* TODO: Add item suggesting an "info bfd" command.
[deliverable/binutils-gdb.git] / gdb / gdbtk.c
1 /* Tcl/Tk interface routines.
2 Copyright 1994, 1995, 1996 Free Software Foundation, Inc.
3
4 Written by Stu Grossman <grossman@cygnus.com> of Cygnus Support.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
21
22 #include "defs.h"
23 #include "symtab.h"
24 #include "inferior.h"
25 #include "command.h"
26 #include "bfd.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "target.h"
30 #include <tcl.h>
31 #include <tk.h>
32 #ifdef ANSI_PROTOTYPES
33 #include <stdarg.h>
34 #else
35 #include <varargs.h>
36 #endif
37 #include <signal.h>
38 #include <fcntl.h>
39 #include <unistd.h>
40 #include <setjmp.h>
41 #include "top.h"
42 #include <sys/ioctl.h>
43 #include "gdb_string.h"
44 #include "dis-asm.h"
45 #include <stdio.h>
46 #include "gdbcmd.h"
47
48 #ifndef FIOASYNC
49 #include <sys/stropts.h>
50 #endif
51
52 /* Some versions (1.3.79, 1.3.81) of Linux don't support SIOCSPGRP the way
53 gdbtk wants to use it... */
54 #ifdef __linux__
55 #undef SIOCSPGRP
56 #endif
57
58 static void null_routine PARAMS ((int));
59 static void gdbtk_flush PARAMS ((FILE *));
60 static void gdbtk_fputs PARAMS ((const char *, FILE *));
61 static int gdbtk_query PARAMS ((const char *, va_list));
62 static char *gdbtk_readline PARAMS ((char *));
63 static void gdbtk_init PARAMS ((void));
64 static void tk_command_loop PARAMS ((void));
65 static void gdbtk_call_command PARAMS ((struct cmd_list_element *, char *, int));
66 static int gdbtk_wait PARAMS ((int, struct target_waitstatus *));
67 static void x_event PARAMS ((int));
68 static void gdbtk_interactive PARAMS ((void));
69 static void cleanup_init PARAMS ((int));
70 static void tk_command PARAMS ((char *, int));
71 static int gdb_disassemble PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
72 static int compare_lines PARAMS ((const PTR, const PTR));
73 static int gdbtk_dis_asm_read_memory PARAMS ((bfd_vma, bfd_byte *, int, disassemble_info *));
74 static int gdb_stop PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
75 static int gdb_listfiles PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
76 static int call_wrapper PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
77 static int gdb_cmd PARAMS ((ClientData, Tcl_Interp *, int, char *argv[]));
78 static int gdb_fetch_registers PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
79 static void gdbtk_readline_end PARAMS ((void));
80 static int gdb_changed_register_list PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
81 static void register_changed_p PARAMS ((int, void *));
82 static int gdb_get_breakpoint_list PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
83 static int gdb_get_breakpoint_info PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
84 static void breakpoint_notify PARAMS ((struct breakpoint *, const char *));
85 static void gdbtk_create_breakpoint PARAMS ((struct breakpoint *));
86 static void gdbtk_delete_breakpoint PARAMS ((struct breakpoint *));
87 static void gdbtk_modify_breakpoint PARAMS ((struct breakpoint *));
88 static int gdb_loc PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
89 static int gdb_eval PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
90 static int gdb_sourcelines PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
91 static int map_arg_registers PARAMS ((int, char *[], void (*) (int, void *), void *));
92 static void get_register_name PARAMS ((int, void *));
93 static int gdb_regnames PARAMS ((ClientData, Tcl_Interp *, int, char *[]));
94 static void get_register PARAMS ((int, void *));
95
96 /* Handle for TCL interpreter */
97
98 static Tcl_Interp *interp = NULL;
99
100 static int x_fd; /* X network socket */
101
102 /* This variable is true when the inferior is running. Although it's
103 possible to disable most input from widgets and thus prevent
104 attempts to do anything while the inferior is running, any commands
105 that get through - even a simple memory read - are Very Bad, and
106 may cause GDB to crash or behave strangely. So, this variable
107 provides an extra layer of defense. */
108
109 static int running_now;
110
111 /* This variable determines where memory used for disassembly is read from.
112 If > 0, then disassembly comes from the exec file rather than the
113 target (which might be at the other end of a slow serial link). If
114 == 0 then disassembly comes from target. If < 0 disassembly is
115 automatically switched to the target if it's an inferior process,
116 otherwise the exec file is used. */
117
118 static int disassemble_from_exec = -1;
119
120 /* Supply malloc calls for tcl/tk. */
121
122 char *
123 Tcl_Malloc (size)
124 unsigned int size;
125 {
126 return xmalloc (size);
127 }
128
129 char *
130 Tcl_Realloc (ptr, size)
131 char *ptr;
132 unsigned int size;
133 {
134 return xrealloc (ptr, size);
135 }
136
137 void
138 Tcl_Free(ptr)
139 char *ptr;
140 {
141 free (ptr);
142 }
143
144 static void
145 null_routine(arg)
146 int arg;
147 {
148 }
149
150 /* The following routines deal with stdout/stderr data, which is created by
151 {f}printf_{un}filtered and friends. gdbtk_fputs and gdbtk_flush are the
152 lowest level of these routines and capture all output from the rest of GDB.
153 Normally they present their data to tcl via callbacks to the following tcl
154 routines: gdbtk_tcl_fputs, gdbtk_tcl_fputs_error, and gdbtk_flush. These
155 in turn call tk routines to update the display.
156
157 Under some circumstances, you may want to collect the output so that it can
158 be returned as the value of a tcl procedure. This can be done by
159 surrounding the output routines with calls to start_saving_output and
160 finish_saving_output. The saved data can then be retrieved with
161 get_saved_output (but this must be done before the call to
162 finish_saving_output). */
163
164 /* Dynamic string header for stdout. */
165
166 static Tcl_DString *result_ptr;
167 \f
168 static void
169 gdbtk_flush (stream)
170 FILE *stream;
171 {
172 #if 0
173 /* Force immediate screen update */
174
175 Tcl_VarEval (interp, "gdbtk_tcl_flush", NULL);
176 #endif
177 }
178
179 static void
180 gdbtk_fputs (ptr, stream)
181 const char *ptr;
182 FILE *stream;
183 {
184
185 if (result_ptr)
186 Tcl_DStringAppend (result_ptr, (char *)ptr, -1);
187 else
188 {
189 Tcl_DString str;
190
191 Tcl_DStringInit (&str);
192
193 Tcl_DStringAppend (&str, "gdbtk_tcl_fputs", -1);
194 Tcl_DStringAppendElement (&str, (char *)ptr);
195
196 Tcl_Eval (interp, Tcl_DStringValue (&str));
197 Tcl_DStringFree (&str);
198 }
199 }
200
201 static int
202 gdbtk_query (query, args)
203 const char *query;
204 va_list args;
205 {
206 char buf[200], *merge[2];
207 char *command;
208 long val;
209
210 vsprintf (buf, query, args);
211 merge[0] = "gdbtk_tcl_query";
212 merge[1] = buf;
213 command = Tcl_Merge (2, merge);
214 Tcl_Eval (interp, command);
215 free (command);
216
217 val = atol (interp->result);
218 return val;
219 }
220
221 /* VARARGS */
222 static void
223 #ifdef ANSI_PROTOTYPES
224 gdbtk_readline_begin (char *format, ...)
225 #else
226 gdbtk_readline_begin (va_alist)
227 va_dcl
228 #endif
229 {
230 va_list args;
231 char buf[200], *merge[2];
232 char *command;
233
234 #ifdef ANSI_PROTOTYPES
235 va_start (args, format);
236 #else
237 char *format;
238 va_start (args);
239 format = va_arg (args, char *);
240 #endif
241
242 vsprintf (buf, format, args);
243 merge[0] = "gdbtk_tcl_readline_begin";
244 merge[1] = buf;
245 command = Tcl_Merge (2, merge);
246 Tcl_Eval (interp, command);
247 free (command);
248 }
249
250 static char *
251 gdbtk_readline (prompt)
252 char *prompt;
253 {
254 char *merge[2];
255 char *command;
256
257 merge[0] = "gdbtk_tcl_readline";
258 merge[1] = prompt;
259 command = Tcl_Merge (2, merge);
260 if (Tcl_Eval (interp, command) == TCL_OK)
261 {
262 return (strdup (interp -> result));
263 }
264 else
265 {
266 gdbtk_fputs (interp -> result, gdb_stdout);
267 gdbtk_fputs ("\n", gdb_stdout);
268 return (NULL);
269 }
270 }
271
272 static void
273 gdbtk_readline_end ()
274 {
275 Tcl_Eval (interp, "gdbtk_tcl_readline_end");
276 }
277
278 \f
279 static void
280 #ifdef ANSI_PROTOTYPES
281 dsprintf_append_element (Tcl_DString *dsp, char *format, ...)
282 #else
283 dsprintf_append_element (va_alist)
284 va_dcl
285 #endif
286 {
287 va_list args;
288 char buf[1024];
289
290 #ifdef ANSI_PROTOTYPES
291 va_start (args, format);
292 #else
293 Tcl_DString *dsp;
294 char *format;
295
296 va_start (args);
297 dsp = va_arg (args, Tcl_DString *);
298 format = va_arg (args, char *);
299 #endif
300
301 vsprintf (buf, format, args);
302
303 Tcl_DStringAppendElement (dsp, buf);
304 }
305
306 static int
307 gdb_get_breakpoint_list (clientData, interp, argc, argv)
308 ClientData clientData;
309 Tcl_Interp *interp;
310 int argc;
311 char *argv[];
312 {
313 struct breakpoint *b;
314 extern struct breakpoint *breakpoint_chain;
315
316 if (argc != 1)
317 error ("wrong # args");
318
319 for (b = breakpoint_chain; b; b = b->next)
320 if (b->type == bp_breakpoint)
321 dsprintf_append_element (result_ptr, "%d", b->number);
322
323 return TCL_OK;
324 }
325
326 static int
327 gdb_get_breakpoint_info (clientData, interp, argc, argv)
328 ClientData clientData;
329 Tcl_Interp *interp;
330 int argc;
331 char *argv[];
332 {
333 struct symtab_and_line sal;
334 static char *bptypes[] = {"breakpoint", "hardware breakpoint", "until",
335 "finish", "watchpoint", "hardware watchpoint",
336 "read watchpoint", "access watchpoint",
337 "longjmp", "longjmp resume", "step resume",
338 "through sigtramp", "watchpoint scope",
339 "call dummy" };
340 static char *bpdisp[] = {"delete", "disable", "donttouch"};
341 struct command_line *cmd;
342 int bpnum;
343 struct breakpoint *b;
344 extern struct breakpoint *breakpoint_chain;
345
346 if (argc != 2)
347 error ("wrong # args");
348
349 bpnum = atoi (argv[1]);
350
351 for (b = breakpoint_chain; b; b = b->next)
352 if (b->number == bpnum)
353 break;
354
355 if (!b || b->type != bp_breakpoint)
356 error ("Breakpoint #%d does not exist", bpnum);
357
358 sal = find_pc_line (b->address, 0);
359
360 Tcl_DStringAppendElement (result_ptr, symtab_to_filename (sal.symtab));
361 dsprintf_append_element (result_ptr, "%d", sal.line);
362 dsprintf_append_element (result_ptr, "0x%lx", b->address);
363 Tcl_DStringAppendElement (result_ptr, bptypes[b->type]);
364 Tcl_DStringAppendElement (result_ptr, b->enable == enabled ? "1" : "0");
365 Tcl_DStringAppendElement (result_ptr, bpdisp[b->disposition]);
366 dsprintf_append_element (result_ptr, "%d", b->silent);
367 dsprintf_append_element (result_ptr, "%d", b->ignore_count);
368
369 Tcl_DStringStartSublist (result_ptr);
370 for (cmd = b->commands; cmd; cmd = cmd->next)
371 Tcl_DStringAppendElement (result_ptr, cmd->line);
372 Tcl_DStringEndSublist (result_ptr);
373
374 Tcl_DStringAppendElement (result_ptr, b->cond_string);
375
376 dsprintf_append_element (result_ptr, "%d", b->thread);
377 dsprintf_append_element (result_ptr, "%d", b->hit_count);
378
379 return TCL_OK;
380 }
381
382 static void
383 breakpoint_notify(b, action)
384 struct breakpoint *b;
385 const char *action;
386 {
387 char buf[100];
388 int v;
389
390 if (b->type != bp_breakpoint)
391 return;
392
393 /* We ensure that ACTION contains no special Tcl characters, so we
394 can do this. */
395 sprintf (buf, "gdbtk_tcl_breakpoint %s %d", action, b->number);
396
397 v = Tcl_Eval (interp, buf);
398
399 if (v != TCL_OK)
400 {
401 gdbtk_fputs (interp->result, gdb_stdout);
402 gdbtk_fputs ("\n", gdb_stdout);
403 }
404 }
405
406 static void
407 gdbtk_create_breakpoint(b)
408 struct breakpoint *b;
409 {
410 breakpoint_notify (b, "create");
411 }
412
413 static void
414 gdbtk_delete_breakpoint(b)
415 struct breakpoint *b;
416 {
417 breakpoint_notify (b, "delete");
418 }
419
420 static void
421 gdbtk_modify_breakpoint(b)
422 struct breakpoint *b;
423 {
424 breakpoint_notify (b, "modify");
425 }
426 \f
427 /* This implements the TCL command `gdb_loc', which returns a list consisting
428 of the source and line number associated with the current pc. */
429
430 static int
431 gdb_loc (clientData, interp, argc, argv)
432 ClientData clientData;
433 Tcl_Interp *interp;
434 int argc;
435 char *argv[];
436 {
437 char *filename;
438 struct symtab_and_line sal;
439 char *funcname;
440 CORE_ADDR pc;
441
442 if (argc == 1)
443 {
444 pc = selected_frame ? selected_frame->pc : stop_pc;
445 sal = find_pc_line (pc, 0);
446 }
447 else if (argc == 2)
448 {
449 struct symtabs_and_lines sals;
450 int nelts;
451
452 sals = decode_line_spec (argv[1], 1);
453
454 nelts = sals.nelts;
455 sal = sals.sals[0];
456 free (sals.sals);
457
458 if (sals.nelts != 1)
459 error ("Ambiguous line spec");
460
461 pc = sal.pc;
462 }
463 else
464 error ("wrong # args");
465
466 if (sal.symtab)
467 Tcl_DStringAppendElement (result_ptr, sal.symtab->filename);
468 else
469 Tcl_DStringAppendElement (result_ptr, "");
470
471 find_pc_partial_function (pc, &funcname, NULL, NULL);
472 Tcl_DStringAppendElement (result_ptr, funcname);
473
474 filename = symtab_to_filename (sal.symtab);
475 Tcl_DStringAppendElement (result_ptr, filename);
476
477 dsprintf_append_element (result_ptr, "%d", sal.line); /* line number */
478
479 dsprintf_append_element (result_ptr, "0x%lx", pc); /* PC */
480
481 return TCL_OK;
482 }
483 \f
484 /* This implements the TCL command `gdb_eval'. */
485
486 static int
487 gdb_eval (clientData, interp, argc, argv)
488 ClientData clientData;
489 Tcl_Interp *interp;
490 int argc;
491 char *argv[];
492 {
493 struct expression *expr;
494 struct cleanup *old_chain;
495 value_ptr val;
496
497 if (argc != 2)
498 error ("wrong # args");
499
500 expr = parse_expression (argv[1]);
501
502 old_chain = make_cleanup (free_current_contents, &expr);
503
504 val = evaluate_expression (expr);
505
506 val_print (VALUE_TYPE (val), VALUE_CONTENTS (val), VALUE_ADDRESS (val),
507 gdb_stdout, 0, 0, 0, 0);
508
509 do_cleanups (old_chain);
510
511 return TCL_OK;
512 }
513 \f
514 /* This implements the TCL command `gdb_sourcelines', which returns a list of
515 all of the lines containing executable code for the specified source file
516 (ie: lines where you can put breakpoints). */
517
518 static int
519 gdb_sourcelines (clientData, interp, argc, argv)
520 ClientData clientData;
521 Tcl_Interp *interp;
522 int argc;
523 char *argv[];
524 {
525 struct symtab *symtab;
526 struct linetable_entry *le;
527 int nlines;
528
529 if (argc != 2)
530 error ("wrong # args");
531
532 symtab = lookup_symtab (argv[1]);
533
534 if (!symtab)
535 error ("No such file");
536
537 /* If there's no linetable, or no entries, then we are done. */
538
539 if (!symtab->linetable
540 || symtab->linetable->nitems == 0)
541 {
542 Tcl_DStringAppendElement (result_ptr, "");
543 return TCL_OK;
544 }
545
546 le = symtab->linetable->item;
547 nlines = symtab->linetable->nitems;
548
549 for (;nlines > 0; nlines--, le++)
550 {
551 /* If the pc of this line is the same as the pc of the next line, then
552 just skip it. */
553 if (nlines > 1
554 && le->pc == (le + 1)->pc)
555 continue;
556
557 dsprintf_append_element (result_ptr, "%d", le->line);
558 }
559
560 return TCL_OK;
561 }
562 \f
563 static int
564 map_arg_registers (argc, argv, func, argp)
565 int argc;
566 char *argv[];
567 void (*func) PARAMS ((int regnum, void *argp));
568 void *argp;
569 {
570 int regnum;
571
572 /* Note that the test for a valid register must include checking the
573 reg_names array because NUM_REGS may be allocated for the union of the
574 register sets within a family of related processors. In this case, the
575 trailing entries of reg_names will change depending upon the particular
576 processor being debugged. */
577
578 if (argc == 0) /* No args, just do all the regs */
579 {
580 for (regnum = 0;
581 regnum < NUM_REGS
582 && reg_names[regnum] != NULL
583 && *reg_names[regnum] != '\000';
584 regnum++)
585 func (regnum, argp);
586
587 return TCL_OK;
588 }
589
590 /* Else, list of register #s, just do listed regs */
591 for (; argc > 0; argc--, argv++)
592 {
593 regnum = atoi (*argv);
594
595 if (regnum >= 0
596 && regnum < NUM_REGS
597 && reg_names[regnum] != NULL
598 && *reg_names[regnum] != '\000')
599 func (regnum, argp);
600 else
601 error ("bad register number");
602 }
603
604 return TCL_OK;
605 }
606
607 static void
608 get_register_name (regnum, argp)
609 int regnum;
610 void *argp; /* Ignored */
611 {
612 Tcl_DStringAppendElement (result_ptr, reg_names[regnum]);
613 }
614
615 /* This implements the TCL command `gdb_regnames', which returns a list of
616 all of the register names. */
617
618 static int
619 gdb_regnames (clientData, interp, argc, argv)
620 ClientData clientData;
621 Tcl_Interp *interp;
622 int argc;
623 char *argv[];
624 {
625 argc--;
626 argv++;
627
628 return map_arg_registers (argc, argv, get_register_name, NULL);
629 }
630
631 #ifndef REGISTER_CONVERTIBLE
632 #define REGISTER_CONVERTIBLE(x) (0 != 0)
633 #endif
634
635 #ifndef REGISTER_CONVERT_TO_VIRTUAL
636 #define REGISTER_CONVERT_TO_VIRTUAL(x, y, z, a)
637 #endif
638
639 #ifndef INVALID_FLOAT
640 #define INVALID_FLOAT(x, y) (0 != 0)
641 #endif
642
643 static void
644 get_register (regnum, fp)
645 int regnum;
646 void *fp;
647 {
648 char raw_buffer[MAX_REGISTER_RAW_SIZE];
649 char virtual_buffer[MAX_REGISTER_VIRTUAL_SIZE];
650 int format = (int)fp;
651
652 if (read_relative_register_raw_bytes (regnum, raw_buffer))
653 {
654 Tcl_DStringAppendElement (result_ptr, "Optimized out");
655 return;
656 }
657
658 /* Convert raw data to virtual format if necessary. */
659
660 if (REGISTER_CONVERTIBLE (regnum))
661 {
662 REGISTER_CONVERT_TO_VIRTUAL (regnum, REGISTER_VIRTUAL_TYPE (regnum),
663 raw_buffer, virtual_buffer);
664 }
665 else
666 memcpy (virtual_buffer, raw_buffer, REGISTER_VIRTUAL_SIZE (regnum));
667
668 if (format == 'r')
669 {
670 int j;
671 printf_filtered ("0x");
672 for (j = 0; j < REGISTER_RAW_SIZE (regnum); j++)
673 {
674 register int idx = TARGET_BYTE_ORDER == BIG_ENDIAN ? j
675 : REGISTER_RAW_SIZE (regnum) - 1 - j;
676 printf_filtered ("%02x", (unsigned char)raw_buffer[idx]);
677 }
678 }
679 else
680 val_print (REGISTER_VIRTUAL_TYPE (regnum), virtual_buffer, 0,
681 gdb_stdout, format, 1, 0, Val_pretty_default);
682
683 Tcl_DStringAppend (result_ptr, " ", -1);
684 }
685
686 static int
687 gdb_fetch_registers (clientData, interp, argc, argv)
688 ClientData clientData;
689 Tcl_Interp *interp;
690 int argc;
691 char *argv[];
692 {
693 int format;
694
695 if (argc < 2)
696 error ("wrong # args");
697
698 argc--;
699 argv++;
700
701 argc--;
702 format = **argv++;
703
704 return map_arg_registers (argc, argv, get_register, (void *) format);
705 }
706
707 /* This contains the previous values of the registers, since the last call to
708 gdb_changed_register_list. */
709
710 static char old_regs[REGISTER_BYTES];
711
712 static void
713 register_changed_p (regnum, argp)
714 int regnum;
715 void *argp; /* Ignored */
716 {
717 char raw_buffer[MAX_REGISTER_RAW_SIZE];
718
719 if (read_relative_register_raw_bytes (regnum, raw_buffer))
720 return;
721
722 if (memcmp (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
723 REGISTER_RAW_SIZE (regnum)) == 0)
724 return;
725
726 /* Found a changed register. Save new value and return its number. */
727
728 memcpy (&old_regs[REGISTER_BYTE (regnum)], raw_buffer,
729 REGISTER_RAW_SIZE (regnum));
730
731 dsprintf_append_element (result_ptr, "%d", regnum);
732 }
733
734 static int
735 gdb_changed_register_list (clientData, interp, argc, argv)
736 ClientData clientData;
737 Tcl_Interp *interp;
738 int argc;
739 char *argv[];
740 {
741 argc--;
742 argv++;
743
744 return map_arg_registers (argc, argv, register_changed_p, NULL);
745 }
746 \f
747 /* This implements the TCL command `gdb_cmd', which sends its argument into
748 the GDB command scanner. */
749
750 static int
751 gdb_cmd (clientData, interp, argc, argv)
752 ClientData clientData;
753 Tcl_Interp *interp;
754 int argc;
755 char *argv[];
756 {
757 if (argc != 2)
758 error ("wrong # args");
759
760 if (running_now)
761 return TCL_OK;
762
763 execute_command (argv[1], 1);
764
765 bpstat_do_actions (&stop_bpstat);
766
767 return TCL_OK;
768 }
769
770 /* This routine acts as a top-level for all GDB code called by tcl/Tk. It
771 handles cleanups, and calls to return_to_top_level (usually via error).
772 This is necessary in order to prevent a longjmp out of the bowels of Tk,
773 possibly leaving things in a bad state. Since this routine can be called
774 recursively, it needs to save and restore the contents of the jmp_buf as
775 necessary. */
776
777 static int
778 call_wrapper (clientData, interp, argc, argv)
779 ClientData clientData;
780 Tcl_Interp *interp;
781 int argc;
782 char *argv[];
783 {
784 int val;
785 struct cleanup *saved_cleanup_chain;
786 Tcl_CmdProc *func;
787 jmp_buf saved_error_return;
788 Tcl_DString result, *old_result_ptr;
789
790 Tcl_DStringInit (&result);
791 old_result_ptr = result_ptr;
792 result_ptr = &result;
793
794 func = (Tcl_CmdProc *)clientData;
795 memcpy (saved_error_return, error_return, sizeof (jmp_buf));
796
797 saved_cleanup_chain = save_cleanups ();
798
799 if (!setjmp (error_return))
800 val = func (clientData, interp, argc, argv);
801 else
802 {
803 val = TCL_ERROR; /* Flag an error for TCL */
804
805 gdb_flush (gdb_stderr); /* Flush error output */
806
807 gdb_flush (gdb_stdout); /* Sometimes error output comes here as well */
808
809 /* In case of an error, we may need to force the GUI into idle
810 mode because gdbtk_call_command may have bombed out while in
811 the command routine. */
812
813 Tcl_Eval (interp, "gdbtk_tcl_idle");
814 }
815
816 do_cleanups (ALL_CLEANUPS);
817
818 restore_cleanups (saved_cleanup_chain);
819
820 memcpy (error_return, saved_error_return, sizeof (jmp_buf));
821
822 Tcl_DStringResult (interp, &result);
823 result_ptr = old_result_ptr;
824
825 return val;
826 }
827
828 static int
829 gdb_listfiles (clientData, interp, argc, argv)
830 ClientData clientData;
831 Tcl_Interp *interp;
832 int argc;
833 char *argv[];
834 {
835 struct objfile *objfile;
836 struct partial_symtab *psymtab;
837 struct symtab *symtab;
838
839 ALL_PSYMTABS (objfile, psymtab)
840 Tcl_DStringAppendElement (result_ptr, psymtab->filename);
841
842 ALL_SYMTABS (objfile, symtab)
843 Tcl_DStringAppendElement (result_ptr, symtab->filename);
844
845 return TCL_OK;
846 }
847
848 static int
849 gdb_stop (clientData, interp, argc, argv)
850 ClientData clientData;
851 Tcl_Interp *interp;
852 int argc;
853 char *argv[];
854 {
855 target_stop ();
856
857 return TCL_OK;
858 }
859 \f
860 /* This implements the TCL command `gdb_disassemble'. */
861
862 static int
863 gdbtk_dis_asm_read_memory (memaddr, myaddr, len, info)
864 bfd_vma memaddr;
865 bfd_byte *myaddr;
866 int len;
867 disassemble_info *info;
868 {
869 extern struct target_ops exec_ops;
870 int res;
871
872 errno = 0;
873 res = xfer_memory (memaddr, myaddr, len, 0, &exec_ops);
874
875 if (res == len)
876 return 0;
877 else
878 if (errno == 0)
879 return EIO;
880 else
881 return errno;
882 }
883
884 /* We need a different sort of line table from the normal one cuz we can't
885 depend upon implicit line-end pc's for lines. This is because of the
886 reordering we are about to do. */
887
888 struct my_line_entry {
889 int line;
890 CORE_ADDR start_pc;
891 CORE_ADDR end_pc;
892 };
893
894 static int
895 compare_lines (mle1p, mle2p)
896 const PTR mle1p;
897 const PTR mle2p;
898 {
899 struct my_line_entry *mle1, *mle2;
900 int val;
901
902 mle1 = (struct my_line_entry *) mle1p;
903 mle2 = (struct my_line_entry *) mle2p;
904
905 val = mle1->line - mle2->line;
906
907 if (val != 0)
908 return val;
909
910 return mle1->start_pc - mle2->start_pc;
911 }
912
913 static int
914 gdb_disassemble (clientData, interp, argc, argv)
915 ClientData clientData;
916 Tcl_Interp *interp;
917 int argc;
918 char *argv[];
919 {
920 CORE_ADDR pc, low, high;
921 int mixed_source_and_assembly;
922 static disassemble_info di;
923 static int di_initialized;
924
925 if (! di_initialized)
926 {
927 INIT_DISASSEMBLE_INFO_NO_ARCH (di, gdb_stdout,
928 (fprintf_ftype) fprintf_unfiltered);
929 di.flavour = bfd_target_unknown_flavour;
930 di.memory_error_func = dis_asm_memory_error;
931 di.print_address_func = dis_asm_print_address;
932 di_initialized = 1;
933 }
934
935 di.mach = tm_print_insn_info.mach;
936 if (TARGET_BYTE_ORDER == BIG_ENDIAN)
937 tm_print_insn_info.endian = BFD_ENDIAN_BIG;
938 else
939 tm_print_insn_info.endian = BFD_ENDIAN_LITTLE;
940
941 if (argc != 3 && argc != 4)
942 error ("wrong # args");
943
944 if (strcmp (argv[1], "source") == 0)
945 mixed_source_and_assembly = 1;
946 else if (strcmp (argv[1], "nosource") == 0)
947 mixed_source_and_assembly = 0;
948 else
949 error ("First arg must be 'source' or 'nosource'");
950
951 low = parse_and_eval_address (argv[2]);
952
953 if (argc == 3)
954 {
955 if (find_pc_partial_function (low, NULL, &low, &high) == 0)
956 error ("No function contains specified address");
957 }
958 else
959 high = parse_and_eval_address (argv[3]);
960
961 /* If disassemble_from_exec == -1, then we use the following heuristic to
962 determine whether or not to do disassembly from target memory or from the
963 exec file:
964
965 If we're debugging a local process, read target memory, instead of the
966 exec file. This makes disassembly of functions in shared libs work
967 correctly.
968
969 Else, we're debugging a remote process, and should disassemble from the
970 exec file for speed. However, this is no good if the target modifies its
971 code (for relocation, or whatever).
972 */
973
974 if (disassemble_from_exec == -1)
975 if (strcmp (target_shortname, "child") == 0
976 || strcmp (target_shortname, "procfs") == 0
977 || strcmp (target_shortname, "vxprocess") == 0)
978 disassemble_from_exec = 0; /* It's a child process, read inferior mem */
979 else
980 disassemble_from_exec = 1; /* It's remote, read the exec file */
981
982 if (disassemble_from_exec)
983 di.read_memory_func = gdbtk_dis_asm_read_memory;
984 else
985 di.read_memory_func = dis_asm_read_memory;
986
987 /* If just doing straight assembly, all we need to do is disassemble
988 everything between low and high. If doing mixed source/assembly, we've
989 got a totally different path to follow. */
990
991 if (mixed_source_and_assembly)
992 { /* Come here for mixed source/assembly */
993 /* The idea here is to present a source-O-centric view of a function to
994 the user. This means that things are presented in source order, with
995 (possibly) out of order assembly immediately following. */
996 struct symtab *symtab;
997 struct linetable_entry *le;
998 int nlines;
999 int newlines;
1000 struct my_line_entry *mle;
1001 struct symtab_and_line sal;
1002 int i;
1003 int out_of_order;
1004 int next_line;
1005
1006 symtab = find_pc_symtab (low); /* Assume symtab is valid for whole PC range */
1007
1008 if (!symtab)
1009 goto assembly_only;
1010
1011 /* First, convert the linetable to a bunch of my_line_entry's. */
1012
1013 le = symtab->linetable->item;
1014 nlines = symtab->linetable->nitems;
1015
1016 if (nlines <= 0)
1017 goto assembly_only;
1018
1019 mle = (struct my_line_entry *) alloca (nlines * sizeof (struct my_line_entry));
1020
1021 out_of_order = 0;
1022
1023 /* Copy linetable entries for this function into our data structure, creating
1024 end_pc's and setting out_of_order as appropriate. */
1025
1026 /* First, skip all the preceding functions. */
1027
1028 for (i = 0; i < nlines - 1 && le[i].pc < low; i++) ;
1029
1030 /* Now, copy all entries before the end of this function. */
1031
1032 newlines = 0;
1033 for (; i < nlines - 1 && le[i].pc < high; i++)
1034 {
1035 if (le[i].line == le[i + 1].line
1036 && le[i].pc == le[i + 1].pc)
1037 continue; /* Ignore duplicates */
1038
1039 mle[newlines].line = le[i].line;
1040 if (le[i].line > le[i + 1].line)
1041 out_of_order = 1;
1042 mle[newlines].start_pc = le[i].pc;
1043 mle[newlines].end_pc = le[i + 1].pc;
1044 newlines++;
1045 }
1046
1047 /* If we're on the last line, and it's part of the function, then we need to
1048 get the end pc in a special way. */
1049
1050 if (i == nlines - 1
1051 && le[i].pc < high)
1052 {
1053 mle[newlines].line = le[i].line;
1054 mle[newlines].start_pc = le[i].pc;
1055 sal = find_pc_line (le[i].pc, 0);
1056 mle[newlines].end_pc = sal.end;
1057 newlines++;
1058 }
1059
1060 /* Now, sort mle by line #s (and, then by addresses within lines). */
1061
1062 if (out_of_order)
1063 qsort (mle, newlines, sizeof (struct my_line_entry), compare_lines);
1064
1065 /* Now, for each line entry, emit the specified lines (unless they have been
1066 emitted before), followed by the assembly code for that line. */
1067
1068 next_line = 0; /* Force out first line */
1069 for (i = 0; i < newlines; i++)
1070 {
1071 /* Print out everything from next_line to the current line. */
1072
1073 if (mle[i].line >= next_line)
1074 {
1075 if (next_line != 0)
1076 print_source_lines (symtab, next_line, mle[i].line + 1, 0);
1077 else
1078 print_source_lines (symtab, mle[i].line, mle[i].line + 1, 0);
1079
1080 next_line = mle[i].line + 1;
1081 }
1082
1083 for (pc = mle[i].start_pc; pc < mle[i].end_pc; )
1084 {
1085 QUIT;
1086 fputs_unfiltered (" ", gdb_stdout);
1087 print_address (pc, gdb_stdout);
1088 fputs_unfiltered (":\t ", gdb_stdout);
1089 pc += (*tm_print_insn) (pc, &di);
1090 fputs_unfiltered ("\n", gdb_stdout);
1091 }
1092 }
1093 }
1094 else
1095 {
1096 assembly_only:
1097 for (pc = low; pc < high; )
1098 {
1099 QUIT;
1100 fputs_unfiltered (" ", gdb_stdout);
1101 print_address (pc, gdb_stdout);
1102 fputs_unfiltered (":\t ", gdb_stdout);
1103 pc += (*tm_print_insn) (pc, &di);
1104 fputs_unfiltered ("\n", gdb_stdout);
1105 }
1106 }
1107
1108 gdb_flush (gdb_stdout);
1109
1110 return TCL_OK;
1111 }
1112 \f
1113 static void
1114 tk_command (cmd, from_tty)
1115 char *cmd;
1116 int from_tty;
1117 {
1118 int retval;
1119 char *result;
1120 struct cleanup *old_chain;
1121
1122 /* Catch case of no argument, since this will make the tcl interpreter dump core. */
1123 if (cmd == NULL)
1124 error_no_arg ("tcl command to interpret");
1125
1126 retval = Tcl_Eval (interp, cmd);
1127
1128 result = strdup (interp->result);
1129
1130 old_chain = make_cleanup (free, result);
1131
1132 if (retval != TCL_OK)
1133 error (result);
1134
1135 printf_unfiltered ("%s\n", result);
1136
1137 do_cleanups (old_chain);
1138 }
1139
1140 static void
1141 cleanup_init (ignored)
1142 int ignored;
1143 {
1144 if (interp != NULL)
1145 Tcl_DeleteInterp (interp);
1146 interp = NULL;
1147 }
1148
1149 /* Come here during long calculations to check for GUI events. Usually invoked
1150 via the QUIT macro. */
1151
1152 static void
1153 gdbtk_interactive ()
1154 {
1155 /* Tk_DoOneEvent (TK_DONT_WAIT|TK_IDLE_EVENTS); */
1156 }
1157
1158 /* Come here when there is activity on the X file descriptor. */
1159
1160 static void
1161 x_event (signo)
1162 int signo;
1163 {
1164 /* Process pending events */
1165
1166 while (Tk_DoOneEvent (TK_DONT_WAIT|TK_ALL_EVENTS) != 0);
1167 }
1168
1169 static int
1170 gdbtk_wait (pid, ourstatus)
1171 int pid;
1172 struct target_waitstatus *ourstatus;
1173 {
1174 struct sigaction action;
1175 static sigset_t nullsigmask = {0};
1176
1177 #ifndef SA_RESTART
1178 /* Needed for SunOS 4.1.x */
1179 #define SA_RESTART 0
1180 #endif
1181
1182 action.sa_handler = x_event;
1183 action.sa_mask = nullsigmask;
1184 action.sa_flags = SA_RESTART;
1185 sigaction(SIGIO, &action, NULL);
1186
1187 pid = target_wait (pid, ourstatus);
1188
1189 action.sa_handler = SIG_IGN;
1190 sigaction(SIGIO, &action, NULL);
1191
1192 return pid;
1193 }
1194
1195 /* This is called from execute_command, and provides a wrapper around
1196 various command routines in a place where both protocol messages and
1197 user input both flow through. Mostly this is used for indicating whether
1198 the target process is running or not.
1199 */
1200
1201 static void
1202 gdbtk_call_command (cmdblk, arg, from_tty)
1203 struct cmd_list_element *cmdblk;
1204 char *arg;
1205 int from_tty;
1206 {
1207 running_now = 0;
1208 if (cmdblk->class == class_run)
1209 {
1210 running_now = 1;
1211 Tcl_Eval (interp, "gdbtk_tcl_busy");
1212 (*cmdblk->function.cfunc)(arg, from_tty);
1213 Tcl_Eval (interp, "gdbtk_tcl_idle");
1214 running_now = 0;
1215 }
1216 else
1217 (*cmdblk->function.cfunc)(arg, from_tty);
1218 }
1219
1220 /* This function is called instead of gdb's internal command loop. This is the
1221 last chance to do anything before entering the main Tk event loop. */
1222
1223 static void
1224 tk_command_loop ()
1225 {
1226 extern GDB_FILE *instream;
1227
1228 /* We no longer want to use stdin as the command input stream */
1229 instream = NULL;
1230 Tcl_Eval (interp, "gdbtk_tcl_preloop");
1231 Tk_MainLoop ();
1232 }
1233
1234 static void
1235 gdbtk_init ()
1236 {
1237 struct cleanup *old_chain;
1238 char *gdbtk_filename;
1239 int i;
1240 struct sigaction action;
1241 static sigset_t nullsigmask = {0};
1242
1243 /* If there is no DISPLAY environment variable, Tk_Init below will fail,
1244 causing gdb to abort. If instead we simply return here, gdb will
1245 gracefully degrade to using the command line interface. */
1246
1247 if (getenv ("DISPLAY") == NULL)
1248 return;
1249
1250 old_chain = make_cleanup (cleanup_init, 0);
1251
1252 /* First init tcl and tk. */
1253
1254 interp = Tcl_CreateInterp ();
1255
1256 if (!interp)
1257 error ("Tcl_CreateInterp failed");
1258
1259 if (Tcl_Init(interp) != TCL_OK)
1260 error ("Tcl_Init failed: %s", interp->result);
1261
1262 if (Tk_Init(interp) != TCL_OK)
1263 error ("Tk_Init failed: %s", interp->result);
1264
1265 Tcl_CreateCommand (interp, "gdb_cmd", call_wrapper, gdb_cmd, NULL);
1266 Tcl_CreateCommand (interp, "gdb_loc", call_wrapper, gdb_loc, NULL);
1267 Tcl_CreateCommand (interp, "gdb_sourcelines", call_wrapper, gdb_sourcelines,
1268 NULL);
1269 Tcl_CreateCommand (interp, "gdb_listfiles", call_wrapper, gdb_listfiles,
1270 NULL);
1271 Tcl_CreateCommand (interp, "gdb_stop", call_wrapper, gdb_stop, NULL);
1272 Tcl_CreateCommand (interp, "gdb_regnames", call_wrapper, gdb_regnames, NULL);
1273 Tcl_CreateCommand (interp, "gdb_fetch_registers", call_wrapper,
1274 gdb_fetch_registers, NULL);
1275 Tcl_CreateCommand (interp, "gdb_changed_register_list", call_wrapper,
1276 gdb_changed_register_list, NULL);
1277 Tcl_CreateCommand (interp, "gdb_disassemble", call_wrapper,
1278 gdb_disassemble, NULL);
1279 Tcl_CreateCommand (interp, "gdb_eval", call_wrapper, gdb_eval, NULL);
1280 Tcl_CreateCommand (interp, "gdb_get_breakpoint_list", call_wrapper,
1281 gdb_get_breakpoint_list, NULL);
1282 Tcl_CreateCommand (interp, "gdb_get_breakpoint_info", call_wrapper,
1283 gdb_get_breakpoint_info, NULL);
1284
1285 command_loop_hook = tk_command_loop;
1286 print_frame_info_listing_hook =
1287 (void (*) PARAMS ((struct symtab *, int, int, int))) null_routine;
1288 query_hook = gdbtk_query;
1289 flush_hook = gdbtk_flush;
1290 create_breakpoint_hook = gdbtk_create_breakpoint;
1291 delete_breakpoint_hook = gdbtk_delete_breakpoint;
1292 modify_breakpoint_hook = gdbtk_modify_breakpoint;
1293 interactive_hook = gdbtk_interactive;
1294 target_wait_hook = gdbtk_wait;
1295 call_command_hook = gdbtk_call_command;
1296 readline_begin_hook = gdbtk_readline_begin;
1297 readline_hook = gdbtk_readline;
1298 readline_end_hook = gdbtk_readline_end;
1299
1300 /* Get the file descriptor for the X server */
1301
1302 x_fd = ConnectionNumber (Tk_Display (Tk_MainWindow (interp)));
1303
1304 /* Setup for I/O interrupts */
1305
1306 action.sa_mask = nullsigmask;
1307 action.sa_flags = 0;
1308 action.sa_handler = SIG_IGN;
1309 sigaction(SIGIO, &action, NULL);
1310
1311 #ifdef FIOASYNC
1312 i = 1;
1313 if (ioctl (x_fd, FIOASYNC, &i))
1314 perror_with_name ("gdbtk_init: ioctl FIOASYNC failed");
1315
1316 #ifdef SIOCSPGRP
1317 i = getpid();
1318 if (ioctl (x_fd, SIOCSPGRP, &i))
1319 perror_with_name ("gdbtk_init: ioctl SIOCSPGRP failed");
1320
1321 #else
1322 #ifdef F_SETOWN
1323 i = getpid();
1324 if (fcntl (x_fd, F_SETOWN, i))
1325 perror_with_name ("gdbtk_init: fcntl F_SETOWN failed");
1326 #endif /* F_SETOWN */
1327 #endif /* !SIOCSPGRP */
1328 #else
1329 if (ioctl (x_fd, I_SETSIG, S_INPUT|S_RDNORM) < 0)
1330 perror_with_name ("gdbtk_init: ioctl I_SETSIG failed");
1331 #endif /* ifndef FIOASYNC */
1332
1333 add_com ("tk", class_obscure, tk_command,
1334 "Send a command directly into tk.");
1335
1336 Tcl_LinkVar (interp, "disassemble-from-exec", (char *)&disassemble_from_exec,
1337 TCL_LINK_INT);
1338
1339 /* Load up gdbtk.tcl after all the environment stuff has been setup. */
1340
1341 gdbtk_filename = getenv ("GDBTK_FILENAME");
1342 if (!gdbtk_filename)
1343 if (access ("gdbtk.tcl", R_OK) == 0)
1344 gdbtk_filename = "gdbtk.tcl";
1345 else
1346 gdbtk_filename = GDBTK_FILENAME;
1347
1348 /* Defer setup of fputs_unfiltered_hook to near the end so that error messages
1349 prior to this point go to stdout/stderr. */
1350
1351 fputs_unfiltered_hook = gdbtk_fputs;
1352
1353 if (Tcl_EvalFile (interp, gdbtk_filename) != TCL_OK)
1354 {
1355 fputs_unfiltered_hook = NULL; /* Force errors to stdout/stderr */
1356
1357 fprintf_unfiltered (stderr, "%s:%d: %s\n", gdbtk_filename,
1358 interp->errorLine, interp->result);
1359
1360 fputs_unfiltered ("Stack trace:\n", gdb_stderr);
1361 fputs_unfiltered (Tcl_GetVar (interp, "errorInfo", 0), gdb_stderr);
1362 error ("");
1363 }
1364
1365 discard_cleanups (old_chain);
1366 }
1367
1368 /* Come here during initialize_all_files () */
1369
1370 void
1371 _initialize_gdbtk ()
1372 {
1373 if (use_windows)
1374 {
1375 /* Tell the rest of the world that Gdbtk is now set up. */
1376
1377 init_ui_hook = gdbtk_init;
1378 }
1379 }
This page took 0.057365 seconds and 4 git commands to generate.