Pass breakpoint type in set_breakpoint_at
[deliverable/binutils-gdb.git] / gdb / gdbserver / mem-break.c
1 /* Memory breakpoint operations for the remote server for GDB.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
3
4 Contributed by MontaVista Software.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "server.h"
22 #include "regcache.h"
23 #include "ax.h"
24
25 #define MAX_BREAKPOINT_LEN 8
26
27 /* Helper macro used in loops that append multiple items to a singly-linked
28 list instead of inserting items at the head of the list, as, say, in the
29 breakpoint lists. LISTPP is a pointer to the pointer that is the head of
30 the new list. ITEMP is a pointer to the item to be added to the list.
31 TAILP must be defined to be the same type as ITEMP, and initialized to
32 NULL. */
33
34 #define APPEND_TO_LIST(listpp, itemp, tailp) \
35 do \
36 { \
37 if ((tailp) == NULL) \
38 *(listpp) = (itemp); \
39 else \
40 (tailp)->next = (itemp); \
41 (tailp) = (itemp); \
42 } \
43 while (0)
44
45 /* GDB will never try to install multiple breakpoints at the same
46 address. However, we can see GDB requesting to insert a breakpoint
47 at an address is had already inserted one previously in a few
48 situations.
49
50 - The RSP documentation on Z packets says that to avoid potential
51 problems with duplicate packets, the operations should be
52 implemented in an idempotent way.
53
54 - A breakpoint is set at ADDR, an address in a shared library.
55 Then the shared library is unloaded. And then another, unrelated,
56 breakpoint at ADDR is set. There is not breakpoint removal request
57 between the first and the second breakpoint.
58
59 - When GDB wants to update the target-side breakpoint conditions or
60 commands, it re-inserts the breakpoint, with updated
61 conditions/commands associated.
62
63 Also, we need to keep track of internal breakpoints too, so we do
64 need to be able to install multiple breakpoints at the same address
65 transparently.
66
67 We keep track of two different, and closely related structures. A
68 raw breakpoint, which manages the low level, close to the metal
69 aspect of a breakpoint. It holds the breakpoint address, and for
70 software breakpoints, a buffer holding a copy of the instructions
71 that would be in memory had not been a breakpoint there (we call
72 that the shadow memory of the breakpoint). We occasionally need to
73 temporarilly uninsert a breakpoint without the client knowing about
74 it (e.g., to step over an internal breakpoint), so we keep an
75 `inserted' state associated with this low level breakpoint
76 structure. There can only be one such object for a given address.
77 Then, we have (a bit higher level) breakpoints. This structure
78 holds a callback to be called whenever a breakpoint is hit, a
79 high-level type, and a link to a low level raw breakpoint. There
80 can be many high-level breakpoints at the same address, and all of
81 them will point to the same raw breakpoint, which is reference
82 counted. */
83
84 /* The low level, physical, raw breakpoint. */
85 struct raw_breakpoint
86 {
87 struct raw_breakpoint *next;
88
89 /* The low level type of the breakpoint (software breakpoint,
90 watchpoint, etc.) */
91 enum raw_bkpt_type raw_type;
92
93 /* A reference count. Each high level breakpoint referencing this
94 raw breakpoint accounts for one reference. */
95 int refcount;
96
97 /* The breakpoint's insertion address. There can only be one raw
98 breakpoint for a given PC. */
99 CORE_ADDR pc;
100
101 /* The breakpoint's kind. This is target specific. Most
102 architectures only use one specific instruction for breakpoints, while
103 others may use more than one. E.g., on ARM, we need to use different
104 breakpoint instructions on Thumb, Thumb-2, and ARM code. Likewise for
105 hardware breakpoints -- some architectures (including ARM) need to
106 setup debug registers differently depending on mode. */
107 int kind;
108
109 /* The breakpoint's shadow memory. */
110 unsigned char old_data[MAX_BREAKPOINT_LEN];
111
112 /* Positive if this breakpoint is currently inserted in the
113 inferior. Negative if it was, but we've detected that it's now
114 gone. Zero if not inserted. */
115 int inserted;
116 };
117
118 /* The type of a breakpoint. */
119 enum bkpt_type
120 {
121 /* A GDB breakpoint, requested with a Z0 packet. */
122 gdb_breakpoint_Z0,
123
124 /* A GDB hardware breakpoint, requested with a Z1 packet. */
125 gdb_breakpoint_Z1,
126
127 /* A GDB write watchpoint, requested with a Z2 packet. */
128 gdb_breakpoint_Z2,
129
130 /* A GDB read watchpoint, requested with a Z3 packet. */
131 gdb_breakpoint_Z3,
132
133 /* A GDB access watchpoint, requested with a Z4 packet. */
134 gdb_breakpoint_Z4,
135
136 /* A basic-software-single-step breakpoint. */
137 reinsert_breakpoint,
138
139 /* Any other breakpoint type that doesn't require specific
140 treatment goes here. E.g., an event breakpoint. */
141 other_breakpoint,
142 };
143
144 struct point_cond_list
145 {
146 /* Pointer to the agent expression that is the breakpoint's
147 conditional. */
148 struct agent_expr *cond;
149
150 /* Pointer to the next condition. */
151 struct point_cond_list *next;
152 };
153
154 struct point_command_list
155 {
156 /* Pointer to the agent expression that is the breakpoint's
157 commands. */
158 struct agent_expr *cmd;
159
160 /* Flag that is true if this command should run even while GDB is
161 disconnected. */
162 int persistence;
163
164 /* Pointer to the next command. */
165 struct point_command_list *next;
166 };
167
168 /* A high level (in gdbserver's perspective) breakpoint. */
169 struct breakpoint
170 {
171 struct breakpoint *next;
172
173 /* The breakpoint's type. */
174 enum bkpt_type type;
175
176 /* Pointer to the condition list that should be evaluated on
177 the target or NULL if the breakpoint is unconditional or
178 if GDB doesn't want us to evaluate the conditionals on the
179 target's side. */
180 struct point_cond_list *cond_list;
181
182 /* Point to the list of commands to run when this is hit. */
183 struct point_command_list *command_list;
184
185 /* Link to this breakpoint's raw breakpoint. This is always
186 non-NULL. */
187 struct raw_breakpoint *raw;
188
189 /* Function to call when we hit this breakpoint. If it returns 1,
190 the breakpoint shall be deleted; 0 or if this callback is NULL,
191 it will be left inserted. */
192 int (*handler) (CORE_ADDR);
193 };
194
195 /* Return the breakpoint size from its kind. */
196
197 static int
198 bp_size (struct raw_breakpoint *bp)
199 {
200 int size = 0;
201
202 the_target->sw_breakpoint_from_kind (bp->kind, &size);
203 return size;
204 }
205
206 /* Return the breakpoint opcode from its kind. */
207
208 static const gdb_byte *
209 bp_opcode (struct raw_breakpoint *bp)
210 {
211 int size = 0;
212
213 return the_target->sw_breakpoint_from_kind (bp->kind, &size);
214 }
215
216 /* See mem-break.h. */
217
218 enum target_hw_bp_type
219 raw_bkpt_type_to_target_hw_bp_type (enum raw_bkpt_type raw_type)
220 {
221 switch (raw_type)
222 {
223 case raw_bkpt_type_hw:
224 return hw_execute;
225 case raw_bkpt_type_write_wp:
226 return hw_write;
227 case raw_bkpt_type_read_wp:
228 return hw_read;
229 case raw_bkpt_type_access_wp:
230 return hw_access;
231 default:
232 internal_error (__FILE__, __LINE__,
233 "bad raw breakpoint type %d", (int) raw_type);
234 }
235 }
236
237 /* See mem-break.h. */
238
239 static enum bkpt_type
240 Z_packet_to_bkpt_type (char z_type)
241 {
242 gdb_assert ('0' <= z_type && z_type <= '4');
243
244 return (enum bkpt_type) (gdb_breakpoint_Z0 + (z_type - '0'));
245 }
246
247 /* See mem-break.h. */
248
249 enum raw_bkpt_type
250 Z_packet_to_raw_bkpt_type (char z_type)
251 {
252 switch (z_type)
253 {
254 case Z_PACKET_SW_BP:
255 return raw_bkpt_type_sw;
256 case Z_PACKET_HW_BP:
257 return raw_bkpt_type_hw;
258 case Z_PACKET_WRITE_WP:
259 return raw_bkpt_type_write_wp;
260 case Z_PACKET_READ_WP:
261 return raw_bkpt_type_read_wp;
262 case Z_PACKET_ACCESS_WP:
263 return raw_bkpt_type_access_wp;
264 default:
265 gdb_assert_not_reached ("unhandled Z packet type.");
266 }
267 }
268
269 int
270 any_persistent_commands (void)
271 {
272 struct process_info *proc = current_process ();
273 struct breakpoint *bp;
274 struct point_command_list *cl;
275
276 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
277 {
278 for (cl = bp->command_list; cl != NULL; cl = cl->next)
279 if (cl->persistence)
280 return 1;
281 }
282
283 return 0;
284 }
285
286 /* Find low-level breakpoint of type TYPE at address ADDR that is not
287 insert-disabled. Returns NULL if not found. */
288
289 static struct raw_breakpoint *
290 find_enabled_raw_code_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type)
291 {
292 struct process_info *proc = current_process ();
293 struct raw_breakpoint *bp;
294
295 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
296 if (bp->pc == addr
297 && bp->raw_type == type
298 && bp->inserted >= 0)
299 return bp;
300
301 return NULL;
302 }
303
304 /* Find low-level breakpoint of type TYPE at address ADDR. Returns
305 NULL if not found. */
306
307 static struct raw_breakpoint *
308 find_raw_breakpoint_at (CORE_ADDR addr, enum raw_bkpt_type type, int kind)
309 {
310 struct process_info *proc = current_process ();
311 struct raw_breakpoint *bp;
312
313 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
314 if (bp->pc == addr && bp->raw_type == type && bp->kind == kind)
315 return bp;
316
317 return NULL;
318 }
319
320 /* See mem-break.h. */
321
322 int
323 insert_memory_breakpoint (struct raw_breakpoint *bp)
324 {
325 unsigned char buf[MAX_BREAKPOINT_LEN];
326 int err;
327
328 /* Note that there can be fast tracepoint jumps installed in the
329 same memory range, so to get at the original memory, we need to
330 use read_inferior_memory, which masks those out. */
331 err = read_inferior_memory (bp->pc, buf, bp_size (bp));
332 if (err != 0)
333 {
334 if (debug_threads)
335 debug_printf ("Failed to read shadow memory of"
336 " breakpoint at 0x%s (%s).\n",
337 paddress (bp->pc), strerror (err));
338 }
339 else
340 {
341 memcpy (bp->old_data, buf, bp_size (bp));
342
343 err = (*the_target->write_memory) (bp->pc, bp_opcode (bp),
344 bp_size (bp));
345 if (err != 0)
346 {
347 if (debug_threads)
348 debug_printf ("Failed to insert breakpoint at 0x%s (%s).\n",
349 paddress (bp->pc), strerror (err));
350 }
351 }
352 return err != 0 ? -1 : 0;
353 }
354
355 /* See mem-break.h */
356
357 int
358 remove_memory_breakpoint (struct raw_breakpoint *bp)
359 {
360 unsigned char buf[MAX_BREAKPOINT_LEN];
361 int err;
362
363 /* Since there can be trap breakpoints inserted in the same address
364 range, we use `write_inferior_memory', which takes care of
365 layering breakpoints on top of fast tracepoints, and on top of
366 the buffer we pass it. This works because the caller has already
367 either unlinked the breakpoint or marked it uninserted. Also
368 note that we need to pass the current shadow contents, because
369 write_inferior_memory updates any shadow memory with what we pass
370 here, and we want that to be a nop. */
371 memcpy (buf, bp->old_data, bp_size (bp));
372 err = write_inferior_memory (bp->pc, buf, bp_size (bp));
373 if (err != 0)
374 {
375 if (debug_threads)
376 debug_printf ("Failed to uninsert raw breakpoint "
377 "at 0x%s (%s) while deleting it.\n",
378 paddress (bp->pc), strerror (err));
379 }
380 return err != 0 ? -1 : 0;
381 }
382
383 /* Set a RAW breakpoint of type TYPE and kind KIND at WHERE. On
384 success, a pointer to the new breakpoint is returned. On failure,
385 returns NULL and writes the error code to *ERR. */
386
387 static struct raw_breakpoint *
388 set_raw_breakpoint_at (enum raw_bkpt_type type, CORE_ADDR where, int kind,
389 int *err)
390 {
391 struct process_info *proc = current_process ();
392 struct raw_breakpoint *bp;
393 struct cleanup *old_chain = make_cleanup (null_cleanup, NULL);
394
395 if (type == raw_bkpt_type_sw || type == raw_bkpt_type_hw)
396 {
397 bp = find_enabled_raw_code_breakpoint_at (where, type);
398 if (bp != NULL && bp->kind != kind)
399 {
400 /* A different kind than previously seen. The previous
401 breakpoint must be gone then. */
402 if (debug_threads)
403 debug_printf ("Inconsistent breakpoint kind? Was %d, now %d.\n",
404 bp->kind, kind);
405 bp->inserted = -1;
406 bp = NULL;
407 }
408 }
409 else
410 bp = find_raw_breakpoint_at (where, type, kind);
411
412 if (bp == NULL)
413 {
414 bp = XCNEW (struct raw_breakpoint);
415 bp->pc = where;
416 bp->kind = kind;
417 bp->raw_type = type;
418 make_cleanup (xfree, bp);
419 }
420
421 if (!bp->inserted)
422 {
423 *err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
424 if (*err != 0)
425 {
426 if (debug_threads)
427 debug_printf ("Failed to insert breakpoint at 0x%s (%d).\n",
428 paddress (where), *err);
429
430 do_cleanups (old_chain);
431 return NULL;
432 }
433
434 bp->inserted = 1;
435 }
436
437 discard_cleanups (old_chain);
438
439 /* Link the breakpoint in, if this is the first reference. */
440 if (++bp->refcount == 1)
441 {
442 bp->next = proc->raw_breakpoints;
443 proc->raw_breakpoints = bp;
444 }
445 return bp;
446 }
447
448 /* Notice that breakpoint traps are always installed on top of fast
449 tracepoint jumps. This is even if the fast tracepoint is installed
450 at a later time compared to when the breakpoint was installed.
451 This means that a stopping breakpoint or tracepoint has higher
452 "priority". In turn, this allows having fast and slow tracepoints
453 (and breakpoints) at the same address behave correctly. */
454
455
456 /* A fast tracepoint jump. */
457
458 struct fast_tracepoint_jump
459 {
460 struct fast_tracepoint_jump *next;
461
462 /* A reference count. GDB can install more than one fast tracepoint
463 at the same address (each with its own action list, for
464 example). */
465 int refcount;
466
467 /* The fast tracepoint's insertion address. There can only be one
468 of these for a given PC. */
469 CORE_ADDR pc;
470
471 /* Non-zero if this fast tracepoint jump is currently inserted in
472 the inferior. */
473 int inserted;
474
475 /* The length of the jump instruction. */
476 int length;
477
478 /* A poor-man's flexible array member, holding both the jump
479 instruction to insert, and a copy of the instruction that would
480 be in memory had not been a jump there (the shadow memory of the
481 tracepoint jump). */
482 unsigned char insn_and_shadow[0];
483 };
484
485 /* Fast tracepoint FP's jump instruction to insert. */
486 #define fast_tracepoint_jump_insn(fp) \
487 ((fp)->insn_and_shadow + 0)
488
489 /* The shadow memory of fast tracepoint jump FP. */
490 #define fast_tracepoint_jump_shadow(fp) \
491 ((fp)->insn_and_shadow + (fp)->length)
492
493
494 /* Return the fast tracepoint jump set at WHERE. */
495
496 static struct fast_tracepoint_jump *
497 find_fast_tracepoint_jump_at (CORE_ADDR where)
498 {
499 struct process_info *proc = current_process ();
500 struct fast_tracepoint_jump *jp;
501
502 for (jp = proc->fast_tracepoint_jumps; jp != NULL; jp = jp->next)
503 if (jp->pc == where)
504 return jp;
505
506 return NULL;
507 }
508
509 int
510 fast_tracepoint_jump_here (CORE_ADDR where)
511 {
512 struct fast_tracepoint_jump *jp = find_fast_tracepoint_jump_at (where);
513
514 return (jp != NULL);
515 }
516
517 int
518 delete_fast_tracepoint_jump (struct fast_tracepoint_jump *todel)
519 {
520 struct fast_tracepoint_jump *bp, **bp_link;
521 int ret;
522 struct process_info *proc = current_process ();
523
524 bp = proc->fast_tracepoint_jumps;
525 bp_link = &proc->fast_tracepoint_jumps;
526
527 while (bp)
528 {
529 if (bp == todel)
530 {
531 if (--bp->refcount == 0)
532 {
533 struct fast_tracepoint_jump *prev_bp_link = *bp_link;
534 unsigned char *buf;
535
536 /* Unlink it. */
537 *bp_link = bp->next;
538
539 /* Since there can be breakpoints inserted in the same
540 address range, we use `write_inferior_memory', which
541 takes care of layering breakpoints on top of fast
542 tracepoints, and on top of the buffer we pass it.
543 This works because we've already unlinked the fast
544 tracepoint jump above. Also note that we need to
545 pass the current shadow contents, because
546 write_inferior_memory updates any shadow memory with
547 what we pass here, and we want that to be a nop. */
548 buf = (unsigned char *) alloca (bp->length);
549 memcpy (buf, fast_tracepoint_jump_shadow (bp), bp->length);
550 ret = write_inferior_memory (bp->pc, buf, bp->length);
551 if (ret != 0)
552 {
553 /* Something went wrong, relink the jump. */
554 *bp_link = prev_bp_link;
555
556 if (debug_threads)
557 debug_printf ("Failed to uninsert fast tracepoint jump "
558 "at 0x%s (%s) while deleting it.\n",
559 paddress (bp->pc), strerror (ret));
560 return ret;
561 }
562
563 free (bp);
564 }
565
566 return 0;
567 }
568 else
569 {
570 bp_link = &bp->next;
571 bp = *bp_link;
572 }
573 }
574
575 warning ("Could not find fast tracepoint jump in list.");
576 return ENOENT;
577 }
578
579 void
580 inc_ref_fast_tracepoint_jump (struct fast_tracepoint_jump *jp)
581 {
582 jp->refcount++;
583 }
584
585 struct fast_tracepoint_jump *
586 set_fast_tracepoint_jump (CORE_ADDR where,
587 unsigned char *insn, ULONGEST length)
588 {
589 struct process_info *proc = current_process ();
590 struct fast_tracepoint_jump *jp;
591 int err;
592 unsigned char *buf;
593
594 /* We refcount fast tracepoint jumps. Check if we already know
595 about a jump at this address. */
596 jp = find_fast_tracepoint_jump_at (where);
597 if (jp != NULL)
598 {
599 jp->refcount++;
600 return jp;
601 }
602
603 /* We don't, so create a new object. Double the length, because the
604 flexible array member holds both the jump insn, and the
605 shadow. */
606 jp = (struct fast_tracepoint_jump *) xcalloc (1, sizeof (*jp) + (length * 2));
607 jp->pc = where;
608 jp->length = length;
609 memcpy (fast_tracepoint_jump_insn (jp), insn, length);
610 jp->refcount = 1;
611 buf = (unsigned char *) alloca (length);
612
613 /* Note that there can be trap breakpoints inserted in the same
614 address range. To access the original memory contents, we use
615 `read_inferior_memory', which masks out breakpoints. */
616 err = read_inferior_memory (where, buf, length);
617 if (err != 0)
618 {
619 if (debug_threads)
620 debug_printf ("Failed to read shadow memory of"
621 " fast tracepoint at 0x%s (%s).\n",
622 paddress (where), strerror (err));
623 free (jp);
624 return NULL;
625 }
626 memcpy (fast_tracepoint_jump_shadow (jp), buf, length);
627
628 /* Link the jump in. */
629 jp->inserted = 1;
630 jp->next = proc->fast_tracepoint_jumps;
631 proc->fast_tracepoint_jumps = jp;
632
633 /* Since there can be trap breakpoints inserted in the same address
634 range, we use use `write_inferior_memory', which takes care of
635 layering breakpoints on top of fast tracepoints, on top of the
636 buffer we pass it. This works because we've already linked in
637 the fast tracepoint jump above. Also note that we need to pass
638 the current shadow contents, because write_inferior_memory
639 updates any shadow memory with what we pass here, and we want
640 that to be a nop. */
641 err = write_inferior_memory (where, buf, length);
642 if (err != 0)
643 {
644 if (debug_threads)
645 debug_printf ("Failed to insert fast tracepoint jump at 0x%s (%s).\n",
646 paddress (where), strerror (err));
647
648 /* Unlink it. */
649 proc->fast_tracepoint_jumps = jp->next;
650 free (jp);
651
652 return NULL;
653 }
654
655 return jp;
656 }
657
658 void
659 uninsert_fast_tracepoint_jumps_at (CORE_ADDR pc)
660 {
661 struct fast_tracepoint_jump *jp;
662 int err;
663
664 jp = find_fast_tracepoint_jump_at (pc);
665 if (jp == NULL)
666 {
667 /* This can happen when we remove all breakpoints while handling
668 a step-over. */
669 if (debug_threads)
670 debug_printf ("Could not find fast tracepoint jump at 0x%s "
671 "in list (uninserting).\n",
672 paddress (pc));
673 return;
674 }
675
676 if (jp->inserted)
677 {
678 unsigned char *buf;
679
680 jp->inserted = 0;
681
682 /* Since there can be trap breakpoints inserted in the same
683 address range, we use use `write_inferior_memory', which
684 takes care of layering breakpoints on top of fast
685 tracepoints, and on top of the buffer we pass it. This works
686 because we've already marked the fast tracepoint fast
687 tracepoint jump uninserted above. Also note that we need to
688 pass the current shadow contents, because
689 write_inferior_memory updates any shadow memory with what we
690 pass here, and we want that to be a nop. */
691 buf = (unsigned char *) alloca (jp->length);
692 memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
693 err = write_inferior_memory (jp->pc, buf, jp->length);
694 if (err != 0)
695 {
696 jp->inserted = 1;
697
698 if (debug_threads)
699 debug_printf ("Failed to uninsert fast tracepoint jump at"
700 " 0x%s (%s).\n",
701 paddress (pc), strerror (err));
702 }
703 }
704 }
705
706 void
707 reinsert_fast_tracepoint_jumps_at (CORE_ADDR where)
708 {
709 struct fast_tracepoint_jump *jp;
710 int err;
711 unsigned char *buf;
712
713 jp = find_fast_tracepoint_jump_at (where);
714 if (jp == NULL)
715 {
716 /* This can happen when we remove breakpoints when a tracepoint
717 hit causes a tracing stop, while handling a step-over. */
718 if (debug_threads)
719 debug_printf ("Could not find fast tracepoint jump at 0x%s "
720 "in list (reinserting).\n",
721 paddress (where));
722 return;
723 }
724
725 if (jp->inserted)
726 error ("Jump already inserted at reinsert time.");
727
728 jp->inserted = 1;
729
730 /* Since there can be trap breakpoints inserted in the same address
731 range, we use `write_inferior_memory', which takes care of
732 layering breakpoints on top of fast tracepoints, and on top of
733 the buffer we pass it. This works because we've already marked
734 the fast tracepoint jump inserted above. Also note that we need
735 to pass the current shadow contents, because
736 write_inferior_memory updates any shadow memory with what we pass
737 here, and we want that to be a nop. */
738 buf = (unsigned char *) alloca (jp->length);
739 memcpy (buf, fast_tracepoint_jump_shadow (jp), jp->length);
740 err = write_inferior_memory (where, buf, jp->length);
741 if (err != 0)
742 {
743 jp->inserted = 0;
744
745 if (debug_threads)
746 debug_printf ("Failed to reinsert fast tracepoint jump at"
747 " 0x%s (%s).\n",
748 paddress (where), strerror (err));
749 }
750 }
751
752 /* Set a high-level breakpoint of type TYPE, with low level type
753 RAW_TYPE and kind KIND, at WHERE. On success, a pointer to the new
754 breakpoint is returned. On failure, returns NULL and writes the
755 error code to *ERR. HANDLER is called when the breakpoint is hit.
756 HANDLER should return 1 if the breakpoint should be deleted, 0
757 otherwise. */
758
759 static struct breakpoint *
760 set_breakpoint (enum bkpt_type type, enum raw_bkpt_type raw_type,
761 CORE_ADDR where, int kind,
762 int (*handler) (CORE_ADDR), int *err)
763 {
764 struct process_info *proc = current_process ();
765 struct breakpoint *bp;
766 struct raw_breakpoint *raw;
767
768 raw = set_raw_breakpoint_at (raw_type, where, kind, err);
769
770 if (raw == NULL)
771 {
772 /* warn? */
773 return NULL;
774 }
775
776 bp = XCNEW (struct breakpoint);
777 bp->type = type;
778
779 bp->raw = raw;
780 bp->handler = handler;
781
782 bp->next = proc->breakpoints;
783 proc->breakpoints = bp;
784
785 return bp;
786 }
787
788 /* Set breakpoint of TYPE on address WHERE with handler HANDLER. */
789
790 static struct breakpoint *
791 set_breakpoint_type_at (enum bkpt_type type, CORE_ADDR where,
792 int (*handler) (CORE_ADDR))
793 {
794 int err_ignored;
795 CORE_ADDR placed_address = where;
796 int breakpoint_kind = target_breakpoint_kind_from_pc (&placed_address);
797
798 return set_breakpoint (type, raw_bkpt_type_sw,
799 placed_address, breakpoint_kind, handler,
800 &err_ignored);
801 }
802
803 /* See mem-break.h */
804
805 struct breakpoint *
806 set_breakpoint_at (CORE_ADDR where, int (*handler) (CORE_ADDR))
807 {
808 return set_breakpoint_type_at (other_breakpoint, where, handler);
809 }
810
811
812 static int
813 delete_raw_breakpoint (struct process_info *proc, struct raw_breakpoint *todel)
814 {
815 struct raw_breakpoint *bp, **bp_link;
816 int ret;
817
818 bp = proc->raw_breakpoints;
819 bp_link = &proc->raw_breakpoints;
820
821 while (bp)
822 {
823 if (bp == todel)
824 {
825 if (bp->inserted > 0)
826 {
827 struct raw_breakpoint *prev_bp_link = *bp_link;
828
829 *bp_link = bp->next;
830
831 ret = the_target->remove_point (bp->raw_type, bp->pc, bp->kind,
832 bp);
833 if (ret != 0)
834 {
835 /* Something went wrong, relink the breakpoint. */
836 *bp_link = prev_bp_link;
837
838 if (debug_threads)
839 debug_printf ("Failed to uninsert raw breakpoint "
840 "at 0x%s while deleting it.\n",
841 paddress (bp->pc));
842 return ret;
843 }
844 }
845 else
846 *bp_link = bp->next;
847
848 free (bp);
849 return 0;
850 }
851 else
852 {
853 bp_link = &bp->next;
854 bp = *bp_link;
855 }
856 }
857
858 warning ("Could not find raw breakpoint in list.");
859 return ENOENT;
860 }
861
862 static int
863 release_breakpoint (struct process_info *proc, struct breakpoint *bp)
864 {
865 int newrefcount;
866 int ret;
867
868 newrefcount = bp->raw->refcount - 1;
869 if (newrefcount == 0)
870 {
871 ret = delete_raw_breakpoint (proc, bp->raw);
872 if (ret != 0)
873 return ret;
874 }
875 else
876 bp->raw->refcount = newrefcount;
877
878 free (bp);
879
880 return 0;
881 }
882
883 static int
884 delete_breakpoint_1 (struct process_info *proc, struct breakpoint *todel)
885 {
886 struct breakpoint *bp, **bp_link;
887 int err;
888
889 bp = proc->breakpoints;
890 bp_link = &proc->breakpoints;
891
892 while (bp)
893 {
894 if (bp == todel)
895 {
896 *bp_link = bp->next;
897
898 err = release_breakpoint (proc, bp);
899 if (err != 0)
900 return err;
901
902 bp = *bp_link;
903 return 0;
904 }
905 else
906 {
907 bp_link = &bp->next;
908 bp = *bp_link;
909 }
910 }
911
912 warning ("Could not find breakpoint in list.");
913 return ENOENT;
914 }
915
916 int
917 delete_breakpoint (struct breakpoint *todel)
918 {
919 struct process_info *proc = current_process ();
920 return delete_breakpoint_1 (proc, todel);
921 }
922
923 /* Locate a GDB breakpoint of type Z_TYPE and kind KIND placed at
924 address ADDR and return a pointer to its structure. If KIND is -1,
925 the breakpoint's kind is ignored. */
926
927 static struct breakpoint *
928 find_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
929 {
930 struct process_info *proc = current_process ();
931 struct breakpoint *bp;
932 enum bkpt_type type = Z_packet_to_bkpt_type (z_type);
933
934 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
935 if (bp->type == type && bp->raw->pc == addr
936 && (kind == -1 || bp->raw->kind == kind))
937 return bp;
938
939 return NULL;
940 }
941
942 static int
943 z_type_supported (char z_type)
944 {
945 return (z_type >= '0' && z_type <= '4'
946 && the_target->supports_z_point_type != NULL
947 && the_target->supports_z_point_type (z_type));
948 }
949
950 /* Create a new GDB breakpoint of type Z_TYPE at ADDR with kind KIND.
951 Returns a pointer to the newly created breakpoint on success. On
952 failure returns NULL and sets *ERR to either -1 for error, or 1 if
953 Z_TYPE breakpoints are not supported on this target. */
954
955 static struct breakpoint *
956 set_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind, int *err)
957 {
958 struct breakpoint *bp;
959 enum bkpt_type type;
960 enum raw_bkpt_type raw_type;
961
962 /* If we see GDB inserting a second code breakpoint at the same
963 address, then either: GDB is updating the breakpoint's conditions
964 or commands; or, the first breakpoint must have disappeared due
965 to a shared library unload. On targets where the shared
966 libraries are handled by userspace, like SVR4, for example,
967 GDBserver can't tell if a library was loaded or unloaded. Since
968 we refcount raw breakpoints, we must be careful to make sure GDB
969 breakpoints never contribute more than one reference. if we
970 didn't do this, in case the previous breakpoint is gone due to a
971 shared library unload, we'd just increase the refcount of the
972 previous breakpoint at this address, but the trap was not planted
973 in the inferior anymore, thus the breakpoint would never be hit.
974 Note this must be careful to not create a window where
975 breakpoints are removed from the target, for non-stop, in case
976 the target can poke at memory while the program is running. */
977 if (z_type == Z_PACKET_SW_BP
978 || z_type == Z_PACKET_HW_BP)
979 {
980 bp = find_gdb_breakpoint (z_type, addr, -1);
981
982 if (bp != NULL)
983 {
984 if (bp->raw->kind != kind)
985 {
986 /* A different kind than previously seen. The previous
987 breakpoint must be gone then. */
988 bp->raw->inserted = -1;
989 delete_breakpoint (bp);
990 bp = NULL;
991 }
992 else if (z_type == Z_PACKET_SW_BP)
993 {
994 /* Check if the breakpoint is actually gone from the
995 target, due to an solib unload, for example. Might
996 as well validate _all_ breakpoints. */
997 validate_breakpoints ();
998
999 /* Breakpoints that don't pass validation are
1000 deleted. */
1001 bp = find_gdb_breakpoint (z_type, addr, -1);
1002 }
1003 }
1004 }
1005 else
1006 {
1007 /* Data breakpoints for the same address but different kind are
1008 expected. GDB doesn't merge these. The backend gets to do
1009 that if it wants/can. */
1010 bp = find_gdb_breakpoint (z_type, addr, kind);
1011 }
1012
1013 if (bp != NULL)
1014 {
1015 /* We already know about this breakpoint, there's nothing else
1016 to do - GDB's reference is already accounted for. Note that
1017 whether the breakpoint inserted is left as is - we may be
1018 stepping over it, for example, in which case we don't want to
1019 force-reinsert it. */
1020 return bp;
1021 }
1022
1023 raw_type = Z_packet_to_raw_bkpt_type (z_type);
1024 type = Z_packet_to_bkpt_type (z_type);
1025 return set_breakpoint (type, raw_type, addr, kind, NULL, err);
1026 }
1027
1028 static int
1029 check_gdb_bp_preconditions (char z_type, int *err)
1030 {
1031 /* As software/memory breakpoints work by poking at memory, we need
1032 to prepare to access memory. If that operation fails, we need to
1033 return error. Seeing an error, if this is the first breakpoint
1034 of that type that GDB tries to insert, GDB would then assume the
1035 breakpoint type is supported, but it may actually not be. So we
1036 need to check whether the type is supported at all before
1037 preparing to access memory. */
1038 if (!z_type_supported (z_type))
1039 {
1040 *err = 1;
1041 return 0;
1042 }
1043
1044 return 1;
1045 }
1046
1047 /* See mem-break.h. This is a wrapper for set_gdb_breakpoint_1 that
1048 knows to prepare to access memory for Z0 breakpoints. */
1049
1050 struct breakpoint *
1051 set_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind, int *err)
1052 {
1053 struct breakpoint *bp;
1054
1055 if (!check_gdb_bp_preconditions (z_type, err))
1056 return NULL;
1057
1058 /* If inserting a software/memory breakpoint, need to prepare to
1059 access memory. */
1060 if (z_type == Z_PACKET_SW_BP)
1061 {
1062 if (prepare_to_access_memory () != 0)
1063 {
1064 *err = -1;
1065 return NULL;
1066 }
1067 }
1068
1069 bp = set_gdb_breakpoint_1 (z_type, addr, kind, err);
1070
1071 if (z_type == Z_PACKET_SW_BP)
1072 done_accessing_memory ();
1073
1074 return bp;
1075 }
1076
1077 /* Delete a GDB breakpoint of type Z_TYPE and kind KIND previously
1078 inserted at ADDR with set_gdb_breakpoint_at. Returns 0 on success,
1079 -1 on error, and 1 if Z_TYPE breakpoints are not supported on this
1080 target. */
1081
1082 static int
1083 delete_gdb_breakpoint_1 (char z_type, CORE_ADDR addr, int kind)
1084 {
1085 struct breakpoint *bp;
1086 int err;
1087
1088 bp = find_gdb_breakpoint (z_type, addr, kind);
1089 if (bp == NULL)
1090 return -1;
1091
1092 /* Before deleting the breakpoint, make sure to free its condition
1093 and command lists. */
1094 clear_breakpoint_conditions_and_commands (bp);
1095 err = delete_breakpoint (bp);
1096 if (err != 0)
1097 return -1;
1098
1099 return 0;
1100 }
1101
1102 /* See mem-break.h. This is a wrapper for delete_gdb_breakpoint that
1103 knows to prepare to access memory for Z0 breakpoints. */
1104
1105 int
1106 delete_gdb_breakpoint (char z_type, CORE_ADDR addr, int kind)
1107 {
1108 int ret;
1109
1110 if (!check_gdb_bp_preconditions (z_type, &ret))
1111 return ret;
1112
1113 /* If inserting a software/memory breakpoint, need to prepare to
1114 access memory. */
1115 if (z_type == Z_PACKET_SW_BP)
1116 {
1117 int err;
1118
1119 err = prepare_to_access_memory ();
1120 if (err != 0)
1121 return -1;
1122 }
1123
1124 ret = delete_gdb_breakpoint_1 (z_type, addr, kind);
1125
1126 if (z_type == Z_PACKET_SW_BP)
1127 done_accessing_memory ();
1128
1129 return ret;
1130 }
1131
1132 /* Clear all conditions associated with a breakpoint. */
1133
1134 static void
1135 clear_breakpoint_conditions (struct breakpoint *bp)
1136 {
1137 struct point_cond_list *cond;
1138
1139 if (bp->cond_list == NULL)
1140 return;
1141
1142 cond = bp->cond_list;
1143
1144 while (cond != NULL)
1145 {
1146 struct point_cond_list *cond_next;
1147
1148 cond_next = cond->next;
1149 gdb_free_agent_expr (cond->cond);
1150 free (cond);
1151 cond = cond_next;
1152 }
1153
1154 bp->cond_list = NULL;
1155 }
1156
1157 /* Clear all commands associated with a breakpoint. */
1158
1159 static void
1160 clear_breakpoint_commands (struct breakpoint *bp)
1161 {
1162 struct point_command_list *cmd;
1163
1164 if (bp->command_list == NULL)
1165 return;
1166
1167 cmd = bp->command_list;
1168
1169 while (cmd != NULL)
1170 {
1171 struct point_command_list *cmd_next;
1172
1173 cmd_next = cmd->next;
1174 gdb_free_agent_expr (cmd->cmd);
1175 free (cmd);
1176 cmd = cmd_next;
1177 }
1178
1179 bp->command_list = NULL;
1180 }
1181
1182 void
1183 clear_breakpoint_conditions_and_commands (struct breakpoint *bp)
1184 {
1185 clear_breakpoint_conditions (bp);
1186 clear_breakpoint_commands (bp);
1187 }
1188
1189 /* Add condition CONDITION to GDBserver's breakpoint BP. */
1190
1191 static void
1192 add_condition_to_breakpoint (struct breakpoint *bp,
1193 struct agent_expr *condition)
1194 {
1195 struct point_cond_list *new_cond;
1196
1197 /* Create new condition. */
1198 new_cond = XCNEW (struct point_cond_list);
1199 new_cond->cond = condition;
1200
1201 /* Add condition to the list. */
1202 new_cond->next = bp->cond_list;
1203 bp->cond_list = new_cond;
1204 }
1205
1206 /* Add a target-side condition CONDITION to a breakpoint. */
1207
1208 int
1209 add_breakpoint_condition (struct breakpoint *bp, char **condition)
1210 {
1211 char *actparm = *condition;
1212 struct agent_expr *cond;
1213
1214 if (condition == NULL)
1215 return 1;
1216
1217 if (bp == NULL)
1218 return 0;
1219
1220 cond = gdb_parse_agent_expr (&actparm);
1221
1222 if (cond == NULL)
1223 {
1224 fprintf (stderr, "Condition evaluation failed. "
1225 "Assuming unconditional.\n");
1226 return 0;
1227 }
1228
1229 add_condition_to_breakpoint (bp, cond);
1230
1231 *condition = actparm;
1232
1233 return 1;
1234 }
1235
1236 /* Evaluate condition (if any) at breakpoint BP. Return 1 if
1237 true and 0 otherwise. */
1238
1239 static int
1240 gdb_condition_true_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
1241 {
1242 /* Fetch registers for the current inferior. */
1243 struct breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1244 ULONGEST value = 0;
1245 struct point_cond_list *cl;
1246 int err = 0;
1247 struct eval_agent_expr_context ctx;
1248
1249 if (bp == NULL)
1250 return 0;
1251
1252 /* Check if the breakpoint is unconditional. If it is,
1253 the condition always evaluates to TRUE. */
1254 if (bp->cond_list == NULL)
1255 return 1;
1256
1257 ctx.regcache = get_thread_regcache (current_thread, 1);
1258 ctx.tframe = NULL;
1259 ctx.tpoint = NULL;
1260
1261 /* Evaluate each condition in the breakpoint's list of conditions.
1262 Return true if any of the conditions evaluates to TRUE.
1263
1264 If we failed to evaluate the expression, TRUE is returned. This
1265 forces GDB to reevaluate the conditions. */
1266 for (cl = bp->cond_list;
1267 cl && !value && !err; cl = cl->next)
1268 {
1269 /* Evaluate the condition. */
1270 err = gdb_eval_agent_expr (&ctx, cl->cond, &value);
1271 }
1272
1273 if (err)
1274 return 1;
1275
1276 return (value != 0);
1277 }
1278
1279 int
1280 gdb_condition_true_at_breakpoint (CORE_ADDR where)
1281 {
1282 /* Only check code (software or hardware) breakpoints. */
1283 return (gdb_condition_true_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
1284 || gdb_condition_true_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
1285 }
1286
1287 /* Add commands COMMANDS to GDBserver's breakpoint BP. */
1288
1289 static void
1290 add_commands_to_breakpoint (struct breakpoint *bp,
1291 struct agent_expr *commands, int persist)
1292 {
1293 struct point_command_list *new_cmd;
1294
1295 /* Create new command. */
1296 new_cmd = XCNEW (struct point_command_list);
1297 new_cmd->cmd = commands;
1298 new_cmd->persistence = persist;
1299
1300 /* Add commands to the list. */
1301 new_cmd->next = bp->command_list;
1302 bp->command_list = new_cmd;
1303 }
1304
1305 /* Add a target-side command COMMAND to the breakpoint at ADDR. */
1306
1307 int
1308 add_breakpoint_commands (struct breakpoint *bp, char **command,
1309 int persist)
1310 {
1311 char *actparm = *command;
1312 struct agent_expr *cmd;
1313
1314 if (command == NULL)
1315 return 1;
1316
1317 if (bp == NULL)
1318 return 0;
1319
1320 cmd = gdb_parse_agent_expr (&actparm);
1321
1322 if (cmd == NULL)
1323 {
1324 fprintf (stderr, "Command evaluation failed. "
1325 "Disabling.\n");
1326 return 0;
1327 }
1328
1329 add_commands_to_breakpoint (bp, cmd, persist);
1330
1331 *command = actparm;
1332
1333 return 1;
1334 }
1335
1336 /* Return true if there are no commands to run at this location,
1337 which likely means we want to report back to GDB. */
1338
1339 static int
1340 gdb_no_commands_at_breakpoint_z_type (char z_type, CORE_ADDR addr)
1341 {
1342 struct breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1343
1344 if (bp == NULL)
1345 return 1;
1346
1347 if (debug_threads)
1348 debug_printf ("at 0x%s, type Z%c, bp command_list is 0x%s\n",
1349 paddress (addr), z_type,
1350 phex_nz ((uintptr_t) bp->command_list, 0));
1351 return (bp->command_list == NULL);
1352 }
1353
1354 /* Return true if there are no commands to run at this location,
1355 which likely means we want to report back to GDB. */
1356
1357 int
1358 gdb_no_commands_at_breakpoint (CORE_ADDR where)
1359 {
1360 /* Only check code (software or hardware) breakpoints. */
1361 return (gdb_no_commands_at_breakpoint_z_type (Z_PACKET_SW_BP, where)
1362 && gdb_no_commands_at_breakpoint_z_type (Z_PACKET_HW_BP, where));
1363 }
1364
1365 /* Run a breakpoint's commands. Returns 0 if there was a problem
1366 running any command, 1 otherwise. */
1367
1368 static int
1369 run_breakpoint_commands_z_type (char z_type, CORE_ADDR addr)
1370 {
1371 /* Fetch registers for the current inferior. */
1372 struct breakpoint *bp = find_gdb_breakpoint (z_type, addr, -1);
1373 ULONGEST value = 0;
1374 struct point_command_list *cl;
1375 int err = 0;
1376 struct eval_agent_expr_context ctx;
1377
1378 if (bp == NULL)
1379 return 1;
1380
1381 ctx.regcache = get_thread_regcache (current_thread, 1);
1382 ctx.tframe = NULL;
1383 ctx.tpoint = NULL;
1384
1385 for (cl = bp->command_list;
1386 cl && !value && !err; cl = cl->next)
1387 {
1388 /* Run the command. */
1389 err = gdb_eval_agent_expr (&ctx, cl->cmd, &value);
1390
1391 /* If one command has a problem, stop digging the hole deeper. */
1392 if (err)
1393 return 0;
1394 }
1395
1396 return 1;
1397 }
1398
1399 void
1400 run_breakpoint_commands (CORE_ADDR where)
1401 {
1402 /* Only check code (software or hardware) breakpoints. If one
1403 command has a problem, stop digging the hole deeper. */
1404 if (run_breakpoint_commands_z_type (Z_PACKET_SW_BP, where))
1405 run_breakpoint_commands_z_type (Z_PACKET_HW_BP, where);
1406 }
1407
1408 /* See mem-break.h. */
1409
1410 int
1411 gdb_breakpoint_here (CORE_ADDR where)
1412 {
1413 /* Only check code (software or hardware) breakpoints. */
1414 return (find_gdb_breakpoint (Z_PACKET_SW_BP, where, -1) != NULL
1415 || find_gdb_breakpoint (Z_PACKET_HW_BP, where, -1) != NULL);
1416 }
1417
1418 void
1419 set_reinsert_breakpoint (CORE_ADDR stop_at)
1420 {
1421 struct breakpoint *bp;
1422
1423 bp = set_breakpoint_type_at (reinsert_breakpoint, stop_at, NULL);
1424 }
1425
1426 void
1427 delete_reinsert_breakpoints (void)
1428 {
1429 struct process_info *proc = current_process ();
1430 struct breakpoint *bp, **bp_link;
1431
1432 bp = proc->breakpoints;
1433 bp_link = &proc->breakpoints;
1434
1435 while (bp)
1436 {
1437 if (bp->type == reinsert_breakpoint)
1438 {
1439 *bp_link = bp->next;
1440 release_breakpoint (proc, bp);
1441 bp = *bp_link;
1442 }
1443 else
1444 {
1445 bp_link = &bp->next;
1446 bp = *bp_link;
1447 }
1448 }
1449 }
1450
1451 static void
1452 uninsert_raw_breakpoint (struct raw_breakpoint *bp)
1453 {
1454 if (bp->inserted < 0)
1455 {
1456 if (debug_threads)
1457 debug_printf ("Breakpoint at %s is marked insert-disabled.\n",
1458 paddress (bp->pc));
1459 }
1460 else if (bp->inserted > 0)
1461 {
1462 int err;
1463
1464 bp->inserted = 0;
1465
1466 err = the_target->remove_point (bp->raw_type, bp->pc, bp->kind, bp);
1467 if (err != 0)
1468 {
1469 bp->inserted = 1;
1470
1471 if (debug_threads)
1472 debug_printf ("Failed to uninsert raw breakpoint at 0x%s.\n",
1473 paddress (bp->pc));
1474 }
1475 }
1476 }
1477
1478 void
1479 uninsert_breakpoints_at (CORE_ADDR pc)
1480 {
1481 struct process_info *proc = current_process ();
1482 struct raw_breakpoint *bp;
1483 int found = 0;
1484
1485 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1486 if ((bp->raw_type == raw_bkpt_type_sw
1487 || bp->raw_type == raw_bkpt_type_hw)
1488 && bp->pc == pc)
1489 {
1490 found = 1;
1491
1492 if (bp->inserted)
1493 uninsert_raw_breakpoint (bp);
1494 }
1495
1496 if (!found)
1497 {
1498 /* This can happen when we remove all breakpoints while handling
1499 a step-over. */
1500 if (debug_threads)
1501 debug_printf ("Could not find breakpoint at 0x%s "
1502 "in list (uninserting).\n",
1503 paddress (pc));
1504 }
1505 }
1506
1507 void
1508 uninsert_all_breakpoints (void)
1509 {
1510 struct process_info *proc = current_process ();
1511 struct raw_breakpoint *bp;
1512
1513 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1514 if ((bp->raw_type == raw_bkpt_type_sw
1515 || bp->raw_type == raw_bkpt_type_hw)
1516 && bp->inserted)
1517 uninsert_raw_breakpoint (bp);
1518 }
1519
1520 void
1521 uninsert_reinsert_breakpoints (void)
1522 {
1523 struct process_info *proc = current_process ();
1524 struct breakpoint *bp;
1525
1526 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1527 {
1528 if (bp->type == reinsert_breakpoint)
1529 {
1530 gdb_assert (bp->raw->inserted > 0);
1531
1532 /* Only uninsert the raw breakpoint if it only belongs to a
1533 reinsert breakpoint. */
1534 if (bp->raw->refcount == 1)
1535 uninsert_raw_breakpoint (bp->raw);
1536 }
1537 }
1538 }
1539
1540 static void
1541 reinsert_raw_breakpoint (struct raw_breakpoint *bp)
1542 {
1543 int err;
1544
1545 if (bp->inserted)
1546 return;
1547
1548 err = the_target->insert_point (bp->raw_type, bp->pc, bp->kind, bp);
1549 if (err == 0)
1550 bp->inserted = 1;
1551 else if (debug_threads)
1552 debug_printf ("Failed to reinsert breakpoint at 0x%s (%d).\n",
1553 paddress (bp->pc), err);
1554 }
1555
1556 void
1557 reinsert_breakpoints_at (CORE_ADDR pc)
1558 {
1559 struct process_info *proc = current_process ();
1560 struct raw_breakpoint *bp;
1561 int found = 0;
1562
1563 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1564 if ((bp->raw_type == raw_bkpt_type_sw
1565 || bp->raw_type == raw_bkpt_type_hw)
1566 && bp->pc == pc)
1567 {
1568 found = 1;
1569
1570 reinsert_raw_breakpoint (bp);
1571 }
1572
1573 if (!found)
1574 {
1575 /* This can happen when we remove all breakpoints while handling
1576 a step-over. */
1577 if (debug_threads)
1578 debug_printf ("Could not find raw breakpoint at 0x%s "
1579 "in list (reinserting).\n",
1580 paddress (pc));
1581 }
1582 }
1583
1584 int
1585 has_reinsert_breakpoints (struct process_info *proc)
1586 {
1587 struct breakpoint *bp, **bp_link;
1588
1589 bp = proc->breakpoints;
1590 bp_link = &proc->breakpoints;
1591
1592 while (bp)
1593 {
1594 if (bp->type == reinsert_breakpoint)
1595 return 1;
1596 else
1597 {
1598 bp_link = &bp->next;
1599 bp = *bp_link;
1600 }
1601 }
1602
1603 return 0;
1604 }
1605
1606 void
1607 reinsert_all_breakpoints (void)
1608 {
1609 struct process_info *proc = current_process ();
1610 struct raw_breakpoint *bp;
1611
1612 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1613 if ((bp->raw_type == raw_bkpt_type_sw
1614 || bp->raw_type == raw_bkpt_type_hw)
1615 && !bp->inserted)
1616 reinsert_raw_breakpoint (bp);
1617 }
1618
1619 void
1620 reinsert_reinsert_breakpoints (void)
1621 {
1622 struct process_info *proc = current_process ();
1623 struct breakpoint *bp;
1624
1625 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1626 {
1627 if (bp->type == reinsert_breakpoint)
1628 {
1629 gdb_assert (bp->raw->inserted > 0);
1630
1631 if (bp->raw->refcount == 1)
1632 reinsert_raw_breakpoint (bp->raw);
1633 }
1634 }
1635 }
1636
1637 void
1638 check_breakpoints (CORE_ADDR stop_pc)
1639 {
1640 struct process_info *proc = current_process ();
1641 struct breakpoint *bp, **bp_link;
1642
1643 bp = proc->breakpoints;
1644 bp_link = &proc->breakpoints;
1645
1646 while (bp)
1647 {
1648 struct raw_breakpoint *raw = bp->raw;
1649
1650 if ((raw->raw_type == raw_bkpt_type_sw
1651 || raw->raw_type == raw_bkpt_type_hw)
1652 && raw->pc == stop_pc)
1653 {
1654 if (!raw->inserted)
1655 {
1656 warning ("Hit a removed breakpoint?");
1657 return;
1658 }
1659
1660 if (bp->handler != NULL && (*bp->handler) (stop_pc))
1661 {
1662 *bp_link = bp->next;
1663
1664 release_breakpoint (proc, bp);
1665
1666 bp = *bp_link;
1667 continue;
1668 }
1669 }
1670
1671 bp_link = &bp->next;
1672 bp = *bp_link;
1673 }
1674 }
1675
1676 int
1677 breakpoint_here (CORE_ADDR addr)
1678 {
1679 struct process_info *proc = current_process ();
1680 struct raw_breakpoint *bp;
1681
1682 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1683 if ((bp->raw_type == raw_bkpt_type_sw
1684 || bp->raw_type == raw_bkpt_type_hw)
1685 && bp->pc == addr)
1686 return 1;
1687
1688 return 0;
1689 }
1690
1691 int
1692 breakpoint_inserted_here (CORE_ADDR addr)
1693 {
1694 struct process_info *proc = current_process ();
1695 struct raw_breakpoint *bp;
1696
1697 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1698 if ((bp->raw_type == raw_bkpt_type_sw
1699 || bp->raw_type == raw_bkpt_type_hw)
1700 && bp->pc == addr
1701 && bp->inserted)
1702 return 1;
1703
1704 return 0;
1705 }
1706
1707 /* See mem-break.h. */
1708
1709 int
1710 software_breakpoint_inserted_here (CORE_ADDR addr)
1711 {
1712 struct process_info *proc = current_process ();
1713 struct raw_breakpoint *bp;
1714
1715 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1716 if (bp->raw_type == raw_bkpt_type_sw
1717 && bp->pc == addr
1718 && bp->inserted)
1719 return 1;
1720
1721 return 0;
1722 }
1723
1724 /* See mem-break.h. */
1725
1726 int
1727 hardware_breakpoint_inserted_here (CORE_ADDR addr)
1728 {
1729 struct process_info *proc = current_process ();
1730 struct raw_breakpoint *bp;
1731
1732 for (bp = proc->raw_breakpoints; bp != NULL; bp = bp->next)
1733 if (bp->raw_type == raw_bkpt_type_hw
1734 && bp->pc == addr
1735 && bp->inserted)
1736 return 1;
1737
1738 return 0;
1739 }
1740
1741 /* See mem-break.h. */
1742
1743 int
1744 reinsert_breakpoint_inserted_here (CORE_ADDR addr)
1745 {
1746 struct process_info *proc = current_process ();
1747 struct breakpoint *bp;
1748
1749 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1750 if (bp->type == reinsert_breakpoint
1751 && bp->raw->pc == addr
1752 && bp->raw->inserted)
1753 return 1;
1754
1755 return 0;
1756 }
1757
1758 static int
1759 validate_inserted_breakpoint (struct raw_breakpoint *bp)
1760 {
1761 unsigned char *buf;
1762 int err;
1763
1764 gdb_assert (bp->inserted);
1765 gdb_assert (bp->raw_type == raw_bkpt_type_sw);
1766
1767 buf = (unsigned char *) alloca (bp_size (bp));
1768 err = (*the_target->read_memory) (bp->pc, buf, bp_size (bp));
1769 if (err || memcmp (buf, bp_opcode (bp), bp_size (bp)) != 0)
1770 {
1771 /* Tag it as gone. */
1772 bp->inserted = -1;
1773 return 0;
1774 }
1775
1776 return 1;
1777 }
1778
1779 static void
1780 delete_disabled_breakpoints (void)
1781 {
1782 struct process_info *proc = current_process ();
1783 struct breakpoint *bp, *next;
1784
1785 for (bp = proc->breakpoints; bp != NULL; bp = next)
1786 {
1787 next = bp->next;
1788 if (bp->raw->inserted < 0)
1789 {
1790 /* If reinsert_breakpoints become disabled, that means the
1791 manipulations (insertion and removal) of them are wrong. */
1792 gdb_assert (bp->type != reinsert_breakpoint);
1793 delete_breakpoint_1 (proc, bp);
1794 }
1795 }
1796 }
1797
1798 /* Check if breakpoints we inserted still appear to be inserted. They
1799 may disappear due to a shared library unload, and worse, a new
1800 shared library may be reloaded at the same address as the
1801 previously unloaded one. If that happens, we should make sure that
1802 the shadow memory of the old breakpoints isn't used when reading or
1803 writing memory. */
1804
1805 void
1806 validate_breakpoints (void)
1807 {
1808 struct process_info *proc = current_process ();
1809 struct breakpoint *bp;
1810
1811 for (bp = proc->breakpoints; bp != NULL; bp = bp->next)
1812 {
1813 struct raw_breakpoint *raw = bp->raw;
1814
1815 if (raw->raw_type == raw_bkpt_type_sw && raw->inserted > 0)
1816 validate_inserted_breakpoint (raw);
1817 }
1818
1819 delete_disabled_breakpoints ();
1820 }
1821
1822 void
1823 check_mem_read (CORE_ADDR mem_addr, unsigned char *buf, int mem_len)
1824 {
1825 struct process_info *proc = current_process ();
1826 struct raw_breakpoint *bp = proc->raw_breakpoints;
1827 struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
1828 CORE_ADDR mem_end = mem_addr + mem_len;
1829 int disabled_one = 0;
1830
1831 for (; jp != NULL; jp = jp->next)
1832 {
1833 CORE_ADDR bp_end = jp->pc + jp->length;
1834 CORE_ADDR start, end;
1835 int copy_offset, copy_len, buf_offset;
1836
1837 gdb_assert (fast_tracepoint_jump_shadow (jp) >= buf + mem_len
1838 || buf >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
1839
1840 if (mem_addr >= bp_end)
1841 continue;
1842 if (jp->pc >= mem_end)
1843 continue;
1844
1845 start = jp->pc;
1846 if (mem_addr > start)
1847 start = mem_addr;
1848
1849 end = bp_end;
1850 if (end > mem_end)
1851 end = mem_end;
1852
1853 copy_len = end - start;
1854 copy_offset = start - jp->pc;
1855 buf_offset = start - mem_addr;
1856
1857 if (jp->inserted)
1858 memcpy (buf + buf_offset,
1859 fast_tracepoint_jump_shadow (jp) + copy_offset,
1860 copy_len);
1861 }
1862
1863 for (; bp != NULL; bp = bp->next)
1864 {
1865 CORE_ADDR bp_end = bp->pc + bp_size (bp);
1866 CORE_ADDR start, end;
1867 int copy_offset, copy_len, buf_offset;
1868
1869 if (bp->raw_type != raw_bkpt_type_sw)
1870 continue;
1871
1872 gdb_assert (bp->old_data >= buf + mem_len
1873 || buf >= &bp->old_data[sizeof (bp->old_data)]);
1874
1875 if (mem_addr >= bp_end)
1876 continue;
1877 if (bp->pc >= mem_end)
1878 continue;
1879
1880 start = bp->pc;
1881 if (mem_addr > start)
1882 start = mem_addr;
1883
1884 end = bp_end;
1885 if (end > mem_end)
1886 end = mem_end;
1887
1888 copy_len = end - start;
1889 copy_offset = start - bp->pc;
1890 buf_offset = start - mem_addr;
1891
1892 if (bp->inserted > 0)
1893 {
1894 if (validate_inserted_breakpoint (bp))
1895 memcpy (buf + buf_offset, bp->old_data + copy_offset, copy_len);
1896 else
1897 disabled_one = 1;
1898 }
1899 }
1900
1901 if (disabled_one)
1902 delete_disabled_breakpoints ();
1903 }
1904
1905 void
1906 check_mem_write (CORE_ADDR mem_addr, unsigned char *buf,
1907 const unsigned char *myaddr, int mem_len)
1908 {
1909 struct process_info *proc = current_process ();
1910 struct raw_breakpoint *bp = proc->raw_breakpoints;
1911 struct fast_tracepoint_jump *jp = proc->fast_tracepoint_jumps;
1912 CORE_ADDR mem_end = mem_addr + mem_len;
1913 int disabled_one = 0;
1914
1915 /* First fast tracepoint jumps, then breakpoint traps on top. */
1916
1917 for (; jp != NULL; jp = jp->next)
1918 {
1919 CORE_ADDR jp_end = jp->pc + jp->length;
1920 CORE_ADDR start, end;
1921 int copy_offset, copy_len, buf_offset;
1922
1923 gdb_assert (fast_tracepoint_jump_shadow (jp) >= myaddr + mem_len
1924 || myaddr >= fast_tracepoint_jump_shadow (jp) + (jp)->length);
1925 gdb_assert (fast_tracepoint_jump_insn (jp) >= buf + mem_len
1926 || buf >= fast_tracepoint_jump_insn (jp) + (jp)->length);
1927
1928 if (mem_addr >= jp_end)
1929 continue;
1930 if (jp->pc >= mem_end)
1931 continue;
1932
1933 start = jp->pc;
1934 if (mem_addr > start)
1935 start = mem_addr;
1936
1937 end = jp_end;
1938 if (end > mem_end)
1939 end = mem_end;
1940
1941 copy_len = end - start;
1942 copy_offset = start - jp->pc;
1943 buf_offset = start - mem_addr;
1944
1945 memcpy (fast_tracepoint_jump_shadow (jp) + copy_offset,
1946 myaddr + buf_offset, copy_len);
1947 if (jp->inserted)
1948 memcpy (buf + buf_offset,
1949 fast_tracepoint_jump_insn (jp) + copy_offset, copy_len);
1950 }
1951
1952 for (; bp != NULL; bp = bp->next)
1953 {
1954 CORE_ADDR bp_end = bp->pc + bp_size (bp);
1955 CORE_ADDR start, end;
1956 int copy_offset, copy_len, buf_offset;
1957
1958 if (bp->raw_type != raw_bkpt_type_sw)
1959 continue;
1960
1961 gdb_assert (bp->old_data >= myaddr + mem_len
1962 || myaddr >= &bp->old_data[sizeof (bp->old_data)]);
1963
1964 if (mem_addr >= bp_end)
1965 continue;
1966 if (bp->pc >= mem_end)
1967 continue;
1968
1969 start = bp->pc;
1970 if (mem_addr > start)
1971 start = mem_addr;
1972
1973 end = bp_end;
1974 if (end > mem_end)
1975 end = mem_end;
1976
1977 copy_len = end - start;
1978 copy_offset = start - bp->pc;
1979 buf_offset = start - mem_addr;
1980
1981 memcpy (bp->old_data + copy_offset, myaddr + buf_offset, copy_len);
1982 if (bp->inserted > 0)
1983 {
1984 if (validate_inserted_breakpoint (bp))
1985 memcpy (buf + buf_offset, bp_opcode (bp) + copy_offset, copy_len);
1986 else
1987 disabled_one = 1;
1988 }
1989 }
1990
1991 if (disabled_one)
1992 delete_disabled_breakpoints ();
1993 }
1994
1995 /* Delete all breakpoints, and un-insert them from the inferior. */
1996
1997 void
1998 delete_all_breakpoints (void)
1999 {
2000 struct process_info *proc = current_process ();
2001
2002 while (proc->breakpoints)
2003 delete_breakpoint_1 (proc, proc->breakpoints);
2004 }
2005
2006 /* Clear the "inserted" flag in all breakpoints. */
2007
2008 void
2009 mark_breakpoints_out (struct process_info *proc)
2010 {
2011 struct raw_breakpoint *raw_bp;
2012
2013 for (raw_bp = proc->raw_breakpoints; raw_bp != NULL; raw_bp = raw_bp->next)
2014 raw_bp->inserted = 0;
2015 }
2016
2017 /* Release all breakpoints, but do not try to un-insert them from the
2018 inferior. */
2019
2020 void
2021 free_all_breakpoints (struct process_info *proc)
2022 {
2023 mark_breakpoints_out (proc);
2024
2025 /* Note: use PROC explicitly instead of deferring to
2026 delete_all_breakpoints --- CURRENT_INFERIOR may already have been
2027 released when we get here. There should be no call to
2028 current_process from here on. */
2029 while (proc->breakpoints)
2030 delete_breakpoint_1 (proc, proc->breakpoints);
2031 }
2032
2033 /* Clone an agent expression. */
2034
2035 static struct agent_expr *
2036 clone_agent_expr (const struct agent_expr *src_ax)
2037 {
2038 struct agent_expr *ax;
2039
2040 ax = XCNEW (struct agent_expr);
2041 ax->length = src_ax->length;
2042 ax->bytes = (unsigned char *) xcalloc (ax->length, 1);
2043 memcpy (ax->bytes, src_ax->bytes, ax->length);
2044 return ax;
2045 }
2046
2047 /* Deep-copy the contents of one breakpoint to another. */
2048
2049 static struct breakpoint *
2050 clone_one_breakpoint (const struct breakpoint *src)
2051 {
2052 struct breakpoint *dest;
2053 struct raw_breakpoint *dest_raw;
2054 struct point_cond_list *current_cond;
2055 struct point_cond_list *new_cond;
2056 struct point_cond_list *cond_tail = NULL;
2057 struct point_command_list *current_cmd;
2058 struct point_command_list *new_cmd;
2059 struct point_command_list *cmd_tail = NULL;
2060
2061 /* Clone the raw breakpoint. */
2062 dest_raw = XCNEW (struct raw_breakpoint);
2063 dest_raw->raw_type = src->raw->raw_type;
2064 dest_raw->refcount = src->raw->refcount;
2065 dest_raw->pc = src->raw->pc;
2066 dest_raw->kind = src->raw->kind;
2067 memcpy (dest_raw->old_data, src->raw->old_data, MAX_BREAKPOINT_LEN);
2068 dest_raw->inserted = src->raw->inserted;
2069
2070 /* Clone the high-level breakpoint. */
2071 dest = XCNEW (struct breakpoint);
2072 dest->type = src->type;
2073 dest->raw = dest_raw;
2074 dest->handler = src->handler;
2075
2076 /* Clone the condition list. */
2077 for (current_cond = src->cond_list; current_cond != NULL;
2078 current_cond = current_cond->next)
2079 {
2080 new_cond = XCNEW (struct point_cond_list);
2081 new_cond->cond = clone_agent_expr (current_cond->cond);
2082 APPEND_TO_LIST (&dest->cond_list, new_cond, cond_tail);
2083 }
2084
2085 /* Clone the command list. */
2086 for (current_cmd = src->command_list; current_cmd != NULL;
2087 current_cmd = current_cmd->next)
2088 {
2089 new_cmd = XCNEW (struct point_command_list);
2090 new_cmd->cmd = clone_agent_expr (current_cmd->cmd);
2091 new_cmd->persistence = current_cmd->persistence;
2092 APPEND_TO_LIST (&dest->command_list, new_cmd, cmd_tail);
2093 }
2094
2095 return dest;
2096 }
2097
2098 /* Create a new breakpoint list NEW_LIST that is a copy of the
2099 list starting at SRC_LIST. Create the corresponding new
2100 raw_breakpoint list NEW_RAW_LIST as well. */
2101
2102 void
2103 clone_all_breakpoints (struct breakpoint **new_list,
2104 struct raw_breakpoint **new_raw_list,
2105 const struct breakpoint *src_list)
2106 {
2107 const struct breakpoint *bp;
2108 struct breakpoint *new_bkpt;
2109 struct breakpoint *bkpt_tail = NULL;
2110 struct raw_breakpoint *raw_bkpt_tail = NULL;
2111
2112 for (bp = src_list; bp != NULL; bp = bp->next)
2113 {
2114 new_bkpt = clone_one_breakpoint (bp);
2115 APPEND_TO_LIST (new_list, new_bkpt, bkpt_tail);
2116 APPEND_TO_LIST (new_raw_list, new_bkpt->raw, raw_bkpt_tail);
2117 }
2118 }
This page took 0.07648 seconds and 4 git commands to generate.