Add casts to memory allocation related calls
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1084 {
1085 LONGEST low_bound, high_bound;
1086
1087 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1088 low_bound = high_bound = 0;
1089 element_type = check_typedef (element_type);
1090 /* Be careful when setting the array length. Ada arrays can be
1091 empty arrays with the high_bound being smaller than the low_bound.
1092 In such cases, the array length should be zero. */
1093 if (high_bound < low_bound)
1094 TYPE_LENGTH (result_type) = 0;
1095 else if (bit_stride > 0)
1096 TYPE_LENGTH (result_type) =
1097 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1098 else
1099 TYPE_LENGTH (result_type) =
1100 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1101 }
1102 else
1103 {
1104 /* This type is dynamic and its length needs to be computed
1105 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1106 undefined by setting it to zero. Although we are not expected
1107 to trust TYPE_LENGTH in this case, setting the size to zero
1108 allows us to avoid allocating objects of random sizes in case
1109 we accidently do. */
1110 TYPE_LENGTH (result_type) = 0;
1111 }
1112
1113 TYPE_NFIELDS (result_type) = 1;
1114 TYPE_FIELDS (result_type) =
1115 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1116 TYPE_INDEX_TYPE (result_type) = range_type;
1117 if (bit_stride > 0)
1118 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1119
1120 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1121 if (TYPE_LENGTH (result_type) == 0)
1122 TYPE_TARGET_STUB (result_type) = 1;
1123
1124 return result_type;
1125 }
1126
1127 /* Same as create_array_type_with_stride but with no bit_stride
1128 (BIT_STRIDE = 0), thus building an unpacked array. */
1129
1130 struct type *
1131 create_array_type (struct type *result_type,
1132 struct type *element_type,
1133 struct type *range_type)
1134 {
1135 return create_array_type_with_stride (result_type, element_type,
1136 range_type, 0);
1137 }
1138
1139 struct type *
1140 lookup_array_range_type (struct type *element_type,
1141 LONGEST low_bound, LONGEST high_bound)
1142 {
1143 struct gdbarch *gdbarch = get_type_arch (element_type);
1144 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1145 struct type *range_type
1146 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1147
1148 return create_array_type (NULL, element_type, range_type);
1149 }
1150
1151 /* Create a string type using either a blank type supplied in
1152 RESULT_TYPE, or creating a new type. String types are similar
1153 enough to array of char types that we can use create_array_type to
1154 build the basic type and then bash it into a string type.
1155
1156 For fixed length strings, the range type contains 0 as the lower
1157 bound and the length of the string minus one as the upper bound.
1158
1159 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1160 sure it is TYPE_CODE_UNDEF before we bash it into a string
1161 type? */
1162
1163 struct type *
1164 create_string_type (struct type *result_type,
1165 struct type *string_char_type,
1166 struct type *range_type)
1167 {
1168 result_type = create_array_type (result_type,
1169 string_char_type,
1170 range_type);
1171 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1172 return result_type;
1173 }
1174
1175 struct type *
1176 lookup_string_range_type (struct type *string_char_type,
1177 LONGEST low_bound, LONGEST high_bound)
1178 {
1179 struct type *result_type;
1180
1181 result_type = lookup_array_range_type (string_char_type,
1182 low_bound, high_bound);
1183 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1184 return result_type;
1185 }
1186
1187 struct type *
1188 create_set_type (struct type *result_type, struct type *domain_type)
1189 {
1190 if (result_type == NULL)
1191 result_type = alloc_type_copy (domain_type);
1192
1193 TYPE_CODE (result_type) = TYPE_CODE_SET;
1194 TYPE_NFIELDS (result_type) = 1;
1195 TYPE_FIELDS (result_type)
1196 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1197
1198 if (!TYPE_STUB (domain_type))
1199 {
1200 LONGEST low_bound, high_bound, bit_length;
1201
1202 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1203 low_bound = high_bound = 0;
1204 bit_length = high_bound - low_bound + 1;
1205 TYPE_LENGTH (result_type)
1206 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1207 if (low_bound >= 0)
1208 TYPE_UNSIGNED (result_type) = 1;
1209 }
1210 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1211
1212 return result_type;
1213 }
1214
1215 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1216 and any array types nested inside it. */
1217
1218 void
1219 make_vector_type (struct type *array_type)
1220 {
1221 struct type *inner_array, *elt_type;
1222 int flags;
1223
1224 /* Find the innermost array type, in case the array is
1225 multi-dimensional. */
1226 inner_array = array_type;
1227 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1228 inner_array = TYPE_TARGET_TYPE (inner_array);
1229
1230 elt_type = TYPE_TARGET_TYPE (inner_array);
1231 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1232 {
1233 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1234 elt_type = make_qualified_type (elt_type, flags, NULL);
1235 TYPE_TARGET_TYPE (inner_array) = elt_type;
1236 }
1237
1238 TYPE_VECTOR (array_type) = 1;
1239 }
1240
1241 struct type *
1242 init_vector_type (struct type *elt_type, int n)
1243 {
1244 struct type *array_type;
1245
1246 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1247 make_vector_type (array_type);
1248 return array_type;
1249 }
1250
1251 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1252 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1253 confusing. "self" is a common enough replacement for "this".
1254 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1255 TYPE_CODE_METHOD. */
1256
1257 struct type *
1258 internal_type_self_type (struct type *type)
1259 {
1260 switch (TYPE_CODE (type))
1261 {
1262 case TYPE_CODE_METHODPTR:
1263 case TYPE_CODE_MEMBERPTR:
1264 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1265 return NULL;
1266 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1267 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1268 case TYPE_CODE_METHOD:
1269 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1270 return NULL;
1271 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1272 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1273 default:
1274 gdb_assert_not_reached ("bad type");
1275 }
1276 }
1277
1278 /* Set the type of the class that TYPE belongs to.
1279 In c++ this is the class of "this".
1280 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1281 TYPE_CODE_METHOD. */
1282
1283 void
1284 set_type_self_type (struct type *type, struct type *self_type)
1285 {
1286 switch (TYPE_CODE (type))
1287 {
1288 case TYPE_CODE_METHODPTR:
1289 case TYPE_CODE_MEMBERPTR:
1290 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1291 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1292 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1293 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1294 break;
1295 case TYPE_CODE_METHOD:
1296 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1297 INIT_FUNC_SPECIFIC (type);
1298 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1299 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1300 break;
1301 default:
1302 gdb_assert_not_reached ("bad type");
1303 }
1304 }
1305
1306 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1307 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1308 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1309 TYPE doesn't include the offset (that's the value of the MEMBER
1310 itself), but does include the structure type into which it points
1311 (for some reason).
1312
1313 When "smashing" the type, we preserve the objfile that the old type
1314 pointed to, since we aren't changing where the type is actually
1315 allocated. */
1316
1317 void
1318 smash_to_memberptr_type (struct type *type, struct type *self_type,
1319 struct type *to_type)
1320 {
1321 smash_type (type);
1322 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1323 TYPE_TARGET_TYPE (type) = to_type;
1324 set_type_self_type (type, self_type);
1325 /* Assume that a data member pointer is the same size as a normal
1326 pointer. */
1327 TYPE_LENGTH (type)
1328 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1329 }
1330
1331 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1332
1333 When "smashing" the type, we preserve the objfile that the old type
1334 pointed to, since we aren't changing where the type is actually
1335 allocated. */
1336
1337 void
1338 smash_to_methodptr_type (struct type *type, struct type *to_type)
1339 {
1340 smash_type (type);
1341 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1342 TYPE_TARGET_TYPE (type) = to_type;
1343 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1344 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1345 }
1346
1347 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1348 METHOD just means `function that gets an extra "this" argument'.
1349
1350 When "smashing" the type, we preserve the objfile that the old type
1351 pointed to, since we aren't changing where the type is actually
1352 allocated. */
1353
1354 void
1355 smash_to_method_type (struct type *type, struct type *self_type,
1356 struct type *to_type, struct field *args,
1357 int nargs, int varargs)
1358 {
1359 smash_type (type);
1360 TYPE_CODE (type) = TYPE_CODE_METHOD;
1361 TYPE_TARGET_TYPE (type) = to_type;
1362 set_type_self_type (type, self_type);
1363 TYPE_FIELDS (type) = args;
1364 TYPE_NFIELDS (type) = nargs;
1365 if (varargs)
1366 TYPE_VARARGS (type) = 1;
1367 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1368 }
1369
1370 /* Return a typename for a struct/union/enum type without "struct ",
1371 "union ", or "enum ". If the type has a NULL name, return NULL. */
1372
1373 const char *
1374 type_name_no_tag (const struct type *type)
1375 {
1376 if (TYPE_TAG_NAME (type) != NULL)
1377 return TYPE_TAG_NAME (type);
1378
1379 /* Is there code which expects this to return the name if there is
1380 no tag name? My guess is that this is mainly used for C++ in
1381 cases where the two will always be the same. */
1382 return TYPE_NAME (type);
1383 }
1384
1385 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1386 Since GCC PR debug/47510 DWARF provides associated information to detect the
1387 anonymous class linkage name from its typedef.
1388
1389 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1390 apply it itself. */
1391
1392 const char *
1393 type_name_no_tag_or_error (struct type *type)
1394 {
1395 struct type *saved_type = type;
1396 const char *name;
1397 struct objfile *objfile;
1398
1399 type = check_typedef (type);
1400
1401 name = type_name_no_tag (type);
1402 if (name != NULL)
1403 return name;
1404
1405 name = type_name_no_tag (saved_type);
1406 objfile = TYPE_OBJFILE (saved_type);
1407 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1408 name ? name : "<anonymous>",
1409 objfile ? objfile_name (objfile) : "<arch>");
1410 }
1411
1412 /* Lookup a typedef or primitive type named NAME, visible in lexical
1413 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1414 suitably defined. */
1415
1416 struct type *
1417 lookup_typename (const struct language_defn *language,
1418 struct gdbarch *gdbarch, const char *name,
1419 const struct block *block, int noerr)
1420 {
1421 struct symbol *sym;
1422 struct type *type;
1423
1424 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1425 language->la_language, NULL).symbol;
1426 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1427 return SYMBOL_TYPE (sym);
1428
1429 if (noerr)
1430 return NULL;
1431 error (_("No type named %s."), name);
1432 }
1433
1434 struct type *
1435 lookup_unsigned_typename (const struct language_defn *language,
1436 struct gdbarch *gdbarch, const char *name)
1437 {
1438 char *uns = (char *) alloca (strlen (name) + 10);
1439
1440 strcpy (uns, "unsigned ");
1441 strcpy (uns + 9, name);
1442 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1443 }
1444
1445 struct type *
1446 lookup_signed_typename (const struct language_defn *language,
1447 struct gdbarch *gdbarch, const char *name)
1448 {
1449 struct type *t;
1450 char *uns = (char *) alloca (strlen (name) + 8);
1451
1452 strcpy (uns, "signed ");
1453 strcpy (uns + 7, name);
1454 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1455 /* If we don't find "signed FOO" just try again with plain "FOO". */
1456 if (t != NULL)
1457 return t;
1458 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1459 }
1460
1461 /* Lookup a structure type named "struct NAME",
1462 visible in lexical block BLOCK. */
1463
1464 struct type *
1465 lookup_struct (const char *name, const struct block *block)
1466 {
1467 struct symbol *sym;
1468
1469 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1470
1471 if (sym == NULL)
1472 {
1473 error (_("No struct type named %s."), name);
1474 }
1475 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1476 {
1477 error (_("This context has class, union or enum %s, not a struct."),
1478 name);
1479 }
1480 return (SYMBOL_TYPE (sym));
1481 }
1482
1483 /* Lookup a union type named "union NAME",
1484 visible in lexical block BLOCK. */
1485
1486 struct type *
1487 lookup_union (const char *name, const struct block *block)
1488 {
1489 struct symbol *sym;
1490 struct type *t;
1491
1492 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1493
1494 if (sym == NULL)
1495 error (_("No union type named %s."), name);
1496
1497 t = SYMBOL_TYPE (sym);
1498
1499 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1500 return t;
1501
1502 /* If we get here, it's not a union. */
1503 error (_("This context has class, struct or enum %s, not a union."),
1504 name);
1505 }
1506
1507 /* Lookup an enum type named "enum NAME",
1508 visible in lexical block BLOCK. */
1509
1510 struct type *
1511 lookup_enum (const char *name, const struct block *block)
1512 {
1513 struct symbol *sym;
1514
1515 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1516 if (sym == NULL)
1517 {
1518 error (_("No enum type named %s."), name);
1519 }
1520 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1521 {
1522 error (_("This context has class, struct or union %s, not an enum."),
1523 name);
1524 }
1525 return (SYMBOL_TYPE (sym));
1526 }
1527
1528 /* Lookup a template type named "template NAME<TYPE>",
1529 visible in lexical block BLOCK. */
1530
1531 struct type *
1532 lookup_template_type (char *name, struct type *type,
1533 const struct block *block)
1534 {
1535 struct symbol *sym;
1536 char *nam = (char *)
1537 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1538
1539 strcpy (nam, name);
1540 strcat (nam, "<");
1541 strcat (nam, TYPE_NAME (type));
1542 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1543
1544 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1545
1546 if (sym == NULL)
1547 {
1548 error (_("No template type named %s."), name);
1549 }
1550 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1551 {
1552 error (_("This context has class, union or enum %s, not a struct."),
1553 name);
1554 }
1555 return (SYMBOL_TYPE (sym));
1556 }
1557
1558 /* Given a type TYPE, lookup the type of the component of type named
1559 NAME.
1560
1561 TYPE can be either a struct or union, or a pointer or reference to
1562 a struct or union. If it is a pointer or reference, its target
1563 type is automatically used. Thus '.' and '->' are interchangable,
1564 as specified for the definitions of the expression element types
1565 STRUCTOP_STRUCT and STRUCTOP_PTR.
1566
1567 If NOERR is nonzero, return zero if NAME is not suitably defined.
1568 If NAME is the name of a baseclass type, return that type. */
1569
1570 struct type *
1571 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1572 {
1573 int i;
1574 char *type_name;
1575
1576 for (;;)
1577 {
1578 type = check_typedef (type);
1579 if (TYPE_CODE (type) != TYPE_CODE_PTR
1580 && TYPE_CODE (type) != TYPE_CODE_REF)
1581 break;
1582 type = TYPE_TARGET_TYPE (type);
1583 }
1584
1585 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1586 && TYPE_CODE (type) != TYPE_CODE_UNION)
1587 {
1588 type_name = type_to_string (type);
1589 make_cleanup (xfree, type_name);
1590 error (_("Type %s is not a structure or union type."), type_name);
1591 }
1592
1593 #if 0
1594 /* FIXME: This change put in by Michael seems incorrect for the case
1595 where the structure tag name is the same as the member name.
1596 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1597 foo; } bell;" Disabled by fnf. */
1598 {
1599 char *type_name;
1600
1601 type_name = type_name_no_tag (type);
1602 if (type_name != NULL && strcmp (type_name, name) == 0)
1603 return type;
1604 }
1605 #endif
1606
1607 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1608 {
1609 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1610
1611 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1612 {
1613 return TYPE_FIELD_TYPE (type, i);
1614 }
1615 else if (!t_field_name || *t_field_name == '\0')
1616 {
1617 struct type *subtype
1618 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1619
1620 if (subtype != NULL)
1621 return subtype;
1622 }
1623 }
1624
1625 /* OK, it's not in this class. Recursively check the baseclasses. */
1626 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1627 {
1628 struct type *t;
1629
1630 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1631 if (t != NULL)
1632 {
1633 return t;
1634 }
1635 }
1636
1637 if (noerr)
1638 {
1639 return NULL;
1640 }
1641
1642 type_name = type_to_string (type);
1643 make_cleanup (xfree, type_name);
1644 error (_("Type %s has no component named %s."), type_name, name);
1645 }
1646
1647 /* Store in *MAX the largest number representable by unsigned integer type
1648 TYPE. */
1649
1650 void
1651 get_unsigned_type_max (struct type *type, ULONGEST *max)
1652 {
1653 unsigned int n;
1654
1655 type = check_typedef (type);
1656 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1657 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1658
1659 /* Written this way to avoid overflow. */
1660 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1661 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1662 }
1663
1664 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1665 signed integer type TYPE. */
1666
1667 void
1668 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1669 {
1670 unsigned int n;
1671
1672 type = check_typedef (type);
1673 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1674 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1675
1676 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1677 *min = -((ULONGEST) 1 << (n - 1));
1678 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1679 }
1680
1681 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1682 cplus_stuff.vptr_fieldno.
1683
1684 cplus_stuff is initialized to cplus_struct_default which does not
1685 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1686 designated initializers). We cope with that here. */
1687
1688 int
1689 internal_type_vptr_fieldno (struct type *type)
1690 {
1691 type = check_typedef (type);
1692 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1693 || TYPE_CODE (type) == TYPE_CODE_UNION);
1694 if (!HAVE_CPLUS_STRUCT (type))
1695 return -1;
1696 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1697 }
1698
1699 /* Set the value of cplus_stuff.vptr_fieldno. */
1700
1701 void
1702 set_type_vptr_fieldno (struct type *type, int fieldno)
1703 {
1704 type = check_typedef (type);
1705 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1706 || TYPE_CODE (type) == TYPE_CODE_UNION);
1707 if (!HAVE_CPLUS_STRUCT (type))
1708 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1709 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1710 }
1711
1712 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1713 cplus_stuff.vptr_basetype. */
1714
1715 struct type *
1716 internal_type_vptr_basetype (struct type *type)
1717 {
1718 type = check_typedef (type);
1719 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1720 || TYPE_CODE (type) == TYPE_CODE_UNION);
1721 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1722 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1723 }
1724
1725 /* Set the value of cplus_stuff.vptr_basetype. */
1726
1727 void
1728 set_type_vptr_basetype (struct type *type, struct type *basetype)
1729 {
1730 type = check_typedef (type);
1731 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1732 || TYPE_CODE (type) == TYPE_CODE_UNION);
1733 if (!HAVE_CPLUS_STRUCT (type))
1734 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1735 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1736 }
1737
1738 /* Lookup the vptr basetype/fieldno values for TYPE.
1739 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1740 vptr_fieldno. Also, if found and basetype is from the same objfile,
1741 cache the results.
1742 If not found, return -1 and ignore BASETYPEP.
1743 Callers should be aware that in some cases (for example,
1744 the type or one of its baseclasses is a stub type and we are
1745 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1746 this function will not be able to find the
1747 virtual function table pointer, and vptr_fieldno will remain -1 and
1748 vptr_basetype will remain NULL or incomplete. */
1749
1750 int
1751 get_vptr_fieldno (struct type *type, struct type **basetypep)
1752 {
1753 type = check_typedef (type);
1754
1755 if (TYPE_VPTR_FIELDNO (type) < 0)
1756 {
1757 int i;
1758
1759 /* We must start at zero in case the first (and only) baseclass
1760 is virtual (and hence we cannot share the table pointer). */
1761 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1762 {
1763 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1764 int fieldno;
1765 struct type *basetype;
1766
1767 fieldno = get_vptr_fieldno (baseclass, &basetype);
1768 if (fieldno >= 0)
1769 {
1770 /* If the type comes from a different objfile we can't cache
1771 it, it may have a different lifetime. PR 2384 */
1772 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1773 {
1774 set_type_vptr_fieldno (type, fieldno);
1775 set_type_vptr_basetype (type, basetype);
1776 }
1777 if (basetypep)
1778 *basetypep = basetype;
1779 return fieldno;
1780 }
1781 }
1782
1783 /* Not found. */
1784 return -1;
1785 }
1786 else
1787 {
1788 if (basetypep)
1789 *basetypep = TYPE_VPTR_BASETYPE (type);
1790 return TYPE_VPTR_FIELDNO (type);
1791 }
1792 }
1793
1794 static void
1795 stub_noname_complaint (void)
1796 {
1797 complaint (&symfile_complaints, _("stub type has NULL name"));
1798 }
1799
1800 /* Worker for is_dynamic_type. */
1801
1802 static int
1803 is_dynamic_type_internal (struct type *type, int top_level)
1804 {
1805 type = check_typedef (type);
1806
1807 /* We only want to recognize references at the outermost level. */
1808 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1809 type = check_typedef (TYPE_TARGET_TYPE (type));
1810
1811 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1812 dynamic, even if the type itself is statically defined.
1813 From a user's point of view, this may appear counter-intuitive;
1814 but it makes sense in this context, because the point is to determine
1815 whether any part of the type needs to be resolved before it can
1816 be exploited. */
1817 if (TYPE_DATA_LOCATION (type) != NULL
1818 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1819 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1820 return 1;
1821
1822 switch (TYPE_CODE (type))
1823 {
1824 case TYPE_CODE_RANGE:
1825 {
1826 /* A range type is obviously dynamic if it has at least one
1827 dynamic bound. But also consider the range type to be
1828 dynamic when its subtype is dynamic, even if the bounds
1829 of the range type are static. It allows us to assume that
1830 the subtype of a static range type is also static. */
1831 return (!has_static_range (TYPE_RANGE_DATA (type))
1832 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1833 }
1834
1835 case TYPE_CODE_ARRAY:
1836 {
1837 gdb_assert (TYPE_NFIELDS (type) == 1);
1838
1839 /* The array is dynamic if either the bounds are dynamic,
1840 or the elements it contains have a dynamic contents. */
1841 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1842 return 1;
1843 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1844 }
1845
1846 case TYPE_CODE_STRUCT:
1847 case TYPE_CODE_UNION:
1848 {
1849 int i;
1850
1851 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1852 if (!field_is_static (&TYPE_FIELD (type, i))
1853 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1854 return 1;
1855 }
1856 break;
1857 }
1858
1859 return 0;
1860 }
1861
1862 /* See gdbtypes.h. */
1863
1864 int
1865 is_dynamic_type (struct type *type)
1866 {
1867 return is_dynamic_type_internal (type, 1);
1868 }
1869
1870 static struct type *resolve_dynamic_type_internal
1871 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1872
1873 /* Given a dynamic range type (dyn_range_type) and a stack of
1874 struct property_addr_info elements, return a static version
1875 of that type. */
1876
1877 static struct type *
1878 resolve_dynamic_range (struct type *dyn_range_type,
1879 struct property_addr_info *addr_stack)
1880 {
1881 CORE_ADDR value;
1882 struct type *static_range_type, *static_target_type;
1883 const struct dynamic_prop *prop;
1884 const struct dwarf2_locexpr_baton *baton;
1885 struct dynamic_prop low_bound, high_bound;
1886
1887 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1888
1889 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1890 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1891 {
1892 low_bound.kind = PROP_CONST;
1893 low_bound.data.const_val = value;
1894 }
1895 else
1896 {
1897 low_bound.kind = PROP_UNDEFINED;
1898 low_bound.data.const_val = 0;
1899 }
1900
1901 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1902 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1903 {
1904 high_bound.kind = PROP_CONST;
1905 high_bound.data.const_val = value;
1906
1907 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1908 high_bound.data.const_val
1909 = low_bound.data.const_val + high_bound.data.const_val - 1;
1910 }
1911 else
1912 {
1913 high_bound.kind = PROP_UNDEFINED;
1914 high_bound.data.const_val = 0;
1915 }
1916
1917 static_target_type
1918 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1919 addr_stack, 0);
1920 static_range_type = create_range_type (copy_type (dyn_range_type),
1921 static_target_type,
1922 &low_bound, &high_bound);
1923 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1924 return static_range_type;
1925 }
1926
1927 /* Resolves dynamic bound values of an array type TYPE to static ones.
1928 ADDR_STACK is a stack of struct property_addr_info to be used
1929 if needed during the dynamic resolution. */
1930
1931 static struct type *
1932 resolve_dynamic_array (struct type *type,
1933 struct property_addr_info *addr_stack)
1934 {
1935 CORE_ADDR value;
1936 struct type *elt_type;
1937 struct type *range_type;
1938 struct type *ary_dim;
1939
1940 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1941
1942 elt_type = type;
1943 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1944 range_type = resolve_dynamic_range (range_type, addr_stack);
1945
1946 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1947
1948 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1949 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1950 else
1951 elt_type = TYPE_TARGET_TYPE (type);
1952
1953 return create_array_type_with_stride (copy_type (type),
1954 elt_type, range_type,
1955 TYPE_FIELD_BITSIZE (type, 0));
1956 }
1957
1958 /* Resolve dynamic bounds of members of the union TYPE to static
1959 bounds. ADDR_STACK is a stack of struct property_addr_info
1960 to be used if needed during the dynamic resolution. */
1961
1962 static struct type *
1963 resolve_dynamic_union (struct type *type,
1964 struct property_addr_info *addr_stack)
1965 {
1966 struct type *resolved_type;
1967 int i;
1968 unsigned int max_len = 0;
1969
1970 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1971
1972 resolved_type = copy_type (type);
1973 TYPE_FIELDS (resolved_type)
1974 = (struct field *) TYPE_ALLOC (resolved_type,
1975 TYPE_NFIELDS (resolved_type)
1976 * sizeof (struct field));
1977 memcpy (TYPE_FIELDS (resolved_type),
1978 TYPE_FIELDS (type),
1979 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1980 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1981 {
1982 struct type *t;
1983
1984 if (field_is_static (&TYPE_FIELD (type, i)))
1985 continue;
1986
1987 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1988 addr_stack, 0);
1989 TYPE_FIELD_TYPE (resolved_type, i) = t;
1990 if (TYPE_LENGTH (t) > max_len)
1991 max_len = TYPE_LENGTH (t);
1992 }
1993
1994 TYPE_LENGTH (resolved_type) = max_len;
1995 return resolved_type;
1996 }
1997
1998 /* Resolve dynamic bounds of members of the struct TYPE to static
1999 bounds. ADDR_STACK is a stack of struct property_addr_info to
2000 be used if needed during the dynamic resolution. */
2001
2002 static struct type *
2003 resolve_dynamic_struct (struct type *type,
2004 struct property_addr_info *addr_stack)
2005 {
2006 struct type *resolved_type;
2007 int i;
2008 unsigned resolved_type_bit_length = 0;
2009
2010 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2011 gdb_assert (TYPE_NFIELDS (type) > 0);
2012
2013 resolved_type = copy_type (type);
2014 TYPE_FIELDS (resolved_type)
2015 = (struct field *) TYPE_ALLOC (resolved_type,
2016 TYPE_NFIELDS (resolved_type)
2017 * sizeof (struct field));
2018 memcpy (TYPE_FIELDS (resolved_type),
2019 TYPE_FIELDS (type),
2020 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2021 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2022 {
2023 unsigned new_bit_length;
2024 struct property_addr_info pinfo;
2025
2026 if (field_is_static (&TYPE_FIELD (type, i)))
2027 continue;
2028
2029 /* As we know this field is not a static field, the field's
2030 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2031 this is the case, but only trigger a simple error rather
2032 than an internal error if that fails. While failing
2033 that verification indicates a bug in our code, the error
2034 is not severe enough to suggest to the user he stops
2035 his debugging session because of it. */
2036 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2037 error (_("Cannot determine struct field location"
2038 " (invalid location kind)"));
2039
2040 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2041 pinfo.valaddr = addr_stack->valaddr;
2042 pinfo.addr = addr_stack->addr;
2043 pinfo.next = addr_stack;
2044
2045 TYPE_FIELD_TYPE (resolved_type, i)
2046 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2047 &pinfo, 0);
2048 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2049 == FIELD_LOC_KIND_BITPOS);
2050
2051 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2052 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2053 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2054 else
2055 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2056 * TARGET_CHAR_BIT);
2057
2058 /* Normally, we would use the position and size of the last field
2059 to determine the size of the enclosing structure. But GCC seems
2060 to be encoding the position of some fields incorrectly when
2061 the struct contains a dynamic field that is not placed last.
2062 So we compute the struct size based on the field that has
2063 the highest position + size - probably the best we can do. */
2064 if (new_bit_length > resolved_type_bit_length)
2065 resolved_type_bit_length = new_bit_length;
2066 }
2067
2068 TYPE_LENGTH (resolved_type)
2069 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2070
2071 /* The Ada language uses this field as a cache for static fixed types: reset
2072 it as RESOLVED_TYPE must have its own static fixed type. */
2073 TYPE_TARGET_TYPE (resolved_type) = NULL;
2074
2075 return resolved_type;
2076 }
2077
2078 /* Worker for resolved_dynamic_type. */
2079
2080 static struct type *
2081 resolve_dynamic_type_internal (struct type *type,
2082 struct property_addr_info *addr_stack,
2083 int top_level)
2084 {
2085 struct type *real_type = check_typedef (type);
2086 struct type *resolved_type = type;
2087 struct dynamic_prop *prop;
2088 CORE_ADDR value;
2089
2090 if (!is_dynamic_type_internal (real_type, top_level))
2091 return type;
2092
2093 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2094 {
2095 resolved_type = copy_type (type);
2096 TYPE_TARGET_TYPE (resolved_type)
2097 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2098 top_level);
2099 }
2100 else
2101 {
2102 /* Before trying to resolve TYPE, make sure it is not a stub. */
2103 type = real_type;
2104
2105 switch (TYPE_CODE (type))
2106 {
2107 case TYPE_CODE_REF:
2108 {
2109 struct property_addr_info pinfo;
2110
2111 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2112 pinfo.valaddr = NULL;
2113 if (addr_stack->valaddr != NULL)
2114 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2115 else
2116 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2117 pinfo.next = addr_stack;
2118
2119 resolved_type = copy_type (type);
2120 TYPE_TARGET_TYPE (resolved_type)
2121 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2122 &pinfo, top_level);
2123 break;
2124 }
2125
2126 case TYPE_CODE_ARRAY:
2127 resolved_type = resolve_dynamic_array (type, addr_stack);
2128 break;
2129
2130 case TYPE_CODE_RANGE:
2131 resolved_type = resolve_dynamic_range (type, addr_stack);
2132 break;
2133
2134 case TYPE_CODE_UNION:
2135 resolved_type = resolve_dynamic_union (type, addr_stack);
2136 break;
2137
2138 case TYPE_CODE_STRUCT:
2139 resolved_type = resolve_dynamic_struct (type, addr_stack);
2140 break;
2141 }
2142 }
2143
2144 /* Resolve data_location attribute. */
2145 prop = TYPE_DATA_LOCATION (resolved_type);
2146 if (prop != NULL
2147 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2148 {
2149 TYPE_DYN_PROP_ADDR (prop) = value;
2150 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2151 }
2152
2153 return resolved_type;
2154 }
2155
2156 /* See gdbtypes.h */
2157
2158 struct type *
2159 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2160 CORE_ADDR addr)
2161 {
2162 struct property_addr_info pinfo
2163 = {check_typedef (type), valaddr, addr, NULL};
2164
2165 return resolve_dynamic_type_internal (type, &pinfo, 1);
2166 }
2167
2168 /* See gdbtypes.h */
2169
2170 struct dynamic_prop *
2171 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2172 {
2173 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2174
2175 while (node != NULL)
2176 {
2177 if (node->prop_kind == prop_kind)
2178 return &node->prop;
2179 node = node->next;
2180 }
2181 return NULL;
2182 }
2183
2184 /* See gdbtypes.h */
2185
2186 void
2187 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2188 struct type *type, struct objfile *objfile)
2189 {
2190 struct dynamic_prop_list *temp;
2191
2192 gdb_assert (TYPE_OBJFILE_OWNED (type));
2193
2194 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2195 temp->prop_kind = prop_kind;
2196 temp->prop = prop;
2197 temp->next = TYPE_DYN_PROP_LIST (type);
2198
2199 TYPE_DYN_PROP_LIST (type) = temp;
2200 }
2201
2202
2203 /* Find the real type of TYPE. This function returns the real type,
2204 after removing all layers of typedefs, and completing opaque or stub
2205 types. Completion changes the TYPE argument, but stripping of
2206 typedefs does not.
2207
2208 Instance flags (e.g. const/volatile) are preserved as typedefs are
2209 stripped. If necessary a new qualified form of the underlying type
2210 is created.
2211
2212 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2213 not been computed and we're either in the middle of reading symbols, or
2214 there was no name for the typedef in the debug info.
2215
2216 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2217 QUITs in the symbol reading code can also throw.
2218 Thus this function can throw an exception.
2219
2220 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2221 the target type.
2222
2223 If this is a stubbed struct (i.e. declared as struct foo *), see if
2224 we can find a full definition in some other file. If so, copy this
2225 definition, so we can use it in future. There used to be a comment
2226 (but not any code) that if we don't find a full definition, we'd
2227 set a flag so we don't spend time in the future checking the same
2228 type. That would be a mistake, though--we might load in more
2229 symbols which contain a full definition for the type. */
2230
2231 struct type *
2232 check_typedef (struct type *type)
2233 {
2234 struct type *orig_type = type;
2235 /* While we're removing typedefs, we don't want to lose qualifiers.
2236 E.g., const/volatile. */
2237 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2238
2239 gdb_assert (type);
2240
2241 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2242 {
2243 if (!TYPE_TARGET_TYPE (type))
2244 {
2245 const char *name;
2246 struct symbol *sym;
2247
2248 /* It is dangerous to call lookup_symbol if we are currently
2249 reading a symtab. Infinite recursion is one danger. */
2250 if (currently_reading_symtab)
2251 return make_qualified_type (type, instance_flags, NULL);
2252
2253 name = type_name_no_tag (type);
2254 /* FIXME: shouldn't we separately check the TYPE_NAME and
2255 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2256 VAR_DOMAIN as appropriate? (this code was written before
2257 TYPE_NAME and TYPE_TAG_NAME were separate). */
2258 if (name == NULL)
2259 {
2260 stub_noname_complaint ();
2261 return make_qualified_type (type, instance_flags, NULL);
2262 }
2263 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2264 if (sym)
2265 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2266 else /* TYPE_CODE_UNDEF */
2267 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2268 }
2269 type = TYPE_TARGET_TYPE (type);
2270
2271 /* Preserve the instance flags as we traverse down the typedef chain.
2272
2273 Handling address spaces/classes is nasty, what do we do if there's a
2274 conflict?
2275 E.g., what if an outer typedef marks the type as class_1 and an inner
2276 typedef marks the type as class_2?
2277 This is the wrong place to do such error checking. We leave it to
2278 the code that created the typedef in the first place to flag the
2279 error. We just pick the outer address space (akin to letting the
2280 outer cast in a chain of casting win), instead of assuming
2281 "it can't happen". */
2282 {
2283 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2284 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2285 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2286 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2287
2288 /* Treat code vs data spaces and address classes separately. */
2289 if ((instance_flags & ALL_SPACES) != 0)
2290 new_instance_flags &= ~ALL_SPACES;
2291 if ((instance_flags & ALL_CLASSES) != 0)
2292 new_instance_flags &= ~ALL_CLASSES;
2293
2294 instance_flags |= new_instance_flags;
2295 }
2296 }
2297
2298 /* If this is a struct/class/union with no fields, then check
2299 whether a full definition exists somewhere else. This is for
2300 systems where a type definition with no fields is issued for such
2301 types, instead of identifying them as stub types in the first
2302 place. */
2303
2304 if (TYPE_IS_OPAQUE (type)
2305 && opaque_type_resolution
2306 && !currently_reading_symtab)
2307 {
2308 const char *name = type_name_no_tag (type);
2309 struct type *newtype;
2310
2311 if (name == NULL)
2312 {
2313 stub_noname_complaint ();
2314 return make_qualified_type (type, instance_flags, NULL);
2315 }
2316 newtype = lookup_transparent_type (name);
2317
2318 if (newtype)
2319 {
2320 /* If the resolved type and the stub are in the same
2321 objfile, then replace the stub type with the real deal.
2322 But if they're in separate objfiles, leave the stub
2323 alone; we'll just look up the transparent type every time
2324 we call check_typedef. We can't create pointers between
2325 types allocated to different objfiles, since they may
2326 have different lifetimes. Trying to copy NEWTYPE over to
2327 TYPE's objfile is pointless, too, since you'll have to
2328 move over any other types NEWTYPE refers to, which could
2329 be an unbounded amount of stuff. */
2330 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2331 type = make_qualified_type (newtype,
2332 TYPE_INSTANCE_FLAGS (type),
2333 type);
2334 else
2335 type = newtype;
2336 }
2337 }
2338 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2339 types. */
2340 else if (TYPE_STUB (type) && !currently_reading_symtab)
2341 {
2342 const char *name = type_name_no_tag (type);
2343 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2344 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2345 as appropriate? (this code was written before TYPE_NAME and
2346 TYPE_TAG_NAME were separate). */
2347 struct symbol *sym;
2348
2349 if (name == NULL)
2350 {
2351 stub_noname_complaint ();
2352 return make_qualified_type (type, instance_flags, NULL);
2353 }
2354 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2355 if (sym)
2356 {
2357 /* Same as above for opaque types, we can replace the stub
2358 with the complete type only if they are in the same
2359 objfile. */
2360 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2361 type = make_qualified_type (SYMBOL_TYPE (sym),
2362 TYPE_INSTANCE_FLAGS (type),
2363 type);
2364 else
2365 type = SYMBOL_TYPE (sym);
2366 }
2367 }
2368
2369 if (TYPE_TARGET_STUB (type))
2370 {
2371 struct type *range_type;
2372 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2373
2374 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2375 {
2376 /* Nothing we can do. */
2377 }
2378 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2379 {
2380 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2381 TYPE_TARGET_STUB (type) = 0;
2382 }
2383 }
2384
2385 type = make_qualified_type (type, instance_flags, NULL);
2386
2387 /* Cache TYPE_LENGTH for future use. */
2388 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2389
2390 return type;
2391 }
2392
2393 /* Parse a type expression in the string [P..P+LENGTH). If an error
2394 occurs, silently return a void type. */
2395
2396 static struct type *
2397 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2398 {
2399 struct ui_file *saved_gdb_stderr;
2400 struct type *type = NULL; /* Initialize to keep gcc happy. */
2401
2402 /* Suppress error messages. */
2403 saved_gdb_stderr = gdb_stderr;
2404 gdb_stderr = ui_file_new ();
2405
2406 /* Call parse_and_eval_type() without fear of longjmp()s. */
2407 TRY
2408 {
2409 type = parse_and_eval_type (p, length);
2410 }
2411 CATCH (except, RETURN_MASK_ERROR)
2412 {
2413 type = builtin_type (gdbarch)->builtin_void;
2414 }
2415 END_CATCH
2416
2417 /* Stop suppressing error messages. */
2418 ui_file_delete (gdb_stderr);
2419 gdb_stderr = saved_gdb_stderr;
2420
2421 return type;
2422 }
2423
2424 /* Ugly hack to convert method stubs into method types.
2425
2426 He ain't kiddin'. This demangles the name of the method into a
2427 string including argument types, parses out each argument type,
2428 generates a string casting a zero to that type, evaluates the
2429 string, and stuffs the resulting type into an argtype vector!!!
2430 Then it knows the type of the whole function (including argument
2431 types for overloading), which info used to be in the stab's but was
2432 removed to hack back the space required for them. */
2433
2434 static void
2435 check_stub_method (struct type *type, int method_id, int signature_id)
2436 {
2437 struct gdbarch *gdbarch = get_type_arch (type);
2438 struct fn_field *f;
2439 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2440 char *demangled_name = gdb_demangle (mangled_name,
2441 DMGL_PARAMS | DMGL_ANSI);
2442 char *argtypetext, *p;
2443 int depth = 0, argcount = 1;
2444 struct field *argtypes;
2445 struct type *mtype;
2446
2447 /* Make sure we got back a function string that we can use. */
2448 if (demangled_name)
2449 p = strchr (demangled_name, '(');
2450 else
2451 p = NULL;
2452
2453 if (demangled_name == NULL || p == NULL)
2454 error (_("Internal: Cannot demangle mangled name `%s'."),
2455 mangled_name);
2456
2457 /* Now, read in the parameters that define this type. */
2458 p += 1;
2459 argtypetext = p;
2460 while (*p)
2461 {
2462 if (*p == '(' || *p == '<')
2463 {
2464 depth += 1;
2465 }
2466 else if (*p == ')' || *p == '>')
2467 {
2468 depth -= 1;
2469 }
2470 else if (*p == ',' && depth == 0)
2471 {
2472 argcount += 1;
2473 }
2474
2475 p += 1;
2476 }
2477
2478 /* If we read one argument and it was ``void'', don't count it. */
2479 if (startswith (argtypetext, "(void)"))
2480 argcount -= 1;
2481
2482 /* We need one extra slot, for the THIS pointer. */
2483
2484 argtypes = (struct field *)
2485 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2486 p = argtypetext;
2487
2488 /* Add THIS pointer for non-static methods. */
2489 f = TYPE_FN_FIELDLIST1 (type, method_id);
2490 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2491 argcount = 0;
2492 else
2493 {
2494 argtypes[0].type = lookup_pointer_type (type);
2495 argcount = 1;
2496 }
2497
2498 if (*p != ')') /* () means no args, skip while. */
2499 {
2500 depth = 0;
2501 while (*p)
2502 {
2503 if (depth <= 0 && (*p == ',' || *p == ')'))
2504 {
2505 /* Avoid parsing of ellipsis, they will be handled below.
2506 Also avoid ``void'' as above. */
2507 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2508 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2509 {
2510 argtypes[argcount].type =
2511 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2512 argcount += 1;
2513 }
2514 argtypetext = p + 1;
2515 }
2516
2517 if (*p == '(' || *p == '<')
2518 {
2519 depth += 1;
2520 }
2521 else if (*p == ')' || *p == '>')
2522 {
2523 depth -= 1;
2524 }
2525
2526 p += 1;
2527 }
2528 }
2529
2530 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2531
2532 /* Now update the old "stub" type into a real type. */
2533 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2534 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2535 We want a method (TYPE_CODE_METHOD). */
2536 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2537 argtypes, argcount, p[-2] == '.');
2538 TYPE_STUB (mtype) = 0;
2539 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2540
2541 xfree (demangled_name);
2542 }
2543
2544 /* This is the external interface to check_stub_method, above. This
2545 function unstubs all of the signatures for TYPE's METHOD_ID method
2546 name. After calling this function TYPE_FN_FIELD_STUB will be
2547 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2548 correct.
2549
2550 This function unfortunately can not die until stabs do. */
2551
2552 void
2553 check_stub_method_group (struct type *type, int method_id)
2554 {
2555 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2556 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2557 int j, found_stub = 0;
2558
2559 for (j = 0; j < len; j++)
2560 if (TYPE_FN_FIELD_STUB (f, j))
2561 {
2562 found_stub = 1;
2563 check_stub_method (type, method_id, j);
2564 }
2565
2566 /* GNU v3 methods with incorrect names were corrected when we read
2567 in type information, because it was cheaper to do it then. The
2568 only GNU v2 methods with incorrect method names are operators and
2569 destructors; destructors were also corrected when we read in type
2570 information.
2571
2572 Therefore the only thing we need to handle here are v2 operator
2573 names. */
2574 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2575 {
2576 int ret;
2577 char dem_opname[256];
2578
2579 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2580 method_id),
2581 dem_opname, DMGL_ANSI);
2582 if (!ret)
2583 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2584 method_id),
2585 dem_opname, 0);
2586 if (ret)
2587 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2588 }
2589 }
2590
2591 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2592 const struct cplus_struct_type cplus_struct_default = { };
2593
2594 void
2595 allocate_cplus_struct_type (struct type *type)
2596 {
2597 if (HAVE_CPLUS_STRUCT (type))
2598 /* Structure was already allocated. Nothing more to do. */
2599 return;
2600
2601 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2602 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2603 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2604 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2605 set_type_vptr_fieldno (type, -1);
2606 }
2607
2608 const struct gnat_aux_type gnat_aux_default =
2609 { NULL };
2610
2611 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2612 and allocate the associated gnat-specific data. The gnat-specific
2613 data is also initialized to gnat_aux_default. */
2614
2615 void
2616 allocate_gnat_aux_type (struct type *type)
2617 {
2618 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2619 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2620 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2621 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2622 }
2623
2624 /* Helper function to initialize the standard scalar types.
2625
2626 If NAME is non-NULL, then it is used to initialize the type name.
2627 Note that NAME is not copied; it is required to have a lifetime at
2628 least as long as OBJFILE. */
2629
2630 struct type *
2631 init_type (enum type_code code, int length, int flags,
2632 const char *name, struct objfile *objfile)
2633 {
2634 struct type *type;
2635
2636 type = alloc_type (objfile);
2637 TYPE_CODE (type) = code;
2638 TYPE_LENGTH (type) = length;
2639
2640 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2641 if (flags & TYPE_FLAG_UNSIGNED)
2642 TYPE_UNSIGNED (type) = 1;
2643 if (flags & TYPE_FLAG_NOSIGN)
2644 TYPE_NOSIGN (type) = 1;
2645 if (flags & TYPE_FLAG_STUB)
2646 TYPE_STUB (type) = 1;
2647 if (flags & TYPE_FLAG_TARGET_STUB)
2648 TYPE_TARGET_STUB (type) = 1;
2649 if (flags & TYPE_FLAG_STATIC)
2650 TYPE_STATIC (type) = 1;
2651 if (flags & TYPE_FLAG_PROTOTYPED)
2652 TYPE_PROTOTYPED (type) = 1;
2653 if (flags & TYPE_FLAG_INCOMPLETE)
2654 TYPE_INCOMPLETE (type) = 1;
2655 if (flags & TYPE_FLAG_VARARGS)
2656 TYPE_VARARGS (type) = 1;
2657 if (flags & TYPE_FLAG_VECTOR)
2658 TYPE_VECTOR (type) = 1;
2659 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2660 TYPE_STUB_SUPPORTED (type) = 1;
2661 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2662 TYPE_FIXED_INSTANCE (type) = 1;
2663 if (flags & TYPE_FLAG_GNU_IFUNC)
2664 TYPE_GNU_IFUNC (type) = 1;
2665
2666 TYPE_NAME (type) = name;
2667
2668 /* C++ fancies. */
2669
2670 if (name && strcmp (name, "char") == 0)
2671 TYPE_NOSIGN (type) = 1;
2672
2673 switch (code)
2674 {
2675 case TYPE_CODE_STRUCT:
2676 case TYPE_CODE_UNION:
2677 case TYPE_CODE_NAMESPACE:
2678 INIT_CPLUS_SPECIFIC (type);
2679 break;
2680 case TYPE_CODE_FLT:
2681 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2682 break;
2683 case TYPE_CODE_FUNC:
2684 INIT_FUNC_SPECIFIC (type);
2685 break;
2686 }
2687 return type;
2688 }
2689 \f
2690 /* Queries on types. */
2691
2692 int
2693 can_dereference (struct type *t)
2694 {
2695 /* FIXME: Should we return true for references as well as
2696 pointers? */
2697 t = check_typedef (t);
2698 return
2699 (t != NULL
2700 && TYPE_CODE (t) == TYPE_CODE_PTR
2701 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2702 }
2703
2704 int
2705 is_integral_type (struct type *t)
2706 {
2707 t = check_typedef (t);
2708 return
2709 ((t != NULL)
2710 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2711 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2712 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2713 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2714 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2715 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2716 }
2717
2718 /* Return true if TYPE is scalar. */
2719
2720 static int
2721 is_scalar_type (struct type *type)
2722 {
2723 type = check_typedef (type);
2724
2725 switch (TYPE_CODE (type))
2726 {
2727 case TYPE_CODE_ARRAY:
2728 case TYPE_CODE_STRUCT:
2729 case TYPE_CODE_UNION:
2730 case TYPE_CODE_SET:
2731 case TYPE_CODE_STRING:
2732 return 0;
2733 default:
2734 return 1;
2735 }
2736 }
2737
2738 /* Return true if T is scalar, or a composite type which in practice has
2739 the memory layout of a scalar type. E.g., an array or struct with only
2740 one scalar element inside it, or a union with only scalar elements. */
2741
2742 int
2743 is_scalar_type_recursive (struct type *t)
2744 {
2745 t = check_typedef (t);
2746
2747 if (is_scalar_type (t))
2748 return 1;
2749 /* Are we dealing with an array or string of known dimensions? */
2750 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2751 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2752 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2753 {
2754 LONGEST low_bound, high_bound;
2755 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2756
2757 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2758
2759 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2760 }
2761 /* Are we dealing with a struct with one element? */
2762 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2763 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2764 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2765 {
2766 int i, n = TYPE_NFIELDS (t);
2767
2768 /* If all elements of the union are scalar, then the union is scalar. */
2769 for (i = 0; i < n; i++)
2770 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2771 return 0;
2772
2773 return 1;
2774 }
2775
2776 return 0;
2777 }
2778
2779 /* Return true is T is a class or a union. False otherwise. */
2780
2781 int
2782 class_or_union_p (const struct type *t)
2783 {
2784 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2785 || TYPE_CODE (t) == TYPE_CODE_UNION);
2786 }
2787
2788 /* A helper function which returns true if types A and B represent the
2789 "same" class type. This is true if the types have the same main
2790 type, or the same name. */
2791
2792 int
2793 class_types_same_p (const struct type *a, const struct type *b)
2794 {
2795 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2796 || (TYPE_NAME (a) && TYPE_NAME (b)
2797 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2798 }
2799
2800 /* If BASE is an ancestor of DCLASS return the distance between them.
2801 otherwise return -1;
2802 eg:
2803
2804 class A {};
2805 class B: public A {};
2806 class C: public B {};
2807 class D: C {};
2808
2809 distance_to_ancestor (A, A, 0) = 0
2810 distance_to_ancestor (A, B, 0) = 1
2811 distance_to_ancestor (A, C, 0) = 2
2812 distance_to_ancestor (A, D, 0) = 3
2813
2814 If PUBLIC is 1 then only public ancestors are considered,
2815 and the function returns the distance only if BASE is a public ancestor
2816 of DCLASS.
2817 Eg:
2818
2819 distance_to_ancestor (A, D, 1) = -1. */
2820
2821 static int
2822 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2823 {
2824 int i;
2825 int d;
2826
2827 base = check_typedef (base);
2828 dclass = check_typedef (dclass);
2829
2830 if (class_types_same_p (base, dclass))
2831 return 0;
2832
2833 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2834 {
2835 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2836 continue;
2837
2838 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2839 if (d >= 0)
2840 return 1 + d;
2841 }
2842
2843 return -1;
2844 }
2845
2846 /* Check whether BASE is an ancestor or base class or DCLASS
2847 Return 1 if so, and 0 if not.
2848 Note: If BASE and DCLASS are of the same type, this function
2849 will return 1. So for some class A, is_ancestor (A, A) will
2850 return 1. */
2851
2852 int
2853 is_ancestor (struct type *base, struct type *dclass)
2854 {
2855 return distance_to_ancestor (base, dclass, 0) >= 0;
2856 }
2857
2858 /* Like is_ancestor, but only returns true when BASE is a public
2859 ancestor of DCLASS. */
2860
2861 int
2862 is_public_ancestor (struct type *base, struct type *dclass)
2863 {
2864 return distance_to_ancestor (base, dclass, 1) >= 0;
2865 }
2866
2867 /* A helper function for is_unique_ancestor. */
2868
2869 static int
2870 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2871 int *offset,
2872 const gdb_byte *valaddr, int embedded_offset,
2873 CORE_ADDR address, struct value *val)
2874 {
2875 int i, count = 0;
2876
2877 base = check_typedef (base);
2878 dclass = check_typedef (dclass);
2879
2880 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2881 {
2882 struct type *iter;
2883 int this_offset;
2884
2885 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2886
2887 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2888 address, val);
2889
2890 if (class_types_same_p (base, iter))
2891 {
2892 /* If this is the first subclass, set *OFFSET and set count
2893 to 1. Otherwise, if this is at the same offset as
2894 previous instances, do nothing. Otherwise, increment
2895 count. */
2896 if (*offset == -1)
2897 {
2898 *offset = this_offset;
2899 count = 1;
2900 }
2901 else if (this_offset == *offset)
2902 {
2903 /* Nothing. */
2904 }
2905 else
2906 ++count;
2907 }
2908 else
2909 count += is_unique_ancestor_worker (base, iter, offset,
2910 valaddr,
2911 embedded_offset + this_offset,
2912 address, val);
2913 }
2914
2915 return count;
2916 }
2917
2918 /* Like is_ancestor, but only returns true if BASE is a unique base
2919 class of the type of VAL. */
2920
2921 int
2922 is_unique_ancestor (struct type *base, struct value *val)
2923 {
2924 int offset = -1;
2925
2926 return is_unique_ancestor_worker (base, value_type (val), &offset,
2927 value_contents_for_printing (val),
2928 value_embedded_offset (val),
2929 value_address (val), val) == 1;
2930 }
2931
2932 \f
2933 /* Overload resolution. */
2934
2935 /* Return the sum of the rank of A with the rank of B. */
2936
2937 struct rank
2938 sum_ranks (struct rank a, struct rank b)
2939 {
2940 struct rank c;
2941 c.rank = a.rank + b.rank;
2942 c.subrank = a.subrank + b.subrank;
2943 return c;
2944 }
2945
2946 /* Compare rank A and B and return:
2947 0 if a = b
2948 1 if a is better than b
2949 -1 if b is better than a. */
2950
2951 int
2952 compare_ranks (struct rank a, struct rank b)
2953 {
2954 if (a.rank == b.rank)
2955 {
2956 if (a.subrank == b.subrank)
2957 return 0;
2958 if (a.subrank < b.subrank)
2959 return 1;
2960 if (a.subrank > b.subrank)
2961 return -1;
2962 }
2963
2964 if (a.rank < b.rank)
2965 return 1;
2966
2967 /* a.rank > b.rank */
2968 return -1;
2969 }
2970
2971 /* Functions for overload resolution begin here. */
2972
2973 /* Compare two badness vectors A and B and return the result.
2974 0 => A and B are identical
2975 1 => A and B are incomparable
2976 2 => A is better than B
2977 3 => A is worse than B */
2978
2979 int
2980 compare_badness (struct badness_vector *a, struct badness_vector *b)
2981 {
2982 int i;
2983 int tmp;
2984 short found_pos = 0; /* any positives in c? */
2985 short found_neg = 0; /* any negatives in c? */
2986
2987 /* differing lengths => incomparable */
2988 if (a->length != b->length)
2989 return 1;
2990
2991 /* Subtract b from a */
2992 for (i = 0; i < a->length; i++)
2993 {
2994 tmp = compare_ranks (b->rank[i], a->rank[i]);
2995 if (tmp > 0)
2996 found_pos = 1;
2997 else if (tmp < 0)
2998 found_neg = 1;
2999 }
3000
3001 if (found_pos)
3002 {
3003 if (found_neg)
3004 return 1; /* incomparable */
3005 else
3006 return 3; /* A > B */
3007 }
3008 else
3009 /* no positives */
3010 {
3011 if (found_neg)
3012 return 2; /* A < B */
3013 else
3014 return 0; /* A == B */
3015 }
3016 }
3017
3018 /* Rank a function by comparing its parameter types (PARMS, length
3019 NPARMS), to the types of an argument list (ARGS, length NARGS).
3020 Return a pointer to a badness vector. This has NARGS + 1
3021 entries. */
3022
3023 struct badness_vector *
3024 rank_function (struct type **parms, int nparms,
3025 struct value **args, int nargs)
3026 {
3027 int i;
3028 struct badness_vector *bv = XNEW (struct badness_vector);
3029 int min_len = nparms < nargs ? nparms : nargs;
3030
3031 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3032 bv->rank = XNEWVEC (struct rank, nargs + 1);
3033
3034 /* First compare the lengths of the supplied lists.
3035 If there is a mismatch, set it to a high value. */
3036
3037 /* pai/1997-06-03 FIXME: when we have debug info about default
3038 arguments and ellipsis parameter lists, we should consider those
3039 and rank the length-match more finely. */
3040
3041 LENGTH_MATCH (bv) = (nargs != nparms)
3042 ? LENGTH_MISMATCH_BADNESS
3043 : EXACT_MATCH_BADNESS;
3044
3045 /* Now rank all the parameters of the candidate function. */
3046 for (i = 1; i <= min_len; i++)
3047 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3048 args[i - 1]);
3049
3050 /* If more arguments than parameters, add dummy entries. */
3051 for (i = min_len + 1; i <= nargs; i++)
3052 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3053
3054 return bv;
3055 }
3056
3057 /* Compare the names of two integer types, assuming that any sign
3058 qualifiers have been checked already. We do it this way because
3059 there may be an "int" in the name of one of the types. */
3060
3061 static int
3062 integer_types_same_name_p (const char *first, const char *second)
3063 {
3064 int first_p, second_p;
3065
3066 /* If both are shorts, return 1; if neither is a short, keep
3067 checking. */
3068 first_p = (strstr (first, "short") != NULL);
3069 second_p = (strstr (second, "short") != NULL);
3070 if (first_p && second_p)
3071 return 1;
3072 if (first_p || second_p)
3073 return 0;
3074
3075 /* Likewise for long. */
3076 first_p = (strstr (first, "long") != NULL);
3077 second_p = (strstr (second, "long") != NULL);
3078 if (first_p && second_p)
3079 return 1;
3080 if (first_p || second_p)
3081 return 0;
3082
3083 /* Likewise for char. */
3084 first_p = (strstr (first, "char") != NULL);
3085 second_p = (strstr (second, "char") != NULL);
3086 if (first_p && second_p)
3087 return 1;
3088 if (first_p || second_p)
3089 return 0;
3090
3091 /* They must both be ints. */
3092 return 1;
3093 }
3094
3095 /* Compares type A to type B returns 1 if the represent the same type
3096 0 otherwise. */
3097
3098 int
3099 types_equal (struct type *a, struct type *b)
3100 {
3101 /* Identical type pointers. */
3102 /* However, this still doesn't catch all cases of same type for b
3103 and a. The reason is that builtin types are different from
3104 the same ones constructed from the object. */
3105 if (a == b)
3106 return 1;
3107
3108 /* Resolve typedefs */
3109 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3110 a = check_typedef (a);
3111 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3112 b = check_typedef (b);
3113
3114 /* If after resolving typedefs a and b are not of the same type
3115 code then they are not equal. */
3116 if (TYPE_CODE (a) != TYPE_CODE (b))
3117 return 0;
3118
3119 /* If a and b are both pointers types or both reference types then
3120 they are equal of the same type iff the objects they refer to are
3121 of the same type. */
3122 if (TYPE_CODE (a) == TYPE_CODE_PTR
3123 || TYPE_CODE (a) == TYPE_CODE_REF)
3124 return types_equal (TYPE_TARGET_TYPE (a),
3125 TYPE_TARGET_TYPE (b));
3126
3127 /* Well, damnit, if the names are exactly the same, I'll say they
3128 are exactly the same. This happens when we generate method
3129 stubs. The types won't point to the same address, but they
3130 really are the same. */
3131
3132 if (TYPE_NAME (a) && TYPE_NAME (b)
3133 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3134 return 1;
3135
3136 /* Check if identical after resolving typedefs. */
3137 if (a == b)
3138 return 1;
3139
3140 /* Two function types are equal if their argument and return types
3141 are equal. */
3142 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3143 {
3144 int i;
3145
3146 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3147 return 0;
3148
3149 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3150 return 0;
3151
3152 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3153 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3154 return 0;
3155
3156 return 1;
3157 }
3158
3159 return 0;
3160 }
3161 \f
3162 /* Deep comparison of types. */
3163
3164 /* An entry in the type-equality bcache. */
3165
3166 typedef struct type_equality_entry
3167 {
3168 struct type *type1, *type2;
3169 } type_equality_entry_d;
3170
3171 DEF_VEC_O (type_equality_entry_d);
3172
3173 /* A helper function to compare two strings. Returns 1 if they are
3174 the same, 0 otherwise. Handles NULLs properly. */
3175
3176 static int
3177 compare_maybe_null_strings (const char *s, const char *t)
3178 {
3179 if (s == NULL && t != NULL)
3180 return 0;
3181 else if (s != NULL && t == NULL)
3182 return 0;
3183 else if (s == NULL && t== NULL)
3184 return 1;
3185 return strcmp (s, t) == 0;
3186 }
3187
3188 /* A helper function for check_types_worklist that checks two types for
3189 "deep" equality. Returns non-zero if the types are considered the
3190 same, zero otherwise. */
3191
3192 static int
3193 check_types_equal (struct type *type1, struct type *type2,
3194 VEC (type_equality_entry_d) **worklist)
3195 {
3196 type1 = check_typedef (type1);
3197 type2 = check_typedef (type2);
3198
3199 if (type1 == type2)
3200 return 1;
3201
3202 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3203 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3204 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3205 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3206 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3207 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3208 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3209 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3210 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3211 return 0;
3212
3213 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3214 TYPE_TAG_NAME (type2)))
3215 return 0;
3216 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3217 return 0;
3218
3219 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3220 {
3221 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3222 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3223 return 0;
3224 }
3225 else
3226 {
3227 int i;
3228
3229 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3230 {
3231 const struct field *field1 = &TYPE_FIELD (type1, i);
3232 const struct field *field2 = &TYPE_FIELD (type2, i);
3233 struct type_equality_entry entry;
3234
3235 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3236 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3237 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3238 return 0;
3239 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3240 FIELD_NAME (*field2)))
3241 return 0;
3242 switch (FIELD_LOC_KIND (*field1))
3243 {
3244 case FIELD_LOC_KIND_BITPOS:
3245 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3246 return 0;
3247 break;
3248 case FIELD_LOC_KIND_ENUMVAL:
3249 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3250 return 0;
3251 break;
3252 case FIELD_LOC_KIND_PHYSADDR:
3253 if (FIELD_STATIC_PHYSADDR (*field1)
3254 != FIELD_STATIC_PHYSADDR (*field2))
3255 return 0;
3256 break;
3257 case FIELD_LOC_KIND_PHYSNAME:
3258 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3259 FIELD_STATIC_PHYSNAME (*field2)))
3260 return 0;
3261 break;
3262 case FIELD_LOC_KIND_DWARF_BLOCK:
3263 {
3264 struct dwarf2_locexpr_baton *block1, *block2;
3265
3266 block1 = FIELD_DWARF_BLOCK (*field1);
3267 block2 = FIELD_DWARF_BLOCK (*field2);
3268 if (block1->per_cu != block2->per_cu
3269 || block1->size != block2->size
3270 || memcmp (block1->data, block2->data, block1->size) != 0)
3271 return 0;
3272 }
3273 break;
3274 default:
3275 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3276 "%d by check_types_equal"),
3277 FIELD_LOC_KIND (*field1));
3278 }
3279
3280 entry.type1 = FIELD_TYPE (*field1);
3281 entry.type2 = FIELD_TYPE (*field2);
3282 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3283 }
3284 }
3285
3286 if (TYPE_TARGET_TYPE (type1) != NULL)
3287 {
3288 struct type_equality_entry entry;
3289
3290 if (TYPE_TARGET_TYPE (type2) == NULL)
3291 return 0;
3292
3293 entry.type1 = TYPE_TARGET_TYPE (type1);
3294 entry.type2 = TYPE_TARGET_TYPE (type2);
3295 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3296 }
3297 else if (TYPE_TARGET_TYPE (type2) != NULL)
3298 return 0;
3299
3300 return 1;
3301 }
3302
3303 /* Check types on a worklist for equality. Returns zero if any pair
3304 is not equal, non-zero if they are all considered equal. */
3305
3306 static int
3307 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3308 struct bcache *cache)
3309 {
3310 while (!VEC_empty (type_equality_entry_d, *worklist))
3311 {
3312 struct type_equality_entry entry;
3313 int added;
3314
3315 entry = *VEC_last (type_equality_entry_d, *worklist);
3316 VEC_pop (type_equality_entry_d, *worklist);
3317
3318 /* If the type pair has already been visited, we know it is
3319 ok. */
3320 bcache_full (&entry, sizeof (entry), cache, &added);
3321 if (!added)
3322 continue;
3323
3324 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3325 return 0;
3326 }
3327
3328 return 1;
3329 }
3330
3331 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3332 "deep comparison". Otherwise return zero. */
3333
3334 int
3335 types_deeply_equal (struct type *type1, struct type *type2)
3336 {
3337 struct gdb_exception except = exception_none;
3338 int result = 0;
3339 struct bcache *cache;
3340 VEC (type_equality_entry_d) *worklist = NULL;
3341 struct type_equality_entry entry;
3342
3343 gdb_assert (type1 != NULL && type2 != NULL);
3344
3345 /* Early exit for the simple case. */
3346 if (type1 == type2)
3347 return 1;
3348
3349 cache = bcache_xmalloc (NULL, NULL);
3350
3351 entry.type1 = type1;
3352 entry.type2 = type2;
3353 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3354
3355 /* check_types_worklist calls several nested helper functions, some
3356 of which can raise a GDB exception, so we just check and rethrow
3357 here. If there is a GDB exception, a comparison is not capable
3358 (or trusted), so exit. */
3359 TRY
3360 {
3361 result = check_types_worklist (&worklist, cache);
3362 }
3363 CATCH (ex, RETURN_MASK_ALL)
3364 {
3365 except = ex;
3366 }
3367 END_CATCH
3368
3369 bcache_xfree (cache);
3370 VEC_free (type_equality_entry_d, worklist);
3371
3372 /* Rethrow if there was a problem. */
3373 if (except.reason < 0)
3374 throw_exception (except);
3375
3376 return result;
3377 }
3378 \f
3379 /* Compare one type (PARM) for compatibility with another (ARG).
3380 * PARM is intended to be the parameter type of a function; and
3381 * ARG is the supplied argument's type. This function tests if
3382 * the latter can be converted to the former.
3383 * VALUE is the argument's value or NULL if none (or called recursively)
3384 *
3385 * Return 0 if they are identical types;
3386 * Otherwise, return an integer which corresponds to how compatible
3387 * PARM is to ARG. The higher the return value, the worse the match.
3388 * Generally the "bad" conversions are all uniformly assigned a 100. */
3389
3390 struct rank
3391 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3392 {
3393 struct rank rank = {0,0};
3394
3395 if (types_equal (parm, arg))
3396 return EXACT_MATCH_BADNESS;
3397
3398 /* Resolve typedefs */
3399 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3400 parm = check_typedef (parm);
3401 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3402 arg = check_typedef (arg);
3403
3404 /* See through references, since we can almost make non-references
3405 references. */
3406 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3407 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3408 REFERENCE_CONVERSION_BADNESS));
3409 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3410 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3411 REFERENCE_CONVERSION_BADNESS));
3412 if (overload_debug)
3413 /* Debugging only. */
3414 fprintf_filtered (gdb_stderr,
3415 "------ Arg is %s [%d], parm is %s [%d]\n",
3416 TYPE_NAME (arg), TYPE_CODE (arg),
3417 TYPE_NAME (parm), TYPE_CODE (parm));
3418
3419 /* x -> y means arg of type x being supplied for parameter of type y. */
3420
3421 switch (TYPE_CODE (parm))
3422 {
3423 case TYPE_CODE_PTR:
3424 switch (TYPE_CODE (arg))
3425 {
3426 case TYPE_CODE_PTR:
3427
3428 /* Allowed pointer conversions are:
3429 (a) pointer to void-pointer conversion. */
3430 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3431 return VOID_PTR_CONVERSION_BADNESS;
3432
3433 /* (b) pointer to ancestor-pointer conversion. */
3434 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3435 TYPE_TARGET_TYPE (arg),
3436 0);
3437 if (rank.subrank >= 0)
3438 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3439
3440 return INCOMPATIBLE_TYPE_BADNESS;
3441 case TYPE_CODE_ARRAY:
3442 if (types_equal (TYPE_TARGET_TYPE (parm),
3443 TYPE_TARGET_TYPE (arg)))
3444 return EXACT_MATCH_BADNESS;
3445 return INCOMPATIBLE_TYPE_BADNESS;
3446 case TYPE_CODE_FUNC:
3447 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3448 case TYPE_CODE_INT:
3449 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3450 {
3451 if (value_as_long (value) == 0)
3452 {
3453 /* Null pointer conversion: allow it to be cast to a pointer.
3454 [4.10.1 of C++ standard draft n3290] */
3455 return NULL_POINTER_CONVERSION_BADNESS;
3456 }
3457 else
3458 {
3459 /* If type checking is disabled, allow the conversion. */
3460 if (!strict_type_checking)
3461 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3462 }
3463 }
3464 /* fall through */
3465 case TYPE_CODE_ENUM:
3466 case TYPE_CODE_FLAGS:
3467 case TYPE_CODE_CHAR:
3468 case TYPE_CODE_RANGE:
3469 case TYPE_CODE_BOOL:
3470 default:
3471 return INCOMPATIBLE_TYPE_BADNESS;
3472 }
3473 case TYPE_CODE_ARRAY:
3474 switch (TYPE_CODE (arg))
3475 {
3476 case TYPE_CODE_PTR:
3477 case TYPE_CODE_ARRAY:
3478 return rank_one_type (TYPE_TARGET_TYPE (parm),
3479 TYPE_TARGET_TYPE (arg), NULL);
3480 default:
3481 return INCOMPATIBLE_TYPE_BADNESS;
3482 }
3483 case TYPE_CODE_FUNC:
3484 switch (TYPE_CODE (arg))
3485 {
3486 case TYPE_CODE_PTR: /* funcptr -> func */
3487 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3488 default:
3489 return INCOMPATIBLE_TYPE_BADNESS;
3490 }
3491 case TYPE_CODE_INT:
3492 switch (TYPE_CODE (arg))
3493 {
3494 case TYPE_CODE_INT:
3495 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3496 {
3497 /* Deal with signed, unsigned, and plain chars and
3498 signed and unsigned ints. */
3499 if (TYPE_NOSIGN (parm))
3500 {
3501 /* This case only for character types. */
3502 if (TYPE_NOSIGN (arg))
3503 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3504 else /* signed/unsigned char -> plain char */
3505 return INTEGER_CONVERSION_BADNESS;
3506 }
3507 else if (TYPE_UNSIGNED (parm))
3508 {
3509 if (TYPE_UNSIGNED (arg))
3510 {
3511 /* unsigned int -> unsigned int, or
3512 unsigned long -> unsigned long */
3513 if (integer_types_same_name_p (TYPE_NAME (parm),
3514 TYPE_NAME (arg)))
3515 return EXACT_MATCH_BADNESS;
3516 else if (integer_types_same_name_p (TYPE_NAME (arg),
3517 "int")
3518 && integer_types_same_name_p (TYPE_NAME (parm),
3519 "long"))
3520 /* unsigned int -> unsigned long */
3521 return INTEGER_PROMOTION_BADNESS;
3522 else
3523 /* unsigned long -> unsigned int */
3524 return INTEGER_CONVERSION_BADNESS;
3525 }
3526 else
3527 {
3528 if (integer_types_same_name_p (TYPE_NAME (arg),
3529 "long")
3530 && integer_types_same_name_p (TYPE_NAME (parm),
3531 "int"))
3532 /* signed long -> unsigned int */
3533 return INTEGER_CONVERSION_BADNESS;
3534 else
3535 /* signed int/long -> unsigned int/long */
3536 return INTEGER_CONVERSION_BADNESS;
3537 }
3538 }
3539 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3540 {
3541 if (integer_types_same_name_p (TYPE_NAME (parm),
3542 TYPE_NAME (arg)))
3543 return EXACT_MATCH_BADNESS;
3544 else if (integer_types_same_name_p (TYPE_NAME (arg),
3545 "int")
3546 && integer_types_same_name_p (TYPE_NAME (parm),
3547 "long"))
3548 return INTEGER_PROMOTION_BADNESS;
3549 else
3550 return INTEGER_CONVERSION_BADNESS;
3551 }
3552 else
3553 return INTEGER_CONVERSION_BADNESS;
3554 }
3555 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3556 return INTEGER_PROMOTION_BADNESS;
3557 else
3558 return INTEGER_CONVERSION_BADNESS;
3559 case TYPE_CODE_ENUM:
3560 case TYPE_CODE_FLAGS:
3561 case TYPE_CODE_CHAR:
3562 case TYPE_CODE_RANGE:
3563 case TYPE_CODE_BOOL:
3564 if (TYPE_DECLARED_CLASS (arg))
3565 return INCOMPATIBLE_TYPE_BADNESS;
3566 return INTEGER_PROMOTION_BADNESS;
3567 case TYPE_CODE_FLT:
3568 return INT_FLOAT_CONVERSION_BADNESS;
3569 case TYPE_CODE_PTR:
3570 return NS_POINTER_CONVERSION_BADNESS;
3571 default:
3572 return INCOMPATIBLE_TYPE_BADNESS;
3573 }
3574 break;
3575 case TYPE_CODE_ENUM:
3576 switch (TYPE_CODE (arg))
3577 {
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_CHAR:
3580 case TYPE_CODE_RANGE:
3581 case TYPE_CODE_BOOL:
3582 case TYPE_CODE_ENUM:
3583 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3584 return INCOMPATIBLE_TYPE_BADNESS;
3585 return INTEGER_CONVERSION_BADNESS;
3586 case TYPE_CODE_FLT:
3587 return INT_FLOAT_CONVERSION_BADNESS;
3588 default:
3589 return INCOMPATIBLE_TYPE_BADNESS;
3590 }
3591 break;
3592 case TYPE_CODE_CHAR:
3593 switch (TYPE_CODE (arg))
3594 {
3595 case TYPE_CODE_RANGE:
3596 case TYPE_CODE_BOOL:
3597 case TYPE_CODE_ENUM:
3598 if (TYPE_DECLARED_CLASS (arg))
3599 return INCOMPATIBLE_TYPE_BADNESS;
3600 return INTEGER_CONVERSION_BADNESS;
3601 case TYPE_CODE_FLT:
3602 return INT_FLOAT_CONVERSION_BADNESS;
3603 case TYPE_CODE_INT:
3604 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3605 return INTEGER_CONVERSION_BADNESS;
3606 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3607 return INTEGER_PROMOTION_BADNESS;
3608 /* >>> !! else fall through !! <<< */
3609 case TYPE_CODE_CHAR:
3610 /* Deal with signed, unsigned, and plain chars for C++ and
3611 with int cases falling through from previous case. */
3612 if (TYPE_NOSIGN (parm))
3613 {
3614 if (TYPE_NOSIGN (arg))
3615 return EXACT_MATCH_BADNESS;
3616 else
3617 return INTEGER_CONVERSION_BADNESS;
3618 }
3619 else if (TYPE_UNSIGNED (parm))
3620 {
3621 if (TYPE_UNSIGNED (arg))
3622 return EXACT_MATCH_BADNESS;
3623 else
3624 return INTEGER_PROMOTION_BADNESS;
3625 }
3626 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3627 return EXACT_MATCH_BADNESS;
3628 else
3629 return INTEGER_CONVERSION_BADNESS;
3630 default:
3631 return INCOMPATIBLE_TYPE_BADNESS;
3632 }
3633 break;
3634 case TYPE_CODE_RANGE:
3635 switch (TYPE_CODE (arg))
3636 {
3637 case TYPE_CODE_INT:
3638 case TYPE_CODE_CHAR:
3639 case TYPE_CODE_RANGE:
3640 case TYPE_CODE_BOOL:
3641 case TYPE_CODE_ENUM:
3642 return INTEGER_CONVERSION_BADNESS;
3643 case TYPE_CODE_FLT:
3644 return INT_FLOAT_CONVERSION_BADNESS;
3645 default:
3646 return INCOMPATIBLE_TYPE_BADNESS;
3647 }
3648 break;
3649 case TYPE_CODE_BOOL:
3650 switch (TYPE_CODE (arg))
3651 {
3652 /* n3290 draft, section 4.12.1 (conv.bool):
3653
3654 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3655 pointer to member type can be converted to a prvalue of type
3656 bool. A zero value, null pointer value, or null member pointer
3657 value is converted to false; any other value is converted to
3658 true. A prvalue of type std::nullptr_t can be converted to a
3659 prvalue of type bool; the resulting value is false." */
3660 case TYPE_CODE_INT:
3661 case TYPE_CODE_CHAR:
3662 case TYPE_CODE_ENUM:
3663 case TYPE_CODE_FLT:
3664 case TYPE_CODE_MEMBERPTR:
3665 case TYPE_CODE_PTR:
3666 return BOOL_CONVERSION_BADNESS;
3667 case TYPE_CODE_RANGE:
3668 return INCOMPATIBLE_TYPE_BADNESS;
3669 case TYPE_CODE_BOOL:
3670 return EXACT_MATCH_BADNESS;
3671 default:
3672 return INCOMPATIBLE_TYPE_BADNESS;
3673 }
3674 break;
3675 case TYPE_CODE_FLT:
3676 switch (TYPE_CODE (arg))
3677 {
3678 case TYPE_CODE_FLT:
3679 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3680 return FLOAT_PROMOTION_BADNESS;
3681 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3682 return EXACT_MATCH_BADNESS;
3683 else
3684 return FLOAT_CONVERSION_BADNESS;
3685 case TYPE_CODE_INT:
3686 case TYPE_CODE_BOOL:
3687 case TYPE_CODE_ENUM:
3688 case TYPE_CODE_RANGE:
3689 case TYPE_CODE_CHAR:
3690 return INT_FLOAT_CONVERSION_BADNESS;
3691 default:
3692 return INCOMPATIBLE_TYPE_BADNESS;
3693 }
3694 break;
3695 case TYPE_CODE_COMPLEX:
3696 switch (TYPE_CODE (arg))
3697 { /* Strictly not needed for C++, but... */
3698 case TYPE_CODE_FLT:
3699 return FLOAT_PROMOTION_BADNESS;
3700 case TYPE_CODE_COMPLEX:
3701 return EXACT_MATCH_BADNESS;
3702 default:
3703 return INCOMPATIBLE_TYPE_BADNESS;
3704 }
3705 break;
3706 case TYPE_CODE_STRUCT:
3707 switch (TYPE_CODE (arg))
3708 {
3709 case TYPE_CODE_STRUCT:
3710 /* Check for derivation */
3711 rank.subrank = distance_to_ancestor (parm, arg, 0);
3712 if (rank.subrank >= 0)
3713 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3714 /* else fall through */
3715 default:
3716 return INCOMPATIBLE_TYPE_BADNESS;
3717 }
3718 break;
3719 case TYPE_CODE_UNION:
3720 switch (TYPE_CODE (arg))
3721 {
3722 case TYPE_CODE_UNION:
3723 default:
3724 return INCOMPATIBLE_TYPE_BADNESS;
3725 }
3726 break;
3727 case TYPE_CODE_MEMBERPTR:
3728 switch (TYPE_CODE (arg))
3729 {
3730 default:
3731 return INCOMPATIBLE_TYPE_BADNESS;
3732 }
3733 break;
3734 case TYPE_CODE_METHOD:
3735 switch (TYPE_CODE (arg))
3736 {
3737
3738 default:
3739 return INCOMPATIBLE_TYPE_BADNESS;
3740 }
3741 break;
3742 case TYPE_CODE_REF:
3743 switch (TYPE_CODE (arg))
3744 {
3745
3746 default:
3747 return INCOMPATIBLE_TYPE_BADNESS;
3748 }
3749
3750 break;
3751 case TYPE_CODE_SET:
3752 switch (TYPE_CODE (arg))
3753 {
3754 /* Not in C++ */
3755 case TYPE_CODE_SET:
3756 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3757 TYPE_FIELD_TYPE (arg, 0), NULL);
3758 default:
3759 return INCOMPATIBLE_TYPE_BADNESS;
3760 }
3761 break;
3762 case TYPE_CODE_VOID:
3763 default:
3764 return INCOMPATIBLE_TYPE_BADNESS;
3765 } /* switch (TYPE_CODE (arg)) */
3766 }
3767
3768 /* End of functions for overload resolution. */
3769 \f
3770 /* Routines to pretty-print types. */
3771
3772 static void
3773 print_bit_vector (B_TYPE *bits, int nbits)
3774 {
3775 int bitno;
3776
3777 for (bitno = 0; bitno < nbits; bitno++)
3778 {
3779 if ((bitno % 8) == 0)
3780 {
3781 puts_filtered (" ");
3782 }
3783 if (B_TST (bits, bitno))
3784 printf_filtered (("1"));
3785 else
3786 printf_filtered (("0"));
3787 }
3788 }
3789
3790 /* Note the first arg should be the "this" pointer, we may not want to
3791 include it since we may get into a infinitely recursive
3792 situation. */
3793
3794 static void
3795 print_args (struct field *args, int nargs, int spaces)
3796 {
3797 if (args != NULL)
3798 {
3799 int i;
3800
3801 for (i = 0; i < nargs; i++)
3802 {
3803 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3804 args[i].name != NULL ? args[i].name : "<NULL>");
3805 recursive_dump_type (args[i].type, spaces + 2);
3806 }
3807 }
3808 }
3809
3810 int
3811 field_is_static (struct field *f)
3812 {
3813 /* "static" fields are the fields whose location is not relative
3814 to the address of the enclosing struct. It would be nice to
3815 have a dedicated flag that would be set for static fields when
3816 the type is being created. But in practice, checking the field
3817 loc_kind should give us an accurate answer. */
3818 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3819 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3820 }
3821
3822 static void
3823 dump_fn_fieldlists (struct type *type, int spaces)
3824 {
3825 int method_idx;
3826 int overload_idx;
3827 struct fn_field *f;
3828
3829 printfi_filtered (spaces, "fn_fieldlists ");
3830 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3831 printf_filtered ("\n");
3832 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3833 {
3834 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3835 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3836 method_idx,
3837 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3838 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3839 gdb_stdout);
3840 printf_filtered (_(") length %d\n"),
3841 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3842 for (overload_idx = 0;
3843 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3844 overload_idx++)
3845 {
3846 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3847 overload_idx,
3848 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3849 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3850 gdb_stdout);
3851 printf_filtered (")\n");
3852 printfi_filtered (spaces + 8, "type ");
3853 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3854 gdb_stdout);
3855 printf_filtered ("\n");
3856
3857 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3858 spaces + 8 + 2);
3859
3860 printfi_filtered (spaces + 8, "args ");
3861 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3862 gdb_stdout);
3863 printf_filtered ("\n");
3864 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3865 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3866 spaces + 8 + 2);
3867 printfi_filtered (spaces + 8, "fcontext ");
3868 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3869 gdb_stdout);
3870 printf_filtered ("\n");
3871
3872 printfi_filtered (spaces + 8, "is_const %d\n",
3873 TYPE_FN_FIELD_CONST (f, overload_idx));
3874 printfi_filtered (spaces + 8, "is_volatile %d\n",
3875 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3876 printfi_filtered (spaces + 8, "is_private %d\n",
3877 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3878 printfi_filtered (spaces + 8, "is_protected %d\n",
3879 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3880 printfi_filtered (spaces + 8, "is_stub %d\n",
3881 TYPE_FN_FIELD_STUB (f, overload_idx));
3882 printfi_filtered (spaces + 8, "voffset %u\n",
3883 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3884 }
3885 }
3886 }
3887
3888 static void
3889 print_cplus_stuff (struct type *type, int spaces)
3890 {
3891 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3892 printfi_filtered (spaces, "vptr_basetype ");
3893 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3894 puts_filtered ("\n");
3895 if (TYPE_VPTR_BASETYPE (type) != NULL)
3896 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3897
3898 printfi_filtered (spaces, "n_baseclasses %d\n",
3899 TYPE_N_BASECLASSES (type));
3900 printfi_filtered (spaces, "nfn_fields %d\n",
3901 TYPE_NFN_FIELDS (type));
3902 if (TYPE_N_BASECLASSES (type) > 0)
3903 {
3904 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3905 TYPE_N_BASECLASSES (type));
3906 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3907 gdb_stdout);
3908 printf_filtered (")");
3909
3910 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3911 TYPE_N_BASECLASSES (type));
3912 puts_filtered ("\n");
3913 }
3914 if (TYPE_NFIELDS (type) > 0)
3915 {
3916 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3917 {
3918 printfi_filtered (spaces,
3919 "private_field_bits (%d bits at *",
3920 TYPE_NFIELDS (type));
3921 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3922 gdb_stdout);
3923 printf_filtered (")");
3924 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3925 TYPE_NFIELDS (type));
3926 puts_filtered ("\n");
3927 }
3928 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3929 {
3930 printfi_filtered (spaces,
3931 "protected_field_bits (%d bits at *",
3932 TYPE_NFIELDS (type));
3933 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3934 gdb_stdout);
3935 printf_filtered (")");
3936 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3937 TYPE_NFIELDS (type));
3938 puts_filtered ("\n");
3939 }
3940 }
3941 if (TYPE_NFN_FIELDS (type) > 0)
3942 {
3943 dump_fn_fieldlists (type, spaces);
3944 }
3945 }
3946
3947 /* Print the contents of the TYPE's type_specific union, assuming that
3948 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3949
3950 static void
3951 print_gnat_stuff (struct type *type, int spaces)
3952 {
3953 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3954
3955 if (descriptive_type == NULL)
3956 printfi_filtered (spaces + 2, "no descriptive type\n");
3957 else
3958 {
3959 printfi_filtered (spaces + 2, "descriptive type\n");
3960 recursive_dump_type (descriptive_type, spaces + 4);
3961 }
3962 }
3963
3964 static struct obstack dont_print_type_obstack;
3965
3966 void
3967 recursive_dump_type (struct type *type, int spaces)
3968 {
3969 int idx;
3970
3971 if (spaces == 0)
3972 obstack_begin (&dont_print_type_obstack, 0);
3973
3974 if (TYPE_NFIELDS (type) > 0
3975 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3976 {
3977 struct type **first_dont_print
3978 = (struct type **) obstack_base (&dont_print_type_obstack);
3979
3980 int i = (struct type **)
3981 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3982
3983 while (--i >= 0)
3984 {
3985 if (type == first_dont_print[i])
3986 {
3987 printfi_filtered (spaces, "type node ");
3988 gdb_print_host_address (type, gdb_stdout);
3989 printf_filtered (_(" <same as already seen type>\n"));
3990 return;
3991 }
3992 }
3993
3994 obstack_ptr_grow (&dont_print_type_obstack, type);
3995 }
3996
3997 printfi_filtered (spaces, "type node ");
3998 gdb_print_host_address (type, gdb_stdout);
3999 printf_filtered ("\n");
4000 printfi_filtered (spaces, "name '%s' (",
4001 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4002 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4003 printf_filtered (")\n");
4004 printfi_filtered (spaces, "tagname '%s' (",
4005 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4006 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4007 printf_filtered (")\n");
4008 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4009 switch (TYPE_CODE (type))
4010 {
4011 case TYPE_CODE_UNDEF:
4012 printf_filtered ("(TYPE_CODE_UNDEF)");
4013 break;
4014 case TYPE_CODE_PTR:
4015 printf_filtered ("(TYPE_CODE_PTR)");
4016 break;
4017 case TYPE_CODE_ARRAY:
4018 printf_filtered ("(TYPE_CODE_ARRAY)");
4019 break;
4020 case TYPE_CODE_STRUCT:
4021 printf_filtered ("(TYPE_CODE_STRUCT)");
4022 break;
4023 case TYPE_CODE_UNION:
4024 printf_filtered ("(TYPE_CODE_UNION)");
4025 break;
4026 case TYPE_CODE_ENUM:
4027 printf_filtered ("(TYPE_CODE_ENUM)");
4028 break;
4029 case TYPE_CODE_FLAGS:
4030 printf_filtered ("(TYPE_CODE_FLAGS)");
4031 break;
4032 case TYPE_CODE_FUNC:
4033 printf_filtered ("(TYPE_CODE_FUNC)");
4034 break;
4035 case TYPE_CODE_INT:
4036 printf_filtered ("(TYPE_CODE_INT)");
4037 break;
4038 case TYPE_CODE_FLT:
4039 printf_filtered ("(TYPE_CODE_FLT)");
4040 break;
4041 case TYPE_CODE_VOID:
4042 printf_filtered ("(TYPE_CODE_VOID)");
4043 break;
4044 case TYPE_CODE_SET:
4045 printf_filtered ("(TYPE_CODE_SET)");
4046 break;
4047 case TYPE_CODE_RANGE:
4048 printf_filtered ("(TYPE_CODE_RANGE)");
4049 break;
4050 case TYPE_CODE_STRING:
4051 printf_filtered ("(TYPE_CODE_STRING)");
4052 break;
4053 case TYPE_CODE_ERROR:
4054 printf_filtered ("(TYPE_CODE_ERROR)");
4055 break;
4056 case TYPE_CODE_MEMBERPTR:
4057 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4058 break;
4059 case TYPE_CODE_METHODPTR:
4060 printf_filtered ("(TYPE_CODE_METHODPTR)");
4061 break;
4062 case TYPE_CODE_METHOD:
4063 printf_filtered ("(TYPE_CODE_METHOD)");
4064 break;
4065 case TYPE_CODE_REF:
4066 printf_filtered ("(TYPE_CODE_REF)");
4067 break;
4068 case TYPE_CODE_CHAR:
4069 printf_filtered ("(TYPE_CODE_CHAR)");
4070 break;
4071 case TYPE_CODE_BOOL:
4072 printf_filtered ("(TYPE_CODE_BOOL)");
4073 break;
4074 case TYPE_CODE_COMPLEX:
4075 printf_filtered ("(TYPE_CODE_COMPLEX)");
4076 break;
4077 case TYPE_CODE_TYPEDEF:
4078 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4079 break;
4080 case TYPE_CODE_NAMESPACE:
4081 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4082 break;
4083 default:
4084 printf_filtered ("(UNKNOWN TYPE CODE)");
4085 break;
4086 }
4087 puts_filtered ("\n");
4088 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4089 if (TYPE_OBJFILE_OWNED (type))
4090 {
4091 printfi_filtered (spaces, "objfile ");
4092 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4093 }
4094 else
4095 {
4096 printfi_filtered (spaces, "gdbarch ");
4097 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4098 }
4099 printf_filtered ("\n");
4100 printfi_filtered (spaces, "target_type ");
4101 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4102 printf_filtered ("\n");
4103 if (TYPE_TARGET_TYPE (type) != NULL)
4104 {
4105 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4106 }
4107 printfi_filtered (spaces, "pointer_type ");
4108 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4109 printf_filtered ("\n");
4110 printfi_filtered (spaces, "reference_type ");
4111 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4112 printf_filtered ("\n");
4113 printfi_filtered (spaces, "type_chain ");
4114 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4115 printf_filtered ("\n");
4116 printfi_filtered (spaces, "instance_flags 0x%x",
4117 TYPE_INSTANCE_FLAGS (type));
4118 if (TYPE_CONST (type))
4119 {
4120 puts_filtered (" TYPE_FLAG_CONST");
4121 }
4122 if (TYPE_VOLATILE (type))
4123 {
4124 puts_filtered (" TYPE_FLAG_VOLATILE");
4125 }
4126 if (TYPE_CODE_SPACE (type))
4127 {
4128 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4129 }
4130 if (TYPE_DATA_SPACE (type))
4131 {
4132 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4133 }
4134 if (TYPE_ADDRESS_CLASS_1 (type))
4135 {
4136 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4137 }
4138 if (TYPE_ADDRESS_CLASS_2 (type))
4139 {
4140 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4141 }
4142 if (TYPE_RESTRICT (type))
4143 {
4144 puts_filtered (" TYPE_FLAG_RESTRICT");
4145 }
4146 if (TYPE_ATOMIC (type))
4147 {
4148 puts_filtered (" TYPE_FLAG_ATOMIC");
4149 }
4150 puts_filtered ("\n");
4151
4152 printfi_filtered (spaces, "flags");
4153 if (TYPE_UNSIGNED (type))
4154 {
4155 puts_filtered (" TYPE_FLAG_UNSIGNED");
4156 }
4157 if (TYPE_NOSIGN (type))
4158 {
4159 puts_filtered (" TYPE_FLAG_NOSIGN");
4160 }
4161 if (TYPE_STUB (type))
4162 {
4163 puts_filtered (" TYPE_FLAG_STUB");
4164 }
4165 if (TYPE_TARGET_STUB (type))
4166 {
4167 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4168 }
4169 if (TYPE_STATIC (type))
4170 {
4171 puts_filtered (" TYPE_FLAG_STATIC");
4172 }
4173 if (TYPE_PROTOTYPED (type))
4174 {
4175 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4176 }
4177 if (TYPE_INCOMPLETE (type))
4178 {
4179 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4180 }
4181 if (TYPE_VARARGS (type))
4182 {
4183 puts_filtered (" TYPE_FLAG_VARARGS");
4184 }
4185 /* This is used for things like AltiVec registers on ppc. Gcc emits
4186 an attribute for the array type, which tells whether or not we
4187 have a vector, instead of a regular array. */
4188 if (TYPE_VECTOR (type))
4189 {
4190 puts_filtered (" TYPE_FLAG_VECTOR");
4191 }
4192 if (TYPE_FIXED_INSTANCE (type))
4193 {
4194 puts_filtered (" TYPE_FIXED_INSTANCE");
4195 }
4196 if (TYPE_STUB_SUPPORTED (type))
4197 {
4198 puts_filtered (" TYPE_STUB_SUPPORTED");
4199 }
4200 if (TYPE_NOTTEXT (type))
4201 {
4202 puts_filtered (" TYPE_NOTTEXT");
4203 }
4204 puts_filtered ("\n");
4205 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4206 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4207 puts_filtered ("\n");
4208 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4209 {
4210 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4211 printfi_filtered (spaces + 2,
4212 "[%d] enumval %s type ",
4213 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4214 else
4215 printfi_filtered (spaces + 2,
4216 "[%d] bitpos %d bitsize %d type ",
4217 idx, TYPE_FIELD_BITPOS (type, idx),
4218 TYPE_FIELD_BITSIZE (type, idx));
4219 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4220 printf_filtered (" name '%s' (",
4221 TYPE_FIELD_NAME (type, idx) != NULL
4222 ? TYPE_FIELD_NAME (type, idx)
4223 : "<NULL>");
4224 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4225 printf_filtered (")\n");
4226 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4227 {
4228 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4229 }
4230 }
4231 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4232 {
4233 printfi_filtered (spaces, "low %s%s high %s%s\n",
4234 plongest (TYPE_LOW_BOUND (type)),
4235 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4236 plongest (TYPE_HIGH_BOUND (type)),
4237 TYPE_HIGH_BOUND_UNDEFINED (type)
4238 ? " (undefined)" : "");
4239 }
4240
4241 switch (TYPE_SPECIFIC_FIELD (type))
4242 {
4243 case TYPE_SPECIFIC_CPLUS_STUFF:
4244 printfi_filtered (spaces, "cplus_stuff ");
4245 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4246 gdb_stdout);
4247 puts_filtered ("\n");
4248 print_cplus_stuff (type, spaces);
4249 break;
4250
4251 case TYPE_SPECIFIC_GNAT_STUFF:
4252 printfi_filtered (spaces, "gnat_stuff ");
4253 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4254 puts_filtered ("\n");
4255 print_gnat_stuff (type, spaces);
4256 break;
4257
4258 case TYPE_SPECIFIC_FLOATFORMAT:
4259 printfi_filtered (spaces, "floatformat ");
4260 if (TYPE_FLOATFORMAT (type) == NULL)
4261 puts_filtered ("(null)");
4262 else
4263 {
4264 puts_filtered ("{ ");
4265 if (TYPE_FLOATFORMAT (type)[0] == NULL
4266 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4267 puts_filtered ("(null)");
4268 else
4269 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4270
4271 puts_filtered (", ");
4272 if (TYPE_FLOATFORMAT (type)[1] == NULL
4273 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4274 puts_filtered ("(null)");
4275 else
4276 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4277
4278 puts_filtered (" }");
4279 }
4280 puts_filtered ("\n");
4281 break;
4282
4283 case TYPE_SPECIFIC_FUNC:
4284 printfi_filtered (spaces, "calling_convention %d\n",
4285 TYPE_CALLING_CONVENTION (type));
4286 /* tail_call_list is not printed. */
4287 break;
4288
4289 case TYPE_SPECIFIC_SELF_TYPE:
4290 printfi_filtered (spaces, "self_type ");
4291 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4292 puts_filtered ("\n");
4293 break;
4294 }
4295
4296 if (spaces == 0)
4297 obstack_free (&dont_print_type_obstack, NULL);
4298 }
4299 \f
4300 /* Trivial helpers for the libiberty hash table, for mapping one
4301 type to another. */
4302
4303 struct type_pair
4304 {
4305 struct type *old, *newobj;
4306 };
4307
4308 static hashval_t
4309 type_pair_hash (const void *item)
4310 {
4311 const struct type_pair *pair = item;
4312
4313 return htab_hash_pointer (pair->old);
4314 }
4315
4316 static int
4317 type_pair_eq (const void *item_lhs, const void *item_rhs)
4318 {
4319 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4320
4321 return lhs->old == rhs->old;
4322 }
4323
4324 /* Allocate the hash table used by copy_type_recursive to walk
4325 types without duplicates. We use OBJFILE's obstack, because
4326 OBJFILE is about to be deleted. */
4327
4328 htab_t
4329 create_copied_types_hash (struct objfile *objfile)
4330 {
4331 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4332 NULL, &objfile->objfile_obstack,
4333 hashtab_obstack_allocate,
4334 dummy_obstack_deallocate);
4335 }
4336
4337 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4338
4339 static struct dynamic_prop_list *
4340 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4341 struct dynamic_prop_list *list)
4342 {
4343 struct dynamic_prop_list *copy = list;
4344 struct dynamic_prop_list **node_ptr = &copy;
4345
4346 while (*node_ptr != NULL)
4347 {
4348 struct dynamic_prop_list *node_copy;
4349
4350 node_copy = ((struct dynamic_prop_list *)
4351 obstack_copy (objfile_obstack, *node_ptr,
4352 sizeof (struct dynamic_prop_list)));
4353 node_copy->prop = (*node_ptr)->prop;
4354 *node_ptr = node_copy;
4355
4356 node_ptr = &node_copy->next;
4357 }
4358
4359 return copy;
4360 }
4361
4362 /* Recursively copy (deep copy) TYPE, if it is associated with
4363 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4364 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4365 it is not associated with OBJFILE. */
4366
4367 struct type *
4368 copy_type_recursive (struct objfile *objfile,
4369 struct type *type,
4370 htab_t copied_types)
4371 {
4372 struct type_pair *stored, pair;
4373 void **slot;
4374 struct type *new_type;
4375
4376 if (! TYPE_OBJFILE_OWNED (type))
4377 return type;
4378
4379 /* This type shouldn't be pointing to any types in other objfiles;
4380 if it did, the type might disappear unexpectedly. */
4381 gdb_assert (TYPE_OBJFILE (type) == objfile);
4382
4383 pair.old = type;
4384 slot = htab_find_slot (copied_types, &pair, INSERT);
4385 if (*slot != NULL)
4386 return ((struct type_pair *) *slot)->newobj;
4387
4388 new_type = alloc_type_arch (get_type_arch (type));
4389
4390 /* We must add the new type to the hash table immediately, in case
4391 we encounter this type again during a recursive call below. */
4392 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4393 stored->old = type;
4394 stored->newobj = new_type;
4395 *slot = stored;
4396
4397 /* Copy the common fields of types. For the main type, we simply
4398 copy the entire thing and then update specific fields as needed. */
4399 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4400 TYPE_OBJFILE_OWNED (new_type) = 0;
4401 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4402
4403 if (TYPE_NAME (type))
4404 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4405 if (TYPE_TAG_NAME (type))
4406 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4407
4408 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4409 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4410
4411 /* Copy the fields. */
4412 if (TYPE_NFIELDS (type))
4413 {
4414 int i, nfields;
4415
4416 nfields = TYPE_NFIELDS (type);
4417 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4418 for (i = 0; i < nfields; i++)
4419 {
4420 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4421 TYPE_FIELD_ARTIFICIAL (type, i);
4422 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4423 if (TYPE_FIELD_TYPE (type, i))
4424 TYPE_FIELD_TYPE (new_type, i)
4425 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4426 copied_types);
4427 if (TYPE_FIELD_NAME (type, i))
4428 TYPE_FIELD_NAME (new_type, i) =
4429 xstrdup (TYPE_FIELD_NAME (type, i));
4430 switch (TYPE_FIELD_LOC_KIND (type, i))
4431 {
4432 case FIELD_LOC_KIND_BITPOS:
4433 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4434 TYPE_FIELD_BITPOS (type, i));
4435 break;
4436 case FIELD_LOC_KIND_ENUMVAL:
4437 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4438 TYPE_FIELD_ENUMVAL (type, i));
4439 break;
4440 case FIELD_LOC_KIND_PHYSADDR:
4441 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4442 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4443 break;
4444 case FIELD_LOC_KIND_PHYSNAME:
4445 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4446 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4447 i)));
4448 break;
4449 default:
4450 internal_error (__FILE__, __LINE__,
4451 _("Unexpected type field location kind: %d"),
4452 TYPE_FIELD_LOC_KIND (type, i));
4453 }
4454 }
4455 }
4456
4457 /* For range types, copy the bounds information. */
4458 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4459 {
4460 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4461 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4462 }
4463
4464 if (TYPE_DYN_PROP_LIST (type) != NULL)
4465 TYPE_DYN_PROP_LIST (new_type)
4466 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4467 TYPE_DYN_PROP_LIST (type));
4468
4469
4470 /* Copy pointers to other types. */
4471 if (TYPE_TARGET_TYPE (type))
4472 TYPE_TARGET_TYPE (new_type) =
4473 copy_type_recursive (objfile,
4474 TYPE_TARGET_TYPE (type),
4475 copied_types);
4476
4477 /* Maybe copy the type_specific bits.
4478
4479 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4480 base classes and methods. There's no fundamental reason why we
4481 can't, but at the moment it is not needed. */
4482
4483 switch (TYPE_SPECIFIC_FIELD (type))
4484 {
4485 case TYPE_SPECIFIC_NONE:
4486 break;
4487 case TYPE_SPECIFIC_FUNC:
4488 INIT_FUNC_SPECIFIC (new_type);
4489 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4490 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4491 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4492 break;
4493 case TYPE_SPECIFIC_FLOATFORMAT:
4494 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4495 break;
4496 case TYPE_SPECIFIC_CPLUS_STUFF:
4497 INIT_CPLUS_SPECIFIC (new_type);
4498 break;
4499 case TYPE_SPECIFIC_GNAT_STUFF:
4500 INIT_GNAT_SPECIFIC (new_type);
4501 break;
4502 case TYPE_SPECIFIC_SELF_TYPE:
4503 set_type_self_type (new_type,
4504 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4505 copied_types));
4506 break;
4507 default:
4508 gdb_assert_not_reached ("bad type_specific_kind");
4509 }
4510
4511 return new_type;
4512 }
4513
4514 /* Make a copy of the given TYPE, except that the pointer & reference
4515 types are not preserved.
4516
4517 This function assumes that the given type has an associated objfile.
4518 This objfile is used to allocate the new type. */
4519
4520 struct type *
4521 copy_type (const struct type *type)
4522 {
4523 struct type *new_type;
4524
4525 gdb_assert (TYPE_OBJFILE_OWNED (type));
4526
4527 new_type = alloc_type_copy (type);
4528 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4529 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4530 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4531 sizeof (struct main_type));
4532 if (TYPE_DYN_PROP_LIST (type) != NULL)
4533 TYPE_DYN_PROP_LIST (new_type)
4534 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4535 TYPE_DYN_PROP_LIST (type));
4536
4537 return new_type;
4538 }
4539 \f
4540 /* Helper functions to initialize architecture-specific types. */
4541
4542 /* Allocate a type structure associated with GDBARCH and set its
4543 CODE, LENGTH, and NAME fields. */
4544
4545 struct type *
4546 arch_type (struct gdbarch *gdbarch,
4547 enum type_code code, int length, char *name)
4548 {
4549 struct type *type;
4550
4551 type = alloc_type_arch (gdbarch);
4552 TYPE_CODE (type) = code;
4553 TYPE_LENGTH (type) = length;
4554
4555 if (name)
4556 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4557
4558 return type;
4559 }
4560
4561 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4562 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4563 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4564
4565 struct type *
4566 arch_integer_type (struct gdbarch *gdbarch,
4567 int bit, int unsigned_p, char *name)
4568 {
4569 struct type *t;
4570
4571 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4572 if (unsigned_p)
4573 TYPE_UNSIGNED (t) = 1;
4574 if (name && strcmp (name, "char") == 0)
4575 TYPE_NOSIGN (t) = 1;
4576
4577 return t;
4578 }
4579
4580 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4581 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4582 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4583
4584 struct type *
4585 arch_character_type (struct gdbarch *gdbarch,
4586 int bit, int unsigned_p, char *name)
4587 {
4588 struct type *t;
4589
4590 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4591 if (unsigned_p)
4592 TYPE_UNSIGNED (t) = 1;
4593
4594 return t;
4595 }
4596
4597 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4598 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4599 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4600
4601 struct type *
4602 arch_boolean_type (struct gdbarch *gdbarch,
4603 int bit, int unsigned_p, char *name)
4604 {
4605 struct type *t;
4606
4607 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4608 if (unsigned_p)
4609 TYPE_UNSIGNED (t) = 1;
4610
4611 return t;
4612 }
4613
4614 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4615 BIT is the type size in bits; if BIT equals -1, the size is
4616 determined by the floatformat. NAME is the type name. Set the
4617 TYPE_FLOATFORMAT from FLOATFORMATS. */
4618
4619 struct type *
4620 arch_float_type (struct gdbarch *gdbarch,
4621 int bit, char *name, const struct floatformat **floatformats)
4622 {
4623 struct type *t;
4624
4625 if (bit == -1)
4626 {
4627 gdb_assert (floatformats != NULL);
4628 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4629 bit = floatformats[0]->totalsize;
4630 }
4631 gdb_assert (bit >= 0);
4632
4633 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4634 TYPE_FLOATFORMAT (t) = floatformats;
4635 return t;
4636 }
4637
4638 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4639 NAME is the type name. TARGET_TYPE is the component float type. */
4640
4641 struct type *
4642 arch_complex_type (struct gdbarch *gdbarch,
4643 char *name, struct type *target_type)
4644 {
4645 struct type *t;
4646
4647 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4648 2 * TYPE_LENGTH (target_type), name);
4649 TYPE_TARGET_TYPE (t) = target_type;
4650 return t;
4651 }
4652
4653 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4654 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4655
4656 struct type *
4657 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4658 {
4659 int nfields = length * TARGET_CHAR_BIT;
4660 struct type *type;
4661
4662 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4663 TYPE_UNSIGNED (type) = 1;
4664 TYPE_NFIELDS (type) = nfields;
4665 TYPE_FIELDS (type)
4666 = (struct field *) TYPE_ZALLOC (type, nfields * sizeof (struct field));
4667
4668 return type;
4669 }
4670
4671 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4672 position BITPOS is called NAME. */
4673
4674 void
4675 append_flags_type_flag (struct type *type, int bitpos, char *name)
4676 {
4677 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4678 gdb_assert (bitpos < TYPE_NFIELDS (type));
4679 gdb_assert (bitpos >= 0);
4680
4681 if (name)
4682 {
4683 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4684 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4685 }
4686 else
4687 {
4688 /* Don't show this field to the user. */
4689 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4690 }
4691 }
4692
4693 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4694 specified by CODE) associated with GDBARCH. NAME is the type name. */
4695
4696 struct type *
4697 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4698 {
4699 struct type *t;
4700
4701 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4702 t = arch_type (gdbarch, code, 0, NULL);
4703 TYPE_TAG_NAME (t) = name;
4704 INIT_CPLUS_SPECIFIC (t);
4705 return t;
4706 }
4707
4708 /* Add new field with name NAME and type FIELD to composite type T.
4709 Do not set the field's position or adjust the type's length;
4710 the caller should do so. Return the new field. */
4711
4712 struct field *
4713 append_composite_type_field_raw (struct type *t, char *name,
4714 struct type *field)
4715 {
4716 struct field *f;
4717
4718 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4719 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4720 TYPE_NFIELDS (t));
4721 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4722 memset (f, 0, sizeof f[0]);
4723 FIELD_TYPE (f[0]) = field;
4724 FIELD_NAME (f[0]) = name;
4725 return f;
4726 }
4727
4728 /* Add new field with name NAME and type FIELD to composite type T.
4729 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4730
4731 void
4732 append_composite_type_field_aligned (struct type *t, char *name,
4733 struct type *field, int alignment)
4734 {
4735 struct field *f = append_composite_type_field_raw (t, name, field);
4736
4737 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4738 {
4739 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4740 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4741 }
4742 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4743 {
4744 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4745 if (TYPE_NFIELDS (t) > 1)
4746 {
4747 SET_FIELD_BITPOS (f[0],
4748 (FIELD_BITPOS (f[-1])
4749 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4750 * TARGET_CHAR_BIT)));
4751
4752 if (alignment)
4753 {
4754 int left;
4755
4756 alignment *= TARGET_CHAR_BIT;
4757 left = FIELD_BITPOS (f[0]) % alignment;
4758
4759 if (left)
4760 {
4761 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4762 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4763 }
4764 }
4765 }
4766 }
4767 }
4768
4769 /* Add new field with name NAME and type FIELD to composite type T. */
4770
4771 void
4772 append_composite_type_field (struct type *t, char *name,
4773 struct type *field)
4774 {
4775 append_composite_type_field_aligned (t, name, field, 0);
4776 }
4777
4778 static struct gdbarch_data *gdbtypes_data;
4779
4780 const struct builtin_type *
4781 builtin_type (struct gdbarch *gdbarch)
4782 {
4783 return gdbarch_data (gdbarch, gdbtypes_data);
4784 }
4785
4786 static void *
4787 gdbtypes_post_init (struct gdbarch *gdbarch)
4788 {
4789 struct builtin_type *builtin_type
4790 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4791
4792 /* Basic types. */
4793 builtin_type->builtin_void
4794 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4795 builtin_type->builtin_char
4796 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4797 !gdbarch_char_signed (gdbarch), "char");
4798 builtin_type->builtin_signed_char
4799 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4800 0, "signed char");
4801 builtin_type->builtin_unsigned_char
4802 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4803 1, "unsigned char");
4804 builtin_type->builtin_short
4805 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4806 0, "short");
4807 builtin_type->builtin_unsigned_short
4808 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4809 1, "unsigned short");
4810 builtin_type->builtin_int
4811 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4812 0, "int");
4813 builtin_type->builtin_unsigned_int
4814 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4815 1, "unsigned int");
4816 builtin_type->builtin_long
4817 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4818 0, "long");
4819 builtin_type->builtin_unsigned_long
4820 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4821 1, "unsigned long");
4822 builtin_type->builtin_long_long
4823 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4824 0, "long long");
4825 builtin_type->builtin_unsigned_long_long
4826 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4827 1, "unsigned long long");
4828 builtin_type->builtin_float
4829 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4830 "float", gdbarch_float_format (gdbarch));
4831 builtin_type->builtin_double
4832 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4833 "double", gdbarch_double_format (gdbarch));
4834 builtin_type->builtin_long_double
4835 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4836 "long double", gdbarch_long_double_format (gdbarch));
4837 builtin_type->builtin_complex
4838 = arch_complex_type (gdbarch, "complex",
4839 builtin_type->builtin_float);
4840 builtin_type->builtin_double_complex
4841 = arch_complex_type (gdbarch, "double complex",
4842 builtin_type->builtin_double);
4843 builtin_type->builtin_string
4844 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4845 builtin_type->builtin_bool
4846 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4847
4848 /* The following three are about decimal floating point types, which
4849 are 32-bits, 64-bits and 128-bits respectively. */
4850 builtin_type->builtin_decfloat
4851 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4852 builtin_type->builtin_decdouble
4853 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4854 builtin_type->builtin_declong
4855 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4856
4857 /* "True" character types. */
4858 builtin_type->builtin_true_char
4859 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4860 builtin_type->builtin_true_unsigned_char
4861 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4862
4863 /* Fixed-size integer types. */
4864 builtin_type->builtin_int0
4865 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4866 builtin_type->builtin_int8
4867 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4868 builtin_type->builtin_uint8
4869 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4870 builtin_type->builtin_int16
4871 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4872 builtin_type->builtin_uint16
4873 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4874 builtin_type->builtin_int32
4875 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4876 builtin_type->builtin_uint32
4877 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4878 builtin_type->builtin_int64
4879 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4880 builtin_type->builtin_uint64
4881 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4882 builtin_type->builtin_int128
4883 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4884 builtin_type->builtin_uint128
4885 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4886 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4887 TYPE_INSTANCE_FLAG_NOTTEXT;
4888 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4889 TYPE_INSTANCE_FLAG_NOTTEXT;
4890
4891 /* Wide character types. */
4892 builtin_type->builtin_char16
4893 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4894 builtin_type->builtin_char32
4895 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4896
4897
4898 /* Default data/code pointer types. */
4899 builtin_type->builtin_data_ptr
4900 = lookup_pointer_type (builtin_type->builtin_void);
4901 builtin_type->builtin_func_ptr
4902 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4903 builtin_type->builtin_func_func
4904 = lookup_function_type (builtin_type->builtin_func_ptr);
4905
4906 /* This type represents a GDB internal function. */
4907 builtin_type->internal_fn
4908 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4909 "<internal function>");
4910
4911 /* This type represents an xmethod. */
4912 builtin_type->xmethod
4913 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4914
4915 return builtin_type;
4916 }
4917
4918 /* This set of objfile-based types is intended to be used by symbol
4919 readers as basic types. */
4920
4921 static const struct objfile_data *objfile_type_data;
4922
4923 const struct objfile_type *
4924 objfile_type (struct objfile *objfile)
4925 {
4926 struct gdbarch *gdbarch;
4927 struct objfile_type *objfile_type
4928 = objfile_data (objfile, objfile_type_data);
4929
4930 if (objfile_type)
4931 return objfile_type;
4932
4933 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4934 1, struct objfile_type);
4935
4936 /* Use the objfile architecture to determine basic type properties. */
4937 gdbarch = get_objfile_arch (objfile);
4938
4939 /* Basic types. */
4940 objfile_type->builtin_void
4941 = init_type (TYPE_CODE_VOID, 1,
4942 0,
4943 "void", objfile);
4944
4945 objfile_type->builtin_char
4946 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4947 (TYPE_FLAG_NOSIGN
4948 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4949 "char", objfile);
4950 objfile_type->builtin_signed_char
4951 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4952 0,
4953 "signed char", objfile);
4954 objfile_type->builtin_unsigned_char
4955 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4956 TYPE_FLAG_UNSIGNED,
4957 "unsigned char", objfile);
4958 objfile_type->builtin_short
4959 = init_type (TYPE_CODE_INT,
4960 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4961 0, "short", objfile);
4962 objfile_type->builtin_unsigned_short
4963 = init_type (TYPE_CODE_INT,
4964 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4965 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4966 objfile_type->builtin_int
4967 = init_type (TYPE_CODE_INT,
4968 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4969 0, "int", objfile);
4970 objfile_type->builtin_unsigned_int
4971 = init_type (TYPE_CODE_INT,
4972 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4973 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4974 objfile_type->builtin_long
4975 = init_type (TYPE_CODE_INT,
4976 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4977 0, "long", objfile);
4978 objfile_type->builtin_unsigned_long
4979 = init_type (TYPE_CODE_INT,
4980 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4981 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4982 objfile_type->builtin_long_long
4983 = init_type (TYPE_CODE_INT,
4984 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4985 0, "long long", objfile);
4986 objfile_type->builtin_unsigned_long_long
4987 = init_type (TYPE_CODE_INT,
4988 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4989 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4990
4991 objfile_type->builtin_float
4992 = init_type (TYPE_CODE_FLT,
4993 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4994 0, "float", objfile);
4995 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4996 = gdbarch_float_format (gdbarch);
4997 objfile_type->builtin_double
4998 = init_type (TYPE_CODE_FLT,
4999 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
5000 0, "double", objfile);
5001 TYPE_FLOATFORMAT (objfile_type->builtin_double)
5002 = gdbarch_double_format (gdbarch);
5003 objfile_type->builtin_long_double
5004 = init_type (TYPE_CODE_FLT,
5005 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5006 0, "long double", objfile);
5007 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5008 = gdbarch_long_double_format (gdbarch);
5009
5010 /* This type represents a type that was unrecognized in symbol read-in. */
5011 objfile_type->builtin_error
5012 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5013
5014 /* The following set of types is used for symbols with no
5015 debug information. */
5016 objfile_type->nodebug_text_symbol
5017 = init_type (TYPE_CODE_FUNC, 1, 0,
5018 "<text variable, no debug info>", objfile);
5019 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5020 = objfile_type->builtin_int;
5021 objfile_type->nodebug_text_gnu_ifunc_symbol
5022 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5023 "<text gnu-indirect-function variable, no debug info>",
5024 objfile);
5025 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5026 = objfile_type->nodebug_text_symbol;
5027 objfile_type->nodebug_got_plt_symbol
5028 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5029 "<text from jump slot in .got.plt, no debug info>",
5030 objfile);
5031 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5032 = objfile_type->nodebug_text_symbol;
5033 objfile_type->nodebug_data_symbol
5034 = init_type (TYPE_CODE_INT,
5035 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5036 "<data variable, no debug info>", objfile);
5037 objfile_type->nodebug_unknown_symbol
5038 = init_type (TYPE_CODE_INT, 1, 0,
5039 "<variable (not text or data), no debug info>", objfile);
5040 objfile_type->nodebug_tls_symbol
5041 = init_type (TYPE_CODE_INT,
5042 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5043 "<thread local variable, no debug info>", objfile);
5044
5045 /* NOTE: on some targets, addresses and pointers are not necessarily
5046 the same.
5047
5048 The upshot is:
5049 - gdb's `struct type' always describes the target's
5050 representation.
5051 - gdb's `struct value' objects should always hold values in
5052 target form.
5053 - gdb's CORE_ADDR values are addresses in the unified virtual
5054 address space that the assembler and linker work with. Thus,
5055 since target_read_memory takes a CORE_ADDR as an argument, it
5056 can access any memory on the target, even if the processor has
5057 separate code and data address spaces.
5058
5059 In this context, objfile_type->builtin_core_addr is a bit odd:
5060 it's a target type for a value the target will never see. It's
5061 only used to hold the values of (typeless) linker symbols, which
5062 are indeed in the unified virtual address space. */
5063
5064 objfile_type->builtin_core_addr
5065 = init_type (TYPE_CODE_INT,
5066 gdbarch_addr_bit (gdbarch) / 8,
5067 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5068
5069 set_objfile_data (objfile, objfile_type_data, objfile_type);
5070 return objfile_type;
5071 }
5072
5073 extern initialize_file_ftype _initialize_gdbtypes;
5074
5075 void
5076 _initialize_gdbtypes (void)
5077 {
5078 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5079 objfile_type_data = register_objfile_data ();
5080
5081 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5082 _("Set debugging of C++ overloading."),
5083 _("Show debugging of C++ overloading."),
5084 _("When enabled, ranking of the "
5085 "functions is displayed."),
5086 NULL,
5087 show_overload_debug,
5088 &setdebuglist, &showdebuglist);
5089
5090 /* Add user knob for controlling resolution of opaque types. */
5091 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5092 &opaque_type_resolution,
5093 _("Set resolution of opaque struct/class/union"
5094 " types (if set before loading symbols)."),
5095 _("Show resolution of opaque struct/class/union"
5096 " types (if set before loading symbols)."),
5097 NULL, NULL,
5098 show_opaque_type_resolution,
5099 &setlist, &showlist);
5100
5101 /* Add an option to permit non-strict type checking. */
5102 add_setshow_boolean_cmd ("type", class_support,
5103 &strict_type_checking,
5104 _("Set strict type checking."),
5105 _("Show strict type checking."),
5106 NULL, NULL,
5107 show_strict_type_checking,
5108 &setchecklist, &showchecklist);
5109 }
This page took 0.136992 seconds and 4 git commands to generate.