int
4263 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
4264 {
4265 char filename[PATH_MAX];
4266 int fd, n;
4267 int pid = lwpid_of (get_thread_lwp (current_inferior));
4268
4269 snprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
4270
4271 fd = open (filename, O_RDONLY);
4272 if (fd < 0)
4273 return -1;
4274
4275 if (offset != (CORE_ADDR) 0
4276 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4277 n = -1;
4278 else
4279 n = read (fd, myaddr, len);
4280
4281 close (fd);
4282
4283 return n;
4284 }
4285
4286 /* These breakpoint and watchpoint related wrapper functions simply
4287 pass on the function call if the target has registered a
4288 corresponding function. */
4289
4290 static int
4291 linux_insert_point (char type, CORE_ADDR addr, int len)
4292 {
4293 if (the_low_target.insert_point != NULL)
4294 return the_low_target.insert_point (type, addr, len);
4295 else
4296 /* Unsupported (see target.h). */
4297 return 1;
4298 }
4299
4300 static int
4301 linux_remove_point (char type, CORE_ADDR addr, int len)
4302 {
4303 if (the_low_target.remove_point != NULL)
4304 return the_low_target.remove_point (type, addr, len);
4305 else
4306 /* Unsupported (see target.h). */
4307 return 1;
4308 }
4309
4310 static int
4311 linux_stopped_by_watchpoint (void)
4312 {
4313 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4314
4315 return lwp->stopped_by_watchpoint;
4316 }
4317
4318 static CORE_ADDR
4319 linux_stopped_data_address (void)
4320 {
4321 struct lwp_info *lwp = get_thread_lwp (current_inferior);
4322
4323 return lwp->stopped_data_address;
4324 }
4325
4326 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
4327 #if defined(__mcoldfire__)
4328 /* These should really be defined in the kernel's ptrace.h header. */
4329 #define PT_TEXT_ADDR 49*4
4330 #define PT_DATA_ADDR 50*4
4331 #define PT_TEXT_END_ADDR 51*4
4332 #endif
4333
4334 /* Under uClinux, programs are loaded at non-zero offsets, which we need
4335 to tell gdb about. */
4336
4337 static int
4338 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
4339 {
4340 #if defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) && defined(PT_TEXT_END_ADDR)
4341 unsigned long text, text_end, data;
4342 int pid = lwpid_of (get_thread_lwp (current_inferior));
4343
4344 errno = 0;
4345
4346 text = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_ADDR, 0);
4347 text_end = ptrace (PTRACE_PEEKUSER, pid, (long)PT_TEXT_END_ADDR, 0);
4348 data = ptrace (PTRACE_PEEKUSER, pid, (long)PT_DATA_ADDR, 0);
4349
4350 if (errno == 0)
4351 {
4352 /* Both text and data offsets produced at compile-time (and so
4353 used by gdb) are relative to the beginning of the program,
4354 with the data segment immediately following the text segment.
4355 However, the actual runtime layout in memory may put the data
4356 somewhere else, so when we send gdb a data base-address, we
4357 use the real data base address and subtract the compile-time
4358 data base-address from it (which is just the length of the
4359 text segment). BSS immediately follows data in both
4360 cases. */
4361 *text_p = text;
4362 *data_p = data - (text_end - text);
4363
4364 return 1;
4365 }
4366 #endif
4367 return 0;
4368 }
4369 #endif
4370
4371 static int
4372 compare_ints (const void *xa, const void *xb)
4373 {
4374 int a = *(const int *)xa;
4375 int b = *(const int *)xb;
4376
4377 return a - b;
4378 }
4379
4380 static int *
4381 unique (int *b, int *e)
4382 {
4383 int *d = b;
4384 while (++b != e)
4385 if (*d != *b)
4386 *++d = *b;
4387 return ++d;
4388 }
4389
4390 /* Given PID, iterates over all threads in that process.
4391
4392 Information about each thread, in a format suitable for qXfer:osdata:thread
4393 is printed to BUFFER, if it's not NULL. BUFFER is assumed to be already
4394 initialized, and the caller is responsible for finishing and appending '\0'
4395 to it.
4396
4397 The list of cores that threads are running on is assigned to *CORES, if it
4398 is not NULL. If no cores are found, *CORES will be set to NULL. Caller
4399 should free *CORES. */
4400
4401 static void
4402 list_threads (int pid, struct buffer *buffer, char **cores)
4403 {
4404 int count = 0;
4405 int allocated = 10;
4406 int *core_numbers = xmalloc (sizeof (int) * allocated);
4407 char pathname[128];
4408 DIR *dir;
4409 struct dirent *dp;
4410 struct stat statbuf;
4411
4412 sprintf (pathname, "/proc/%d/task", pid);
4413 if (stat (pathname, &statbuf) == 0 && S_ISDIR (statbuf.st_mode))
4414 {
4415 dir = opendir (pathname);
4416 if (!dir)
4417 {
4418 free (core_numbers);
4419 return;
4420 }
4421
4422 while ((dp = readdir (dir)) != NULL)
4423 {
4424 unsigned long lwp = strtoul (dp->d_name, NULL, 10);
4425
4426 if (lwp != 0)
4427 {
4428 unsigned core = linux_core_of_thread (ptid_build (pid, lwp, 0));
4429
4430 if (core != -1)
4431 {
4432 char s[sizeof ("4294967295")];
4433 sprintf (s, "%u", core);
4434
4435 if (count == allocated)
4436 {
4437 allocated *= 2;
4438 core_numbers = realloc (core_numbers,
4439 sizeof (int) * allocated);
4440 }
4441 core_numbers[count++] = core;
4442 if (buffer)
4443 buffer_xml_printf (buffer,
4444 "<item>"
4445 "<column name=\"pid\">%d</column>"
4446 "<column name=\"tid\">%s</column>"
4447 "<column name=\"core\">%s</column>"
4448 "</item>", pid, dp->d_name, s);
4449 }
4450 else
4451 {
4452 if (buffer)
4453 buffer_xml_printf (buffer,
4454 "<item>"
4455 "<column name=\"pid\">%d</column>"
4456 "<column name=\"tid\">%s</column>"
4457 "</item>", pid, dp->d_name);
4458 }
4459 }
4460 }
4461 }
4462
4463 if (cores)
4464 {
4465 *cores = NULL;
4466 if (count > 0)
4467 {
4468 struct buffer buffer2;
4469 int *b;
4470 int *e;
4471 qsort (core_numbers, count, sizeof (int), compare_ints);
4472
4473 /* Remove duplicates. */
4474 b = core_numbers;
4475 e = unique (b, core_numbers + count);
4476
4477 buffer_init (&buffer2);
4478
4479 for (b = core_numbers; b != e; ++b)
4480 {
4481 char number[sizeof ("4294967295")];
4482 sprintf (number, "%u", *b);
4483 buffer_xml_printf (&buffer2, "%s%s",
4484 (b == core_numbers) ? "" : ",", number);
4485 }
4486 buffer_grow_str0 (&buffer2, "");
4487
4488 *cores = buffer_finish (&buffer2);
4489 }
4490 }
4491 free (core_numbers);
4492 }
4493
4494 static void
4495 show_process (int pid, const char *username, struct buffer *buffer)
4496 {
4497 char pathname[128];
4498 FILE *f;
4499 char cmd[MAXPATHLEN + 1];
4500
4501 sprintf (pathname, "/proc/%d/cmdline", pid);
4502
4503 if ((f = fopen (pathname, "r")) != NULL)
4504 {
4505 size_t len = fread (cmd, 1, sizeof (cmd) - 1, f);
4506 if (len > 0)
4507 {
4508 char *cores = 0;
4509 int i;
4510 for (i = 0; i < len; i++)
4511 if (cmd[i] == '\0')
4512 cmd[i] = ' ';
4513 cmd[len] = '\0';
4514
4515 buffer_xml_printf (buffer,
4516 "<item>"
4517 "<column name=\"pid\">%d</column>"
4518 "<column name=\"user\">%s</column>"
4519 "<column name=\"command\">%s</column>",
4520 pid,
4521 username,
4522 cmd);
4523
4524 /* This only collects core numbers, and does not print threads. */
4525 list_threads (pid, NULL, &cores);
4526
4527 if (cores)
4528 {
4529 buffer_xml_printf (buffer,
4530 "<column name=\"cores\">%s</column>", cores);
4531 free (cores);
4532 }
4533
4534 buffer_xml_printf (buffer, "</item>");
4535 }
4536 fclose (f);
4537 }
4538 }
4539
4540 static int
4541 linux_qxfer_osdata (const char *annex,
4542 unsigned char *readbuf, unsigned const char *writebuf,
4543 CORE_ADDR offset, int len)
4544 {
4545 /* We make the process list snapshot when the object starts to be
4546 read. */
4547 static const char *buf;
4548 static long len_avail = -1;
4549 static struct buffer buffer;
4550 int processes = 0;
4551 int threads = 0;
4552
4553 DIR *dirp;
4554
4555 if (strcmp (annex, "processes") == 0)
4556 processes = 1;
4557 else if (strcmp (annex, "threads") == 0)
4558 threads = 1;
4559 else
4560 return 0;
4561
4562 if (!readbuf || writebuf)
4563 return 0;
4564
4565 if (offset == 0)
4566 {
4567 if (len_avail != -1 && len_avail != 0)
4568 buffer_free (&buffer);
4569 len_avail = 0;
4570 buf = NULL;
4571 buffer_init (&buffer);
4572 if (processes)
4573 buffer_grow_str (&buffer, "<osdata type=\"processes\">");
4574 else if (threads)
4575 buffer_grow_str (&buffer, "<osdata type=\"threads\">");
4576
4577 dirp = opendir ("/proc");
4578 if (dirp)
4579 {
4580 struct dirent *dp;
4581 while ((dp = readdir (dirp)) != NULL)
4582 {
4583 struct stat statbuf;
4584 char procentry[sizeof ("/proc/4294967295")];
4585
4586 if (!isdigit (dp->d_name[0])
4587 || strlen (dp->d_name) > sizeof ("4294967295") - 1)
4588 continue;
4589
4590 sprintf (procentry, "/proc/%s", dp->d_name);
4591 if (stat (procentry, &statbuf) == 0
4592 && S_ISDIR (statbuf.st_mode))
4593 {
4594 int pid = (int) strtoul (dp->d_name, NULL, 10);
4595
4596 if (processes)
4597 {
4598 struct passwd *entry = getpwuid (statbuf.st_uid);
4599 show_process (pid, entry ? entry->pw_name : "?", &buffer);
4600 }
4601 else if (threads)
4602 {
4603 list_threads (pid, &buffer, NULL);
4604 }
4605 }
4606 }
4607
4608 closedir (dirp);
4609 }
4610 buffer_grow_str0 (&buffer, "</osdata>\n");
4611 buf = buffer_finish (&buffer);
4612 len_avail = strlen (buf);
4613 }
4614
4615 if (offset >= len_avail)
4616 {
4617 /* Done. Get rid of the data. */
4618 buffer_free (&buffer);
4619 buf = NULL;
4620 len_avail = 0;
4621 return 0;
4622 }
4623
4624 if (len > len_avail - offset)
4625 len = len_avail - offset;
4626 memcpy (readbuf, buf + offset, len);
4627
4628 return len;
4629 }
4630
4631 /* Convert a native/host siginfo object, into/from the siginfo in the
4632 layout of the inferiors' architecture. */
4633
4634 static void
4635 siginfo_fixup (struct siginfo *siginfo, void *inf_siginfo, int direction)
4636 {
4637 int done = 0;
4638
4639 if (the_low_target.siginfo_fixup != NULL)
4640 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
4641
4642 /* If there was no callback, or the callback didn't do anything,
4643 then just do a straight memcpy. */
4644 if (!done)
4645 {
4646 if (direction == 1)
4647 memcpy (siginfo, inf_siginfo, sizeof (struct siginfo));
4648 else
4649 memcpy (inf_siginfo, siginfo, sizeof (struct siginfo));
4650 }
4651 }
4652
4653 static int
4654 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
4655 unsigned const char *writebuf, CORE_ADDR offset, int len)
4656 {
4657 int pid;
4658 struct siginfo siginfo;
4659 char inf_siginfo[sizeof (struct siginfo)];
4660
4661 if (current_inferior == NULL)
4662 return -1;
4663
4664 pid = lwpid_of (get_thread_lwp (current_inferior));
4665
4666 if (debug_threads)
4667 fprintf (stderr, "%s siginfo for lwp %d.\n",
4668 readbuf != NULL ? "Reading" : "Writing",
4669 pid);
4670
4671 if (offset > sizeof (siginfo))
4672 return -1;
4673
4674 if (ptrace (PTRACE_GETSIGINFO, pid, 0, &siginfo) != 0)
4675 return -1;
4676
4677 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
4678 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
4679 inferior with a 64-bit GDBSERVER should look the same as debugging it
4680 with a 32-bit GDBSERVER, we need to convert it. */
4681 siginfo_fixup (&siginfo, inf_siginfo, 0);
4682
4683 if (offset + len > sizeof (siginfo))
4684 len = sizeof (siginfo) - offset;
4685
4686 if (readbuf != NULL)
4687 memcpy (readbuf, inf_siginfo + offset, len);
4688 else
4689 {
4690 memcpy (inf_siginfo + offset, writebuf, len);
4691
4692 /* Convert back to ptrace layout before flushing it out. */
4693 siginfo_fixup (&siginfo, inf_siginfo, 1);
4694
4695 if (ptrace (PTRACE_SETSIGINFO, pid, 0, &siginfo) != 0)
4696 return -1;
4697 }
4698
4699 return len;
4700 }
4701
4702 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
4703 so we notice when children change state; as the handler for the
4704 sigsuspend in my_waitpid. */
4705
4706 static void
4707 sigchld_handler (int signo)
4708 {
4709 int old_errno = errno;
4710
4711 if (debug_threads)
4712 /* fprintf is not async-signal-safe, so call write directly. */
4713 write (2, "sigchld_handler\n", sizeof ("sigchld_handler\n") - 1);
4714
4715 if (target_is_async_p ())
4716 async_file_mark (); /* trigger a linux_wait */
4717
4718 errno = old_errno;
4719 }
4720
4721 static int
4722 linux_supports_non_stop (void)
4723 {
4724 return 1;
4725 }
4726
4727 static int
4728 linux_async (int enable)
4729 {
4730 int previous = (linux_event_pipe[0] != -1);
4731
4732 if (debug_threads)
4733 fprintf (stderr, "linux_async (%d), previous=%d\n",
4734 enable, previous);
4735
4736 if (previous != enable)
4737 {
4738 sigset_t mask;
4739 sigemptyset (&mask);
4740 sigaddset (&mask, SIGCHLD);
4741
4742 sigprocmask (SIG_BLOCK, &mask, NULL);
4743
4744 if (enable)
4745 {
4746 if (pipe (linux_event_pipe) == -1)
4747 fatal ("creating event pipe failed.");
4748
4749 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
4750 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
4751
4752 /* Register the event loop handler. */
4753 add_file_handler (linux_event_pipe[0],
4754 handle_target_event, NULL);
4755
4756 /* Always trigger a linux_wait. */
4757 async_file_mark ();
4758 }
4759 else
4760 {
4761 delete_file_handler (linux_event_pipe[0]);
4762
4763 close (linux_event_pipe[0]);
4764 close (linux_event_pipe[1]);
4765 linux_event_pipe[0] = -1;
4766 linux_event_pipe[1] = -1;
4767 }
4768
4769 sigprocmask (SIG_UNBLOCK, &mask, NULL);
4770 }
4771
4772 return previous;
4773 }
4774
4775 static int
4776 linux_start_non_stop (int nonstop)
4777 {
4778 /* Register or unregister from event-loop accordingly. */
4779 linux_async (nonstop);
4780 return 0;
4781 }
4782
4783 static int
4784 linux_supports_multi_process (void)
4785 {
4786 return 1;
4787 }
4788
4789
4790 /* Enumerate spufs IDs for process PID. */
4791 static int
4792 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
4793 {
4794 int pos = 0;
4795 int written = 0;
4796 char path[128];
4797 DIR *dir;
4798 struct dirent *entry;
4799
4800 sprintf (path, "/proc/%ld/fd", pid);
4801 dir = opendir (path);
4802 if (!dir)
4803 return -1;
4804
4805 rewinddir (dir);
4806 while ((entry = readdir (dir)) != NULL)
4807 {
4808 struct stat st;
4809 struct statfs stfs;
4810 int fd;
4811
4812 fd = atoi (entry->d_name);
4813 if (!fd)
4814 continue;
4815
4816 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
4817 if (stat (path, &st) != 0)
4818 continue;
4819 if (!S_ISDIR (st.st_mode))
4820 continue;
4821
4822 if (statfs (path, &stfs) != 0)
4823 continue;
4824 if (stfs.f_type != SPUFS_MAGIC)
4825 continue;
4826
4827 if (pos >= offset && pos + 4 <= offset + len)
4828 {
4829 *(unsigned int *)(buf + pos - offset) = fd;
4830 written += 4;
4831 }
4832 pos += 4;
4833 }
4834
4835 closedir (dir);
4836 return written;
4837 }
4838
4839 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
4840 object type, using the /proc file system. */
4841 static int
4842 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
4843 unsigned const char *writebuf,
4844 CORE_ADDR offset, int len)
4845 {
4846 long pid = lwpid_of (get_thread_lwp (current_inferior));
4847 char buf[128];
4848 int fd = 0;
4849 int ret = 0;
4850
4851 if (!writebuf && !readbuf)
4852 return -1;
4853
4854 if (!*annex)
4855 {
4856 if (!readbuf)
4857 return -1;
4858 else
4859 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
4860 }
4861
4862 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
4863 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
4864 if (fd <= 0)
4865 return -1;
4866
4867 if (offset != 0
4868 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
4869 {
4870 close (fd);
4871 return 0;
4872 }
4873
4874 if (writebuf)
4875 ret = write (fd, writebuf, (size_t) len);
4876 else
4877 ret = read (fd, readbuf, (size_t) len);
4878
4879 close (fd);
4880 return ret;
4881 }
4882
4883 static int
4884 linux_core_of_thread (ptid_t ptid)
4885 {
4886 char filename[sizeof ("/proc//task//stat")
4887 + 2 * 20 /* decimal digits for 2 numbers, max 2^64 bit each */
4888 + 1];
4889 FILE *f;
4890 char *content = NULL;
4891 char *p;
4892 char *ts = 0;
4893 int content_read = 0;
4894 int i;
4895 int core;
4896
4897 sprintf (filename, "/proc/%d/task/%ld/stat",
4898 ptid_get_pid (ptid), ptid_get_lwp (ptid));
4899 f = fopen (filename, "r");
4900 if (!f)
4901 return -1;
4902
4903 for (;;)
4904 {
4905 int n;
4906 content = realloc (content, content_read + 1024);
4907 n = fread (content + content_read, 1, 1024, f);
4908 content_read += n;
4909 if (n < 1024)
4910 {
4911 content[content_read] = '\0';
4912 break;
4913 }
4914 }
4915
4916 p = strchr (content, '(');
4917
4918 /* Skip ")". */
4919 if (p != NULL)
4920 p = strchr (p, ')');
4921 if (p != NULL)
4922 p++;
4923
4924 /* If the first field after program name has index 0, then core number is
4925 the field with index 36. There's no constant for that anywhere. */
4926 if (p != NULL)
4927 p = strtok_r (p, " ", &ts);
4928 for (i = 0; p != NULL && i != 36; ++i)
4929 p = strtok_r (NULL, " ", &ts);
4930
4931 if (p == NULL || sscanf (p, "%d", &core) == 0)
4932 core = -1;
4933
4934 free (content);
4935 fclose (f);
4936
4937 return core;
4938 }
4939
4940 static void
4941 linux_process_qsupported (const char *query)
4942 {
4943 if (the_low_target.process_qsupported != NULL)
4944 the_low_target.process_qsupported (query);
4945 }
4946
4947 static int
4948 linux_supports_tracepoints (void)
4949 {
4950 if (*the_low_target.supports_tracepoints == NULL)
4951 return 0;
4952
4953 return (*the_low_target.supports_tracepoints) ();
4954 }
4955
4956 static CORE_ADDR
4957 linux_read_pc (struct regcache *regcache)
4958 {
4959 if (the_low_target.get_pc == NULL)
4960 return 0;
4961
4962 return (*the_low_target.get_pc) (regcache);
4963 }
4964
4965 static void
4966 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
4967 {
4968 gdb_assert (the_low_target.set_pc != NULL);
4969
4970 (*the_low_target.set_pc) (regcache, pc);
4971 }
4972
4973 static int
4974 linux_thread_stopped (struct thread_info *thread)
4975 {
4976 return get_thread_lwp (thread)->stopped;
4977 }
4978
4979 /* This exposes stop-all-threads functionality to other modules. */
4980
4981 static void
4982 linux_pause_all (int freeze)
4983 {
4984 stop_all_lwps (freeze, NULL);
4985 }
4986
4987 /* This exposes unstop-all-threads functionality to other gdbserver
4988 modules. */
4989
4990 static void
4991 linux_unpause_all (int unfreeze)
4992 {
4993 unstop_all_lwps (unfreeze, NULL);
4994 }
4995
4996 static int
4997 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
4998 CORE_ADDR collector,
4999 CORE_ADDR lockaddr,
5000 ULONGEST orig_size,
5001 CORE_ADDR *jump_entry,
5002 unsigned char *jjump_pad_insn,
5003 ULONGEST *jjump_pad_insn_size,
5004 CORE_ADDR *adjusted_insn_addr,
5005 CORE_ADDR *adjusted_insn_addr_end)
5006 {
5007 return (*the_low_target.install_fast_tracepoint_jump_pad)
5008 (tpoint, tpaddr, collector, lockaddr, orig_size,
5009 jump_entry, jjump_pad_insn, jjump_pad_insn_size,
5010 adjusted_insn_addr, adjusted_insn_addr_end);
5011 }
5012
5013 static struct emit_ops *
5014 linux_emit_ops (void)
5015 {
5016 if (the_low_target.emit_ops != NULL)
5017 return (*the_low_target.emit_ops) ();
5018 else
5019 return NULL;
5020 }
5021
5022 static struct target_ops linux_target_ops = {
5023 linux_create_inferior,
5024 linux_attach,
5025 linux_kill,
5026 linux_detach,
5027 linux_mourn,
5028 linux_join,
5029 linux_thread_alive,
5030 linux_resume,
5031 linux_wait,
5032 linux_fetch_registers,
5033 linux_store_registers,
5034 linux_read_memory,
5035 linux_write_memory,
5036 linux_look_up_symbols,
5037 linux_request_interrupt,
5038 linux_read_auxv,
5039 linux_insert_point,
5040 linux_remove_point,
5041 linux_stopped_by_watchpoint,
5042 linux_stopped_data_address,
5043 #if defined(__UCLIBC__) && defined(HAS_NOMMU)
5044 linux_read_offsets,
5045 #else
5046 NULL,
5047 #endif
5048 #ifdef USE_THREAD_DB
5049 thread_db_get_tls_address,
5050 #else
5051 NULL,
5052 #endif
5053 linux_qxfer_spu,
5054 hostio_last_error_from_errno,
5055 linux_qxfer_osdata,
5056 linux_xfer_siginfo,
5057 linux_supports_non_stop,
5058 linux_async,
5059 linux_start_non_stop,
5060 linux_supports_multi_process,
5061 #ifdef USE_THREAD_DB
5062 thread_db_handle_monitor_command,
5063 #else
5064 NULL,
5065 #endif
5066 linux_core_of_thread,
5067 linux_process_qsupported,
5068 linux_supports_tracepoints,
5069 linux_read_pc,
5070 linux_write_pc,
5071 linux_thread_stopped,
5072 NULL,
5073 linux_pause_all,
5074 linux_unpause_all,
5075 linux_cancel_breakpoints,
5076 linux_stabilize_threads,
5077 linux_install_fast_tracepoint_jump_pad,
5078 linux_emit_ops
5079 };
5080
5081 static void
5082 linux_init_signals ()
5083 {
5084 /* FIXME drow/2002-06-09: As above, we should check with LinuxThreads
5085 to find what the cancel signal actually is. */
5086 #ifdef __SIGRTMIN /* Bionic doesn't use SIGRTMIN the way glibc does. */
5087 signal (__SIGRTMIN+1, SIG_IGN);
5088 #endif
5089 }
5090
5091 void
5092 initialize_low (void)
5093 {
5094 struct sigaction sigchld_action;
5095 memset (&sigchld_action, 0, sizeof (sigchld_action));
5096 set_target_ops (&linux_target_ops);
5097 set_breakpoint_data (the_low_target.breakpoint,
5098 the_low_target.breakpoint_len);
5099 linux_init_signals ();
5100 linux_test_for_tracefork ();
5101 #ifdef HAVE_LINUX_REGSETS
5102 for (num_regsets = 0; target_regsets[num_regsets].size >= 0; num_regsets++)
5103 ;
5104 disabled_regsets = xmalloc (num_regsets);
5105 #endif
5106
5107 sigchld_action.sa_handler = sigchld_handler;
5108 sigemptyset (&sigchld_action.sa_mask);
5109 sigchld_action.sa_flags = SA_RESTART;
5110 sigaction (SIGCHLD, &sigchld_action, NULL);
5111 }
This page took 0.133885 seconds and 5 git commands to generate.