import gdb-1999-11-16 snapshot
[deliverable/binutils-gdb.git] / gdb / gdbserver / low-sparc.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1986, 1987, 1993 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21 #include "defs.h"
22 #include <sys/wait.h>
23 #include "frame.h"
24 #include "inferior.h"
25 /***************************
26 #include "initialize.h"
27 ****************************/
28
29 #include <stdio.h>
30 #include <sys/param.h>
31 #include <sys/dir.h>
32 #include <sys/user.h>
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <sgtty.h>
36 #include <fcntl.h>
37
38 /***************Begin MY defs*********************/
39 int quit_flag = 0;
40 static char my_registers[REGISTER_BYTES];
41 char *registers = my_registers;
42
43 /* Index within `registers' of the first byte of the space for
44 register N. */
45
46
47 char buf2[MAX_REGISTER_RAW_SIZE];
48 /***************End MY defs*********************/
49
50 #include <sys/ptrace.h>
51 #include <sys/reg.h>
52
53 extern int sys_nerr;
54 extern char **sys_errlist;
55 extern char **environ;
56 extern int errno;
57 extern int inferior_pid;
58 void quit (), perror_with_name ();
59 int query ();
60
61 /* Start an inferior process and returns its pid.
62 ALLARGS is a vector of program-name and args.
63 ENV is the environment vector to pass. */
64
65 int
66 create_inferior (program, allargs)
67 char *program;
68 char **allargs;
69 {
70 int pid;
71
72 pid = fork ();
73 if (pid < 0)
74 perror_with_name ("fork");
75
76 if (pid == 0)
77 {
78 ptrace (PTRACE_TRACEME);
79
80 execv (program, allargs);
81
82 fprintf (stderr, "Cannot exec %s: %s.\n", program,
83 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
84 fflush (stderr);
85 _exit (0177);
86 }
87
88 return pid;
89 }
90
91 /* Kill the inferior process. Make us have no inferior. */
92
93 void
94 kill_inferior ()
95 {
96 if (inferior_pid == 0)
97 return;
98 ptrace (8, inferior_pid, 0, 0);
99 wait (0);
100 /*************inferior_died ();****VK**************/
101 }
102
103 /* Return nonzero if the given thread is still alive. */
104 int
105 mythread_alive (pid)
106 int pid;
107 {
108 return 1;
109 }
110
111 /* Wait for process, returns status */
112
113 unsigned char
114 mywait (status)
115 char *status;
116 {
117 int pid;
118 union wait w;
119
120 pid = wait (&w);
121 if (pid != inferior_pid)
122 perror_with_name ("wait");
123
124 if (WIFEXITED (w))
125 {
126 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
127 *status = 'W';
128 return ((unsigned char) WEXITSTATUS (w));
129 }
130 else if (!WIFSTOPPED (w))
131 {
132 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
133 *status = 'X';
134 return ((unsigned char) WTERMSIG (w));
135 }
136
137 fetch_inferior_registers (0);
138
139 *status = 'T';
140 return ((unsigned char) WSTOPSIG (w));
141 }
142
143 /* Resume execution of the inferior process.
144 If STEP is nonzero, single-step it.
145 If SIGNAL is nonzero, give it that signal. */
146
147 void
148 myresume (step, signal)
149 int step;
150 int signal;
151 {
152 errno = 0;
153 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
154 if (errno)
155 perror_with_name ("ptrace");
156 }
157
158 /* Fetch one or more registers from the inferior. REGNO == -1 to get
159 them all. We actually fetch more than requested, when convenient,
160 marking them as valid so we won't fetch them again. */
161
162 void
163 fetch_inferior_registers (ignored)
164 int ignored;
165 {
166 struct regs inferior_registers;
167 struct fp_status inferior_fp_registers;
168 int i;
169
170 /* Global and Out regs are fetched directly, as well as the control
171 registers. If we're getting one of the in or local regs,
172 and the stack pointer has not yet been fetched,
173 we have to do that first, since they're found in memory relative
174 to the stack pointer. */
175
176 if (ptrace (PTRACE_GETREGS, inferior_pid,
177 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
178 perror ("ptrace_getregs");
179
180 registers[REGISTER_BYTE (0)] = 0;
181 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
182 15 * REGISTER_RAW_SIZE (G0_REGNUM));
183 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
184 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
185 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
186 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
187
188 /* Floating point registers */
189
190 if (ptrace (PTRACE_GETFPREGS, inferior_pid,
191 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
192 0))
193 perror ("ptrace_getfpregs");
194 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
195 sizeof inferior_fp_registers.fpu_fr);
196
197 /* These regs are saved on the stack by the kernel. Only read them
198 all (16 ptrace calls!) if we really need them. */
199
200 read_inferior_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
201 &registers[REGISTER_BYTE (L0_REGNUM)],
202 16 * REGISTER_RAW_SIZE (L0_REGNUM));
203 }
204
205 /* Store our register values back into the inferior.
206 If REGNO is -1, do this for all registers.
207 Otherwise, REGNO specifies which register (so we can save time). */
208
209 void
210 store_inferior_registers (ignored)
211 int ignored;
212 {
213 struct regs inferior_registers;
214 struct fp_status inferior_fp_registers;
215 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
216
217 write_inferior_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
218 16 * REGISTER_RAW_SIZE (L0_REGNUM));
219
220 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
221 15 * REGISTER_RAW_SIZE (G1_REGNUM));
222
223 inferior_registers.r_ps =
224 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
225 inferior_registers.r_pc =
226 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
227 inferior_registers.r_npc =
228 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
229 inferior_registers.r_y =
230 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
231
232 if (ptrace (PTRACE_SETREGS, inferior_pid,
233 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
234 perror ("ptrace_setregs");
235
236 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
237 sizeof inferior_fp_registers.fpu_fr);
238
239 if (ptrace (PTRACE_SETFPREGS, inferior_pid,
240 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
241 perror ("ptrace_setfpregs");
242 }
243
244 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
245 in the NEW_SUN_PTRACE case.
246 It ought to be straightforward. But it appears that writing did
247 not write the data that I specified. I cannot understand where
248 it got the data that it actually did write. */
249
250 /* Copy LEN bytes from inferior's memory starting at MEMADDR
251 to debugger memory starting at MYADDR. */
252
253 read_inferior_memory (memaddr, myaddr, len)
254 CORE_ADDR memaddr;
255 char *myaddr;
256 int len;
257 {
258 register int i;
259 /* Round starting address down to longword boundary. */
260 register CORE_ADDR addr = memaddr & -sizeof (int);
261 /* Round ending address up; get number of longwords that makes. */
262 register int count
263 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
264 /* Allocate buffer of that many longwords. */
265 register int *buffer = (int *) alloca (count * sizeof (int));
266
267 /* Read all the longwords */
268 for (i = 0; i < count; i++, addr += sizeof (int))
269 {
270 buffer[i] = ptrace (1, inferior_pid, addr, 0);
271 }
272
273 /* Copy appropriate bytes out of the buffer. */
274 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
275 }
276
277 /* Copy LEN bytes of data from debugger memory at MYADDR
278 to inferior's memory at MEMADDR.
279 On failure (cannot write the inferior)
280 returns the value of errno. */
281
282 int
283 write_inferior_memory (memaddr, myaddr, len)
284 CORE_ADDR memaddr;
285 char *myaddr;
286 int len;
287 {
288 register int i;
289 /* Round starting address down to longword boundary. */
290 register CORE_ADDR addr = memaddr & -sizeof (int);
291 /* Round ending address up; get number of longwords that makes. */
292 register int count
293 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
294 /* Allocate buffer of that many longwords. */
295 register int *buffer = (int *) alloca (count * sizeof (int));
296 extern int errno;
297
298 /* Fill start and end extra bytes of buffer with existing memory data. */
299
300 buffer[0] = ptrace (1, inferior_pid, addr, 0);
301
302 if (count > 1)
303 {
304 buffer[count - 1]
305 = ptrace (1, inferior_pid,
306 addr + (count - 1) * sizeof (int), 0);
307 }
308
309 /* Copy data to be written over corresponding part of buffer */
310
311 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
312
313 /* Write the entire buffer. */
314
315 for (i = 0; i < count; i++, addr += sizeof (int))
316 {
317 errno = 0;
318 ptrace (4, inferior_pid, addr, buffer[i]);
319 if (errno)
320 return errno;
321 }
322
323 return 0;
324 }
325 \f
326 void
327 initialize_low ()
328 {
329 }
This page took 0.043094 seconds and 4 git commands to generate.