* gdb.base/maint.exp: Only dump symbols from one source file
[deliverable/binutils-gdb.git] / gdb / gdbserver / low-sparc.c
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright 1986, 1987, 1993, 1994, 1995, 1997, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 #include "server.h"
23 #include <sys/wait.h>
24 #include "frame.h"
25 #include "inferior.h"
26 /***************************
27 #include "initialize.h"
28 ****************************/
29
30 #include <stdio.h>
31 #include <sys/param.h>
32 #include <sys/dir.h>
33 #include <sys/user.h>
34 #include <signal.h>
35 #include <sys/ioctl.h>
36 #include <sgtty.h>
37 #include <fcntl.h>
38
39 /***************Begin MY defs*********************/
40 static char my_registers[REGISTER_BYTES];
41 char *registers = my_registers;
42 /***************End MY defs*********************/
43
44 #include <sys/ptrace.h>
45 #include <sys/reg.h>
46
47 extern int sys_nerr;
48 extern char **sys_errlist;
49 extern int errno;
50
51 /* Start an inferior process and returns its pid.
52 ALLARGS is a vector of program-name and args. */
53
54 int
55 create_inferior (char *program, char **allargs)
56 {
57 int pid;
58
59 pid = fork ();
60 if (pid < 0)
61 perror_with_name ("fork");
62
63 if (pid == 0)
64 {
65 ptrace (PTRACE_TRACEME);
66
67 execv (program, allargs);
68
69 fprintf (stderr, "Cannot exec %s: %s.\n", program,
70 errno < sys_nerr ? sys_errlist[errno] : "unknown error");
71 fflush (stderr);
72 _exit (0177);
73 }
74
75 return pid;
76 }
77
78 /* Attaching is not supported. */
79 int
80 myattach (int pid)
81 {
82 return -1;
83 }
84
85 /* Kill the inferior process. Make us have no inferior. */
86
87 void
88 kill_inferior (void)
89 {
90 if (inferior_pid == 0)
91 return;
92 ptrace (8, inferior_pid, 0, 0);
93 wait (0);
94 /*************inferior_died ();****VK**************/
95 }
96
97 /* Return nonzero if the given thread is still alive. */
98 int
99 mythread_alive (int pid)
100 {
101 return 1;
102 }
103
104 /* Wait for process, returns status */
105
106 unsigned char
107 mywait (char *status)
108 {
109 int pid;
110 union wait w;
111
112 enable_async_io ();
113 pid = waitpid (inferior_pid, &w, 0);
114 disable_async_io ();
115 if (pid != inferior_pid)
116 perror_with_name ("wait");
117
118 if (WIFEXITED (w))
119 {
120 fprintf (stderr, "\nChild exited with retcode = %x \n", WEXITSTATUS (w));
121 *status = 'W';
122 return ((unsigned char) WEXITSTATUS (w));
123 }
124 else if (!WIFSTOPPED (w))
125 {
126 fprintf (stderr, "\nChild terminated with signal = %x \n", WTERMSIG (w));
127 *status = 'X';
128 return ((unsigned char) WTERMSIG (w));
129 }
130
131 fetch_inferior_registers (0);
132
133 *status = 'T';
134 return ((unsigned char) WSTOPSIG (w));
135 }
136
137 /* Resume execution of the inferior process.
138 If STEP is nonzero, single-step it.
139 If SIGNAL is nonzero, give it that signal. */
140
141 void
142 myresume (int step, int signal)
143 {
144 errno = 0;
145 ptrace (step ? PTRACE_SINGLESTEP : PTRACE_CONT, inferior_pid, 1, signal);
146 if (errno)
147 perror_with_name ("ptrace");
148 }
149
150 /* Fetch one or more registers from the inferior. REGNO == -1 to get
151 them all. We actually fetch more than requested, when convenient,
152 marking them as valid so we won't fetch them again. */
153
154 void
155 fetch_inferior_registers (int ignored)
156 {
157 struct regs inferior_registers;
158 struct fp_status inferior_fp_registers;
159 int i;
160
161 /* Global and Out regs are fetched directly, as well as the control
162 registers. If we're getting one of the in or local regs,
163 and the stack pointer has not yet been fetched,
164 we have to do that first, since they're found in memory relative
165 to the stack pointer. */
166
167 if (ptrace (PTRACE_GETREGS, inferior_pid,
168 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
169 perror ("ptrace_getregs");
170
171 registers[REGISTER_BYTE (0)] = 0;
172 memcpy (&registers[REGISTER_BYTE (1)], &inferior_registers.r_g1,
173 15 * REGISTER_RAW_SIZE (G0_REGNUM));
174 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)] = inferior_registers.r_ps;
175 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)] = inferior_registers.r_pc;
176 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)] = inferior_registers.r_npc;
177 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)] = inferior_registers.r_y;
178
179 /* Floating point registers */
180
181 if (ptrace (PTRACE_GETFPREGS, inferior_pid,
182 (PTRACE_ARG3_TYPE) & inferior_fp_registers,
183 0))
184 perror ("ptrace_getfpregs");
185 memcpy (&registers[REGISTER_BYTE (FP0_REGNUM)], &inferior_fp_registers,
186 sizeof inferior_fp_registers.fpu_fr);
187
188 /* These regs are saved on the stack by the kernel. Only read them
189 all (16 ptrace calls!) if we really need them. */
190
191 read_inferior_memory (*(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)],
192 &registers[REGISTER_BYTE (L0_REGNUM)],
193 16 * REGISTER_RAW_SIZE (L0_REGNUM));
194 }
195
196 /* Store our register values back into the inferior.
197 If REGNO is -1, do this for all registers.
198 Otherwise, REGNO specifies which register (so we can save time). */
199
200 void
201 store_inferior_registers (int ignored)
202 {
203 struct regs inferior_registers;
204 struct fp_status inferior_fp_registers;
205 CORE_ADDR sp = *(CORE_ADDR *) & registers[REGISTER_BYTE (SP_REGNUM)];
206
207 write_inferior_memory (sp, &registers[REGISTER_BYTE (L0_REGNUM)],
208 16 * REGISTER_RAW_SIZE (L0_REGNUM));
209
210 memcpy (&inferior_registers.r_g1, &registers[REGISTER_BYTE (G1_REGNUM)],
211 15 * REGISTER_RAW_SIZE (G1_REGNUM));
212
213 inferior_registers.r_ps =
214 *(int *) &registers[REGISTER_BYTE (PS_REGNUM)];
215 inferior_registers.r_pc =
216 *(int *) &registers[REGISTER_BYTE (PC_REGNUM)];
217 inferior_registers.r_npc =
218 *(int *) &registers[REGISTER_BYTE (NPC_REGNUM)];
219 inferior_registers.r_y =
220 *(int *) &registers[REGISTER_BYTE (Y_REGNUM)];
221
222 if (ptrace (PTRACE_SETREGS, inferior_pid,
223 (PTRACE_ARG3_TYPE) & inferior_registers, 0))
224 perror ("ptrace_setregs");
225
226 memcpy (&inferior_fp_registers, &registers[REGISTER_BYTE (FP0_REGNUM)],
227 sizeof inferior_fp_registers.fpu_fr);
228
229 if (ptrace (PTRACE_SETFPREGS, inferior_pid,
230 (PTRACE_ARG3_TYPE) & inferior_fp_registers, 0))
231 perror ("ptrace_setfpregs");
232 }
233
234 /* NOTE! I tried using PTRACE_READDATA, etc., to read and write memory
235 in the NEW_SUN_PTRACE case.
236 It ought to be straightforward. But it appears that writing did
237 not write the data that I specified. I cannot understand where
238 it got the data that it actually did write. */
239
240 /* Copy LEN bytes from inferior's memory starting at MEMADDR
241 to debugger memory starting at MYADDR. */
242
243 void
244 read_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
245 {
246 register int i;
247 /* Round starting address down to longword boundary. */
248 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
249 /* Round ending address up; get number of longwords that makes. */
250 register int count
251 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
252 /* Allocate buffer of that many longwords. */
253 register int *buffer = (int *) alloca (count * sizeof (int));
254
255 /* Read all the longwords */
256 for (i = 0; i < count; i++, addr += sizeof (int))
257 {
258 buffer[i] = ptrace (1, inferior_pid, addr, 0);
259 }
260
261 /* Copy appropriate bytes out of the buffer. */
262 memcpy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
263 }
264
265 /* Copy LEN bytes of data from debugger memory at MYADDR
266 to inferior's memory at MEMADDR.
267 On failure (cannot write the inferior)
268 returns the value of errno. */
269
270 int
271 write_inferior_memory (CORE_ADDR memaddr, char *myaddr, int len)
272 {
273 register int i;
274 /* Round starting address down to longword boundary. */
275 register CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (int);
276 /* Round ending address up; get number of longwords that makes. */
277 register int count
278 = (((memaddr + len) - addr) + sizeof (int) - 1) / sizeof (int);
279 /* Allocate buffer of that many longwords. */
280 register int *buffer = (int *) alloca (count * sizeof (int));
281 extern int errno;
282
283 /* Fill start and end extra bytes of buffer with existing memory data. */
284
285 buffer[0] = ptrace (1, inferior_pid, addr, 0);
286
287 if (count > 1)
288 {
289 buffer[count - 1]
290 = ptrace (1, inferior_pid,
291 addr + (count - 1) * sizeof (int), 0);
292 }
293
294 /* Copy data to be written over corresponding part of buffer */
295
296 bcopy (myaddr, (char *) buffer + (memaddr & (sizeof (int) - 1)), len);
297
298 /* Write the entire buffer. */
299
300 for (i = 0; i < count; i++, addr += sizeof (int))
301 {
302 errno = 0;
303 ptrace (4, inferior_pid, addr, buffer[i]);
304 if (errno)
305 return errno;
306 }
307
308 return 0;
309 }
310 \f
311 void
312 initialize_low (void)
313 {
314 }
This page took 0.057774 seconds and 4 git commands to generate.