GDB copyright headers update after running GDB's copyright.py script.
[deliverable/binutils-gdb.git] / gdb / gdbserver / remote-utils.c
1 /* Remote utility routines for the remote server for GDB.
2 Copyright (C) 1986-2016 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "terminal.h"
21 #include "target.h"
22 #include "gdbthread.h"
23 #include "tdesc.h"
24 #include "dll.h"
25 #include "rsp-low.h"
26 #include <ctype.h>
27 #if HAVE_SYS_IOCTL_H
28 #include <sys/ioctl.h>
29 #endif
30 #if HAVE_SYS_FILE_H
31 #include <sys/file.h>
32 #endif
33 #if HAVE_NETINET_IN_H
34 #include <netinet/in.h>
35 #endif
36 #if HAVE_SYS_SOCKET_H
37 #include <sys/socket.h>
38 #endif
39 #if HAVE_NETDB_H
40 #include <netdb.h>
41 #endif
42 #if HAVE_NETINET_TCP_H
43 #include <netinet/tcp.h>
44 #endif
45 #if HAVE_SYS_IOCTL_H
46 #include <sys/ioctl.h>
47 #endif
48 #if HAVE_SIGNAL_H
49 #include <signal.h>
50 #endif
51 #if HAVE_FCNTL_H
52 #include <fcntl.h>
53 #endif
54 #include "gdb_sys_time.h"
55 #include <unistd.h>
56 #if HAVE_ARPA_INET_H
57 #include <arpa/inet.h>
58 #endif
59 #include <sys/stat.h>
60
61 #if USE_WIN32API
62 #include <winsock2.h>
63 #endif
64
65 #if __QNX__
66 #include <sys/iomgr.h>
67 #endif /* __QNX__ */
68
69 #ifndef HAVE_SOCKLEN_T
70 typedef int socklen_t;
71 #endif
72
73 #ifndef IN_PROCESS_AGENT
74
75 #if USE_WIN32API
76 # define INVALID_DESCRIPTOR INVALID_SOCKET
77 #else
78 # define INVALID_DESCRIPTOR -1
79 #endif
80
81 /* Extra value for readchar_callback. */
82 enum {
83 /* The callback is currently not scheduled. */
84 NOT_SCHEDULED = -1
85 };
86
87 /* Status of the readchar callback.
88 Either NOT_SCHEDULED or the callback id. */
89 static int readchar_callback = NOT_SCHEDULED;
90
91 static int readchar (void);
92 static void reset_readchar (void);
93 static void reschedule (void);
94
95 /* A cache entry for a successfully looked-up symbol. */
96 struct sym_cache
97 {
98 char *name;
99 CORE_ADDR addr;
100 struct sym_cache *next;
101 };
102
103 int remote_debug = 0;
104 struct ui_file *gdb_stdlog;
105
106 static int remote_is_stdio = 0;
107
108 static gdb_fildes_t remote_desc = INVALID_DESCRIPTOR;
109 static gdb_fildes_t listen_desc = INVALID_DESCRIPTOR;
110
111 /* FIXME headerize? */
112 extern int using_threads;
113 extern int debug_threads;
114
115 /* If true, then GDB has requested noack mode. */
116 int noack_mode = 0;
117 /* If true, then we tell GDB to use noack mode by default. */
118 int transport_is_reliable = 0;
119
120 #ifdef USE_WIN32API
121 # define read(fd, buf, len) recv (fd, (char *) buf, len, 0)
122 # define write(fd, buf, len) send (fd, (char *) buf, len, 0)
123 #endif
124
125 int
126 gdb_connected (void)
127 {
128 return remote_desc != INVALID_DESCRIPTOR;
129 }
130
131 /* Return true if the remote connection is over stdio. */
132
133 int
134 remote_connection_is_stdio (void)
135 {
136 return remote_is_stdio;
137 }
138
139 static void
140 enable_async_notification (int fd)
141 {
142 #if defined(F_SETFL) && defined (FASYNC)
143 int save_fcntl_flags;
144
145 save_fcntl_flags = fcntl (fd, F_GETFL, 0);
146 fcntl (fd, F_SETFL, save_fcntl_flags | FASYNC);
147 #if defined (F_SETOWN)
148 fcntl (fd, F_SETOWN, getpid ());
149 #endif
150 #endif
151 }
152
153 static int
154 handle_accept_event (int err, gdb_client_data client_data)
155 {
156 struct sockaddr_in sockaddr;
157 socklen_t tmp;
158
159 if (debug_threads)
160 debug_printf ("handling possible accept event\n");
161
162 tmp = sizeof (sockaddr);
163 remote_desc = accept (listen_desc, (struct sockaddr *) &sockaddr, &tmp);
164 if (remote_desc == -1)
165 perror_with_name ("Accept failed");
166
167 /* Enable TCP keep alive process. */
168 tmp = 1;
169 setsockopt (remote_desc, SOL_SOCKET, SO_KEEPALIVE,
170 (char *) &tmp, sizeof (tmp));
171
172 /* Tell TCP not to delay small packets. This greatly speeds up
173 interactive response. */
174 tmp = 1;
175 setsockopt (remote_desc, IPPROTO_TCP, TCP_NODELAY,
176 (char *) &tmp, sizeof (tmp));
177
178 #ifndef USE_WIN32API
179 signal (SIGPIPE, SIG_IGN); /* If we don't do this, then gdbserver simply
180 exits when the remote side dies. */
181 #endif
182
183 if (run_once)
184 {
185 #ifndef USE_WIN32API
186 close (listen_desc); /* No longer need this */
187 #else
188 closesocket (listen_desc); /* No longer need this */
189 #endif
190 }
191
192 /* Even if !RUN_ONCE no longer notice new connections. Still keep the
193 descriptor open for add_file_handler to wait for a new connection. */
194 delete_file_handler (listen_desc);
195
196 /* Convert IP address to string. */
197 fprintf (stderr, "Remote debugging from host %s\n",
198 inet_ntoa (sockaddr.sin_addr));
199
200 enable_async_notification (remote_desc);
201
202 /* Register the event loop handler. */
203 add_file_handler (remote_desc, handle_serial_event, NULL);
204
205 /* We have a new GDB connection now. If we were disconnected
206 tracing, there's a window where the target could report a stop
207 event to the event loop, and since we have a connection now, we'd
208 try to send vStopped notifications to GDB. But, don't do that
209 until GDB as selected all-stop/non-stop, and has queried the
210 threads' status ('?'). */
211 target_async (0);
212
213 return 0;
214 }
215
216 /* Prepare for a later connection to a remote debugger.
217 NAME is the filename used for communication. */
218
219 void
220 remote_prepare (char *name)
221 {
222 char *port_str;
223 #ifdef USE_WIN32API
224 static int winsock_initialized;
225 #endif
226 int port;
227 struct sockaddr_in sockaddr;
228 socklen_t tmp;
229 char *port_end;
230
231 remote_is_stdio = 0;
232 if (strcmp (name, STDIO_CONNECTION_NAME) == 0)
233 {
234 /* We need to record fact that we're using stdio sooner than the
235 call to remote_open so start_inferior knows the connection is
236 via stdio. */
237 remote_is_stdio = 1;
238 transport_is_reliable = 1;
239 return;
240 }
241
242 port_str = strchr (name, ':');
243 if (port_str == NULL)
244 {
245 transport_is_reliable = 0;
246 return;
247 }
248
249 port = strtoul (port_str + 1, &port_end, 10);
250 if (port_str[1] == '\0' || *port_end != '\0')
251 error ("Bad port argument: %s", name);
252
253 #ifdef USE_WIN32API
254 if (!winsock_initialized)
255 {
256 WSADATA wsad;
257
258 WSAStartup (MAKEWORD (1, 0), &wsad);
259 winsock_initialized = 1;
260 }
261 #endif
262
263 listen_desc = socket (PF_INET, SOCK_STREAM, IPPROTO_TCP);
264 if (listen_desc == -1)
265 perror_with_name ("Can't open socket");
266
267 /* Allow rapid reuse of this port. */
268 tmp = 1;
269 setsockopt (listen_desc, SOL_SOCKET, SO_REUSEADDR, (char *) &tmp,
270 sizeof (tmp));
271
272 sockaddr.sin_family = PF_INET;
273 sockaddr.sin_port = htons (port);
274 sockaddr.sin_addr.s_addr = INADDR_ANY;
275
276 if (bind (listen_desc, (struct sockaddr *) &sockaddr, sizeof (sockaddr))
277 || listen (listen_desc, 1))
278 perror_with_name ("Can't bind address");
279
280 transport_is_reliable = 1;
281 }
282
283 /* Open a connection to a remote debugger.
284 NAME is the filename used for communication. */
285
286 void
287 remote_open (char *name)
288 {
289 char *port_str;
290
291 port_str = strchr (name, ':');
292 #ifdef USE_WIN32API
293 if (port_str == NULL)
294 error ("Only <host>:<port> is supported on this platform.");
295 #endif
296
297 if (strcmp (name, STDIO_CONNECTION_NAME) == 0)
298 {
299 fprintf (stderr, "Remote debugging using stdio\n");
300
301 /* Use stdin as the handle of the connection.
302 We only select on reads, for example. */
303 remote_desc = fileno (stdin);
304
305 enable_async_notification (remote_desc);
306
307 /* Register the event loop handler. */
308 add_file_handler (remote_desc, handle_serial_event, NULL);
309 }
310 #ifndef USE_WIN32API
311 else if (port_str == NULL)
312 {
313 struct stat statbuf;
314
315 if (stat (name, &statbuf) == 0
316 && (S_ISCHR (statbuf.st_mode) || S_ISFIFO (statbuf.st_mode)))
317 remote_desc = open (name, O_RDWR);
318 else
319 {
320 errno = EINVAL;
321 remote_desc = -1;
322 }
323
324 if (remote_desc < 0)
325 perror_with_name ("Could not open remote device");
326
327 #ifdef HAVE_TERMIOS
328 {
329 struct termios termios;
330 tcgetattr (remote_desc, &termios);
331
332 termios.c_iflag = 0;
333 termios.c_oflag = 0;
334 termios.c_lflag = 0;
335 termios.c_cflag &= ~(CSIZE | PARENB);
336 termios.c_cflag |= CLOCAL | CS8;
337 termios.c_cc[VMIN] = 1;
338 termios.c_cc[VTIME] = 0;
339
340 tcsetattr (remote_desc, TCSANOW, &termios);
341 }
342 #endif
343
344 #ifdef HAVE_TERMIO
345 {
346 struct termio termio;
347 ioctl (remote_desc, TCGETA, &termio);
348
349 termio.c_iflag = 0;
350 termio.c_oflag = 0;
351 termio.c_lflag = 0;
352 termio.c_cflag &= ~(CSIZE | PARENB);
353 termio.c_cflag |= CLOCAL | CS8;
354 termio.c_cc[VMIN] = 1;
355 termio.c_cc[VTIME] = 0;
356
357 ioctl (remote_desc, TCSETA, &termio);
358 }
359 #endif
360
361 #ifdef HAVE_SGTTY
362 {
363 struct sgttyb sg;
364
365 ioctl (remote_desc, TIOCGETP, &sg);
366 sg.sg_flags = RAW;
367 ioctl (remote_desc, TIOCSETP, &sg);
368 }
369 #endif
370
371 fprintf (stderr, "Remote debugging using %s\n", name);
372
373 enable_async_notification (remote_desc);
374
375 /* Register the event loop handler. */
376 add_file_handler (remote_desc, handle_serial_event, NULL);
377 }
378 #endif /* USE_WIN32API */
379 else
380 {
381 int port;
382 socklen_t len;
383 struct sockaddr_in sockaddr;
384
385 len = sizeof (sockaddr);
386 if (getsockname (listen_desc,
387 (struct sockaddr *) &sockaddr, &len) < 0
388 || len < sizeof (sockaddr))
389 perror_with_name ("Can't determine port");
390 port = ntohs (sockaddr.sin_port);
391
392 fprintf (stderr, "Listening on port %d\n", port);
393 fflush (stderr);
394
395 /* Register the event loop handler. */
396 add_file_handler (listen_desc, handle_accept_event, NULL);
397 }
398 }
399
400 void
401 remote_close (void)
402 {
403 delete_file_handler (remote_desc);
404
405 #ifdef USE_WIN32API
406 closesocket (remote_desc);
407 #else
408 if (! remote_connection_is_stdio ())
409 close (remote_desc);
410 #endif
411 remote_desc = INVALID_DESCRIPTOR;
412
413 reset_readchar ();
414 }
415
416 #endif
417
418 #ifndef IN_PROCESS_AGENT
419
420 void
421 decode_address (CORE_ADDR *addrp, const char *start, int len)
422 {
423 CORE_ADDR addr;
424 char ch;
425 int i;
426
427 addr = 0;
428 for (i = 0; i < len; i++)
429 {
430 ch = start[i];
431 addr = addr << 4;
432 addr = addr | (fromhex (ch) & 0x0f);
433 }
434 *addrp = addr;
435 }
436
437 const char *
438 decode_address_to_semicolon (CORE_ADDR *addrp, const char *start)
439 {
440 const char *end;
441
442 end = start;
443 while (*end != '\0' && *end != ';')
444 end++;
445
446 decode_address (addrp, start, end - start);
447
448 if (*end == ';')
449 end++;
450 return end;
451 }
452
453 #endif
454
455 #ifndef IN_PROCESS_AGENT
456
457 /* Look for a sequence of characters which can be run-length encoded.
458 If there are any, update *CSUM and *P. Otherwise, output the
459 single character. Return the number of characters consumed. */
460
461 static int
462 try_rle (char *buf, int remaining, unsigned char *csum, char **p)
463 {
464 int n;
465
466 /* Always output the character. */
467 *csum += buf[0];
468 *(*p)++ = buf[0];
469
470 /* Don't go past '~'. */
471 if (remaining > 97)
472 remaining = 97;
473
474 for (n = 1; n < remaining; n++)
475 if (buf[n] != buf[0])
476 break;
477
478 /* N is the index of the first character not the same as buf[0].
479 buf[0] is counted twice, so by decrementing N, we get the number
480 of characters the RLE sequence will replace. */
481 n--;
482
483 if (n < 3)
484 return 1;
485
486 /* Skip the frame characters. The manual says to skip '+' and '-'
487 also, but there's no reason to. Unfortunately these two unusable
488 characters double the encoded length of a four byte zero
489 value. */
490 while (n + 29 == '$' || n + 29 == '#')
491 n--;
492
493 *csum += '*';
494 *(*p)++ = '*';
495 *csum += n + 29;
496 *(*p)++ = n + 29;
497
498 return n + 1;
499 }
500
501 #endif
502
503 #ifndef IN_PROCESS_AGENT
504
505 /* Write a PTID to BUF. Returns BUF+CHARACTERS_WRITTEN. */
506
507 char *
508 write_ptid (char *buf, ptid_t ptid)
509 {
510 int pid, tid;
511
512 if (multi_process)
513 {
514 pid = ptid_get_pid (ptid);
515 if (pid < 0)
516 buf += sprintf (buf, "p-%x.", -pid);
517 else
518 buf += sprintf (buf, "p%x.", pid);
519 }
520 tid = ptid_get_lwp (ptid);
521 if (tid < 0)
522 buf += sprintf (buf, "-%x", -tid);
523 else
524 buf += sprintf (buf, "%x", tid);
525
526 return buf;
527 }
528
529 ULONGEST
530 hex_or_minus_one (char *buf, char **obuf)
531 {
532 ULONGEST ret;
533
534 if (startswith (buf, "-1"))
535 {
536 ret = (ULONGEST) -1;
537 buf += 2;
538 }
539 else
540 buf = unpack_varlen_hex (buf, &ret);
541
542 if (obuf)
543 *obuf = buf;
544
545 return ret;
546 }
547
548 /* Extract a PTID from BUF. If non-null, OBUF is set to the to one
549 passed the last parsed char. Returns null_ptid on error. */
550 ptid_t
551 read_ptid (char *buf, char **obuf)
552 {
553 char *p = buf;
554 char *pp;
555 ULONGEST pid = 0, tid = 0;
556
557 if (*p == 'p')
558 {
559 /* Multi-process ptid. */
560 pp = unpack_varlen_hex (p + 1, &pid);
561 if (*pp != '.')
562 error ("invalid remote ptid: %s\n", p);
563
564 p = pp + 1;
565
566 tid = hex_or_minus_one (p, &pp);
567
568 if (obuf)
569 *obuf = pp;
570 return ptid_build (pid, tid, 0);
571 }
572
573 /* No multi-process. Just a tid. */
574 tid = hex_or_minus_one (p, &pp);
575
576 /* Since GDB is not sending a process id (multi-process extensions
577 are off), then there's only one process. Default to the first in
578 the list. */
579 pid = pid_of (get_first_process ());
580
581 if (obuf)
582 *obuf = pp;
583 return ptid_build (pid, tid, 0);
584 }
585
586 /* Write COUNT bytes in BUF to the client.
587 The result is the number of bytes written or -1 if error.
588 This may return less than COUNT. */
589
590 static int
591 write_prim (const void *buf, int count)
592 {
593 if (remote_connection_is_stdio ())
594 return write (fileno (stdout), buf, count);
595 else
596 return write (remote_desc, buf, count);
597 }
598
599 /* Read COUNT bytes from the client and store in BUF.
600 The result is the number of bytes read or -1 if error.
601 This may return less than COUNT. */
602
603 static int
604 read_prim (void *buf, int count)
605 {
606 if (remote_connection_is_stdio ())
607 return read (fileno (stdin), buf, count);
608 else
609 return read (remote_desc, buf, count);
610 }
611
612 /* Send a packet to the remote machine, with error checking.
613 The data of the packet is in BUF, and the length of the
614 packet is in CNT. Returns >= 0 on success, -1 otherwise. */
615
616 static int
617 putpkt_binary_1 (char *buf, int cnt, int is_notif)
618 {
619 int i;
620 unsigned char csum = 0;
621 char *buf2;
622 char *p;
623 int cc;
624
625 buf2 = (char *) xmalloc (strlen ("$") + cnt + strlen ("#nn") + 1);
626
627 /* Copy the packet into buffer BUF2, encapsulating it
628 and giving it a checksum. */
629
630 p = buf2;
631 if (is_notif)
632 *p++ = '%';
633 else
634 *p++ = '$';
635
636 for (i = 0; i < cnt;)
637 i += try_rle (buf + i, cnt - i, &csum, &p);
638
639 *p++ = '#';
640 *p++ = tohex ((csum >> 4) & 0xf);
641 *p++ = tohex (csum & 0xf);
642
643 *p = '\0';
644
645 /* Send it over and over until we get a positive ack. */
646
647 do
648 {
649 if (write_prim (buf2, p - buf2) != p - buf2)
650 {
651 perror ("putpkt(write)");
652 free (buf2);
653 return -1;
654 }
655
656 if (noack_mode || is_notif)
657 {
658 /* Don't expect an ack then. */
659 if (remote_debug)
660 {
661 if (is_notif)
662 fprintf (stderr, "putpkt (\"%s\"); [notif]\n", buf2);
663 else
664 fprintf (stderr, "putpkt (\"%s\"); [noack mode]\n", buf2);
665 fflush (stderr);
666 }
667 break;
668 }
669
670 if (remote_debug)
671 {
672 fprintf (stderr, "putpkt (\"%s\"); [looking for ack]\n", buf2);
673 fflush (stderr);
674 }
675
676 cc = readchar ();
677
678 if (cc < 0)
679 {
680 free (buf2);
681 return -1;
682 }
683
684 if (remote_debug)
685 {
686 fprintf (stderr, "[received '%c' (0x%x)]\n", cc, cc);
687 fflush (stderr);
688 }
689
690 /* Check for an input interrupt while we're here. */
691 if (cc == '\003' && current_thread != NULL)
692 (*the_target->request_interrupt) ();
693 }
694 while (cc != '+');
695
696 free (buf2);
697 return 1; /* Success! */
698 }
699
700 int
701 putpkt_binary (char *buf, int cnt)
702 {
703 return putpkt_binary_1 (buf, cnt, 0);
704 }
705
706 /* Send a packet to the remote machine, with error checking. The data
707 of the packet is in BUF, and the packet should be a NUL-terminated
708 string. Returns >= 0 on success, -1 otherwise. */
709
710 int
711 putpkt (char *buf)
712 {
713 return putpkt_binary (buf, strlen (buf));
714 }
715
716 int
717 putpkt_notif (char *buf)
718 {
719 return putpkt_binary_1 (buf, strlen (buf), 1);
720 }
721
722 /* Come here when we get an input interrupt from the remote side. This
723 interrupt should only be active while we are waiting for the child to do
724 something. Thus this assumes readchar:bufcnt is 0.
725 About the only thing that should come through is a ^C, which
726 will cause us to request child interruption. */
727
728 static void
729 input_interrupt (int unused)
730 {
731 fd_set readset;
732 struct timeval immediate = { 0, 0 };
733
734 /* Protect against spurious interrupts. This has been observed to
735 be a problem under NetBSD 1.4 and 1.5. */
736
737 FD_ZERO (&readset);
738 FD_SET (remote_desc, &readset);
739 if (select (remote_desc + 1, &readset, 0, 0, &immediate) > 0)
740 {
741 int cc;
742 char c = 0;
743
744 cc = read_prim (&c, 1);
745
746 if (cc == 0)
747 {
748 fprintf (stderr, "client connection closed\n");
749 return;
750 }
751 else if (cc != 1 || c != '\003')
752 {
753 fprintf (stderr, "input_interrupt, count = %d c = %d ", cc, c);
754 if (isprint (c))
755 fprintf (stderr, "('%c')\n", c);
756 else
757 fprintf (stderr, "('\\x%02x')\n", c & 0xff);
758 return;
759 }
760
761 (*the_target->request_interrupt) ();
762 }
763 }
764
765 /* Check if the remote side sent us an interrupt request (^C). */
766 void
767 check_remote_input_interrupt_request (void)
768 {
769 /* This function may be called before establishing communications,
770 therefore we need to validate the remote descriptor. */
771
772 if (remote_desc == INVALID_DESCRIPTOR)
773 return;
774
775 input_interrupt (0);
776 }
777
778 /* Asynchronous I/O support. SIGIO must be enabled when waiting, in order to
779 accept Control-C from the client, and must be disabled when talking to
780 the client. */
781
782 static void
783 unblock_async_io (void)
784 {
785 #ifndef USE_WIN32API
786 sigset_t sigio_set;
787
788 sigemptyset (&sigio_set);
789 sigaddset (&sigio_set, SIGIO);
790 sigprocmask (SIG_UNBLOCK, &sigio_set, NULL);
791 #endif
792 }
793
794 #ifdef __QNX__
795 static void
796 nto_comctrl (int enable)
797 {
798 struct sigevent event;
799
800 if (enable)
801 {
802 event.sigev_notify = SIGEV_SIGNAL_THREAD;
803 event.sigev_signo = SIGIO;
804 event.sigev_code = 0;
805 event.sigev_value.sival_ptr = NULL;
806 event.sigev_priority = -1;
807 ionotify (remote_desc, _NOTIFY_ACTION_POLLARM, _NOTIFY_COND_INPUT,
808 &event);
809 }
810 else
811 ionotify (remote_desc, _NOTIFY_ACTION_POLL, _NOTIFY_COND_INPUT, NULL);
812 }
813 #endif /* __QNX__ */
814
815
816 /* Current state of asynchronous I/O. */
817 static int async_io_enabled;
818
819 /* Enable asynchronous I/O. */
820 void
821 enable_async_io (void)
822 {
823 if (async_io_enabled)
824 return;
825
826 #ifndef USE_WIN32API
827 signal (SIGIO, input_interrupt);
828 #endif
829 async_io_enabled = 1;
830 #ifdef __QNX__
831 nto_comctrl (1);
832 #endif /* __QNX__ */
833 }
834
835 /* Disable asynchronous I/O. */
836 void
837 disable_async_io (void)
838 {
839 if (!async_io_enabled)
840 return;
841
842 #ifndef USE_WIN32API
843 signal (SIGIO, SIG_IGN);
844 #endif
845 async_io_enabled = 0;
846 #ifdef __QNX__
847 nto_comctrl (0);
848 #endif /* __QNX__ */
849
850 }
851
852 void
853 initialize_async_io (void)
854 {
855 /* Make sure that async I/O starts disabled. */
856 async_io_enabled = 1;
857 disable_async_io ();
858
859 /* Make sure the signal is unblocked. */
860 unblock_async_io ();
861 }
862
863 /* Internal buffer used by readchar.
864 These are global to readchar because reschedule_remote needs to be
865 able to tell whether the buffer is empty. */
866
867 static unsigned char readchar_buf[BUFSIZ];
868 static int readchar_bufcnt = 0;
869 static unsigned char *readchar_bufp;
870
871 /* Returns next char from remote GDB. -1 if error. */
872
873 static int
874 readchar (void)
875 {
876 int ch;
877
878 if (readchar_bufcnt == 0)
879 {
880 readchar_bufcnt = read_prim (readchar_buf, sizeof (readchar_buf));
881
882 if (readchar_bufcnt <= 0)
883 {
884 if (readchar_bufcnt == 0)
885 {
886 if (remote_debug)
887 fprintf (stderr, "readchar: Got EOF\n");
888 }
889 else
890 perror ("readchar");
891
892 return -1;
893 }
894
895 readchar_bufp = readchar_buf;
896 }
897
898 readchar_bufcnt--;
899 ch = *readchar_bufp++;
900 reschedule ();
901 return ch;
902 }
903
904 /* Reset the readchar state machine. */
905
906 static void
907 reset_readchar (void)
908 {
909 readchar_bufcnt = 0;
910 if (readchar_callback != NOT_SCHEDULED)
911 {
912 delete_callback_event (readchar_callback);
913 readchar_callback = NOT_SCHEDULED;
914 }
915 }
916
917 /* Process remaining data in readchar_buf. */
918
919 static int
920 process_remaining (void *context)
921 {
922 int res;
923
924 /* This is a one-shot event. */
925 readchar_callback = NOT_SCHEDULED;
926
927 if (readchar_bufcnt > 0)
928 res = handle_serial_event (0, NULL);
929 else
930 res = 0;
931
932 return res;
933 }
934
935 /* If there is still data in the buffer, queue another event to process it,
936 we can't sleep in select yet. */
937
938 static void
939 reschedule (void)
940 {
941 if (readchar_bufcnt > 0 && readchar_callback == NOT_SCHEDULED)
942 readchar_callback = append_callback_event (process_remaining, NULL);
943 }
944
945 /* Read a packet from the remote machine, with error checking,
946 and store it in BUF. Returns length of packet, or negative if error. */
947
948 int
949 getpkt (char *buf)
950 {
951 char *bp;
952 unsigned char csum, c1, c2;
953 int c;
954
955 while (1)
956 {
957 csum = 0;
958
959 while (1)
960 {
961 c = readchar ();
962 if (c == '$')
963 break;
964 if (remote_debug)
965 {
966 fprintf (stderr, "[getpkt: discarding char '%c']\n", c);
967 fflush (stderr);
968 }
969
970 if (c < 0)
971 return -1;
972 }
973
974 bp = buf;
975 while (1)
976 {
977 c = readchar ();
978 if (c < 0)
979 return -1;
980 if (c == '#')
981 break;
982 *bp++ = c;
983 csum += c;
984 }
985 *bp = 0;
986
987 c1 = fromhex (readchar ());
988 c2 = fromhex (readchar ());
989
990 if (csum == (c1 << 4) + c2)
991 break;
992
993 if (noack_mode)
994 {
995 fprintf (stderr,
996 "Bad checksum, sentsum=0x%x, csum=0x%x, "
997 "buf=%s [no-ack-mode, Bad medium?]\n",
998 (c1 << 4) + c2, csum, buf);
999 /* Not much we can do, GDB wasn't expecting an ack/nac. */
1000 break;
1001 }
1002
1003 fprintf (stderr, "Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s\n",
1004 (c1 << 4) + c2, csum, buf);
1005 if (write_prim ("-", 1) != 1)
1006 return -1;
1007 }
1008
1009 if (!noack_mode)
1010 {
1011 if (remote_debug)
1012 {
1013 fprintf (stderr, "getpkt (\"%s\"); [sending ack] \n", buf);
1014 fflush (stderr);
1015 }
1016
1017 if (write_prim ("+", 1) != 1)
1018 return -1;
1019
1020 if (remote_debug)
1021 {
1022 fprintf (stderr, "[sent ack]\n");
1023 fflush (stderr);
1024 }
1025 }
1026 else
1027 {
1028 if (remote_debug)
1029 {
1030 fprintf (stderr, "getpkt (\"%s\"); [no ack sent] \n", buf);
1031 fflush (stderr);
1032 }
1033 }
1034
1035 return bp - buf;
1036 }
1037
1038 void
1039 write_ok (char *buf)
1040 {
1041 buf[0] = 'O';
1042 buf[1] = 'K';
1043 buf[2] = '\0';
1044 }
1045
1046 void
1047 write_enn (char *buf)
1048 {
1049 /* Some day, we should define the meanings of the error codes... */
1050 buf[0] = 'E';
1051 buf[1] = '0';
1052 buf[2] = '1';
1053 buf[3] = '\0';
1054 }
1055
1056 #endif
1057
1058 #ifndef IN_PROCESS_AGENT
1059
1060 static char *
1061 outreg (struct regcache *regcache, int regno, char *buf)
1062 {
1063 if ((regno >> 12) != 0)
1064 *buf++ = tohex ((regno >> 12) & 0xf);
1065 if ((regno >> 8) != 0)
1066 *buf++ = tohex ((regno >> 8) & 0xf);
1067 *buf++ = tohex ((regno >> 4) & 0xf);
1068 *buf++ = tohex (regno & 0xf);
1069 *buf++ = ':';
1070 collect_register_as_string (regcache, regno, buf);
1071 buf += 2 * register_size (regcache->tdesc, regno);
1072 *buf++ = ';';
1073
1074 return buf;
1075 }
1076
1077 void
1078 new_thread_notify (int id)
1079 {
1080 char own_buf[256];
1081
1082 /* The `n' response is not yet part of the remote protocol. Do nothing. */
1083 if (1)
1084 return;
1085
1086 if (server_waiting == 0)
1087 return;
1088
1089 sprintf (own_buf, "n%x", id);
1090 disable_async_io ();
1091 putpkt (own_buf);
1092 enable_async_io ();
1093 }
1094
1095 void
1096 dead_thread_notify (int id)
1097 {
1098 char own_buf[256];
1099
1100 /* The `x' response is not yet part of the remote protocol. Do nothing. */
1101 if (1)
1102 return;
1103
1104 sprintf (own_buf, "x%x", id);
1105 disable_async_io ();
1106 putpkt (own_buf);
1107 enable_async_io ();
1108 }
1109
1110 void
1111 prepare_resume_reply (char *buf, ptid_t ptid,
1112 struct target_waitstatus *status)
1113 {
1114 if (debug_threads)
1115 debug_printf ("Writing resume reply for %s:%d\n",
1116 target_pid_to_str (ptid), status->kind);
1117
1118 switch (status->kind)
1119 {
1120 case TARGET_WAITKIND_STOPPED:
1121 case TARGET_WAITKIND_FORKED:
1122 case TARGET_WAITKIND_VFORKED:
1123 case TARGET_WAITKIND_VFORK_DONE:
1124 case TARGET_WAITKIND_EXECD:
1125 case TARGET_WAITKIND_THREAD_CREATED:
1126 {
1127 struct thread_info *saved_thread;
1128 const char **regp;
1129 struct regcache *regcache;
1130
1131 if ((status->kind == TARGET_WAITKIND_FORKED && report_fork_events)
1132 || (status->kind == TARGET_WAITKIND_VFORKED && report_vfork_events))
1133 {
1134 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1135 const char *event = (status->kind == TARGET_WAITKIND_FORKED
1136 ? "fork" : "vfork");
1137
1138 sprintf (buf, "T%02x%s:", signal, event);
1139 buf += strlen (buf);
1140 buf = write_ptid (buf, status->value.related_pid);
1141 strcat (buf, ";");
1142 }
1143 else if (status->kind == TARGET_WAITKIND_VFORK_DONE && report_vfork_events)
1144 {
1145 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1146
1147 sprintf (buf, "T%02xvforkdone:;", signal);
1148 }
1149 else if (status->kind == TARGET_WAITKIND_EXECD && report_exec_events)
1150 {
1151 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1152 const char *event = "exec";
1153 char hexified_pathname[PATH_MAX * 2];
1154
1155 sprintf (buf, "T%02x%s:", signal, event);
1156 buf += strlen (buf);
1157
1158 /* Encode pathname to hexified format. */
1159 bin2hex ((const gdb_byte *) status->value.execd_pathname,
1160 hexified_pathname,
1161 strlen (status->value.execd_pathname));
1162
1163 sprintf (buf, "%s;", hexified_pathname);
1164 xfree (status->value.execd_pathname);
1165 status->value.execd_pathname = NULL;
1166 buf += strlen (buf);
1167 }
1168 else if (status->kind == TARGET_WAITKIND_THREAD_CREATED
1169 && report_thread_events)
1170 {
1171 enum gdb_signal signal = GDB_SIGNAL_TRAP;
1172
1173 sprintf (buf, "T%02xcreate:;", signal);
1174 }
1175 else
1176 sprintf (buf, "T%02x", status->value.sig);
1177
1178 buf += strlen (buf);
1179
1180 saved_thread = current_thread;
1181
1182 current_thread = find_thread_ptid (ptid);
1183
1184 regp = current_target_desc ()->expedite_regs;
1185
1186 regcache = get_thread_regcache (current_thread, 1);
1187
1188 if (the_target->stopped_by_watchpoint != NULL
1189 && (*the_target->stopped_by_watchpoint) ())
1190 {
1191 CORE_ADDR addr;
1192 int i;
1193
1194 strncpy (buf, "watch:", 6);
1195 buf += 6;
1196
1197 addr = (*the_target->stopped_data_address) ();
1198
1199 /* Convert each byte of the address into two hexadecimal
1200 chars. Note that we take sizeof (void *) instead of
1201 sizeof (addr); this is to avoid sending a 64-bit
1202 address to a 32-bit GDB. */
1203 for (i = sizeof (void *) * 2; i > 0; i--)
1204 *buf++ = tohex ((addr >> (i - 1) * 4) & 0xf);
1205 *buf++ = ';';
1206 }
1207 else if (swbreak_feature && target_stopped_by_sw_breakpoint ())
1208 {
1209 sprintf (buf, "swbreak:;");
1210 buf += strlen (buf);
1211 }
1212 else if (hwbreak_feature && target_stopped_by_hw_breakpoint ())
1213 {
1214 sprintf (buf, "hwbreak:;");
1215 buf += strlen (buf);
1216 }
1217
1218 while (*regp)
1219 {
1220 buf = outreg (regcache, find_regno (regcache->tdesc, *regp), buf);
1221 regp ++;
1222 }
1223 *buf = '\0';
1224
1225 /* Formerly, if the debugger had not used any thread features
1226 we would not burden it with a thread status response. This
1227 was for the benefit of GDB 4.13 and older. However, in
1228 recent GDB versions the check (``if (cont_thread != 0)'')
1229 does not have the desired effect because of sillyness in
1230 the way that the remote protocol handles specifying a
1231 thread. Since thread support relies on qSymbol support
1232 anyway, assume GDB can handle threads. */
1233
1234 if (using_threads && !disable_packet_Tthread)
1235 {
1236 /* This if (1) ought to be unnecessary. But remote_wait
1237 in GDB will claim this event belongs to inferior_ptid
1238 if we do not specify a thread, and there's no way for
1239 gdbserver to know what inferior_ptid is. */
1240 if (1 || !ptid_equal (general_thread, ptid))
1241 {
1242 int core = -1;
1243 /* In non-stop, don't change the general thread behind
1244 GDB's back. */
1245 if (!non_stop)
1246 general_thread = ptid;
1247 sprintf (buf, "thread:");
1248 buf += strlen (buf);
1249 buf = write_ptid (buf, ptid);
1250 strcat (buf, ";");
1251 buf += strlen (buf);
1252
1253 core = target_core_of_thread (ptid);
1254
1255 if (core != -1)
1256 {
1257 sprintf (buf, "core:");
1258 buf += strlen (buf);
1259 sprintf (buf, "%x", core);
1260 strcat (buf, ";");
1261 buf += strlen (buf);
1262 }
1263 }
1264 }
1265
1266 if (dlls_changed)
1267 {
1268 strcpy (buf, "library:;");
1269 buf += strlen (buf);
1270 dlls_changed = 0;
1271 }
1272
1273 current_thread = saved_thread;
1274 }
1275 break;
1276 case TARGET_WAITKIND_EXITED:
1277 if (multi_process)
1278 sprintf (buf, "W%x;process:%x",
1279 status->value.integer, ptid_get_pid (ptid));
1280 else
1281 sprintf (buf, "W%02x", status->value.integer);
1282 break;
1283 case TARGET_WAITKIND_SIGNALLED:
1284 if (multi_process)
1285 sprintf (buf, "X%x;process:%x",
1286 status->value.sig, ptid_get_pid (ptid));
1287 else
1288 sprintf (buf, "X%02x", status->value.sig);
1289 break;
1290 case TARGET_WAITKIND_THREAD_EXITED:
1291 sprintf (buf, "w%x;", status->value.integer);
1292 buf += strlen (buf);
1293 buf = write_ptid (buf, ptid);
1294 break;
1295 case TARGET_WAITKIND_NO_RESUMED:
1296 sprintf (buf, "N");
1297 break;
1298 default:
1299 error ("unhandled waitkind");
1300 break;
1301 }
1302 }
1303
1304 void
1305 decode_m_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr)
1306 {
1307 int i = 0, j = 0;
1308 char ch;
1309 *mem_addr_ptr = *len_ptr = 0;
1310
1311 while ((ch = from[i++]) != ',')
1312 {
1313 *mem_addr_ptr = *mem_addr_ptr << 4;
1314 *mem_addr_ptr |= fromhex (ch) & 0x0f;
1315 }
1316
1317 for (j = 0; j < 4; j++)
1318 {
1319 if ((ch = from[i++]) == 0)
1320 break;
1321 *len_ptr = *len_ptr << 4;
1322 *len_ptr |= fromhex (ch) & 0x0f;
1323 }
1324 }
1325
1326 void
1327 decode_M_packet (char *from, CORE_ADDR *mem_addr_ptr, unsigned int *len_ptr,
1328 unsigned char **to_p)
1329 {
1330 int i = 0;
1331 char ch;
1332 *mem_addr_ptr = *len_ptr = 0;
1333
1334 while ((ch = from[i++]) != ',')
1335 {
1336 *mem_addr_ptr = *mem_addr_ptr << 4;
1337 *mem_addr_ptr |= fromhex (ch) & 0x0f;
1338 }
1339
1340 while ((ch = from[i++]) != ':')
1341 {
1342 *len_ptr = *len_ptr << 4;
1343 *len_ptr |= fromhex (ch) & 0x0f;
1344 }
1345
1346 if (*to_p == NULL)
1347 *to_p = (unsigned char *) xmalloc (*len_ptr);
1348
1349 hex2bin (&from[i++], *to_p, *len_ptr);
1350 }
1351
1352 int
1353 decode_X_packet (char *from, int packet_len, CORE_ADDR *mem_addr_ptr,
1354 unsigned int *len_ptr, unsigned char **to_p)
1355 {
1356 int i = 0;
1357 char ch;
1358 *mem_addr_ptr = *len_ptr = 0;
1359
1360 while ((ch = from[i++]) != ',')
1361 {
1362 *mem_addr_ptr = *mem_addr_ptr << 4;
1363 *mem_addr_ptr |= fromhex (ch) & 0x0f;
1364 }
1365
1366 while ((ch = from[i++]) != ':')
1367 {
1368 *len_ptr = *len_ptr << 4;
1369 *len_ptr |= fromhex (ch) & 0x0f;
1370 }
1371
1372 if (*to_p == NULL)
1373 *to_p = (unsigned char *) xmalloc (*len_ptr);
1374
1375 if (remote_unescape_input ((const gdb_byte *) &from[i], packet_len - i,
1376 *to_p, *len_ptr) != *len_ptr)
1377 return -1;
1378
1379 return 0;
1380 }
1381
1382 /* Decode a qXfer write request. */
1383
1384 int
1385 decode_xfer_write (char *buf, int packet_len, CORE_ADDR *offset,
1386 unsigned int *len, unsigned char *data)
1387 {
1388 char ch;
1389 char *b = buf;
1390
1391 /* Extract the offset. */
1392 *offset = 0;
1393 while ((ch = *buf++) != ':')
1394 {
1395 *offset = *offset << 4;
1396 *offset |= fromhex (ch) & 0x0f;
1397 }
1398
1399 /* Get encoded data. */
1400 packet_len -= buf - b;
1401 *len = remote_unescape_input ((const gdb_byte *) buf, packet_len,
1402 data, packet_len);
1403 return 0;
1404 }
1405
1406 /* Decode the parameters of a qSearch:memory packet. */
1407
1408 int
1409 decode_search_memory_packet (const char *buf, int packet_len,
1410 CORE_ADDR *start_addrp,
1411 CORE_ADDR *search_space_lenp,
1412 gdb_byte *pattern, unsigned int *pattern_lenp)
1413 {
1414 const char *p = buf;
1415
1416 p = decode_address_to_semicolon (start_addrp, p);
1417 p = decode_address_to_semicolon (search_space_lenp, p);
1418 packet_len -= p - buf;
1419 *pattern_lenp = remote_unescape_input ((const gdb_byte *) p, packet_len,
1420 pattern, packet_len);
1421 return 0;
1422 }
1423
1424 static void
1425 free_sym_cache (struct sym_cache *sym)
1426 {
1427 if (sym != NULL)
1428 {
1429 free (sym->name);
1430 free (sym);
1431 }
1432 }
1433
1434 void
1435 clear_symbol_cache (struct sym_cache **symcache_p)
1436 {
1437 struct sym_cache *sym, *next;
1438
1439 /* Check the cache first. */
1440 for (sym = *symcache_p; sym; sym = next)
1441 {
1442 next = sym->next;
1443 free_sym_cache (sym);
1444 }
1445
1446 *symcache_p = NULL;
1447 }
1448
1449 /* Get the address of NAME, and return it in ADDRP if found. if
1450 MAY_ASK_GDB is false, assume symbol cache misses are failures.
1451 Returns 1 if the symbol is found, 0 if it is not, -1 on error. */
1452
1453 int
1454 look_up_one_symbol (const char *name, CORE_ADDR *addrp, int may_ask_gdb)
1455 {
1456 char own_buf[266], *p, *q;
1457 int len;
1458 struct sym_cache *sym;
1459 struct process_info *proc;
1460
1461 proc = current_process ();
1462
1463 /* Check the cache first. */
1464 for (sym = proc->symbol_cache; sym; sym = sym->next)
1465 if (strcmp (name, sym->name) == 0)
1466 {
1467 *addrp = sym->addr;
1468 return 1;
1469 }
1470
1471 /* It might not be an appropriate time to look up a symbol,
1472 e.g. while we're trying to fetch registers. */
1473 if (!may_ask_gdb)
1474 return 0;
1475
1476 /* Send the request. */
1477 strcpy (own_buf, "qSymbol:");
1478 bin2hex ((const gdb_byte *) name, own_buf + strlen ("qSymbol:"),
1479 strlen (name));
1480 if (putpkt (own_buf) < 0)
1481 return -1;
1482
1483 /* FIXME: Eventually add buffer overflow checking (to getpkt?) */
1484 len = getpkt (own_buf);
1485 if (len < 0)
1486 return -1;
1487
1488 /* We ought to handle pretty much any packet at this point while we
1489 wait for the qSymbol "response". That requires re-entering the
1490 main loop. For now, this is an adequate approximation; allow
1491 GDB to read from memory while it figures out the address of the
1492 symbol. */
1493 while (own_buf[0] == 'm')
1494 {
1495 CORE_ADDR mem_addr;
1496 unsigned char *mem_buf;
1497 unsigned int mem_len;
1498
1499 decode_m_packet (&own_buf[1], &mem_addr, &mem_len);
1500 mem_buf = (unsigned char *) xmalloc (mem_len);
1501 if (read_inferior_memory (mem_addr, mem_buf, mem_len) == 0)
1502 bin2hex (mem_buf, own_buf, mem_len);
1503 else
1504 write_enn (own_buf);
1505 free (mem_buf);
1506 if (putpkt (own_buf) < 0)
1507 return -1;
1508 len = getpkt (own_buf);
1509 if (len < 0)
1510 return -1;
1511 }
1512
1513 if (!startswith (own_buf, "qSymbol:"))
1514 {
1515 warning ("Malformed response to qSymbol, ignoring: %s\n", own_buf);
1516 return -1;
1517 }
1518
1519 p = own_buf + strlen ("qSymbol:");
1520 q = p;
1521 while (*q && *q != ':')
1522 q++;
1523
1524 /* Make sure we found a value for the symbol. */
1525 if (p == q || *q == '\0')
1526 return 0;
1527
1528 decode_address (addrp, p, q - p);
1529
1530 /* Save the symbol in our cache. */
1531 sym = XNEW (struct sym_cache);
1532 sym->name = xstrdup (name);
1533 sym->addr = *addrp;
1534 sym->next = proc->symbol_cache;
1535 proc->symbol_cache = sym;
1536
1537 return 1;
1538 }
1539
1540 /* Relocate an instruction to execute at a different address. OLDLOC
1541 is the address in the inferior memory where the instruction to
1542 relocate is currently at. On input, TO points to the destination
1543 where we want the instruction to be copied (and possibly adjusted)
1544 to. On output, it points to one past the end of the resulting
1545 instruction(s). The effect of executing the instruction at TO
1546 shall be the same as if executing it at OLDLOC. For example, call
1547 instructions that implicitly push the return address on the stack
1548 should be adjusted to return to the instruction after OLDLOC;
1549 relative branches, and other PC-relative instructions need the
1550 offset adjusted; etc. Returns 0 on success, -1 on failure. */
1551
1552 int
1553 relocate_instruction (CORE_ADDR *to, CORE_ADDR oldloc)
1554 {
1555 char own_buf[266];
1556 int len;
1557 ULONGEST written = 0;
1558
1559 /* Send the request. */
1560 strcpy (own_buf, "qRelocInsn:");
1561 sprintf (own_buf, "qRelocInsn:%s;%s", paddress (oldloc),
1562 paddress (*to));
1563 if (putpkt (own_buf) < 0)
1564 return -1;
1565
1566 /* FIXME: Eventually add buffer overflow checking (to getpkt?) */
1567 len = getpkt (own_buf);
1568 if (len < 0)
1569 return -1;
1570
1571 /* We ought to handle pretty much any packet at this point while we
1572 wait for the qRelocInsn "response". That requires re-entering
1573 the main loop. For now, this is an adequate approximation; allow
1574 GDB to access memory. */
1575 while (own_buf[0] == 'm' || own_buf[0] == 'M' || own_buf[0] == 'X')
1576 {
1577 CORE_ADDR mem_addr;
1578 unsigned char *mem_buf = NULL;
1579 unsigned int mem_len;
1580
1581 if (own_buf[0] == 'm')
1582 {
1583 decode_m_packet (&own_buf[1], &mem_addr, &mem_len);
1584 mem_buf = (unsigned char *) xmalloc (mem_len);
1585 if (read_inferior_memory (mem_addr, mem_buf, mem_len) == 0)
1586 bin2hex (mem_buf, own_buf, mem_len);
1587 else
1588 write_enn (own_buf);
1589 }
1590 else if (own_buf[0] == 'X')
1591 {
1592 if (decode_X_packet (&own_buf[1], len - 1, &mem_addr,
1593 &mem_len, &mem_buf) < 0
1594 || write_inferior_memory (mem_addr, mem_buf, mem_len) != 0)
1595 write_enn (own_buf);
1596 else
1597 write_ok (own_buf);
1598 }
1599 else
1600 {
1601 decode_M_packet (&own_buf[1], &mem_addr, &mem_len, &mem_buf);
1602 if (write_inferior_memory (mem_addr, mem_buf, mem_len) == 0)
1603 write_ok (own_buf);
1604 else
1605 write_enn (own_buf);
1606 }
1607 free (mem_buf);
1608 if (putpkt (own_buf) < 0)
1609 return -1;
1610 len = getpkt (own_buf);
1611 if (len < 0)
1612 return -1;
1613 }
1614
1615 if (own_buf[0] == 'E')
1616 {
1617 warning ("An error occurred while relocating an instruction: %s\n",
1618 own_buf);
1619 return -1;
1620 }
1621
1622 if (!startswith (own_buf, "qRelocInsn:"))
1623 {
1624 warning ("Malformed response to qRelocInsn, ignoring: %s\n",
1625 own_buf);
1626 return -1;
1627 }
1628
1629 unpack_varlen_hex (own_buf + strlen ("qRelocInsn:"), &written);
1630
1631 *to += written;
1632 return 0;
1633 }
1634
1635 void
1636 monitor_output (const char *msg)
1637 {
1638 int len = strlen (msg);
1639 char *buf = (char *) xmalloc (len * 2 + 2);
1640
1641 buf[0] = 'O';
1642 bin2hex ((const gdb_byte *) msg, buf + 1, len);
1643
1644 putpkt (buf);
1645 free (buf);
1646 }
1647
1648 #endif
This page took 0.066393 seconds and 4 git commands to generate.