Remove usages of find_inferior calling not_stopped_callback
[deliverable/binutils-gdb.git] / gdb / gdbserver / linux-low.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2017 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "agent.h"
23 #include "tdesc.h"
24 #include "rsp-low.h"
25 #include "signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "filestuff.h"
47 #include "tracepoint.h"
48 #include "hostio.h"
49 #include <inttypes.h>
50 #include "common-inferior.h"
51 #include "nat/fork-inferior.h"
52 #include "environ.h"
53 #ifndef ELFMAG0
54 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
55 then ELFMAG0 will have been defined. If it didn't get included by
56 gdb_proc_service.h then including it will likely introduce a duplicate
57 definition of elf_fpregset_t. */
58 #include <elf.h>
59 #endif
60 #include "nat/linux-namespaces.h"
61
62 #ifndef SPUFS_MAGIC
63 #define SPUFS_MAGIC 0x23c9b64e
64 #endif
65
66 #ifdef HAVE_PERSONALITY
67 # include <sys/personality.h>
68 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
69 # define ADDR_NO_RANDOMIZE 0x0040000
70 # endif
71 #endif
72
73 #ifndef O_LARGEFILE
74 #define O_LARGEFILE 0
75 #endif
76
77 /* Some targets did not define these ptrace constants from the start,
78 so gdbserver defines them locally here. In the future, these may
79 be removed after they are added to asm/ptrace.h. */
80 #if !(defined(PT_TEXT_ADDR) \
81 || defined(PT_DATA_ADDR) \
82 || defined(PT_TEXT_END_ADDR))
83 #if defined(__mcoldfire__)
84 /* These are still undefined in 3.10 kernels. */
85 #define PT_TEXT_ADDR 49*4
86 #define PT_DATA_ADDR 50*4
87 #define PT_TEXT_END_ADDR 51*4
88 /* BFIN already defines these since at least 2.6.32 kernels. */
89 #elif defined(BFIN)
90 #define PT_TEXT_ADDR 220
91 #define PT_TEXT_END_ADDR 224
92 #define PT_DATA_ADDR 228
93 /* These are still undefined in 3.10 kernels. */
94 #elif defined(__TMS320C6X__)
95 #define PT_TEXT_ADDR (0x10000*4)
96 #define PT_DATA_ADDR (0x10004*4)
97 #define PT_TEXT_END_ADDR (0x10008*4)
98 #endif
99 #endif
100
101 #ifdef HAVE_LINUX_BTRACE
102 # include "nat/linux-btrace.h"
103 # include "btrace-common.h"
104 #endif
105
106 #ifndef HAVE_ELF32_AUXV_T
107 /* Copied from glibc's elf.h. */
108 typedef struct
109 {
110 uint32_t a_type; /* Entry type */
111 union
112 {
113 uint32_t a_val; /* Integer value */
114 /* We use to have pointer elements added here. We cannot do that,
115 though, since it does not work when using 32-bit definitions
116 on 64-bit platforms and vice versa. */
117 } a_un;
118 } Elf32_auxv_t;
119 #endif
120
121 #ifndef HAVE_ELF64_AUXV_T
122 /* Copied from glibc's elf.h. */
123 typedef struct
124 {
125 uint64_t a_type; /* Entry type */
126 union
127 {
128 uint64_t a_val; /* Integer value */
129 /* We use to have pointer elements added here. We cannot do that,
130 though, since it does not work when using 32-bit definitions
131 on 64-bit platforms and vice versa. */
132 } a_un;
133 } Elf64_auxv_t;
134 #endif
135
136 /* Does the current host support PTRACE_GETREGSET? */
137 int have_ptrace_getregset = -1;
138
139 /* LWP accessors. */
140
141 /* See nat/linux-nat.h. */
142
143 ptid_t
144 ptid_of_lwp (struct lwp_info *lwp)
145 {
146 return ptid_of (get_lwp_thread (lwp));
147 }
148
149 /* See nat/linux-nat.h. */
150
151 void
152 lwp_set_arch_private_info (struct lwp_info *lwp,
153 struct arch_lwp_info *info)
154 {
155 lwp->arch_private = info;
156 }
157
158 /* See nat/linux-nat.h. */
159
160 struct arch_lwp_info *
161 lwp_arch_private_info (struct lwp_info *lwp)
162 {
163 return lwp->arch_private;
164 }
165
166 /* See nat/linux-nat.h. */
167
168 int
169 lwp_is_stopped (struct lwp_info *lwp)
170 {
171 return lwp->stopped;
172 }
173
174 /* See nat/linux-nat.h. */
175
176 enum target_stop_reason
177 lwp_stop_reason (struct lwp_info *lwp)
178 {
179 return lwp->stop_reason;
180 }
181
182 /* See nat/linux-nat.h. */
183
184 int
185 lwp_is_stepping (struct lwp_info *lwp)
186 {
187 return lwp->stepping;
188 }
189
190 /* A list of all unknown processes which receive stop signals. Some
191 other process will presumably claim each of these as forked
192 children momentarily. */
193
194 struct simple_pid_list
195 {
196 /* The process ID. */
197 int pid;
198
199 /* The status as reported by waitpid. */
200 int status;
201
202 /* Next in chain. */
203 struct simple_pid_list *next;
204 };
205 struct simple_pid_list *stopped_pids;
206
207 /* Trivial list manipulation functions to keep track of a list of new
208 stopped processes. */
209
210 static void
211 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
212 {
213 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
214
215 new_pid->pid = pid;
216 new_pid->status = status;
217 new_pid->next = *listp;
218 *listp = new_pid;
219 }
220
221 static int
222 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
223 {
224 struct simple_pid_list **p;
225
226 for (p = listp; *p != NULL; p = &(*p)->next)
227 if ((*p)->pid == pid)
228 {
229 struct simple_pid_list *next = (*p)->next;
230
231 *statusp = (*p)->status;
232 xfree (*p);
233 *p = next;
234 return 1;
235 }
236 return 0;
237 }
238
239 enum stopping_threads_kind
240 {
241 /* Not stopping threads presently. */
242 NOT_STOPPING_THREADS,
243
244 /* Stopping threads. */
245 STOPPING_THREADS,
246
247 /* Stopping and suspending threads. */
248 STOPPING_AND_SUSPENDING_THREADS
249 };
250
251 /* This is set while stop_all_lwps is in effect. */
252 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
253
254 /* FIXME make into a target method? */
255 int using_threads = 1;
256
257 /* True if we're presently stabilizing threads (moving them out of
258 jump pads). */
259 static int stabilizing_threads;
260
261 static void linux_resume_one_lwp (struct lwp_info *lwp,
262 int step, int signal, siginfo_t *info);
263 static void linux_resume (struct thread_resume *resume_info, size_t n);
264 static void stop_all_lwps (int suspend, struct lwp_info *except);
265 static void unstop_all_lwps (int unsuspend, struct lwp_info *except);
266 static void unsuspend_all_lwps (struct lwp_info *except);
267 static int linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
268 int *wstat, int options);
269 static int linux_wait_for_event (ptid_t ptid, int *wstat, int options);
270 static struct lwp_info *add_lwp (ptid_t ptid);
271 static void linux_mourn (struct process_info *process);
272 static int linux_stopped_by_watchpoint (void);
273 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
274 static int lwp_is_marked_dead (struct lwp_info *lwp);
275 static void proceed_all_lwps (void);
276 static int finish_step_over (struct lwp_info *lwp);
277 static int kill_lwp (unsigned long lwpid, int signo);
278 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
279 static void complete_ongoing_step_over (void);
280 static int linux_low_ptrace_options (int attached);
281 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
282 static int proceed_one_lwp (thread_info *thread, void *except);
283
284 /* When the event-loop is doing a step-over, this points at the thread
285 being stepped. */
286 ptid_t step_over_bkpt;
287
288 /* True if the low target can hardware single-step. */
289
290 static int
291 can_hardware_single_step (void)
292 {
293 if (the_low_target.supports_hardware_single_step != NULL)
294 return the_low_target.supports_hardware_single_step ();
295 else
296 return 0;
297 }
298
299 /* True if the low target can software single-step. Such targets
300 implement the GET_NEXT_PCS callback. */
301
302 static int
303 can_software_single_step (void)
304 {
305 return (the_low_target.get_next_pcs != NULL);
306 }
307
308 /* True if the low target supports memory breakpoints. If so, we'll
309 have a GET_PC implementation. */
310
311 static int
312 supports_breakpoints (void)
313 {
314 return (the_low_target.get_pc != NULL);
315 }
316
317 /* Returns true if this target can support fast tracepoints. This
318 does not mean that the in-process agent has been loaded in the
319 inferior. */
320
321 static int
322 supports_fast_tracepoints (void)
323 {
324 return the_low_target.install_fast_tracepoint_jump_pad != NULL;
325 }
326
327 /* True if LWP is stopped in its stepping range. */
328
329 static int
330 lwp_in_step_range (struct lwp_info *lwp)
331 {
332 CORE_ADDR pc = lwp->stop_pc;
333
334 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
335 }
336
337 struct pending_signals
338 {
339 int signal;
340 siginfo_t info;
341 struct pending_signals *prev;
342 };
343
344 /* The read/write ends of the pipe registered as waitable file in the
345 event loop. */
346 static int linux_event_pipe[2] = { -1, -1 };
347
348 /* True if we're currently in async mode. */
349 #define target_is_async_p() (linux_event_pipe[0] != -1)
350
351 static void send_sigstop (struct lwp_info *lwp);
352 static void wait_for_sigstop (void);
353
354 /* Return non-zero if HEADER is a 64-bit ELF file. */
355
356 static int
357 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
358 {
359 if (header->e_ident[EI_MAG0] == ELFMAG0
360 && header->e_ident[EI_MAG1] == ELFMAG1
361 && header->e_ident[EI_MAG2] == ELFMAG2
362 && header->e_ident[EI_MAG3] == ELFMAG3)
363 {
364 *machine = header->e_machine;
365 return header->e_ident[EI_CLASS] == ELFCLASS64;
366
367 }
368 *machine = EM_NONE;
369 return -1;
370 }
371
372 /* Return non-zero if FILE is a 64-bit ELF file,
373 zero if the file is not a 64-bit ELF file,
374 and -1 if the file is not accessible or doesn't exist. */
375
376 static int
377 elf_64_file_p (const char *file, unsigned int *machine)
378 {
379 Elf64_Ehdr header;
380 int fd;
381
382 fd = open (file, O_RDONLY);
383 if (fd < 0)
384 return -1;
385
386 if (read (fd, &header, sizeof (header)) != sizeof (header))
387 {
388 close (fd);
389 return 0;
390 }
391 close (fd);
392
393 return elf_64_header_p (&header, machine);
394 }
395
396 /* Accepts an integer PID; Returns true if the executable PID is
397 running is a 64-bit ELF file.. */
398
399 int
400 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
401 {
402 char file[PATH_MAX];
403
404 sprintf (file, "/proc/%d/exe", pid);
405 return elf_64_file_p (file, machine);
406 }
407
408 static void
409 delete_lwp (struct lwp_info *lwp)
410 {
411 struct thread_info *thr = get_lwp_thread (lwp);
412
413 if (debug_threads)
414 debug_printf ("deleting %ld\n", lwpid_of (thr));
415
416 remove_thread (thr);
417
418 if (the_low_target.delete_thread != NULL)
419 the_low_target.delete_thread (lwp->arch_private);
420 else
421 gdb_assert (lwp->arch_private == NULL);
422
423 free (lwp);
424 }
425
426 /* Add a process to the common process list, and set its private
427 data. */
428
429 static struct process_info *
430 linux_add_process (int pid, int attached)
431 {
432 struct process_info *proc;
433
434 proc = add_process (pid, attached);
435 proc->priv = XCNEW (struct process_info_private);
436
437 if (the_low_target.new_process != NULL)
438 proc->priv->arch_private = the_low_target.new_process ();
439
440 return proc;
441 }
442
443 static CORE_ADDR get_pc (struct lwp_info *lwp);
444
445 /* Call the target arch_setup function on the current thread. */
446
447 static void
448 linux_arch_setup (void)
449 {
450 the_low_target.arch_setup ();
451 }
452
453 /* Call the target arch_setup function on THREAD. */
454
455 static void
456 linux_arch_setup_thread (struct thread_info *thread)
457 {
458 struct thread_info *saved_thread;
459
460 saved_thread = current_thread;
461 current_thread = thread;
462
463 linux_arch_setup ();
464
465 current_thread = saved_thread;
466 }
467
468 /* Handle a GNU/Linux extended wait response. If we see a clone,
469 fork, or vfork event, we need to add the new LWP to our list
470 (and return 0 so as not to report the trap to higher layers).
471 If we see an exec event, we will modify ORIG_EVENT_LWP to point
472 to a new LWP representing the new program. */
473
474 static int
475 handle_extended_wait (struct lwp_info **orig_event_lwp, int wstat)
476 {
477 struct lwp_info *event_lwp = *orig_event_lwp;
478 int event = linux_ptrace_get_extended_event (wstat);
479 struct thread_info *event_thr = get_lwp_thread (event_lwp);
480 struct lwp_info *new_lwp;
481
482 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
483
484 /* All extended events we currently use are mid-syscall. Only
485 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
486 you have to be using PTRACE_SEIZE to get that. */
487 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
488
489 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
490 || (event == PTRACE_EVENT_CLONE))
491 {
492 ptid_t ptid;
493 unsigned long new_pid;
494 int ret, status;
495
496 /* Get the pid of the new lwp. */
497 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
498 &new_pid);
499
500 /* If we haven't already seen the new PID stop, wait for it now. */
501 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
502 {
503 /* The new child has a pending SIGSTOP. We can't affect it until it
504 hits the SIGSTOP, but we're already attached. */
505
506 ret = my_waitpid (new_pid, &status, __WALL);
507
508 if (ret == -1)
509 perror_with_name ("waiting for new child");
510 else if (ret != new_pid)
511 warning ("wait returned unexpected PID %d", ret);
512 else if (!WIFSTOPPED (status))
513 warning ("wait returned unexpected status 0x%x", status);
514 }
515
516 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
517 {
518 struct process_info *parent_proc;
519 struct process_info *child_proc;
520 struct lwp_info *child_lwp;
521 struct thread_info *child_thr;
522 struct target_desc *tdesc;
523
524 ptid = ptid_build (new_pid, new_pid, 0);
525
526 if (debug_threads)
527 {
528 debug_printf ("HEW: Got fork event from LWP %ld, "
529 "new child is %d\n",
530 ptid_get_lwp (ptid_of (event_thr)),
531 ptid_get_pid (ptid));
532 }
533
534 /* Add the new process to the tables and clone the breakpoint
535 lists of the parent. We need to do this even if the new process
536 will be detached, since we will need the process object and the
537 breakpoints to remove any breakpoints from memory when we
538 detach, and the client side will access registers. */
539 child_proc = linux_add_process (new_pid, 0);
540 gdb_assert (child_proc != NULL);
541 child_lwp = add_lwp (ptid);
542 gdb_assert (child_lwp != NULL);
543 child_lwp->stopped = 1;
544 child_lwp->must_set_ptrace_flags = 1;
545 child_lwp->status_pending_p = 0;
546 child_thr = get_lwp_thread (child_lwp);
547 child_thr->last_resume_kind = resume_stop;
548 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
549
550 /* If we're suspending all threads, leave this one suspended
551 too. If the fork/clone parent is stepping over a breakpoint,
552 all other threads have been suspended already. Leave the
553 child suspended too. */
554 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
555 || event_lwp->bp_reinsert != 0)
556 {
557 if (debug_threads)
558 debug_printf ("HEW: leaving child suspended\n");
559 child_lwp->suspended = 1;
560 }
561
562 parent_proc = get_thread_process (event_thr);
563 child_proc->attached = parent_proc->attached;
564
565 if (event_lwp->bp_reinsert != 0
566 && can_software_single_step ()
567 && event == PTRACE_EVENT_VFORK)
568 {
569 /* If we leave single-step breakpoints there, child will
570 hit it, so uninsert single-step breakpoints from parent
571 (and child). Once vfork child is done, reinsert
572 them back to parent. */
573 uninsert_single_step_breakpoints (event_thr);
574 }
575
576 clone_all_breakpoints (child_thr, event_thr);
577
578 tdesc = allocate_target_description ();
579 copy_target_description (tdesc, parent_proc->tdesc);
580 child_proc->tdesc = tdesc;
581
582 /* Clone arch-specific process data. */
583 if (the_low_target.new_fork != NULL)
584 the_low_target.new_fork (parent_proc, child_proc);
585
586 /* Save fork info in the parent thread. */
587 if (event == PTRACE_EVENT_FORK)
588 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
589 else if (event == PTRACE_EVENT_VFORK)
590 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
591
592 event_lwp->waitstatus.value.related_pid = ptid;
593
594 /* The status_pending field contains bits denoting the
595 extended event, so when the pending event is handled,
596 the handler will look at lwp->waitstatus. */
597 event_lwp->status_pending_p = 1;
598 event_lwp->status_pending = wstat;
599
600 /* Link the threads until the parent event is passed on to
601 higher layers. */
602 event_lwp->fork_relative = child_lwp;
603 child_lwp->fork_relative = event_lwp;
604
605 /* If the parent thread is doing step-over with single-step
606 breakpoints, the list of single-step breakpoints are cloned
607 from the parent's. Remove them from the child process.
608 In case of vfork, we'll reinsert them back once vforked
609 child is done. */
610 if (event_lwp->bp_reinsert != 0
611 && can_software_single_step ())
612 {
613 /* The child process is forked and stopped, so it is safe
614 to access its memory without stopping all other threads
615 from other processes. */
616 delete_single_step_breakpoints (child_thr);
617
618 gdb_assert (has_single_step_breakpoints (event_thr));
619 gdb_assert (!has_single_step_breakpoints (child_thr));
620 }
621
622 /* Report the event. */
623 return 0;
624 }
625
626 if (debug_threads)
627 debug_printf ("HEW: Got clone event "
628 "from LWP %ld, new child is LWP %ld\n",
629 lwpid_of (event_thr), new_pid);
630
631 ptid = ptid_build (pid_of (event_thr), new_pid, 0);
632 new_lwp = add_lwp (ptid);
633
634 /* Either we're going to immediately resume the new thread
635 or leave it stopped. linux_resume_one_lwp is a nop if it
636 thinks the thread is currently running, so set this first
637 before calling linux_resume_one_lwp. */
638 new_lwp->stopped = 1;
639
640 /* If we're suspending all threads, leave this one suspended
641 too. If the fork/clone parent is stepping over a breakpoint,
642 all other threads have been suspended already. Leave the
643 child suspended too. */
644 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
645 || event_lwp->bp_reinsert != 0)
646 new_lwp->suspended = 1;
647
648 /* Normally we will get the pending SIGSTOP. But in some cases
649 we might get another signal delivered to the group first.
650 If we do get another signal, be sure not to lose it. */
651 if (WSTOPSIG (status) != SIGSTOP)
652 {
653 new_lwp->stop_expected = 1;
654 new_lwp->status_pending_p = 1;
655 new_lwp->status_pending = status;
656 }
657 else if (report_thread_events)
658 {
659 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
660 new_lwp->status_pending_p = 1;
661 new_lwp->status_pending = status;
662 }
663
664 thread_db_notice_clone (event_thr, ptid);
665
666 /* Don't report the event. */
667 return 1;
668 }
669 else if (event == PTRACE_EVENT_VFORK_DONE)
670 {
671 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
672
673 if (event_lwp->bp_reinsert != 0 && can_software_single_step ())
674 {
675 reinsert_single_step_breakpoints (event_thr);
676
677 gdb_assert (has_single_step_breakpoints (event_thr));
678 }
679
680 /* Report the event. */
681 return 0;
682 }
683 else if (event == PTRACE_EVENT_EXEC && report_exec_events)
684 {
685 struct process_info *proc;
686 std::vector<int> syscalls_to_catch;
687 ptid_t event_ptid;
688 pid_t event_pid;
689
690 if (debug_threads)
691 {
692 debug_printf ("HEW: Got exec event from LWP %ld\n",
693 lwpid_of (event_thr));
694 }
695
696 /* Get the event ptid. */
697 event_ptid = ptid_of (event_thr);
698 event_pid = ptid_get_pid (event_ptid);
699
700 /* Save the syscall list from the execing process. */
701 proc = get_thread_process (event_thr);
702 syscalls_to_catch = std::move (proc->syscalls_to_catch);
703
704 /* Delete the execing process and all its threads. */
705 linux_mourn (proc);
706 current_thread = NULL;
707
708 /* Create a new process/lwp/thread. */
709 proc = linux_add_process (event_pid, 0);
710 event_lwp = add_lwp (event_ptid);
711 event_thr = get_lwp_thread (event_lwp);
712 gdb_assert (current_thread == event_thr);
713 linux_arch_setup_thread (event_thr);
714
715 /* Set the event status. */
716 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
717 event_lwp->waitstatus.value.execd_pathname
718 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
719
720 /* Mark the exec status as pending. */
721 event_lwp->stopped = 1;
722 event_lwp->status_pending_p = 1;
723 event_lwp->status_pending = wstat;
724 event_thr->last_resume_kind = resume_continue;
725 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
726
727 /* Update syscall state in the new lwp, effectively mid-syscall too. */
728 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
729
730 /* Restore the list to catch. Don't rely on the client, which is free
731 to avoid sending a new list when the architecture doesn't change.
732 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
733 proc->syscalls_to_catch = std::move (syscalls_to_catch);
734
735 /* Report the event. */
736 *orig_event_lwp = event_lwp;
737 return 0;
738 }
739
740 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
741 }
742
743 /* Return the PC as read from the regcache of LWP, without any
744 adjustment. */
745
746 static CORE_ADDR
747 get_pc (struct lwp_info *lwp)
748 {
749 struct thread_info *saved_thread;
750 struct regcache *regcache;
751 CORE_ADDR pc;
752
753 if (the_low_target.get_pc == NULL)
754 return 0;
755
756 saved_thread = current_thread;
757 current_thread = get_lwp_thread (lwp);
758
759 regcache = get_thread_regcache (current_thread, 1);
760 pc = (*the_low_target.get_pc) (regcache);
761
762 if (debug_threads)
763 debug_printf ("pc is 0x%lx\n", (long) pc);
764
765 current_thread = saved_thread;
766 return pc;
767 }
768
769 /* This function should only be called if LWP got a SYSCALL_SIGTRAP.
770 Fill *SYSNO with the syscall nr trapped. */
771
772 static void
773 get_syscall_trapinfo (struct lwp_info *lwp, int *sysno)
774 {
775 struct thread_info *saved_thread;
776 struct regcache *regcache;
777
778 if (the_low_target.get_syscall_trapinfo == NULL)
779 {
780 /* If we cannot get the syscall trapinfo, report an unknown
781 system call number. */
782 *sysno = UNKNOWN_SYSCALL;
783 return;
784 }
785
786 saved_thread = current_thread;
787 current_thread = get_lwp_thread (lwp);
788
789 regcache = get_thread_regcache (current_thread, 1);
790 (*the_low_target.get_syscall_trapinfo) (regcache, sysno);
791
792 if (debug_threads)
793 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
794
795 current_thread = saved_thread;
796 }
797
798 static int check_stopped_by_watchpoint (struct lwp_info *child);
799
800 /* Called when the LWP stopped for a signal/trap. If it stopped for a
801 trap check what caused it (breakpoint, watchpoint, trace, etc.),
802 and save the result in the LWP's stop_reason field. If it stopped
803 for a breakpoint, decrement the PC if necessary on the lwp's
804 architecture. Returns true if we now have the LWP's stop PC. */
805
806 static int
807 save_stop_reason (struct lwp_info *lwp)
808 {
809 CORE_ADDR pc;
810 CORE_ADDR sw_breakpoint_pc;
811 struct thread_info *saved_thread;
812 #if USE_SIGTRAP_SIGINFO
813 siginfo_t siginfo;
814 #endif
815
816 if (the_low_target.get_pc == NULL)
817 return 0;
818
819 pc = get_pc (lwp);
820 sw_breakpoint_pc = pc - the_low_target.decr_pc_after_break;
821
822 /* breakpoint_at reads from the current thread. */
823 saved_thread = current_thread;
824 current_thread = get_lwp_thread (lwp);
825
826 #if USE_SIGTRAP_SIGINFO
827 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
828 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
829 {
830 if (siginfo.si_signo == SIGTRAP)
831 {
832 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
833 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
834 {
835 /* The si_code is ambiguous on this arch -- check debug
836 registers. */
837 if (!check_stopped_by_watchpoint (lwp))
838 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
839 }
840 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
841 {
842 /* If we determine the LWP stopped for a SW breakpoint,
843 trust it. Particularly don't check watchpoint
844 registers, because at least on s390, we'd find
845 stopped-by-watchpoint as long as there's a watchpoint
846 set. */
847 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
848 }
849 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
850 {
851 /* This can indicate either a hardware breakpoint or
852 hardware watchpoint. Check debug registers. */
853 if (!check_stopped_by_watchpoint (lwp))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855 }
856 else if (siginfo.si_code == TRAP_TRACE)
857 {
858 /* We may have single stepped an instruction that
859 triggered a watchpoint. In that case, on some
860 architectures (such as x86), instead of TRAP_HWBKPT,
861 si_code indicates TRAP_TRACE, and we need to check
862 the debug registers separately. */
863 if (!check_stopped_by_watchpoint (lwp))
864 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
865 }
866 }
867 }
868 #else
869 /* We may have just stepped a breakpoint instruction. E.g., in
870 non-stop mode, GDB first tells the thread A to step a range, and
871 then the user inserts a breakpoint inside the range. In that
872 case we need to report the breakpoint PC. */
873 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
874 && (*the_low_target.breakpoint_at) (sw_breakpoint_pc))
875 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
876
877 if (hardware_breakpoint_inserted_here (pc))
878 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
879
880 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
881 check_stopped_by_watchpoint (lwp);
882 #endif
883
884 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
885 {
886 if (debug_threads)
887 {
888 struct thread_info *thr = get_lwp_thread (lwp);
889
890 debug_printf ("CSBB: %s stopped by software breakpoint\n",
891 target_pid_to_str (ptid_of (thr)));
892 }
893
894 /* Back up the PC if necessary. */
895 if (pc != sw_breakpoint_pc)
896 {
897 struct regcache *regcache
898 = get_thread_regcache (current_thread, 1);
899 (*the_low_target.set_pc) (regcache, sw_breakpoint_pc);
900 }
901
902 /* Update this so we record the correct stop PC below. */
903 pc = sw_breakpoint_pc;
904 }
905 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
906 {
907 if (debug_threads)
908 {
909 struct thread_info *thr = get_lwp_thread (lwp);
910
911 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
912 target_pid_to_str (ptid_of (thr)));
913 }
914 }
915 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
916 {
917 if (debug_threads)
918 {
919 struct thread_info *thr = get_lwp_thread (lwp);
920
921 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
922 target_pid_to_str (ptid_of (thr)));
923 }
924 }
925 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
926 {
927 if (debug_threads)
928 {
929 struct thread_info *thr = get_lwp_thread (lwp);
930
931 debug_printf ("CSBB: %s stopped by trace\n",
932 target_pid_to_str (ptid_of (thr)));
933 }
934 }
935
936 lwp->stop_pc = pc;
937 current_thread = saved_thread;
938 return 1;
939 }
940
941 static struct lwp_info *
942 add_lwp (ptid_t ptid)
943 {
944 struct lwp_info *lwp;
945
946 lwp = XCNEW (struct lwp_info);
947
948 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
949
950 if (the_low_target.new_thread != NULL)
951 the_low_target.new_thread (lwp);
952
953 lwp->thread = add_thread (ptid, lwp);
954
955 return lwp;
956 }
957
958 /* Callback to be used when calling fork_inferior, responsible for
959 actually initiating the tracing of the inferior. */
960
961 static void
962 linux_ptrace_fun ()
963 {
964 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
965 (PTRACE_TYPE_ARG4) 0) < 0)
966 trace_start_error_with_name ("ptrace");
967
968 if (setpgid (0, 0) < 0)
969 trace_start_error_with_name ("setpgid");
970
971 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
972 stdout to stderr so that inferior i/o doesn't corrupt the connection.
973 Also, redirect stdin to /dev/null. */
974 if (remote_connection_is_stdio ())
975 {
976 if (close (0) < 0)
977 trace_start_error_with_name ("close");
978 if (open ("/dev/null", O_RDONLY) < 0)
979 trace_start_error_with_name ("open");
980 if (dup2 (2, 1) < 0)
981 trace_start_error_with_name ("dup2");
982 if (write (2, "stdin/stdout redirected\n",
983 sizeof ("stdin/stdout redirected\n") - 1) < 0)
984 {
985 /* Errors ignored. */;
986 }
987 }
988 }
989
990 /* Start an inferior process and returns its pid.
991 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
992 are its arguments. */
993
994 static int
995 linux_create_inferior (const char *program,
996 const std::vector<char *> &program_args)
997 {
998 struct lwp_info *new_lwp;
999 int pid;
1000 ptid_t ptid;
1001
1002 {
1003 maybe_disable_address_space_randomization restore_personality
1004 (disable_randomization);
1005 std::string str_program_args = stringify_argv (program_args);
1006
1007 pid = fork_inferior (program,
1008 str_program_args.c_str (),
1009 get_environ ()->envp (), linux_ptrace_fun,
1010 NULL, NULL, NULL, NULL);
1011 }
1012
1013 linux_add_process (pid, 0);
1014
1015 ptid = ptid_build (pid, pid, 0);
1016 new_lwp = add_lwp (ptid);
1017 new_lwp->must_set_ptrace_flags = 1;
1018
1019 post_fork_inferior (pid, program);
1020
1021 return pid;
1022 }
1023
1024 /* Implement the post_create_inferior target_ops method. */
1025
1026 static void
1027 linux_post_create_inferior (void)
1028 {
1029 struct lwp_info *lwp = get_thread_lwp (current_thread);
1030
1031 linux_arch_setup ();
1032
1033 if (lwp->must_set_ptrace_flags)
1034 {
1035 struct process_info *proc = current_process ();
1036 int options = linux_low_ptrace_options (proc->attached);
1037
1038 linux_enable_event_reporting (lwpid_of (current_thread), options);
1039 lwp->must_set_ptrace_flags = 0;
1040 }
1041 }
1042
1043 /* Attach to an inferior process. Returns 0 on success, ERRNO on
1044 error. */
1045
1046 int
1047 linux_attach_lwp (ptid_t ptid)
1048 {
1049 struct lwp_info *new_lwp;
1050 int lwpid = ptid_get_lwp (ptid);
1051
1052 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1053 != 0)
1054 return errno;
1055
1056 new_lwp = add_lwp (ptid);
1057
1058 /* We need to wait for SIGSTOP before being able to make the next
1059 ptrace call on this LWP. */
1060 new_lwp->must_set_ptrace_flags = 1;
1061
1062 if (linux_proc_pid_is_stopped (lwpid))
1063 {
1064 if (debug_threads)
1065 debug_printf ("Attached to a stopped process\n");
1066
1067 /* The process is definitely stopped. It is in a job control
1068 stop, unless the kernel predates the TASK_STOPPED /
1069 TASK_TRACED distinction, in which case it might be in a
1070 ptrace stop. Make sure it is in a ptrace stop; from there we
1071 can kill it, signal it, et cetera.
1072
1073 First make sure there is a pending SIGSTOP. Since we are
1074 already attached, the process can not transition from stopped
1075 to running without a PTRACE_CONT; so we know this signal will
1076 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1077 probably already in the queue (unless this kernel is old
1078 enough to use TASK_STOPPED for ptrace stops); but since
1079 SIGSTOP is not an RT signal, it can only be queued once. */
1080 kill_lwp (lwpid, SIGSTOP);
1081
1082 /* Finally, resume the stopped process. This will deliver the
1083 SIGSTOP (or a higher priority signal, just like normal
1084 PTRACE_ATTACH), which we'll catch later on. */
1085 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1086 }
1087
1088 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1089 brings it to a halt.
1090
1091 There are several cases to consider here:
1092
1093 1) gdbserver has already attached to the process and is being notified
1094 of a new thread that is being created.
1095 In this case we should ignore that SIGSTOP and resume the
1096 process. This is handled below by setting stop_expected = 1,
1097 and the fact that add_thread sets last_resume_kind ==
1098 resume_continue.
1099
1100 2) This is the first thread (the process thread), and we're attaching
1101 to it via attach_inferior.
1102 In this case we want the process thread to stop.
1103 This is handled by having linux_attach set last_resume_kind ==
1104 resume_stop after we return.
1105
1106 If the pid we are attaching to is also the tgid, we attach to and
1107 stop all the existing threads. Otherwise, we attach to pid and
1108 ignore any other threads in the same group as this pid.
1109
1110 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1111 existing threads.
1112 In this case we want the thread to stop.
1113 FIXME: This case is currently not properly handled.
1114 We should wait for the SIGSTOP but don't. Things work apparently
1115 because enough time passes between when we ptrace (ATTACH) and when
1116 gdb makes the next ptrace call on the thread.
1117
1118 On the other hand, if we are currently trying to stop all threads, we
1119 should treat the new thread as if we had sent it a SIGSTOP. This works
1120 because we are guaranteed that the add_lwp call above added us to the
1121 end of the list, and so the new thread has not yet reached
1122 wait_for_sigstop (but will). */
1123 new_lwp->stop_expected = 1;
1124
1125 return 0;
1126 }
1127
1128 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1129 already attached. Returns true if a new LWP is found, false
1130 otherwise. */
1131
1132 static int
1133 attach_proc_task_lwp_callback (ptid_t ptid)
1134 {
1135 /* Is this a new thread? */
1136 if (find_thread_ptid (ptid) == NULL)
1137 {
1138 int lwpid = ptid_get_lwp (ptid);
1139 int err;
1140
1141 if (debug_threads)
1142 debug_printf ("Found new lwp %d\n", lwpid);
1143
1144 err = linux_attach_lwp (ptid);
1145
1146 /* Be quiet if we simply raced with the thread exiting. EPERM
1147 is returned if the thread's task still exists, and is marked
1148 as exited or zombie, as well as other conditions, so in that
1149 case, confirm the status in /proc/PID/status. */
1150 if (err == ESRCH
1151 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1152 {
1153 if (debug_threads)
1154 {
1155 debug_printf ("Cannot attach to lwp %d: "
1156 "thread is gone (%d: %s)\n",
1157 lwpid, err, strerror (err));
1158 }
1159 }
1160 else if (err != 0)
1161 {
1162 warning (_("Cannot attach to lwp %d: %s"),
1163 lwpid,
1164 linux_ptrace_attach_fail_reason_string (ptid, err));
1165 }
1166
1167 return 1;
1168 }
1169 return 0;
1170 }
1171
1172 static void async_file_mark (void);
1173
1174 /* Attach to PID. If PID is the tgid, attach to it and all
1175 of its threads. */
1176
1177 static int
1178 linux_attach (unsigned long pid)
1179 {
1180 struct process_info *proc;
1181 struct thread_info *initial_thread;
1182 ptid_t ptid = ptid_build (pid, pid, 0);
1183 int err;
1184
1185 /* Attach to PID. We will check for other threads
1186 soon. */
1187 err = linux_attach_lwp (ptid);
1188 if (err != 0)
1189 error ("Cannot attach to process %ld: %s",
1190 pid, linux_ptrace_attach_fail_reason_string (ptid, err));
1191
1192 proc = linux_add_process (pid, 1);
1193
1194 /* Don't ignore the initial SIGSTOP if we just attached to this
1195 process. It will be collected by wait shortly. */
1196 initial_thread = find_thread_ptid (ptid_build (pid, pid, 0));
1197 initial_thread->last_resume_kind = resume_stop;
1198
1199 /* We must attach to every LWP. If /proc is mounted, use that to
1200 find them now. On the one hand, the inferior may be using raw
1201 clone instead of using pthreads. On the other hand, even if it
1202 is using pthreads, GDB may not be connected yet (thread_db needs
1203 to do symbol lookups, through qSymbol). Also, thread_db walks
1204 structures in the inferior's address space to find the list of
1205 threads/LWPs, and those structures may well be corrupted. Note
1206 that once thread_db is loaded, we'll still use it to list threads
1207 and associate pthread info with each LWP. */
1208 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1209
1210 /* GDB will shortly read the xml target description for this
1211 process, to figure out the process' architecture. But the target
1212 description is only filled in when the first process/thread in
1213 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1214 that now, otherwise, if GDB is fast enough, it could read the
1215 target description _before_ that initial stop. */
1216 if (non_stop)
1217 {
1218 struct lwp_info *lwp;
1219 int wstat, lwpid;
1220 ptid_t pid_ptid = pid_to_ptid (pid);
1221
1222 lwpid = linux_wait_for_event_filtered (pid_ptid, pid_ptid,
1223 &wstat, __WALL);
1224 gdb_assert (lwpid > 0);
1225
1226 lwp = find_lwp_pid (pid_to_ptid (lwpid));
1227
1228 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1229 {
1230 lwp->status_pending_p = 1;
1231 lwp->status_pending = wstat;
1232 }
1233
1234 initial_thread->last_resume_kind = resume_continue;
1235
1236 async_file_mark ();
1237
1238 gdb_assert (proc->tdesc != NULL);
1239 }
1240
1241 return 0;
1242 }
1243
1244 static int
1245 last_thread_of_process_p (int pid)
1246 {
1247 bool seen_one = false;
1248
1249 thread_info *thread = find_thread (pid, [&] (thread_info *thread)
1250 {
1251 if (!seen_one)
1252 {
1253 /* This is the first thread of this process we see. */
1254 seen_one = true;
1255 return false;
1256 }
1257 else
1258 {
1259 /* This is the second thread of this process we see. */
1260 return true;
1261 }
1262 });
1263
1264 return thread == NULL;
1265 }
1266
1267 /* Kill LWP. */
1268
1269 static void
1270 linux_kill_one_lwp (struct lwp_info *lwp)
1271 {
1272 struct thread_info *thr = get_lwp_thread (lwp);
1273 int pid = lwpid_of (thr);
1274
1275 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1276 there is no signal context, and ptrace(PTRACE_KILL) (or
1277 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1278 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1279 alternative is to kill with SIGKILL. We only need one SIGKILL
1280 per process, not one for each thread. But since we still support
1281 support debugging programs using raw clone without CLONE_THREAD,
1282 we send one for each thread. For years, we used PTRACE_KILL
1283 only, so we're being a bit paranoid about some old kernels where
1284 PTRACE_KILL might work better (dubious if there are any such, but
1285 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1286 second, and so we're fine everywhere. */
1287
1288 errno = 0;
1289 kill_lwp (pid, SIGKILL);
1290 if (debug_threads)
1291 {
1292 int save_errno = errno;
1293
1294 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1295 target_pid_to_str (ptid_of (thr)),
1296 save_errno ? strerror (save_errno) : "OK");
1297 }
1298
1299 errno = 0;
1300 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1301 if (debug_threads)
1302 {
1303 int save_errno = errno;
1304
1305 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1306 target_pid_to_str (ptid_of (thr)),
1307 save_errno ? strerror (save_errno) : "OK");
1308 }
1309 }
1310
1311 /* Kill LWP and wait for it to die. */
1312
1313 static void
1314 kill_wait_lwp (struct lwp_info *lwp)
1315 {
1316 struct thread_info *thr = get_lwp_thread (lwp);
1317 int pid = ptid_get_pid (ptid_of (thr));
1318 int lwpid = ptid_get_lwp (ptid_of (thr));
1319 int wstat;
1320 int res;
1321
1322 if (debug_threads)
1323 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1324
1325 do
1326 {
1327 linux_kill_one_lwp (lwp);
1328
1329 /* Make sure it died. Notes:
1330
1331 - The loop is most likely unnecessary.
1332
1333 - We don't use linux_wait_for_event as that could delete lwps
1334 while we're iterating over them. We're not interested in
1335 any pending status at this point, only in making sure all
1336 wait status on the kernel side are collected until the
1337 process is reaped.
1338
1339 - We don't use __WALL here as the __WALL emulation relies on
1340 SIGCHLD, and killing a stopped process doesn't generate
1341 one, nor an exit status.
1342 */
1343 res = my_waitpid (lwpid, &wstat, 0);
1344 if (res == -1 && errno == ECHILD)
1345 res = my_waitpid (lwpid, &wstat, __WCLONE);
1346 } while (res > 0 && WIFSTOPPED (wstat));
1347
1348 /* Even if it was stopped, the child may have already disappeared.
1349 E.g., if it was killed by SIGKILL. */
1350 if (res < 0 && errno != ECHILD)
1351 perror_with_name ("kill_wait_lwp");
1352 }
1353
1354 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1355 except the leader. */
1356
1357 static void
1358 kill_one_lwp_callback (thread_info *thread, int pid)
1359 {
1360 struct lwp_info *lwp = get_thread_lwp (thread);
1361
1362 /* We avoid killing the first thread here, because of a Linux kernel (at
1363 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1364 the children get a chance to be reaped, it will remain a zombie
1365 forever. */
1366
1367 if (lwpid_of (thread) == pid)
1368 {
1369 if (debug_threads)
1370 debug_printf ("lkop: is last of process %s\n",
1371 target_pid_to_str (thread->id));
1372 return;
1373 }
1374
1375 kill_wait_lwp (lwp);
1376 }
1377
1378 static int
1379 linux_kill (int pid)
1380 {
1381 struct process_info *process;
1382 struct lwp_info *lwp;
1383
1384 process = find_process_pid (pid);
1385 if (process == NULL)
1386 return -1;
1387
1388 /* If we're killing a running inferior, make sure it is stopped
1389 first, as PTRACE_KILL will not work otherwise. */
1390 stop_all_lwps (0, NULL);
1391
1392 for_each_thread (pid, [&] (thread_info *thread)
1393 {
1394 kill_one_lwp_callback (thread, pid);
1395 });
1396
1397 /* See the comment in linux_kill_one_lwp. We did not kill the first
1398 thread in the list, so do so now. */
1399 lwp = find_lwp_pid (pid_to_ptid (pid));
1400
1401 if (lwp == NULL)
1402 {
1403 if (debug_threads)
1404 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1405 pid);
1406 }
1407 else
1408 kill_wait_lwp (lwp);
1409
1410 the_target->mourn (process);
1411
1412 /* Since we presently can only stop all lwps of all processes, we
1413 need to unstop lwps of other processes. */
1414 unstop_all_lwps (0, NULL);
1415 return 0;
1416 }
1417
1418 /* Get pending signal of THREAD, for detaching purposes. This is the
1419 signal the thread last stopped for, which we need to deliver to the
1420 thread when detaching, otherwise, it'd be suppressed/lost. */
1421
1422 static int
1423 get_detach_signal (struct thread_info *thread)
1424 {
1425 enum gdb_signal signo = GDB_SIGNAL_0;
1426 int status;
1427 struct lwp_info *lp = get_thread_lwp (thread);
1428
1429 if (lp->status_pending_p)
1430 status = lp->status_pending;
1431 else
1432 {
1433 /* If the thread had been suspended by gdbserver, and it stopped
1434 cleanly, then it'll have stopped with SIGSTOP. But we don't
1435 want to deliver that SIGSTOP. */
1436 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1437 || thread->last_status.value.sig == GDB_SIGNAL_0)
1438 return 0;
1439
1440 /* Otherwise, we may need to deliver the signal we
1441 intercepted. */
1442 status = lp->last_status;
1443 }
1444
1445 if (!WIFSTOPPED (status))
1446 {
1447 if (debug_threads)
1448 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1449 target_pid_to_str (ptid_of (thread)));
1450 return 0;
1451 }
1452
1453 /* Extended wait statuses aren't real SIGTRAPs. */
1454 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1455 {
1456 if (debug_threads)
1457 debug_printf ("GPS: lwp %s had stopped with extended "
1458 "status: no pending signal\n",
1459 target_pid_to_str (ptid_of (thread)));
1460 return 0;
1461 }
1462
1463 signo = gdb_signal_from_host (WSTOPSIG (status));
1464
1465 if (program_signals_p && !program_signals[signo])
1466 {
1467 if (debug_threads)
1468 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1469 target_pid_to_str (ptid_of (thread)),
1470 gdb_signal_to_string (signo));
1471 return 0;
1472 }
1473 else if (!program_signals_p
1474 /* If we have no way to know which signals GDB does not
1475 want to have passed to the program, assume
1476 SIGTRAP/SIGINT, which is GDB's default. */
1477 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1478 {
1479 if (debug_threads)
1480 debug_printf ("GPS: lwp %s had signal %s, "
1481 "but we don't know if we should pass it. "
1482 "Default to not.\n",
1483 target_pid_to_str (ptid_of (thread)),
1484 gdb_signal_to_string (signo));
1485 return 0;
1486 }
1487 else
1488 {
1489 if (debug_threads)
1490 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1491 target_pid_to_str (ptid_of (thread)),
1492 gdb_signal_to_string (signo));
1493
1494 return WSTOPSIG (status);
1495 }
1496 }
1497
1498 /* Detach from LWP. */
1499
1500 static void
1501 linux_detach_one_lwp (struct lwp_info *lwp)
1502 {
1503 struct thread_info *thread = get_lwp_thread (lwp);
1504 int sig;
1505 int lwpid;
1506
1507 /* If there is a pending SIGSTOP, get rid of it. */
1508 if (lwp->stop_expected)
1509 {
1510 if (debug_threads)
1511 debug_printf ("Sending SIGCONT to %s\n",
1512 target_pid_to_str (ptid_of (thread)));
1513
1514 kill_lwp (lwpid_of (thread), SIGCONT);
1515 lwp->stop_expected = 0;
1516 }
1517
1518 /* Pass on any pending signal for this thread. */
1519 sig = get_detach_signal (thread);
1520
1521 /* Preparing to resume may try to write registers, and fail if the
1522 lwp is zombie. If that happens, ignore the error. We'll handle
1523 it below, when detach fails with ESRCH. */
1524 TRY
1525 {
1526 /* Flush any pending changes to the process's registers. */
1527 regcache_invalidate_thread (thread);
1528
1529 /* Finally, let it resume. */
1530 if (the_low_target.prepare_to_resume != NULL)
1531 the_low_target.prepare_to_resume (lwp);
1532 }
1533 CATCH (ex, RETURN_MASK_ERROR)
1534 {
1535 if (!check_ptrace_stopped_lwp_gone (lwp))
1536 throw_exception (ex);
1537 }
1538 END_CATCH
1539
1540 lwpid = lwpid_of (thread);
1541 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1542 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1543 {
1544 int save_errno = errno;
1545
1546 /* We know the thread exists, so ESRCH must mean the lwp is
1547 zombie. This can happen if one of the already-detached
1548 threads exits the whole thread group. In that case we're
1549 still attached, and must reap the lwp. */
1550 if (save_errno == ESRCH)
1551 {
1552 int ret, status;
1553
1554 ret = my_waitpid (lwpid, &status, __WALL);
1555 if (ret == -1)
1556 {
1557 warning (_("Couldn't reap LWP %d while detaching: %s"),
1558 lwpid, strerror (errno));
1559 }
1560 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1561 {
1562 warning (_("Reaping LWP %d while detaching "
1563 "returned unexpected status 0x%x"),
1564 lwpid, status);
1565 }
1566 }
1567 else
1568 {
1569 error (_("Can't detach %s: %s"),
1570 target_pid_to_str (ptid_of (thread)),
1571 strerror (save_errno));
1572 }
1573 }
1574 else if (debug_threads)
1575 {
1576 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1577 target_pid_to_str (ptid_of (thread)),
1578 strsignal (sig));
1579 }
1580
1581 delete_lwp (lwp);
1582 }
1583
1584 /* Callback for for_each_thread. Detaches from non-leader threads of a
1585 given process. */
1586
1587 static void
1588 linux_detach_lwp_callback (thread_info *thread)
1589 {
1590 /* We don't actually detach from the thread group leader just yet.
1591 If the thread group exits, we must reap the zombie clone lwps
1592 before we're able to reap the leader. */
1593 if (thread->id.pid () == thread->id.lwp ())
1594 return;
1595
1596 lwp_info *lwp = get_thread_lwp (thread);
1597 linux_detach_one_lwp (lwp);
1598 }
1599
1600 static int
1601 linux_detach (int pid)
1602 {
1603 struct process_info *process;
1604 struct lwp_info *main_lwp;
1605
1606 process = find_process_pid (pid);
1607 if (process == NULL)
1608 return -1;
1609
1610 /* As there's a step over already in progress, let it finish first,
1611 otherwise nesting a stabilize_threads operation on top gets real
1612 messy. */
1613 complete_ongoing_step_over ();
1614
1615 /* Stop all threads before detaching. First, ptrace requires that
1616 the thread is stopped to sucessfully detach. Second, thread_db
1617 may need to uninstall thread event breakpoints from memory, which
1618 only works with a stopped process anyway. */
1619 stop_all_lwps (0, NULL);
1620
1621 #ifdef USE_THREAD_DB
1622 thread_db_detach (process);
1623 #endif
1624
1625 /* Stabilize threads (move out of jump pads). */
1626 stabilize_threads ();
1627
1628 /* Detach from the clone lwps first. If the thread group exits just
1629 while we're detaching, we must reap the clone lwps before we're
1630 able to reap the leader. */
1631 for_each_thread (pid, linux_detach_lwp_callback);
1632
1633 main_lwp = find_lwp_pid (pid_to_ptid (pid));
1634 linux_detach_one_lwp (main_lwp);
1635
1636 the_target->mourn (process);
1637
1638 /* Since we presently can only stop all lwps of all processes, we
1639 need to unstop lwps of other processes. */
1640 unstop_all_lwps (0, NULL);
1641 return 0;
1642 }
1643
1644 /* Remove all LWPs that belong to process PROC from the lwp list. */
1645
1646 static void
1647 linux_mourn (struct process_info *process)
1648 {
1649 struct process_info_private *priv;
1650
1651 #ifdef USE_THREAD_DB
1652 thread_db_mourn (process);
1653 #endif
1654
1655 for_each_thread (process->pid, [] (thread_info *thread)
1656 {
1657 delete_lwp (get_thread_lwp (thread));
1658 });
1659
1660 /* Freeing all private data. */
1661 priv = process->priv;
1662 if (the_low_target.delete_process != NULL)
1663 the_low_target.delete_process (priv->arch_private);
1664 else
1665 gdb_assert (priv->arch_private == NULL);
1666 free (priv);
1667 process->priv = NULL;
1668
1669 remove_process (process);
1670 }
1671
1672 static void
1673 linux_join (int pid)
1674 {
1675 int status, ret;
1676
1677 do {
1678 ret = my_waitpid (pid, &status, 0);
1679 if (WIFEXITED (status) || WIFSIGNALED (status))
1680 break;
1681 } while (ret != -1 || errno != ECHILD);
1682 }
1683
1684 /* Return nonzero if the given thread is still alive. */
1685 static int
1686 linux_thread_alive (ptid_t ptid)
1687 {
1688 struct lwp_info *lwp = find_lwp_pid (ptid);
1689
1690 /* We assume we always know if a thread exits. If a whole process
1691 exited but we still haven't been able to report it to GDB, we'll
1692 hold on to the last lwp of the dead process. */
1693 if (lwp != NULL)
1694 return !lwp_is_marked_dead (lwp);
1695 else
1696 return 0;
1697 }
1698
1699 /* Return 1 if this lwp still has an interesting status pending. If
1700 not (e.g., it had stopped for a breakpoint that is gone), return
1701 false. */
1702
1703 static int
1704 thread_still_has_status_pending_p (struct thread_info *thread)
1705 {
1706 struct lwp_info *lp = get_thread_lwp (thread);
1707
1708 if (!lp->status_pending_p)
1709 return 0;
1710
1711 if (thread->last_resume_kind != resume_stop
1712 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1713 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1714 {
1715 struct thread_info *saved_thread;
1716 CORE_ADDR pc;
1717 int discard = 0;
1718
1719 gdb_assert (lp->last_status != 0);
1720
1721 pc = get_pc (lp);
1722
1723 saved_thread = current_thread;
1724 current_thread = thread;
1725
1726 if (pc != lp->stop_pc)
1727 {
1728 if (debug_threads)
1729 debug_printf ("PC of %ld changed\n",
1730 lwpid_of (thread));
1731 discard = 1;
1732 }
1733
1734 #if !USE_SIGTRAP_SIGINFO
1735 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1736 && !(*the_low_target.breakpoint_at) (pc))
1737 {
1738 if (debug_threads)
1739 debug_printf ("previous SW breakpoint of %ld gone\n",
1740 lwpid_of (thread));
1741 discard = 1;
1742 }
1743 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1744 && !hardware_breakpoint_inserted_here (pc))
1745 {
1746 if (debug_threads)
1747 debug_printf ("previous HW breakpoint of %ld gone\n",
1748 lwpid_of (thread));
1749 discard = 1;
1750 }
1751 #endif
1752
1753 current_thread = saved_thread;
1754
1755 if (discard)
1756 {
1757 if (debug_threads)
1758 debug_printf ("discarding pending breakpoint status\n");
1759 lp->status_pending_p = 0;
1760 return 0;
1761 }
1762 }
1763
1764 return 1;
1765 }
1766
1767 /* Returns true if LWP is resumed from the client's perspective. */
1768
1769 static int
1770 lwp_resumed (struct lwp_info *lwp)
1771 {
1772 struct thread_info *thread = get_lwp_thread (lwp);
1773
1774 if (thread->last_resume_kind != resume_stop)
1775 return 1;
1776
1777 /* Did gdb send us a `vCont;t', but we haven't reported the
1778 corresponding stop to gdb yet? If so, the thread is still
1779 resumed/running from gdb's perspective. */
1780 if (thread->last_resume_kind == resume_stop
1781 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1782 return 1;
1783
1784 return 0;
1785 }
1786
1787 /* Return true if this lwp has an interesting status pending. */
1788 static bool
1789 status_pending_p_callback (thread_info *thread, ptid_t ptid)
1790 {
1791 struct lwp_info *lp = get_thread_lwp (thread);
1792
1793 /* Check if we're only interested in events from a specific process
1794 or a specific LWP. */
1795 if (!thread->id.matches (ptid))
1796 return 0;
1797
1798 if (!lwp_resumed (lp))
1799 return 0;
1800
1801 if (lp->status_pending_p
1802 && !thread_still_has_status_pending_p (thread))
1803 {
1804 linux_resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1805 return 0;
1806 }
1807
1808 return lp->status_pending_p;
1809 }
1810
1811 struct lwp_info *
1812 find_lwp_pid (ptid_t ptid)
1813 {
1814 thread_info *thread = find_thread ([&] (thread_info *thread)
1815 {
1816 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1817 return thread->id.lwp () == lwp;
1818 });
1819
1820 if (thread == NULL)
1821 return NULL;
1822
1823 return get_thread_lwp (thread);
1824 }
1825
1826 /* Return the number of known LWPs in the tgid given by PID. */
1827
1828 static int
1829 num_lwps (int pid)
1830 {
1831 int count = 0;
1832
1833 for_each_thread (pid, [&] (thread_info *thread)
1834 {
1835 count++;
1836 });
1837
1838 return count;
1839 }
1840
1841 /* See nat/linux-nat.h. */
1842
1843 struct lwp_info *
1844 iterate_over_lwps (ptid_t filter,
1845 iterate_over_lwps_ftype callback,
1846 void *data)
1847 {
1848 thread_info *thread = find_thread (filter, [&] (thread_info *thread)
1849 {
1850 lwp_info *lwp = get_thread_lwp (thread);
1851
1852 return callback (lwp, data);
1853 });
1854
1855 if (thread == NULL)
1856 return NULL;
1857
1858 return get_thread_lwp (thread);
1859 }
1860
1861 /* Detect zombie thread group leaders, and "exit" them. We can't reap
1862 their exits until all other threads in the group have exited. */
1863
1864 static void
1865 check_zombie_leaders (void)
1866 {
1867 for_each_process ([] (process_info *proc) {
1868 pid_t leader_pid = pid_of (proc);
1869 struct lwp_info *leader_lp;
1870
1871 leader_lp = find_lwp_pid (pid_to_ptid (leader_pid));
1872
1873 if (debug_threads)
1874 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1875 "num_lwps=%d, zombie=%d\n",
1876 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1877 linux_proc_pid_is_zombie (leader_pid));
1878
1879 if (leader_lp != NULL && !leader_lp->stopped
1880 /* Check if there are other threads in the group, as we may
1881 have raced with the inferior simply exiting. */
1882 && !last_thread_of_process_p (leader_pid)
1883 && linux_proc_pid_is_zombie (leader_pid))
1884 {
1885 /* A leader zombie can mean one of two things:
1886
1887 - It exited, and there's an exit status pending
1888 available, or only the leader exited (not the whole
1889 program). In the latter case, we can't waitpid the
1890 leader's exit status until all other threads are gone.
1891
1892 - There are 3 or more threads in the group, and a thread
1893 other than the leader exec'd. On an exec, the Linux
1894 kernel destroys all other threads (except the execing
1895 one) in the thread group, and resets the execing thread's
1896 tid to the tgid. No exit notification is sent for the
1897 execing thread -- from the ptracer's perspective, it
1898 appears as though the execing thread just vanishes.
1899 Until we reap all other threads except the leader and the
1900 execing thread, the leader will be zombie, and the
1901 execing thread will be in `D (disc sleep)'. As soon as
1902 all other threads are reaped, the execing thread changes
1903 it's tid to the tgid, and the previous (zombie) leader
1904 vanishes, giving place to the "new" leader. We could try
1905 distinguishing the exit and exec cases, by waiting once
1906 more, and seeing if something comes out, but it doesn't
1907 sound useful. The previous leader _does_ go away, and
1908 we'll re-add the new one once we see the exec event
1909 (which is just the same as what would happen if the
1910 previous leader did exit voluntarily before some other
1911 thread execs). */
1912
1913 if (debug_threads)
1914 debug_printf ("CZL: Thread group leader %d zombie "
1915 "(it exited, or another thread execd).\n",
1916 leader_pid);
1917
1918 delete_lwp (leader_lp);
1919 }
1920 });
1921 }
1922
1923 /* Callback for `find_thread'. Returns the first LWP that is not
1924 stopped. */
1925
1926 static bool
1927 not_stopped_callback (thread_info *thread, ptid_t filter)
1928 {
1929 if (!thread->id.matches (filter))
1930 return false;
1931
1932 lwp_info *lwp = get_thread_lwp (thread);
1933
1934 return !lwp->stopped;
1935 }
1936
1937 /* Increment LWP's suspend count. */
1938
1939 static void
1940 lwp_suspended_inc (struct lwp_info *lwp)
1941 {
1942 lwp->suspended++;
1943
1944 if (debug_threads && lwp->suspended > 4)
1945 {
1946 struct thread_info *thread = get_lwp_thread (lwp);
1947
1948 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1949 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1950 }
1951 }
1952
1953 /* Decrement LWP's suspend count. */
1954
1955 static void
1956 lwp_suspended_decr (struct lwp_info *lwp)
1957 {
1958 lwp->suspended--;
1959
1960 if (lwp->suspended < 0)
1961 {
1962 struct thread_info *thread = get_lwp_thread (lwp);
1963
1964 internal_error (__FILE__, __LINE__,
1965 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1966 lwp->suspended);
1967 }
1968 }
1969
1970 /* This function should only be called if the LWP got a SIGTRAP.
1971
1972 Handle any tracepoint steps or hits. Return true if a tracepoint
1973 event was handled, 0 otherwise. */
1974
1975 static int
1976 handle_tracepoints (struct lwp_info *lwp)
1977 {
1978 struct thread_info *tinfo = get_lwp_thread (lwp);
1979 int tpoint_related_event = 0;
1980
1981 gdb_assert (lwp->suspended == 0);
1982
1983 /* If this tracepoint hit causes a tracing stop, we'll immediately
1984 uninsert tracepoints. To do this, we temporarily pause all
1985 threads, unpatch away, and then unpause threads. We need to make
1986 sure the unpausing doesn't resume LWP too. */
1987 lwp_suspended_inc (lwp);
1988
1989 /* And we need to be sure that any all-threads-stopping doesn't try
1990 to move threads out of the jump pads, as it could deadlock the
1991 inferior (LWP could be in the jump pad, maybe even holding the
1992 lock.) */
1993
1994 /* Do any necessary step collect actions. */
1995 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1996
1997 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1998
1999 /* See if we just hit a tracepoint and do its main collect
2000 actions. */
2001 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
2002
2003 lwp_suspended_decr (lwp);
2004
2005 gdb_assert (lwp->suspended == 0);
2006 gdb_assert (!stabilizing_threads
2007 || (lwp->collecting_fast_tracepoint
2008 != fast_tpoint_collect_result::not_collecting));
2009
2010 if (tpoint_related_event)
2011 {
2012 if (debug_threads)
2013 debug_printf ("got a tracepoint event\n");
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* Convenience wrapper. Returns information about LWP's fast tracepoint
2021 collection status. */
2022
2023 static fast_tpoint_collect_result
2024 linux_fast_tracepoint_collecting (struct lwp_info *lwp,
2025 struct fast_tpoint_collect_status *status)
2026 {
2027 CORE_ADDR thread_area;
2028 struct thread_info *thread = get_lwp_thread (lwp);
2029
2030 if (the_low_target.get_thread_area == NULL)
2031 return fast_tpoint_collect_result::not_collecting;
2032
2033 /* Get the thread area address. This is used to recognize which
2034 thread is which when tracing with the in-process agent library.
2035 We don't read anything from the address, and treat it as opaque;
2036 it's the address itself that we assume is unique per-thread. */
2037 if ((*the_low_target.get_thread_area) (lwpid_of (thread), &thread_area) == -1)
2038 return fast_tpoint_collect_result::not_collecting;
2039
2040 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
2041 }
2042
2043 /* The reason we resume in the caller, is because we want to be able
2044 to pass lwp->status_pending as WSTAT, and we need to clear
2045 status_pending_p before resuming, otherwise, linux_resume_one_lwp
2046 refuses to resume. */
2047
2048 static int
2049 maybe_move_out_of_jump_pad (struct lwp_info *lwp, int *wstat)
2050 {
2051 struct thread_info *saved_thread;
2052
2053 saved_thread = current_thread;
2054 current_thread = get_lwp_thread (lwp);
2055
2056 if ((wstat == NULL
2057 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2058 && supports_fast_tracepoints ()
2059 && agent_loaded_p ())
2060 {
2061 struct fast_tpoint_collect_status status;
2062
2063 if (debug_threads)
2064 debug_printf ("Checking whether LWP %ld needs to move out of the "
2065 "jump pad.\n",
2066 lwpid_of (current_thread));
2067
2068 fast_tpoint_collect_result r
2069 = linux_fast_tracepoint_collecting (lwp, &status);
2070
2071 if (wstat == NULL
2072 || (WSTOPSIG (*wstat) != SIGILL
2073 && WSTOPSIG (*wstat) != SIGFPE
2074 && WSTOPSIG (*wstat) != SIGSEGV
2075 && WSTOPSIG (*wstat) != SIGBUS))
2076 {
2077 lwp->collecting_fast_tracepoint = r;
2078
2079 if (r != fast_tpoint_collect_result::not_collecting)
2080 {
2081 if (r == fast_tpoint_collect_result::before_insn
2082 && lwp->exit_jump_pad_bkpt == NULL)
2083 {
2084 /* Haven't executed the original instruction yet.
2085 Set breakpoint there, and wait till it's hit,
2086 then single-step until exiting the jump pad. */
2087 lwp->exit_jump_pad_bkpt
2088 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2089 }
2090
2091 if (debug_threads)
2092 debug_printf ("Checking whether LWP %ld needs to move out of "
2093 "the jump pad...it does\n",
2094 lwpid_of (current_thread));
2095 current_thread = saved_thread;
2096
2097 return 1;
2098 }
2099 }
2100 else
2101 {
2102 /* If we get a synchronous signal while collecting, *and*
2103 while executing the (relocated) original instruction,
2104 reset the PC to point at the tpoint address, before
2105 reporting to GDB. Otherwise, it's an IPA lib bug: just
2106 report the signal to GDB, and pray for the best. */
2107
2108 lwp->collecting_fast_tracepoint
2109 = fast_tpoint_collect_result::not_collecting;
2110
2111 if (r != fast_tpoint_collect_result::not_collecting
2112 && (status.adjusted_insn_addr <= lwp->stop_pc
2113 && lwp->stop_pc < status.adjusted_insn_addr_end))
2114 {
2115 siginfo_t info;
2116 struct regcache *regcache;
2117
2118 /* The si_addr on a few signals references the address
2119 of the faulting instruction. Adjust that as
2120 well. */
2121 if ((WSTOPSIG (*wstat) == SIGILL
2122 || WSTOPSIG (*wstat) == SIGFPE
2123 || WSTOPSIG (*wstat) == SIGBUS
2124 || WSTOPSIG (*wstat) == SIGSEGV)
2125 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2126 (PTRACE_TYPE_ARG3) 0, &info) == 0
2127 /* Final check just to make sure we don't clobber
2128 the siginfo of non-kernel-sent signals. */
2129 && (uintptr_t) info.si_addr == lwp->stop_pc)
2130 {
2131 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2132 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2133 (PTRACE_TYPE_ARG3) 0, &info);
2134 }
2135
2136 regcache = get_thread_regcache (current_thread, 1);
2137 (*the_low_target.set_pc) (regcache, status.tpoint_addr);
2138 lwp->stop_pc = status.tpoint_addr;
2139
2140 /* Cancel any fast tracepoint lock this thread was
2141 holding. */
2142 force_unlock_trace_buffer ();
2143 }
2144
2145 if (lwp->exit_jump_pad_bkpt != NULL)
2146 {
2147 if (debug_threads)
2148 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2149 "stopping all threads momentarily.\n");
2150
2151 stop_all_lwps (1, lwp);
2152
2153 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2154 lwp->exit_jump_pad_bkpt = NULL;
2155
2156 unstop_all_lwps (1, lwp);
2157
2158 gdb_assert (lwp->suspended >= 0);
2159 }
2160 }
2161 }
2162
2163 if (debug_threads)
2164 debug_printf ("Checking whether LWP %ld needs to move out of the "
2165 "jump pad...no\n",
2166 lwpid_of (current_thread));
2167
2168 current_thread = saved_thread;
2169 return 0;
2170 }
2171
2172 /* Enqueue one signal in the "signals to report later when out of the
2173 jump pad" list. */
2174
2175 static void
2176 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2177 {
2178 struct pending_signals *p_sig;
2179 struct thread_info *thread = get_lwp_thread (lwp);
2180
2181 if (debug_threads)
2182 debug_printf ("Deferring signal %d for LWP %ld.\n",
2183 WSTOPSIG (*wstat), lwpid_of (thread));
2184
2185 if (debug_threads)
2186 {
2187 struct pending_signals *sig;
2188
2189 for (sig = lwp->pending_signals_to_report;
2190 sig != NULL;
2191 sig = sig->prev)
2192 debug_printf (" Already queued %d\n",
2193 sig->signal);
2194
2195 debug_printf (" (no more currently queued signals)\n");
2196 }
2197
2198 /* Don't enqueue non-RT signals if they are already in the deferred
2199 queue. (SIGSTOP being the easiest signal to see ending up here
2200 twice) */
2201 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2202 {
2203 struct pending_signals *sig;
2204
2205 for (sig = lwp->pending_signals_to_report;
2206 sig != NULL;
2207 sig = sig->prev)
2208 {
2209 if (sig->signal == WSTOPSIG (*wstat))
2210 {
2211 if (debug_threads)
2212 debug_printf ("Not requeuing already queued non-RT signal %d"
2213 " for LWP %ld\n",
2214 sig->signal,
2215 lwpid_of (thread));
2216 return;
2217 }
2218 }
2219 }
2220
2221 p_sig = XCNEW (struct pending_signals);
2222 p_sig->prev = lwp->pending_signals_to_report;
2223 p_sig->signal = WSTOPSIG (*wstat);
2224
2225 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2226 &p_sig->info);
2227
2228 lwp->pending_signals_to_report = p_sig;
2229 }
2230
2231 /* Dequeue one signal from the "signals to report later when out of
2232 the jump pad" list. */
2233
2234 static int
2235 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2236 {
2237 struct thread_info *thread = get_lwp_thread (lwp);
2238
2239 if (lwp->pending_signals_to_report != NULL)
2240 {
2241 struct pending_signals **p_sig;
2242
2243 p_sig = &lwp->pending_signals_to_report;
2244 while ((*p_sig)->prev != NULL)
2245 p_sig = &(*p_sig)->prev;
2246
2247 *wstat = W_STOPCODE ((*p_sig)->signal);
2248 if ((*p_sig)->info.si_signo != 0)
2249 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2250 &(*p_sig)->info);
2251 free (*p_sig);
2252 *p_sig = NULL;
2253
2254 if (debug_threads)
2255 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2256 WSTOPSIG (*wstat), lwpid_of (thread));
2257
2258 if (debug_threads)
2259 {
2260 struct pending_signals *sig;
2261
2262 for (sig = lwp->pending_signals_to_report;
2263 sig != NULL;
2264 sig = sig->prev)
2265 debug_printf (" Still queued %d\n",
2266 sig->signal);
2267
2268 debug_printf (" (no more queued signals)\n");
2269 }
2270
2271 return 1;
2272 }
2273
2274 return 0;
2275 }
2276
2277 /* Fetch the possibly triggered data watchpoint info and store it in
2278 CHILD.
2279
2280 On some archs, like x86, that use debug registers to set
2281 watchpoints, it's possible that the way to know which watched
2282 address trapped, is to check the register that is used to select
2283 which address to watch. Problem is, between setting the watchpoint
2284 and reading back which data address trapped, the user may change
2285 the set of watchpoints, and, as a consequence, GDB changes the
2286 debug registers in the inferior. To avoid reading back a stale
2287 stopped-data-address when that happens, we cache in LP the fact
2288 that a watchpoint trapped, and the corresponding data address, as
2289 soon as we see CHILD stop with a SIGTRAP. If GDB changes the debug
2290 registers meanwhile, we have the cached data we can rely on. */
2291
2292 static int
2293 check_stopped_by_watchpoint (struct lwp_info *child)
2294 {
2295 if (the_low_target.stopped_by_watchpoint != NULL)
2296 {
2297 struct thread_info *saved_thread;
2298
2299 saved_thread = current_thread;
2300 current_thread = get_lwp_thread (child);
2301
2302 if (the_low_target.stopped_by_watchpoint ())
2303 {
2304 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2305
2306 if (the_low_target.stopped_data_address != NULL)
2307 child->stopped_data_address
2308 = the_low_target.stopped_data_address ();
2309 else
2310 child->stopped_data_address = 0;
2311 }
2312
2313 current_thread = saved_thread;
2314 }
2315
2316 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2317 }
2318
2319 /* Return the ptrace options that we want to try to enable. */
2320
2321 static int
2322 linux_low_ptrace_options (int attached)
2323 {
2324 int options = 0;
2325
2326 if (!attached)
2327 options |= PTRACE_O_EXITKILL;
2328
2329 if (report_fork_events)
2330 options |= PTRACE_O_TRACEFORK;
2331
2332 if (report_vfork_events)
2333 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2334
2335 if (report_exec_events)
2336 options |= PTRACE_O_TRACEEXEC;
2337
2338 options |= PTRACE_O_TRACESYSGOOD;
2339
2340 return options;
2341 }
2342
2343 /* Do low-level handling of the event, and check if we should go on
2344 and pass it to caller code. Return the affected lwp if we are, or
2345 NULL otherwise. */
2346
2347 static struct lwp_info *
2348 linux_low_filter_event (int lwpid, int wstat)
2349 {
2350 struct lwp_info *child;
2351 struct thread_info *thread;
2352 int have_stop_pc = 0;
2353
2354 child = find_lwp_pid (pid_to_ptid (lwpid));
2355
2356 /* Check for stop events reported by a process we didn't already
2357 know about - anything not already in our LWP list.
2358
2359 If we're expecting to receive stopped processes after
2360 fork, vfork, and clone events, then we'll just add the
2361 new one to our list and go back to waiting for the event
2362 to be reported - the stopped process might be returned
2363 from waitpid before or after the event is.
2364
2365 But note the case of a non-leader thread exec'ing after the
2366 leader having exited, and gone from our lists (because
2367 check_zombie_leaders deleted it). The non-leader thread
2368 changes its tid to the tgid. */
2369
2370 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2371 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2372 {
2373 ptid_t child_ptid;
2374
2375 /* A multi-thread exec after we had seen the leader exiting. */
2376 if (debug_threads)
2377 {
2378 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2379 "after exec.\n", lwpid);
2380 }
2381
2382 child_ptid = ptid_build (lwpid, lwpid, 0);
2383 child = add_lwp (child_ptid);
2384 child->stopped = 1;
2385 current_thread = child->thread;
2386 }
2387
2388 /* If we didn't find a process, one of two things presumably happened:
2389 - A process we started and then detached from has exited. Ignore it.
2390 - A process we are controlling has forked and the new child's stop
2391 was reported to us by the kernel. Save its PID. */
2392 if (child == NULL && WIFSTOPPED (wstat))
2393 {
2394 add_to_pid_list (&stopped_pids, lwpid, wstat);
2395 return NULL;
2396 }
2397 else if (child == NULL)
2398 return NULL;
2399
2400 thread = get_lwp_thread (child);
2401
2402 child->stopped = 1;
2403
2404 child->last_status = wstat;
2405
2406 /* Check if the thread has exited. */
2407 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2408 {
2409 if (debug_threads)
2410 debug_printf ("LLFE: %d exited.\n", lwpid);
2411
2412 if (finish_step_over (child))
2413 {
2414 /* Unsuspend all other LWPs, and set them back running again. */
2415 unsuspend_all_lwps (child);
2416 }
2417
2418 /* If there is at least one more LWP, then the exit signal was
2419 not the end of the debugged application and should be
2420 ignored, unless GDB wants to hear about thread exits. */
2421 if (report_thread_events
2422 || last_thread_of_process_p (pid_of (thread)))
2423 {
2424 /* Since events are serialized to GDB core, and we can't
2425 report this one right now. Leave the status pending for
2426 the next time we're able to report it. */
2427 mark_lwp_dead (child, wstat);
2428 return child;
2429 }
2430 else
2431 {
2432 delete_lwp (child);
2433 return NULL;
2434 }
2435 }
2436
2437 gdb_assert (WIFSTOPPED (wstat));
2438
2439 if (WIFSTOPPED (wstat))
2440 {
2441 struct process_info *proc;
2442
2443 /* Architecture-specific setup after inferior is running. */
2444 proc = find_process_pid (pid_of (thread));
2445 if (proc->tdesc == NULL)
2446 {
2447 if (proc->attached)
2448 {
2449 /* This needs to happen after we have attached to the
2450 inferior and it is stopped for the first time, but
2451 before we access any inferior registers. */
2452 linux_arch_setup_thread (thread);
2453 }
2454 else
2455 {
2456 /* The process is started, but GDBserver will do
2457 architecture-specific setup after the program stops at
2458 the first instruction. */
2459 child->status_pending_p = 1;
2460 child->status_pending = wstat;
2461 return child;
2462 }
2463 }
2464 }
2465
2466 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2467 {
2468 struct process_info *proc = find_process_pid (pid_of (thread));
2469 int options = linux_low_ptrace_options (proc->attached);
2470
2471 linux_enable_event_reporting (lwpid, options);
2472 child->must_set_ptrace_flags = 0;
2473 }
2474
2475 /* Always update syscall_state, even if it will be filtered later. */
2476 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2477 {
2478 child->syscall_state
2479 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2480 ? TARGET_WAITKIND_SYSCALL_RETURN
2481 : TARGET_WAITKIND_SYSCALL_ENTRY);
2482 }
2483 else
2484 {
2485 /* Almost all other ptrace-stops are known to be outside of system
2486 calls, with further exceptions in handle_extended_wait. */
2487 child->syscall_state = TARGET_WAITKIND_IGNORE;
2488 }
2489
2490 /* Be careful to not overwrite stop_pc until save_stop_reason is
2491 called. */
2492 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2493 && linux_is_extended_waitstatus (wstat))
2494 {
2495 child->stop_pc = get_pc (child);
2496 if (handle_extended_wait (&child, wstat))
2497 {
2498 /* The event has been handled, so just return without
2499 reporting it. */
2500 return NULL;
2501 }
2502 }
2503
2504 if (linux_wstatus_maybe_breakpoint (wstat))
2505 {
2506 if (save_stop_reason (child))
2507 have_stop_pc = 1;
2508 }
2509
2510 if (!have_stop_pc)
2511 child->stop_pc = get_pc (child);
2512
2513 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2514 && child->stop_expected)
2515 {
2516 if (debug_threads)
2517 debug_printf ("Expected stop.\n");
2518 child->stop_expected = 0;
2519
2520 if (thread->last_resume_kind == resume_stop)
2521 {
2522 /* We want to report the stop to the core. Treat the
2523 SIGSTOP as a normal event. */
2524 if (debug_threads)
2525 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2526 target_pid_to_str (ptid_of (thread)));
2527 }
2528 else if (stopping_threads != NOT_STOPPING_THREADS)
2529 {
2530 /* Stopping threads. We don't want this SIGSTOP to end up
2531 pending. */
2532 if (debug_threads)
2533 debug_printf ("LLW: SIGSTOP caught for %s "
2534 "while stopping threads.\n",
2535 target_pid_to_str (ptid_of (thread)));
2536 return NULL;
2537 }
2538 else
2539 {
2540 /* This is a delayed SIGSTOP. Filter out the event. */
2541 if (debug_threads)
2542 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2543 child->stepping ? "step" : "continue",
2544 target_pid_to_str (ptid_of (thread)));
2545
2546 linux_resume_one_lwp (child, child->stepping, 0, NULL);
2547 return NULL;
2548 }
2549 }
2550
2551 child->status_pending_p = 1;
2552 child->status_pending = wstat;
2553 return child;
2554 }
2555
2556 /* Return true if THREAD is doing hardware single step. */
2557
2558 static int
2559 maybe_hw_step (struct thread_info *thread)
2560 {
2561 if (can_hardware_single_step ())
2562 return 1;
2563 else
2564 {
2565 /* GDBserver must insert single-step breakpoint for software
2566 single step. */
2567 gdb_assert (has_single_step_breakpoints (thread));
2568 return 0;
2569 }
2570 }
2571
2572 /* Resume LWPs that are currently stopped without any pending status
2573 to report, but are resumed from the core's perspective. */
2574
2575 static void
2576 resume_stopped_resumed_lwps (thread_info *thread)
2577 {
2578 struct lwp_info *lp = get_thread_lwp (thread);
2579
2580 if (lp->stopped
2581 && !lp->suspended
2582 && !lp->status_pending_p
2583 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2584 {
2585 int step = 0;
2586
2587 if (thread->last_resume_kind == resume_step)
2588 step = maybe_hw_step (thread);
2589
2590 if (debug_threads)
2591 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2592 target_pid_to_str (ptid_of (thread)),
2593 paddress (lp->stop_pc),
2594 step);
2595
2596 linux_resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2597 }
2598 }
2599
2600 /* Wait for an event from child(ren) WAIT_PTID, and return any that
2601 match FILTER_PTID (leaving others pending). The PTIDs can be:
2602 minus_one_ptid, to specify any child; a pid PTID, specifying all
2603 lwps of a thread group; or a PTID representing a single lwp. Store
2604 the stop status through the status pointer WSTAT. OPTIONS is
2605 passed to the waitpid call. Return 0 if no event was found and
2606 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2607 was found. Return the PID of the stopped child otherwise. */
2608
2609 static int
2610 linux_wait_for_event_filtered (ptid_t wait_ptid, ptid_t filter_ptid,
2611 int *wstatp, int options)
2612 {
2613 struct thread_info *event_thread;
2614 struct lwp_info *event_child, *requested_child;
2615 sigset_t block_mask, prev_mask;
2616
2617 retry:
2618 /* N.B. event_thread points to the thread_info struct that contains
2619 event_child. Keep them in sync. */
2620 event_thread = NULL;
2621 event_child = NULL;
2622 requested_child = NULL;
2623
2624 /* Check for a lwp with a pending status. */
2625
2626 if (ptid_equal (filter_ptid, minus_one_ptid) || ptid_is_pid (filter_ptid))
2627 {
2628 event_thread = find_thread_in_random ([&] (thread_info *thread)
2629 {
2630 return status_pending_p_callback (thread, filter_ptid);
2631 });
2632
2633 if (event_thread != NULL)
2634 event_child = get_thread_lwp (event_thread);
2635 if (debug_threads && event_thread)
2636 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2637 }
2638 else if (!ptid_equal (filter_ptid, null_ptid))
2639 {
2640 requested_child = find_lwp_pid (filter_ptid);
2641
2642 if (stopping_threads == NOT_STOPPING_THREADS
2643 && requested_child->status_pending_p
2644 && (requested_child->collecting_fast_tracepoint
2645 != fast_tpoint_collect_result::not_collecting))
2646 {
2647 enqueue_one_deferred_signal (requested_child,
2648 &requested_child->status_pending);
2649 requested_child->status_pending_p = 0;
2650 requested_child->status_pending = 0;
2651 linux_resume_one_lwp (requested_child, 0, 0, NULL);
2652 }
2653
2654 if (requested_child->suspended
2655 && requested_child->status_pending_p)
2656 {
2657 internal_error (__FILE__, __LINE__,
2658 "requesting an event out of a"
2659 " suspended child?");
2660 }
2661
2662 if (requested_child->status_pending_p)
2663 {
2664 event_child = requested_child;
2665 event_thread = get_lwp_thread (event_child);
2666 }
2667 }
2668
2669 if (event_child != NULL)
2670 {
2671 if (debug_threads)
2672 debug_printf ("Got an event from pending child %ld (%04x)\n",
2673 lwpid_of (event_thread), event_child->status_pending);
2674 *wstatp = event_child->status_pending;
2675 event_child->status_pending_p = 0;
2676 event_child->status_pending = 0;
2677 current_thread = event_thread;
2678 return lwpid_of (event_thread);
2679 }
2680
2681 /* But if we don't find a pending event, we'll have to wait.
2682
2683 We only enter this loop if no process has a pending wait status.
2684 Thus any action taken in response to a wait status inside this
2685 loop is responding as soon as we detect the status, not after any
2686 pending events. */
2687
2688 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2689 all signals while here. */
2690 sigfillset (&block_mask);
2691 sigprocmask (SIG_BLOCK, &block_mask, &prev_mask);
2692
2693 /* Always pull all events out of the kernel. We'll randomly select
2694 an event LWP out of all that have events, to prevent
2695 starvation. */
2696 while (event_child == NULL)
2697 {
2698 pid_t ret = 0;
2699
2700 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2701 quirks:
2702
2703 - If the thread group leader exits while other threads in the
2704 thread group still exist, waitpid(TGID, ...) hangs. That
2705 waitpid won't return an exit status until the other threads
2706 in the group are reaped.
2707
2708 - When a non-leader thread execs, that thread just vanishes
2709 without reporting an exit (so we'd hang if we waited for it
2710 explicitly in that case). The exec event is reported to
2711 the TGID pid. */
2712 errno = 0;
2713 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2714
2715 if (debug_threads)
2716 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2717 ret, errno ? strerror (errno) : "ERRNO-OK");
2718
2719 if (ret > 0)
2720 {
2721 if (debug_threads)
2722 {
2723 debug_printf ("LLW: waitpid %ld received %s\n",
2724 (long) ret, status_to_str (*wstatp));
2725 }
2726
2727 /* Filter all events. IOW, leave all events pending. We'll
2728 randomly select an event LWP out of all that have events
2729 below. */
2730 linux_low_filter_event (ret, *wstatp);
2731 /* Retry until nothing comes out of waitpid. A single
2732 SIGCHLD can indicate more than one child stopped. */
2733 continue;
2734 }
2735
2736 /* Now that we've pulled all events out of the kernel, resume
2737 LWPs that don't have an interesting event to report. */
2738 if (stopping_threads == NOT_STOPPING_THREADS)
2739 for_each_inferior (&all_threads, resume_stopped_resumed_lwps);
2740
2741 /* ... and find an LWP with a status to report to the core, if
2742 any. */
2743 event_thread = find_thread_in_random ([&] (thread_info *thread)
2744 {
2745 return status_pending_p_callback (thread, filter_ptid);
2746 });
2747
2748 if (event_thread != NULL)
2749 {
2750 event_child = get_thread_lwp (event_thread);
2751 *wstatp = event_child->status_pending;
2752 event_child->status_pending_p = 0;
2753 event_child->status_pending = 0;
2754 break;
2755 }
2756
2757 /* Check for zombie thread group leaders. Those can't be reaped
2758 until all other threads in the thread group are. */
2759 check_zombie_leaders ();
2760
2761 auto not_stopped = [&] (thread_info *thread)
2762 {
2763 return not_stopped_callback (thread, wait_ptid);
2764 };
2765
2766 /* If there are no resumed children left in the set of LWPs we
2767 want to wait for, bail. We can't just block in
2768 waitpid/sigsuspend, because lwps might have been left stopped
2769 in trace-stop state, and we'd be stuck forever waiting for
2770 their status to change (which would only happen if we resumed
2771 them). Even if WNOHANG is set, this return code is preferred
2772 over 0 (below), as it is more detailed. */
2773 if (find_thread (not_stopped) == NULL)
2774 {
2775 if (debug_threads)
2776 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2777 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2778 return -1;
2779 }
2780
2781 /* No interesting event to report to the caller. */
2782 if ((options & WNOHANG))
2783 {
2784 if (debug_threads)
2785 debug_printf ("WNOHANG set, no event found\n");
2786
2787 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2788 return 0;
2789 }
2790
2791 /* Block until we get an event reported with SIGCHLD. */
2792 if (debug_threads)
2793 debug_printf ("sigsuspend'ing\n");
2794
2795 sigsuspend (&prev_mask);
2796 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2797 goto retry;
2798 }
2799
2800 sigprocmask (SIG_SETMASK, &prev_mask, NULL);
2801
2802 current_thread = event_thread;
2803
2804 return lwpid_of (event_thread);
2805 }
2806
2807 /* Wait for an event from child(ren) PTID. PTIDs can be:
2808 minus_one_ptid, to specify any child; a pid PTID, specifying all
2809 lwps of a thread group; or a PTID representing a single lwp. Store
2810 the stop status through the status pointer WSTAT. OPTIONS is
2811 passed to the waitpid call. Return 0 if no event was found and
2812 OPTIONS contains WNOHANG. Return -1 if no unwaited-for children
2813 was found. Return the PID of the stopped child otherwise. */
2814
2815 static int
2816 linux_wait_for_event (ptid_t ptid, int *wstatp, int options)
2817 {
2818 return linux_wait_for_event_filtered (ptid, ptid, wstatp, options);
2819 }
2820
2821 /* Count the LWP's that have had events. */
2822
2823 static int
2824 count_events_callback (thread_info *thread, void *data)
2825 {
2826 struct lwp_info *lp = get_thread_lwp (thread);
2827 int *count = (int *) data;
2828
2829 gdb_assert (count != NULL);
2830
2831 /* Count only resumed LWPs that have an event pending. */
2832 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2833 && lp->status_pending_p)
2834 (*count)++;
2835
2836 return 0;
2837 }
2838
2839 /* Select the LWP (if any) that is currently being single-stepped. */
2840
2841 static int
2842 select_singlestep_lwp_callback (thread_info *thread, void *data)
2843 {
2844 struct lwp_info *lp = get_thread_lwp (thread);
2845
2846 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2847 && thread->last_resume_kind == resume_step
2848 && lp->status_pending_p)
2849 return 1;
2850 else
2851 return 0;
2852 }
2853
2854 /* Select the Nth LWP that has had an event. */
2855
2856 static int
2857 select_event_lwp_callback (thread_info *thread, void *data)
2858 {
2859 struct lwp_info *lp = get_thread_lwp (thread);
2860 int *selector = (int *) data;
2861
2862 gdb_assert (selector != NULL);
2863
2864 /* Select only resumed LWPs that have an event pending. */
2865 if (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2866 && lp->status_pending_p)
2867 if ((*selector)-- == 0)
2868 return 1;
2869
2870 return 0;
2871 }
2872
2873 /* Select one LWP out of those that have events pending. */
2874
2875 static void
2876 select_event_lwp (struct lwp_info **orig_lp)
2877 {
2878 int num_events = 0;
2879 int random_selector;
2880 struct thread_info *event_thread = NULL;
2881
2882 /* In all-stop, give preference to the LWP that is being
2883 single-stepped. There will be at most one, and it's the LWP that
2884 the core is most interested in. If we didn't do this, then we'd
2885 have to handle pending step SIGTRAPs somehow in case the core
2886 later continues the previously-stepped thread, otherwise we'd
2887 report the pending SIGTRAP, and the core, not having stepped the
2888 thread, wouldn't understand what the trap was for, and therefore
2889 would report it to the user as a random signal. */
2890 if (!non_stop)
2891 {
2892 event_thread
2893 = (struct thread_info *) find_inferior (&all_threads,
2894 select_singlestep_lwp_callback,
2895 NULL);
2896 if (event_thread != NULL)
2897 {
2898 if (debug_threads)
2899 debug_printf ("SEL: Select single-step %s\n",
2900 target_pid_to_str (ptid_of (event_thread)));
2901 }
2902 }
2903 if (event_thread == NULL)
2904 {
2905 /* No single-stepping LWP. Select one at random, out of those
2906 which have had events. */
2907
2908 /* First see how many events we have. */
2909 find_inferior (&all_threads, count_events_callback, &num_events);
2910 gdb_assert (num_events > 0);
2911
2912 /* Now randomly pick a LWP out of those that have had
2913 events. */
2914 random_selector = (int)
2915 ((num_events * (double) rand ()) / (RAND_MAX + 1.0));
2916
2917 if (debug_threads && num_events > 1)
2918 debug_printf ("SEL: Found %d SIGTRAP events, selecting #%d\n",
2919 num_events, random_selector);
2920
2921 event_thread
2922 = (struct thread_info *) find_inferior (&all_threads,
2923 select_event_lwp_callback,
2924 &random_selector);
2925 }
2926
2927 if (event_thread != NULL)
2928 {
2929 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2930
2931 /* Switch the event LWP. */
2932 *orig_lp = event_lp;
2933 }
2934 }
2935
2936 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2937 NULL. */
2938
2939 static void
2940 unsuspend_all_lwps (struct lwp_info *except)
2941 {
2942 for_each_thread ([&] (thread_info *thread)
2943 {
2944 lwp_info *lwp = get_thread_lwp (thread);
2945
2946 if (lwp != except)
2947 lwp_suspended_decr (lwp);
2948 });
2949 }
2950
2951 static void move_out_of_jump_pad_callback (thread_info *thread);
2952 static bool stuck_in_jump_pad_callback (thread_info *thread);
2953 static int lwp_running (thread_info *thread, void *data);
2954 static ptid_t linux_wait_1 (ptid_t ptid,
2955 struct target_waitstatus *ourstatus,
2956 int target_options);
2957
2958 /* Stabilize threads (move out of jump pads).
2959
2960 If a thread is midway collecting a fast tracepoint, we need to
2961 finish the collection and move it out of the jump pad before
2962 reporting the signal.
2963
2964 This avoids recursion while collecting (when a signal arrives
2965 midway, and the signal handler itself collects), which would trash
2966 the trace buffer. In case the user set a breakpoint in a signal
2967 handler, this avoids the backtrace showing the jump pad, etc..
2968 Most importantly, there are certain things we can't do safely if
2969 threads are stopped in a jump pad (or in its callee's). For
2970 example:
2971
2972 - starting a new trace run. A thread still collecting the
2973 previous run, could trash the trace buffer when resumed. The trace
2974 buffer control structures would have been reset but the thread had
2975 no way to tell. The thread could even midway memcpy'ing to the
2976 buffer, which would mean that when resumed, it would clobber the
2977 trace buffer that had been set for a new run.
2978
2979 - we can't rewrite/reuse the jump pads for new tracepoints
2980 safely. Say you do tstart while a thread is stopped midway while
2981 collecting. When the thread is later resumed, it finishes the
2982 collection, and returns to the jump pad, to execute the original
2983 instruction that was under the tracepoint jump at the time the
2984 older run had been started. If the jump pad had been rewritten
2985 since for something else in the new run, the thread would now
2986 execute the wrong / random instructions. */
2987
2988 static void
2989 linux_stabilize_threads (void)
2990 {
2991 thread_info *thread_stuck = find_thread (stuck_in_jump_pad_callback);
2992
2993 if (thread_stuck != NULL)
2994 {
2995 if (debug_threads)
2996 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2997 lwpid_of (thread_stuck));
2998 return;
2999 }
3000
3001 thread_info *saved_thread = current_thread;
3002
3003 stabilizing_threads = 1;
3004
3005 /* Kick 'em all. */
3006 for_each_inferior (&all_threads, move_out_of_jump_pad_callback);
3007
3008 /* Loop until all are stopped out of the jump pads. */
3009 while (find_inferior (&all_threads, lwp_running, NULL) != NULL)
3010 {
3011 struct target_waitstatus ourstatus;
3012 struct lwp_info *lwp;
3013 int wstat;
3014
3015 /* Note that we go through the full wait even loop. While
3016 moving threads out of jump pad, we need to be able to step
3017 over internal breakpoints and such. */
3018 linux_wait_1 (minus_one_ptid, &ourstatus, 0);
3019
3020 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
3021 {
3022 lwp = get_thread_lwp (current_thread);
3023
3024 /* Lock it. */
3025 lwp_suspended_inc (lwp);
3026
3027 if (ourstatus.value.sig != GDB_SIGNAL_0
3028 || current_thread->last_resume_kind == resume_stop)
3029 {
3030 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
3031 enqueue_one_deferred_signal (lwp, &wstat);
3032 }
3033 }
3034 }
3035
3036 unsuspend_all_lwps (NULL);
3037
3038 stabilizing_threads = 0;
3039
3040 current_thread = saved_thread;
3041
3042 if (debug_threads)
3043 {
3044 thread_stuck = find_thread (stuck_in_jump_pad_callback);
3045
3046 if (thread_stuck != NULL)
3047 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
3048 lwpid_of (thread_stuck));
3049 }
3050 }
3051
3052 /* Convenience function that is called when the kernel reports an
3053 event that is not passed out to GDB. */
3054
3055 static ptid_t
3056 ignore_event (struct target_waitstatus *ourstatus)
3057 {
3058 /* If we got an event, there may still be others, as a single
3059 SIGCHLD can indicate more than one child stopped. This forces
3060 another target_wait call. */
3061 async_file_mark ();
3062
3063 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3064 return null_ptid;
3065 }
3066
3067 /* Convenience function that is called when the kernel reports an exit
3068 event. This decides whether to report the event to GDB as a
3069 process exit event, a thread exit event, or to suppress the
3070 event. */
3071
3072 static ptid_t
3073 filter_exit_event (struct lwp_info *event_child,
3074 struct target_waitstatus *ourstatus)
3075 {
3076 struct thread_info *thread = get_lwp_thread (event_child);
3077 ptid_t ptid = ptid_of (thread);
3078
3079 if (!last_thread_of_process_p (pid_of (thread)))
3080 {
3081 if (report_thread_events)
3082 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
3083 else
3084 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3085
3086 delete_lwp (event_child);
3087 }
3088 return ptid;
3089 }
3090
3091 /* Returns 1 if GDB is interested in any event_child syscalls. */
3092
3093 static int
3094 gdb_catching_syscalls_p (struct lwp_info *event_child)
3095 {
3096 struct thread_info *thread = get_lwp_thread (event_child);
3097 struct process_info *proc = get_thread_process (thread);
3098
3099 return !proc->syscalls_to_catch.empty ();
3100 }
3101
3102 /* Returns 1 if GDB is interested in the event_child syscall.
3103 Only to be called when stopped reason is SYSCALL_SIGTRAP. */
3104
3105 static int
3106 gdb_catch_this_syscall_p (struct lwp_info *event_child)
3107 {
3108 int sysno;
3109 struct thread_info *thread = get_lwp_thread (event_child);
3110 struct process_info *proc = get_thread_process (thread);
3111
3112 if (proc->syscalls_to_catch.empty ())
3113 return 0;
3114
3115 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
3116 return 1;
3117
3118 get_syscall_trapinfo (event_child, &sysno);
3119
3120 for (int iter : proc->syscalls_to_catch)
3121 if (iter == sysno)
3122 return 1;
3123
3124 return 0;
3125 }
3126
3127 /* Wait for process, returns status. */
3128
3129 static ptid_t
3130 linux_wait_1 (ptid_t ptid,
3131 struct target_waitstatus *ourstatus, int target_options)
3132 {
3133 int w;
3134 struct lwp_info *event_child;
3135 int options;
3136 int pid;
3137 int step_over_finished;
3138 int bp_explains_trap;
3139 int maybe_internal_trap;
3140 int report_to_gdb;
3141 int trace_event;
3142 int in_step_range;
3143 int any_resumed;
3144
3145 if (debug_threads)
3146 {
3147 debug_enter ();
3148 debug_printf ("linux_wait_1: [%s]\n", target_pid_to_str (ptid));
3149 }
3150
3151 /* Translate generic target options into linux options. */
3152 options = __WALL;
3153 if (target_options & TARGET_WNOHANG)
3154 options |= WNOHANG;
3155
3156 bp_explains_trap = 0;
3157 trace_event = 0;
3158 in_step_range = 0;
3159 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3160
3161 auto status_pending_p_any = [&] (thread_info *thread)
3162 {
3163 return status_pending_p_callback (thread, minus_one_ptid);
3164 };
3165
3166 auto not_stopped = [&] (thread_info *thread)
3167 {
3168 return not_stopped_callback (thread, minus_one_ptid);
3169 };
3170
3171 /* Find a resumed LWP, if any. */
3172 if (find_thread (status_pending_p_any) != NULL)
3173 any_resumed = 1;
3174 else if (find_thread (not_stopped) != NULL)
3175 any_resumed = 1;
3176 else
3177 any_resumed = 0;
3178
3179 if (ptid_equal (step_over_bkpt, null_ptid))
3180 pid = linux_wait_for_event (ptid, &w, options);
3181 else
3182 {
3183 if (debug_threads)
3184 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3185 target_pid_to_str (step_over_bkpt));
3186 pid = linux_wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3187 }
3188
3189 if (pid == 0 || (pid == -1 && !any_resumed))
3190 {
3191 gdb_assert (target_options & TARGET_WNOHANG);
3192
3193 if (debug_threads)
3194 {
3195 debug_printf ("linux_wait_1 ret = null_ptid, "
3196 "TARGET_WAITKIND_IGNORE\n");
3197 debug_exit ();
3198 }
3199
3200 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3201 return null_ptid;
3202 }
3203 else if (pid == -1)
3204 {
3205 if (debug_threads)
3206 {
3207 debug_printf ("linux_wait_1 ret = null_ptid, "
3208 "TARGET_WAITKIND_NO_RESUMED\n");
3209 debug_exit ();
3210 }
3211
3212 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3213 return null_ptid;
3214 }
3215
3216 event_child = get_thread_lwp (current_thread);
3217
3218 /* linux_wait_for_event only returns an exit status for the last
3219 child of a process. Report it. */
3220 if (WIFEXITED (w) || WIFSIGNALED (w))
3221 {
3222 if (WIFEXITED (w))
3223 {
3224 ourstatus->kind = TARGET_WAITKIND_EXITED;
3225 ourstatus->value.integer = WEXITSTATUS (w);
3226
3227 if (debug_threads)
3228 {
3229 debug_printf ("linux_wait_1 ret = %s, exited with "
3230 "retcode %d\n",
3231 target_pid_to_str (ptid_of (current_thread)),
3232 WEXITSTATUS (w));
3233 debug_exit ();
3234 }
3235 }
3236 else
3237 {
3238 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3239 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3240
3241 if (debug_threads)
3242 {
3243 debug_printf ("linux_wait_1 ret = %s, terminated with "
3244 "signal %d\n",
3245 target_pid_to_str (ptid_of (current_thread)),
3246 WTERMSIG (w));
3247 debug_exit ();
3248 }
3249 }
3250
3251 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3252 return filter_exit_event (event_child, ourstatus);
3253
3254 return ptid_of (current_thread);
3255 }
3256
3257 /* If step-over executes a breakpoint instruction, in the case of a
3258 hardware single step it means a gdb/gdbserver breakpoint had been
3259 planted on top of a permanent breakpoint, in the case of a software
3260 single step it may just mean that gdbserver hit the reinsert breakpoint.
3261 The PC has been adjusted by save_stop_reason to point at
3262 the breakpoint address.
3263 So in the case of the hardware single step advance the PC manually
3264 past the breakpoint and in the case of software single step advance only
3265 if it's not the single_step_breakpoint we are hitting.
3266 This avoids that a program would keep trapping a permanent breakpoint
3267 forever. */
3268 if (!ptid_equal (step_over_bkpt, null_ptid)
3269 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3270 && (event_child->stepping
3271 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3272 {
3273 int increment_pc = 0;
3274 int breakpoint_kind = 0;
3275 CORE_ADDR stop_pc = event_child->stop_pc;
3276
3277 breakpoint_kind =
3278 the_target->breakpoint_kind_from_current_state (&stop_pc);
3279 the_target->sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3280
3281 if (debug_threads)
3282 {
3283 debug_printf ("step-over for %s executed software breakpoint\n",
3284 target_pid_to_str (ptid_of (current_thread)));
3285 }
3286
3287 if (increment_pc != 0)
3288 {
3289 struct regcache *regcache
3290 = get_thread_regcache (current_thread, 1);
3291
3292 event_child->stop_pc += increment_pc;
3293 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3294
3295 if (!(*the_low_target.breakpoint_at) (event_child->stop_pc))
3296 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3297 }
3298 }
3299
3300 /* If this event was not handled before, and is not a SIGTRAP, we
3301 report it. SIGILL and SIGSEGV are also treated as traps in case
3302 a breakpoint is inserted at the current PC. If this target does
3303 not support internal breakpoints at all, we also report the
3304 SIGTRAP without further processing; it's of no concern to us. */
3305 maybe_internal_trap
3306 = (supports_breakpoints ()
3307 && (WSTOPSIG (w) == SIGTRAP
3308 || ((WSTOPSIG (w) == SIGILL
3309 || WSTOPSIG (w) == SIGSEGV)
3310 && (*the_low_target.breakpoint_at) (event_child->stop_pc))));
3311
3312 if (maybe_internal_trap)
3313 {
3314 /* Handle anything that requires bookkeeping before deciding to
3315 report the event or continue waiting. */
3316
3317 /* First check if we can explain the SIGTRAP with an internal
3318 breakpoint, or if we should possibly report the event to GDB.
3319 Do this before anything that may remove or insert a
3320 breakpoint. */
3321 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3322
3323 /* We have a SIGTRAP, possibly a step-over dance has just
3324 finished. If so, tweak the state machine accordingly,
3325 reinsert breakpoints and delete any single-step
3326 breakpoints. */
3327 step_over_finished = finish_step_over (event_child);
3328
3329 /* Now invoke the callbacks of any internal breakpoints there. */
3330 check_breakpoints (event_child->stop_pc);
3331
3332 /* Handle tracepoint data collecting. This may overflow the
3333 trace buffer, and cause a tracing stop, removing
3334 breakpoints. */
3335 trace_event = handle_tracepoints (event_child);
3336
3337 if (bp_explains_trap)
3338 {
3339 if (debug_threads)
3340 debug_printf ("Hit a gdbserver breakpoint.\n");
3341 }
3342 }
3343 else
3344 {
3345 /* We have some other signal, possibly a step-over dance was in
3346 progress, and it should be cancelled too. */
3347 step_over_finished = finish_step_over (event_child);
3348 }
3349
3350 /* We have all the data we need. Either report the event to GDB, or
3351 resume threads and keep waiting for more. */
3352
3353 /* If we're collecting a fast tracepoint, finish the collection and
3354 move out of the jump pad before delivering a signal. See
3355 linux_stabilize_threads. */
3356
3357 if (WIFSTOPPED (w)
3358 && WSTOPSIG (w) != SIGTRAP
3359 && supports_fast_tracepoints ()
3360 && agent_loaded_p ())
3361 {
3362 if (debug_threads)
3363 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3364 "to defer or adjust it.\n",
3365 WSTOPSIG (w), lwpid_of (current_thread));
3366
3367 /* Allow debugging the jump pad itself. */
3368 if (current_thread->last_resume_kind != resume_step
3369 && maybe_move_out_of_jump_pad (event_child, &w))
3370 {
3371 enqueue_one_deferred_signal (event_child, &w);
3372
3373 if (debug_threads)
3374 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3375 WSTOPSIG (w), lwpid_of (current_thread));
3376
3377 linux_resume_one_lwp (event_child, 0, 0, NULL);
3378
3379 if (debug_threads)
3380 debug_exit ();
3381 return ignore_event (ourstatus);
3382 }
3383 }
3384
3385 if (event_child->collecting_fast_tracepoint
3386 != fast_tpoint_collect_result::not_collecting)
3387 {
3388 if (debug_threads)
3389 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3390 "Check if we're already there.\n",
3391 lwpid_of (current_thread),
3392 (int) event_child->collecting_fast_tracepoint);
3393
3394 trace_event = 1;
3395
3396 event_child->collecting_fast_tracepoint
3397 = linux_fast_tracepoint_collecting (event_child, NULL);
3398
3399 if (event_child->collecting_fast_tracepoint
3400 != fast_tpoint_collect_result::before_insn)
3401 {
3402 /* No longer need this breakpoint. */
3403 if (event_child->exit_jump_pad_bkpt != NULL)
3404 {
3405 if (debug_threads)
3406 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3407 "stopping all threads momentarily.\n");
3408
3409 /* Other running threads could hit this breakpoint.
3410 We don't handle moribund locations like GDB does,
3411 instead we always pause all threads when removing
3412 breakpoints, so that any step-over or
3413 decr_pc_after_break adjustment is always taken
3414 care of while the breakpoint is still
3415 inserted. */
3416 stop_all_lwps (1, event_child);
3417
3418 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3419 event_child->exit_jump_pad_bkpt = NULL;
3420
3421 unstop_all_lwps (1, event_child);
3422
3423 gdb_assert (event_child->suspended >= 0);
3424 }
3425 }
3426
3427 if (event_child->collecting_fast_tracepoint
3428 == fast_tpoint_collect_result::not_collecting)
3429 {
3430 if (debug_threads)
3431 debug_printf ("fast tracepoint finished "
3432 "collecting successfully.\n");
3433
3434 /* We may have a deferred signal to report. */
3435 if (dequeue_one_deferred_signal (event_child, &w))
3436 {
3437 if (debug_threads)
3438 debug_printf ("dequeued one signal.\n");
3439 }
3440 else
3441 {
3442 if (debug_threads)
3443 debug_printf ("no deferred signals.\n");
3444
3445 if (stabilizing_threads)
3446 {
3447 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3448 ourstatus->value.sig = GDB_SIGNAL_0;
3449
3450 if (debug_threads)
3451 {
3452 debug_printf ("linux_wait_1 ret = %s, stopped "
3453 "while stabilizing threads\n",
3454 target_pid_to_str (ptid_of (current_thread)));
3455 debug_exit ();
3456 }
3457
3458 return ptid_of (current_thread);
3459 }
3460 }
3461 }
3462 }
3463
3464 /* Check whether GDB would be interested in this event. */
3465
3466 /* Check if GDB is interested in this syscall. */
3467 if (WIFSTOPPED (w)
3468 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3469 && !gdb_catch_this_syscall_p (event_child))
3470 {
3471 if (debug_threads)
3472 {
3473 debug_printf ("Ignored syscall for LWP %ld.\n",
3474 lwpid_of (current_thread));
3475 }
3476
3477 linux_resume_one_lwp (event_child, event_child->stepping,
3478 0, NULL);
3479
3480 if (debug_threads)
3481 debug_exit ();
3482 return ignore_event (ourstatus);
3483 }
3484
3485 /* If GDB is not interested in this signal, don't stop other
3486 threads, and don't report it to GDB. Just resume the inferior
3487 right away. We do this for threading-related signals as well as
3488 any that GDB specifically requested we ignore. But never ignore
3489 SIGSTOP if we sent it ourselves, and do not ignore signals when
3490 stepping - they may require special handling to skip the signal
3491 handler. Also never ignore signals that could be caused by a
3492 breakpoint. */
3493 if (WIFSTOPPED (w)
3494 && current_thread->last_resume_kind != resume_step
3495 && (
3496 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3497 (current_process ()->priv->thread_db != NULL
3498 && (WSTOPSIG (w) == __SIGRTMIN
3499 || WSTOPSIG (w) == __SIGRTMIN + 1))
3500 ||
3501 #endif
3502 (pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3503 && !(WSTOPSIG (w) == SIGSTOP
3504 && current_thread->last_resume_kind == resume_stop)
3505 && !linux_wstatus_maybe_breakpoint (w))))
3506 {
3507 siginfo_t info, *info_p;
3508
3509 if (debug_threads)
3510 debug_printf ("Ignored signal %d for LWP %ld.\n",
3511 WSTOPSIG (w), lwpid_of (current_thread));
3512
3513 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3514 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3515 info_p = &info;
3516 else
3517 info_p = NULL;
3518
3519 if (step_over_finished)
3520 {
3521 /* We cancelled this thread's step-over above. We still
3522 need to unsuspend all other LWPs, and set them back
3523 running again while the signal handler runs. */
3524 unsuspend_all_lwps (event_child);
3525
3526 /* Enqueue the pending signal info so that proceed_all_lwps
3527 doesn't lose it. */
3528 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3529
3530 proceed_all_lwps ();
3531 }
3532 else
3533 {
3534 linux_resume_one_lwp (event_child, event_child->stepping,
3535 WSTOPSIG (w), info_p);
3536 }
3537
3538 if (debug_threads)
3539 debug_exit ();
3540
3541 return ignore_event (ourstatus);
3542 }
3543
3544 /* Note that all addresses are always "out of the step range" when
3545 there's no range to begin with. */
3546 in_step_range = lwp_in_step_range (event_child);
3547
3548 /* If GDB wanted this thread to single step, and the thread is out
3549 of the step range, we always want to report the SIGTRAP, and let
3550 GDB handle it. Watchpoints should always be reported. So should
3551 signals we can't explain. A SIGTRAP we can't explain could be a
3552 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3553 do, we're be able to handle GDB breakpoints on top of internal
3554 breakpoints, by handling the internal breakpoint and still
3555 reporting the event to GDB. If we don't, we're out of luck, GDB
3556 won't see the breakpoint hit. If we see a single-step event but
3557 the thread should be continuing, don't pass the trap to gdb.
3558 That indicates that we had previously finished a single-step but
3559 left the single-step pending -- see
3560 complete_ongoing_step_over. */
3561 report_to_gdb = (!maybe_internal_trap
3562 || (current_thread->last_resume_kind == resume_step
3563 && !in_step_range)
3564 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3565 || (!in_step_range
3566 && !bp_explains_trap
3567 && !trace_event
3568 && !step_over_finished
3569 && !(current_thread->last_resume_kind == resume_continue
3570 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3571 || (gdb_breakpoint_here (event_child->stop_pc)
3572 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3573 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3574 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3575
3576 run_breakpoint_commands (event_child->stop_pc);
3577
3578 /* We found no reason GDB would want us to stop. We either hit one
3579 of our own breakpoints, or finished an internal step GDB
3580 shouldn't know about. */
3581 if (!report_to_gdb)
3582 {
3583 if (debug_threads)
3584 {
3585 if (bp_explains_trap)
3586 debug_printf ("Hit a gdbserver breakpoint.\n");
3587 if (step_over_finished)
3588 debug_printf ("Step-over finished.\n");
3589 if (trace_event)
3590 debug_printf ("Tracepoint event.\n");
3591 if (lwp_in_step_range (event_child))
3592 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3593 paddress (event_child->stop_pc),
3594 paddress (event_child->step_range_start),
3595 paddress (event_child->step_range_end));
3596 }
3597
3598 /* We're not reporting this breakpoint to GDB, so apply the
3599 decr_pc_after_break adjustment to the inferior's regcache
3600 ourselves. */
3601
3602 if (the_low_target.set_pc != NULL)
3603 {
3604 struct regcache *regcache
3605 = get_thread_regcache (current_thread, 1);
3606 (*the_low_target.set_pc) (regcache, event_child->stop_pc);
3607 }
3608
3609 if (step_over_finished)
3610 {
3611 /* If we have finished stepping over a breakpoint, we've
3612 stopped and suspended all LWPs momentarily except the
3613 stepping one. This is where we resume them all again.
3614 We're going to keep waiting, so use proceed, which
3615 handles stepping over the next breakpoint. */
3616 unsuspend_all_lwps (event_child);
3617 }
3618 else
3619 {
3620 /* Remove the single-step breakpoints if any. Note that
3621 there isn't single-step breakpoint if we finished stepping
3622 over. */
3623 if (can_software_single_step ()
3624 && has_single_step_breakpoints (current_thread))
3625 {
3626 stop_all_lwps (0, event_child);
3627 delete_single_step_breakpoints (current_thread);
3628 unstop_all_lwps (0, event_child);
3629 }
3630 }
3631
3632 if (debug_threads)
3633 debug_printf ("proceeding all threads.\n");
3634 proceed_all_lwps ();
3635
3636 if (debug_threads)
3637 debug_exit ();
3638
3639 return ignore_event (ourstatus);
3640 }
3641
3642 if (debug_threads)
3643 {
3644 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3645 {
3646 std::string str
3647 = target_waitstatus_to_string (&event_child->waitstatus);
3648
3649 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3650 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3651 }
3652 if (current_thread->last_resume_kind == resume_step)
3653 {
3654 if (event_child->step_range_start == event_child->step_range_end)
3655 debug_printf ("GDB wanted to single-step, reporting event.\n");
3656 else if (!lwp_in_step_range (event_child))
3657 debug_printf ("Out of step range, reporting event.\n");
3658 }
3659 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3660 debug_printf ("Stopped by watchpoint.\n");
3661 else if (gdb_breakpoint_here (event_child->stop_pc))
3662 debug_printf ("Stopped by GDB breakpoint.\n");
3663 if (debug_threads)
3664 debug_printf ("Hit a non-gdbserver trap event.\n");
3665 }
3666
3667 /* Alright, we're going to report a stop. */
3668
3669 /* Remove single-step breakpoints. */
3670 if (can_software_single_step ())
3671 {
3672 /* Remove single-step breakpoints or not. It it is true, stop all
3673 lwps, so that other threads won't hit the breakpoint in the
3674 staled memory. */
3675 int remove_single_step_breakpoints_p = 0;
3676
3677 if (non_stop)
3678 {
3679 remove_single_step_breakpoints_p
3680 = has_single_step_breakpoints (current_thread);
3681 }
3682 else
3683 {
3684 /* In all-stop, a stop reply cancels all previous resume
3685 requests. Delete all single-step breakpoints. */
3686
3687 find_thread ([&] (thread_info *thread) {
3688 if (has_single_step_breakpoints (thread))
3689 {
3690 remove_single_step_breakpoints_p = 1;
3691 return true;
3692 }
3693
3694 return false;
3695 });
3696 }
3697
3698 if (remove_single_step_breakpoints_p)
3699 {
3700 /* If we remove single-step breakpoints from memory, stop all lwps,
3701 so that other threads won't hit the breakpoint in the staled
3702 memory. */
3703 stop_all_lwps (0, event_child);
3704
3705 if (non_stop)
3706 {
3707 gdb_assert (has_single_step_breakpoints (current_thread));
3708 delete_single_step_breakpoints (current_thread);
3709 }
3710 else
3711 {
3712 for_each_thread ([] (thread_info *thread){
3713 if (has_single_step_breakpoints (thread))
3714 delete_single_step_breakpoints (thread);
3715 });
3716 }
3717
3718 unstop_all_lwps (0, event_child);
3719 }
3720 }
3721
3722 if (!stabilizing_threads)
3723 {
3724 /* In all-stop, stop all threads. */
3725 if (!non_stop)
3726 stop_all_lwps (0, NULL);
3727
3728 if (step_over_finished)
3729 {
3730 if (!non_stop)
3731 {
3732 /* If we were doing a step-over, all other threads but
3733 the stepping one had been paused in start_step_over,
3734 with their suspend counts incremented. We don't want
3735 to do a full unstop/unpause, because we're in
3736 all-stop mode (so we want threads stopped), but we
3737 still need to unsuspend the other threads, to
3738 decrement their `suspended' count back. */
3739 unsuspend_all_lwps (event_child);
3740 }
3741 else
3742 {
3743 /* If we just finished a step-over, then all threads had
3744 been momentarily paused. In all-stop, that's fine,
3745 we want threads stopped by now anyway. In non-stop,
3746 we need to re-resume threads that GDB wanted to be
3747 running. */
3748 unstop_all_lwps (1, event_child);
3749 }
3750 }
3751
3752 /* If we're not waiting for a specific LWP, choose an event LWP
3753 from among those that have had events. Giving equal priority
3754 to all LWPs that have had events helps prevent
3755 starvation. */
3756 if (ptid_equal (ptid, minus_one_ptid))
3757 {
3758 event_child->status_pending_p = 1;
3759 event_child->status_pending = w;
3760
3761 select_event_lwp (&event_child);
3762
3763 /* current_thread and event_child must stay in sync. */
3764 current_thread = get_lwp_thread (event_child);
3765
3766 event_child->status_pending_p = 0;
3767 w = event_child->status_pending;
3768 }
3769
3770
3771 /* Stabilize threads (move out of jump pads). */
3772 if (!non_stop)
3773 stabilize_threads ();
3774 }
3775 else
3776 {
3777 /* If we just finished a step-over, then all threads had been
3778 momentarily paused. In all-stop, that's fine, we want
3779 threads stopped by now anyway. In non-stop, we need to
3780 re-resume threads that GDB wanted to be running. */
3781 if (step_over_finished)
3782 unstop_all_lwps (1, event_child);
3783 }
3784
3785 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3786 {
3787 /* If the reported event is an exit, fork, vfork or exec, let
3788 GDB know. */
3789
3790 /* Break the unreported fork relationship chain. */
3791 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3792 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3793 {
3794 event_child->fork_relative->fork_relative = NULL;
3795 event_child->fork_relative = NULL;
3796 }
3797
3798 *ourstatus = event_child->waitstatus;
3799 /* Clear the event lwp's waitstatus since we handled it already. */
3800 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3801 }
3802 else
3803 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3804
3805 /* Now that we've selected our final event LWP, un-adjust its PC if
3806 it was a software breakpoint, and the client doesn't know we can
3807 adjust the breakpoint ourselves. */
3808 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3809 && !swbreak_feature)
3810 {
3811 int decr_pc = the_low_target.decr_pc_after_break;
3812
3813 if (decr_pc != 0)
3814 {
3815 struct regcache *regcache
3816 = get_thread_regcache (current_thread, 1);
3817 (*the_low_target.set_pc) (regcache, event_child->stop_pc + decr_pc);
3818 }
3819 }
3820
3821 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3822 {
3823 get_syscall_trapinfo (event_child,
3824 &ourstatus->value.syscall_number);
3825 ourstatus->kind = event_child->syscall_state;
3826 }
3827 else if (current_thread->last_resume_kind == resume_stop
3828 && WSTOPSIG (w) == SIGSTOP)
3829 {
3830 /* A thread that has been requested to stop by GDB with vCont;t,
3831 and it stopped cleanly, so report as SIG0. The use of
3832 SIGSTOP is an implementation detail. */
3833 ourstatus->value.sig = GDB_SIGNAL_0;
3834 }
3835 else if (current_thread->last_resume_kind == resume_stop
3836 && WSTOPSIG (w) != SIGSTOP)
3837 {
3838 /* A thread that has been requested to stop by GDB with vCont;t,
3839 but, it stopped for other reasons. */
3840 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3841 }
3842 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3843 {
3844 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3845 }
3846
3847 gdb_assert (ptid_equal (step_over_bkpt, null_ptid));
3848
3849 if (debug_threads)
3850 {
3851 debug_printf ("linux_wait_1 ret = %s, %d, %d\n",
3852 target_pid_to_str (ptid_of (current_thread)),
3853 ourstatus->kind, ourstatus->value.sig);
3854 debug_exit ();
3855 }
3856
3857 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3858 return filter_exit_event (event_child, ourstatus);
3859
3860 return ptid_of (current_thread);
3861 }
3862
3863 /* Get rid of any pending event in the pipe. */
3864 static void
3865 async_file_flush (void)
3866 {
3867 int ret;
3868 char buf;
3869
3870 do
3871 ret = read (linux_event_pipe[0], &buf, 1);
3872 while (ret >= 0 || (ret == -1 && errno == EINTR));
3873 }
3874
3875 /* Put something in the pipe, so the event loop wakes up. */
3876 static void
3877 async_file_mark (void)
3878 {
3879 int ret;
3880
3881 async_file_flush ();
3882
3883 do
3884 ret = write (linux_event_pipe[1], "+", 1);
3885 while (ret == 0 || (ret == -1 && errno == EINTR));
3886
3887 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3888 be awakened anyway. */
3889 }
3890
3891 static ptid_t
3892 linux_wait (ptid_t ptid,
3893 struct target_waitstatus *ourstatus, int target_options)
3894 {
3895 ptid_t event_ptid;
3896
3897 /* Flush the async file first. */
3898 if (target_is_async_p ())
3899 async_file_flush ();
3900
3901 do
3902 {
3903 event_ptid = linux_wait_1 (ptid, ourstatus, target_options);
3904 }
3905 while ((target_options & TARGET_WNOHANG) == 0
3906 && ptid_equal (event_ptid, null_ptid)
3907 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3908
3909 /* If at least one stop was reported, there may be more. A single
3910 SIGCHLD can signal more than one child stop. */
3911 if (target_is_async_p ()
3912 && (target_options & TARGET_WNOHANG) != 0
3913 && !ptid_equal (event_ptid, null_ptid))
3914 async_file_mark ();
3915
3916 return event_ptid;
3917 }
3918
3919 /* Send a signal to an LWP. */
3920
3921 static int
3922 kill_lwp (unsigned long lwpid, int signo)
3923 {
3924 int ret;
3925
3926 errno = 0;
3927 ret = syscall (__NR_tkill, lwpid, signo);
3928 if (errno == ENOSYS)
3929 {
3930 /* If tkill fails, then we are not using nptl threads, a
3931 configuration we no longer support. */
3932 perror_with_name (("tkill"));
3933 }
3934 return ret;
3935 }
3936
3937 void
3938 linux_stop_lwp (struct lwp_info *lwp)
3939 {
3940 send_sigstop (lwp);
3941 }
3942
3943 static void
3944 send_sigstop (struct lwp_info *lwp)
3945 {
3946 int pid;
3947
3948 pid = lwpid_of (get_lwp_thread (lwp));
3949
3950 /* If we already have a pending stop signal for this process, don't
3951 send another. */
3952 if (lwp->stop_expected)
3953 {
3954 if (debug_threads)
3955 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3956
3957 return;
3958 }
3959
3960 if (debug_threads)
3961 debug_printf ("Sending sigstop to lwp %d\n", pid);
3962
3963 lwp->stop_expected = 1;
3964 kill_lwp (pid, SIGSTOP);
3965 }
3966
3967 static int
3968 send_sigstop_callback (thread_info *thread, void *except)
3969 {
3970 struct lwp_info *lwp = get_thread_lwp (thread);
3971
3972 /* Ignore EXCEPT. */
3973 if (lwp == except)
3974 return 0;
3975
3976 if (lwp->stopped)
3977 return 0;
3978
3979 send_sigstop (lwp);
3980 return 0;
3981 }
3982
3983 /* Increment the suspend count of an LWP, and stop it, if not stopped
3984 yet. */
3985 static int
3986 suspend_and_send_sigstop_callback (thread_info *thread, void *except)
3987 {
3988 struct lwp_info *lwp = get_thread_lwp (thread);
3989
3990 /* Ignore EXCEPT. */
3991 if (lwp == except)
3992 return 0;
3993
3994 lwp_suspended_inc (lwp);
3995
3996 return send_sigstop_callback (thread, except);
3997 }
3998
3999 static void
4000 mark_lwp_dead (struct lwp_info *lwp, int wstat)
4001 {
4002 /* Store the exit status for later. */
4003 lwp->status_pending_p = 1;
4004 lwp->status_pending = wstat;
4005
4006 /* Store in waitstatus as well, as there's nothing else to process
4007 for this event. */
4008 if (WIFEXITED (wstat))
4009 {
4010 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
4011 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
4012 }
4013 else if (WIFSIGNALED (wstat))
4014 {
4015 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
4016 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
4017 }
4018
4019 /* Prevent trying to stop it. */
4020 lwp->stopped = 1;
4021
4022 /* No further stops are expected from a dead lwp. */
4023 lwp->stop_expected = 0;
4024 }
4025
4026 /* Return true if LWP has exited already, and has a pending exit event
4027 to report to GDB. */
4028
4029 static int
4030 lwp_is_marked_dead (struct lwp_info *lwp)
4031 {
4032 return (lwp->status_pending_p
4033 && (WIFEXITED (lwp->status_pending)
4034 || WIFSIGNALED (lwp->status_pending)));
4035 }
4036
4037 /* Wait for all children to stop for the SIGSTOPs we just queued. */
4038
4039 static void
4040 wait_for_sigstop (void)
4041 {
4042 struct thread_info *saved_thread;
4043 ptid_t saved_tid;
4044 int wstat;
4045 int ret;
4046
4047 saved_thread = current_thread;
4048 if (saved_thread != NULL)
4049 saved_tid = saved_thread->id;
4050 else
4051 saved_tid = null_ptid; /* avoid bogus unused warning */
4052
4053 if (debug_threads)
4054 debug_printf ("wait_for_sigstop: pulling events\n");
4055
4056 /* Passing NULL_PTID as filter indicates we want all events to be
4057 left pending. Eventually this returns when there are no
4058 unwaited-for children left. */
4059 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4060 &wstat, __WALL);
4061 gdb_assert (ret == -1);
4062
4063 if (saved_thread == NULL || linux_thread_alive (saved_tid))
4064 current_thread = saved_thread;
4065 else
4066 {
4067 if (debug_threads)
4068 debug_printf ("Previously current thread died.\n");
4069
4070 /* We can't change the current inferior behind GDB's back,
4071 otherwise, a subsequent command may apply to the wrong
4072 process. */
4073 current_thread = NULL;
4074 }
4075 }
4076
4077 /* Returns true if THREAD is stopped in a jump pad, and we can't
4078 move it out, because we need to report the stop event to GDB. For
4079 example, if the user puts a breakpoint in the jump pad, it's
4080 because she wants to debug it. */
4081
4082 static bool
4083 stuck_in_jump_pad_callback (thread_info *thread)
4084 {
4085 struct lwp_info *lwp = get_thread_lwp (thread);
4086
4087 if (lwp->suspended != 0)
4088 {
4089 internal_error (__FILE__, __LINE__,
4090 "LWP %ld is suspended, suspended=%d\n",
4091 lwpid_of (thread), lwp->suspended);
4092 }
4093 gdb_assert (lwp->stopped);
4094
4095 /* Allow debugging the jump pad, gdb_collect, etc.. */
4096 return (supports_fast_tracepoints ()
4097 && agent_loaded_p ()
4098 && (gdb_breakpoint_here (lwp->stop_pc)
4099 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
4100 || thread->last_resume_kind == resume_step)
4101 && (linux_fast_tracepoint_collecting (lwp, NULL)
4102 != fast_tpoint_collect_result::not_collecting));
4103 }
4104
4105 static void
4106 move_out_of_jump_pad_callback (thread_info *thread)
4107 {
4108 struct thread_info *saved_thread;
4109 struct lwp_info *lwp = get_thread_lwp (thread);
4110 int *wstat;
4111
4112 if (lwp->suspended != 0)
4113 {
4114 internal_error (__FILE__, __LINE__,
4115 "LWP %ld is suspended, suspended=%d\n",
4116 lwpid_of (thread), lwp->suspended);
4117 }
4118 gdb_assert (lwp->stopped);
4119
4120 /* For gdb_breakpoint_here. */
4121 saved_thread = current_thread;
4122 current_thread = thread;
4123
4124 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
4125
4126 /* Allow debugging the jump pad, gdb_collect, etc. */
4127 if (!gdb_breakpoint_here (lwp->stop_pc)
4128 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
4129 && thread->last_resume_kind != resume_step
4130 && maybe_move_out_of_jump_pad (lwp, wstat))
4131 {
4132 if (debug_threads)
4133 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
4134 lwpid_of (thread));
4135
4136 if (wstat)
4137 {
4138 lwp->status_pending_p = 0;
4139 enqueue_one_deferred_signal (lwp, wstat);
4140
4141 if (debug_threads)
4142 debug_printf ("Signal %d for LWP %ld deferred "
4143 "(in jump pad)\n",
4144 WSTOPSIG (*wstat), lwpid_of (thread));
4145 }
4146
4147 linux_resume_one_lwp (lwp, 0, 0, NULL);
4148 }
4149 else
4150 lwp_suspended_inc (lwp);
4151
4152 current_thread = saved_thread;
4153 }
4154
4155 static int
4156 lwp_running (thread_info *thread, void *data)
4157 {
4158 struct lwp_info *lwp = get_thread_lwp (thread);
4159
4160 if (lwp_is_marked_dead (lwp))
4161 return 0;
4162 if (lwp->stopped)
4163 return 0;
4164 return 1;
4165 }
4166
4167 /* Stop all lwps that aren't stopped yet, except EXCEPT, if not NULL.
4168 If SUSPEND, then also increase the suspend count of every LWP,
4169 except EXCEPT. */
4170
4171 static void
4172 stop_all_lwps (int suspend, struct lwp_info *except)
4173 {
4174 /* Should not be called recursively. */
4175 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4176
4177 if (debug_threads)
4178 {
4179 debug_enter ();
4180 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4181 suspend ? "stop-and-suspend" : "stop",
4182 except != NULL
4183 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4184 : "none");
4185 }
4186
4187 stopping_threads = (suspend
4188 ? STOPPING_AND_SUSPENDING_THREADS
4189 : STOPPING_THREADS);
4190
4191 if (suspend)
4192 find_inferior (&all_threads, suspend_and_send_sigstop_callback, except);
4193 else
4194 find_inferior (&all_threads, send_sigstop_callback, except);
4195 wait_for_sigstop ();
4196 stopping_threads = NOT_STOPPING_THREADS;
4197
4198 if (debug_threads)
4199 {
4200 debug_printf ("stop_all_lwps done, setting stopping_threads "
4201 "back to !stopping\n");
4202 debug_exit ();
4203 }
4204 }
4205
4206 /* Enqueue one signal in the chain of signals which need to be
4207 delivered to this process on next resume. */
4208
4209 static void
4210 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4211 {
4212 struct pending_signals *p_sig = XNEW (struct pending_signals);
4213
4214 p_sig->prev = lwp->pending_signals;
4215 p_sig->signal = signal;
4216 if (info == NULL)
4217 memset (&p_sig->info, 0, sizeof (siginfo_t));
4218 else
4219 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4220 lwp->pending_signals = p_sig;
4221 }
4222
4223 /* Install breakpoints for software single stepping. */
4224
4225 static void
4226 install_software_single_step_breakpoints (struct lwp_info *lwp)
4227 {
4228 struct thread_info *thread = get_lwp_thread (lwp);
4229 struct regcache *regcache = get_thread_regcache (thread, 1);
4230 struct cleanup *old_chain = make_cleanup_restore_current_thread ();
4231
4232 current_thread = thread;
4233 std::vector<CORE_ADDR> next_pcs = the_low_target.get_next_pcs (regcache);
4234
4235 for (CORE_ADDR pc : next_pcs)
4236 set_single_step_breakpoint (pc, current_ptid);
4237
4238 do_cleanups (old_chain);
4239 }
4240
4241 /* Single step via hardware or software single step.
4242 Return 1 if hardware single stepping, 0 if software single stepping
4243 or can't single step. */
4244
4245 static int
4246 single_step (struct lwp_info* lwp)
4247 {
4248 int step = 0;
4249
4250 if (can_hardware_single_step ())
4251 {
4252 step = 1;
4253 }
4254 else if (can_software_single_step ())
4255 {
4256 install_software_single_step_breakpoints (lwp);
4257 step = 0;
4258 }
4259 else
4260 {
4261 if (debug_threads)
4262 debug_printf ("stepping is not implemented on this target");
4263 }
4264
4265 return step;
4266 }
4267
4268 /* The signal can be delivered to the inferior if we are not trying to
4269 finish a fast tracepoint collect. Since signal can be delivered in
4270 the step-over, the program may go to signal handler and trap again
4271 after return from the signal handler. We can live with the spurious
4272 double traps. */
4273
4274 static int
4275 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4276 {
4277 return (lwp->collecting_fast_tracepoint
4278 == fast_tpoint_collect_result::not_collecting);
4279 }
4280
4281 /* Resume execution of LWP. If STEP is nonzero, single-step it. If
4282 SIGNAL is nonzero, give it that signal. */
4283
4284 static void
4285 linux_resume_one_lwp_throw (struct lwp_info *lwp,
4286 int step, int signal, siginfo_t *info)
4287 {
4288 struct thread_info *thread = get_lwp_thread (lwp);
4289 struct thread_info *saved_thread;
4290 int ptrace_request;
4291 struct process_info *proc = get_thread_process (thread);
4292
4293 /* Note that target description may not be initialised
4294 (proc->tdesc == NULL) at this point because the program hasn't
4295 stopped at the first instruction yet. It means GDBserver skips
4296 the extra traps from the wrapper program (see option --wrapper).
4297 Code in this function that requires register access should be
4298 guarded by proc->tdesc == NULL or something else. */
4299
4300 if (lwp->stopped == 0)
4301 return;
4302
4303 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4304
4305 fast_tpoint_collect_result fast_tp_collecting
4306 = lwp->collecting_fast_tracepoint;
4307
4308 gdb_assert (!stabilizing_threads
4309 || (fast_tp_collecting
4310 != fast_tpoint_collect_result::not_collecting));
4311
4312 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4313 user used the "jump" command, or "set $pc = foo"). */
4314 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4315 {
4316 /* Collecting 'while-stepping' actions doesn't make sense
4317 anymore. */
4318 release_while_stepping_state_list (thread);
4319 }
4320
4321 /* If we have pending signals or status, and a new signal, enqueue the
4322 signal. Also enqueue the signal if it can't be delivered to the
4323 inferior right now. */
4324 if (signal != 0
4325 && (lwp->status_pending_p
4326 || lwp->pending_signals != NULL
4327 || !lwp_signal_can_be_delivered (lwp)))
4328 {
4329 enqueue_pending_signal (lwp, signal, info);
4330
4331 /* Postpone any pending signal. It was enqueued above. */
4332 signal = 0;
4333 }
4334
4335 if (lwp->status_pending_p)
4336 {
4337 if (debug_threads)
4338 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4339 " has pending status\n",
4340 lwpid_of (thread), step ? "step" : "continue",
4341 lwp->stop_expected ? "expected" : "not expected");
4342 return;
4343 }
4344
4345 saved_thread = current_thread;
4346 current_thread = thread;
4347
4348 /* This bit needs some thinking about. If we get a signal that
4349 we must report while a single-step reinsert is still pending,
4350 we often end up resuming the thread. It might be better to
4351 (ew) allow a stack of pending events; then we could be sure that
4352 the reinsert happened right away and not lose any signals.
4353
4354 Making this stack would also shrink the window in which breakpoints are
4355 uninserted (see comment in linux_wait_for_lwp) but not enough for
4356 complete correctness, so it won't solve that problem. It may be
4357 worthwhile just to solve this one, however. */
4358 if (lwp->bp_reinsert != 0)
4359 {
4360 if (debug_threads)
4361 debug_printf (" pending reinsert at 0x%s\n",
4362 paddress (lwp->bp_reinsert));
4363
4364 if (can_hardware_single_step ())
4365 {
4366 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4367 {
4368 if (step == 0)
4369 warning ("BAD - reinserting but not stepping.");
4370 if (lwp->suspended)
4371 warning ("BAD - reinserting and suspended(%d).",
4372 lwp->suspended);
4373 }
4374 }
4375
4376 step = maybe_hw_step (thread);
4377 }
4378
4379 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4380 {
4381 if (debug_threads)
4382 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4383 " (exit-jump-pad-bkpt)\n",
4384 lwpid_of (thread));
4385 }
4386 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4387 {
4388 if (debug_threads)
4389 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4390 " single-stepping\n",
4391 lwpid_of (thread));
4392
4393 if (can_hardware_single_step ())
4394 step = 1;
4395 else
4396 {
4397 internal_error (__FILE__, __LINE__,
4398 "moving out of jump pad single-stepping"
4399 " not implemented on this target");
4400 }
4401 }
4402
4403 /* If we have while-stepping actions in this thread set it stepping.
4404 If we have a signal to deliver, it may or may not be set to
4405 SIG_IGN, we don't know. Assume so, and allow collecting
4406 while-stepping into a signal handler. A possible smart thing to
4407 do would be to set an internal breakpoint at the signal return
4408 address, continue, and carry on catching this while-stepping
4409 action only when that breakpoint is hit. A future
4410 enhancement. */
4411 if (thread->while_stepping != NULL)
4412 {
4413 if (debug_threads)
4414 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4415 lwpid_of (thread));
4416
4417 step = single_step (lwp);
4418 }
4419
4420 if (proc->tdesc != NULL && the_low_target.get_pc != NULL)
4421 {
4422 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4423
4424 lwp->stop_pc = (*the_low_target.get_pc) (regcache);
4425
4426 if (debug_threads)
4427 {
4428 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4429 (long) lwp->stop_pc);
4430 }
4431 }
4432
4433 /* If we have pending signals, consume one if it can be delivered to
4434 the inferior. */
4435 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4436 {
4437 struct pending_signals **p_sig;
4438
4439 p_sig = &lwp->pending_signals;
4440 while ((*p_sig)->prev != NULL)
4441 p_sig = &(*p_sig)->prev;
4442
4443 signal = (*p_sig)->signal;
4444 if ((*p_sig)->info.si_signo != 0)
4445 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4446 &(*p_sig)->info);
4447
4448 free (*p_sig);
4449 *p_sig = NULL;
4450 }
4451
4452 if (debug_threads)
4453 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4454 lwpid_of (thread), step ? "step" : "continue", signal,
4455 lwp->stop_expected ? "expected" : "not expected");
4456
4457 if (the_low_target.prepare_to_resume != NULL)
4458 the_low_target.prepare_to_resume (lwp);
4459
4460 regcache_invalidate_thread (thread);
4461 errno = 0;
4462 lwp->stepping = step;
4463 if (step)
4464 ptrace_request = PTRACE_SINGLESTEP;
4465 else if (gdb_catching_syscalls_p (lwp))
4466 ptrace_request = PTRACE_SYSCALL;
4467 else
4468 ptrace_request = PTRACE_CONT;
4469 ptrace (ptrace_request,
4470 lwpid_of (thread),
4471 (PTRACE_TYPE_ARG3) 0,
4472 /* Coerce to a uintptr_t first to avoid potential gcc warning
4473 of coercing an 8 byte integer to a 4 byte pointer. */
4474 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4475
4476 current_thread = saved_thread;
4477 if (errno)
4478 perror_with_name ("resuming thread");
4479
4480 /* Successfully resumed. Clear state that no longer makes sense,
4481 and mark the LWP as running. Must not do this before resuming
4482 otherwise if that fails other code will be confused. E.g., we'd
4483 later try to stop the LWP and hang forever waiting for a stop
4484 status. Note that we must not throw after this is cleared,
4485 otherwise handle_zombie_lwp_error would get confused. */
4486 lwp->stopped = 0;
4487 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4488 }
4489
4490 /* Called when we try to resume a stopped LWP and that errors out. If
4491 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4492 or about to become), discard the error, clear any pending status
4493 the LWP may have, and return true (we'll collect the exit status
4494 soon enough). Otherwise, return false. */
4495
4496 static int
4497 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4498 {
4499 struct thread_info *thread = get_lwp_thread (lp);
4500
4501 /* If we get an error after resuming the LWP successfully, we'd
4502 confuse !T state for the LWP being gone. */
4503 gdb_assert (lp->stopped);
4504
4505 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4506 because even if ptrace failed with ESRCH, the tracee may be "not
4507 yet fully dead", but already refusing ptrace requests. In that
4508 case the tracee has 'R (Running)' state for a little bit
4509 (observed in Linux 3.18). See also the note on ESRCH in the
4510 ptrace(2) man page. Instead, check whether the LWP has any state
4511 other than ptrace-stopped. */
4512
4513 /* Don't assume anything if /proc/PID/status can't be read. */
4514 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4515 {
4516 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4517 lp->status_pending_p = 0;
4518 return 1;
4519 }
4520 return 0;
4521 }
4522
4523 /* Like linux_resume_one_lwp_throw, but no error is thrown if the LWP
4524 disappears while we try to resume it. */
4525
4526 static void
4527 linux_resume_one_lwp (struct lwp_info *lwp,
4528 int step, int signal, siginfo_t *info)
4529 {
4530 TRY
4531 {
4532 linux_resume_one_lwp_throw (lwp, step, signal, info);
4533 }
4534 CATCH (ex, RETURN_MASK_ERROR)
4535 {
4536 if (!check_ptrace_stopped_lwp_gone (lwp))
4537 throw_exception (ex);
4538 }
4539 END_CATCH
4540 }
4541
4542 /* This function is called once per thread via for_each_thread.
4543 We look up which resume request applies to THREAD and mark it with a
4544 pointer to the appropriate resume request.
4545
4546 This algorithm is O(threads * resume elements), but resume elements
4547 is small (and will remain small at least until GDB supports thread
4548 suspension). */
4549
4550 static void
4551 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4552 {
4553 struct lwp_info *lwp = get_thread_lwp (thread);
4554
4555 for (int ndx = 0; ndx < n; ndx++)
4556 {
4557 ptid_t ptid = resume[ndx].thread;
4558 if (ptid_equal (ptid, minus_one_ptid)
4559 || ptid == thread->id
4560 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4561 of PID'. */
4562 || (ptid_get_pid (ptid) == pid_of (thread)
4563 && (ptid_is_pid (ptid)
4564 || ptid_get_lwp (ptid) == -1)))
4565 {
4566 if (resume[ndx].kind == resume_stop
4567 && thread->last_resume_kind == resume_stop)
4568 {
4569 if (debug_threads)
4570 debug_printf ("already %s LWP %ld at GDB's request\n",
4571 (thread->last_status.kind
4572 == TARGET_WAITKIND_STOPPED)
4573 ? "stopped"
4574 : "stopping",
4575 lwpid_of (thread));
4576
4577 continue;
4578 }
4579
4580 /* Ignore (wildcard) resume requests for already-resumed
4581 threads. */
4582 if (resume[ndx].kind != resume_stop
4583 && thread->last_resume_kind != resume_stop)
4584 {
4585 if (debug_threads)
4586 debug_printf ("already %s LWP %ld at GDB's request\n",
4587 (thread->last_resume_kind
4588 == resume_step)
4589 ? "stepping"
4590 : "continuing",
4591 lwpid_of (thread));
4592 continue;
4593 }
4594
4595 /* Don't let wildcard resumes resume fork children that GDB
4596 does not yet know are new fork children. */
4597 if (lwp->fork_relative != NULL)
4598 {
4599 struct lwp_info *rel = lwp->fork_relative;
4600
4601 if (rel->status_pending_p
4602 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4603 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4604 {
4605 if (debug_threads)
4606 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4607 lwpid_of (thread));
4608 continue;
4609 }
4610 }
4611
4612 /* If the thread has a pending event that has already been
4613 reported to GDBserver core, but GDB has not pulled the
4614 event out of the vStopped queue yet, likewise, ignore the
4615 (wildcard) resume request. */
4616 if (in_queued_stop_replies (thread->id))
4617 {
4618 if (debug_threads)
4619 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4620 lwpid_of (thread));
4621 continue;
4622 }
4623
4624 lwp->resume = &resume[ndx];
4625 thread->last_resume_kind = lwp->resume->kind;
4626
4627 lwp->step_range_start = lwp->resume->step_range_start;
4628 lwp->step_range_end = lwp->resume->step_range_end;
4629
4630 /* If we had a deferred signal to report, dequeue one now.
4631 This can happen if LWP gets more than one signal while
4632 trying to get out of a jump pad. */
4633 if (lwp->stopped
4634 && !lwp->status_pending_p
4635 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4636 {
4637 lwp->status_pending_p = 1;
4638
4639 if (debug_threads)
4640 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4641 "leaving status pending.\n",
4642 WSTOPSIG (lwp->status_pending),
4643 lwpid_of (thread));
4644 }
4645
4646 return;
4647 }
4648 }
4649
4650 /* No resume action for this thread. */
4651 lwp->resume = NULL;
4652 }
4653
4654 /* find_inferior callback for linux_resume.
4655 Set *FLAG_P if this lwp has an interesting status pending. */
4656
4657 static bool
4658 resume_status_pending_p (thread_info *thread)
4659 {
4660 struct lwp_info *lwp = get_thread_lwp (thread);
4661
4662 /* LWPs which will not be resumed are not interesting, because
4663 we might not wait for them next time through linux_wait. */
4664 if (lwp->resume == NULL)
4665 return false;
4666
4667 return thread_still_has_status_pending_p (thread);
4668 }
4669
4670 /* Return 1 if this lwp that GDB wants running is stopped at an
4671 internal breakpoint that we need to step over. It assumes that any
4672 required STOP_PC adjustment has already been propagated to the
4673 inferior's regcache. */
4674
4675 static bool
4676 need_step_over_p (thread_info *thread)
4677 {
4678 struct lwp_info *lwp = get_thread_lwp (thread);
4679 struct thread_info *saved_thread;
4680 CORE_ADDR pc;
4681 struct process_info *proc = get_thread_process (thread);
4682
4683 /* GDBserver is skipping the extra traps from the wrapper program,
4684 don't have to do step over. */
4685 if (proc->tdesc == NULL)
4686 return false;
4687
4688 /* LWPs which will not be resumed are not interesting, because we
4689 might not wait for them next time through linux_wait. */
4690
4691 if (!lwp->stopped)
4692 {
4693 if (debug_threads)
4694 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4695 lwpid_of (thread));
4696 return false;
4697 }
4698
4699 if (thread->last_resume_kind == resume_stop)
4700 {
4701 if (debug_threads)
4702 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4703 " stopped\n",
4704 lwpid_of (thread));
4705 return false;
4706 }
4707
4708 gdb_assert (lwp->suspended >= 0);
4709
4710 if (lwp->suspended)
4711 {
4712 if (debug_threads)
4713 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4714 lwpid_of (thread));
4715 return false;
4716 }
4717
4718 if (lwp->status_pending_p)
4719 {
4720 if (debug_threads)
4721 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4722 " status.\n",
4723 lwpid_of (thread));
4724 return false;
4725 }
4726
4727 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4728 or we have. */
4729 pc = get_pc (lwp);
4730
4731 /* If the PC has changed since we stopped, then don't do anything,
4732 and let the breakpoint/tracepoint be hit. This happens if, for
4733 instance, GDB handled the decr_pc_after_break subtraction itself,
4734 GDB is OOL stepping this thread, or the user has issued a "jump"
4735 command, or poked thread's registers herself. */
4736 if (pc != lwp->stop_pc)
4737 {
4738 if (debug_threads)
4739 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4740 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4741 lwpid_of (thread),
4742 paddress (lwp->stop_pc), paddress (pc));
4743 return false;
4744 }
4745
4746 /* On software single step target, resume the inferior with signal
4747 rather than stepping over. */
4748 if (can_software_single_step ()
4749 && lwp->pending_signals != NULL
4750 && lwp_signal_can_be_delivered (lwp))
4751 {
4752 if (debug_threads)
4753 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4754 " signals.\n",
4755 lwpid_of (thread));
4756
4757 return false;
4758 }
4759
4760 saved_thread = current_thread;
4761 current_thread = thread;
4762
4763 /* We can only step over breakpoints we know about. */
4764 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4765 {
4766 /* Don't step over a breakpoint that GDB expects to hit
4767 though. If the condition is being evaluated on the target's side
4768 and it evaluate to false, step over this breakpoint as well. */
4769 if (gdb_breakpoint_here (pc)
4770 && gdb_condition_true_at_breakpoint (pc)
4771 && gdb_no_commands_at_breakpoint (pc))
4772 {
4773 if (debug_threads)
4774 debug_printf ("Need step over [LWP %ld]? yes, but found"
4775 " GDB breakpoint at 0x%s; skipping step over\n",
4776 lwpid_of (thread), paddress (pc));
4777
4778 current_thread = saved_thread;
4779 return false;
4780 }
4781 else
4782 {
4783 if (debug_threads)
4784 debug_printf ("Need step over [LWP %ld]? yes, "
4785 "found breakpoint at 0x%s\n",
4786 lwpid_of (thread), paddress (pc));
4787
4788 /* We've found an lwp that needs stepping over --- return 1 so
4789 that find_inferior stops looking. */
4790 current_thread = saved_thread;
4791
4792 return true;
4793 }
4794 }
4795
4796 current_thread = saved_thread;
4797
4798 if (debug_threads)
4799 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4800 " at 0x%s\n",
4801 lwpid_of (thread), paddress (pc));
4802
4803 return false;
4804 }
4805
4806 /* Start a step-over operation on LWP. When LWP stopped at a
4807 breakpoint, to make progress, we need to remove the breakpoint out
4808 of the way. If we let other threads run while we do that, they may
4809 pass by the breakpoint location and miss hitting it. To avoid
4810 that, a step-over momentarily stops all threads while LWP is
4811 single-stepped by either hardware or software while the breakpoint
4812 is temporarily uninserted from the inferior. When the single-step
4813 finishes, we reinsert the breakpoint, and let all threads that are
4814 supposed to be running, run again. */
4815
4816 static int
4817 start_step_over (struct lwp_info *lwp)
4818 {
4819 struct thread_info *thread = get_lwp_thread (lwp);
4820 struct thread_info *saved_thread;
4821 CORE_ADDR pc;
4822 int step;
4823
4824 if (debug_threads)
4825 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4826 lwpid_of (thread));
4827
4828 stop_all_lwps (1, lwp);
4829
4830 if (lwp->suspended != 0)
4831 {
4832 internal_error (__FILE__, __LINE__,
4833 "LWP %ld suspended=%d\n", lwpid_of (thread),
4834 lwp->suspended);
4835 }
4836
4837 if (debug_threads)
4838 debug_printf ("Done stopping all threads for step-over.\n");
4839
4840 /* Note, we should always reach here with an already adjusted PC,
4841 either by GDB (if we're resuming due to GDB's request), or by our
4842 caller, if we just finished handling an internal breakpoint GDB
4843 shouldn't care about. */
4844 pc = get_pc (lwp);
4845
4846 saved_thread = current_thread;
4847 current_thread = thread;
4848
4849 lwp->bp_reinsert = pc;
4850 uninsert_breakpoints_at (pc);
4851 uninsert_fast_tracepoint_jumps_at (pc);
4852
4853 step = single_step (lwp);
4854
4855 current_thread = saved_thread;
4856
4857 linux_resume_one_lwp (lwp, step, 0, NULL);
4858
4859 /* Require next event from this LWP. */
4860 step_over_bkpt = thread->id;
4861 return 1;
4862 }
4863
4864 /* Finish a step-over. Reinsert the breakpoint we had uninserted in
4865 start_step_over, if still there, and delete any single-step
4866 breakpoints we've set, on non hardware single-step targets. */
4867
4868 static int
4869 finish_step_over (struct lwp_info *lwp)
4870 {
4871 if (lwp->bp_reinsert != 0)
4872 {
4873 struct thread_info *saved_thread = current_thread;
4874
4875 if (debug_threads)
4876 debug_printf ("Finished step over.\n");
4877
4878 current_thread = get_lwp_thread (lwp);
4879
4880 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4881 may be no breakpoint to reinsert there by now. */
4882 reinsert_breakpoints_at (lwp->bp_reinsert);
4883 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4884
4885 lwp->bp_reinsert = 0;
4886
4887 /* Delete any single-step breakpoints. No longer needed. We
4888 don't have to worry about other threads hitting this trap,
4889 and later not being able to explain it, because we were
4890 stepping over a breakpoint, and we hold all threads but
4891 LWP stopped while doing that. */
4892 if (!can_hardware_single_step ())
4893 {
4894 gdb_assert (has_single_step_breakpoints (current_thread));
4895 delete_single_step_breakpoints (current_thread);
4896 }
4897
4898 step_over_bkpt = null_ptid;
4899 current_thread = saved_thread;
4900 return 1;
4901 }
4902 else
4903 return 0;
4904 }
4905
4906 /* If there's a step over in progress, wait until all threads stop
4907 (that is, until the stepping thread finishes its step), and
4908 unsuspend all lwps. The stepping thread ends with its status
4909 pending, which is processed later when we get back to processing
4910 events. */
4911
4912 static void
4913 complete_ongoing_step_over (void)
4914 {
4915 if (!ptid_equal (step_over_bkpt, null_ptid))
4916 {
4917 struct lwp_info *lwp;
4918 int wstat;
4919 int ret;
4920
4921 if (debug_threads)
4922 debug_printf ("detach: step over in progress, finish it first\n");
4923
4924 /* Passing NULL_PTID as filter indicates we want all events to
4925 be left pending. Eventually this returns when there are no
4926 unwaited-for children left. */
4927 ret = linux_wait_for_event_filtered (minus_one_ptid, null_ptid,
4928 &wstat, __WALL);
4929 gdb_assert (ret == -1);
4930
4931 lwp = find_lwp_pid (step_over_bkpt);
4932 if (lwp != NULL)
4933 finish_step_over (lwp);
4934 step_over_bkpt = null_ptid;
4935 unsuspend_all_lwps (lwp);
4936 }
4937 }
4938
4939 /* This function is called once per thread. We check the thread's resume
4940 request, which will tell us whether to resume, step, or leave the thread
4941 stopped; and what signal, if any, it should be sent.
4942
4943 For threads which we aren't explicitly told otherwise, we preserve
4944 the stepping flag; this is used for stepping over gdbserver-placed
4945 breakpoints.
4946
4947 If pending_flags was set in any thread, we queue any needed
4948 signals, since we won't actually resume. We already have a pending
4949 event to report, so we don't need to preserve any step requests;
4950 they should be re-issued if necessary. */
4951
4952 static int
4953 linux_resume_one_thread (thread_info *thread, void *arg)
4954 {
4955 struct lwp_info *lwp = get_thread_lwp (thread);
4956 int leave_all_stopped = * (int *) arg;
4957 int leave_pending;
4958
4959 if (lwp->resume == NULL)
4960 return 0;
4961
4962 if (lwp->resume->kind == resume_stop)
4963 {
4964 if (debug_threads)
4965 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4966
4967 if (!lwp->stopped)
4968 {
4969 if (debug_threads)
4970 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4971
4972 /* Stop the thread, and wait for the event asynchronously,
4973 through the event loop. */
4974 send_sigstop (lwp);
4975 }
4976 else
4977 {
4978 if (debug_threads)
4979 debug_printf ("already stopped LWP %ld\n",
4980 lwpid_of (thread));
4981
4982 /* The LWP may have been stopped in an internal event that
4983 was not meant to be notified back to GDB (e.g., gdbserver
4984 breakpoint), so we should be reporting a stop event in
4985 this case too. */
4986
4987 /* If the thread already has a pending SIGSTOP, this is a
4988 no-op. Otherwise, something later will presumably resume
4989 the thread and this will cause it to cancel any pending
4990 operation, due to last_resume_kind == resume_stop. If
4991 the thread already has a pending status to report, we
4992 will still report it the next time we wait - see
4993 status_pending_p_callback. */
4994
4995 /* If we already have a pending signal to report, then
4996 there's no need to queue a SIGSTOP, as this means we're
4997 midway through moving the LWP out of the jumppad, and we
4998 will report the pending signal as soon as that is
4999 finished. */
5000 if (lwp->pending_signals_to_report == NULL)
5001 send_sigstop (lwp);
5002 }
5003
5004 /* For stop requests, we're done. */
5005 lwp->resume = NULL;
5006 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5007 return 0;
5008 }
5009
5010 /* If this thread which is about to be resumed has a pending status,
5011 then don't resume it - we can just report the pending status.
5012 Likewise if it is suspended, because e.g., another thread is
5013 stepping past a breakpoint. Make sure to queue any signals that
5014 would otherwise be sent. In all-stop mode, we do this decision
5015 based on if *any* thread has a pending status. If there's a
5016 thread that needs the step-over-breakpoint dance, then don't
5017 resume any other thread but that particular one. */
5018 leave_pending = (lwp->suspended
5019 || lwp->status_pending_p
5020 || leave_all_stopped);
5021
5022 /* If we have a new signal, enqueue the signal. */
5023 if (lwp->resume->sig != 0)
5024 {
5025 siginfo_t info, *info_p;
5026
5027 /* If this is the same signal we were previously stopped by,
5028 make sure to queue its siginfo. */
5029 if (WIFSTOPPED (lwp->last_status)
5030 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
5031 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
5032 (PTRACE_TYPE_ARG3) 0, &info) == 0)
5033 info_p = &info;
5034 else
5035 info_p = NULL;
5036
5037 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
5038 }
5039
5040 if (!leave_pending)
5041 {
5042 if (debug_threads)
5043 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
5044
5045 proceed_one_lwp (thread, NULL);
5046 }
5047 else
5048 {
5049 if (debug_threads)
5050 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
5051 }
5052
5053 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
5054 lwp->resume = NULL;
5055 return 0;
5056 }
5057
5058 static void
5059 linux_resume (struct thread_resume *resume_info, size_t n)
5060 {
5061 struct thread_info *need_step_over = NULL;
5062 int leave_all_stopped;
5063
5064 if (debug_threads)
5065 {
5066 debug_enter ();
5067 debug_printf ("linux_resume:\n");
5068 }
5069
5070 for_each_thread ([&] (thread_info *thread)
5071 {
5072 linux_set_resume_request (thread, resume_info, n);
5073 });
5074
5075 /* If there is a thread which would otherwise be resumed, which has
5076 a pending status, then don't resume any threads - we can just
5077 report the pending status. Make sure to queue any signals that
5078 would otherwise be sent. In non-stop mode, we'll apply this
5079 logic to each thread individually. We consume all pending events
5080 before considering to start a step-over (in all-stop). */
5081 bool any_pending = false;
5082 if (!non_stop)
5083 any_pending = find_thread (resume_status_pending_p) != NULL;
5084
5085 /* If there is a thread which would otherwise be resumed, which is
5086 stopped at a breakpoint that needs stepping over, then don't
5087 resume any threads - have it step over the breakpoint with all
5088 other threads stopped, then resume all threads again. Make sure
5089 to queue any signals that would otherwise be delivered or
5090 queued. */
5091 if (!any_pending && supports_breakpoints ())
5092 need_step_over = find_thread (need_step_over_p);
5093
5094 leave_all_stopped = (need_step_over != NULL || any_pending);
5095
5096 if (debug_threads)
5097 {
5098 if (need_step_over != NULL)
5099 debug_printf ("Not resuming all, need step over\n");
5100 else if (any_pending)
5101 debug_printf ("Not resuming, all-stop and found "
5102 "an LWP with pending status\n");
5103 else
5104 debug_printf ("Resuming, no pending status or step over needed\n");
5105 }
5106
5107 /* Even if we're leaving threads stopped, queue all signals we'd
5108 otherwise deliver. */
5109 find_inferior (&all_threads, linux_resume_one_thread, &leave_all_stopped);
5110
5111 if (need_step_over)
5112 start_step_over (get_thread_lwp (need_step_over));
5113
5114 if (debug_threads)
5115 {
5116 debug_printf ("linux_resume done\n");
5117 debug_exit ();
5118 }
5119
5120 /* We may have events that were pending that can/should be sent to
5121 the client now. Trigger a linux_wait call. */
5122 if (target_is_async_p ())
5123 async_file_mark ();
5124 }
5125
5126 /* This function is called once per thread. We check the thread's
5127 last resume request, which will tell us whether to resume, step, or
5128 leave the thread stopped. Any signal the client requested to be
5129 delivered has already been enqueued at this point.
5130
5131 If any thread that GDB wants running is stopped at an internal
5132 breakpoint that needs stepping over, we start a step-over operation
5133 on that particular thread, and leave all others stopped. */
5134
5135 static int
5136 proceed_one_lwp (thread_info *thread, void *except)
5137 {
5138 struct lwp_info *lwp = get_thread_lwp (thread);
5139 int step;
5140
5141 if (lwp == except)
5142 return 0;
5143
5144 if (debug_threads)
5145 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
5146
5147 if (!lwp->stopped)
5148 {
5149 if (debug_threads)
5150 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
5151 return 0;
5152 }
5153
5154 if (thread->last_resume_kind == resume_stop
5155 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
5156 {
5157 if (debug_threads)
5158 debug_printf (" client wants LWP to remain %ld stopped\n",
5159 lwpid_of (thread));
5160 return 0;
5161 }
5162
5163 if (lwp->status_pending_p)
5164 {
5165 if (debug_threads)
5166 debug_printf (" LWP %ld has pending status, leaving stopped\n",
5167 lwpid_of (thread));
5168 return 0;
5169 }
5170
5171 gdb_assert (lwp->suspended >= 0);
5172
5173 if (lwp->suspended)
5174 {
5175 if (debug_threads)
5176 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
5177 return 0;
5178 }
5179
5180 if (thread->last_resume_kind == resume_stop
5181 && lwp->pending_signals_to_report == NULL
5182 && (lwp->collecting_fast_tracepoint
5183 == fast_tpoint_collect_result::not_collecting))
5184 {
5185 /* We haven't reported this LWP as stopped yet (otherwise, the
5186 last_status.kind check above would catch it, and we wouldn't
5187 reach here. This LWP may have been momentarily paused by a
5188 stop_all_lwps call while handling for example, another LWP's
5189 step-over. In that case, the pending expected SIGSTOP signal
5190 that was queued at vCont;t handling time will have already
5191 been consumed by wait_for_sigstop, and so we need to requeue
5192 another one here. Note that if the LWP already has a SIGSTOP
5193 pending, this is a no-op. */
5194
5195 if (debug_threads)
5196 debug_printf ("Client wants LWP %ld to stop. "
5197 "Making sure it has a SIGSTOP pending\n",
5198 lwpid_of (thread));
5199
5200 send_sigstop (lwp);
5201 }
5202
5203 if (thread->last_resume_kind == resume_step)
5204 {
5205 if (debug_threads)
5206 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5207 lwpid_of (thread));
5208
5209 /* If resume_step is requested by GDB, install single-step
5210 breakpoints when the thread is about to be actually resumed if
5211 the single-step breakpoints weren't removed. */
5212 if (can_software_single_step ()
5213 && !has_single_step_breakpoints (thread))
5214 install_software_single_step_breakpoints (lwp);
5215
5216 step = maybe_hw_step (thread);
5217 }
5218 else if (lwp->bp_reinsert != 0)
5219 {
5220 if (debug_threads)
5221 debug_printf (" stepping LWP %ld, reinsert set\n",
5222 lwpid_of (thread));
5223
5224 step = maybe_hw_step (thread);
5225 }
5226 else
5227 step = 0;
5228
5229 linux_resume_one_lwp (lwp, step, 0, NULL);
5230 return 0;
5231 }
5232
5233 static int
5234 unsuspend_and_proceed_one_lwp (thread_info *thread, void *except)
5235 {
5236 struct lwp_info *lwp = get_thread_lwp (thread);
5237
5238 if (lwp == except)
5239 return 0;
5240
5241 lwp_suspended_decr (lwp);
5242
5243 return proceed_one_lwp (thread, except);
5244 }
5245
5246 /* When we finish a step-over, set threads running again. If there's
5247 another thread that may need a step-over, now's the time to start
5248 it. Eventually, we'll move all threads past their breakpoints. */
5249
5250 static void
5251 proceed_all_lwps (void)
5252 {
5253 struct thread_info *need_step_over;
5254
5255 /* If there is a thread which would otherwise be resumed, which is
5256 stopped at a breakpoint that needs stepping over, then don't
5257 resume any threads - have it step over the breakpoint with all
5258 other threads stopped, then resume all threads again. */
5259
5260 if (supports_breakpoints ())
5261 {
5262 need_step_over = find_thread (need_step_over_p);
5263
5264 if (need_step_over != NULL)
5265 {
5266 if (debug_threads)
5267 debug_printf ("proceed_all_lwps: found "
5268 "thread %ld needing a step-over\n",
5269 lwpid_of (need_step_over));
5270
5271 start_step_over (get_thread_lwp (need_step_over));
5272 return;
5273 }
5274 }
5275
5276 if (debug_threads)
5277 debug_printf ("Proceeding, no step-over needed\n");
5278
5279 find_inferior (&all_threads, proceed_one_lwp, NULL);
5280 }
5281
5282 /* Stopped LWPs that the client wanted to be running, that don't have
5283 pending statuses, are set to run again, except for EXCEPT, if not
5284 NULL. This undoes a stop_all_lwps call. */
5285
5286 static void
5287 unstop_all_lwps (int unsuspend, struct lwp_info *except)
5288 {
5289 if (debug_threads)
5290 {
5291 debug_enter ();
5292 if (except)
5293 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5294 lwpid_of (get_lwp_thread (except)));
5295 else
5296 debug_printf ("unstopping all lwps\n");
5297 }
5298
5299 if (unsuspend)
5300 find_inferior (&all_threads, unsuspend_and_proceed_one_lwp, except);
5301 else
5302 find_inferior (&all_threads, proceed_one_lwp, except);
5303
5304 if (debug_threads)
5305 {
5306 debug_printf ("unstop_all_lwps done\n");
5307 debug_exit ();
5308 }
5309 }
5310
5311
5312 #ifdef HAVE_LINUX_REGSETS
5313
5314 #define use_linux_regsets 1
5315
5316 /* Returns true if REGSET has been disabled. */
5317
5318 static int
5319 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5320 {
5321 return (info->disabled_regsets != NULL
5322 && info->disabled_regsets[regset - info->regsets]);
5323 }
5324
5325 /* Disable REGSET. */
5326
5327 static void
5328 disable_regset (struct regsets_info *info, struct regset_info *regset)
5329 {
5330 int dr_offset;
5331
5332 dr_offset = regset - info->regsets;
5333 if (info->disabled_regsets == NULL)
5334 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5335 info->disabled_regsets[dr_offset] = 1;
5336 }
5337
5338 static int
5339 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5340 struct regcache *regcache)
5341 {
5342 struct regset_info *regset;
5343 int saw_general_regs = 0;
5344 int pid;
5345 struct iovec iov;
5346
5347 pid = lwpid_of (current_thread);
5348 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5349 {
5350 void *buf, *data;
5351 int nt_type, res;
5352
5353 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5354 continue;
5355
5356 buf = xmalloc (regset->size);
5357
5358 nt_type = regset->nt_type;
5359 if (nt_type)
5360 {
5361 iov.iov_base = buf;
5362 iov.iov_len = regset->size;
5363 data = (void *) &iov;
5364 }
5365 else
5366 data = buf;
5367
5368 #ifndef __sparc__
5369 res = ptrace (regset->get_request, pid,
5370 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5371 #else
5372 res = ptrace (regset->get_request, pid, data, nt_type);
5373 #endif
5374 if (res < 0)
5375 {
5376 if (errno == EIO)
5377 {
5378 /* If we get EIO on a regset, do not try it again for
5379 this process mode. */
5380 disable_regset (regsets_info, regset);
5381 }
5382 else if (errno == ENODATA)
5383 {
5384 /* ENODATA may be returned if the regset is currently
5385 not "active". This can happen in normal operation,
5386 so suppress the warning in this case. */
5387 }
5388 else if (errno == ESRCH)
5389 {
5390 /* At this point, ESRCH should mean the process is
5391 already gone, in which case we simply ignore attempts
5392 to read its registers. */
5393 }
5394 else
5395 {
5396 char s[256];
5397 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5398 pid);
5399 perror (s);
5400 }
5401 }
5402 else
5403 {
5404 if (regset->type == GENERAL_REGS)
5405 saw_general_regs = 1;
5406 regset->store_function (regcache, buf);
5407 }
5408 free (buf);
5409 }
5410 if (saw_general_regs)
5411 return 0;
5412 else
5413 return 1;
5414 }
5415
5416 static int
5417 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5418 struct regcache *regcache)
5419 {
5420 struct regset_info *regset;
5421 int saw_general_regs = 0;
5422 int pid;
5423 struct iovec iov;
5424
5425 pid = lwpid_of (current_thread);
5426 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5427 {
5428 void *buf, *data;
5429 int nt_type, res;
5430
5431 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5432 || regset->fill_function == NULL)
5433 continue;
5434
5435 buf = xmalloc (regset->size);
5436
5437 /* First fill the buffer with the current register set contents,
5438 in case there are any items in the kernel's regset that are
5439 not in gdbserver's regcache. */
5440
5441 nt_type = regset->nt_type;
5442 if (nt_type)
5443 {
5444 iov.iov_base = buf;
5445 iov.iov_len = regset->size;
5446 data = (void *) &iov;
5447 }
5448 else
5449 data = buf;
5450
5451 #ifndef __sparc__
5452 res = ptrace (regset->get_request, pid,
5453 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5454 #else
5455 res = ptrace (regset->get_request, pid, data, nt_type);
5456 #endif
5457
5458 if (res == 0)
5459 {
5460 /* Then overlay our cached registers on that. */
5461 regset->fill_function (regcache, buf);
5462
5463 /* Only now do we write the register set. */
5464 #ifndef __sparc__
5465 res = ptrace (regset->set_request, pid,
5466 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5467 #else
5468 res = ptrace (regset->set_request, pid, data, nt_type);
5469 #endif
5470 }
5471
5472 if (res < 0)
5473 {
5474 if (errno == EIO)
5475 {
5476 /* If we get EIO on a regset, do not try it again for
5477 this process mode. */
5478 disable_regset (regsets_info, regset);
5479 }
5480 else if (errno == ESRCH)
5481 {
5482 /* At this point, ESRCH should mean the process is
5483 already gone, in which case we simply ignore attempts
5484 to change its registers. See also the related
5485 comment in linux_resume_one_lwp. */
5486 free (buf);
5487 return 0;
5488 }
5489 else
5490 {
5491 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5492 }
5493 }
5494 else if (regset->type == GENERAL_REGS)
5495 saw_general_regs = 1;
5496 free (buf);
5497 }
5498 if (saw_general_regs)
5499 return 0;
5500 else
5501 return 1;
5502 }
5503
5504 #else /* !HAVE_LINUX_REGSETS */
5505
5506 #define use_linux_regsets 0
5507 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5508 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5509
5510 #endif
5511
5512 /* Return 1 if register REGNO is supported by one of the regset ptrace
5513 calls or 0 if it has to be transferred individually. */
5514
5515 static int
5516 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5517 {
5518 unsigned char mask = 1 << (regno % 8);
5519 size_t index = regno / 8;
5520
5521 return (use_linux_regsets
5522 && (regs_info->regset_bitmap == NULL
5523 || (regs_info->regset_bitmap[index] & mask) != 0));
5524 }
5525
5526 #ifdef HAVE_LINUX_USRREGS
5527
5528 static int
5529 register_addr (const struct usrregs_info *usrregs, int regnum)
5530 {
5531 int addr;
5532
5533 if (regnum < 0 || regnum >= usrregs->num_regs)
5534 error ("Invalid register number %d.", regnum);
5535
5536 addr = usrregs->regmap[regnum];
5537
5538 return addr;
5539 }
5540
5541 /* Fetch one register. */
5542 static void
5543 fetch_register (const struct usrregs_info *usrregs,
5544 struct regcache *regcache, int regno)
5545 {
5546 CORE_ADDR regaddr;
5547 int i, size;
5548 char *buf;
5549 int pid;
5550
5551 if (regno >= usrregs->num_regs)
5552 return;
5553 if ((*the_low_target.cannot_fetch_register) (regno))
5554 return;
5555
5556 regaddr = register_addr (usrregs, regno);
5557 if (regaddr == -1)
5558 return;
5559
5560 size = ((register_size (regcache->tdesc, regno)
5561 + sizeof (PTRACE_XFER_TYPE) - 1)
5562 & -sizeof (PTRACE_XFER_TYPE));
5563 buf = (char *) alloca (size);
5564
5565 pid = lwpid_of (current_thread);
5566 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5567 {
5568 errno = 0;
5569 *(PTRACE_XFER_TYPE *) (buf + i) =
5570 ptrace (PTRACE_PEEKUSER, pid,
5571 /* Coerce to a uintptr_t first to avoid potential gcc warning
5572 of coercing an 8 byte integer to a 4 byte pointer. */
5573 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5574 regaddr += sizeof (PTRACE_XFER_TYPE);
5575 if (errno != 0)
5576 error ("reading register %d: %s", regno, strerror (errno));
5577 }
5578
5579 if (the_low_target.supply_ptrace_register)
5580 the_low_target.supply_ptrace_register (regcache, regno, buf);
5581 else
5582 supply_register (regcache, regno, buf);
5583 }
5584
5585 /* Store one register. */
5586 static void
5587 store_register (const struct usrregs_info *usrregs,
5588 struct regcache *regcache, int regno)
5589 {
5590 CORE_ADDR regaddr;
5591 int i, size;
5592 char *buf;
5593 int pid;
5594
5595 if (regno >= usrregs->num_regs)
5596 return;
5597 if ((*the_low_target.cannot_store_register) (regno))
5598 return;
5599
5600 regaddr = register_addr (usrregs, regno);
5601 if (regaddr == -1)
5602 return;
5603
5604 size = ((register_size (regcache->tdesc, regno)
5605 + sizeof (PTRACE_XFER_TYPE) - 1)
5606 & -sizeof (PTRACE_XFER_TYPE));
5607 buf = (char *) alloca (size);
5608 memset (buf, 0, size);
5609
5610 if (the_low_target.collect_ptrace_register)
5611 the_low_target.collect_ptrace_register (regcache, regno, buf);
5612 else
5613 collect_register (regcache, regno, buf);
5614
5615 pid = lwpid_of (current_thread);
5616 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5617 {
5618 errno = 0;
5619 ptrace (PTRACE_POKEUSER, pid,
5620 /* Coerce to a uintptr_t first to avoid potential gcc warning
5621 about coercing an 8 byte integer to a 4 byte pointer. */
5622 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5623 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5624 if (errno != 0)
5625 {
5626 /* At this point, ESRCH should mean the process is
5627 already gone, in which case we simply ignore attempts
5628 to change its registers. See also the related
5629 comment in linux_resume_one_lwp. */
5630 if (errno == ESRCH)
5631 return;
5632
5633 if ((*the_low_target.cannot_store_register) (regno) == 0)
5634 error ("writing register %d: %s", regno, strerror (errno));
5635 }
5636 regaddr += sizeof (PTRACE_XFER_TYPE);
5637 }
5638 }
5639
5640 /* Fetch all registers, or just one, from the child process.
5641 If REGNO is -1, do this for all registers, skipping any that are
5642 assumed to have been retrieved by regsets_fetch_inferior_registers,
5643 unless ALL is non-zero.
5644 Otherwise, REGNO specifies which register (so we can save time). */
5645 static void
5646 usr_fetch_inferior_registers (const struct regs_info *regs_info,
5647 struct regcache *regcache, int regno, int all)
5648 {
5649 struct usrregs_info *usr = regs_info->usrregs;
5650
5651 if (regno == -1)
5652 {
5653 for (regno = 0; regno < usr->num_regs; regno++)
5654 if (all || !linux_register_in_regsets (regs_info, regno))
5655 fetch_register (usr, regcache, regno);
5656 }
5657 else
5658 fetch_register (usr, regcache, regno);
5659 }
5660
5661 /* Store our register values back into the inferior.
5662 If REGNO is -1, do this for all registers, skipping any that are
5663 assumed to have been saved by regsets_store_inferior_registers,
5664 unless ALL is non-zero.
5665 Otherwise, REGNO specifies which register (so we can save time). */
5666 static void
5667 usr_store_inferior_registers (const struct regs_info *regs_info,
5668 struct regcache *regcache, int regno, int all)
5669 {
5670 struct usrregs_info *usr = regs_info->usrregs;
5671
5672 if (regno == -1)
5673 {
5674 for (regno = 0; regno < usr->num_regs; regno++)
5675 if (all || !linux_register_in_regsets (regs_info, regno))
5676 store_register (usr, regcache, regno);
5677 }
5678 else
5679 store_register (usr, regcache, regno);
5680 }
5681
5682 #else /* !HAVE_LINUX_USRREGS */
5683
5684 #define usr_fetch_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5685 #define usr_store_inferior_registers(regs_info, regcache, regno, all) do {} while (0)
5686
5687 #endif
5688
5689
5690 static void
5691 linux_fetch_registers (struct regcache *regcache, int regno)
5692 {
5693 int use_regsets;
5694 int all = 0;
5695 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5696
5697 if (regno == -1)
5698 {
5699 if (the_low_target.fetch_register != NULL
5700 && regs_info->usrregs != NULL)
5701 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5702 (*the_low_target.fetch_register) (regcache, regno);
5703
5704 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5705 if (regs_info->usrregs != NULL)
5706 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5707 }
5708 else
5709 {
5710 if (the_low_target.fetch_register != NULL
5711 && (*the_low_target.fetch_register) (regcache, regno))
5712 return;
5713
5714 use_regsets = linux_register_in_regsets (regs_info, regno);
5715 if (use_regsets)
5716 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5717 regcache);
5718 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5719 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5720 }
5721 }
5722
5723 static void
5724 linux_store_registers (struct regcache *regcache, int regno)
5725 {
5726 int use_regsets;
5727 int all = 0;
5728 const struct regs_info *regs_info = (*the_low_target.regs_info) ();
5729
5730 if (regno == -1)
5731 {
5732 all = regsets_store_inferior_registers (regs_info->regsets_info,
5733 regcache);
5734 if (regs_info->usrregs != NULL)
5735 usr_store_inferior_registers (regs_info, regcache, regno, all);
5736 }
5737 else
5738 {
5739 use_regsets = linux_register_in_regsets (regs_info, regno);
5740 if (use_regsets)
5741 all = regsets_store_inferior_registers (regs_info->regsets_info,
5742 regcache);
5743 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5744 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5745 }
5746 }
5747
5748
5749 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5750 to debugger memory starting at MYADDR. */
5751
5752 static int
5753 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5754 {
5755 int pid = lwpid_of (current_thread);
5756 PTRACE_XFER_TYPE *buffer;
5757 CORE_ADDR addr;
5758 int count;
5759 char filename[64];
5760 int i;
5761 int ret;
5762 int fd;
5763
5764 /* Try using /proc. Don't bother for one word. */
5765 if (len >= 3 * sizeof (long))
5766 {
5767 int bytes;
5768
5769 /* We could keep this file open and cache it - possibly one per
5770 thread. That requires some juggling, but is even faster. */
5771 sprintf (filename, "/proc/%d/mem", pid);
5772 fd = open (filename, O_RDONLY | O_LARGEFILE);
5773 if (fd == -1)
5774 goto no_proc;
5775
5776 /* If pread64 is available, use it. It's faster if the kernel
5777 supports it (only one syscall), and it's 64-bit safe even on
5778 32-bit platforms (for instance, SPARC debugging a SPARC64
5779 application). */
5780 #ifdef HAVE_PREAD64
5781 bytes = pread64 (fd, myaddr, len, memaddr);
5782 #else
5783 bytes = -1;
5784 if (lseek (fd, memaddr, SEEK_SET) != -1)
5785 bytes = read (fd, myaddr, len);
5786 #endif
5787
5788 close (fd);
5789 if (bytes == len)
5790 return 0;
5791
5792 /* Some data was read, we'll try to get the rest with ptrace. */
5793 if (bytes > 0)
5794 {
5795 memaddr += bytes;
5796 myaddr += bytes;
5797 len -= bytes;
5798 }
5799 }
5800
5801 no_proc:
5802 /* Round starting address down to longword boundary. */
5803 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5804 /* Round ending address up; get number of longwords that makes. */
5805 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5806 / sizeof (PTRACE_XFER_TYPE));
5807 /* Allocate buffer of that many longwords. */
5808 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5809
5810 /* Read all the longwords */
5811 errno = 0;
5812 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5813 {
5814 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5815 about coercing an 8 byte integer to a 4 byte pointer. */
5816 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5817 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5818 (PTRACE_TYPE_ARG4) 0);
5819 if (errno)
5820 break;
5821 }
5822 ret = errno;
5823
5824 /* Copy appropriate bytes out of the buffer. */
5825 if (i > 0)
5826 {
5827 i *= sizeof (PTRACE_XFER_TYPE);
5828 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5829 memcpy (myaddr,
5830 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5831 i < len ? i : len);
5832 }
5833
5834 return ret;
5835 }
5836
5837 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5838 memory at MEMADDR. On failure (cannot write to the inferior)
5839 returns the value of errno. Always succeeds if LEN is zero. */
5840
5841 static int
5842 linux_write_memory (CORE_ADDR memaddr, const unsigned char *myaddr, int len)
5843 {
5844 int i;
5845 /* Round starting address down to longword boundary. */
5846 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5847 /* Round ending address up; get number of longwords that makes. */
5848 int count
5849 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5850 / sizeof (PTRACE_XFER_TYPE);
5851
5852 /* Allocate buffer of that many longwords. */
5853 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5854
5855 int pid = lwpid_of (current_thread);
5856
5857 if (len == 0)
5858 {
5859 /* Zero length write always succeeds. */
5860 return 0;
5861 }
5862
5863 if (debug_threads)
5864 {
5865 /* Dump up to four bytes. */
5866 char str[4 * 2 + 1];
5867 char *p = str;
5868 int dump = len < 4 ? len : 4;
5869
5870 for (i = 0; i < dump; i++)
5871 {
5872 sprintf (p, "%02x", myaddr[i]);
5873 p += 2;
5874 }
5875 *p = '\0';
5876
5877 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5878 str, (long) memaddr, pid);
5879 }
5880
5881 /* Fill start and end extra bytes of buffer with existing memory data. */
5882
5883 errno = 0;
5884 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5885 about coercing an 8 byte integer to a 4 byte pointer. */
5886 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5887 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5888 (PTRACE_TYPE_ARG4) 0);
5889 if (errno)
5890 return errno;
5891
5892 if (count > 1)
5893 {
5894 errno = 0;
5895 buffer[count - 1]
5896 = ptrace (PTRACE_PEEKTEXT, pid,
5897 /* Coerce to a uintptr_t first to avoid potential gcc warning
5898 about coercing an 8 byte integer to a 4 byte pointer. */
5899 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5900 * sizeof (PTRACE_XFER_TYPE)),
5901 (PTRACE_TYPE_ARG4) 0);
5902 if (errno)
5903 return errno;
5904 }
5905
5906 /* Copy data to be written over corresponding part of buffer. */
5907
5908 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5909 myaddr, len);
5910
5911 /* Write the entire buffer. */
5912
5913 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5914 {
5915 errno = 0;
5916 ptrace (PTRACE_POKETEXT, pid,
5917 /* Coerce to a uintptr_t first to avoid potential gcc warning
5918 about coercing an 8 byte integer to a 4 byte pointer. */
5919 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5920 (PTRACE_TYPE_ARG4) buffer[i]);
5921 if (errno)
5922 return errno;
5923 }
5924
5925 return 0;
5926 }
5927
5928 static void
5929 linux_look_up_symbols (void)
5930 {
5931 #ifdef USE_THREAD_DB
5932 struct process_info *proc = current_process ();
5933
5934 if (proc->priv->thread_db != NULL)
5935 return;
5936
5937 thread_db_init ();
5938 #endif
5939 }
5940
5941 static void
5942 linux_request_interrupt (void)
5943 {
5944 /* Send a SIGINT to the process group. This acts just like the user
5945 typed a ^C on the controlling terminal. */
5946 kill (-signal_pid, SIGINT);
5947 }
5948
5949 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5950 to debugger memory starting at MYADDR. */
5951
5952 static int
5953 linux_read_auxv (CORE_ADDR offset, unsigned char *myaddr, unsigned int len)
5954 {
5955 char filename[PATH_MAX];
5956 int fd, n;
5957 int pid = lwpid_of (current_thread);
5958
5959 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5960
5961 fd = open (filename, O_RDONLY);
5962 if (fd < 0)
5963 return -1;
5964
5965 if (offset != (CORE_ADDR) 0
5966 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5967 n = -1;
5968 else
5969 n = read (fd, myaddr, len);
5970
5971 close (fd);
5972
5973 return n;
5974 }
5975
5976 /* These breakpoint and watchpoint related wrapper functions simply
5977 pass on the function call if the target has registered a
5978 corresponding function. */
5979
5980 static int
5981 linux_supports_z_point_type (char z_type)
5982 {
5983 return (the_low_target.supports_z_point_type != NULL
5984 && the_low_target.supports_z_point_type (z_type));
5985 }
5986
5987 static int
5988 linux_insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5989 int size, struct raw_breakpoint *bp)
5990 {
5991 if (type == raw_bkpt_type_sw)
5992 return insert_memory_breakpoint (bp);
5993 else if (the_low_target.insert_point != NULL)
5994 return the_low_target.insert_point (type, addr, size, bp);
5995 else
5996 /* Unsupported (see target.h). */
5997 return 1;
5998 }
5999
6000 static int
6001 linux_remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
6002 int size, struct raw_breakpoint *bp)
6003 {
6004 if (type == raw_bkpt_type_sw)
6005 return remove_memory_breakpoint (bp);
6006 else if (the_low_target.remove_point != NULL)
6007 return the_low_target.remove_point (type, addr, size, bp);
6008 else
6009 /* Unsupported (see target.h). */
6010 return 1;
6011 }
6012
6013 /* Implement the to_stopped_by_sw_breakpoint target_ops
6014 method. */
6015
6016 static int
6017 linux_stopped_by_sw_breakpoint (void)
6018 {
6019 struct lwp_info *lwp = get_thread_lwp (current_thread);
6020
6021 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
6022 }
6023
6024 /* Implement the to_supports_stopped_by_sw_breakpoint target_ops
6025 method. */
6026
6027 static int
6028 linux_supports_stopped_by_sw_breakpoint (void)
6029 {
6030 return USE_SIGTRAP_SIGINFO;
6031 }
6032
6033 /* Implement the to_stopped_by_hw_breakpoint target_ops
6034 method. */
6035
6036 static int
6037 linux_stopped_by_hw_breakpoint (void)
6038 {
6039 struct lwp_info *lwp = get_thread_lwp (current_thread);
6040
6041 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
6042 }
6043
6044 /* Implement the to_supports_stopped_by_hw_breakpoint target_ops
6045 method. */
6046
6047 static int
6048 linux_supports_stopped_by_hw_breakpoint (void)
6049 {
6050 return USE_SIGTRAP_SIGINFO;
6051 }
6052
6053 /* Implement the supports_hardware_single_step target_ops method. */
6054
6055 static int
6056 linux_supports_hardware_single_step (void)
6057 {
6058 return can_hardware_single_step ();
6059 }
6060
6061 static int
6062 linux_supports_software_single_step (void)
6063 {
6064 return can_software_single_step ();
6065 }
6066
6067 static int
6068 linux_stopped_by_watchpoint (void)
6069 {
6070 struct lwp_info *lwp = get_thread_lwp (current_thread);
6071
6072 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
6073 }
6074
6075 static CORE_ADDR
6076 linux_stopped_data_address (void)
6077 {
6078 struct lwp_info *lwp = get_thread_lwp (current_thread);
6079
6080 return lwp->stopped_data_address;
6081 }
6082
6083 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
6084 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
6085 && defined(PT_TEXT_END_ADDR)
6086
6087 /* This is only used for targets that define PT_TEXT_ADDR,
6088 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
6089 the target has different ways of acquiring this information, like
6090 loadmaps. */
6091
6092 /* Under uClinux, programs are loaded at non-zero offsets, which we need
6093 to tell gdb about. */
6094
6095 static int
6096 linux_read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
6097 {
6098 unsigned long text, text_end, data;
6099 int pid = lwpid_of (current_thread);
6100
6101 errno = 0;
6102
6103 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
6104 (PTRACE_TYPE_ARG4) 0);
6105 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
6106 (PTRACE_TYPE_ARG4) 0);
6107 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
6108 (PTRACE_TYPE_ARG4) 0);
6109
6110 if (errno == 0)
6111 {
6112 /* Both text and data offsets produced at compile-time (and so
6113 used by gdb) are relative to the beginning of the program,
6114 with the data segment immediately following the text segment.
6115 However, the actual runtime layout in memory may put the data
6116 somewhere else, so when we send gdb a data base-address, we
6117 use the real data base address and subtract the compile-time
6118 data base-address from it (which is just the length of the
6119 text segment). BSS immediately follows data in both
6120 cases. */
6121 *text_p = text;
6122 *data_p = data - (text_end - text);
6123
6124 return 1;
6125 }
6126 return 0;
6127 }
6128 #endif
6129
6130 static int
6131 linux_qxfer_osdata (const char *annex,
6132 unsigned char *readbuf, unsigned const char *writebuf,
6133 CORE_ADDR offset, int len)
6134 {
6135 return linux_common_xfer_osdata (annex, readbuf, offset, len);
6136 }
6137
6138 /* Convert a native/host siginfo object, into/from the siginfo in the
6139 layout of the inferiors' architecture. */
6140
6141 static void
6142 siginfo_fixup (siginfo_t *siginfo, gdb_byte *inf_siginfo, int direction)
6143 {
6144 int done = 0;
6145
6146 if (the_low_target.siginfo_fixup != NULL)
6147 done = the_low_target.siginfo_fixup (siginfo, inf_siginfo, direction);
6148
6149 /* If there was no callback, or the callback didn't do anything,
6150 then just do a straight memcpy. */
6151 if (!done)
6152 {
6153 if (direction == 1)
6154 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6155 else
6156 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6157 }
6158 }
6159
6160 static int
6161 linux_xfer_siginfo (const char *annex, unsigned char *readbuf,
6162 unsigned const char *writebuf, CORE_ADDR offset, int len)
6163 {
6164 int pid;
6165 siginfo_t siginfo;
6166 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6167
6168 if (current_thread == NULL)
6169 return -1;
6170
6171 pid = lwpid_of (current_thread);
6172
6173 if (debug_threads)
6174 debug_printf ("%s siginfo for lwp %d.\n",
6175 readbuf != NULL ? "Reading" : "Writing",
6176 pid);
6177
6178 if (offset >= sizeof (siginfo))
6179 return -1;
6180
6181 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6182 return -1;
6183
6184 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6185 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6186 inferior with a 64-bit GDBSERVER should look the same as debugging it
6187 with a 32-bit GDBSERVER, we need to convert it. */
6188 siginfo_fixup (&siginfo, inf_siginfo, 0);
6189
6190 if (offset + len > sizeof (siginfo))
6191 len = sizeof (siginfo) - offset;
6192
6193 if (readbuf != NULL)
6194 memcpy (readbuf, inf_siginfo + offset, len);
6195 else
6196 {
6197 memcpy (inf_siginfo + offset, writebuf, len);
6198
6199 /* Convert back to ptrace layout before flushing it out. */
6200 siginfo_fixup (&siginfo, inf_siginfo, 1);
6201
6202 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6203 return -1;
6204 }
6205
6206 return len;
6207 }
6208
6209 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6210 so we notice when children change state; as the handler for the
6211 sigsuspend in my_waitpid. */
6212
6213 static void
6214 sigchld_handler (int signo)
6215 {
6216 int old_errno = errno;
6217
6218 if (debug_threads)
6219 {
6220 do
6221 {
6222 /* fprintf is not async-signal-safe, so call write
6223 directly. */
6224 if (write (2, "sigchld_handler\n",
6225 sizeof ("sigchld_handler\n") - 1) < 0)
6226 break; /* just ignore */
6227 } while (0);
6228 }
6229
6230 if (target_is_async_p ())
6231 async_file_mark (); /* trigger a linux_wait */
6232
6233 errno = old_errno;
6234 }
6235
6236 static int
6237 linux_supports_non_stop (void)
6238 {
6239 return 1;
6240 }
6241
6242 static int
6243 linux_async (int enable)
6244 {
6245 int previous = target_is_async_p ();
6246
6247 if (debug_threads)
6248 debug_printf ("linux_async (%d), previous=%d\n",
6249 enable, previous);
6250
6251 if (previous != enable)
6252 {
6253 sigset_t mask;
6254 sigemptyset (&mask);
6255 sigaddset (&mask, SIGCHLD);
6256
6257 sigprocmask (SIG_BLOCK, &mask, NULL);
6258
6259 if (enable)
6260 {
6261 if (pipe (linux_event_pipe) == -1)
6262 {
6263 linux_event_pipe[0] = -1;
6264 linux_event_pipe[1] = -1;
6265 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6266
6267 warning ("creating event pipe failed.");
6268 return previous;
6269 }
6270
6271 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6272 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6273
6274 /* Register the event loop handler. */
6275 add_file_handler (linux_event_pipe[0],
6276 handle_target_event, NULL);
6277
6278 /* Always trigger a linux_wait. */
6279 async_file_mark ();
6280 }
6281 else
6282 {
6283 delete_file_handler (linux_event_pipe[0]);
6284
6285 close (linux_event_pipe[0]);
6286 close (linux_event_pipe[1]);
6287 linux_event_pipe[0] = -1;
6288 linux_event_pipe[1] = -1;
6289 }
6290
6291 sigprocmask (SIG_UNBLOCK, &mask, NULL);
6292 }
6293
6294 return previous;
6295 }
6296
6297 static int
6298 linux_start_non_stop (int nonstop)
6299 {
6300 /* Register or unregister from event-loop accordingly. */
6301 linux_async (nonstop);
6302
6303 if (target_is_async_p () != (nonstop != 0))
6304 return -1;
6305
6306 return 0;
6307 }
6308
6309 static int
6310 linux_supports_multi_process (void)
6311 {
6312 return 1;
6313 }
6314
6315 /* Check if fork events are supported. */
6316
6317 static int
6318 linux_supports_fork_events (void)
6319 {
6320 return linux_supports_tracefork ();
6321 }
6322
6323 /* Check if vfork events are supported. */
6324
6325 static int
6326 linux_supports_vfork_events (void)
6327 {
6328 return linux_supports_tracefork ();
6329 }
6330
6331 /* Check if exec events are supported. */
6332
6333 static int
6334 linux_supports_exec_events (void)
6335 {
6336 return linux_supports_traceexec ();
6337 }
6338
6339 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6340 ptrace flags for all inferiors. This is in case the new GDB connection
6341 doesn't support the same set of events that the previous one did. */
6342
6343 static void
6344 linux_handle_new_gdb_connection (void)
6345 {
6346 /* Request that all the lwps reset their ptrace options. */
6347 for_each_thread ([] (thread_info *thread)
6348 {
6349 struct lwp_info *lwp = get_thread_lwp (thread);
6350
6351 if (!lwp->stopped)
6352 {
6353 /* Stop the lwp so we can modify its ptrace options. */
6354 lwp->must_set_ptrace_flags = 1;
6355 linux_stop_lwp (lwp);
6356 }
6357 else
6358 {
6359 /* Already stopped; go ahead and set the ptrace options. */
6360 struct process_info *proc = find_process_pid (pid_of (thread));
6361 int options = linux_low_ptrace_options (proc->attached);
6362
6363 linux_enable_event_reporting (lwpid_of (thread), options);
6364 lwp->must_set_ptrace_flags = 0;
6365 }
6366 });
6367 }
6368
6369 static int
6370 linux_supports_disable_randomization (void)
6371 {
6372 #ifdef HAVE_PERSONALITY
6373 return 1;
6374 #else
6375 return 0;
6376 #endif
6377 }
6378
6379 static int
6380 linux_supports_agent (void)
6381 {
6382 return 1;
6383 }
6384
6385 static int
6386 linux_supports_range_stepping (void)
6387 {
6388 if (can_software_single_step ())
6389 return 1;
6390 if (*the_low_target.supports_range_stepping == NULL)
6391 return 0;
6392
6393 return (*the_low_target.supports_range_stepping) ();
6394 }
6395
6396 /* Enumerate spufs IDs for process PID. */
6397 static int
6398 spu_enumerate_spu_ids (long pid, unsigned char *buf, CORE_ADDR offset, int len)
6399 {
6400 int pos = 0;
6401 int written = 0;
6402 char path[128];
6403 DIR *dir;
6404 struct dirent *entry;
6405
6406 sprintf (path, "/proc/%ld/fd", pid);
6407 dir = opendir (path);
6408 if (!dir)
6409 return -1;
6410
6411 rewinddir (dir);
6412 while ((entry = readdir (dir)) != NULL)
6413 {
6414 struct stat st;
6415 struct statfs stfs;
6416 int fd;
6417
6418 fd = atoi (entry->d_name);
6419 if (!fd)
6420 continue;
6421
6422 sprintf (path, "/proc/%ld/fd/%d", pid, fd);
6423 if (stat (path, &st) != 0)
6424 continue;
6425 if (!S_ISDIR (st.st_mode))
6426 continue;
6427
6428 if (statfs (path, &stfs) != 0)
6429 continue;
6430 if (stfs.f_type != SPUFS_MAGIC)
6431 continue;
6432
6433 if (pos >= offset && pos + 4 <= offset + len)
6434 {
6435 *(unsigned int *)(buf + pos - offset) = fd;
6436 written += 4;
6437 }
6438 pos += 4;
6439 }
6440
6441 closedir (dir);
6442 return written;
6443 }
6444
6445 /* Implements the to_xfer_partial interface for the TARGET_OBJECT_SPU
6446 object type, using the /proc file system. */
6447 static int
6448 linux_qxfer_spu (const char *annex, unsigned char *readbuf,
6449 unsigned const char *writebuf,
6450 CORE_ADDR offset, int len)
6451 {
6452 long pid = lwpid_of (current_thread);
6453 char buf[128];
6454 int fd = 0;
6455 int ret = 0;
6456
6457 if (!writebuf && !readbuf)
6458 return -1;
6459
6460 if (!*annex)
6461 {
6462 if (!readbuf)
6463 return -1;
6464 else
6465 return spu_enumerate_spu_ids (pid, readbuf, offset, len);
6466 }
6467
6468 sprintf (buf, "/proc/%ld/fd/%s", pid, annex);
6469 fd = open (buf, writebuf? O_WRONLY : O_RDONLY);
6470 if (fd <= 0)
6471 return -1;
6472
6473 if (offset != 0
6474 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
6475 {
6476 close (fd);
6477 return 0;
6478 }
6479
6480 if (writebuf)
6481 ret = write (fd, writebuf, (size_t) len);
6482 else
6483 ret = read (fd, readbuf, (size_t) len);
6484
6485 close (fd);
6486 return ret;
6487 }
6488
6489 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6490 struct target_loadseg
6491 {
6492 /* Core address to which the segment is mapped. */
6493 Elf32_Addr addr;
6494 /* VMA recorded in the program header. */
6495 Elf32_Addr p_vaddr;
6496 /* Size of this segment in memory. */
6497 Elf32_Word p_memsz;
6498 };
6499
6500 # if defined PT_GETDSBT
6501 struct target_loadmap
6502 {
6503 /* Protocol version number, must be zero. */
6504 Elf32_Word version;
6505 /* Pointer to the DSBT table, its size, and the DSBT index. */
6506 unsigned *dsbt_table;
6507 unsigned dsbt_size, dsbt_index;
6508 /* Number of segments in this map. */
6509 Elf32_Word nsegs;
6510 /* The actual memory map. */
6511 struct target_loadseg segs[/*nsegs*/];
6512 };
6513 # define LINUX_LOADMAP PT_GETDSBT
6514 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6515 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6516 # else
6517 struct target_loadmap
6518 {
6519 /* Protocol version number, must be zero. */
6520 Elf32_Half version;
6521 /* Number of segments in this map. */
6522 Elf32_Half nsegs;
6523 /* The actual memory map. */
6524 struct target_loadseg segs[/*nsegs*/];
6525 };
6526 # define LINUX_LOADMAP PTRACE_GETFDPIC
6527 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6528 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6529 # endif
6530
6531 static int
6532 linux_read_loadmap (const char *annex, CORE_ADDR offset,
6533 unsigned char *myaddr, unsigned int len)
6534 {
6535 int pid = lwpid_of (current_thread);
6536 int addr = -1;
6537 struct target_loadmap *data = NULL;
6538 unsigned int actual_length, copy_length;
6539
6540 if (strcmp (annex, "exec") == 0)
6541 addr = (int) LINUX_LOADMAP_EXEC;
6542 else if (strcmp (annex, "interp") == 0)
6543 addr = (int) LINUX_LOADMAP_INTERP;
6544 else
6545 return -1;
6546
6547 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6548 return -1;
6549
6550 if (data == NULL)
6551 return -1;
6552
6553 actual_length = sizeof (struct target_loadmap)
6554 + sizeof (struct target_loadseg) * data->nsegs;
6555
6556 if (offset < 0 || offset > actual_length)
6557 return -1;
6558
6559 copy_length = actual_length - offset < len ? actual_length - offset : len;
6560 memcpy (myaddr, (char *) data + offset, copy_length);
6561 return copy_length;
6562 }
6563 #else
6564 # define linux_read_loadmap NULL
6565 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6566
6567 static void
6568 linux_process_qsupported (char **features, int count)
6569 {
6570 if (the_low_target.process_qsupported != NULL)
6571 the_low_target.process_qsupported (features, count);
6572 }
6573
6574 static int
6575 linux_supports_catch_syscall (void)
6576 {
6577 return (the_low_target.get_syscall_trapinfo != NULL
6578 && linux_supports_tracesysgood ());
6579 }
6580
6581 static int
6582 linux_get_ipa_tdesc_idx (void)
6583 {
6584 if (the_low_target.get_ipa_tdesc_idx == NULL)
6585 return 0;
6586
6587 return (*the_low_target.get_ipa_tdesc_idx) ();
6588 }
6589
6590 static int
6591 linux_supports_tracepoints (void)
6592 {
6593 if (*the_low_target.supports_tracepoints == NULL)
6594 return 0;
6595
6596 return (*the_low_target.supports_tracepoints) ();
6597 }
6598
6599 static CORE_ADDR
6600 linux_read_pc (struct regcache *regcache)
6601 {
6602 if (the_low_target.get_pc == NULL)
6603 return 0;
6604
6605 return (*the_low_target.get_pc) (regcache);
6606 }
6607
6608 static void
6609 linux_write_pc (struct regcache *regcache, CORE_ADDR pc)
6610 {
6611 gdb_assert (the_low_target.set_pc != NULL);
6612
6613 (*the_low_target.set_pc) (regcache, pc);
6614 }
6615
6616 static int
6617 linux_thread_stopped (struct thread_info *thread)
6618 {
6619 return get_thread_lwp (thread)->stopped;
6620 }
6621
6622 /* This exposes stop-all-threads functionality to other modules. */
6623
6624 static void
6625 linux_pause_all (int freeze)
6626 {
6627 stop_all_lwps (freeze, NULL);
6628 }
6629
6630 /* This exposes unstop-all-threads functionality to other gdbserver
6631 modules. */
6632
6633 static void
6634 linux_unpause_all (int unfreeze)
6635 {
6636 unstop_all_lwps (unfreeze, NULL);
6637 }
6638
6639 static int
6640 linux_prepare_to_access_memory (void)
6641 {
6642 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6643 running LWP. */
6644 if (non_stop)
6645 linux_pause_all (1);
6646 return 0;
6647 }
6648
6649 static void
6650 linux_done_accessing_memory (void)
6651 {
6652 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6653 running LWP. */
6654 if (non_stop)
6655 linux_unpause_all (1);
6656 }
6657
6658 static int
6659 linux_install_fast_tracepoint_jump_pad (CORE_ADDR tpoint, CORE_ADDR tpaddr,
6660 CORE_ADDR collector,
6661 CORE_ADDR lockaddr,
6662 ULONGEST orig_size,
6663 CORE_ADDR *jump_entry,
6664 CORE_ADDR *trampoline,
6665 ULONGEST *trampoline_size,
6666 unsigned char *jjump_pad_insn,
6667 ULONGEST *jjump_pad_insn_size,
6668 CORE_ADDR *adjusted_insn_addr,
6669 CORE_ADDR *adjusted_insn_addr_end,
6670 char *err)
6671 {
6672 return (*the_low_target.install_fast_tracepoint_jump_pad)
6673 (tpoint, tpaddr, collector, lockaddr, orig_size,
6674 jump_entry, trampoline, trampoline_size,
6675 jjump_pad_insn, jjump_pad_insn_size,
6676 adjusted_insn_addr, adjusted_insn_addr_end,
6677 err);
6678 }
6679
6680 static struct emit_ops *
6681 linux_emit_ops (void)
6682 {
6683 if (the_low_target.emit_ops != NULL)
6684 return (*the_low_target.emit_ops) ();
6685 else
6686 return NULL;
6687 }
6688
6689 static int
6690 linux_get_min_fast_tracepoint_insn_len (void)
6691 {
6692 return (*the_low_target.get_min_fast_tracepoint_insn_len) ();
6693 }
6694
6695 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6696
6697 static int
6698 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6699 CORE_ADDR *phdr_memaddr, int *num_phdr)
6700 {
6701 char filename[PATH_MAX];
6702 int fd;
6703 const int auxv_size = is_elf64
6704 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6705 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6706
6707 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6708
6709 fd = open (filename, O_RDONLY);
6710 if (fd < 0)
6711 return 1;
6712
6713 *phdr_memaddr = 0;
6714 *num_phdr = 0;
6715 while (read (fd, buf, auxv_size) == auxv_size
6716 && (*phdr_memaddr == 0 || *num_phdr == 0))
6717 {
6718 if (is_elf64)
6719 {
6720 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6721
6722 switch (aux->a_type)
6723 {
6724 case AT_PHDR:
6725 *phdr_memaddr = aux->a_un.a_val;
6726 break;
6727 case AT_PHNUM:
6728 *num_phdr = aux->a_un.a_val;
6729 break;
6730 }
6731 }
6732 else
6733 {
6734 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6735
6736 switch (aux->a_type)
6737 {
6738 case AT_PHDR:
6739 *phdr_memaddr = aux->a_un.a_val;
6740 break;
6741 case AT_PHNUM:
6742 *num_phdr = aux->a_un.a_val;
6743 break;
6744 }
6745 }
6746 }
6747
6748 close (fd);
6749
6750 if (*phdr_memaddr == 0 || *num_phdr == 0)
6751 {
6752 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6753 "phdr_memaddr = %ld, phdr_num = %d",
6754 (long) *phdr_memaddr, *num_phdr);
6755 return 2;
6756 }
6757
6758 return 0;
6759 }
6760
6761 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6762
6763 static CORE_ADDR
6764 get_dynamic (const int pid, const int is_elf64)
6765 {
6766 CORE_ADDR phdr_memaddr, relocation;
6767 int num_phdr, i;
6768 unsigned char *phdr_buf;
6769 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6770
6771 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6772 return 0;
6773
6774 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6775 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6776
6777 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6778 return 0;
6779
6780 /* Compute relocation: it is expected to be 0 for "regular" executables,
6781 non-zero for PIE ones. */
6782 relocation = -1;
6783 for (i = 0; relocation == -1 && i < num_phdr; i++)
6784 if (is_elf64)
6785 {
6786 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6787
6788 if (p->p_type == PT_PHDR)
6789 relocation = phdr_memaddr - p->p_vaddr;
6790 }
6791 else
6792 {
6793 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6794
6795 if (p->p_type == PT_PHDR)
6796 relocation = phdr_memaddr - p->p_vaddr;
6797 }
6798
6799 if (relocation == -1)
6800 {
6801 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6802 any real world executables, including PIE executables, have always
6803 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6804 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6805 or present DT_DEBUG anyway (fpc binaries are statically linked).
6806
6807 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6808
6809 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6810
6811 return 0;
6812 }
6813
6814 for (i = 0; i < num_phdr; i++)
6815 {
6816 if (is_elf64)
6817 {
6818 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6819
6820 if (p->p_type == PT_DYNAMIC)
6821 return p->p_vaddr + relocation;
6822 }
6823 else
6824 {
6825 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6826
6827 if (p->p_type == PT_DYNAMIC)
6828 return p->p_vaddr + relocation;
6829 }
6830 }
6831
6832 return 0;
6833 }
6834
6835 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6836 can be 0 if the inferior does not yet have the library list initialized.
6837 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6838 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6839
6840 static CORE_ADDR
6841 get_r_debug (const int pid, const int is_elf64)
6842 {
6843 CORE_ADDR dynamic_memaddr;
6844 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6845 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6846 CORE_ADDR map = -1;
6847
6848 dynamic_memaddr = get_dynamic (pid, is_elf64);
6849 if (dynamic_memaddr == 0)
6850 return map;
6851
6852 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6853 {
6854 if (is_elf64)
6855 {
6856 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6857 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6858 union
6859 {
6860 Elf64_Xword map;
6861 unsigned char buf[sizeof (Elf64_Xword)];
6862 }
6863 rld_map;
6864 #endif
6865 #ifdef DT_MIPS_RLD_MAP
6866 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6867 {
6868 if (linux_read_memory (dyn->d_un.d_val,
6869 rld_map.buf, sizeof (rld_map.buf)) == 0)
6870 return rld_map.map;
6871 else
6872 break;
6873 }
6874 #endif /* DT_MIPS_RLD_MAP */
6875 #ifdef DT_MIPS_RLD_MAP_REL
6876 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6877 {
6878 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6879 rld_map.buf, sizeof (rld_map.buf)) == 0)
6880 return rld_map.map;
6881 else
6882 break;
6883 }
6884 #endif /* DT_MIPS_RLD_MAP_REL */
6885
6886 if (dyn->d_tag == DT_DEBUG && map == -1)
6887 map = dyn->d_un.d_val;
6888
6889 if (dyn->d_tag == DT_NULL)
6890 break;
6891 }
6892 else
6893 {
6894 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6895 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6896 union
6897 {
6898 Elf32_Word map;
6899 unsigned char buf[sizeof (Elf32_Word)];
6900 }
6901 rld_map;
6902 #endif
6903 #ifdef DT_MIPS_RLD_MAP
6904 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6905 {
6906 if (linux_read_memory (dyn->d_un.d_val,
6907 rld_map.buf, sizeof (rld_map.buf)) == 0)
6908 return rld_map.map;
6909 else
6910 break;
6911 }
6912 #endif /* DT_MIPS_RLD_MAP */
6913 #ifdef DT_MIPS_RLD_MAP_REL
6914 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6915 {
6916 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6917 rld_map.buf, sizeof (rld_map.buf)) == 0)
6918 return rld_map.map;
6919 else
6920 break;
6921 }
6922 #endif /* DT_MIPS_RLD_MAP_REL */
6923
6924 if (dyn->d_tag == DT_DEBUG && map == -1)
6925 map = dyn->d_un.d_val;
6926
6927 if (dyn->d_tag == DT_NULL)
6928 break;
6929 }
6930
6931 dynamic_memaddr += dyn_size;
6932 }
6933
6934 return map;
6935 }
6936
6937 /* Read one pointer from MEMADDR in the inferior. */
6938
6939 static int
6940 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6941 {
6942 int ret;
6943
6944 /* Go through a union so this works on either big or little endian
6945 hosts, when the inferior's pointer size is smaller than the size
6946 of CORE_ADDR. It is assumed the inferior's endianness is the
6947 same of the superior's. */
6948 union
6949 {
6950 CORE_ADDR core_addr;
6951 unsigned int ui;
6952 unsigned char uc;
6953 } addr;
6954
6955 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6956 if (ret == 0)
6957 {
6958 if (ptr_size == sizeof (CORE_ADDR))
6959 *ptr = addr.core_addr;
6960 else if (ptr_size == sizeof (unsigned int))
6961 *ptr = addr.ui;
6962 else
6963 gdb_assert_not_reached ("unhandled pointer size");
6964 }
6965 return ret;
6966 }
6967
6968 struct link_map_offsets
6969 {
6970 /* Offset and size of r_debug.r_version. */
6971 int r_version_offset;
6972
6973 /* Offset and size of r_debug.r_map. */
6974 int r_map_offset;
6975
6976 /* Offset to l_addr field in struct link_map. */
6977 int l_addr_offset;
6978
6979 /* Offset to l_name field in struct link_map. */
6980 int l_name_offset;
6981
6982 /* Offset to l_ld field in struct link_map. */
6983 int l_ld_offset;
6984
6985 /* Offset to l_next field in struct link_map. */
6986 int l_next_offset;
6987
6988 /* Offset to l_prev field in struct link_map. */
6989 int l_prev_offset;
6990 };
6991
6992 /* Construct qXfer:libraries-svr4:read reply. */
6993
6994 static int
6995 linux_qxfer_libraries_svr4 (const char *annex, unsigned char *readbuf,
6996 unsigned const char *writebuf,
6997 CORE_ADDR offset, int len)
6998 {
6999 char *document;
7000 unsigned document_len;
7001 struct process_info_private *const priv = current_process ()->priv;
7002 char filename[PATH_MAX];
7003 int pid, is_elf64;
7004
7005 static const struct link_map_offsets lmo_32bit_offsets =
7006 {
7007 0, /* r_version offset. */
7008 4, /* r_debug.r_map offset. */
7009 0, /* l_addr offset in link_map. */
7010 4, /* l_name offset in link_map. */
7011 8, /* l_ld offset in link_map. */
7012 12, /* l_next offset in link_map. */
7013 16 /* l_prev offset in link_map. */
7014 };
7015
7016 static const struct link_map_offsets lmo_64bit_offsets =
7017 {
7018 0, /* r_version offset. */
7019 8, /* r_debug.r_map offset. */
7020 0, /* l_addr offset in link_map. */
7021 8, /* l_name offset in link_map. */
7022 16, /* l_ld offset in link_map. */
7023 24, /* l_next offset in link_map. */
7024 32 /* l_prev offset in link_map. */
7025 };
7026 const struct link_map_offsets *lmo;
7027 unsigned int machine;
7028 int ptr_size;
7029 CORE_ADDR lm_addr = 0, lm_prev = 0;
7030 int allocated = 1024;
7031 char *p;
7032 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
7033 int header_done = 0;
7034
7035 if (writebuf != NULL)
7036 return -2;
7037 if (readbuf == NULL)
7038 return -1;
7039
7040 pid = lwpid_of (current_thread);
7041 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
7042 is_elf64 = elf_64_file_p (filename, &machine);
7043 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
7044 ptr_size = is_elf64 ? 8 : 4;
7045
7046 while (annex[0] != '\0')
7047 {
7048 const char *sep;
7049 CORE_ADDR *addrp;
7050 int len;
7051
7052 sep = strchr (annex, '=');
7053 if (sep == NULL)
7054 break;
7055
7056 len = sep - annex;
7057 if (len == 5 && startswith (annex, "start"))
7058 addrp = &lm_addr;
7059 else if (len == 4 && startswith (annex, "prev"))
7060 addrp = &lm_prev;
7061 else
7062 {
7063 annex = strchr (sep, ';');
7064 if (annex == NULL)
7065 break;
7066 annex++;
7067 continue;
7068 }
7069
7070 annex = decode_address_to_semicolon (addrp, sep + 1);
7071 }
7072
7073 if (lm_addr == 0)
7074 {
7075 int r_version = 0;
7076
7077 if (priv->r_debug == 0)
7078 priv->r_debug = get_r_debug (pid, is_elf64);
7079
7080 /* We failed to find DT_DEBUG. Such situation will not change
7081 for this inferior - do not retry it. Report it to GDB as
7082 E01, see for the reasons at the GDB solib-svr4.c side. */
7083 if (priv->r_debug == (CORE_ADDR) -1)
7084 return -1;
7085
7086 if (priv->r_debug != 0)
7087 {
7088 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
7089 (unsigned char *) &r_version,
7090 sizeof (r_version)) != 0
7091 || r_version != 1)
7092 {
7093 warning ("unexpected r_debug version %d", r_version);
7094 }
7095 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
7096 &lm_addr, ptr_size) != 0)
7097 {
7098 warning ("unable to read r_map from 0x%lx",
7099 (long) priv->r_debug + lmo->r_map_offset);
7100 }
7101 }
7102 }
7103
7104 document = (char *) xmalloc (allocated);
7105 strcpy (document, "<library-list-svr4 version=\"1.0\"");
7106 p = document + strlen (document);
7107
7108 while (lm_addr
7109 && read_one_ptr (lm_addr + lmo->l_name_offset,
7110 &l_name, ptr_size) == 0
7111 && read_one_ptr (lm_addr + lmo->l_addr_offset,
7112 &l_addr, ptr_size) == 0
7113 && read_one_ptr (lm_addr + lmo->l_ld_offset,
7114 &l_ld, ptr_size) == 0
7115 && read_one_ptr (lm_addr + lmo->l_prev_offset,
7116 &l_prev, ptr_size) == 0
7117 && read_one_ptr (lm_addr + lmo->l_next_offset,
7118 &l_next, ptr_size) == 0)
7119 {
7120 unsigned char libname[PATH_MAX];
7121
7122 if (lm_prev != l_prev)
7123 {
7124 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
7125 (long) lm_prev, (long) l_prev);
7126 break;
7127 }
7128
7129 /* Ignore the first entry even if it has valid name as the first entry
7130 corresponds to the main executable. The first entry should not be
7131 skipped if the dynamic loader was loaded late by a static executable
7132 (see solib-svr4.c parameter ignore_first). But in such case the main
7133 executable does not have PT_DYNAMIC present and this function already
7134 exited above due to failed get_r_debug. */
7135 if (lm_prev == 0)
7136 {
7137 sprintf (p, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
7138 p = p + strlen (p);
7139 }
7140 else
7141 {
7142 /* Not checking for error because reading may stop before
7143 we've got PATH_MAX worth of characters. */
7144 libname[0] = '\0';
7145 linux_read_memory (l_name, libname, sizeof (libname) - 1);
7146 libname[sizeof (libname) - 1] = '\0';
7147 if (libname[0] != '\0')
7148 {
7149 /* 6x the size for xml_escape_text below. */
7150 size_t len = 6 * strlen ((char *) libname);
7151
7152 if (!header_done)
7153 {
7154 /* Terminate `<library-list-svr4'. */
7155 *p++ = '>';
7156 header_done = 1;
7157 }
7158
7159 while (allocated < p - document + len + 200)
7160 {
7161 /* Expand to guarantee sufficient storage. */
7162 uintptr_t document_len = p - document;
7163
7164 document = (char *) xrealloc (document, 2 * allocated);
7165 allocated *= 2;
7166 p = document + document_len;
7167 }
7168
7169 std::string name = xml_escape_text ((char *) libname);
7170 p += sprintf (p, "<library name=\"%s\" lm=\"0x%lx\" "
7171 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
7172 name.c_str (), (unsigned long) lm_addr,
7173 (unsigned long) l_addr, (unsigned long) l_ld);
7174 }
7175 }
7176
7177 lm_prev = lm_addr;
7178 lm_addr = l_next;
7179 }
7180
7181 if (!header_done)
7182 {
7183 /* Empty list; terminate `<library-list-svr4'. */
7184 strcpy (p, "/>");
7185 }
7186 else
7187 strcpy (p, "</library-list-svr4>");
7188
7189 document_len = strlen (document);
7190 if (offset < document_len)
7191 document_len -= offset;
7192 else
7193 document_len = 0;
7194 if (len > document_len)
7195 len = document_len;
7196
7197 memcpy (readbuf, document + offset, len);
7198 xfree (document);
7199
7200 return len;
7201 }
7202
7203 #ifdef HAVE_LINUX_BTRACE
7204
7205 /* See to_disable_btrace target method. */
7206
7207 static int
7208 linux_low_disable_btrace (struct btrace_target_info *tinfo)
7209 {
7210 enum btrace_error err;
7211
7212 err = linux_disable_btrace (tinfo);
7213 return (err == BTRACE_ERR_NONE ? 0 : -1);
7214 }
7215
7216 /* Encode an Intel Processor Trace configuration. */
7217
7218 static void
7219 linux_low_encode_pt_config (struct buffer *buffer,
7220 const struct btrace_data_pt_config *config)
7221 {
7222 buffer_grow_str (buffer, "<pt-config>\n");
7223
7224 switch (config->cpu.vendor)
7225 {
7226 case CV_INTEL:
7227 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7228 "model=\"%u\" stepping=\"%u\"/>\n",
7229 config->cpu.family, config->cpu.model,
7230 config->cpu.stepping);
7231 break;
7232
7233 default:
7234 break;
7235 }
7236
7237 buffer_grow_str (buffer, "</pt-config>\n");
7238 }
7239
7240 /* Encode a raw buffer. */
7241
7242 static void
7243 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7244 unsigned int size)
7245 {
7246 if (size == 0)
7247 return;
7248
7249 /* We use hex encoding - see common/rsp-low.h. */
7250 buffer_grow_str (buffer, "<raw>\n");
7251
7252 while (size-- > 0)
7253 {
7254 char elem[2];
7255
7256 elem[0] = tohex ((*data >> 4) & 0xf);
7257 elem[1] = tohex (*data++ & 0xf);
7258
7259 buffer_grow (buffer, elem, 2);
7260 }
7261
7262 buffer_grow_str (buffer, "</raw>\n");
7263 }
7264
7265 /* See to_read_btrace target method. */
7266
7267 static int
7268 linux_low_read_btrace (struct btrace_target_info *tinfo, struct buffer *buffer,
7269 enum btrace_read_type type)
7270 {
7271 struct btrace_data btrace;
7272 struct btrace_block *block;
7273 enum btrace_error err;
7274 int i;
7275
7276 btrace_data_init (&btrace);
7277
7278 err = linux_read_btrace (&btrace, tinfo, type);
7279 if (err != BTRACE_ERR_NONE)
7280 {
7281 if (err == BTRACE_ERR_OVERFLOW)
7282 buffer_grow_str0 (buffer, "E.Overflow.");
7283 else
7284 buffer_grow_str0 (buffer, "E.Generic Error.");
7285
7286 goto err;
7287 }
7288
7289 switch (btrace.format)
7290 {
7291 case BTRACE_FORMAT_NONE:
7292 buffer_grow_str0 (buffer, "E.No Trace.");
7293 goto err;
7294
7295 case BTRACE_FORMAT_BTS:
7296 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7297 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7298
7299 for (i = 0;
7300 VEC_iterate (btrace_block_s, btrace.variant.bts.blocks, i, block);
7301 i++)
7302 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7303 paddress (block->begin), paddress (block->end));
7304
7305 buffer_grow_str0 (buffer, "</btrace>\n");
7306 break;
7307
7308 case BTRACE_FORMAT_PT:
7309 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7310 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7311 buffer_grow_str (buffer, "<pt>\n");
7312
7313 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7314
7315 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7316 btrace.variant.pt.size);
7317
7318 buffer_grow_str (buffer, "</pt>\n");
7319 buffer_grow_str0 (buffer, "</btrace>\n");
7320 break;
7321
7322 default:
7323 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7324 goto err;
7325 }
7326
7327 btrace_data_fini (&btrace);
7328 return 0;
7329
7330 err:
7331 btrace_data_fini (&btrace);
7332 return -1;
7333 }
7334
7335 /* See to_btrace_conf target method. */
7336
7337 static int
7338 linux_low_btrace_conf (const struct btrace_target_info *tinfo,
7339 struct buffer *buffer)
7340 {
7341 const struct btrace_config *conf;
7342
7343 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7344 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7345
7346 conf = linux_btrace_conf (tinfo);
7347 if (conf != NULL)
7348 {
7349 switch (conf->format)
7350 {
7351 case BTRACE_FORMAT_NONE:
7352 break;
7353
7354 case BTRACE_FORMAT_BTS:
7355 buffer_xml_printf (buffer, "<bts");
7356 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7357 buffer_xml_printf (buffer, " />\n");
7358 break;
7359
7360 case BTRACE_FORMAT_PT:
7361 buffer_xml_printf (buffer, "<pt");
7362 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7363 buffer_xml_printf (buffer, "/>\n");
7364 break;
7365 }
7366 }
7367
7368 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7369 return 0;
7370 }
7371 #endif /* HAVE_LINUX_BTRACE */
7372
7373 /* See nat/linux-nat.h. */
7374
7375 ptid_t
7376 current_lwp_ptid (void)
7377 {
7378 return ptid_of (current_thread);
7379 }
7380
7381 /* Implementation of the target_ops method "breakpoint_kind_from_pc". */
7382
7383 static int
7384 linux_breakpoint_kind_from_pc (CORE_ADDR *pcptr)
7385 {
7386 if (the_low_target.breakpoint_kind_from_pc != NULL)
7387 return (*the_low_target.breakpoint_kind_from_pc) (pcptr);
7388 else
7389 return default_breakpoint_kind_from_pc (pcptr);
7390 }
7391
7392 /* Implementation of the target_ops method "sw_breakpoint_from_kind". */
7393
7394 static const gdb_byte *
7395 linux_sw_breakpoint_from_kind (int kind, int *size)
7396 {
7397 gdb_assert (the_low_target.sw_breakpoint_from_kind != NULL);
7398
7399 return (*the_low_target.sw_breakpoint_from_kind) (kind, size);
7400 }
7401
7402 /* Implementation of the target_ops method
7403 "breakpoint_kind_from_current_state". */
7404
7405 static int
7406 linux_breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
7407 {
7408 if (the_low_target.breakpoint_kind_from_current_state != NULL)
7409 return (*the_low_target.breakpoint_kind_from_current_state) (pcptr);
7410 else
7411 return linux_breakpoint_kind_from_pc (pcptr);
7412 }
7413
7414 /* Default implementation of linux_target_ops method "set_pc" for
7415 32-bit pc register which is literally named "pc". */
7416
7417 void
7418 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7419 {
7420 uint32_t newpc = pc;
7421
7422 supply_register_by_name (regcache, "pc", &newpc);
7423 }
7424
7425 /* Default implementation of linux_target_ops method "get_pc" for
7426 32-bit pc register which is literally named "pc". */
7427
7428 CORE_ADDR
7429 linux_get_pc_32bit (struct regcache *regcache)
7430 {
7431 uint32_t pc;
7432
7433 collect_register_by_name (regcache, "pc", &pc);
7434 if (debug_threads)
7435 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7436 return pc;
7437 }
7438
7439 /* Default implementation of linux_target_ops method "set_pc" for
7440 64-bit pc register which is literally named "pc". */
7441
7442 void
7443 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7444 {
7445 uint64_t newpc = pc;
7446
7447 supply_register_by_name (regcache, "pc", &newpc);
7448 }
7449
7450 /* Default implementation of linux_target_ops method "get_pc" for
7451 64-bit pc register which is literally named "pc". */
7452
7453 CORE_ADDR
7454 linux_get_pc_64bit (struct regcache *regcache)
7455 {
7456 uint64_t pc;
7457
7458 collect_register_by_name (regcache, "pc", &pc);
7459 if (debug_threads)
7460 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7461 return pc;
7462 }
7463
7464
7465 static struct target_ops linux_target_ops = {
7466 linux_create_inferior,
7467 linux_post_create_inferior,
7468 linux_attach,
7469 linux_kill,
7470 linux_detach,
7471 linux_mourn,
7472 linux_join,
7473 linux_thread_alive,
7474 linux_resume,
7475 linux_wait,
7476 linux_fetch_registers,
7477 linux_store_registers,
7478 linux_prepare_to_access_memory,
7479 linux_done_accessing_memory,
7480 linux_read_memory,
7481 linux_write_memory,
7482 linux_look_up_symbols,
7483 linux_request_interrupt,
7484 linux_read_auxv,
7485 linux_supports_z_point_type,
7486 linux_insert_point,
7487 linux_remove_point,
7488 linux_stopped_by_sw_breakpoint,
7489 linux_supports_stopped_by_sw_breakpoint,
7490 linux_stopped_by_hw_breakpoint,
7491 linux_supports_stopped_by_hw_breakpoint,
7492 linux_supports_hardware_single_step,
7493 linux_stopped_by_watchpoint,
7494 linux_stopped_data_address,
7495 #if defined(__UCLIBC__) && defined(HAS_NOMMU) \
7496 && defined(PT_TEXT_ADDR) && defined(PT_DATA_ADDR) \
7497 && defined(PT_TEXT_END_ADDR)
7498 linux_read_offsets,
7499 #else
7500 NULL,
7501 #endif
7502 #ifdef USE_THREAD_DB
7503 thread_db_get_tls_address,
7504 #else
7505 NULL,
7506 #endif
7507 linux_qxfer_spu,
7508 hostio_last_error_from_errno,
7509 linux_qxfer_osdata,
7510 linux_xfer_siginfo,
7511 linux_supports_non_stop,
7512 linux_async,
7513 linux_start_non_stop,
7514 linux_supports_multi_process,
7515 linux_supports_fork_events,
7516 linux_supports_vfork_events,
7517 linux_supports_exec_events,
7518 linux_handle_new_gdb_connection,
7519 #ifdef USE_THREAD_DB
7520 thread_db_handle_monitor_command,
7521 #else
7522 NULL,
7523 #endif
7524 linux_common_core_of_thread,
7525 linux_read_loadmap,
7526 linux_process_qsupported,
7527 linux_supports_tracepoints,
7528 linux_read_pc,
7529 linux_write_pc,
7530 linux_thread_stopped,
7531 NULL,
7532 linux_pause_all,
7533 linux_unpause_all,
7534 linux_stabilize_threads,
7535 linux_install_fast_tracepoint_jump_pad,
7536 linux_emit_ops,
7537 linux_supports_disable_randomization,
7538 linux_get_min_fast_tracepoint_insn_len,
7539 linux_qxfer_libraries_svr4,
7540 linux_supports_agent,
7541 #ifdef HAVE_LINUX_BTRACE
7542 linux_supports_btrace,
7543 linux_enable_btrace,
7544 linux_low_disable_btrace,
7545 linux_low_read_btrace,
7546 linux_low_btrace_conf,
7547 #else
7548 NULL,
7549 NULL,
7550 NULL,
7551 NULL,
7552 NULL,
7553 #endif
7554 linux_supports_range_stepping,
7555 linux_proc_pid_to_exec_file,
7556 linux_mntns_open_cloexec,
7557 linux_mntns_unlink,
7558 linux_mntns_readlink,
7559 linux_breakpoint_kind_from_pc,
7560 linux_sw_breakpoint_from_kind,
7561 linux_proc_tid_get_name,
7562 linux_breakpoint_kind_from_current_state,
7563 linux_supports_software_single_step,
7564 linux_supports_catch_syscall,
7565 linux_get_ipa_tdesc_idx,
7566 #if USE_THREAD_DB
7567 thread_db_thread_handle,
7568 #else
7569 NULL,
7570 #endif
7571 };
7572
7573 #ifdef HAVE_LINUX_REGSETS
7574 void
7575 initialize_regsets_info (struct regsets_info *info)
7576 {
7577 for (info->num_regsets = 0;
7578 info->regsets[info->num_regsets].size >= 0;
7579 info->num_regsets++)
7580 ;
7581 }
7582 #endif
7583
7584 void
7585 initialize_low (void)
7586 {
7587 struct sigaction sigchld_action;
7588
7589 memset (&sigchld_action, 0, sizeof (sigchld_action));
7590 set_target_ops (&linux_target_ops);
7591
7592 linux_ptrace_init_warnings ();
7593
7594 sigchld_action.sa_handler = sigchld_handler;
7595 sigemptyset (&sigchld_action.sa_mask);
7596 sigchld_action.sa_flags = SA_RESTART;
7597 sigaction (SIGCHLD, &sigchld_action, NULL);
7598
7599 initialize_low_arch ();
7600
7601 linux_check_ptrace_features ();
7602 }
This page took 0.331751 seconds and 5 git commands to generate.