language_lookup_primitive_type: Renamed from language_lookup_primitive_type_by_name.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Make a type without const, volatile, or restrict. */
707
708 struct type *
709 make_unqualified_type (struct type *type)
710 {
711 return make_qualified_type (type,
712 (TYPE_INSTANCE_FLAGS (type)
713 & ~(TYPE_INSTANCE_FLAG_CONST
714 | TYPE_INSTANCE_FLAG_VOLATILE
715 | TYPE_INSTANCE_FLAG_RESTRICT)),
716 NULL);
717 }
718
719 /* Replace the contents of ntype with the type *type. This changes the
720 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
721 the changes are propogated to all types in the TYPE_CHAIN.
722
723 In order to build recursive types, it's inevitable that we'll need
724 to update types in place --- but this sort of indiscriminate
725 smashing is ugly, and needs to be replaced with something more
726 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
727 clear if more steps are needed. */
728
729 void
730 replace_type (struct type *ntype, struct type *type)
731 {
732 struct type *chain;
733
734 /* These two types had better be in the same objfile. Otherwise,
735 the assignment of one type's main type structure to the other
736 will produce a type with references to objects (names; field
737 lists; etc.) allocated on an objfile other than its own. */
738 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
739
740 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
741
742 /* The type length is not a part of the main type. Update it for
743 each type on the variant chain. */
744 chain = ntype;
745 do
746 {
747 /* Assert that this element of the chain has no address-class bits
748 set in its flags. Such type variants might have type lengths
749 which are supposed to be different from the non-address-class
750 variants. This assertion shouldn't ever be triggered because
751 symbol readers which do construct address-class variants don't
752 call replace_type(). */
753 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
754
755 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
756 chain = TYPE_CHAIN (chain);
757 }
758 while (ntype != chain);
759
760 /* Assert that the two types have equivalent instance qualifiers.
761 This should be true for at least all of our debug readers. */
762 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
763 }
764
765 /* Implement direct support for MEMBER_TYPE in GNU C++.
766 May need to construct such a type if this is the first use.
767 The TYPE is the type of the member. The DOMAIN is the type
768 of the aggregate that the member belongs to. */
769
770 struct type *
771 lookup_memberptr_type (struct type *type, struct type *domain)
772 {
773 struct type *mtype;
774
775 mtype = alloc_type_copy (type);
776 smash_to_memberptr_type (mtype, domain, type);
777 return mtype;
778 }
779
780 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
781
782 struct type *
783 lookup_methodptr_type (struct type *to_type)
784 {
785 struct type *mtype;
786
787 mtype = alloc_type_copy (to_type);
788 smash_to_methodptr_type (mtype, to_type);
789 return mtype;
790 }
791
792 /* Allocate a stub method whose return type is TYPE. This apparently
793 happens for speed of symbol reading, since parsing out the
794 arguments to the method is cpu-intensive, the way we are doing it.
795 So, we will fill in arguments later. This always returns a fresh
796 type. */
797
798 struct type *
799 allocate_stub_method (struct type *type)
800 {
801 struct type *mtype;
802
803 mtype = alloc_type_copy (type);
804 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
805 TYPE_LENGTH (mtype) = 1;
806 TYPE_STUB (mtype) = 1;
807 TYPE_TARGET_TYPE (mtype) = type;
808 /* _DOMAIN_TYPE (mtype) = unknown yet */
809 return mtype;
810 }
811
812 /* Create a range type with a dynamic range from LOW_BOUND to
813 HIGH_BOUND, inclusive. See create_range_type for further details. */
814
815 struct type *
816 create_range_type (struct type *result_type, struct type *index_type,
817 const struct dynamic_prop *low_bound,
818 const struct dynamic_prop *high_bound)
819 {
820 if (result_type == NULL)
821 result_type = alloc_type_copy (index_type);
822 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
823 TYPE_TARGET_TYPE (result_type) = index_type;
824 if (TYPE_STUB (index_type))
825 TYPE_TARGET_STUB (result_type) = 1;
826 else
827 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
828
829 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
830 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
831 TYPE_RANGE_DATA (result_type)->low = *low_bound;
832 TYPE_RANGE_DATA (result_type)->high = *high_bound;
833
834 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
835 TYPE_UNSIGNED (result_type) = 1;
836
837 /* Ada allows the declaration of range types whose upper bound is
838 less than the lower bound, so checking the lower bound is not
839 enough. Make sure we do not mark a range type whose upper bound
840 is negative as unsigned. */
841 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
842 TYPE_UNSIGNED (result_type) = 0;
843
844 return result_type;
845 }
846
847 /* Create a range type using either a blank type supplied in
848 RESULT_TYPE, or creating a new type, inheriting the objfile from
849 INDEX_TYPE.
850
851 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
852 to HIGH_BOUND, inclusive.
853
854 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
855 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
856
857 struct type *
858 create_static_range_type (struct type *result_type, struct type *index_type,
859 LONGEST low_bound, LONGEST high_bound)
860 {
861 struct dynamic_prop low, high;
862
863 low.kind = PROP_CONST;
864 low.data.const_val = low_bound;
865
866 high.kind = PROP_CONST;
867 high.data.const_val = high_bound;
868
869 result_type = create_range_type (result_type, index_type, &low, &high);
870
871 return result_type;
872 }
873
874 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
875 are static, otherwise returns 0. */
876
877 static int
878 has_static_range (const struct range_bounds *bounds)
879 {
880 return (bounds->low.kind == PROP_CONST
881 && bounds->high.kind == PROP_CONST);
882 }
883
884
885 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
886 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
887 bounds will fit in LONGEST), or -1 otherwise. */
888
889 int
890 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
891 {
892 CHECK_TYPEDEF (type);
893 switch (TYPE_CODE (type))
894 {
895 case TYPE_CODE_RANGE:
896 *lowp = TYPE_LOW_BOUND (type);
897 *highp = TYPE_HIGH_BOUND (type);
898 return 1;
899 case TYPE_CODE_ENUM:
900 if (TYPE_NFIELDS (type) > 0)
901 {
902 /* The enums may not be sorted by value, so search all
903 entries. */
904 int i;
905
906 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
907 for (i = 0; i < TYPE_NFIELDS (type); i++)
908 {
909 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
910 *lowp = TYPE_FIELD_ENUMVAL (type, i);
911 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
912 *highp = TYPE_FIELD_ENUMVAL (type, i);
913 }
914
915 /* Set unsigned indicator if warranted. */
916 if (*lowp >= 0)
917 {
918 TYPE_UNSIGNED (type) = 1;
919 }
920 }
921 else
922 {
923 *lowp = 0;
924 *highp = -1;
925 }
926 return 0;
927 case TYPE_CODE_BOOL:
928 *lowp = 0;
929 *highp = 1;
930 return 0;
931 case TYPE_CODE_INT:
932 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
933 return -1;
934 if (!TYPE_UNSIGNED (type))
935 {
936 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
937 *highp = -*lowp - 1;
938 return 0;
939 }
940 /* ... fall through for unsigned ints ... */
941 case TYPE_CODE_CHAR:
942 *lowp = 0;
943 /* This round-about calculation is to avoid shifting by
944 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
945 if TYPE_LENGTH (type) == sizeof (LONGEST). */
946 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
947 *highp = (*highp - 1) | *highp;
948 return 0;
949 default:
950 return -1;
951 }
952 }
953
954 /* Assuming TYPE is a simple, non-empty array type, compute its upper
955 and lower bound. Save the low bound into LOW_BOUND if not NULL.
956 Save the high bound into HIGH_BOUND if not NULL.
957
958 Return 1 if the operation was successful. Return zero otherwise,
959 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
960
961 We now simply use get_discrete_bounds call to get the values
962 of the low and high bounds.
963 get_discrete_bounds can return three values:
964 1, meaning that index is a range,
965 0, meaning that index is a discrete type,
966 or -1 for failure. */
967
968 int
969 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
970 {
971 struct type *index = TYPE_INDEX_TYPE (type);
972 LONGEST low = 0;
973 LONGEST high = 0;
974 int res;
975
976 if (index == NULL)
977 return 0;
978
979 res = get_discrete_bounds (index, &low, &high);
980 if (res == -1)
981 return 0;
982
983 /* Check if the array bounds are undefined. */
984 if (res == 1
985 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
986 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
987 return 0;
988
989 if (low_bound)
990 *low_bound = low;
991
992 if (high_bound)
993 *high_bound = high;
994
995 return 1;
996 }
997
998 /* Create an array type using either a blank type supplied in
999 RESULT_TYPE, or creating a new type, inheriting the objfile from
1000 RANGE_TYPE.
1001
1002 Elements will be of type ELEMENT_TYPE, the indices will be of type
1003 RANGE_TYPE.
1004
1005 If BIT_STRIDE is not zero, build a packed array type whose element
1006 size is BIT_STRIDE. Otherwise, ignore this parameter.
1007
1008 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1009 sure it is TYPE_CODE_UNDEF before we bash it into an array
1010 type? */
1011
1012 struct type *
1013 create_array_type_with_stride (struct type *result_type,
1014 struct type *element_type,
1015 struct type *range_type,
1016 unsigned int bit_stride)
1017 {
1018 if (result_type == NULL)
1019 result_type = alloc_type_copy (range_type);
1020
1021 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1022 TYPE_TARGET_TYPE (result_type) = element_type;
1023 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1024 {
1025 LONGEST low_bound, high_bound;
1026
1027 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1028 low_bound = high_bound = 0;
1029 CHECK_TYPEDEF (element_type);
1030 /* Be careful when setting the array length. Ada arrays can be
1031 empty arrays with the high_bound being smaller than the low_bound.
1032 In such cases, the array length should be zero. */
1033 if (high_bound < low_bound)
1034 TYPE_LENGTH (result_type) = 0;
1035 else if (bit_stride > 0)
1036 TYPE_LENGTH (result_type) =
1037 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1038 else
1039 TYPE_LENGTH (result_type) =
1040 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1041 }
1042 else
1043 {
1044 /* This type is dynamic and its length needs to be computed
1045 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1046 undefined by setting it to zero. Although we are not expected
1047 to trust TYPE_LENGTH in this case, setting the size to zero
1048 allows us to avoid allocating objects of random sizes in case
1049 we accidently do. */
1050 TYPE_LENGTH (result_type) = 0;
1051 }
1052
1053 TYPE_NFIELDS (result_type) = 1;
1054 TYPE_FIELDS (result_type) =
1055 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1056 TYPE_INDEX_TYPE (result_type) = range_type;
1057 TYPE_VPTR_FIELDNO (result_type) = -1;
1058 if (bit_stride > 0)
1059 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1060
1061 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1062 if (TYPE_LENGTH (result_type) == 0)
1063 TYPE_TARGET_STUB (result_type) = 1;
1064
1065 return result_type;
1066 }
1067
1068 /* Same as create_array_type_with_stride but with no bit_stride
1069 (BIT_STRIDE = 0), thus building an unpacked array. */
1070
1071 struct type *
1072 create_array_type (struct type *result_type,
1073 struct type *element_type,
1074 struct type *range_type)
1075 {
1076 return create_array_type_with_stride (result_type, element_type,
1077 range_type, 0);
1078 }
1079
1080 struct type *
1081 lookup_array_range_type (struct type *element_type,
1082 LONGEST low_bound, LONGEST high_bound)
1083 {
1084 struct gdbarch *gdbarch = get_type_arch (element_type);
1085 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1086 struct type *range_type
1087 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1088
1089 return create_array_type (NULL, element_type, range_type);
1090 }
1091
1092 /* Create a string type using either a blank type supplied in
1093 RESULT_TYPE, or creating a new type. String types are similar
1094 enough to array of char types that we can use create_array_type to
1095 build the basic type and then bash it into a string type.
1096
1097 For fixed length strings, the range type contains 0 as the lower
1098 bound and the length of the string minus one as the upper bound.
1099
1100 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1101 sure it is TYPE_CODE_UNDEF before we bash it into a string
1102 type? */
1103
1104 struct type *
1105 create_string_type (struct type *result_type,
1106 struct type *string_char_type,
1107 struct type *range_type)
1108 {
1109 result_type = create_array_type (result_type,
1110 string_char_type,
1111 range_type);
1112 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1113 return result_type;
1114 }
1115
1116 struct type *
1117 lookup_string_range_type (struct type *string_char_type,
1118 LONGEST low_bound, LONGEST high_bound)
1119 {
1120 struct type *result_type;
1121
1122 result_type = lookup_array_range_type (string_char_type,
1123 low_bound, high_bound);
1124 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1125 return result_type;
1126 }
1127
1128 struct type *
1129 create_set_type (struct type *result_type, struct type *domain_type)
1130 {
1131 if (result_type == NULL)
1132 result_type = alloc_type_copy (domain_type);
1133
1134 TYPE_CODE (result_type) = TYPE_CODE_SET;
1135 TYPE_NFIELDS (result_type) = 1;
1136 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1137
1138 if (!TYPE_STUB (domain_type))
1139 {
1140 LONGEST low_bound, high_bound, bit_length;
1141
1142 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1143 low_bound = high_bound = 0;
1144 bit_length = high_bound - low_bound + 1;
1145 TYPE_LENGTH (result_type)
1146 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1147 if (low_bound >= 0)
1148 TYPE_UNSIGNED (result_type) = 1;
1149 }
1150 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1151
1152 return result_type;
1153 }
1154
1155 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1156 and any array types nested inside it. */
1157
1158 void
1159 make_vector_type (struct type *array_type)
1160 {
1161 struct type *inner_array, *elt_type;
1162 int flags;
1163
1164 /* Find the innermost array type, in case the array is
1165 multi-dimensional. */
1166 inner_array = array_type;
1167 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1168 inner_array = TYPE_TARGET_TYPE (inner_array);
1169
1170 elt_type = TYPE_TARGET_TYPE (inner_array);
1171 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1172 {
1173 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1174 elt_type = make_qualified_type (elt_type, flags, NULL);
1175 TYPE_TARGET_TYPE (inner_array) = elt_type;
1176 }
1177
1178 TYPE_VECTOR (array_type) = 1;
1179 }
1180
1181 struct type *
1182 init_vector_type (struct type *elt_type, int n)
1183 {
1184 struct type *array_type;
1185
1186 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1187 make_vector_type (array_type);
1188 return array_type;
1189 }
1190
1191 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1192 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1193 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1194 TYPE doesn't include the offset (that's the value of the MEMBER
1195 itself), but does include the structure type into which it points
1196 (for some reason).
1197
1198 When "smashing" the type, we preserve the objfile that the old type
1199 pointed to, since we aren't changing where the type is actually
1200 allocated. */
1201
1202 void
1203 smash_to_memberptr_type (struct type *type, struct type *domain,
1204 struct type *to_type)
1205 {
1206 smash_type (type);
1207 TYPE_TARGET_TYPE (type) = to_type;
1208 TYPE_DOMAIN_TYPE (type) = domain;
1209 /* Assume that a data member pointer is the same size as a normal
1210 pointer. */
1211 TYPE_LENGTH (type)
1212 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1213 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1214 }
1215
1216 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_methodptr_type (struct type *type, struct type *to_type)
1224 {
1225 smash_type (type);
1226 TYPE_TARGET_TYPE (type) = to_type;
1227 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1228 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1229 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1230 }
1231
1232 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1233 METHOD just means `function that gets an extra "this" argument'.
1234
1235 When "smashing" the type, we preserve the objfile that the old type
1236 pointed to, since we aren't changing where the type is actually
1237 allocated. */
1238
1239 void
1240 smash_to_method_type (struct type *type, struct type *domain,
1241 struct type *to_type, struct field *args,
1242 int nargs, int varargs)
1243 {
1244 smash_type (type);
1245 TYPE_TARGET_TYPE (type) = to_type;
1246 TYPE_DOMAIN_TYPE (type) = domain;
1247 TYPE_FIELDS (type) = args;
1248 TYPE_NFIELDS (type) = nargs;
1249 if (varargs)
1250 TYPE_VARARGS (type) = 1;
1251 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1252 TYPE_CODE (type) = TYPE_CODE_METHOD;
1253 }
1254
1255 /* Return a typename for a struct/union/enum type without "struct ",
1256 "union ", or "enum ". If the type has a NULL name, return NULL. */
1257
1258 const char *
1259 type_name_no_tag (const struct type *type)
1260 {
1261 if (TYPE_TAG_NAME (type) != NULL)
1262 return TYPE_TAG_NAME (type);
1263
1264 /* Is there code which expects this to return the name if there is
1265 no tag name? My guess is that this is mainly used for C++ in
1266 cases where the two will always be the same. */
1267 return TYPE_NAME (type);
1268 }
1269
1270 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1271 Since GCC PR debug/47510 DWARF provides associated information to detect the
1272 anonymous class linkage name from its typedef.
1273
1274 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1275 apply it itself. */
1276
1277 const char *
1278 type_name_no_tag_or_error (struct type *type)
1279 {
1280 struct type *saved_type = type;
1281 const char *name;
1282 struct objfile *objfile;
1283
1284 CHECK_TYPEDEF (type);
1285
1286 name = type_name_no_tag (type);
1287 if (name != NULL)
1288 return name;
1289
1290 name = type_name_no_tag (saved_type);
1291 objfile = TYPE_OBJFILE (saved_type);
1292 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1293 name ? name : "<anonymous>",
1294 objfile ? objfile_name (objfile) : "<arch>");
1295 }
1296
1297 /* Lookup a typedef or primitive type named NAME, visible in lexical
1298 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1299 suitably defined. */
1300
1301 struct type *
1302 lookup_typename (const struct language_defn *language,
1303 struct gdbarch *gdbarch, const char *name,
1304 const struct block *block, int noerr)
1305 {
1306 struct symbol *sym;
1307 struct type *type;
1308
1309 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1310 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1311 return SYMBOL_TYPE (sym);
1312
1313 type = language_lookup_primitive_type (language, gdbarch, name);
1314 if (type)
1315 return type;
1316
1317 if (noerr)
1318 return NULL;
1319 error (_("No type named %s."), name);
1320 }
1321
1322 struct type *
1323 lookup_unsigned_typename (const struct language_defn *language,
1324 struct gdbarch *gdbarch, const char *name)
1325 {
1326 char *uns = alloca (strlen (name) + 10);
1327
1328 strcpy (uns, "unsigned ");
1329 strcpy (uns + 9, name);
1330 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1331 }
1332
1333 struct type *
1334 lookup_signed_typename (const struct language_defn *language,
1335 struct gdbarch *gdbarch, const char *name)
1336 {
1337 struct type *t;
1338 char *uns = alloca (strlen (name) + 8);
1339
1340 strcpy (uns, "signed ");
1341 strcpy (uns + 7, name);
1342 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1343 /* If we don't find "signed FOO" just try again with plain "FOO". */
1344 if (t != NULL)
1345 return t;
1346 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1347 }
1348
1349 /* Lookup a structure type named "struct NAME",
1350 visible in lexical block BLOCK. */
1351
1352 struct type *
1353 lookup_struct (const char *name, const struct block *block)
1354 {
1355 struct symbol *sym;
1356
1357 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1358
1359 if (sym == NULL)
1360 {
1361 error (_("No struct type named %s."), name);
1362 }
1363 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1364 {
1365 error (_("This context has class, union or enum %s, not a struct."),
1366 name);
1367 }
1368 return (SYMBOL_TYPE (sym));
1369 }
1370
1371 /* Lookup a union type named "union NAME",
1372 visible in lexical block BLOCK. */
1373
1374 struct type *
1375 lookup_union (const char *name, const struct block *block)
1376 {
1377 struct symbol *sym;
1378 struct type *t;
1379
1380 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1381
1382 if (sym == NULL)
1383 error (_("No union type named %s."), name);
1384
1385 t = SYMBOL_TYPE (sym);
1386
1387 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1388 return t;
1389
1390 /* If we get here, it's not a union. */
1391 error (_("This context has class, struct or enum %s, not a union."),
1392 name);
1393 }
1394
1395 /* Lookup an enum type named "enum NAME",
1396 visible in lexical block BLOCK. */
1397
1398 struct type *
1399 lookup_enum (const char *name, const struct block *block)
1400 {
1401 struct symbol *sym;
1402
1403 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1404 if (sym == NULL)
1405 {
1406 error (_("No enum type named %s."), name);
1407 }
1408 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1409 {
1410 error (_("This context has class, struct or union %s, not an enum."),
1411 name);
1412 }
1413 return (SYMBOL_TYPE (sym));
1414 }
1415
1416 /* Lookup a template type named "template NAME<TYPE>",
1417 visible in lexical block BLOCK. */
1418
1419 struct type *
1420 lookup_template_type (char *name, struct type *type,
1421 const struct block *block)
1422 {
1423 struct symbol *sym;
1424 char *nam = (char *)
1425 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1426
1427 strcpy (nam, name);
1428 strcat (nam, "<");
1429 strcat (nam, TYPE_NAME (type));
1430 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1431
1432 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1433
1434 if (sym == NULL)
1435 {
1436 error (_("No template type named %s."), name);
1437 }
1438 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1439 {
1440 error (_("This context has class, union or enum %s, not a struct."),
1441 name);
1442 }
1443 return (SYMBOL_TYPE (sym));
1444 }
1445
1446 /* Given a type TYPE, lookup the type of the component of type named
1447 NAME.
1448
1449 TYPE can be either a struct or union, or a pointer or reference to
1450 a struct or union. If it is a pointer or reference, its target
1451 type is automatically used. Thus '.' and '->' are interchangable,
1452 as specified for the definitions of the expression element types
1453 STRUCTOP_STRUCT and STRUCTOP_PTR.
1454
1455 If NOERR is nonzero, return zero if NAME is not suitably defined.
1456 If NAME is the name of a baseclass type, return that type. */
1457
1458 struct type *
1459 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1460 {
1461 int i;
1462 char *typename;
1463
1464 for (;;)
1465 {
1466 CHECK_TYPEDEF (type);
1467 if (TYPE_CODE (type) != TYPE_CODE_PTR
1468 && TYPE_CODE (type) != TYPE_CODE_REF)
1469 break;
1470 type = TYPE_TARGET_TYPE (type);
1471 }
1472
1473 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1474 && TYPE_CODE (type) != TYPE_CODE_UNION)
1475 {
1476 typename = type_to_string (type);
1477 make_cleanup (xfree, typename);
1478 error (_("Type %s is not a structure or union type."), typename);
1479 }
1480
1481 #if 0
1482 /* FIXME: This change put in by Michael seems incorrect for the case
1483 where the structure tag name is the same as the member name.
1484 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1485 foo; } bell;" Disabled by fnf. */
1486 {
1487 char *typename;
1488
1489 typename = type_name_no_tag (type);
1490 if (typename != NULL && strcmp (typename, name) == 0)
1491 return type;
1492 }
1493 #endif
1494
1495 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1496 {
1497 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1498
1499 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1500 {
1501 return TYPE_FIELD_TYPE (type, i);
1502 }
1503 else if (!t_field_name || *t_field_name == '\0')
1504 {
1505 struct type *subtype
1506 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1507
1508 if (subtype != NULL)
1509 return subtype;
1510 }
1511 }
1512
1513 /* OK, it's not in this class. Recursively check the baseclasses. */
1514 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1515 {
1516 struct type *t;
1517
1518 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1519 if (t != NULL)
1520 {
1521 return t;
1522 }
1523 }
1524
1525 if (noerr)
1526 {
1527 return NULL;
1528 }
1529
1530 typename = type_to_string (type);
1531 make_cleanup (xfree, typename);
1532 error (_("Type %s has no component named %s."), typename, name);
1533 }
1534
1535 /* Store in *MAX the largest number representable by unsigned integer type
1536 TYPE. */
1537
1538 void
1539 get_unsigned_type_max (struct type *type, ULONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1546
1547 /* Written this way to avoid overflow. */
1548 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1549 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1550 }
1551
1552 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1553 signed integer type TYPE. */
1554
1555 void
1556 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1557 {
1558 unsigned int n;
1559
1560 CHECK_TYPEDEF (type);
1561 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1562 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1563
1564 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1565 *min = -((ULONGEST) 1 << (n - 1));
1566 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1567 }
1568
1569 /* Lookup the vptr basetype/fieldno values for TYPE.
1570 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1571 vptr_fieldno. Also, if found and basetype is from the same objfile,
1572 cache the results.
1573 If not found, return -1 and ignore BASETYPEP.
1574 Callers should be aware that in some cases (for example,
1575 the type or one of its baseclasses is a stub type and we are
1576 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1577 this function will not be able to find the
1578 virtual function table pointer, and vptr_fieldno will remain -1 and
1579 vptr_basetype will remain NULL or incomplete. */
1580
1581 int
1582 get_vptr_fieldno (struct type *type, struct type **basetypep)
1583 {
1584 CHECK_TYPEDEF (type);
1585
1586 if (TYPE_VPTR_FIELDNO (type) < 0)
1587 {
1588 int i;
1589
1590 /* We must start at zero in case the first (and only) baseclass
1591 is virtual (and hence we cannot share the table pointer). */
1592 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1593 {
1594 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1595 int fieldno;
1596 struct type *basetype;
1597
1598 fieldno = get_vptr_fieldno (baseclass, &basetype);
1599 if (fieldno >= 0)
1600 {
1601 /* If the type comes from a different objfile we can't cache
1602 it, it may have a different lifetime. PR 2384 */
1603 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1604 {
1605 TYPE_VPTR_FIELDNO (type) = fieldno;
1606 TYPE_VPTR_BASETYPE (type) = basetype;
1607 }
1608 if (basetypep)
1609 *basetypep = basetype;
1610 return fieldno;
1611 }
1612 }
1613
1614 /* Not found. */
1615 return -1;
1616 }
1617 else
1618 {
1619 if (basetypep)
1620 *basetypep = TYPE_VPTR_BASETYPE (type);
1621 return TYPE_VPTR_FIELDNO (type);
1622 }
1623 }
1624
1625 static void
1626 stub_noname_complaint (void)
1627 {
1628 complaint (&symfile_complaints, _("stub type has NULL name"));
1629 }
1630
1631 /* Worker for is_dynamic_type. */
1632
1633 static int
1634 is_dynamic_type_internal (struct type *type, int top_level)
1635 {
1636 type = check_typedef (type);
1637
1638 /* We only want to recognize references at the outermost level. */
1639 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1640 type = check_typedef (TYPE_TARGET_TYPE (type));
1641
1642 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1643 dynamic, even if the type itself is statically defined.
1644 From a user's point of view, this may appear counter-intuitive;
1645 but it makes sense in this context, because the point is to determine
1646 whether any part of the type needs to be resolved before it can
1647 be exploited. */
1648 if (TYPE_DATA_LOCATION (type) != NULL
1649 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1650 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1651 return 1;
1652
1653 switch (TYPE_CODE (type))
1654 {
1655 case TYPE_CODE_RANGE:
1656 return !has_static_range (TYPE_RANGE_DATA (type));
1657
1658 case TYPE_CODE_ARRAY:
1659 {
1660 gdb_assert (TYPE_NFIELDS (type) == 1);
1661
1662 /* The array is dynamic if either the bounds are dynamic,
1663 or the elements it contains have a dynamic contents. */
1664 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1665 return 1;
1666 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1667 }
1668
1669 case TYPE_CODE_STRUCT:
1670 case TYPE_CODE_UNION:
1671 {
1672 int i;
1673
1674 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1675 if (!field_is_static (&TYPE_FIELD (type, i))
1676 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1677 return 1;
1678 }
1679 break;
1680 }
1681
1682 return 0;
1683 }
1684
1685 /* See gdbtypes.h. */
1686
1687 int
1688 is_dynamic_type (struct type *type)
1689 {
1690 return is_dynamic_type_internal (type, 1);
1691 }
1692
1693 static struct type *resolve_dynamic_type_internal (struct type *type,
1694 CORE_ADDR addr,
1695 int top_level);
1696
1697 /* Given a dynamic range type (dyn_range_type) and address,
1698 return a static version of that type. */
1699
1700 static struct type *
1701 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1702 {
1703 CORE_ADDR value;
1704 struct type *static_range_type;
1705 const struct dynamic_prop *prop;
1706 const struct dwarf2_locexpr_baton *baton;
1707 struct dynamic_prop low_bound, high_bound;
1708
1709 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1710
1711 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1712 if (dwarf2_evaluate_property (prop, addr, &value))
1713 {
1714 low_bound.kind = PROP_CONST;
1715 low_bound.data.const_val = value;
1716 }
1717 else
1718 {
1719 low_bound.kind = PROP_UNDEFINED;
1720 low_bound.data.const_val = 0;
1721 }
1722
1723 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1724 if (dwarf2_evaluate_property (prop, addr, &value))
1725 {
1726 high_bound.kind = PROP_CONST;
1727 high_bound.data.const_val = value;
1728
1729 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1730 high_bound.data.const_val
1731 = low_bound.data.const_val + high_bound.data.const_val - 1;
1732 }
1733 else
1734 {
1735 high_bound.kind = PROP_UNDEFINED;
1736 high_bound.data.const_val = 0;
1737 }
1738
1739 static_range_type = create_range_type (copy_type (dyn_range_type),
1740 TYPE_TARGET_TYPE (dyn_range_type),
1741 &low_bound, &high_bound);
1742 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1743 return static_range_type;
1744 }
1745
1746 /* Resolves dynamic bound values of an array type TYPE to static ones.
1747 ADDRESS might be needed to resolve the subrange bounds, it is the location
1748 of the associated array. */
1749
1750 static struct type *
1751 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1752 {
1753 CORE_ADDR value;
1754 struct type *elt_type;
1755 struct type *range_type;
1756 struct type *ary_dim;
1757
1758 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1759
1760 elt_type = type;
1761 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1762 range_type = resolve_dynamic_range (range_type, addr);
1763
1764 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1765
1766 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1767 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1768 else
1769 elt_type = TYPE_TARGET_TYPE (type);
1770
1771 return create_array_type (copy_type (type),
1772 elt_type,
1773 range_type);
1774 }
1775
1776 /* Resolve dynamic bounds of members of the union TYPE to static
1777 bounds. */
1778
1779 static struct type *
1780 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1781 {
1782 struct type *resolved_type;
1783 int i;
1784 unsigned int max_len = 0;
1785
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1787
1788 resolved_type = copy_type (type);
1789 TYPE_FIELDS (resolved_type)
1790 = TYPE_ALLOC (resolved_type,
1791 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1792 memcpy (TYPE_FIELDS (resolved_type),
1793 TYPE_FIELDS (type),
1794 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1795 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1796 {
1797 struct type *t;
1798
1799 if (field_is_static (&TYPE_FIELD (type, i)))
1800 continue;
1801
1802 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1803 addr, 0);
1804 TYPE_FIELD_TYPE (resolved_type, i) = t;
1805 if (TYPE_LENGTH (t) > max_len)
1806 max_len = TYPE_LENGTH (t);
1807 }
1808
1809 TYPE_LENGTH (resolved_type) = max_len;
1810 return resolved_type;
1811 }
1812
1813 /* Resolve dynamic bounds of members of the struct TYPE to static
1814 bounds. */
1815
1816 static struct type *
1817 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1818 {
1819 struct type *resolved_type;
1820 int i;
1821 unsigned resolved_type_bit_length = 0;
1822
1823 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1824 gdb_assert (TYPE_NFIELDS (type) > 0);
1825
1826 resolved_type = copy_type (type);
1827 TYPE_FIELDS (resolved_type)
1828 = TYPE_ALLOC (resolved_type,
1829 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1830 memcpy (TYPE_FIELDS (resolved_type),
1831 TYPE_FIELDS (type),
1832 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1833 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1834 {
1835 unsigned new_bit_length;
1836
1837 if (field_is_static (&TYPE_FIELD (type, i)))
1838 continue;
1839
1840 TYPE_FIELD_TYPE (resolved_type, i)
1841 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1842 addr, 0);
1843
1844 /* As we know this field is not a static field, the field's
1845 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1846 this is the case, but only trigger a simple error rather
1847 than an internal error if that fails. While failing
1848 that verification indicates a bug in our code, the error
1849 is not severe enough to suggest to the user he stops
1850 his debugging session because of it. */
1851 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1852 error (_("Cannot determine struct field location"
1853 " (invalid location kind)"));
1854 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1855 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1856 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1857 else
1858 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1859 * TARGET_CHAR_BIT);
1860
1861 /* Normally, we would use the position and size of the last field
1862 to determine the size of the enclosing structure. But GCC seems
1863 to be encoding the position of some fields incorrectly when
1864 the struct contains a dynamic field that is not placed last.
1865 So we compute the struct size based on the field that has
1866 the highest position + size - probably the best we can do. */
1867 if (new_bit_length > resolved_type_bit_length)
1868 resolved_type_bit_length = new_bit_length;
1869 }
1870
1871 TYPE_LENGTH (resolved_type)
1872 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1873
1874 return resolved_type;
1875 }
1876
1877 /* Worker for resolved_dynamic_type. */
1878
1879 static struct type *
1880 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1881 int top_level)
1882 {
1883 struct type *real_type = check_typedef (type);
1884 struct type *resolved_type = type;
1885 const struct dynamic_prop *prop;
1886 CORE_ADDR value;
1887
1888 if (!is_dynamic_type_internal (real_type, top_level))
1889 return type;
1890
1891 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1892 {
1893 resolved_type = copy_type (type);
1894 TYPE_TARGET_TYPE (resolved_type)
1895 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1896 top_level);
1897 }
1898 else
1899 {
1900 /* Before trying to resolve TYPE, make sure it is not a stub. */
1901 type = real_type;
1902
1903 switch (TYPE_CODE (type))
1904 {
1905 case TYPE_CODE_REF:
1906 {
1907 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1908
1909 resolved_type = copy_type (type);
1910 TYPE_TARGET_TYPE (resolved_type)
1911 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1912 target_addr, top_level);
1913 break;
1914 }
1915
1916 case TYPE_CODE_ARRAY:
1917 resolved_type = resolve_dynamic_array (type, addr);
1918 break;
1919
1920 case TYPE_CODE_RANGE:
1921 resolved_type = resolve_dynamic_range (type, addr);
1922 break;
1923
1924 case TYPE_CODE_UNION:
1925 resolved_type = resolve_dynamic_union (type, addr);
1926 break;
1927
1928 case TYPE_CODE_STRUCT:
1929 resolved_type = resolve_dynamic_struct (type, addr);
1930 break;
1931 }
1932 }
1933
1934 /* Resolve data_location attribute. */
1935 prop = TYPE_DATA_LOCATION (resolved_type);
1936 if (dwarf2_evaluate_property (prop, addr, &value))
1937 {
1938 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1939 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1940 }
1941 else
1942 TYPE_DATA_LOCATION (resolved_type) = NULL;
1943
1944 return resolved_type;
1945 }
1946
1947 /* See gdbtypes.h */
1948
1949 struct type *
1950 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1951 {
1952 return resolve_dynamic_type_internal (type, addr, 1);
1953 }
1954
1955 /* Find the real type of TYPE. This function returns the real type,
1956 after removing all layers of typedefs, and completing opaque or stub
1957 types. Completion changes the TYPE argument, but stripping of
1958 typedefs does not.
1959
1960 Instance flags (e.g. const/volatile) are preserved as typedefs are
1961 stripped. If necessary a new qualified form of the underlying type
1962 is created.
1963
1964 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1965 not been computed and we're either in the middle of reading symbols, or
1966 there was no name for the typedef in the debug info.
1967
1968 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1969 QUITs in the symbol reading code can also throw.
1970 Thus this function can throw an exception.
1971
1972 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1973 the target type.
1974
1975 If this is a stubbed struct (i.e. declared as struct foo *), see if
1976 we can find a full definition in some other file. If so, copy this
1977 definition, so we can use it in future. There used to be a comment
1978 (but not any code) that if we don't find a full definition, we'd
1979 set a flag so we don't spend time in the future checking the same
1980 type. That would be a mistake, though--we might load in more
1981 symbols which contain a full definition for the type. */
1982
1983 struct type *
1984 check_typedef (struct type *type)
1985 {
1986 struct type *orig_type = type;
1987 /* While we're removing typedefs, we don't want to lose qualifiers.
1988 E.g., const/volatile. */
1989 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1990
1991 gdb_assert (type);
1992
1993 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1994 {
1995 if (!TYPE_TARGET_TYPE (type))
1996 {
1997 const char *name;
1998 struct symbol *sym;
1999
2000 /* It is dangerous to call lookup_symbol if we are currently
2001 reading a symtab. Infinite recursion is one danger. */
2002 if (currently_reading_symtab)
2003 return make_qualified_type (type, instance_flags, NULL);
2004
2005 name = type_name_no_tag (type);
2006 /* FIXME: shouldn't we separately check the TYPE_NAME and
2007 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2008 VAR_DOMAIN as appropriate? (this code was written before
2009 TYPE_NAME and TYPE_TAG_NAME were separate). */
2010 if (name == NULL)
2011 {
2012 stub_noname_complaint ();
2013 return make_qualified_type (type, instance_flags, NULL);
2014 }
2015 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2016 if (sym)
2017 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2018 else /* TYPE_CODE_UNDEF */
2019 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2020 }
2021 type = TYPE_TARGET_TYPE (type);
2022
2023 /* Preserve the instance flags as we traverse down the typedef chain.
2024
2025 Handling address spaces/classes is nasty, what do we do if there's a
2026 conflict?
2027 E.g., what if an outer typedef marks the type as class_1 and an inner
2028 typedef marks the type as class_2?
2029 This is the wrong place to do such error checking. We leave it to
2030 the code that created the typedef in the first place to flag the
2031 error. We just pick the outer address space (akin to letting the
2032 outer cast in a chain of casting win), instead of assuming
2033 "it can't happen". */
2034 {
2035 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2036 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2037 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2038 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2039
2040 /* Treat code vs data spaces and address classes separately. */
2041 if ((instance_flags & ALL_SPACES) != 0)
2042 new_instance_flags &= ~ALL_SPACES;
2043 if ((instance_flags & ALL_CLASSES) != 0)
2044 new_instance_flags &= ~ALL_CLASSES;
2045
2046 instance_flags |= new_instance_flags;
2047 }
2048 }
2049
2050 /* If this is a struct/class/union with no fields, then check
2051 whether a full definition exists somewhere else. This is for
2052 systems where a type definition with no fields is issued for such
2053 types, instead of identifying them as stub types in the first
2054 place. */
2055
2056 if (TYPE_IS_OPAQUE (type)
2057 && opaque_type_resolution
2058 && !currently_reading_symtab)
2059 {
2060 const char *name = type_name_no_tag (type);
2061 struct type *newtype;
2062
2063 if (name == NULL)
2064 {
2065 stub_noname_complaint ();
2066 return make_qualified_type (type, instance_flags, NULL);
2067 }
2068 newtype = lookup_transparent_type (name);
2069
2070 if (newtype)
2071 {
2072 /* If the resolved type and the stub are in the same
2073 objfile, then replace the stub type with the real deal.
2074 But if they're in separate objfiles, leave the stub
2075 alone; we'll just look up the transparent type every time
2076 we call check_typedef. We can't create pointers between
2077 types allocated to different objfiles, since they may
2078 have different lifetimes. Trying to copy NEWTYPE over to
2079 TYPE's objfile is pointless, too, since you'll have to
2080 move over any other types NEWTYPE refers to, which could
2081 be an unbounded amount of stuff. */
2082 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2083 type = make_qualified_type (newtype,
2084 TYPE_INSTANCE_FLAGS (type),
2085 type);
2086 else
2087 type = newtype;
2088 }
2089 }
2090 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2091 types. */
2092 else if (TYPE_STUB (type) && !currently_reading_symtab)
2093 {
2094 const char *name = type_name_no_tag (type);
2095 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2096 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2097 as appropriate? (this code was written before TYPE_NAME and
2098 TYPE_TAG_NAME were separate). */
2099 struct symbol *sym;
2100
2101 if (name == NULL)
2102 {
2103 stub_noname_complaint ();
2104 return make_qualified_type (type, instance_flags, NULL);
2105 }
2106 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2107 if (sym)
2108 {
2109 /* Same as above for opaque types, we can replace the stub
2110 with the complete type only if they are in the same
2111 objfile. */
2112 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2113 type = make_qualified_type (SYMBOL_TYPE (sym),
2114 TYPE_INSTANCE_FLAGS (type),
2115 type);
2116 else
2117 type = SYMBOL_TYPE (sym);
2118 }
2119 }
2120
2121 if (TYPE_TARGET_STUB (type))
2122 {
2123 struct type *range_type;
2124 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2125
2126 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2127 {
2128 /* Nothing we can do. */
2129 }
2130 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2131 {
2132 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2133 TYPE_TARGET_STUB (type) = 0;
2134 }
2135 }
2136
2137 type = make_qualified_type (type, instance_flags, NULL);
2138
2139 /* Cache TYPE_LENGTH for future use. */
2140 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2141
2142 return type;
2143 }
2144
2145 /* Parse a type expression in the string [P..P+LENGTH). If an error
2146 occurs, silently return a void type. */
2147
2148 static struct type *
2149 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2150 {
2151 struct ui_file *saved_gdb_stderr;
2152 struct type *type = NULL; /* Initialize to keep gcc happy. */
2153 volatile struct gdb_exception except;
2154
2155 /* Suppress error messages. */
2156 saved_gdb_stderr = gdb_stderr;
2157 gdb_stderr = ui_file_new ();
2158
2159 /* Call parse_and_eval_type() without fear of longjmp()s. */
2160 TRY_CATCH (except, RETURN_MASK_ERROR)
2161 {
2162 type = parse_and_eval_type (p, length);
2163 }
2164
2165 if (except.reason < 0)
2166 type = builtin_type (gdbarch)->builtin_void;
2167
2168 /* Stop suppressing error messages. */
2169 ui_file_delete (gdb_stderr);
2170 gdb_stderr = saved_gdb_stderr;
2171
2172 return type;
2173 }
2174
2175 /* Ugly hack to convert method stubs into method types.
2176
2177 He ain't kiddin'. This demangles the name of the method into a
2178 string including argument types, parses out each argument type,
2179 generates a string casting a zero to that type, evaluates the
2180 string, and stuffs the resulting type into an argtype vector!!!
2181 Then it knows the type of the whole function (including argument
2182 types for overloading), which info used to be in the stab's but was
2183 removed to hack back the space required for them. */
2184
2185 static void
2186 check_stub_method (struct type *type, int method_id, int signature_id)
2187 {
2188 struct gdbarch *gdbarch = get_type_arch (type);
2189 struct fn_field *f;
2190 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2191 char *demangled_name = gdb_demangle (mangled_name,
2192 DMGL_PARAMS | DMGL_ANSI);
2193 char *argtypetext, *p;
2194 int depth = 0, argcount = 1;
2195 struct field *argtypes;
2196 struct type *mtype;
2197
2198 /* Make sure we got back a function string that we can use. */
2199 if (demangled_name)
2200 p = strchr (demangled_name, '(');
2201 else
2202 p = NULL;
2203
2204 if (demangled_name == NULL || p == NULL)
2205 error (_("Internal: Cannot demangle mangled name `%s'."),
2206 mangled_name);
2207
2208 /* Now, read in the parameters that define this type. */
2209 p += 1;
2210 argtypetext = p;
2211 while (*p)
2212 {
2213 if (*p == '(' || *p == '<')
2214 {
2215 depth += 1;
2216 }
2217 else if (*p == ')' || *p == '>')
2218 {
2219 depth -= 1;
2220 }
2221 else if (*p == ',' && depth == 0)
2222 {
2223 argcount += 1;
2224 }
2225
2226 p += 1;
2227 }
2228
2229 /* If we read one argument and it was ``void'', don't count it. */
2230 if (strncmp (argtypetext, "(void)", 6) == 0)
2231 argcount -= 1;
2232
2233 /* We need one extra slot, for the THIS pointer. */
2234
2235 argtypes = (struct field *)
2236 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2237 p = argtypetext;
2238
2239 /* Add THIS pointer for non-static methods. */
2240 f = TYPE_FN_FIELDLIST1 (type, method_id);
2241 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2242 argcount = 0;
2243 else
2244 {
2245 argtypes[0].type = lookup_pointer_type (type);
2246 argcount = 1;
2247 }
2248
2249 if (*p != ')') /* () means no args, skip while. */
2250 {
2251 depth = 0;
2252 while (*p)
2253 {
2254 if (depth <= 0 && (*p == ',' || *p == ')'))
2255 {
2256 /* Avoid parsing of ellipsis, they will be handled below.
2257 Also avoid ``void'' as above. */
2258 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2259 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2260 {
2261 argtypes[argcount].type =
2262 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2263 argcount += 1;
2264 }
2265 argtypetext = p + 1;
2266 }
2267
2268 if (*p == '(' || *p == '<')
2269 {
2270 depth += 1;
2271 }
2272 else if (*p == ')' || *p == '>')
2273 {
2274 depth -= 1;
2275 }
2276
2277 p += 1;
2278 }
2279 }
2280
2281 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2282
2283 /* Now update the old "stub" type into a real type. */
2284 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2285 TYPE_DOMAIN_TYPE (mtype) = type;
2286 TYPE_FIELDS (mtype) = argtypes;
2287 TYPE_NFIELDS (mtype) = argcount;
2288 TYPE_STUB (mtype) = 0;
2289 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2290 if (p[-2] == '.')
2291 TYPE_VARARGS (mtype) = 1;
2292
2293 xfree (demangled_name);
2294 }
2295
2296 /* This is the external interface to check_stub_method, above. This
2297 function unstubs all of the signatures for TYPE's METHOD_ID method
2298 name. After calling this function TYPE_FN_FIELD_STUB will be
2299 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2300 correct.
2301
2302 This function unfortunately can not die until stabs do. */
2303
2304 void
2305 check_stub_method_group (struct type *type, int method_id)
2306 {
2307 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2308 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2309 int j, found_stub = 0;
2310
2311 for (j = 0; j < len; j++)
2312 if (TYPE_FN_FIELD_STUB (f, j))
2313 {
2314 found_stub = 1;
2315 check_stub_method (type, method_id, j);
2316 }
2317
2318 /* GNU v3 methods with incorrect names were corrected when we read
2319 in type information, because it was cheaper to do it then. The
2320 only GNU v2 methods with incorrect method names are operators and
2321 destructors; destructors were also corrected when we read in type
2322 information.
2323
2324 Therefore the only thing we need to handle here are v2 operator
2325 names. */
2326 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2327 {
2328 int ret;
2329 char dem_opname[256];
2330
2331 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2332 method_id),
2333 dem_opname, DMGL_ANSI);
2334 if (!ret)
2335 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2336 method_id),
2337 dem_opname, 0);
2338 if (ret)
2339 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2340 }
2341 }
2342
2343 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2344 const struct cplus_struct_type cplus_struct_default = { };
2345
2346 void
2347 allocate_cplus_struct_type (struct type *type)
2348 {
2349 if (HAVE_CPLUS_STRUCT (type))
2350 /* Structure was already allocated. Nothing more to do. */
2351 return;
2352
2353 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2354 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2355 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2356 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2357 }
2358
2359 const struct gnat_aux_type gnat_aux_default =
2360 { NULL };
2361
2362 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2363 and allocate the associated gnat-specific data. The gnat-specific
2364 data is also initialized to gnat_aux_default. */
2365
2366 void
2367 allocate_gnat_aux_type (struct type *type)
2368 {
2369 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2370 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2371 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2372 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2373 }
2374
2375 /* Helper function to initialize the standard scalar types.
2376
2377 If NAME is non-NULL, then it is used to initialize the type name.
2378 Note that NAME is not copied; it is required to have a lifetime at
2379 least as long as OBJFILE. */
2380
2381 struct type *
2382 init_type (enum type_code code, int length, int flags,
2383 const char *name, struct objfile *objfile)
2384 {
2385 struct type *type;
2386
2387 type = alloc_type (objfile);
2388 TYPE_CODE (type) = code;
2389 TYPE_LENGTH (type) = length;
2390
2391 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2392 if (flags & TYPE_FLAG_UNSIGNED)
2393 TYPE_UNSIGNED (type) = 1;
2394 if (flags & TYPE_FLAG_NOSIGN)
2395 TYPE_NOSIGN (type) = 1;
2396 if (flags & TYPE_FLAG_STUB)
2397 TYPE_STUB (type) = 1;
2398 if (flags & TYPE_FLAG_TARGET_STUB)
2399 TYPE_TARGET_STUB (type) = 1;
2400 if (flags & TYPE_FLAG_STATIC)
2401 TYPE_STATIC (type) = 1;
2402 if (flags & TYPE_FLAG_PROTOTYPED)
2403 TYPE_PROTOTYPED (type) = 1;
2404 if (flags & TYPE_FLAG_INCOMPLETE)
2405 TYPE_INCOMPLETE (type) = 1;
2406 if (flags & TYPE_FLAG_VARARGS)
2407 TYPE_VARARGS (type) = 1;
2408 if (flags & TYPE_FLAG_VECTOR)
2409 TYPE_VECTOR (type) = 1;
2410 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2411 TYPE_STUB_SUPPORTED (type) = 1;
2412 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2413 TYPE_FIXED_INSTANCE (type) = 1;
2414 if (flags & TYPE_FLAG_GNU_IFUNC)
2415 TYPE_GNU_IFUNC (type) = 1;
2416
2417 TYPE_NAME (type) = name;
2418
2419 /* C++ fancies. */
2420
2421 if (name && strcmp (name, "char") == 0)
2422 TYPE_NOSIGN (type) = 1;
2423
2424 switch (code)
2425 {
2426 case TYPE_CODE_STRUCT:
2427 case TYPE_CODE_UNION:
2428 case TYPE_CODE_NAMESPACE:
2429 INIT_CPLUS_SPECIFIC (type);
2430 break;
2431 case TYPE_CODE_FLT:
2432 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2433 break;
2434 case TYPE_CODE_FUNC:
2435 INIT_FUNC_SPECIFIC (type);
2436 break;
2437 }
2438 return type;
2439 }
2440 \f
2441 /* Queries on types. */
2442
2443 int
2444 can_dereference (struct type *t)
2445 {
2446 /* FIXME: Should we return true for references as well as
2447 pointers? */
2448 CHECK_TYPEDEF (t);
2449 return
2450 (t != NULL
2451 && TYPE_CODE (t) == TYPE_CODE_PTR
2452 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2453 }
2454
2455 int
2456 is_integral_type (struct type *t)
2457 {
2458 CHECK_TYPEDEF (t);
2459 return
2460 ((t != NULL)
2461 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2462 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2463 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2464 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2465 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2466 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2467 }
2468
2469 /* Return true if TYPE is scalar. */
2470
2471 static int
2472 is_scalar_type (struct type *type)
2473 {
2474 CHECK_TYPEDEF (type);
2475
2476 switch (TYPE_CODE (type))
2477 {
2478 case TYPE_CODE_ARRAY:
2479 case TYPE_CODE_STRUCT:
2480 case TYPE_CODE_UNION:
2481 case TYPE_CODE_SET:
2482 case TYPE_CODE_STRING:
2483 return 0;
2484 default:
2485 return 1;
2486 }
2487 }
2488
2489 /* Return true if T is scalar, or a composite type which in practice has
2490 the memory layout of a scalar type. E.g., an array or struct with only
2491 one scalar element inside it, or a union with only scalar elements. */
2492
2493 int
2494 is_scalar_type_recursive (struct type *t)
2495 {
2496 CHECK_TYPEDEF (t);
2497
2498 if (is_scalar_type (t))
2499 return 1;
2500 /* Are we dealing with an array or string of known dimensions? */
2501 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2502 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2503 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2504 {
2505 LONGEST low_bound, high_bound;
2506 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2507
2508 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2509
2510 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2511 }
2512 /* Are we dealing with a struct with one element? */
2513 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2514 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2515 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2516 {
2517 int i, n = TYPE_NFIELDS (t);
2518
2519 /* If all elements of the union are scalar, then the union is scalar. */
2520 for (i = 0; i < n; i++)
2521 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2522 return 0;
2523
2524 return 1;
2525 }
2526
2527 return 0;
2528 }
2529
2530 /* Return true is T is a class or a union. False otherwise. */
2531
2532 int
2533 class_or_union_p (const struct type *t)
2534 {
2535 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2536 || TYPE_CODE (t) == TYPE_CODE_UNION);
2537 }
2538
2539 /* A helper function which returns true if types A and B represent the
2540 "same" class type. This is true if the types have the same main
2541 type, or the same name. */
2542
2543 int
2544 class_types_same_p (const struct type *a, const struct type *b)
2545 {
2546 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2547 || (TYPE_NAME (a) && TYPE_NAME (b)
2548 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2549 }
2550
2551 /* If BASE is an ancestor of DCLASS return the distance between them.
2552 otherwise return -1;
2553 eg:
2554
2555 class A {};
2556 class B: public A {};
2557 class C: public B {};
2558 class D: C {};
2559
2560 distance_to_ancestor (A, A, 0) = 0
2561 distance_to_ancestor (A, B, 0) = 1
2562 distance_to_ancestor (A, C, 0) = 2
2563 distance_to_ancestor (A, D, 0) = 3
2564
2565 If PUBLIC is 1 then only public ancestors are considered,
2566 and the function returns the distance only if BASE is a public ancestor
2567 of DCLASS.
2568 Eg:
2569
2570 distance_to_ancestor (A, D, 1) = -1. */
2571
2572 static int
2573 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2574 {
2575 int i;
2576 int d;
2577
2578 CHECK_TYPEDEF (base);
2579 CHECK_TYPEDEF (dclass);
2580
2581 if (class_types_same_p (base, dclass))
2582 return 0;
2583
2584 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2585 {
2586 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2587 continue;
2588
2589 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2590 if (d >= 0)
2591 return 1 + d;
2592 }
2593
2594 return -1;
2595 }
2596
2597 /* Check whether BASE is an ancestor or base class or DCLASS
2598 Return 1 if so, and 0 if not.
2599 Note: If BASE and DCLASS are of the same type, this function
2600 will return 1. So for some class A, is_ancestor (A, A) will
2601 return 1. */
2602
2603 int
2604 is_ancestor (struct type *base, struct type *dclass)
2605 {
2606 return distance_to_ancestor (base, dclass, 0) >= 0;
2607 }
2608
2609 /* Like is_ancestor, but only returns true when BASE is a public
2610 ancestor of DCLASS. */
2611
2612 int
2613 is_public_ancestor (struct type *base, struct type *dclass)
2614 {
2615 return distance_to_ancestor (base, dclass, 1) >= 0;
2616 }
2617
2618 /* A helper function for is_unique_ancestor. */
2619
2620 static int
2621 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2622 int *offset,
2623 const gdb_byte *valaddr, int embedded_offset,
2624 CORE_ADDR address, struct value *val)
2625 {
2626 int i, count = 0;
2627
2628 CHECK_TYPEDEF (base);
2629 CHECK_TYPEDEF (dclass);
2630
2631 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2632 {
2633 struct type *iter;
2634 int this_offset;
2635
2636 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2637
2638 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2639 address, val);
2640
2641 if (class_types_same_p (base, iter))
2642 {
2643 /* If this is the first subclass, set *OFFSET and set count
2644 to 1. Otherwise, if this is at the same offset as
2645 previous instances, do nothing. Otherwise, increment
2646 count. */
2647 if (*offset == -1)
2648 {
2649 *offset = this_offset;
2650 count = 1;
2651 }
2652 else if (this_offset == *offset)
2653 {
2654 /* Nothing. */
2655 }
2656 else
2657 ++count;
2658 }
2659 else
2660 count += is_unique_ancestor_worker (base, iter, offset,
2661 valaddr,
2662 embedded_offset + this_offset,
2663 address, val);
2664 }
2665
2666 return count;
2667 }
2668
2669 /* Like is_ancestor, but only returns true if BASE is a unique base
2670 class of the type of VAL. */
2671
2672 int
2673 is_unique_ancestor (struct type *base, struct value *val)
2674 {
2675 int offset = -1;
2676
2677 return is_unique_ancestor_worker (base, value_type (val), &offset,
2678 value_contents_for_printing (val),
2679 value_embedded_offset (val),
2680 value_address (val), val) == 1;
2681 }
2682
2683 \f
2684 /* Overload resolution. */
2685
2686 /* Return the sum of the rank of A with the rank of B. */
2687
2688 struct rank
2689 sum_ranks (struct rank a, struct rank b)
2690 {
2691 struct rank c;
2692 c.rank = a.rank + b.rank;
2693 c.subrank = a.subrank + b.subrank;
2694 return c;
2695 }
2696
2697 /* Compare rank A and B and return:
2698 0 if a = b
2699 1 if a is better than b
2700 -1 if b is better than a. */
2701
2702 int
2703 compare_ranks (struct rank a, struct rank b)
2704 {
2705 if (a.rank == b.rank)
2706 {
2707 if (a.subrank == b.subrank)
2708 return 0;
2709 if (a.subrank < b.subrank)
2710 return 1;
2711 if (a.subrank > b.subrank)
2712 return -1;
2713 }
2714
2715 if (a.rank < b.rank)
2716 return 1;
2717
2718 /* a.rank > b.rank */
2719 return -1;
2720 }
2721
2722 /* Functions for overload resolution begin here. */
2723
2724 /* Compare two badness vectors A and B and return the result.
2725 0 => A and B are identical
2726 1 => A and B are incomparable
2727 2 => A is better than B
2728 3 => A is worse than B */
2729
2730 int
2731 compare_badness (struct badness_vector *a, struct badness_vector *b)
2732 {
2733 int i;
2734 int tmp;
2735 short found_pos = 0; /* any positives in c? */
2736 short found_neg = 0; /* any negatives in c? */
2737
2738 /* differing lengths => incomparable */
2739 if (a->length != b->length)
2740 return 1;
2741
2742 /* Subtract b from a */
2743 for (i = 0; i < a->length; i++)
2744 {
2745 tmp = compare_ranks (b->rank[i], a->rank[i]);
2746 if (tmp > 0)
2747 found_pos = 1;
2748 else if (tmp < 0)
2749 found_neg = 1;
2750 }
2751
2752 if (found_pos)
2753 {
2754 if (found_neg)
2755 return 1; /* incomparable */
2756 else
2757 return 3; /* A > B */
2758 }
2759 else
2760 /* no positives */
2761 {
2762 if (found_neg)
2763 return 2; /* A < B */
2764 else
2765 return 0; /* A == B */
2766 }
2767 }
2768
2769 /* Rank a function by comparing its parameter types (PARMS, length
2770 NPARMS), to the types of an argument list (ARGS, length NARGS).
2771 Return a pointer to a badness vector. This has NARGS + 1
2772 entries. */
2773
2774 struct badness_vector *
2775 rank_function (struct type **parms, int nparms,
2776 struct value **args, int nargs)
2777 {
2778 int i;
2779 struct badness_vector *bv;
2780 int min_len = nparms < nargs ? nparms : nargs;
2781
2782 bv = xmalloc (sizeof (struct badness_vector));
2783 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2784 bv->rank = XNEWVEC (struct rank, nargs + 1);
2785
2786 /* First compare the lengths of the supplied lists.
2787 If there is a mismatch, set it to a high value. */
2788
2789 /* pai/1997-06-03 FIXME: when we have debug info about default
2790 arguments and ellipsis parameter lists, we should consider those
2791 and rank the length-match more finely. */
2792
2793 LENGTH_MATCH (bv) = (nargs != nparms)
2794 ? LENGTH_MISMATCH_BADNESS
2795 : EXACT_MATCH_BADNESS;
2796
2797 /* Now rank all the parameters of the candidate function. */
2798 for (i = 1; i <= min_len; i++)
2799 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2800 args[i - 1]);
2801
2802 /* If more arguments than parameters, add dummy entries. */
2803 for (i = min_len + 1; i <= nargs; i++)
2804 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2805
2806 return bv;
2807 }
2808
2809 /* Compare the names of two integer types, assuming that any sign
2810 qualifiers have been checked already. We do it this way because
2811 there may be an "int" in the name of one of the types. */
2812
2813 static int
2814 integer_types_same_name_p (const char *first, const char *second)
2815 {
2816 int first_p, second_p;
2817
2818 /* If both are shorts, return 1; if neither is a short, keep
2819 checking. */
2820 first_p = (strstr (first, "short") != NULL);
2821 second_p = (strstr (second, "short") != NULL);
2822 if (first_p && second_p)
2823 return 1;
2824 if (first_p || second_p)
2825 return 0;
2826
2827 /* Likewise for long. */
2828 first_p = (strstr (first, "long") != NULL);
2829 second_p = (strstr (second, "long") != NULL);
2830 if (first_p && second_p)
2831 return 1;
2832 if (first_p || second_p)
2833 return 0;
2834
2835 /* Likewise for char. */
2836 first_p = (strstr (first, "char") != NULL);
2837 second_p = (strstr (second, "char") != NULL);
2838 if (first_p && second_p)
2839 return 1;
2840 if (first_p || second_p)
2841 return 0;
2842
2843 /* They must both be ints. */
2844 return 1;
2845 }
2846
2847 /* Compares type A to type B returns 1 if the represent the same type
2848 0 otherwise. */
2849
2850 int
2851 types_equal (struct type *a, struct type *b)
2852 {
2853 /* Identical type pointers. */
2854 /* However, this still doesn't catch all cases of same type for b
2855 and a. The reason is that builtin types are different from
2856 the same ones constructed from the object. */
2857 if (a == b)
2858 return 1;
2859
2860 /* Resolve typedefs */
2861 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2862 a = check_typedef (a);
2863 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2864 b = check_typedef (b);
2865
2866 /* If after resolving typedefs a and b are not of the same type
2867 code then they are not equal. */
2868 if (TYPE_CODE (a) != TYPE_CODE (b))
2869 return 0;
2870
2871 /* If a and b are both pointers types or both reference types then
2872 they are equal of the same type iff the objects they refer to are
2873 of the same type. */
2874 if (TYPE_CODE (a) == TYPE_CODE_PTR
2875 || TYPE_CODE (a) == TYPE_CODE_REF)
2876 return types_equal (TYPE_TARGET_TYPE (a),
2877 TYPE_TARGET_TYPE (b));
2878
2879 /* Well, damnit, if the names are exactly the same, I'll say they
2880 are exactly the same. This happens when we generate method
2881 stubs. The types won't point to the same address, but they
2882 really are the same. */
2883
2884 if (TYPE_NAME (a) && TYPE_NAME (b)
2885 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2886 return 1;
2887
2888 /* Check if identical after resolving typedefs. */
2889 if (a == b)
2890 return 1;
2891
2892 /* Two function types are equal if their argument and return types
2893 are equal. */
2894 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2895 {
2896 int i;
2897
2898 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2899 return 0;
2900
2901 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2902 return 0;
2903
2904 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2905 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2906 return 0;
2907
2908 return 1;
2909 }
2910
2911 return 0;
2912 }
2913 \f
2914 /* Deep comparison of types. */
2915
2916 /* An entry in the type-equality bcache. */
2917
2918 typedef struct type_equality_entry
2919 {
2920 struct type *type1, *type2;
2921 } type_equality_entry_d;
2922
2923 DEF_VEC_O (type_equality_entry_d);
2924
2925 /* A helper function to compare two strings. Returns 1 if they are
2926 the same, 0 otherwise. Handles NULLs properly. */
2927
2928 static int
2929 compare_maybe_null_strings (const char *s, const char *t)
2930 {
2931 if (s == NULL && t != NULL)
2932 return 0;
2933 else if (s != NULL && t == NULL)
2934 return 0;
2935 else if (s == NULL && t== NULL)
2936 return 1;
2937 return strcmp (s, t) == 0;
2938 }
2939
2940 /* A helper function for check_types_worklist that checks two types for
2941 "deep" equality. Returns non-zero if the types are considered the
2942 same, zero otherwise. */
2943
2944 static int
2945 check_types_equal (struct type *type1, struct type *type2,
2946 VEC (type_equality_entry_d) **worklist)
2947 {
2948 CHECK_TYPEDEF (type1);
2949 CHECK_TYPEDEF (type2);
2950
2951 if (type1 == type2)
2952 return 1;
2953
2954 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2955 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2956 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2957 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2958 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2959 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2960 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2961 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2962 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2963 return 0;
2964
2965 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2966 TYPE_TAG_NAME (type2)))
2967 return 0;
2968 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2969 return 0;
2970
2971 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2972 {
2973 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2974 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2975 return 0;
2976 }
2977 else
2978 {
2979 int i;
2980
2981 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2982 {
2983 const struct field *field1 = &TYPE_FIELD (type1, i);
2984 const struct field *field2 = &TYPE_FIELD (type2, i);
2985 struct type_equality_entry entry;
2986
2987 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2988 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2989 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2990 return 0;
2991 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2992 FIELD_NAME (*field2)))
2993 return 0;
2994 switch (FIELD_LOC_KIND (*field1))
2995 {
2996 case FIELD_LOC_KIND_BITPOS:
2997 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2998 return 0;
2999 break;
3000 case FIELD_LOC_KIND_ENUMVAL:
3001 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3002 return 0;
3003 break;
3004 case FIELD_LOC_KIND_PHYSADDR:
3005 if (FIELD_STATIC_PHYSADDR (*field1)
3006 != FIELD_STATIC_PHYSADDR (*field2))
3007 return 0;
3008 break;
3009 case FIELD_LOC_KIND_PHYSNAME:
3010 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3011 FIELD_STATIC_PHYSNAME (*field2)))
3012 return 0;
3013 break;
3014 case FIELD_LOC_KIND_DWARF_BLOCK:
3015 {
3016 struct dwarf2_locexpr_baton *block1, *block2;
3017
3018 block1 = FIELD_DWARF_BLOCK (*field1);
3019 block2 = FIELD_DWARF_BLOCK (*field2);
3020 if (block1->per_cu != block2->per_cu
3021 || block1->size != block2->size
3022 || memcmp (block1->data, block2->data, block1->size) != 0)
3023 return 0;
3024 }
3025 break;
3026 default:
3027 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3028 "%d by check_types_equal"),
3029 FIELD_LOC_KIND (*field1));
3030 }
3031
3032 entry.type1 = FIELD_TYPE (*field1);
3033 entry.type2 = FIELD_TYPE (*field2);
3034 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3035 }
3036 }
3037
3038 if (TYPE_TARGET_TYPE (type1) != NULL)
3039 {
3040 struct type_equality_entry entry;
3041
3042 if (TYPE_TARGET_TYPE (type2) == NULL)
3043 return 0;
3044
3045 entry.type1 = TYPE_TARGET_TYPE (type1);
3046 entry.type2 = TYPE_TARGET_TYPE (type2);
3047 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3048 }
3049 else if (TYPE_TARGET_TYPE (type2) != NULL)
3050 return 0;
3051
3052 return 1;
3053 }
3054
3055 /* Check types on a worklist for equality. Returns zero if any pair
3056 is not equal, non-zero if they are all considered equal. */
3057
3058 static int
3059 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3060 struct bcache *cache)
3061 {
3062 while (!VEC_empty (type_equality_entry_d, *worklist))
3063 {
3064 struct type_equality_entry entry;
3065 int added;
3066
3067 entry = *VEC_last (type_equality_entry_d, *worklist);
3068 VEC_pop (type_equality_entry_d, *worklist);
3069
3070 /* If the type pair has already been visited, we know it is
3071 ok. */
3072 bcache_full (&entry, sizeof (entry), cache, &added);
3073 if (!added)
3074 continue;
3075
3076 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3077 return 0;
3078 }
3079
3080 return 1;
3081 }
3082
3083 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3084 "deep comparison". Otherwise return zero. */
3085
3086 int
3087 types_deeply_equal (struct type *type1, struct type *type2)
3088 {
3089 volatile struct gdb_exception except;
3090 int result = 0;
3091 struct bcache *cache;
3092 VEC (type_equality_entry_d) *worklist = NULL;
3093 struct type_equality_entry entry;
3094
3095 gdb_assert (type1 != NULL && type2 != NULL);
3096
3097 /* Early exit for the simple case. */
3098 if (type1 == type2)
3099 return 1;
3100
3101 cache = bcache_xmalloc (NULL, NULL);
3102
3103 entry.type1 = type1;
3104 entry.type2 = type2;
3105 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3106
3107 TRY_CATCH (except, RETURN_MASK_ALL)
3108 {
3109 result = check_types_worklist (&worklist, cache);
3110 }
3111 /* check_types_worklist calls several nested helper functions,
3112 some of which can raise a GDB Exception, so we just check
3113 and rethrow here. If there is a GDB exception, a comparison
3114 is not capable (or trusted), so exit. */
3115 bcache_xfree (cache);
3116 VEC_free (type_equality_entry_d, worklist);
3117 /* Rethrow if there was a problem. */
3118 if (except.reason < 0)
3119 throw_exception (except);
3120
3121 return result;
3122 }
3123 \f
3124 /* Compare one type (PARM) for compatibility with another (ARG).
3125 * PARM is intended to be the parameter type of a function; and
3126 * ARG is the supplied argument's type. This function tests if
3127 * the latter can be converted to the former.
3128 * VALUE is the argument's value or NULL if none (or called recursively)
3129 *
3130 * Return 0 if they are identical types;
3131 * Otherwise, return an integer which corresponds to how compatible
3132 * PARM is to ARG. The higher the return value, the worse the match.
3133 * Generally the "bad" conversions are all uniformly assigned a 100. */
3134
3135 struct rank
3136 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3137 {
3138 struct rank rank = {0,0};
3139
3140 if (types_equal (parm, arg))
3141 return EXACT_MATCH_BADNESS;
3142
3143 /* Resolve typedefs */
3144 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3145 parm = check_typedef (parm);
3146 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3147 arg = check_typedef (arg);
3148
3149 /* See through references, since we can almost make non-references
3150 references. */
3151 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3152 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3153 REFERENCE_CONVERSION_BADNESS));
3154 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3155 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3156 REFERENCE_CONVERSION_BADNESS));
3157 if (overload_debug)
3158 /* Debugging only. */
3159 fprintf_filtered (gdb_stderr,
3160 "------ Arg is %s [%d], parm is %s [%d]\n",
3161 TYPE_NAME (arg), TYPE_CODE (arg),
3162 TYPE_NAME (parm), TYPE_CODE (parm));
3163
3164 /* x -> y means arg of type x being supplied for parameter of type y. */
3165
3166 switch (TYPE_CODE (parm))
3167 {
3168 case TYPE_CODE_PTR:
3169 switch (TYPE_CODE (arg))
3170 {
3171 case TYPE_CODE_PTR:
3172
3173 /* Allowed pointer conversions are:
3174 (a) pointer to void-pointer conversion. */
3175 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3176 return VOID_PTR_CONVERSION_BADNESS;
3177
3178 /* (b) pointer to ancestor-pointer conversion. */
3179 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3180 TYPE_TARGET_TYPE (arg),
3181 0);
3182 if (rank.subrank >= 0)
3183 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3184
3185 return INCOMPATIBLE_TYPE_BADNESS;
3186 case TYPE_CODE_ARRAY:
3187 if (types_equal (TYPE_TARGET_TYPE (parm),
3188 TYPE_TARGET_TYPE (arg)))
3189 return EXACT_MATCH_BADNESS;
3190 return INCOMPATIBLE_TYPE_BADNESS;
3191 case TYPE_CODE_FUNC:
3192 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3193 case TYPE_CODE_INT:
3194 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3195 {
3196 if (value_as_long (value) == 0)
3197 {
3198 /* Null pointer conversion: allow it to be cast to a pointer.
3199 [4.10.1 of C++ standard draft n3290] */
3200 return NULL_POINTER_CONVERSION_BADNESS;
3201 }
3202 else
3203 {
3204 /* If type checking is disabled, allow the conversion. */
3205 if (!strict_type_checking)
3206 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3207 }
3208 }
3209 /* fall through */
3210 case TYPE_CODE_ENUM:
3211 case TYPE_CODE_FLAGS:
3212 case TYPE_CODE_CHAR:
3213 case TYPE_CODE_RANGE:
3214 case TYPE_CODE_BOOL:
3215 default:
3216 return INCOMPATIBLE_TYPE_BADNESS;
3217 }
3218 case TYPE_CODE_ARRAY:
3219 switch (TYPE_CODE (arg))
3220 {
3221 case TYPE_CODE_PTR:
3222 case TYPE_CODE_ARRAY:
3223 return rank_one_type (TYPE_TARGET_TYPE (parm),
3224 TYPE_TARGET_TYPE (arg), NULL);
3225 default:
3226 return INCOMPATIBLE_TYPE_BADNESS;
3227 }
3228 case TYPE_CODE_FUNC:
3229 switch (TYPE_CODE (arg))
3230 {
3231 case TYPE_CODE_PTR: /* funcptr -> func */
3232 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3233 default:
3234 return INCOMPATIBLE_TYPE_BADNESS;
3235 }
3236 case TYPE_CODE_INT:
3237 switch (TYPE_CODE (arg))
3238 {
3239 case TYPE_CODE_INT:
3240 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3241 {
3242 /* Deal with signed, unsigned, and plain chars and
3243 signed and unsigned ints. */
3244 if (TYPE_NOSIGN (parm))
3245 {
3246 /* This case only for character types. */
3247 if (TYPE_NOSIGN (arg))
3248 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3249 else /* signed/unsigned char -> plain char */
3250 return INTEGER_CONVERSION_BADNESS;
3251 }
3252 else if (TYPE_UNSIGNED (parm))
3253 {
3254 if (TYPE_UNSIGNED (arg))
3255 {
3256 /* unsigned int -> unsigned int, or
3257 unsigned long -> unsigned long */
3258 if (integer_types_same_name_p (TYPE_NAME (parm),
3259 TYPE_NAME (arg)))
3260 return EXACT_MATCH_BADNESS;
3261 else if (integer_types_same_name_p (TYPE_NAME (arg),
3262 "int")
3263 && integer_types_same_name_p (TYPE_NAME (parm),
3264 "long"))
3265 /* unsigned int -> unsigned long */
3266 return INTEGER_PROMOTION_BADNESS;
3267 else
3268 /* unsigned long -> unsigned int */
3269 return INTEGER_CONVERSION_BADNESS;
3270 }
3271 else
3272 {
3273 if (integer_types_same_name_p (TYPE_NAME (arg),
3274 "long")
3275 && integer_types_same_name_p (TYPE_NAME (parm),
3276 "int"))
3277 /* signed long -> unsigned int */
3278 return INTEGER_CONVERSION_BADNESS;
3279 else
3280 /* signed int/long -> unsigned int/long */
3281 return INTEGER_CONVERSION_BADNESS;
3282 }
3283 }
3284 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3285 {
3286 if (integer_types_same_name_p (TYPE_NAME (parm),
3287 TYPE_NAME (arg)))
3288 return EXACT_MATCH_BADNESS;
3289 else if (integer_types_same_name_p (TYPE_NAME (arg),
3290 "int")
3291 && integer_types_same_name_p (TYPE_NAME (parm),
3292 "long"))
3293 return INTEGER_PROMOTION_BADNESS;
3294 else
3295 return INTEGER_CONVERSION_BADNESS;
3296 }
3297 else
3298 return INTEGER_CONVERSION_BADNESS;
3299 }
3300 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3301 return INTEGER_PROMOTION_BADNESS;
3302 else
3303 return INTEGER_CONVERSION_BADNESS;
3304 case TYPE_CODE_ENUM:
3305 case TYPE_CODE_FLAGS:
3306 case TYPE_CODE_CHAR:
3307 case TYPE_CODE_RANGE:
3308 case TYPE_CODE_BOOL:
3309 if (TYPE_DECLARED_CLASS (arg))
3310 return INCOMPATIBLE_TYPE_BADNESS;
3311 return INTEGER_PROMOTION_BADNESS;
3312 case TYPE_CODE_FLT:
3313 return INT_FLOAT_CONVERSION_BADNESS;
3314 case TYPE_CODE_PTR:
3315 return NS_POINTER_CONVERSION_BADNESS;
3316 default:
3317 return INCOMPATIBLE_TYPE_BADNESS;
3318 }
3319 break;
3320 case TYPE_CODE_ENUM:
3321 switch (TYPE_CODE (arg))
3322 {
3323 case TYPE_CODE_INT:
3324 case TYPE_CODE_CHAR:
3325 case TYPE_CODE_RANGE:
3326 case TYPE_CODE_BOOL:
3327 case TYPE_CODE_ENUM:
3328 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3329 return INCOMPATIBLE_TYPE_BADNESS;
3330 return INTEGER_CONVERSION_BADNESS;
3331 case TYPE_CODE_FLT:
3332 return INT_FLOAT_CONVERSION_BADNESS;
3333 default:
3334 return INCOMPATIBLE_TYPE_BADNESS;
3335 }
3336 break;
3337 case TYPE_CODE_CHAR:
3338 switch (TYPE_CODE (arg))
3339 {
3340 case TYPE_CODE_RANGE:
3341 case TYPE_CODE_BOOL:
3342 case TYPE_CODE_ENUM:
3343 if (TYPE_DECLARED_CLASS (arg))
3344 return INCOMPATIBLE_TYPE_BADNESS;
3345 return INTEGER_CONVERSION_BADNESS;
3346 case TYPE_CODE_FLT:
3347 return INT_FLOAT_CONVERSION_BADNESS;
3348 case TYPE_CODE_INT:
3349 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3350 return INTEGER_CONVERSION_BADNESS;
3351 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3352 return INTEGER_PROMOTION_BADNESS;
3353 /* >>> !! else fall through !! <<< */
3354 case TYPE_CODE_CHAR:
3355 /* Deal with signed, unsigned, and plain chars for C++ and
3356 with int cases falling through from previous case. */
3357 if (TYPE_NOSIGN (parm))
3358 {
3359 if (TYPE_NOSIGN (arg))
3360 return EXACT_MATCH_BADNESS;
3361 else
3362 return INTEGER_CONVERSION_BADNESS;
3363 }
3364 else if (TYPE_UNSIGNED (parm))
3365 {
3366 if (TYPE_UNSIGNED (arg))
3367 return EXACT_MATCH_BADNESS;
3368 else
3369 return INTEGER_PROMOTION_BADNESS;
3370 }
3371 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3372 return EXACT_MATCH_BADNESS;
3373 else
3374 return INTEGER_CONVERSION_BADNESS;
3375 default:
3376 return INCOMPATIBLE_TYPE_BADNESS;
3377 }
3378 break;
3379 case TYPE_CODE_RANGE:
3380 switch (TYPE_CODE (arg))
3381 {
3382 case TYPE_CODE_INT:
3383 case TYPE_CODE_CHAR:
3384 case TYPE_CODE_RANGE:
3385 case TYPE_CODE_BOOL:
3386 case TYPE_CODE_ENUM:
3387 return INTEGER_CONVERSION_BADNESS;
3388 case TYPE_CODE_FLT:
3389 return INT_FLOAT_CONVERSION_BADNESS;
3390 default:
3391 return INCOMPATIBLE_TYPE_BADNESS;
3392 }
3393 break;
3394 case TYPE_CODE_BOOL:
3395 switch (TYPE_CODE (arg))
3396 {
3397 /* n3290 draft, section 4.12.1 (conv.bool):
3398
3399 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3400 pointer to member type can be converted to a prvalue of type
3401 bool. A zero value, null pointer value, or null member pointer
3402 value is converted to false; any other value is converted to
3403 true. A prvalue of type std::nullptr_t can be converted to a
3404 prvalue of type bool; the resulting value is false." */
3405 case TYPE_CODE_INT:
3406 case TYPE_CODE_CHAR:
3407 case TYPE_CODE_ENUM:
3408 case TYPE_CODE_FLT:
3409 case TYPE_CODE_MEMBERPTR:
3410 case TYPE_CODE_PTR:
3411 return BOOL_CONVERSION_BADNESS;
3412 case TYPE_CODE_RANGE:
3413 return INCOMPATIBLE_TYPE_BADNESS;
3414 case TYPE_CODE_BOOL:
3415 return EXACT_MATCH_BADNESS;
3416 default:
3417 return INCOMPATIBLE_TYPE_BADNESS;
3418 }
3419 break;
3420 case TYPE_CODE_FLT:
3421 switch (TYPE_CODE (arg))
3422 {
3423 case TYPE_CODE_FLT:
3424 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3425 return FLOAT_PROMOTION_BADNESS;
3426 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3427 return EXACT_MATCH_BADNESS;
3428 else
3429 return FLOAT_CONVERSION_BADNESS;
3430 case TYPE_CODE_INT:
3431 case TYPE_CODE_BOOL:
3432 case TYPE_CODE_ENUM:
3433 case TYPE_CODE_RANGE:
3434 case TYPE_CODE_CHAR:
3435 return INT_FLOAT_CONVERSION_BADNESS;
3436 default:
3437 return INCOMPATIBLE_TYPE_BADNESS;
3438 }
3439 break;
3440 case TYPE_CODE_COMPLEX:
3441 switch (TYPE_CODE (arg))
3442 { /* Strictly not needed for C++, but... */
3443 case TYPE_CODE_FLT:
3444 return FLOAT_PROMOTION_BADNESS;
3445 case TYPE_CODE_COMPLEX:
3446 return EXACT_MATCH_BADNESS;
3447 default:
3448 return INCOMPATIBLE_TYPE_BADNESS;
3449 }
3450 break;
3451 case TYPE_CODE_STRUCT:
3452 switch (TYPE_CODE (arg))
3453 {
3454 case TYPE_CODE_STRUCT:
3455 /* Check for derivation */
3456 rank.subrank = distance_to_ancestor (parm, arg, 0);
3457 if (rank.subrank >= 0)
3458 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3459 /* else fall through */
3460 default:
3461 return INCOMPATIBLE_TYPE_BADNESS;
3462 }
3463 break;
3464 case TYPE_CODE_UNION:
3465 switch (TYPE_CODE (arg))
3466 {
3467 case TYPE_CODE_UNION:
3468 default:
3469 return INCOMPATIBLE_TYPE_BADNESS;
3470 }
3471 break;
3472 case TYPE_CODE_MEMBERPTR:
3473 switch (TYPE_CODE (arg))
3474 {
3475 default:
3476 return INCOMPATIBLE_TYPE_BADNESS;
3477 }
3478 break;
3479 case TYPE_CODE_METHOD:
3480 switch (TYPE_CODE (arg))
3481 {
3482
3483 default:
3484 return INCOMPATIBLE_TYPE_BADNESS;
3485 }
3486 break;
3487 case TYPE_CODE_REF:
3488 switch (TYPE_CODE (arg))
3489 {
3490
3491 default:
3492 return INCOMPATIBLE_TYPE_BADNESS;
3493 }
3494
3495 break;
3496 case TYPE_CODE_SET:
3497 switch (TYPE_CODE (arg))
3498 {
3499 /* Not in C++ */
3500 case TYPE_CODE_SET:
3501 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3502 TYPE_FIELD_TYPE (arg, 0), NULL);
3503 default:
3504 return INCOMPATIBLE_TYPE_BADNESS;
3505 }
3506 break;
3507 case TYPE_CODE_VOID:
3508 default:
3509 return INCOMPATIBLE_TYPE_BADNESS;
3510 } /* switch (TYPE_CODE (arg)) */
3511 }
3512
3513 /* End of functions for overload resolution. */
3514 \f
3515 /* Routines to pretty-print types. */
3516
3517 static void
3518 print_bit_vector (B_TYPE *bits, int nbits)
3519 {
3520 int bitno;
3521
3522 for (bitno = 0; bitno < nbits; bitno++)
3523 {
3524 if ((bitno % 8) == 0)
3525 {
3526 puts_filtered (" ");
3527 }
3528 if (B_TST (bits, bitno))
3529 printf_filtered (("1"));
3530 else
3531 printf_filtered (("0"));
3532 }
3533 }
3534
3535 /* Note the first arg should be the "this" pointer, we may not want to
3536 include it since we may get into a infinitely recursive
3537 situation. */
3538
3539 static void
3540 print_args (struct field *args, int nargs, int spaces)
3541 {
3542 if (args != NULL)
3543 {
3544 int i;
3545
3546 for (i = 0; i < nargs; i++)
3547 {
3548 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3549 args[i].name != NULL ? args[i].name : "<NULL>");
3550 recursive_dump_type (args[i].type, spaces + 2);
3551 }
3552 }
3553 }
3554
3555 int
3556 field_is_static (struct field *f)
3557 {
3558 /* "static" fields are the fields whose location is not relative
3559 to the address of the enclosing struct. It would be nice to
3560 have a dedicated flag that would be set for static fields when
3561 the type is being created. But in practice, checking the field
3562 loc_kind should give us an accurate answer. */
3563 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3564 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3565 }
3566
3567 static void
3568 dump_fn_fieldlists (struct type *type, int spaces)
3569 {
3570 int method_idx;
3571 int overload_idx;
3572 struct fn_field *f;
3573
3574 printfi_filtered (spaces, "fn_fieldlists ");
3575 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3576 printf_filtered ("\n");
3577 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3578 {
3579 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3580 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3581 method_idx,
3582 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3583 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3584 gdb_stdout);
3585 printf_filtered (_(") length %d\n"),
3586 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3587 for (overload_idx = 0;
3588 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3589 overload_idx++)
3590 {
3591 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3592 overload_idx,
3593 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3594 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3595 gdb_stdout);
3596 printf_filtered (")\n");
3597 printfi_filtered (spaces + 8, "type ");
3598 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3599 gdb_stdout);
3600 printf_filtered ("\n");
3601
3602 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3603 spaces + 8 + 2);
3604
3605 printfi_filtered (spaces + 8, "args ");
3606 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3607 gdb_stdout);
3608 printf_filtered ("\n");
3609 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3610 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3611 spaces + 8 + 2);
3612 printfi_filtered (spaces + 8, "fcontext ");
3613 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3614 gdb_stdout);
3615 printf_filtered ("\n");
3616
3617 printfi_filtered (spaces + 8, "is_const %d\n",
3618 TYPE_FN_FIELD_CONST (f, overload_idx));
3619 printfi_filtered (spaces + 8, "is_volatile %d\n",
3620 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3621 printfi_filtered (spaces + 8, "is_private %d\n",
3622 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3623 printfi_filtered (spaces + 8, "is_protected %d\n",
3624 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3625 printfi_filtered (spaces + 8, "is_stub %d\n",
3626 TYPE_FN_FIELD_STUB (f, overload_idx));
3627 printfi_filtered (spaces + 8, "voffset %u\n",
3628 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3629 }
3630 }
3631 }
3632
3633 static void
3634 print_cplus_stuff (struct type *type, int spaces)
3635 {
3636 printfi_filtered (spaces, "n_baseclasses %d\n",
3637 TYPE_N_BASECLASSES (type));
3638 printfi_filtered (spaces, "nfn_fields %d\n",
3639 TYPE_NFN_FIELDS (type));
3640 if (TYPE_N_BASECLASSES (type) > 0)
3641 {
3642 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3643 TYPE_N_BASECLASSES (type));
3644 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3645 gdb_stdout);
3646 printf_filtered (")");
3647
3648 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3649 TYPE_N_BASECLASSES (type));
3650 puts_filtered ("\n");
3651 }
3652 if (TYPE_NFIELDS (type) > 0)
3653 {
3654 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3655 {
3656 printfi_filtered (spaces,
3657 "private_field_bits (%d bits at *",
3658 TYPE_NFIELDS (type));
3659 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3660 gdb_stdout);
3661 printf_filtered (")");
3662 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3663 TYPE_NFIELDS (type));
3664 puts_filtered ("\n");
3665 }
3666 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3667 {
3668 printfi_filtered (spaces,
3669 "protected_field_bits (%d bits at *",
3670 TYPE_NFIELDS (type));
3671 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3672 gdb_stdout);
3673 printf_filtered (")");
3674 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3675 TYPE_NFIELDS (type));
3676 puts_filtered ("\n");
3677 }
3678 }
3679 if (TYPE_NFN_FIELDS (type) > 0)
3680 {
3681 dump_fn_fieldlists (type, spaces);
3682 }
3683 }
3684
3685 /* Print the contents of the TYPE's type_specific union, assuming that
3686 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3687
3688 static void
3689 print_gnat_stuff (struct type *type, int spaces)
3690 {
3691 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3692
3693 recursive_dump_type (descriptive_type, spaces + 2);
3694 }
3695
3696 static struct obstack dont_print_type_obstack;
3697
3698 void
3699 recursive_dump_type (struct type *type, int spaces)
3700 {
3701 int idx;
3702
3703 if (spaces == 0)
3704 obstack_begin (&dont_print_type_obstack, 0);
3705
3706 if (TYPE_NFIELDS (type) > 0
3707 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3708 {
3709 struct type **first_dont_print
3710 = (struct type **) obstack_base (&dont_print_type_obstack);
3711
3712 int i = (struct type **)
3713 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3714
3715 while (--i >= 0)
3716 {
3717 if (type == first_dont_print[i])
3718 {
3719 printfi_filtered (spaces, "type node ");
3720 gdb_print_host_address (type, gdb_stdout);
3721 printf_filtered (_(" <same as already seen type>\n"));
3722 return;
3723 }
3724 }
3725
3726 obstack_ptr_grow (&dont_print_type_obstack, type);
3727 }
3728
3729 printfi_filtered (spaces, "type node ");
3730 gdb_print_host_address (type, gdb_stdout);
3731 printf_filtered ("\n");
3732 printfi_filtered (spaces, "name '%s' (",
3733 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3734 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3735 printf_filtered (")\n");
3736 printfi_filtered (spaces, "tagname '%s' (",
3737 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3738 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3739 printf_filtered (")\n");
3740 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3741 switch (TYPE_CODE (type))
3742 {
3743 case TYPE_CODE_UNDEF:
3744 printf_filtered ("(TYPE_CODE_UNDEF)");
3745 break;
3746 case TYPE_CODE_PTR:
3747 printf_filtered ("(TYPE_CODE_PTR)");
3748 break;
3749 case TYPE_CODE_ARRAY:
3750 printf_filtered ("(TYPE_CODE_ARRAY)");
3751 break;
3752 case TYPE_CODE_STRUCT:
3753 printf_filtered ("(TYPE_CODE_STRUCT)");
3754 break;
3755 case TYPE_CODE_UNION:
3756 printf_filtered ("(TYPE_CODE_UNION)");
3757 break;
3758 case TYPE_CODE_ENUM:
3759 printf_filtered ("(TYPE_CODE_ENUM)");
3760 break;
3761 case TYPE_CODE_FLAGS:
3762 printf_filtered ("(TYPE_CODE_FLAGS)");
3763 break;
3764 case TYPE_CODE_FUNC:
3765 printf_filtered ("(TYPE_CODE_FUNC)");
3766 break;
3767 case TYPE_CODE_INT:
3768 printf_filtered ("(TYPE_CODE_INT)");
3769 break;
3770 case TYPE_CODE_FLT:
3771 printf_filtered ("(TYPE_CODE_FLT)");
3772 break;
3773 case TYPE_CODE_VOID:
3774 printf_filtered ("(TYPE_CODE_VOID)");
3775 break;
3776 case TYPE_CODE_SET:
3777 printf_filtered ("(TYPE_CODE_SET)");
3778 break;
3779 case TYPE_CODE_RANGE:
3780 printf_filtered ("(TYPE_CODE_RANGE)");
3781 break;
3782 case TYPE_CODE_STRING:
3783 printf_filtered ("(TYPE_CODE_STRING)");
3784 break;
3785 case TYPE_CODE_ERROR:
3786 printf_filtered ("(TYPE_CODE_ERROR)");
3787 break;
3788 case TYPE_CODE_MEMBERPTR:
3789 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3790 break;
3791 case TYPE_CODE_METHODPTR:
3792 printf_filtered ("(TYPE_CODE_METHODPTR)");
3793 break;
3794 case TYPE_CODE_METHOD:
3795 printf_filtered ("(TYPE_CODE_METHOD)");
3796 break;
3797 case TYPE_CODE_REF:
3798 printf_filtered ("(TYPE_CODE_REF)");
3799 break;
3800 case TYPE_CODE_CHAR:
3801 printf_filtered ("(TYPE_CODE_CHAR)");
3802 break;
3803 case TYPE_CODE_BOOL:
3804 printf_filtered ("(TYPE_CODE_BOOL)");
3805 break;
3806 case TYPE_CODE_COMPLEX:
3807 printf_filtered ("(TYPE_CODE_COMPLEX)");
3808 break;
3809 case TYPE_CODE_TYPEDEF:
3810 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3811 break;
3812 case TYPE_CODE_NAMESPACE:
3813 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3814 break;
3815 default:
3816 printf_filtered ("(UNKNOWN TYPE CODE)");
3817 break;
3818 }
3819 puts_filtered ("\n");
3820 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3821 if (TYPE_OBJFILE_OWNED (type))
3822 {
3823 printfi_filtered (spaces, "objfile ");
3824 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3825 }
3826 else
3827 {
3828 printfi_filtered (spaces, "gdbarch ");
3829 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3830 }
3831 printf_filtered ("\n");
3832 printfi_filtered (spaces, "target_type ");
3833 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3834 printf_filtered ("\n");
3835 if (TYPE_TARGET_TYPE (type) != NULL)
3836 {
3837 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3838 }
3839 printfi_filtered (spaces, "pointer_type ");
3840 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3841 printf_filtered ("\n");
3842 printfi_filtered (spaces, "reference_type ");
3843 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3844 printf_filtered ("\n");
3845 printfi_filtered (spaces, "type_chain ");
3846 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3847 printf_filtered ("\n");
3848 printfi_filtered (spaces, "instance_flags 0x%x",
3849 TYPE_INSTANCE_FLAGS (type));
3850 if (TYPE_CONST (type))
3851 {
3852 puts_filtered (" TYPE_FLAG_CONST");
3853 }
3854 if (TYPE_VOLATILE (type))
3855 {
3856 puts_filtered (" TYPE_FLAG_VOLATILE");
3857 }
3858 if (TYPE_CODE_SPACE (type))
3859 {
3860 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3861 }
3862 if (TYPE_DATA_SPACE (type))
3863 {
3864 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3865 }
3866 if (TYPE_ADDRESS_CLASS_1 (type))
3867 {
3868 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3869 }
3870 if (TYPE_ADDRESS_CLASS_2 (type))
3871 {
3872 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3873 }
3874 if (TYPE_RESTRICT (type))
3875 {
3876 puts_filtered (" TYPE_FLAG_RESTRICT");
3877 }
3878 puts_filtered ("\n");
3879
3880 printfi_filtered (spaces, "flags");
3881 if (TYPE_UNSIGNED (type))
3882 {
3883 puts_filtered (" TYPE_FLAG_UNSIGNED");
3884 }
3885 if (TYPE_NOSIGN (type))
3886 {
3887 puts_filtered (" TYPE_FLAG_NOSIGN");
3888 }
3889 if (TYPE_STUB (type))
3890 {
3891 puts_filtered (" TYPE_FLAG_STUB");
3892 }
3893 if (TYPE_TARGET_STUB (type))
3894 {
3895 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3896 }
3897 if (TYPE_STATIC (type))
3898 {
3899 puts_filtered (" TYPE_FLAG_STATIC");
3900 }
3901 if (TYPE_PROTOTYPED (type))
3902 {
3903 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3904 }
3905 if (TYPE_INCOMPLETE (type))
3906 {
3907 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3908 }
3909 if (TYPE_VARARGS (type))
3910 {
3911 puts_filtered (" TYPE_FLAG_VARARGS");
3912 }
3913 /* This is used for things like AltiVec registers on ppc. Gcc emits
3914 an attribute for the array type, which tells whether or not we
3915 have a vector, instead of a regular array. */
3916 if (TYPE_VECTOR (type))
3917 {
3918 puts_filtered (" TYPE_FLAG_VECTOR");
3919 }
3920 if (TYPE_FIXED_INSTANCE (type))
3921 {
3922 puts_filtered (" TYPE_FIXED_INSTANCE");
3923 }
3924 if (TYPE_STUB_SUPPORTED (type))
3925 {
3926 puts_filtered (" TYPE_STUB_SUPPORTED");
3927 }
3928 if (TYPE_NOTTEXT (type))
3929 {
3930 puts_filtered (" TYPE_NOTTEXT");
3931 }
3932 puts_filtered ("\n");
3933 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3934 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3935 puts_filtered ("\n");
3936 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3937 {
3938 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3939 printfi_filtered (spaces + 2,
3940 "[%d] enumval %s type ",
3941 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3942 else
3943 printfi_filtered (spaces + 2,
3944 "[%d] bitpos %d bitsize %d type ",
3945 idx, TYPE_FIELD_BITPOS (type, idx),
3946 TYPE_FIELD_BITSIZE (type, idx));
3947 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3948 printf_filtered (" name '%s' (",
3949 TYPE_FIELD_NAME (type, idx) != NULL
3950 ? TYPE_FIELD_NAME (type, idx)
3951 : "<NULL>");
3952 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3953 printf_filtered (")\n");
3954 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3955 {
3956 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3957 }
3958 }
3959 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3960 {
3961 printfi_filtered (spaces, "low %s%s high %s%s\n",
3962 plongest (TYPE_LOW_BOUND (type)),
3963 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3964 plongest (TYPE_HIGH_BOUND (type)),
3965 TYPE_HIGH_BOUND_UNDEFINED (type)
3966 ? " (undefined)" : "");
3967 }
3968 printfi_filtered (spaces, "vptr_basetype ");
3969 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3970 puts_filtered ("\n");
3971 if (TYPE_VPTR_BASETYPE (type) != NULL)
3972 {
3973 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3974 }
3975 printfi_filtered (spaces, "vptr_fieldno %d\n",
3976 TYPE_VPTR_FIELDNO (type));
3977
3978 switch (TYPE_SPECIFIC_FIELD (type))
3979 {
3980 case TYPE_SPECIFIC_CPLUS_STUFF:
3981 printfi_filtered (spaces, "cplus_stuff ");
3982 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3983 gdb_stdout);
3984 puts_filtered ("\n");
3985 print_cplus_stuff (type, spaces);
3986 break;
3987
3988 case TYPE_SPECIFIC_GNAT_STUFF:
3989 printfi_filtered (spaces, "gnat_stuff ");
3990 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3991 puts_filtered ("\n");
3992 print_gnat_stuff (type, spaces);
3993 break;
3994
3995 case TYPE_SPECIFIC_FLOATFORMAT:
3996 printfi_filtered (spaces, "floatformat ");
3997 if (TYPE_FLOATFORMAT (type) == NULL)
3998 puts_filtered ("(null)");
3999 else
4000 {
4001 puts_filtered ("{ ");
4002 if (TYPE_FLOATFORMAT (type)[0] == NULL
4003 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4004 puts_filtered ("(null)");
4005 else
4006 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4007
4008 puts_filtered (", ");
4009 if (TYPE_FLOATFORMAT (type)[1] == NULL
4010 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4011 puts_filtered ("(null)");
4012 else
4013 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4014
4015 puts_filtered (" }");
4016 }
4017 puts_filtered ("\n");
4018 break;
4019
4020 case TYPE_SPECIFIC_FUNC:
4021 printfi_filtered (spaces, "calling_convention %d\n",
4022 TYPE_CALLING_CONVENTION (type));
4023 /* tail_call_list is not printed. */
4024 break;
4025 }
4026
4027 if (spaces == 0)
4028 obstack_free (&dont_print_type_obstack, NULL);
4029 }
4030 \f
4031 /* Trivial helpers for the libiberty hash table, for mapping one
4032 type to another. */
4033
4034 struct type_pair
4035 {
4036 struct type *old, *new;
4037 };
4038
4039 static hashval_t
4040 type_pair_hash (const void *item)
4041 {
4042 const struct type_pair *pair = item;
4043
4044 return htab_hash_pointer (pair->old);
4045 }
4046
4047 static int
4048 type_pair_eq (const void *item_lhs, const void *item_rhs)
4049 {
4050 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4051
4052 return lhs->old == rhs->old;
4053 }
4054
4055 /* Allocate the hash table used by copy_type_recursive to walk
4056 types without duplicates. We use OBJFILE's obstack, because
4057 OBJFILE is about to be deleted. */
4058
4059 htab_t
4060 create_copied_types_hash (struct objfile *objfile)
4061 {
4062 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4063 NULL, &objfile->objfile_obstack,
4064 hashtab_obstack_allocate,
4065 dummy_obstack_deallocate);
4066 }
4067
4068 /* Recursively copy (deep copy) TYPE, if it is associated with
4069 OBJFILE. Return a new type allocated using malloc, a saved type if
4070 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4071 not associated with OBJFILE. */
4072
4073 struct type *
4074 copy_type_recursive (struct objfile *objfile,
4075 struct type *type,
4076 htab_t copied_types)
4077 {
4078 struct type_pair *stored, pair;
4079 void **slot;
4080 struct type *new_type;
4081
4082 if (! TYPE_OBJFILE_OWNED (type))
4083 return type;
4084
4085 /* This type shouldn't be pointing to any types in other objfiles;
4086 if it did, the type might disappear unexpectedly. */
4087 gdb_assert (TYPE_OBJFILE (type) == objfile);
4088
4089 pair.old = type;
4090 slot = htab_find_slot (copied_types, &pair, INSERT);
4091 if (*slot != NULL)
4092 return ((struct type_pair *) *slot)->new;
4093
4094 new_type = alloc_type_arch (get_type_arch (type));
4095
4096 /* We must add the new type to the hash table immediately, in case
4097 we encounter this type again during a recursive call below. */
4098 stored
4099 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4100 stored->old = type;
4101 stored->new = new_type;
4102 *slot = stored;
4103
4104 /* Copy the common fields of types. For the main type, we simply
4105 copy the entire thing and then update specific fields as needed. */
4106 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4107 TYPE_OBJFILE_OWNED (new_type) = 0;
4108 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4109
4110 if (TYPE_NAME (type))
4111 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4112 if (TYPE_TAG_NAME (type))
4113 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4114
4115 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4116 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4117
4118 /* Copy the fields. */
4119 if (TYPE_NFIELDS (type))
4120 {
4121 int i, nfields;
4122
4123 nfields = TYPE_NFIELDS (type);
4124 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4125 for (i = 0; i < nfields; i++)
4126 {
4127 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4128 TYPE_FIELD_ARTIFICIAL (type, i);
4129 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4130 if (TYPE_FIELD_TYPE (type, i))
4131 TYPE_FIELD_TYPE (new_type, i)
4132 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4133 copied_types);
4134 if (TYPE_FIELD_NAME (type, i))
4135 TYPE_FIELD_NAME (new_type, i) =
4136 xstrdup (TYPE_FIELD_NAME (type, i));
4137 switch (TYPE_FIELD_LOC_KIND (type, i))
4138 {
4139 case FIELD_LOC_KIND_BITPOS:
4140 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4141 TYPE_FIELD_BITPOS (type, i));
4142 break;
4143 case FIELD_LOC_KIND_ENUMVAL:
4144 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4145 TYPE_FIELD_ENUMVAL (type, i));
4146 break;
4147 case FIELD_LOC_KIND_PHYSADDR:
4148 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4149 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4150 break;
4151 case FIELD_LOC_KIND_PHYSNAME:
4152 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4153 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4154 i)));
4155 break;
4156 default:
4157 internal_error (__FILE__, __LINE__,
4158 _("Unexpected type field location kind: %d"),
4159 TYPE_FIELD_LOC_KIND (type, i));
4160 }
4161 }
4162 }
4163
4164 /* For range types, copy the bounds information. */
4165 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4166 {
4167 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4168 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4169 }
4170
4171 /* Copy the data location information. */
4172 if (TYPE_DATA_LOCATION (type) != NULL)
4173 {
4174 TYPE_DATA_LOCATION (new_type)
4175 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4176 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4177 sizeof (struct dynamic_prop));
4178 }
4179
4180 /* Copy pointers to other types. */
4181 if (TYPE_TARGET_TYPE (type))
4182 TYPE_TARGET_TYPE (new_type) =
4183 copy_type_recursive (objfile,
4184 TYPE_TARGET_TYPE (type),
4185 copied_types);
4186 if (TYPE_VPTR_BASETYPE (type))
4187 TYPE_VPTR_BASETYPE (new_type) =
4188 copy_type_recursive (objfile,
4189 TYPE_VPTR_BASETYPE (type),
4190 copied_types);
4191 /* Maybe copy the type_specific bits.
4192
4193 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4194 base classes and methods. There's no fundamental reason why we
4195 can't, but at the moment it is not needed. */
4196
4197 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4198 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4199 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4200 || TYPE_CODE (type) == TYPE_CODE_UNION
4201 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4202 INIT_CPLUS_SPECIFIC (new_type);
4203
4204 return new_type;
4205 }
4206
4207 /* Make a copy of the given TYPE, except that the pointer & reference
4208 types are not preserved.
4209
4210 This function assumes that the given type has an associated objfile.
4211 This objfile is used to allocate the new type. */
4212
4213 struct type *
4214 copy_type (const struct type *type)
4215 {
4216 struct type *new_type;
4217
4218 gdb_assert (TYPE_OBJFILE_OWNED (type));
4219
4220 new_type = alloc_type_copy (type);
4221 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4222 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4223 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4224 sizeof (struct main_type));
4225 if (TYPE_DATA_LOCATION (type) != NULL)
4226 {
4227 TYPE_DATA_LOCATION (new_type)
4228 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4229 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4230 sizeof (struct dynamic_prop));
4231 }
4232
4233 return new_type;
4234 }
4235 \f
4236 /* Helper functions to initialize architecture-specific types. */
4237
4238 /* Allocate a type structure associated with GDBARCH and set its
4239 CODE, LENGTH, and NAME fields. */
4240
4241 struct type *
4242 arch_type (struct gdbarch *gdbarch,
4243 enum type_code code, int length, char *name)
4244 {
4245 struct type *type;
4246
4247 type = alloc_type_arch (gdbarch);
4248 TYPE_CODE (type) = code;
4249 TYPE_LENGTH (type) = length;
4250
4251 if (name)
4252 TYPE_NAME (type) = xstrdup (name);
4253
4254 return type;
4255 }
4256
4257 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4258 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4259 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4260
4261 struct type *
4262 arch_integer_type (struct gdbarch *gdbarch,
4263 int bit, int unsigned_p, char *name)
4264 {
4265 struct type *t;
4266
4267 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4268 if (unsigned_p)
4269 TYPE_UNSIGNED (t) = 1;
4270 if (name && strcmp (name, "char") == 0)
4271 TYPE_NOSIGN (t) = 1;
4272
4273 return t;
4274 }
4275
4276 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4277 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4278 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4279
4280 struct type *
4281 arch_character_type (struct gdbarch *gdbarch,
4282 int bit, int unsigned_p, char *name)
4283 {
4284 struct type *t;
4285
4286 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4287 if (unsigned_p)
4288 TYPE_UNSIGNED (t) = 1;
4289
4290 return t;
4291 }
4292
4293 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4294 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4295 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4296
4297 struct type *
4298 arch_boolean_type (struct gdbarch *gdbarch,
4299 int bit, int unsigned_p, char *name)
4300 {
4301 struct type *t;
4302
4303 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4304 if (unsigned_p)
4305 TYPE_UNSIGNED (t) = 1;
4306
4307 return t;
4308 }
4309
4310 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4311 BIT is the type size in bits; if BIT equals -1, the size is
4312 determined by the floatformat. NAME is the type name. Set the
4313 TYPE_FLOATFORMAT from FLOATFORMATS. */
4314
4315 struct type *
4316 arch_float_type (struct gdbarch *gdbarch,
4317 int bit, char *name, const struct floatformat **floatformats)
4318 {
4319 struct type *t;
4320
4321 if (bit == -1)
4322 {
4323 gdb_assert (floatformats != NULL);
4324 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4325 bit = floatformats[0]->totalsize;
4326 }
4327 gdb_assert (bit >= 0);
4328
4329 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4330 TYPE_FLOATFORMAT (t) = floatformats;
4331 return t;
4332 }
4333
4334 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4335 NAME is the type name. TARGET_TYPE is the component float type. */
4336
4337 struct type *
4338 arch_complex_type (struct gdbarch *gdbarch,
4339 char *name, struct type *target_type)
4340 {
4341 struct type *t;
4342
4343 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4344 2 * TYPE_LENGTH (target_type), name);
4345 TYPE_TARGET_TYPE (t) = target_type;
4346 return t;
4347 }
4348
4349 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4350 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4351
4352 struct type *
4353 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4354 {
4355 int nfields = length * TARGET_CHAR_BIT;
4356 struct type *type;
4357
4358 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4359 TYPE_UNSIGNED (type) = 1;
4360 TYPE_NFIELDS (type) = nfields;
4361 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4362
4363 return type;
4364 }
4365
4366 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4367 position BITPOS is called NAME. */
4368
4369 void
4370 append_flags_type_flag (struct type *type, int bitpos, char *name)
4371 {
4372 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4373 gdb_assert (bitpos < TYPE_NFIELDS (type));
4374 gdb_assert (bitpos >= 0);
4375
4376 if (name)
4377 {
4378 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4379 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4380 }
4381 else
4382 {
4383 /* Don't show this field to the user. */
4384 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4385 }
4386 }
4387
4388 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4389 specified by CODE) associated with GDBARCH. NAME is the type name. */
4390
4391 struct type *
4392 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4393 {
4394 struct type *t;
4395
4396 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4397 t = arch_type (gdbarch, code, 0, NULL);
4398 TYPE_TAG_NAME (t) = name;
4399 INIT_CPLUS_SPECIFIC (t);
4400 return t;
4401 }
4402
4403 /* Add new field with name NAME and type FIELD to composite type T.
4404 Do not set the field's position or adjust the type's length;
4405 the caller should do so. Return the new field. */
4406
4407 struct field *
4408 append_composite_type_field_raw (struct type *t, char *name,
4409 struct type *field)
4410 {
4411 struct field *f;
4412
4413 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4414 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4415 sizeof (struct field) * TYPE_NFIELDS (t));
4416 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4417 memset (f, 0, sizeof f[0]);
4418 FIELD_TYPE (f[0]) = field;
4419 FIELD_NAME (f[0]) = name;
4420 return f;
4421 }
4422
4423 /* Add new field with name NAME and type FIELD to composite type T.
4424 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4425
4426 void
4427 append_composite_type_field_aligned (struct type *t, char *name,
4428 struct type *field, int alignment)
4429 {
4430 struct field *f = append_composite_type_field_raw (t, name, field);
4431
4432 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4433 {
4434 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4435 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4436 }
4437 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4438 {
4439 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4440 if (TYPE_NFIELDS (t) > 1)
4441 {
4442 SET_FIELD_BITPOS (f[0],
4443 (FIELD_BITPOS (f[-1])
4444 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4445 * TARGET_CHAR_BIT)));
4446
4447 if (alignment)
4448 {
4449 int left;
4450
4451 alignment *= TARGET_CHAR_BIT;
4452 left = FIELD_BITPOS (f[0]) % alignment;
4453
4454 if (left)
4455 {
4456 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4457 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4458 }
4459 }
4460 }
4461 }
4462 }
4463
4464 /* Add new field with name NAME and type FIELD to composite type T. */
4465
4466 void
4467 append_composite_type_field (struct type *t, char *name,
4468 struct type *field)
4469 {
4470 append_composite_type_field_aligned (t, name, field, 0);
4471 }
4472
4473 static struct gdbarch_data *gdbtypes_data;
4474
4475 const struct builtin_type *
4476 builtin_type (struct gdbarch *gdbarch)
4477 {
4478 return gdbarch_data (gdbarch, gdbtypes_data);
4479 }
4480
4481 static void *
4482 gdbtypes_post_init (struct gdbarch *gdbarch)
4483 {
4484 struct builtin_type *builtin_type
4485 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4486
4487 /* Basic types. */
4488 builtin_type->builtin_void
4489 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4490 builtin_type->builtin_char
4491 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4492 !gdbarch_char_signed (gdbarch), "char");
4493 builtin_type->builtin_signed_char
4494 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4495 0, "signed char");
4496 builtin_type->builtin_unsigned_char
4497 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4498 1, "unsigned char");
4499 builtin_type->builtin_short
4500 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4501 0, "short");
4502 builtin_type->builtin_unsigned_short
4503 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4504 1, "unsigned short");
4505 builtin_type->builtin_int
4506 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4507 0, "int");
4508 builtin_type->builtin_unsigned_int
4509 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4510 1, "unsigned int");
4511 builtin_type->builtin_long
4512 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4513 0, "long");
4514 builtin_type->builtin_unsigned_long
4515 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4516 1, "unsigned long");
4517 builtin_type->builtin_long_long
4518 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4519 0, "long long");
4520 builtin_type->builtin_unsigned_long_long
4521 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4522 1, "unsigned long long");
4523 builtin_type->builtin_float
4524 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4525 "float", gdbarch_float_format (gdbarch));
4526 builtin_type->builtin_double
4527 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4528 "double", gdbarch_double_format (gdbarch));
4529 builtin_type->builtin_long_double
4530 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4531 "long double", gdbarch_long_double_format (gdbarch));
4532 builtin_type->builtin_complex
4533 = arch_complex_type (gdbarch, "complex",
4534 builtin_type->builtin_float);
4535 builtin_type->builtin_double_complex
4536 = arch_complex_type (gdbarch, "double complex",
4537 builtin_type->builtin_double);
4538 builtin_type->builtin_string
4539 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4540 builtin_type->builtin_bool
4541 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4542
4543 /* The following three are about decimal floating point types, which
4544 are 32-bits, 64-bits and 128-bits respectively. */
4545 builtin_type->builtin_decfloat
4546 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4547 builtin_type->builtin_decdouble
4548 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4549 builtin_type->builtin_declong
4550 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4551
4552 /* "True" character types. */
4553 builtin_type->builtin_true_char
4554 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4555 builtin_type->builtin_true_unsigned_char
4556 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4557
4558 /* Fixed-size integer types. */
4559 builtin_type->builtin_int0
4560 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4561 builtin_type->builtin_int8
4562 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4563 builtin_type->builtin_uint8
4564 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4565 builtin_type->builtin_int16
4566 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4567 builtin_type->builtin_uint16
4568 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4569 builtin_type->builtin_int32
4570 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4571 builtin_type->builtin_uint32
4572 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4573 builtin_type->builtin_int64
4574 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4575 builtin_type->builtin_uint64
4576 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4577 builtin_type->builtin_int128
4578 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4579 builtin_type->builtin_uint128
4580 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4581 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4582 TYPE_INSTANCE_FLAG_NOTTEXT;
4583 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4584 TYPE_INSTANCE_FLAG_NOTTEXT;
4585
4586 /* Wide character types. */
4587 builtin_type->builtin_char16
4588 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4589 builtin_type->builtin_char32
4590 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4591
4592
4593 /* Default data/code pointer types. */
4594 builtin_type->builtin_data_ptr
4595 = lookup_pointer_type (builtin_type->builtin_void);
4596 builtin_type->builtin_func_ptr
4597 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4598 builtin_type->builtin_func_func
4599 = lookup_function_type (builtin_type->builtin_func_ptr);
4600
4601 /* This type represents a GDB internal function. */
4602 builtin_type->internal_fn
4603 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4604 "<internal function>");
4605
4606 /* This type represents an xmethod. */
4607 builtin_type->xmethod
4608 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4609
4610 return builtin_type;
4611 }
4612
4613 /* This set of objfile-based types is intended to be used by symbol
4614 readers as basic types. */
4615
4616 static const struct objfile_data *objfile_type_data;
4617
4618 const struct objfile_type *
4619 objfile_type (struct objfile *objfile)
4620 {
4621 struct gdbarch *gdbarch;
4622 struct objfile_type *objfile_type
4623 = objfile_data (objfile, objfile_type_data);
4624
4625 if (objfile_type)
4626 return objfile_type;
4627
4628 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4629 1, struct objfile_type);
4630
4631 /* Use the objfile architecture to determine basic type properties. */
4632 gdbarch = get_objfile_arch (objfile);
4633
4634 /* Basic types. */
4635 objfile_type->builtin_void
4636 = init_type (TYPE_CODE_VOID, 1,
4637 0,
4638 "void", objfile);
4639
4640 objfile_type->builtin_char
4641 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4642 (TYPE_FLAG_NOSIGN
4643 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4644 "char", objfile);
4645 objfile_type->builtin_signed_char
4646 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4647 0,
4648 "signed char", objfile);
4649 objfile_type->builtin_unsigned_char
4650 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4651 TYPE_FLAG_UNSIGNED,
4652 "unsigned char", objfile);
4653 objfile_type->builtin_short
4654 = init_type (TYPE_CODE_INT,
4655 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4656 0, "short", objfile);
4657 objfile_type->builtin_unsigned_short
4658 = init_type (TYPE_CODE_INT,
4659 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4660 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4661 objfile_type->builtin_int
4662 = init_type (TYPE_CODE_INT,
4663 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4664 0, "int", objfile);
4665 objfile_type->builtin_unsigned_int
4666 = init_type (TYPE_CODE_INT,
4667 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4668 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4669 objfile_type->builtin_long
4670 = init_type (TYPE_CODE_INT,
4671 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4672 0, "long", objfile);
4673 objfile_type->builtin_unsigned_long
4674 = init_type (TYPE_CODE_INT,
4675 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4676 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4677 objfile_type->builtin_long_long
4678 = init_type (TYPE_CODE_INT,
4679 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4680 0, "long long", objfile);
4681 objfile_type->builtin_unsigned_long_long
4682 = init_type (TYPE_CODE_INT,
4683 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4684 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4685
4686 objfile_type->builtin_float
4687 = init_type (TYPE_CODE_FLT,
4688 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4689 0, "float", objfile);
4690 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4691 = gdbarch_float_format (gdbarch);
4692 objfile_type->builtin_double
4693 = init_type (TYPE_CODE_FLT,
4694 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4695 0, "double", objfile);
4696 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4697 = gdbarch_double_format (gdbarch);
4698 objfile_type->builtin_long_double
4699 = init_type (TYPE_CODE_FLT,
4700 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4701 0, "long double", objfile);
4702 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4703 = gdbarch_long_double_format (gdbarch);
4704
4705 /* This type represents a type that was unrecognized in symbol read-in. */
4706 objfile_type->builtin_error
4707 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4708
4709 /* The following set of types is used for symbols with no
4710 debug information. */
4711 objfile_type->nodebug_text_symbol
4712 = init_type (TYPE_CODE_FUNC, 1, 0,
4713 "<text variable, no debug info>", objfile);
4714 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4715 = objfile_type->builtin_int;
4716 objfile_type->nodebug_text_gnu_ifunc_symbol
4717 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4718 "<text gnu-indirect-function variable, no debug info>",
4719 objfile);
4720 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4721 = objfile_type->nodebug_text_symbol;
4722 objfile_type->nodebug_got_plt_symbol
4723 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4724 "<text from jump slot in .got.plt, no debug info>",
4725 objfile);
4726 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4727 = objfile_type->nodebug_text_symbol;
4728 objfile_type->nodebug_data_symbol
4729 = init_type (TYPE_CODE_INT,
4730 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4731 "<data variable, no debug info>", objfile);
4732 objfile_type->nodebug_unknown_symbol
4733 = init_type (TYPE_CODE_INT, 1, 0,
4734 "<variable (not text or data), no debug info>", objfile);
4735 objfile_type->nodebug_tls_symbol
4736 = init_type (TYPE_CODE_INT,
4737 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4738 "<thread local variable, no debug info>", objfile);
4739
4740 /* NOTE: on some targets, addresses and pointers are not necessarily
4741 the same.
4742
4743 The upshot is:
4744 - gdb's `struct type' always describes the target's
4745 representation.
4746 - gdb's `struct value' objects should always hold values in
4747 target form.
4748 - gdb's CORE_ADDR values are addresses in the unified virtual
4749 address space that the assembler and linker work with. Thus,
4750 since target_read_memory takes a CORE_ADDR as an argument, it
4751 can access any memory on the target, even if the processor has
4752 separate code and data address spaces.
4753
4754 In this context, objfile_type->builtin_core_addr is a bit odd:
4755 it's a target type for a value the target will never see. It's
4756 only used to hold the values of (typeless) linker symbols, which
4757 are indeed in the unified virtual address space. */
4758
4759 objfile_type->builtin_core_addr
4760 = init_type (TYPE_CODE_INT,
4761 gdbarch_addr_bit (gdbarch) / 8,
4762 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4763
4764 set_objfile_data (objfile, objfile_type_data, objfile_type);
4765 return objfile_type;
4766 }
4767
4768 extern initialize_file_ftype _initialize_gdbtypes;
4769
4770 void
4771 _initialize_gdbtypes (void)
4772 {
4773 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4774 objfile_type_data = register_objfile_data ();
4775
4776 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4777 _("Set debugging of C++ overloading."),
4778 _("Show debugging of C++ overloading."),
4779 _("When enabled, ranking of the "
4780 "functions is displayed."),
4781 NULL,
4782 show_overload_debug,
4783 &setdebuglist, &showdebuglist);
4784
4785 /* Add user knob for controlling resolution of opaque types. */
4786 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4787 &opaque_type_resolution,
4788 _("Set resolution of opaque struct/class/union"
4789 " types (if set before loading symbols)."),
4790 _("Show resolution of opaque struct/class/union"
4791 " types (if set before loading symbols)."),
4792 NULL, NULL,
4793 show_opaque_type_resolution,
4794 &setlist, &showlist);
4795
4796 /* Add an option to permit non-strict type checking. */
4797 add_setshow_boolean_cmd ("type", class_support,
4798 &strict_type_checking,
4799 _("Set strict type checking."),
4800 _("Show strict type checking."),
4801 NULL, NULL,
4802 show_strict_type_checking,
4803 &setchecklist, &showchecklist);
4804 }
This page took 0.134363 seconds and 4 git commands to generate.