gdb/
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40
41 /* Initialize BADNESS constants. */
42
43 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
44
45 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
47
48 const struct rank EXACT_MATCH_BADNESS = {0,0};
49
50 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
58 const struct rank BASE_CONVERSION_BADNESS = {2,0};
59 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
60 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
61 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
62
63 /* Floatformat pairs. */
64 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_ieee_half_big,
66 &floatformat_ieee_half_little
67 };
68 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_single_big,
70 &floatformat_ieee_single_little
71 };
72 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_double_big,
74 &floatformat_ieee_double_little
75 };
76 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_littlebyte_bigword
79 };
80 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_i387_ext,
82 &floatformat_i387_ext
83 };
84 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_m68881_ext,
86 &floatformat_m68881_ext
87 };
88 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_arm_ext_big,
90 &floatformat_arm_ext_littlebyte_bigword
91 };
92 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_ia64_spill_big,
94 &floatformat_ia64_spill_little
95 };
96 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_quad_big,
98 &floatformat_ia64_quad_little
99 };
100 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_vax_f,
102 &floatformat_vax_f
103 };
104 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_d,
106 &floatformat_vax_d
107 };
108 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_ibm_long_double,
110 &floatformat_ibm_long_double
111 };
112
113
114 int opaque_type_resolution = 1;
115 static void
116 show_opaque_type_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
121 "(if set before loading symbols) is %s.\n"),
122 value);
123 }
124
125 int overload_debug = 0;
126 static void
127 show_overload_debug (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c, const char *value)
129 {
130 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
131 value);
132 }
133
134 struct extra
135 {
136 char str[128];
137 int len;
138 }; /* Maximum extension is 128! FIXME */
139
140 static void print_bit_vector (B_TYPE *, int);
141 static void print_arg_types (struct field *, int, int);
142 static void dump_fn_fieldlists (struct type *, int);
143 static void print_cplus_stuff (struct type *, int);
144
145
146 /* Allocate a new OBJFILE-associated type structure and fill it
147 with some defaults. Space for the type structure is allocated
148 on the objfile's objfile_obstack. */
149
150 struct type *
151 alloc_type (struct objfile *objfile)
152 {
153 struct type *type;
154
155 gdb_assert (objfile != NULL);
156
157 /* Alloc the structure and start off with all fields zeroed. */
158 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
159 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
160 struct main_type);
161 OBJSTAT (objfile, n_types++);
162
163 TYPE_OBJFILE_OWNED (type) = 1;
164 TYPE_OWNER (type).objfile = objfile;
165
166 /* Initialize the fields that might not be zero. */
167
168 TYPE_CODE (type) = TYPE_CODE_UNDEF;
169 TYPE_VPTR_FIELDNO (type) = -1;
170 TYPE_CHAIN (type) = type; /* Chain back to itself. */
171
172 return type;
173 }
174
175 /* Allocate a new GDBARCH-associated type structure and fill it
176 with some defaults. Space for the type structure is allocated
177 on the heap. */
178
179 struct type *
180 alloc_type_arch (struct gdbarch *gdbarch)
181 {
182 struct type *type;
183
184 gdb_assert (gdbarch != NULL);
185
186 /* Alloc the structure and start off with all fields zeroed. */
187
188 type = XZALLOC (struct type);
189 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
190
191 TYPE_OBJFILE_OWNED (type) = 0;
192 TYPE_OWNER (type).gdbarch = gdbarch;
193
194 /* Initialize the fields that might not be zero. */
195
196 TYPE_CODE (type) = TYPE_CODE_UNDEF;
197 TYPE_VPTR_FIELDNO (type) = -1;
198 TYPE_CHAIN (type) = type; /* Chain back to itself. */
199
200 return type;
201 }
202
203 /* If TYPE is objfile-associated, allocate a new type structure
204 associated with the same objfile. If TYPE is gdbarch-associated,
205 allocate a new type structure associated with the same gdbarch. */
206
207 struct type *
208 alloc_type_copy (const struct type *type)
209 {
210 if (TYPE_OBJFILE_OWNED (type))
211 return alloc_type (TYPE_OWNER (type).objfile);
212 else
213 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
214 }
215
216 /* If TYPE is gdbarch-associated, return that architecture.
217 If TYPE is objfile-associated, return that objfile's architecture. */
218
219 struct gdbarch *
220 get_type_arch (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return get_objfile_arch (TYPE_OWNER (type).objfile);
224 else
225 return TYPE_OWNER (type).gdbarch;
226 }
227
228
229 /* Alloc a new type instance structure, fill it with some defaults,
230 and point it at OLDTYPE. Allocate the new type instance from the
231 same place as OLDTYPE. */
232
233 static struct type *
234 alloc_type_instance (struct type *oldtype)
235 {
236 struct type *type;
237
238 /* Allocate the structure. */
239
240 if (! TYPE_OBJFILE_OWNED (oldtype))
241 type = XZALLOC (struct type);
242 else
243 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
244 struct type);
245
246 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
247
248 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
249
250 return type;
251 }
252
253 /* Clear all remnants of the previous type at TYPE, in preparation for
254 replacing it with something else. Preserve owner information. */
255 static void
256 smash_type (struct type *type)
257 {
258 int objfile_owned = TYPE_OBJFILE_OWNED (type);
259 union type_owner owner = TYPE_OWNER (type);
260
261 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
262
263 /* Restore owner information. */
264 TYPE_OBJFILE_OWNED (type) = objfile_owned;
265 TYPE_OWNER (type) = owner;
266
267 /* For now, delete the rings. */
268 TYPE_CHAIN (type) = type;
269
270 /* For now, leave the pointer/reference types alone. */
271 }
272
273 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
274 to a pointer to memory where the pointer type should be stored.
275 If *TYPEPTR is zero, update it to point to the pointer type we return.
276 We allocate new memory if needed. */
277
278 struct type *
279 make_pointer_type (struct type *type, struct type **typeptr)
280 {
281 struct type *ntype; /* New type */
282 struct type *chain;
283
284 ntype = TYPE_POINTER_TYPE (type);
285
286 if (ntype)
287 {
288 if (typeptr == 0)
289 return ntype; /* Don't care about alloc,
290 and have new type. */
291 else if (*typeptr == 0)
292 {
293 *typeptr = ntype; /* Tracking alloc, and have new type. */
294 return ntype;
295 }
296 }
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
300 ntype = alloc_type_copy (type);
301 if (typeptr)
302 *typeptr = ntype;
303 }
304 else /* We have storage, but need to reset it. */
305 {
306 ntype = *typeptr;
307 chain = TYPE_CHAIN (ntype);
308 smash_type (ntype);
309 TYPE_CHAIN (ntype) = chain;
310 }
311
312 TYPE_TARGET_TYPE (ntype) = type;
313 TYPE_POINTER_TYPE (type) = ntype;
314
315 /* FIXME! Assume the machine has only one representation for
316 pointers! */
317
318 TYPE_LENGTH (ntype)
319 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
320 TYPE_CODE (ntype) = TYPE_CODE_PTR;
321
322 /* Mark pointers as unsigned. The target converts between pointers
323 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
324 gdbarch_address_to_pointer. */
325 TYPE_UNSIGNED (ntype) = 1;
326
327 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
328 TYPE_POINTER_TYPE (type) = ntype;
329
330 /* Update the length of all the other variants of this type. */
331 chain = TYPE_CHAIN (ntype);
332 while (chain != ntype)
333 {
334 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
335 chain = TYPE_CHAIN (chain);
336 }
337
338 return ntype;
339 }
340
341 /* Given a type TYPE, return a type of pointers to that type.
342 May need to construct such a type if this is the first use. */
343
344 struct type *
345 lookup_pointer_type (struct type *type)
346 {
347 return make_pointer_type (type, (struct type **) 0);
348 }
349
350 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
351 points to a pointer to memory where the reference type should be
352 stored. If *TYPEPTR is zero, update it to point to the reference
353 type we return. We allocate new memory if needed. */
354
355 struct type *
356 make_reference_type (struct type *type, struct type **typeptr)
357 {
358 struct type *ntype; /* New type */
359 struct type *chain;
360
361 ntype = TYPE_REFERENCE_TYPE (type);
362
363 if (ntype)
364 {
365 if (typeptr == 0)
366 return ntype; /* Don't care about alloc,
367 and have new type. */
368 else if (*typeptr == 0)
369 {
370 *typeptr = ntype; /* Tracking alloc, and have new type. */
371 return ntype;
372 }
373 }
374
375 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
376 {
377 ntype = alloc_type_copy (type);
378 if (typeptr)
379 *typeptr = ntype;
380 }
381 else /* We have storage, but need to reset it. */
382 {
383 ntype = *typeptr;
384 chain = TYPE_CHAIN (ntype);
385 smash_type (ntype);
386 TYPE_CHAIN (ntype) = chain;
387 }
388
389 TYPE_TARGET_TYPE (ntype) = type;
390 TYPE_REFERENCE_TYPE (type) = ntype;
391
392 /* FIXME! Assume the machine has only one representation for
393 references, and that it matches the (only) representation for
394 pointers! */
395
396 TYPE_LENGTH (ntype) =
397 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
398 TYPE_CODE (ntype) = TYPE_CODE_REF;
399
400 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
401 TYPE_REFERENCE_TYPE (type) = ntype;
402
403 /* Update the length of all the other variants of this type. */
404 chain = TYPE_CHAIN (ntype);
405 while (chain != ntype)
406 {
407 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
408 chain = TYPE_CHAIN (chain);
409 }
410
411 return ntype;
412 }
413
414 /* Same as above, but caller doesn't care about memory allocation
415 details. */
416
417 struct type *
418 lookup_reference_type (struct type *type)
419 {
420 return make_reference_type (type, (struct type **) 0);
421 }
422
423 /* Lookup a function type that returns type TYPE. TYPEPTR, if
424 nonzero, points to a pointer to memory where the function type
425 should be stored. If *TYPEPTR is zero, update it to point to the
426 function type we return. We allocate new memory if needed. */
427
428 struct type *
429 make_function_type (struct type *type, struct type **typeptr)
430 {
431 struct type *ntype; /* New type */
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
435 ntype = alloc_type_copy (type);
436 if (typeptr)
437 *typeptr = ntype;
438 }
439 else /* We have storage, but need to reset it. */
440 {
441 ntype = *typeptr;
442 smash_type (ntype);
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446
447 TYPE_LENGTH (ntype) = 1;
448 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
449
450 INIT_FUNC_SPECIFIC (ntype);
451
452 return ntype;
453 }
454
455
456 /* Given a type TYPE, return a type of functions that return that type.
457 May need to construct such a type if this is the first use. */
458
459 struct type *
460 lookup_function_type (struct type *type)
461 {
462 return make_function_type (type, (struct type **) 0);
463 }
464
465 /* Identify address space identifier by name --
466 return the integer flag defined in gdbtypes.h. */
467 extern int
468 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
469 {
470 int type_flags;
471
472 /* Check for known address space delimiters. */
473 if (!strcmp (space_identifier, "code"))
474 return TYPE_INSTANCE_FLAG_CODE_SPACE;
475 else if (!strcmp (space_identifier, "data"))
476 return TYPE_INSTANCE_FLAG_DATA_SPACE;
477 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
478 && gdbarch_address_class_name_to_type_flags (gdbarch,
479 space_identifier,
480 &type_flags))
481 return type_flags;
482 else
483 error (_("Unknown address space specifier: \"%s\""), space_identifier);
484 }
485
486 /* Identify address space identifier by integer flag as defined in
487 gdbtypes.h -- return the string version of the adress space name. */
488
489 const char *
490 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
491 {
492 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
493 return "code";
494 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
495 return "data";
496 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
497 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
498 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
499 else
500 return NULL;
501 }
502
503 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
504
505 If STORAGE is non-NULL, create the new type instance there.
506 STORAGE must be in the same obstack as TYPE. */
507
508 static struct type *
509 make_qualified_type (struct type *type, int new_flags,
510 struct type *storage)
511 {
512 struct type *ntype;
513
514 ntype = type;
515 do
516 {
517 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
518 return ntype;
519 ntype = TYPE_CHAIN (ntype);
520 }
521 while (ntype != type);
522
523 /* Create a new type instance. */
524 if (storage == NULL)
525 ntype = alloc_type_instance (type);
526 else
527 {
528 /* If STORAGE was provided, it had better be in the same objfile
529 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
530 if one objfile is freed and the other kept, we'd have
531 dangling pointers. */
532 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
533
534 ntype = storage;
535 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
536 TYPE_CHAIN (ntype) = ntype;
537 }
538
539 /* Pointers or references to the original type are not relevant to
540 the new type. */
541 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
542 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
543
544 /* Chain the new qualified type to the old type. */
545 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
546 TYPE_CHAIN (type) = ntype;
547
548 /* Now set the instance flags and return the new type. */
549 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
550
551 /* Set length of new type to that of the original type. */
552 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
553
554 return ntype;
555 }
556
557 /* Make an address-space-delimited variant of a type -- a type that
558 is identical to the one supplied except that it has an address
559 space attribute attached to it (such as "code" or "data").
560
561 The space attributes "code" and "data" are for Harvard
562 architectures. The address space attributes are for architectures
563 which have alternately sized pointers or pointers with alternate
564 representations. */
565
566 struct type *
567 make_type_with_address_space (struct type *type, int space_flag)
568 {
569 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
570 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
571 | TYPE_INSTANCE_FLAG_DATA_SPACE
572 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
573 | space_flag);
574
575 return make_qualified_type (type, new_flags, NULL);
576 }
577
578 /* Make a "c-v" variant of a type -- a type that is identical to the
579 one supplied except that it may have const or volatile attributes
580 CNST is a flag for setting the const attribute
581 VOLTL is a flag for setting the volatile attribute
582 TYPE is the base type whose variant we are creating.
583
584 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
585 storage to hold the new qualified type; *TYPEPTR and TYPE must be
586 in the same objfile. Otherwise, allocate fresh memory for the new
587 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
588 new type we construct. */
589 struct type *
590 make_cv_type (int cnst, int voltl,
591 struct type *type,
592 struct type **typeptr)
593 {
594 struct type *ntype; /* New type */
595
596 int new_flags = (TYPE_INSTANCE_FLAGS (type)
597 & ~(TYPE_INSTANCE_FLAG_CONST
598 | TYPE_INSTANCE_FLAG_VOLATILE));
599
600 if (cnst)
601 new_flags |= TYPE_INSTANCE_FLAG_CONST;
602
603 if (voltl)
604 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
605
606 if (typeptr && *typeptr != NULL)
607 {
608 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
609 a C-V variant chain that threads across objfiles: if one
610 objfile gets freed, then the other has a broken C-V chain.
611
612 This code used to try to copy over the main type from TYPE to
613 *TYPEPTR if they were in different objfiles, but that's
614 wrong, too: TYPE may have a field list or member function
615 lists, which refer to types of their own, etc. etc. The
616 whole shebang would need to be copied over recursively; you
617 can't have inter-objfile pointers. The only thing to do is
618 to leave stub types as stub types, and look them up afresh by
619 name each time you encounter them. */
620 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
621 }
622
623 ntype = make_qualified_type (type, new_flags,
624 typeptr ? *typeptr : NULL);
625
626 if (typeptr != NULL)
627 *typeptr = ntype;
628
629 return ntype;
630 }
631
632 /* Replace the contents of ntype with the type *type. This changes the
633 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
634 the changes are propogated to all types in the TYPE_CHAIN.
635
636 In order to build recursive types, it's inevitable that we'll need
637 to update types in place --- but this sort of indiscriminate
638 smashing is ugly, and needs to be replaced with something more
639 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
640 clear if more steps are needed. */
641 void
642 replace_type (struct type *ntype, struct type *type)
643 {
644 struct type *chain;
645
646 /* These two types had better be in the same objfile. Otherwise,
647 the assignment of one type's main type structure to the other
648 will produce a type with references to objects (names; field
649 lists; etc.) allocated on an objfile other than its own. */
650 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
651
652 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
653
654 /* The type length is not a part of the main type. Update it for
655 each type on the variant chain. */
656 chain = ntype;
657 do
658 {
659 /* Assert that this element of the chain has no address-class bits
660 set in its flags. Such type variants might have type lengths
661 which are supposed to be different from the non-address-class
662 variants. This assertion shouldn't ever be triggered because
663 symbol readers which do construct address-class variants don't
664 call replace_type(). */
665 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
666
667 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
668 chain = TYPE_CHAIN (chain);
669 }
670 while (ntype != chain);
671
672 /* Assert that the two types have equivalent instance qualifiers.
673 This should be true for at least all of our debug readers. */
674 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
675 }
676
677 /* Implement direct support for MEMBER_TYPE in GNU C++.
678 May need to construct such a type if this is the first use.
679 The TYPE is the type of the member. The DOMAIN is the type
680 of the aggregate that the member belongs to. */
681
682 struct type *
683 lookup_memberptr_type (struct type *type, struct type *domain)
684 {
685 struct type *mtype;
686
687 mtype = alloc_type_copy (type);
688 smash_to_memberptr_type (mtype, domain, type);
689 return mtype;
690 }
691
692 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
693
694 struct type *
695 lookup_methodptr_type (struct type *to_type)
696 {
697 struct type *mtype;
698
699 mtype = alloc_type_copy (to_type);
700 smash_to_methodptr_type (mtype, to_type);
701 return mtype;
702 }
703
704 /* Allocate a stub method whose return type is TYPE. This apparently
705 happens for speed of symbol reading, since parsing out the
706 arguments to the method is cpu-intensive, the way we are doing it.
707 So, we will fill in arguments later. This always returns a fresh
708 type. */
709
710 struct type *
711 allocate_stub_method (struct type *type)
712 {
713 struct type *mtype;
714
715 mtype = alloc_type_copy (type);
716 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
717 TYPE_LENGTH (mtype) = 1;
718 TYPE_STUB (mtype) = 1;
719 TYPE_TARGET_TYPE (mtype) = type;
720 /* _DOMAIN_TYPE (mtype) = unknown yet */
721 return mtype;
722 }
723
724 /* Create a range type using either a blank type supplied in
725 RESULT_TYPE, or creating a new type, inheriting the objfile from
726 INDEX_TYPE.
727
728 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
729 to HIGH_BOUND, inclusive.
730
731 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
732 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
733
734 struct type *
735 create_range_type (struct type *result_type, struct type *index_type,
736 LONGEST low_bound, LONGEST high_bound)
737 {
738 if (result_type == NULL)
739 result_type = alloc_type_copy (index_type);
740 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
741 TYPE_TARGET_TYPE (result_type) = index_type;
742 if (TYPE_STUB (index_type))
743 TYPE_TARGET_STUB (result_type) = 1;
744 else
745 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
746 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
747 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
748 TYPE_LOW_BOUND (result_type) = low_bound;
749 TYPE_HIGH_BOUND (result_type) = high_bound;
750
751 if (low_bound >= 0)
752 TYPE_UNSIGNED (result_type) = 1;
753
754 return result_type;
755 }
756
757 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
758 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
759 bounds will fit in LONGEST), or -1 otherwise. */
760
761 int
762 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
763 {
764 CHECK_TYPEDEF (type);
765 switch (TYPE_CODE (type))
766 {
767 case TYPE_CODE_RANGE:
768 *lowp = TYPE_LOW_BOUND (type);
769 *highp = TYPE_HIGH_BOUND (type);
770 return 1;
771 case TYPE_CODE_ENUM:
772 if (TYPE_NFIELDS (type) > 0)
773 {
774 /* The enums may not be sorted by value, so search all
775 entries. */
776 int i;
777
778 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
779 for (i = 0; i < TYPE_NFIELDS (type); i++)
780 {
781 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
782 *lowp = TYPE_FIELD_ENUMVAL (type, i);
783 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
784 *highp = TYPE_FIELD_ENUMVAL (type, i);
785 }
786
787 /* Set unsigned indicator if warranted. */
788 if (*lowp >= 0)
789 {
790 TYPE_UNSIGNED (type) = 1;
791 }
792 }
793 else
794 {
795 *lowp = 0;
796 *highp = -1;
797 }
798 return 0;
799 case TYPE_CODE_BOOL:
800 *lowp = 0;
801 *highp = 1;
802 return 0;
803 case TYPE_CODE_INT:
804 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
805 return -1;
806 if (!TYPE_UNSIGNED (type))
807 {
808 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
809 *highp = -*lowp - 1;
810 return 0;
811 }
812 /* ... fall through for unsigned ints ... */
813 case TYPE_CODE_CHAR:
814 *lowp = 0;
815 /* This round-about calculation is to avoid shifting by
816 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
817 if TYPE_LENGTH (type) == sizeof (LONGEST). */
818 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
819 *highp = (*highp - 1) | *highp;
820 return 0;
821 default:
822 return -1;
823 }
824 }
825
826 /* Assuming TYPE is a simple, non-empty array type, compute its upper
827 and lower bound. Save the low bound into LOW_BOUND if not NULL.
828 Save the high bound into HIGH_BOUND if not NULL.
829
830 Return 1 if the operation was successful. Return zero otherwise,
831 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
832
833 We now simply use get_discrete_bounds call to get the values
834 of the low and high bounds.
835 get_discrete_bounds can return three values:
836 1, meaning that index is a range,
837 0, meaning that index is a discrete type,
838 or -1 for failure. */
839
840 int
841 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
842 {
843 struct type *index = TYPE_INDEX_TYPE (type);
844 LONGEST low = 0;
845 LONGEST high = 0;
846 int res;
847
848 if (index == NULL)
849 return 0;
850
851 res = get_discrete_bounds (index, &low, &high);
852 if (res == -1)
853 return 0;
854
855 /* Check if the array bounds are undefined. */
856 if (res == 1
857 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
858 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
859 return 0;
860
861 if (low_bound)
862 *low_bound = low;
863
864 if (high_bound)
865 *high_bound = high;
866
867 return 1;
868 }
869
870 /* Create an array type using either a blank type supplied in
871 RESULT_TYPE, or creating a new type, inheriting the objfile from
872 RANGE_TYPE.
873
874 Elements will be of type ELEMENT_TYPE, the indices will be of type
875 RANGE_TYPE.
876
877 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
878 sure it is TYPE_CODE_UNDEF before we bash it into an array
879 type? */
880
881 struct type *
882 create_array_type (struct type *result_type,
883 struct type *element_type,
884 struct type *range_type)
885 {
886 LONGEST low_bound, high_bound;
887
888 if (result_type == NULL)
889 result_type = alloc_type_copy (range_type);
890
891 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
892 TYPE_TARGET_TYPE (result_type) = element_type;
893 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
894 low_bound = high_bound = 0;
895 CHECK_TYPEDEF (element_type);
896 /* Be careful when setting the array length. Ada arrays can be
897 empty arrays with the high_bound being smaller than the low_bound.
898 In such cases, the array length should be zero. */
899 if (high_bound < low_bound)
900 TYPE_LENGTH (result_type) = 0;
901 else
902 TYPE_LENGTH (result_type) =
903 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
904 TYPE_NFIELDS (result_type) = 1;
905 TYPE_FIELDS (result_type) =
906 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
907 TYPE_INDEX_TYPE (result_type) = range_type;
908 TYPE_VPTR_FIELDNO (result_type) = -1;
909
910 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
911 if (TYPE_LENGTH (result_type) == 0)
912 TYPE_TARGET_STUB (result_type) = 1;
913
914 return result_type;
915 }
916
917 struct type *
918 lookup_array_range_type (struct type *element_type,
919 int low_bound, int high_bound)
920 {
921 struct gdbarch *gdbarch = get_type_arch (element_type);
922 struct type *index_type = builtin_type (gdbarch)->builtin_int;
923 struct type *range_type
924 = create_range_type (NULL, index_type, low_bound, high_bound);
925
926 return create_array_type (NULL, element_type, range_type);
927 }
928
929 /* Create a string type using either a blank type supplied in
930 RESULT_TYPE, or creating a new type. String types are similar
931 enough to array of char types that we can use create_array_type to
932 build the basic type and then bash it into a string type.
933
934 For fixed length strings, the range type contains 0 as the lower
935 bound and the length of the string minus one as the upper bound.
936
937 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
938 sure it is TYPE_CODE_UNDEF before we bash it into a string
939 type? */
940
941 struct type *
942 create_string_type (struct type *result_type,
943 struct type *string_char_type,
944 struct type *range_type)
945 {
946 result_type = create_array_type (result_type,
947 string_char_type,
948 range_type);
949 TYPE_CODE (result_type) = TYPE_CODE_STRING;
950 return result_type;
951 }
952
953 struct type *
954 lookup_string_range_type (struct type *string_char_type,
955 int low_bound, int high_bound)
956 {
957 struct type *result_type;
958
959 result_type = lookup_array_range_type (string_char_type,
960 low_bound, high_bound);
961 TYPE_CODE (result_type) = TYPE_CODE_STRING;
962 return result_type;
963 }
964
965 struct type *
966 create_set_type (struct type *result_type, struct type *domain_type)
967 {
968 if (result_type == NULL)
969 result_type = alloc_type_copy (domain_type);
970
971 TYPE_CODE (result_type) = TYPE_CODE_SET;
972 TYPE_NFIELDS (result_type) = 1;
973 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
974
975 if (!TYPE_STUB (domain_type))
976 {
977 LONGEST low_bound, high_bound, bit_length;
978
979 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
980 low_bound = high_bound = 0;
981 bit_length = high_bound - low_bound + 1;
982 TYPE_LENGTH (result_type)
983 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
984 if (low_bound >= 0)
985 TYPE_UNSIGNED (result_type) = 1;
986 }
987 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
988
989 return result_type;
990 }
991
992 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
993 and any array types nested inside it. */
994
995 void
996 make_vector_type (struct type *array_type)
997 {
998 struct type *inner_array, *elt_type;
999 int flags;
1000
1001 /* Find the innermost array type, in case the array is
1002 multi-dimensional. */
1003 inner_array = array_type;
1004 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1005 inner_array = TYPE_TARGET_TYPE (inner_array);
1006
1007 elt_type = TYPE_TARGET_TYPE (inner_array);
1008 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1009 {
1010 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1011 elt_type = make_qualified_type (elt_type, flags, NULL);
1012 TYPE_TARGET_TYPE (inner_array) = elt_type;
1013 }
1014
1015 TYPE_VECTOR (array_type) = 1;
1016 }
1017
1018 struct type *
1019 init_vector_type (struct type *elt_type, int n)
1020 {
1021 struct type *array_type;
1022
1023 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1024 make_vector_type (array_type);
1025 return array_type;
1026 }
1027
1028 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1029 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1030 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1031 TYPE doesn't include the offset (that's the value of the MEMBER
1032 itself), but does include the structure type into which it points
1033 (for some reason).
1034
1035 When "smashing" the type, we preserve the objfile that the old type
1036 pointed to, since we aren't changing where the type is actually
1037 allocated. */
1038
1039 void
1040 smash_to_memberptr_type (struct type *type, struct type *domain,
1041 struct type *to_type)
1042 {
1043 smash_type (type);
1044 TYPE_TARGET_TYPE (type) = to_type;
1045 TYPE_DOMAIN_TYPE (type) = domain;
1046 /* Assume that a data member pointer is the same size as a normal
1047 pointer. */
1048 TYPE_LENGTH (type)
1049 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1050 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1051 }
1052
1053 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1054
1055 When "smashing" the type, we preserve the objfile that the old type
1056 pointed to, since we aren't changing where the type is actually
1057 allocated. */
1058
1059 void
1060 smash_to_methodptr_type (struct type *type, struct type *to_type)
1061 {
1062 smash_type (type);
1063 TYPE_TARGET_TYPE (type) = to_type;
1064 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1065 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1066 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1067 }
1068
1069 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1070 METHOD just means `function that gets an extra "this" argument'.
1071
1072 When "smashing" the type, we preserve the objfile that the old type
1073 pointed to, since we aren't changing where the type is actually
1074 allocated. */
1075
1076 void
1077 smash_to_method_type (struct type *type, struct type *domain,
1078 struct type *to_type, struct field *args,
1079 int nargs, int varargs)
1080 {
1081 smash_type (type);
1082 TYPE_TARGET_TYPE (type) = to_type;
1083 TYPE_DOMAIN_TYPE (type) = domain;
1084 TYPE_FIELDS (type) = args;
1085 TYPE_NFIELDS (type) = nargs;
1086 if (varargs)
1087 TYPE_VARARGS (type) = 1;
1088 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1089 TYPE_CODE (type) = TYPE_CODE_METHOD;
1090 }
1091
1092 /* Return a typename for a struct/union/enum type without "struct ",
1093 "union ", or "enum ". If the type has a NULL name, return NULL. */
1094
1095 const char *
1096 type_name_no_tag (const struct type *type)
1097 {
1098 if (TYPE_TAG_NAME (type) != NULL)
1099 return TYPE_TAG_NAME (type);
1100
1101 /* Is there code which expects this to return the name if there is
1102 no tag name? My guess is that this is mainly used for C++ in
1103 cases where the two will always be the same. */
1104 return TYPE_NAME (type);
1105 }
1106
1107 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1108 Since GCC PR debug/47510 DWARF provides associated information to detect the
1109 anonymous class linkage name from its typedef.
1110
1111 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1112 apply it itself. */
1113
1114 const char *
1115 type_name_no_tag_or_error (struct type *type)
1116 {
1117 struct type *saved_type = type;
1118 const char *name;
1119 struct objfile *objfile;
1120
1121 CHECK_TYPEDEF (type);
1122
1123 name = type_name_no_tag (type);
1124 if (name != NULL)
1125 return name;
1126
1127 name = type_name_no_tag (saved_type);
1128 objfile = TYPE_OBJFILE (saved_type);
1129 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1130 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1131 }
1132
1133 /* Lookup a typedef or primitive type named NAME, visible in lexical
1134 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1135 suitably defined. */
1136
1137 struct type *
1138 lookup_typename (const struct language_defn *language,
1139 struct gdbarch *gdbarch, const char *name,
1140 const struct block *block, int noerr)
1141 {
1142 struct symbol *sym;
1143 struct type *type;
1144
1145 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1146 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1147 return SYMBOL_TYPE (sym);
1148
1149 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1150 if (type)
1151 return type;
1152
1153 if (noerr)
1154 return NULL;
1155 error (_("No type named %s."), name);
1156 }
1157
1158 struct type *
1159 lookup_unsigned_typename (const struct language_defn *language,
1160 struct gdbarch *gdbarch, const char *name)
1161 {
1162 char *uns = alloca (strlen (name) + 10);
1163
1164 strcpy (uns, "unsigned ");
1165 strcpy (uns + 9, name);
1166 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1167 }
1168
1169 struct type *
1170 lookup_signed_typename (const struct language_defn *language,
1171 struct gdbarch *gdbarch, const char *name)
1172 {
1173 struct type *t;
1174 char *uns = alloca (strlen (name) + 8);
1175
1176 strcpy (uns, "signed ");
1177 strcpy (uns + 7, name);
1178 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1179 /* If we don't find "signed FOO" just try again with plain "FOO". */
1180 if (t != NULL)
1181 return t;
1182 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1183 }
1184
1185 /* Lookup a structure type named "struct NAME",
1186 visible in lexical block BLOCK. */
1187
1188 struct type *
1189 lookup_struct (const char *name, struct block *block)
1190 {
1191 struct symbol *sym;
1192
1193 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1194
1195 if (sym == NULL)
1196 {
1197 error (_("No struct type named %s."), name);
1198 }
1199 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1200 {
1201 error (_("This context has class, union or enum %s, not a struct."),
1202 name);
1203 }
1204 return (SYMBOL_TYPE (sym));
1205 }
1206
1207 /* Lookup a union type named "union NAME",
1208 visible in lexical block BLOCK. */
1209
1210 struct type *
1211 lookup_union (const char *name, struct block *block)
1212 {
1213 struct symbol *sym;
1214 struct type *t;
1215
1216 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1217
1218 if (sym == NULL)
1219 error (_("No union type named %s."), name);
1220
1221 t = SYMBOL_TYPE (sym);
1222
1223 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1224 return t;
1225
1226 /* If we get here, it's not a union. */
1227 error (_("This context has class, struct or enum %s, not a union."),
1228 name);
1229 }
1230
1231
1232 /* Lookup an enum type named "enum NAME",
1233 visible in lexical block BLOCK. */
1234
1235 struct type *
1236 lookup_enum (const char *name, struct block *block)
1237 {
1238 struct symbol *sym;
1239
1240 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1241 if (sym == NULL)
1242 {
1243 error (_("No enum type named %s."), name);
1244 }
1245 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1246 {
1247 error (_("This context has class, struct or union %s, not an enum."),
1248 name);
1249 }
1250 return (SYMBOL_TYPE (sym));
1251 }
1252
1253 /* Lookup a template type named "template NAME<TYPE>",
1254 visible in lexical block BLOCK. */
1255
1256 struct type *
1257 lookup_template_type (char *name, struct type *type,
1258 struct block *block)
1259 {
1260 struct symbol *sym;
1261 char *nam = (char *)
1262 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1263
1264 strcpy (nam, name);
1265 strcat (nam, "<");
1266 strcat (nam, TYPE_NAME (type));
1267 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1268
1269 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1270
1271 if (sym == NULL)
1272 {
1273 error (_("No template type named %s."), name);
1274 }
1275 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1276 {
1277 error (_("This context has class, union or enum %s, not a struct."),
1278 name);
1279 }
1280 return (SYMBOL_TYPE (sym));
1281 }
1282
1283 /* Given a type TYPE, lookup the type of the component of type named
1284 NAME.
1285
1286 TYPE can be either a struct or union, or a pointer or reference to
1287 a struct or union. If it is a pointer or reference, its target
1288 type is automatically used. Thus '.' and '->' are interchangable,
1289 as specified for the definitions of the expression element types
1290 STRUCTOP_STRUCT and STRUCTOP_PTR.
1291
1292 If NOERR is nonzero, return zero if NAME is not suitably defined.
1293 If NAME is the name of a baseclass type, return that type. */
1294
1295 struct type *
1296 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1297 {
1298 int i;
1299 char *typename;
1300
1301 for (;;)
1302 {
1303 CHECK_TYPEDEF (type);
1304 if (TYPE_CODE (type) != TYPE_CODE_PTR
1305 && TYPE_CODE (type) != TYPE_CODE_REF)
1306 break;
1307 type = TYPE_TARGET_TYPE (type);
1308 }
1309
1310 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1311 && TYPE_CODE (type) != TYPE_CODE_UNION)
1312 {
1313 typename = type_to_string (type);
1314 make_cleanup (xfree, typename);
1315 error (_("Type %s is not a structure or union type."), typename);
1316 }
1317
1318 #if 0
1319 /* FIXME: This change put in by Michael seems incorrect for the case
1320 where the structure tag name is the same as the member name.
1321 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1322 foo; } bell;" Disabled by fnf. */
1323 {
1324 char *typename;
1325
1326 typename = type_name_no_tag (type);
1327 if (typename != NULL && strcmp (typename, name) == 0)
1328 return type;
1329 }
1330 #endif
1331
1332 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1333 {
1334 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1335
1336 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1337 {
1338 return TYPE_FIELD_TYPE (type, i);
1339 }
1340 else if (!t_field_name || *t_field_name == '\0')
1341 {
1342 struct type *subtype
1343 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1344
1345 if (subtype != NULL)
1346 return subtype;
1347 }
1348 }
1349
1350 /* OK, it's not in this class. Recursively check the baseclasses. */
1351 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1352 {
1353 struct type *t;
1354
1355 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1356 if (t != NULL)
1357 {
1358 return t;
1359 }
1360 }
1361
1362 if (noerr)
1363 {
1364 return NULL;
1365 }
1366
1367 typename = type_to_string (type);
1368 make_cleanup (xfree, typename);
1369 error (_("Type %s has no component named %s."), typename, name);
1370 }
1371
1372 /* Lookup the vptr basetype/fieldno values for TYPE.
1373 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1374 vptr_fieldno. Also, if found and basetype is from the same objfile,
1375 cache the results.
1376 If not found, return -1 and ignore BASETYPEP.
1377 Callers should be aware that in some cases (for example,
1378 the type or one of its baseclasses is a stub type and we are
1379 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1380 this function will not be able to find the
1381 virtual function table pointer, and vptr_fieldno will remain -1 and
1382 vptr_basetype will remain NULL or incomplete. */
1383
1384 int
1385 get_vptr_fieldno (struct type *type, struct type **basetypep)
1386 {
1387 CHECK_TYPEDEF (type);
1388
1389 if (TYPE_VPTR_FIELDNO (type) < 0)
1390 {
1391 int i;
1392
1393 /* We must start at zero in case the first (and only) baseclass
1394 is virtual (and hence we cannot share the table pointer). */
1395 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1396 {
1397 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1398 int fieldno;
1399 struct type *basetype;
1400
1401 fieldno = get_vptr_fieldno (baseclass, &basetype);
1402 if (fieldno >= 0)
1403 {
1404 /* If the type comes from a different objfile we can't cache
1405 it, it may have a different lifetime. PR 2384 */
1406 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1407 {
1408 TYPE_VPTR_FIELDNO (type) = fieldno;
1409 TYPE_VPTR_BASETYPE (type) = basetype;
1410 }
1411 if (basetypep)
1412 *basetypep = basetype;
1413 return fieldno;
1414 }
1415 }
1416
1417 /* Not found. */
1418 return -1;
1419 }
1420 else
1421 {
1422 if (basetypep)
1423 *basetypep = TYPE_VPTR_BASETYPE (type);
1424 return TYPE_VPTR_FIELDNO (type);
1425 }
1426 }
1427
1428 static void
1429 stub_noname_complaint (void)
1430 {
1431 complaint (&symfile_complaints, _("stub type has NULL name"));
1432 }
1433
1434 /* Find the real type of TYPE. This function returns the real type,
1435 after removing all layers of typedefs, and completing opaque or stub
1436 types. Completion changes the TYPE argument, but stripping of
1437 typedefs does not.
1438
1439 Instance flags (e.g. const/volatile) are preserved as typedefs are
1440 stripped. If necessary a new qualified form of the underlying type
1441 is created.
1442
1443 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1444 not been computed and we're either in the middle of reading symbols, or
1445 there was no name for the typedef in the debug info.
1446
1447 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1448 QUITs in the symbol reading code can also throw.
1449 Thus this function can throw an exception.
1450
1451 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1452 the target type.
1453
1454 If this is a stubbed struct (i.e. declared as struct foo *), see if
1455 we can find a full definition in some other file. If so, copy this
1456 definition, so we can use it in future. There used to be a comment
1457 (but not any code) that if we don't find a full definition, we'd
1458 set a flag so we don't spend time in the future checking the same
1459 type. That would be a mistake, though--we might load in more
1460 symbols which contain a full definition for the type. */
1461
1462 struct type *
1463 check_typedef (struct type *type)
1464 {
1465 struct type *orig_type = type;
1466 /* While we're removing typedefs, we don't want to lose qualifiers.
1467 E.g., const/volatile. */
1468 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1469
1470 gdb_assert (type);
1471
1472 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1473 {
1474 if (!TYPE_TARGET_TYPE (type))
1475 {
1476 const char *name;
1477 struct symbol *sym;
1478
1479 /* It is dangerous to call lookup_symbol if we are currently
1480 reading a symtab. Infinite recursion is one danger. */
1481 if (currently_reading_symtab)
1482 return make_qualified_type (type, instance_flags, NULL);
1483
1484 name = type_name_no_tag (type);
1485 /* FIXME: shouldn't we separately check the TYPE_NAME and
1486 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1487 VAR_DOMAIN as appropriate? (this code was written before
1488 TYPE_NAME and TYPE_TAG_NAME were separate). */
1489 if (name == NULL)
1490 {
1491 stub_noname_complaint ();
1492 return make_qualified_type (type, instance_flags, NULL);
1493 }
1494 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1495 if (sym)
1496 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1497 else /* TYPE_CODE_UNDEF */
1498 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1499 }
1500 type = TYPE_TARGET_TYPE (type);
1501
1502 /* Preserve the instance flags as we traverse down the typedef chain.
1503
1504 Handling address spaces/classes is nasty, what do we do if there's a
1505 conflict?
1506 E.g., what if an outer typedef marks the type as class_1 and an inner
1507 typedef marks the type as class_2?
1508 This is the wrong place to do such error checking. We leave it to
1509 the code that created the typedef in the first place to flag the
1510 error. We just pick the outer address space (akin to letting the
1511 outer cast in a chain of casting win), instead of assuming
1512 "it can't happen". */
1513 {
1514 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1515 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1516 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1517 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1518
1519 /* Treat code vs data spaces and address classes separately. */
1520 if ((instance_flags & ALL_SPACES) != 0)
1521 new_instance_flags &= ~ALL_SPACES;
1522 if ((instance_flags & ALL_CLASSES) != 0)
1523 new_instance_flags &= ~ALL_CLASSES;
1524
1525 instance_flags |= new_instance_flags;
1526 }
1527 }
1528
1529 /* If this is a struct/class/union with no fields, then check
1530 whether a full definition exists somewhere else. This is for
1531 systems where a type definition with no fields is issued for such
1532 types, instead of identifying them as stub types in the first
1533 place. */
1534
1535 if (TYPE_IS_OPAQUE (type)
1536 && opaque_type_resolution
1537 && !currently_reading_symtab)
1538 {
1539 const char *name = type_name_no_tag (type);
1540 struct type *newtype;
1541
1542 if (name == NULL)
1543 {
1544 stub_noname_complaint ();
1545 return make_qualified_type (type, instance_flags, NULL);
1546 }
1547 newtype = lookup_transparent_type (name);
1548
1549 if (newtype)
1550 {
1551 /* If the resolved type and the stub are in the same
1552 objfile, then replace the stub type with the real deal.
1553 But if they're in separate objfiles, leave the stub
1554 alone; we'll just look up the transparent type every time
1555 we call check_typedef. We can't create pointers between
1556 types allocated to different objfiles, since they may
1557 have different lifetimes. Trying to copy NEWTYPE over to
1558 TYPE's objfile is pointless, too, since you'll have to
1559 move over any other types NEWTYPE refers to, which could
1560 be an unbounded amount of stuff. */
1561 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1562 type = make_qualified_type (newtype,
1563 TYPE_INSTANCE_FLAGS (type),
1564 type);
1565 else
1566 type = newtype;
1567 }
1568 }
1569 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1570 types. */
1571 else if (TYPE_STUB (type) && !currently_reading_symtab)
1572 {
1573 const char *name = type_name_no_tag (type);
1574 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1575 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1576 as appropriate? (this code was written before TYPE_NAME and
1577 TYPE_TAG_NAME were separate). */
1578 struct symbol *sym;
1579
1580 if (name == NULL)
1581 {
1582 stub_noname_complaint ();
1583 return make_qualified_type (type, instance_flags, NULL);
1584 }
1585 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1586 if (sym)
1587 {
1588 /* Same as above for opaque types, we can replace the stub
1589 with the complete type only if they are in the same
1590 objfile. */
1591 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1592 type = make_qualified_type (SYMBOL_TYPE (sym),
1593 TYPE_INSTANCE_FLAGS (type),
1594 type);
1595 else
1596 type = SYMBOL_TYPE (sym);
1597 }
1598 }
1599
1600 if (TYPE_TARGET_STUB (type))
1601 {
1602 struct type *range_type;
1603 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1604
1605 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1606 {
1607 /* Nothing we can do. */
1608 }
1609 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1610 && TYPE_NFIELDS (type) == 1
1611 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1612 == TYPE_CODE_RANGE))
1613 {
1614 /* Now recompute the length of the array type, based on its
1615 number of elements and the target type's length.
1616 Watch out for Ada null Ada arrays where the high bound
1617 is smaller than the low bound. */
1618 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1619 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1620 ULONGEST len;
1621
1622 if (high_bound < low_bound)
1623 len = 0;
1624 else
1625 {
1626 /* For now, we conservatively take the array length to be 0
1627 if its length exceeds UINT_MAX. The code below assumes
1628 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1629 which is technically not guaranteed by C, but is usually true
1630 (because it would be true if x were unsigned with its
1631 high-order bit on). It uses the fact that
1632 high_bound-low_bound is always representable in
1633 ULONGEST and that if high_bound-low_bound+1 overflows,
1634 it overflows to 0. We must change these tests if we
1635 decide to increase the representation of TYPE_LENGTH
1636 from unsigned int to ULONGEST. */
1637 ULONGEST ulow = low_bound, uhigh = high_bound;
1638 ULONGEST tlen = TYPE_LENGTH (target_type);
1639
1640 len = tlen * (uhigh - ulow + 1);
1641 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1642 || len > UINT_MAX)
1643 len = 0;
1644 }
1645 TYPE_LENGTH (type) = len;
1646 TYPE_TARGET_STUB (type) = 0;
1647 }
1648 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1649 {
1650 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1651 TYPE_TARGET_STUB (type) = 0;
1652 }
1653 }
1654
1655 type = make_qualified_type (type, instance_flags, NULL);
1656
1657 /* Cache TYPE_LENGTH for future use. */
1658 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1659
1660 return type;
1661 }
1662
1663 /* Parse a type expression in the string [P..P+LENGTH). If an error
1664 occurs, silently return a void type. */
1665
1666 static struct type *
1667 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1668 {
1669 struct ui_file *saved_gdb_stderr;
1670 struct type *type = NULL; /* Initialize to keep gcc happy. */
1671 volatile struct gdb_exception except;
1672
1673 /* Suppress error messages. */
1674 saved_gdb_stderr = gdb_stderr;
1675 gdb_stderr = ui_file_new ();
1676
1677 /* Call parse_and_eval_type() without fear of longjmp()s. */
1678 TRY_CATCH (except, RETURN_MASK_ERROR)
1679 {
1680 type = parse_and_eval_type (p, length);
1681 }
1682
1683 if (except.reason < 0)
1684 type = builtin_type (gdbarch)->builtin_void;
1685
1686 /* Stop suppressing error messages. */
1687 ui_file_delete (gdb_stderr);
1688 gdb_stderr = saved_gdb_stderr;
1689
1690 return type;
1691 }
1692
1693 /* Ugly hack to convert method stubs into method types.
1694
1695 He ain't kiddin'. This demangles the name of the method into a
1696 string including argument types, parses out each argument type,
1697 generates a string casting a zero to that type, evaluates the
1698 string, and stuffs the resulting type into an argtype vector!!!
1699 Then it knows the type of the whole function (including argument
1700 types for overloading), which info used to be in the stab's but was
1701 removed to hack back the space required for them. */
1702
1703 static void
1704 check_stub_method (struct type *type, int method_id, int signature_id)
1705 {
1706 struct gdbarch *gdbarch = get_type_arch (type);
1707 struct fn_field *f;
1708 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1709 char *demangled_name = cplus_demangle (mangled_name,
1710 DMGL_PARAMS | DMGL_ANSI);
1711 char *argtypetext, *p;
1712 int depth = 0, argcount = 1;
1713 struct field *argtypes;
1714 struct type *mtype;
1715
1716 /* Make sure we got back a function string that we can use. */
1717 if (demangled_name)
1718 p = strchr (demangled_name, '(');
1719 else
1720 p = NULL;
1721
1722 if (demangled_name == NULL || p == NULL)
1723 error (_("Internal: Cannot demangle mangled name `%s'."),
1724 mangled_name);
1725
1726 /* Now, read in the parameters that define this type. */
1727 p += 1;
1728 argtypetext = p;
1729 while (*p)
1730 {
1731 if (*p == '(' || *p == '<')
1732 {
1733 depth += 1;
1734 }
1735 else if (*p == ')' || *p == '>')
1736 {
1737 depth -= 1;
1738 }
1739 else if (*p == ',' && depth == 0)
1740 {
1741 argcount += 1;
1742 }
1743
1744 p += 1;
1745 }
1746
1747 /* If we read one argument and it was ``void'', don't count it. */
1748 if (strncmp (argtypetext, "(void)", 6) == 0)
1749 argcount -= 1;
1750
1751 /* We need one extra slot, for the THIS pointer. */
1752
1753 argtypes = (struct field *)
1754 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1755 p = argtypetext;
1756
1757 /* Add THIS pointer for non-static methods. */
1758 f = TYPE_FN_FIELDLIST1 (type, method_id);
1759 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1760 argcount = 0;
1761 else
1762 {
1763 argtypes[0].type = lookup_pointer_type (type);
1764 argcount = 1;
1765 }
1766
1767 if (*p != ')') /* () means no args, skip while. */
1768 {
1769 depth = 0;
1770 while (*p)
1771 {
1772 if (depth <= 0 && (*p == ',' || *p == ')'))
1773 {
1774 /* Avoid parsing of ellipsis, they will be handled below.
1775 Also avoid ``void'' as above. */
1776 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1777 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1778 {
1779 argtypes[argcount].type =
1780 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1781 argcount += 1;
1782 }
1783 argtypetext = p + 1;
1784 }
1785
1786 if (*p == '(' || *p == '<')
1787 {
1788 depth += 1;
1789 }
1790 else if (*p == ')' || *p == '>')
1791 {
1792 depth -= 1;
1793 }
1794
1795 p += 1;
1796 }
1797 }
1798
1799 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1800
1801 /* Now update the old "stub" type into a real type. */
1802 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1803 TYPE_DOMAIN_TYPE (mtype) = type;
1804 TYPE_FIELDS (mtype) = argtypes;
1805 TYPE_NFIELDS (mtype) = argcount;
1806 TYPE_STUB (mtype) = 0;
1807 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1808 if (p[-2] == '.')
1809 TYPE_VARARGS (mtype) = 1;
1810
1811 xfree (demangled_name);
1812 }
1813
1814 /* This is the external interface to check_stub_method, above. This
1815 function unstubs all of the signatures for TYPE's METHOD_ID method
1816 name. After calling this function TYPE_FN_FIELD_STUB will be
1817 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1818 correct.
1819
1820 This function unfortunately can not die until stabs do. */
1821
1822 void
1823 check_stub_method_group (struct type *type, int method_id)
1824 {
1825 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1826 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1827 int j, found_stub = 0;
1828
1829 for (j = 0; j < len; j++)
1830 if (TYPE_FN_FIELD_STUB (f, j))
1831 {
1832 found_stub = 1;
1833 check_stub_method (type, method_id, j);
1834 }
1835
1836 /* GNU v3 methods with incorrect names were corrected when we read
1837 in type information, because it was cheaper to do it then. The
1838 only GNU v2 methods with incorrect method names are operators and
1839 destructors; destructors were also corrected when we read in type
1840 information.
1841
1842 Therefore the only thing we need to handle here are v2 operator
1843 names. */
1844 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1845 {
1846 int ret;
1847 char dem_opname[256];
1848
1849 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1850 method_id),
1851 dem_opname, DMGL_ANSI);
1852 if (!ret)
1853 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1854 method_id),
1855 dem_opname, 0);
1856 if (ret)
1857 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1858 }
1859 }
1860
1861 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1862 const struct cplus_struct_type cplus_struct_default = { };
1863
1864 void
1865 allocate_cplus_struct_type (struct type *type)
1866 {
1867 if (HAVE_CPLUS_STRUCT (type))
1868 /* Structure was already allocated. Nothing more to do. */
1869 return;
1870
1871 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1872 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1873 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1874 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1875 }
1876
1877 const struct gnat_aux_type gnat_aux_default =
1878 { NULL };
1879
1880 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1881 and allocate the associated gnat-specific data. The gnat-specific
1882 data is also initialized to gnat_aux_default. */
1883 void
1884 allocate_gnat_aux_type (struct type *type)
1885 {
1886 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1887 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1888 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1889 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1890 }
1891
1892
1893 /* Helper function to initialize the standard scalar types.
1894
1895 If NAME is non-NULL, then we make a copy of the string pointed
1896 to by name in the objfile_obstack for that objfile, and initialize
1897 the type name to that copy. There are places (mipsread.c in particular),
1898 where init_type is called with a NULL value for NAME). */
1899
1900 struct type *
1901 init_type (enum type_code code, int length, int flags,
1902 char *name, struct objfile *objfile)
1903 {
1904 struct type *type;
1905
1906 type = alloc_type (objfile);
1907 TYPE_CODE (type) = code;
1908 TYPE_LENGTH (type) = length;
1909
1910 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1911 if (flags & TYPE_FLAG_UNSIGNED)
1912 TYPE_UNSIGNED (type) = 1;
1913 if (flags & TYPE_FLAG_NOSIGN)
1914 TYPE_NOSIGN (type) = 1;
1915 if (flags & TYPE_FLAG_STUB)
1916 TYPE_STUB (type) = 1;
1917 if (flags & TYPE_FLAG_TARGET_STUB)
1918 TYPE_TARGET_STUB (type) = 1;
1919 if (flags & TYPE_FLAG_STATIC)
1920 TYPE_STATIC (type) = 1;
1921 if (flags & TYPE_FLAG_PROTOTYPED)
1922 TYPE_PROTOTYPED (type) = 1;
1923 if (flags & TYPE_FLAG_INCOMPLETE)
1924 TYPE_INCOMPLETE (type) = 1;
1925 if (flags & TYPE_FLAG_VARARGS)
1926 TYPE_VARARGS (type) = 1;
1927 if (flags & TYPE_FLAG_VECTOR)
1928 TYPE_VECTOR (type) = 1;
1929 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1930 TYPE_STUB_SUPPORTED (type) = 1;
1931 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1932 TYPE_FIXED_INSTANCE (type) = 1;
1933 if (flags & TYPE_FLAG_GNU_IFUNC)
1934 TYPE_GNU_IFUNC (type) = 1;
1935
1936 if (name)
1937 TYPE_NAME (type) = obsavestring (name, strlen (name),
1938 &objfile->objfile_obstack);
1939
1940 /* C++ fancies. */
1941
1942 if (name && strcmp (name, "char") == 0)
1943 TYPE_NOSIGN (type) = 1;
1944
1945 switch (code)
1946 {
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 case TYPE_CODE_NAMESPACE:
1950 INIT_CPLUS_SPECIFIC (type);
1951 break;
1952 case TYPE_CODE_FLT:
1953 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1954 break;
1955 case TYPE_CODE_FUNC:
1956 INIT_FUNC_SPECIFIC (type);
1957 break;
1958 }
1959 return type;
1960 }
1961
1962 int
1963 can_dereference (struct type *t)
1964 {
1965 /* FIXME: Should we return true for references as well as
1966 pointers? */
1967 CHECK_TYPEDEF (t);
1968 return
1969 (t != NULL
1970 && TYPE_CODE (t) == TYPE_CODE_PTR
1971 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1972 }
1973
1974 int
1975 is_integral_type (struct type *t)
1976 {
1977 CHECK_TYPEDEF (t);
1978 return
1979 ((t != NULL)
1980 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1981 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1982 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1983 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1984 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1985 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1986 }
1987
1988 /* Return true if TYPE is scalar. */
1989
1990 static int
1991 is_scalar_type (struct type *type)
1992 {
1993 CHECK_TYPEDEF (type);
1994
1995 switch (TYPE_CODE (type))
1996 {
1997 case TYPE_CODE_ARRAY:
1998 case TYPE_CODE_STRUCT:
1999 case TYPE_CODE_UNION:
2000 case TYPE_CODE_SET:
2001 case TYPE_CODE_STRING:
2002 case TYPE_CODE_BITSTRING:
2003 return 0;
2004 default:
2005 return 1;
2006 }
2007 }
2008
2009 /* Return true if T is scalar, or a composite type which in practice has
2010 the memory layout of a scalar type. E.g., an array or struct with only
2011 one scalar element inside it, or a union with only scalar elements. */
2012
2013 int
2014 is_scalar_type_recursive (struct type *t)
2015 {
2016 CHECK_TYPEDEF (t);
2017
2018 if (is_scalar_type (t))
2019 return 1;
2020 /* Are we dealing with an array or string of known dimensions? */
2021 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2022 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2023 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2024 {
2025 LONGEST low_bound, high_bound;
2026 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2027
2028 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2029
2030 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2031 }
2032 /* Are we dealing with a struct with one element? */
2033 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2034 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2035 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2036 {
2037 int i, n = TYPE_NFIELDS (t);
2038
2039 /* If all elements of the union are scalar, then the union is scalar. */
2040 for (i = 0; i < n; i++)
2041 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2042 return 0;
2043
2044 return 1;
2045 }
2046
2047 return 0;
2048 }
2049
2050 /* A helper function which returns true if types A and B represent the
2051 "same" class type. This is true if the types have the same main
2052 type, or the same name. */
2053
2054 int
2055 class_types_same_p (const struct type *a, const struct type *b)
2056 {
2057 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2058 || (TYPE_NAME (a) && TYPE_NAME (b)
2059 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2060 }
2061
2062 /* If BASE is an ancestor of DCLASS return the distance between them.
2063 otherwise return -1;
2064 eg:
2065
2066 class A {};
2067 class B: public A {};
2068 class C: public B {};
2069 class D: C {};
2070
2071 distance_to_ancestor (A, A, 0) = 0
2072 distance_to_ancestor (A, B, 0) = 1
2073 distance_to_ancestor (A, C, 0) = 2
2074 distance_to_ancestor (A, D, 0) = 3
2075
2076 If PUBLIC is 1 then only public ancestors are considered,
2077 and the function returns the distance only if BASE is a public ancestor
2078 of DCLASS.
2079 Eg:
2080
2081 distance_to_ancestor (A, D, 1) = -1. */
2082
2083 static int
2084 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2085 {
2086 int i;
2087 int d;
2088
2089 CHECK_TYPEDEF (base);
2090 CHECK_TYPEDEF (dclass);
2091
2092 if (class_types_same_p (base, dclass))
2093 return 0;
2094
2095 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2096 {
2097 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2098 continue;
2099
2100 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2101 if (d >= 0)
2102 return 1 + d;
2103 }
2104
2105 return -1;
2106 }
2107
2108 /* Check whether BASE is an ancestor or base class or DCLASS
2109 Return 1 if so, and 0 if not.
2110 Note: If BASE and DCLASS are of the same type, this function
2111 will return 1. So for some class A, is_ancestor (A, A) will
2112 return 1. */
2113
2114 int
2115 is_ancestor (struct type *base, struct type *dclass)
2116 {
2117 return distance_to_ancestor (base, dclass, 0) >= 0;
2118 }
2119
2120 /* Like is_ancestor, but only returns true when BASE is a public
2121 ancestor of DCLASS. */
2122
2123 int
2124 is_public_ancestor (struct type *base, struct type *dclass)
2125 {
2126 return distance_to_ancestor (base, dclass, 1) >= 0;
2127 }
2128
2129 /* A helper function for is_unique_ancestor. */
2130
2131 static int
2132 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2133 int *offset,
2134 const gdb_byte *valaddr, int embedded_offset,
2135 CORE_ADDR address, struct value *val)
2136 {
2137 int i, count = 0;
2138
2139 CHECK_TYPEDEF (base);
2140 CHECK_TYPEDEF (dclass);
2141
2142 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2143 {
2144 struct type *iter;
2145 int this_offset;
2146
2147 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2148
2149 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2150 address, val);
2151
2152 if (class_types_same_p (base, iter))
2153 {
2154 /* If this is the first subclass, set *OFFSET and set count
2155 to 1. Otherwise, if this is at the same offset as
2156 previous instances, do nothing. Otherwise, increment
2157 count. */
2158 if (*offset == -1)
2159 {
2160 *offset = this_offset;
2161 count = 1;
2162 }
2163 else if (this_offset == *offset)
2164 {
2165 /* Nothing. */
2166 }
2167 else
2168 ++count;
2169 }
2170 else
2171 count += is_unique_ancestor_worker (base, iter, offset,
2172 valaddr,
2173 embedded_offset + this_offset,
2174 address, val);
2175 }
2176
2177 return count;
2178 }
2179
2180 /* Like is_ancestor, but only returns true if BASE is a unique base
2181 class of the type of VAL. */
2182
2183 int
2184 is_unique_ancestor (struct type *base, struct value *val)
2185 {
2186 int offset = -1;
2187
2188 return is_unique_ancestor_worker (base, value_type (val), &offset,
2189 value_contents_for_printing (val),
2190 value_embedded_offset (val),
2191 value_address (val), val) == 1;
2192 }
2193
2194 \f
2195
2196 /* Return the sum of the rank of A with the rank of B. */
2197
2198 struct rank
2199 sum_ranks (struct rank a, struct rank b)
2200 {
2201 struct rank c;
2202 c.rank = a.rank + b.rank;
2203 c.subrank = a.subrank + b.subrank;
2204 return c;
2205 }
2206
2207 /* Compare rank A and B and return:
2208 0 if a = b
2209 1 if a is better than b
2210 -1 if b is better than a. */
2211
2212 int
2213 compare_ranks (struct rank a, struct rank b)
2214 {
2215 if (a.rank == b.rank)
2216 {
2217 if (a.subrank == b.subrank)
2218 return 0;
2219 if (a.subrank < b.subrank)
2220 return 1;
2221 if (a.subrank > b.subrank)
2222 return -1;
2223 }
2224
2225 if (a.rank < b.rank)
2226 return 1;
2227
2228 /* a.rank > b.rank */
2229 return -1;
2230 }
2231
2232 /* Functions for overload resolution begin here. */
2233
2234 /* Compare two badness vectors A and B and return the result.
2235 0 => A and B are identical
2236 1 => A and B are incomparable
2237 2 => A is better than B
2238 3 => A is worse than B */
2239
2240 int
2241 compare_badness (struct badness_vector *a, struct badness_vector *b)
2242 {
2243 int i;
2244 int tmp;
2245 short found_pos = 0; /* any positives in c? */
2246 short found_neg = 0; /* any negatives in c? */
2247
2248 /* differing lengths => incomparable */
2249 if (a->length != b->length)
2250 return 1;
2251
2252 /* Subtract b from a */
2253 for (i = 0; i < a->length; i++)
2254 {
2255 tmp = compare_ranks (b->rank[i], a->rank[i]);
2256 if (tmp > 0)
2257 found_pos = 1;
2258 else if (tmp < 0)
2259 found_neg = 1;
2260 }
2261
2262 if (found_pos)
2263 {
2264 if (found_neg)
2265 return 1; /* incomparable */
2266 else
2267 return 3; /* A > B */
2268 }
2269 else
2270 /* no positives */
2271 {
2272 if (found_neg)
2273 return 2; /* A < B */
2274 else
2275 return 0; /* A == B */
2276 }
2277 }
2278
2279 /* Rank a function by comparing its parameter types (PARMS, length
2280 NPARMS), to the types of an argument list (ARGS, length NARGS).
2281 Return a pointer to a badness vector. This has NARGS + 1
2282 entries. */
2283
2284 struct badness_vector *
2285 rank_function (struct type **parms, int nparms,
2286 struct value **args, int nargs)
2287 {
2288 int i;
2289 struct badness_vector *bv;
2290 int min_len = nparms < nargs ? nparms : nargs;
2291
2292 bv = xmalloc (sizeof (struct badness_vector));
2293 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2294 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2295
2296 /* First compare the lengths of the supplied lists.
2297 If there is a mismatch, set it to a high value. */
2298
2299 /* pai/1997-06-03 FIXME: when we have debug info about default
2300 arguments and ellipsis parameter lists, we should consider those
2301 and rank the length-match more finely. */
2302
2303 LENGTH_MATCH (bv) = (nargs != nparms)
2304 ? LENGTH_MISMATCH_BADNESS
2305 : EXACT_MATCH_BADNESS;
2306
2307 /* Now rank all the parameters of the candidate function. */
2308 for (i = 1; i <= min_len; i++)
2309 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2310 args[i - 1]);
2311
2312 /* If more arguments than parameters, add dummy entries. */
2313 for (i = min_len + 1; i <= nargs; i++)
2314 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2315
2316 return bv;
2317 }
2318
2319 /* Compare the names of two integer types, assuming that any sign
2320 qualifiers have been checked already. We do it this way because
2321 there may be an "int" in the name of one of the types. */
2322
2323 static int
2324 integer_types_same_name_p (const char *first, const char *second)
2325 {
2326 int first_p, second_p;
2327
2328 /* If both are shorts, return 1; if neither is a short, keep
2329 checking. */
2330 first_p = (strstr (first, "short") != NULL);
2331 second_p = (strstr (second, "short") != NULL);
2332 if (first_p && second_p)
2333 return 1;
2334 if (first_p || second_p)
2335 return 0;
2336
2337 /* Likewise for long. */
2338 first_p = (strstr (first, "long") != NULL);
2339 second_p = (strstr (second, "long") != NULL);
2340 if (first_p && second_p)
2341 return 1;
2342 if (first_p || second_p)
2343 return 0;
2344
2345 /* Likewise for char. */
2346 first_p = (strstr (first, "char") != NULL);
2347 second_p = (strstr (second, "char") != NULL);
2348 if (first_p && second_p)
2349 return 1;
2350 if (first_p || second_p)
2351 return 0;
2352
2353 /* They must both be ints. */
2354 return 1;
2355 }
2356
2357 /* Compares type A to type B returns 1 if the represent the same type
2358 0 otherwise. */
2359
2360 static int
2361 types_equal (struct type *a, struct type *b)
2362 {
2363 /* Identical type pointers. */
2364 /* However, this still doesn't catch all cases of same type for b
2365 and a. The reason is that builtin types are different from
2366 the same ones constructed from the object. */
2367 if (a == b)
2368 return 1;
2369
2370 /* Resolve typedefs */
2371 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2372 a = check_typedef (a);
2373 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2374 b = check_typedef (b);
2375
2376 /* If after resolving typedefs a and b are not of the same type
2377 code then they are not equal. */
2378 if (TYPE_CODE (a) != TYPE_CODE (b))
2379 return 0;
2380
2381 /* If a and b are both pointers types or both reference types then
2382 they are equal of the same type iff the objects they refer to are
2383 of the same type. */
2384 if (TYPE_CODE (a) == TYPE_CODE_PTR
2385 || TYPE_CODE (a) == TYPE_CODE_REF)
2386 return types_equal (TYPE_TARGET_TYPE (a),
2387 TYPE_TARGET_TYPE (b));
2388
2389 /* Well, damnit, if the names are exactly the same, I'll say they
2390 are exactly the same. This happens when we generate method
2391 stubs. The types won't point to the same address, but they
2392 really are the same. */
2393
2394 if (TYPE_NAME (a) && TYPE_NAME (b)
2395 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2396 return 1;
2397
2398 /* Check if identical after resolving typedefs. */
2399 if (a == b)
2400 return 1;
2401
2402 return 0;
2403 }
2404
2405 /* Compare one type (PARM) for compatibility with another (ARG).
2406 * PARM is intended to be the parameter type of a function; and
2407 * ARG is the supplied argument's type. This function tests if
2408 * the latter can be converted to the former.
2409 * VALUE is the argument's value or NULL if none (or called recursively)
2410 *
2411 * Return 0 if they are identical types;
2412 * Otherwise, return an integer which corresponds to how compatible
2413 * PARM is to ARG. The higher the return value, the worse the match.
2414 * Generally the "bad" conversions are all uniformly assigned a 100. */
2415
2416 struct rank
2417 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2418 {
2419 struct rank rank = {0,0};
2420
2421 if (types_equal (parm, arg))
2422 return EXACT_MATCH_BADNESS;
2423
2424 /* Resolve typedefs */
2425 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2426 parm = check_typedef (parm);
2427 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2428 arg = check_typedef (arg);
2429
2430 /* See through references, since we can almost make non-references
2431 references. */
2432 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2433 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2434 REFERENCE_CONVERSION_BADNESS));
2435 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2436 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2437 REFERENCE_CONVERSION_BADNESS));
2438 if (overload_debug)
2439 /* Debugging only. */
2440 fprintf_filtered (gdb_stderr,
2441 "------ Arg is %s [%d], parm is %s [%d]\n",
2442 TYPE_NAME (arg), TYPE_CODE (arg),
2443 TYPE_NAME (parm), TYPE_CODE (parm));
2444
2445 /* x -> y means arg of type x being supplied for parameter of type y. */
2446
2447 switch (TYPE_CODE (parm))
2448 {
2449 case TYPE_CODE_PTR:
2450 switch (TYPE_CODE (arg))
2451 {
2452 case TYPE_CODE_PTR:
2453
2454 /* Allowed pointer conversions are:
2455 (a) pointer to void-pointer conversion. */
2456 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2457 return VOID_PTR_CONVERSION_BADNESS;
2458
2459 /* (b) pointer to ancestor-pointer conversion. */
2460 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2461 TYPE_TARGET_TYPE (arg),
2462 0);
2463 if (rank.subrank >= 0)
2464 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2465
2466 return INCOMPATIBLE_TYPE_BADNESS;
2467 case TYPE_CODE_ARRAY:
2468 if (types_equal (TYPE_TARGET_TYPE (parm),
2469 TYPE_TARGET_TYPE (arg)))
2470 return EXACT_MATCH_BADNESS;
2471 return INCOMPATIBLE_TYPE_BADNESS;
2472 case TYPE_CODE_FUNC:
2473 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2474 case TYPE_CODE_INT:
2475 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2476 && value_as_long (value) == 0)
2477 {
2478 /* Null pointer conversion: allow it to be cast to a pointer.
2479 [4.10.1 of C++ standard draft n3290] */
2480 return NULL_POINTER_CONVERSION_BADNESS;
2481 }
2482 /* fall through */
2483 case TYPE_CODE_ENUM:
2484 case TYPE_CODE_FLAGS:
2485 case TYPE_CODE_CHAR:
2486 case TYPE_CODE_RANGE:
2487 case TYPE_CODE_BOOL:
2488 default:
2489 return INCOMPATIBLE_TYPE_BADNESS;
2490 }
2491 case TYPE_CODE_ARRAY:
2492 switch (TYPE_CODE (arg))
2493 {
2494 case TYPE_CODE_PTR:
2495 case TYPE_CODE_ARRAY:
2496 return rank_one_type (TYPE_TARGET_TYPE (parm),
2497 TYPE_TARGET_TYPE (arg), NULL);
2498 default:
2499 return INCOMPATIBLE_TYPE_BADNESS;
2500 }
2501 case TYPE_CODE_FUNC:
2502 switch (TYPE_CODE (arg))
2503 {
2504 case TYPE_CODE_PTR: /* funcptr -> func */
2505 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2506 default:
2507 return INCOMPATIBLE_TYPE_BADNESS;
2508 }
2509 case TYPE_CODE_INT:
2510 switch (TYPE_CODE (arg))
2511 {
2512 case TYPE_CODE_INT:
2513 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2514 {
2515 /* Deal with signed, unsigned, and plain chars and
2516 signed and unsigned ints. */
2517 if (TYPE_NOSIGN (parm))
2518 {
2519 /* This case only for character types. */
2520 if (TYPE_NOSIGN (arg))
2521 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2522 else /* signed/unsigned char -> plain char */
2523 return INTEGER_CONVERSION_BADNESS;
2524 }
2525 else if (TYPE_UNSIGNED (parm))
2526 {
2527 if (TYPE_UNSIGNED (arg))
2528 {
2529 /* unsigned int -> unsigned int, or
2530 unsigned long -> unsigned long */
2531 if (integer_types_same_name_p (TYPE_NAME (parm),
2532 TYPE_NAME (arg)))
2533 return EXACT_MATCH_BADNESS;
2534 else if (integer_types_same_name_p (TYPE_NAME (arg),
2535 "int")
2536 && integer_types_same_name_p (TYPE_NAME (parm),
2537 "long"))
2538 /* unsigned int -> unsigned long */
2539 return INTEGER_PROMOTION_BADNESS;
2540 else
2541 /* unsigned long -> unsigned int */
2542 return INTEGER_CONVERSION_BADNESS;
2543 }
2544 else
2545 {
2546 if (integer_types_same_name_p (TYPE_NAME (arg),
2547 "long")
2548 && integer_types_same_name_p (TYPE_NAME (parm),
2549 "int"))
2550 /* signed long -> unsigned int */
2551 return INTEGER_CONVERSION_BADNESS;
2552 else
2553 /* signed int/long -> unsigned int/long */
2554 return INTEGER_CONVERSION_BADNESS;
2555 }
2556 }
2557 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2558 {
2559 if (integer_types_same_name_p (TYPE_NAME (parm),
2560 TYPE_NAME (arg)))
2561 return EXACT_MATCH_BADNESS;
2562 else if (integer_types_same_name_p (TYPE_NAME (arg),
2563 "int")
2564 && integer_types_same_name_p (TYPE_NAME (parm),
2565 "long"))
2566 return INTEGER_PROMOTION_BADNESS;
2567 else
2568 return INTEGER_CONVERSION_BADNESS;
2569 }
2570 else
2571 return INTEGER_CONVERSION_BADNESS;
2572 }
2573 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2574 return INTEGER_PROMOTION_BADNESS;
2575 else
2576 return INTEGER_CONVERSION_BADNESS;
2577 case TYPE_CODE_ENUM:
2578 case TYPE_CODE_FLAGS:
2579 case TYPE_CODE_CHAR:
2580 case TYPE_CODE_RANGE:
2581 case TYPE_CODE_BOOL:
2582 return INTEGER_PROMOTION_BADNESS;
2583 case TYPE_CODE_FLT:
2584 return INT_FLOAT_CONVERSION_BADNESS;
2585 case TYPE_CODE_PTR:
2586 return NS_POINTER_CONVERSION_BADNESS;
2587 default:
2588 return INCOMPATIBLE_TYPE_BADNESS;
2589 }
2590 break;
2591 case TYPE_CODE_ENUM:
2592 switch (TYPE_CODE (arg))
2593 {
2594 case TYPE_CODE_INT:
2595 case TYPE_CODE_CHAR:
2596 case TYPE_CODE_RANGE:
2597 case TYPE_CODE_BOOL:
2598 case TYPE_CODE_ENUM:
2599 return INTEGER_CONVERSION_BADNESS;
2600 case TYPE_CODE_FLT:
2601 return INT_FLOAT_CONVERSION_BADNESS;
2602 default:
2603 return INCOMPATIBLE_TYPE_BADNESS;
2604 }
2605 break;
2606 case TYPE_CODE_CHAR:
2607 switch (TYPE_CODE (arg))
2608 {
2609 case TYPE_CODE_RANGE:
2610 case TYPE_CODE_BOOL:
2611 case TYPE_CODE_ENUM:
2612 return INTEGER_CONVERSION_BADNESS;
2613 case TYPE_CODE_FLT:
2614 return INT_FLOAT_CONVERSION_BADNESS;
2615 case TYPE_CODE_INT:
2616 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2617 return INTEGER_CONVERSION_BADNESS;
2618 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2619 return INTEGER_PROMOTION_BADNESS;
2620 /* >>> !! else fall through !! <<< */
2621 case TYPE_CODE_CHAR:
2622 /* Deal with signed, unsigned, and plain chars for C++ and
2623 with int cases falling through from previous case. */
2624 if (TYPE_NOSIGN (parm))
2625 {
2626 if (TYPE_NOSIGN (arg))
2627 return EXACT_MATCH_BADNESS;
2628 else
2629 return INTEGER_CONVERSION_BADNESS;
2630 }
2631 else if (TYPE_UNSIGNED (parm))
2632 {
2633 if (TYPE_UNSIGNED (arg))
2634 return EXACT_MATCH_BADNESS;
2635 else
2636 return INTEGER_PROMOTION_BADNESS;
2637 }
2638 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2639 return EXACT_MATCH_BADNESS;
2640 else
2641 return INTEGER_CONVERSION_BADNESS;
2642 default:
2643 return INCOMPATIBLE_TYPE_BADNESS;
2644 }
2645 break;
2646 case TYPE_CODE_RANGE:
2647 switch (TYPE_CODE (arg))
2648 {
2649 case TYPE_CODE_INT:
2650 case TYPE_CODE_CHAR:
2651 case TYPE_CODE_RANGE:
2652 case TYPE_CODE_BOOL:
2653 case TYPE_CODE_ENUM:
2654 return INTEGER_CONVERSION_BADNESS;
2655 case TYPE_CODE_FLT:
2656 return INT_FLOAT_CONVERSION_BADNESS;
2657 default:
2658 return INCOMPATIBLE_TYPE_BADNESS;
2659 }
2660 break;
2661 case TYPE_CODE_BOOL:
2662 switch (TYPE_CODE (arg))
2663 {
2664 case TYPE_CODE_INT:
2665 case TYPE_CODE_CHAR:
2666 case TYPE_CODE_RANGE:
2667 case TYPE_CODE_ENUM:
2668 case TYPE_CODE_FLT:
2669 return INCOMPATIBLE_TYPE_BADNESS;
2670 case TYPE_CODE_PTR:
2671 return BOOL_PTR_CONVERSION_BADNESS;
2672 case TYPE_CODE_BOOL:
2673 return EXACT_MATCH_BADNESS;
2674 default:
2675 return INCOMPATIBLE_TYPE_BADNESS;
2676 }
2677 break;
2678 case TYPE_CODE_FLT:
2679 switch (TYPE_CODE (arg))
2680 {
2681 case TYPE_CODE_FLT:
2682 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2683 return FLOAT_PROMOTION_BADNESS;
2684 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2685 return EXACT_MATCH_BADNESS;
2686 else
2687 return FLOAT_CONVERSION_BADNESS;
2688 case TYPE_CODE_INT:
2689 case TYPE_CODE_BOOL:
2690 case TYPE_CODE_ENUM:
2691 case TYPE_CODE_RANGE:
2692 case TYPE_CODE_CHAR:
2693 return INT_FLOAT_CONVERSION_BADNESS;
2694 default:
2695 return INCOMPATIBLE_TYPE_BADNESS;
2696 }
2697 break;
2698 case TYPE_CODE_COMPLEX:
2699 switch (TYPE_CODE (arg))
2700 { /* Strictly not needed for C++, but... */
2701 case TYPE_CODE_FLT:
2702 return FLOAT_PROMOTION_BADNESS;
2703 case TYPE_CODE_COMPLEX:
2704 return EXACT_MATCH_BADNESS;
2705 default:
2706 return INCOMPATIBLE_TYPE_BADNESS;
2707 }
2708 break;
2709 case TYPE_CODE_STRUCT:
2710 /* currently same as TYPE_CODE_CLASS. */
2711 switch (TYPE_CODE (arg))
2712 {
2713 case TYPE_CODE_STRUCT:
2714 /* Check for derivation */
2715 rank.subrank = distance_to_ancestor (parm, arg, 0);
2716 if (rank.subrank >= 0)
2717 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2718 /* else fall through */
2719 default:
2720 return INCOMPATIBLE_TYPE_BADNESS;
2721 }
2722 break;
2723 case TYPE_CODE_UNION:
2724 switch (TYPE_CODE (arg))
2725 {
2726 case TYPE_CODE_UNION:
2727 default:
2728 return INCOMPATIBLE_TYPE_BADNESS;
2729 }
2730 break;
2731 case TYPE_CODE_MEMBERPTR:
2732 switch (TYPE_CODE (arg))
2733 {
2734 default:
2735 return INCOMPATIBLE_TYPE_BADNESS;
2736 }
2737 break;
2738 case TYPE_CODE_METHOD:
2739 switch (TYPE_CODE (arg))
2740 {
2741
2742 default:
2743 return INCOMPATIBLE_TYPE_BADNESS;
2744 }
2745 break;
2746 case TYPE_CODE_REF:
2747 switch (TYPE_CODE (arg))
2748 {
2749
2750 default:
2751 return INCOMPATIBLE_TYPE_BADNESS;
2752 }
2753
2754 break;
2755 case TYPE_CODE_SET:
2756 switch (TYPE_CODE (arg))
2757 {
2758 /* Not in C++ */
2759 case TYPE_CODE_SET:
2760 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2761 TYPE_FIELD_TYPE (arg, 0), NULL);
2762 default:
2763 return INCOMPATIBLE_TYPE_BADNESS;
2764 }
2765 break;
2766 case TYPE_CODE_VOID:
2767 default:
2768 return INCOMPATIBLE_TYPE_BADNESS;
2769 } /* switch (TYPE_CODE (arg)) */
2770 }
2771
2772
2773 /* End of functions for overload resolution. */
2774
2775 static void
2776 print_bit_vector (B_TYPE *bits, int nbits)
2777 {
2778 int bitno;
2779
2780 for (bitno = 0; bitno < nbits; bitno++)
2781 {
2782 if ((bitno % 8) == 0)
2783 {
2784 puts_filtered (" ");
2785 }
2786 if (B_TST (bits, bitno))
2787 printf_filtered (("1"));
2788 else
2789 printf_filtered (("0"));
2790 }
2791 }
2792
2793 /* Note the first arg should be the "this" pointer, we may not want to
2794 include it since we may get into a infinitely recursive
2795 situation. */
2796
2797 static void
2798 print_arg_types (struct field *args, int nargs, int spaces)
2799 {
2800 if (args != NULL)
2801 {
2802 int i;
2803
2804 for (i = 0; i < nargs; i++)
2805 recursive_dump_type (args[i].type, spaces + 2);
2806 }
2807 }
2808
2809 int
2810 field_is_static (struct field *f)
2811 {
2812 /* "static" fields are the fields whose location is not relative
2813 to the address of the enclosing struct. It would be nice to
2814 have a dedicated flag that would be set for static fields when
2815 the type is being created. But in practice, checking the field
2816 loc_kind should give us an accurate answer. */
2817 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2818 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2819 }
2820
2821 static void
2822 dump_fn_fieldlists (struct type *type, int spaces)
2823 {
2824 int method_idx;
2825 int overload_idx;
2826 struct fn_field *f;
2827
2828 printfi_filtered (spaces, "fn_fieldlists ");
2829 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2830 printf_filtered ("\n");
2831 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2832 {
2833 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2834 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2835 method_idx,
2836 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2837 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2838 gdb_stdout);
2839 printf_filtered (_(") length %d\n"),
2840 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2841 for (overload_idx = 0;
2842 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2843 overload_idx++)
2844 {
2845 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2846 overload_idx,
2847 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2848 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2849 gdb_stdout);
2850 printf_filtered (")\n");
2851 printfi_filtered (spaces + 8, "type ");
2852 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2853 gdb_stdout);
2854 printf_filtered ("\n");
2855
2856 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2857 spaces + 8 + 2);
2858
2859 printfi_filtered (spaces + 8, "args ");
2860 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2861 gdb_stdout);
2862 printf_filtered ("\n");
2863
2864 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2865 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2866 overload_idx)),
2867 spaces);
2868 printfi_filtered (spaces + 8, "fcontext ");
2869 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2870 gdb_stdout);
2871 printf_filtered ("\n");
2872
2873 printfi_filtered (spaces + 8, "is_const %d\n",
2874 TYPE_FN_FIELD_CONST (f, overload_idx));
2875 printfi_filtered (spaces + 8, "is_volatile %d\n",
2876 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2877 printfi_filtered (spaces + 8, "is_private %d\n",
2878 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2879 printfi_filtered (spaces + 8, "is_protected %d\n",
2880 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2881 printfi_filtered (spaces + 8, "is_stub %d\n",
2882 TYPE_FN_FIELD_STUB (f, overload_idx));
2883 printfi_filtered (spaces + 8, "voffset %u\n",
2884 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2885 }
2886 }
2887 }
2888
2889 static void
2890 print_cplus_stuff (struct type *type, int spaces)
2891 {
2892 printfi_filtered (spaces, "n_baseclasses %d\n",
2893 TYPE_N_BASECLASSES (type));
2894 printfi_filtered (spaces, "nfn_fields %d\n",
2895 TYPE_NFN_FIELDS (type));
2896 if (TYPE_N_BASECLASSES (type) > 0)
2897 {
2898 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2899 TYPE_N_BASECLASSES (type));
2900 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2901 gdb_stdout);
2902 printf_filtered (")");
2903
2904 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2905 TYPE_N_BASECLASSES (type));
2906 puts_filtered ("\n");
2907 }
2908 if (TYPE_NFIELDS (type) > 0)
2909 {
2910 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2911 {
2912 printfi_filtered (spaces,
2913 "private_field_bits (%d bits at *",
2914 TYPE_NFIELDS (type));
2915 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2916 gdb_stdout);
2917 printf_filtered (")");
2918 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2919 TYPE_NFIELDS (type));
2920 puts_filtered ("\n");
2921 }
2922 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2923 {
2924 printfi_filtered (spaces,
2925 "protected_field_bits (%d bits at *",
2926 TYPE_NFIELDS (type));
2927 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2928 gdb_stdout);
2929 printf_filtered (")");
2930 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2931 TYPE_NFIELDS (type));
2932 puts_filtered ("\n");
2933 }
2934 }
2935 if (TYPE_NFN_FIELDS (type) > 0)
2936 {
2937 dump_fn_fieldlists (type, spaces);
2938 }
2939 }
2940
2941 /* Print the contents of the TYPE's type_specific union, assuming that
2942 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2943
2944 static void
2945 print_gnat_stuff (struct type *type, int spaces)
2946 {
2947 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2948
2949 recursive_dump_type (descriptive_type, spaces + 2);
2950 }
2951
2952 static struct obstack dont_print_type_obstack;
2953
2954 void
2955 recursive_dump_type (struct type *type, int spaces)
2956 {
2957 int idx;
2958
2959 if (spaces == 0)
2960 obstack_begin (&dont_print_type_obstack, 0);
2961
2962 if (TYPE_NFIELDS (type) > 0
2963 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2964 {
2965 struct type **first_dont_print
2966 = (struct type **) obstack_base (&dont_print_type_obstack);
2967
2968 int i = (struct type **)
2969 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2970
2971 while (--i >= 0)
2972 {
2973 if (type == first_dont_print[i])
2974 {
2975 printfi_filtered (spaces, "type node ");
2976 gdb_print_host_address (type, gdb_stdout);
2977 printf_filtered (_(" <same as already seen type>\n"));
2978 return;
2979 }
2980 }
2981
2982 obstack_ptr_grow (&dont_print_type_obstack, type);
2983 }
2984
2985 printfi_filtered (spaces, "type node ");
2986 gdb_print_host_address (type, gdb_stdout);
2987 printf_filtered ("\n");
2988 printfi_filtered (spaces, "name '%s' (",
2989 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2990 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2991 printf_filtered (")\n");
2992 printfi_filtered (spaces, "tagname '%s' (",
2993 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2994 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2995 printf_filtered (")\n");
2996 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2997 switch (TYPE_CODE (type))
2998 {
2999 case TYPE_CODE_UNDEF:
3000 printf_filtered ("(TYPE_CODE_UNDEF)");
3001 break;
3002 case TYPE_CODE_PTR:
3003 printf_filtered ("(TYPE_CODE_PTR)");
3004 break;
3005 case TYPE_CODE_ARRAY:
3006 printf_filtered ("(TYPE_CODE_ARRAY)");
3007 break;
3008 case TYPE_CODE_STRUCT:
3009 printf_filtered ("(TYPE_CODE_STRUCT)");
3010 break;
3011 case TYPE_CODE_UNION:
3012 printf_filtered ("(TYPE_CODE_UNION)");
3013 break;
3014 case TYPE_CODE_ENUM:
3015 printf_filtered ("(TYPE_CODE_ENUM)");
3016 break;
3017 case TYPE_CODE_FLAGS:
3018 printf_filtered ("(TYPE_CODE_FLAGS)");
3019 break;
3020 case TYPE_CODE_FUNC:
3021 printf_filtered ("(TYPE_CODE_FUNC)");
3022 break;
3023 case TYPE_CODE_INT:
3024 printf_filtered ("(TYPE_CODE_INT)");
3025 break;
3026 case TYPE_CODE_FLT:
3027 printf_filtered ("(TYPE_CODE_FLT)");
3028 break;
3029 case TYPE_CODE_VOID:
3030 printf_filtered ("(TYPE_CODE_VOID)");
3031 break;
3032 case TYPE_CODE_SET:
3033 printf_filtered ("(TYPE_CODE_SET)");
3034 break;
3035 case TYPE_CODE_RANGE:
3036 printf_filtered ("(TYPE_CODE_RANGE)");
3037 break;
3038 case TYPE_CODE_STRING:
3039 printf_filtered ("(TYPE_CODE_STRING)");
3040 break;
3041 case TYPE_CODE_BITSTRING:
3042 printf_filtered ("(TYPE_CODE_BITSTRING)");
3043 break;
3044 case TYPE_CODE_ERROR:
3045 printf_filtered ("(TYPE_CODE_ERROR)");
3046 break;
3047 case TYPE_CODE_MEMBERPTR:
3048 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3049 break;
3050 case TYPE_CODE_METHODPTR:
3051 printf_filtered ("(TYPE_CODE_METHODPTR)");
3052 break;
3053 case TYPE_CODE_METHOD:
3054 printf_filtered ("(TYPE_CODE_METHOD)");
3055 break;
3056 case TYPE_CODE_REF:
3057 printf_filtered ("(TYPE_CODE_REF)");
3058 break;
3059 case TYPE_CODE_CHAR:
3060 printf_filtered ("(TYPE_CODE_CHAR)");
3061 break;
3062 case TYPE_CODE_BOOL:
3063 printf_filtered ("(TYPE_CODE_BOOL)");
3064 break;
3065 case TYPE_CODE_COMPLEX:
3066 printf_filtered ("(TYPE_CODE_COMPLEX)");
3067 break;
3068 case TYPE_CODE_TYPEDEF:
3069 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3070 break;
3071 case TYPE_CODE_NAMESPACE:
3072 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3073 break;
3074 default:
3075 printf_filtered ("(UNKNOWN TYPE CODE)");
3076 break;
3077 }
3078 puts_filtered ("\n");
3079 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3080 if (TYPE_OBJFILE_OWNED (type))
3081 {
3082 printfi_filtered (spaces, "objfile ");
3083 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3084 }
3085 else
3086 {
3087 printfi_filtered (spaces, "gdbarch ");
3088 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3089 }
3090 printf_filtered ("\n");
3091 printfi_filtered (spaces, "target_type ");
3092 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3093 printf_filtered ("\n");
3094 if (TYPE_TARGET_TYPE (type) != NULL)
3095 {
3096 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3097 }
3098 printfi_filtered (spaces, "pointer_type ");
3099 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3100 printf_filtered ("\n");
3101 printfi_filtered (spaces, "reference_type ");
3102 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3103 printf_filtered ("\n");
3104 printfi_filtered (spaces, "type_chain ");
3105 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3106 printf_filtered ("\n");
3107 printfi_filtered (spaces, "instance_flags 0x%x",
3108 TYPE_INSTANCE_FLAGS (type));
3109 if (TYPE_CONST (type))
3110 {
3111 puts_filtered (" TYPE_FLAG_CONST");
3112 }
3113 if (TYPE_VOLATILE (type))
3114 {
3115 puts_filtered (" TYPE_FLAG_VOLATILE");
3116 }
3117 if (TYPE_CODE_SPACE (type))
3118 {
3119 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3120 }
3121 if (TYPE_DATA_SPACE (type))
3122 {
3123 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3124 }
3125 if (TYPE_ADDRESS_CLASS_1 (type))
3126 {
3127 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3128 }
3129 if (TYPE_ADDRESS_CLASS_2 (type))
3130 {
3131 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3132 }
3133 puts_filtered ("\n");
3134
3135 printfi_filtered (spaces, "flags");
3136 if (TYPE_UNSIGNED (type))
3137 {
3138 puts_filtered (" TYPE_FLAG_UNSIGNED");
3139 }
3140 if (TYPE_NOSIGN (type))
3141 {
3142 puts_filtered (" TYPE_FLAG_NOSIGN");
3143 }
3144 if (TYPE_STUB (type))
3145 {
3146 puts_filtered (" TYPE_FLAG_STUB");
3147 }
3148 if (TYPE_TARGET_STUB (type))
3149 {
3150 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3151 }
3152 if (TYPE_STATIC (type))
3153 {
3154 puts_filtered (" TYPE_FLAG_STATIC");
3155 }
3156 if (TYPE_PROTOTYPED (type))
3157 {
3158 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3159 }
3160 if (TYPE_INCOMPLETE (type))
3161 {
3162 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3163 }
3164 if (TYPE_VARARGS (type))
3165 {
3166 puts_filtered (" TYPE_FLAG_VARARGS");
3167 }
3168 /* This is used for things like AltiVec registers on ppc. Gcc emits
3169 an attribute for the array type, which tells whether or not we
3170 have a vector, instead of a regular array. */
3171 if (TYPE_VECTOR (type))
3172 {
3173 puts_filtered (" TYPE_FLAG_VECTOR");
3174 }
3175 if (TYPE_FIXED_INSTANCE (type))
3176 {
3177 puts_filtered (" TYPE_FIXED_INSTANCE");
3178 }
3179 if (TYPE_STUB_SUPPORTED (type))
3180 {
3181 puts_filtered (" TYPE_STUB_SUPPORTED");
3182 }
3183 if (TYPE_NOTTEXT (type))
3184 {
3185 puts_filtered (" TYPE_NOTTEXT");
3186 }
3187 puts_filtered ("\n");
3188 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3189 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3190 puts_filtered ("\n");
3191 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3192 {
3193 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3194 printfi_filtered (spaces + 2,
3195 "[%d] enumval %s type ",
3196 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3197 else
3198 printfi_filtered (spaces + 2,
3199 "[%d] bitpos %d bitsize %d type ",
3200 idx, TYPE_FIELD_BITPOS (type, idx),
3201 TYPE_FIELD_BITSIZE (type, idx));
3202 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3203 printf_filtered (" name '%s' (",
3204 TYPE_FIELD_NAME (type, idx) != NULL
3205 ? TYPE_FIELD_NAME (type, idx)
3206 : "<NULL>");
3207 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3208 printf_filtered (")\n");
3209 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3210 {
3211 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3212 }
3213 }
3214 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3215 {
3216 printfi_filtered (spaces, "low %s%s high %s%s\n",
3217 plongest (TYPE_LOW_BOUND (type)),
3218 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3219 plongest (TYPE_HIGH_BOUND (type)),
3220 TYPE_HIGH_BOUND_UNDEFINED (type)
3221 ? " (undefined)" : "");
3222 }
3223 printfi_filtered (spaces, "vptr_basetype ");
3224 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3225 puts_filtered ("\n");
3226 if (TYPE_VPTR_BASETYPE (type) != NULL)
3227 {
3228 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3229 }
3230 printfi_filtered (spaces, "vptr_fieldno %d\n",
3231 TYPE_VPTR_FIELDNO (type));
3232
3233 switch (TYPE_SPECIFIC_FIELD (type))
3234 {
3235 case TYPE_SPECIFIC_CPLUS_STUFF:
3236 printfi_filtered (spaces, "cplus_stuff ");
3237 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3238 gdb_stdout);
3239 puts_filtered ("\n");
3240 print_cplus_stuff (type, spaces);
3241 break;
3242
3243 case TYPE_SPECIFIC_GNAT_STUFF:
3244 printfi_filtered (spaces, "gnat_stuff ");
3245 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3246 puts_filtered ("\n");
3247 print_gnat_stuff (type, spaces);
3248 break;
3249
3250 case TYPE_SPECIFIC_FLOATFORMAT:
3251 printfi_filtered (spaces, "floatformat ");
3252 if (TYPE_FLOATFORMAT (type) == NULL)
3253 puts_filtered ("(null)");
3254 else
3255 {
3256 puts_filtered ("{ ");
3257 if (TYPE_FLOATFORMAT (type)[0] == NULL
3258 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3259 puts_filtered ("(null)");
3260 else
3261 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3262
3263 puts_filtered (", ");
3264 if (TYPE_FLOATFORMAT (type)[1] == NULL
3265 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3266 puts_filtered ("(null)");
3267 else
3268 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3269
3270 puts_filtered (" }");
3271 }
3272 puts_filtered ("\n");
3273 break;
3274
3275 case TYPE_SPECIFIC_FUNC:
3276 printfi_filtered (spaces, "calling_convention %d\n",
3277 TYPE_CALLING_CONVENTION (type));
3278 /* tail_call_list is not printed. */
3279 break;
3280 }
3281
3282 if (spaces == 0)
3283 obstack_free (&dont_print_type_obstack, NULL);
3284 }
3285
3286 /* Trivial helpers for the libiberty hash table, for mapping one
3287 type to another. */
3288
3289 struct type_pair
3290 {
3291 struct type *old, *new;
3292 };
3293
3294 static hashval_t
3295 type_pair_hash (const void *item)
3296 {
3297 const struct type_pair *pair = item;
3298
3299 return htab_hash_pointer (pair->old);
3300 }
3301
3302 static int
3303 type_pair_eq (const void *item_lhs, const void *item_rhs)
3304 {
3305 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3306
3307 return lhs->old == rhs->old;
3308 }
3309
3310 /* Allocate the hash table used by copy_type_recursive to walk
3311 types without duplicates. We use OBJFILE's obstack, because
3312 OBJFILE is about to be deleted. */
3313
3314 htab_t
3315 create_copied_types_hash (struct objfile *objfile)
3316 {
3317 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3318 NULL, &objfile->objfile_obstack,
3319 hashtab_obstack_allocate,
3320 dummy_obstack_deallocate);
3321 }
3322
3323 /* Recursively copy (deep copy) TYPE, if it is associated with
3324 OBJFILE. Return a new type allocated using malloc, a saved type if
3325 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3326 not associated with OBJFILE. */
3327
3328 struct type *
3329 copy_type_recursive (struct objfile *objfile,
3330 struct type *type,
3331 htab_t copied_types)
3332 {
3333 struct type_pair *stored, pair;
3334 void **slot;
3335 struct type *new_type;
3336
3337 if (! TYPE_OBJFILE_OWNED (type))
3338 return type;
3339
3340 /* This type shouldn't be pointing to any types in other objfiles;
3341 if it did, the type might disappear unexpectedly. */
3342 gdb_assert (TYPE_OBJFILE (type) == objfile);
3343
3344 pair.old = type;
3345 slot = htab_find_slot (copied_types, &pair, INSERT);
3346 if (*slot != NULL)
3347 return ((struct type_pair *) *slot)->new;
3348
3349 new_type = alloc_type_arch (get_type_arch (type));
3350
3351 /* We must add the new type to the hash table immediately, in case
3352 we encounter this type again during a recursive call below. */
3353 stored
3354 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3355 stored->old = type;
3356 stored->new = new_type;
3357 *slot = stored;
3358
3359 /* Copy the common fields of types. For the main type, we simply
3360 copy the entire thing and then update specific fields as needed. */
3361 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3362 TYPE_OBJFILE_OWNED (new_type) = 0;
3363 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3364
3365 if (TYPE_NAME (type))
3366 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3367 if (TYPE_TAG_NAME (type))
3368 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3369
3370 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3371 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3372
3373 /* Copy the fields. */
3374 if (TYPE_NFIELDS (type))
3375 {
3376 int i, nfields;
3377
3378 nfields = TYPE_NFIELDS (type);
3379 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3380 for (i = 0; i < nfields; i++)
3381 {
3382 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3383 TYPE_FIELD_ARTIFICIAL (type, i);
3384 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3385 if (TYPE_FIELD_TYPE (type, i))
3386 TYPE_FIELD_TYPE (new_type, i)
3387 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3388 copied_types);
3389 if (TYPE_FIELD_NAME (type, i))
3390 TYPE_FIELD_NAME (new_type, i) =
3391 xstrdup (TYPE_FIELD_NAME (type, i));
3392 switch (TYPE_FIELD_LOC_KIND (type, i))
3393 {
3394 case FIELD_LOC_KIND_BITPOS:
3395 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3396 TYPE_FIELD_BITPOS (type, i));
3397 break;
3398 case FIELD_LOC_KIND_ENUMVAL:
3399 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3400 TYPE_FIELD_ENUMVAL (type, i));
3401 break;
3402 case FIELD_LOC_KIND_PHYSADDR:
3403 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3404 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3405 break;
3406 case FIELD_LOC_KIND_PHYSNAME:
3407 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3408 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3409 i)));
3410 break;
3411 default:
3412 internal_error (__FILE__, __LINE__,
3413 _("Unexpected type field location kind: %d"),
3414 TYPE_FIELD_LOC_KIND (type, i));
3415 }
3416 }
3417 }
3418
3419 /* For range types, copy the bounds information. */
3420 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3421 {
3422 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3423 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3424 }
3425
3426 /* Copy pointers to other types. */
3427 if (TYPE_TARGET_TYPE (type))
3428 TYPE_TARGET_TYPE (new_type) =
3429 copy_type_recursive (objfile,
3430 TYPE_TARGET_TYPE (type),
3431 copied_types);
3432 if (TYPE_VPTR_BASETYPE (type))
3433 TYPE_VPTR_BASETYPE (new_type) =
3434 copy_type_recursive (objfile,
3435 TYPE_VPTR_BASETYPE (type),
3436 copied_types);
3437 /* Maybe copy the type_specific bits.
3438
3439 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3440 base classes and methods. There's no fundamental reason why we
3441 can't, but at the moment it is not needed. */
3442
3443 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3444 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3445 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3446 || TYPE_CODE (type) == TYPE_CODE_UNION
3447 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3448 INIT_CPLUS_SPECIFIC (new_type);
3449
3450 return new_type;
3451 }
3452
3453 /* Make a copy of the given TYPE, except that the pointer & reference
3454 types are not preserved.
3455
3456 This function assumes that the given type has an associated objfile.
3457 This objfile is used to allocate the new type. */
3458
3459 struct type *
3460 copy_type (const struct type *type)
3461 {
3462 struct type *new_type;
3463
3464 gdb_assert (TYPE_OBJFILE_OWNED (type));
3465
3466 new_type = alloc_type_copy (type);
3467 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3468 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3469 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3470 sizeof (struct main_type));
3471
3472 return new_type;
3473 }
3474
3475
3476 /* Helper functions to initialize architecture-specific types. */
3477
3478 /* Allocate a type structure associated with GDBARCH and set its
3479 CODE, LENGTH, and NAME fields. */
3480 struct type *
3481 arch_type (struct gdbarch *gdbarch,
3482 enum type_code code, int length, char *name)
3483 {
3484 struct type *type;
3485
3486 type = alloc_type_arch (gdbarch);
3487 TYPE_CODE (type) = code;
3488 TYPE_LENGTH (type) = length;
3489
3490 if (name)
3491 TYPE_NAME (type) = xstrdup (name);
3492
3493 return type;
3494 }
3495
3496 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3497 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3498 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3499 struct type *
3500 arch_integer_type (struct gdbarch *gdbarch,
3501 int bit, int unsigned_p, char *name)
3502 {
3503 struct type *t;
3504
3505 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3506 if (unsigned_p)
3507 TYPE_UNSIGNED (t) = 1;
3508 if (name && strcmp (name, "char") == 0)
3509 TYPE_NOSIGN (t) = 1;
3510
3511 return t;
3512 }
3513
3514 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3515 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3516 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3517 struct type *
3518 arch_character_type (struct gdbarch *gdbarch,
3519 int bit, int unsigned_p, char *name)
3520 {
3521 struct type *t;
3522
3523 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3524 if (unsigned_p)
3525 TYPE_UNSIGNED (t) = 1;
3526
3527 return t;
3528 }
3529
3530 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3531 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3532 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3533 struct type *
3534 arch_boolean_type (struct gdbarch *gdbarch,
3535 int bit, int unsigned_p, char *name)
3536 {
3537 struct type *t;
3538
3539 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3540 if (unsigned_p)
3541 TYPE_UNSIGNED (t) = 1;
3542
3543 return t;
3544 }
3545
3546 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3547 BIT is the type size in bits; if BIT equals -1, the size is
3548 determined by the floatformat. NAME is the type name. Set the
3549 TYPE_FLOATFORMAT from FLOATFORMATS. */
3550 struct type *
3551 arch_float_type (struct gdbarch *gdbarch,
3552 int bit, char *name, const struct floatformat **floatformats)
3553 {
3554 struct type *t;
3555
3556 if (bit == -1)
3557 {
3558 gdb_assert (floatformats != NULL);
3559 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3560 bit = floatformats[0]->totalsize;
3561 }
3562 gdb_assert (bit >= 0);
3563
3564 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3565 TYPE_FLOATFORMAT (t) = floatformats;
3566 return t;
3567 }
3568
3569 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3570 NAME is the type name. TARGET_TYPE is the component float type. */
3571 struct type *
3572 arch_complex_type (struct gdbarch *gdbarch,
3573 char *name, struct type *target_type)
3574 {
3575 struct type *t;
3576
3577 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3578 2 * TYPE_LENGTH (target_type), name);
3579 TYPE_TARGET_TYPE (t) = target_type;
3580 return t;
3581 }
3582
3583 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3584 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3585 struct type *
3586 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3587 {
3588 int nfields = length * TARGET_CHAR_BIT;
3589 struct type *type;
3590
3591 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3592 TYPE_UNSIGNED (type) = 1;
3593 TYPE_NFIELDS (type) = nfields;
3594 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3595
3596 return type;
3597 }
3598
3599 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3600 position BITPOS is called NAME. */
3601 void
3602 append_flags_type_flag (struct type *type, int bitpos, char *name)
3603 {
3604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3605 gdb_assert (bitpos < TYPE_NFIELDS (type));
3606 gdb_assert (bitpos >= 0);
3607
3608 if (name)
3609 {
3610 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3611 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3612 }
3613 else
3614 {
3615 /* Don't show this field to the user. */
3616 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3617 }
3618 }
3619
3620 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3621 specified by CODE) associated with GDBARCH. NAME is the type name. */
3622 struct type *
3623 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3624 {
3625 struct type *t;
3626
3627 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3628 t = arch_type (gdbarch, code, 0, NULL);
3629 TYPE_TAG_NAME (t) = name;
3630 INIT_CPLUS_SPECIFIC (t);
3631 return t;
3632 }
3633
3634 /* Add new field with name NAME and type FIELD to composite type T.
3635 Do not set the field's position or adjust the type's length;
3636 the caller should do so. Return the new field. */
3637 struct field *
3638 append_composite_type_field_raw (struct type *t, char *name,
3639 struct type *field)
3640 {
3641 struct field *f;
3642
3643 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3644 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3645 sizeof (struct field) * TYPE_NFIELDS (t));
3646 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3647 memset (f, 0, sizeof f[0]);
3648 FIELD_TYPE (f[0]) = field;
3649 FIELD_NAME (f[0]) = name;
3650 return f;
3651 }
3652
3653 /* Add new field with name NAME and type FIELD to composite type T.
3654 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3655 void
3656 append_composite_type_field_aligned (struct type *t, char *name,
3657 struct type *field, int alignment)
3658 {
3659 struct field *f = append_composite_type_field_raw (t, name, field);
3660
3661 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3662 {
3663 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3664 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3665 }
3666 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3667 {
3668 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3669 if (TYPE_NFIELDS (t) > 1)
3670 {
3671 SET_FIELD_BITPOS (f[0],
3672 (FIELD_BITPOS (f[-1])
3673 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3674 * TARGET_CHAR_BIT)));
3675
3676 if (alignment)
3677 {
3678 int left;
3679
3680 alignment *= TARGET_CHAR_BIT;
3681 left = FIELD_BITPOS (f[0]) % alignment;
3682
3683 if (left)
3684 {
3685 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
3686 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3687 }
3688 }
3689 }
3690 }
3691 }
3692
3693 /* Add new field with name NAME and type FIELD to composite type T. */
3694 void
3695 append_composite_type_field (struct type *t, char *name,
3696 struct type *field)
3697 {
3698 append_composite_type_field_aligned (t, name, field, 0);
3699 }
3700
3701
3702 static struct gdbarch_data *gdbtypes_data;
3703
3704 const struct builtin_type *
3705 builtin_type (struct gdbarch *gdbarch)
3706 {
3707 return gdbarch_data (gdbarch, gdbtypes_data);
3708 }
3709
3710 static void *
3711 gdbtypes_post_init (struct gdbarch *gdbarch)
3712 {
3713 struct builtin_type *builtin_type
3714 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3715
3716 /* Basic types. */
3717 builtin_type->builtin_void
3718 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3719 builtin_type->builtin_char
3720 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3721 !gdbarch_char_signed (gdbarch), "char");
3722 builtin_type->builtin_signed_char
3723 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3724 0, "signed char");
3725 builtin_type->builtin_unsigned_char
3726 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3727 1, "unsigned char");
3728 builtin_type->builtin_short
3729 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3730 0, "short");
3731 builtin_type->builtin_unsigned_short
3732 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3733 1, "unsigned short");
3734 builtin_type->builtin_int
3735 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3736 0, "int");
3737 builtin_type->builtin_unsigned_int
3738 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3739 1, "unsigned int");
3740 builtin_type->builtin_long
3741 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3742 0, "long");
3743 builtin_type->builtin_unsigned_long
3744 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3745 1, "unsigned long");
3746 builtin_type->builtin_long_long
3747 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3748 0, "long long");
3749 builtin_type->builtin_unsigned_long_long
3750 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3751 1, "unsigned long long");
3752 builtin_type->builtin_float
3753 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3754 "float", gdbarch_float_format (gdbarch));
3755 builtin_type->builtin_double
3756 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3757 "double", gdbarch_double_format (gdbarch));
3758 builtin_type->builtin_long_double
3759 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3760 "long double", gdbarch_long_double_format (gdbarch));
3761 builtin_type->builtin_complex
3762 = arch_complex_type (gdbarch, "complex",
3763 builtin_type->builtin_float);
3764 builtin_type->builtin_double_complex
3765 = arch_complex_type (gdbarch, "double complex",
3766 builtin_type->builtin_double);
3767 builtin_type->builtin_string
3768 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3769 builtin_type->builtin_bool
3770 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3771
3772 /* The following three are about decimal floating point types, which
3773 are 32-bits, 64-bits and 128-bits respectively. */
3774 builtin_type->builtin_decfloat
3775 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3776 builtin_type->builtin_decdouble
3777 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3778 builtin_type->builtin_declong
3779 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3780
3781 /* "True" character types. */
3782 builtin_type->builtin_true_char
3783 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3784 builtin_type->builtin_true_unsigned_char
3785 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3786
3787 /* Fixed-size integer types. */
3788 builtin_type->builtin_int0
3789 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3790 builtin_type->builtin_int8
3791 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3792 builtin_type->builtin_uint8
3793 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3794 builtin_type->builtin_int16
3795 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3796 builtin_type->builtin_uint16
3797 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3798 builtin_type->builtin_int32
3799 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3800 builtin_type->builtin_uint32
3801 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3802 builtin_type->builtin_int64
3803 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3804 builtin_type->builtin_uint64
3805 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3806 builtin_type->builtin_int128
3807 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3808 builtin_type->builtin_uint128
3809 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3810 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3811 TYPE_INSTANCE_FLAG_NOTTEXT;
3812 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3813 TYPE_INSTANCE_FLAG_NOTTEXT;
3814
3815 /* Wide character types. */
3816 builtin_type->builtin_char16
3817 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3818 builtin_type->builtin_char32
3819 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3820
3821
3822 /* Default data/code pointer types. */
3823 builtin_type->builtin_data_ptr
3824 = lookup_pointer_type (builtin_type->builtin_void);
3825 builtin_type->builtin_func_ptr
3826 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3827 builtin_type->builtin_func_func
3828 = lookup_function_type (builtin_type->builtin_func_ptr);
3829
3830 /* This type represents a GDB internal function. */
3831 builtin_type->internal_fn
3832 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3833 "<internal function>");
3834
3835 return builtin_type;
3836 }
3837
3838
3839 /* This set of objfile-based types is intended to be used by symbol
3840 readers as basic types. */
3841
3842 static const struct objfile_data *objfile_type_data;
3843
3844 const struct objfile_type *
3845 objfile_type (struct objfile *objfile)
3846 {
3847 struct gdbarch *gdbarch;
3848 struct objfile_type *objfile_type
3849 = objfile_data (objfile, objfile_type_data);
3850
3851 if (objfile_type)
3852 return objfile_type;
3853
3854 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3855 1, struct objfile_type);
3856
3857 /* Use the objfile architecture to determine basic type properties. */
3858 gdbarch = get_objfile_arch (objfile);
3859
3860 /* Basic types. */
3861 objfile_type->builtin_void
3862 = init_type (TYPE_CODE_VOID, 1,
3863 0,
3864 "void", objfile);
3865
3866 objfile_type->builtin_char
3867 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3868 (TYPE_FLAG_NOSIGN
3869 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3870 "char", objfile);
3871 objfile_type->builtin_signed_char
3872 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3873 0,
3874 "signed char", objfile);
3875 objfile_type->builtin_unsigned_char
3876 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3877 TYPE_FLAG_UNSIGNED,
3878 "unsigned char", objfile);
3879 objfile_type->builtin_short
3880 = init_type (TYPE_CODE_INT,
3881 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3882 0, "short", objfile);
3883 objfile_type->builtin_unsigned_short
3884 = init_type (TYPE_CODE_INT,
3885 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3886 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3887 objfile_type->builtin_int
3888 = init_type (TYPE_CODE_INT,
3889 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3890 0, "int", objfile);
3891 objfile_type->builtin_unsigned_int
3892 = init_type (TYPE_CODE_INT,
3893 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3894 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3895 objfile_type->builtin_long
3896 = init_type (TYPE_CODE_INT,
3897 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3898 0, "long", objfile);
3899 objfile_type->builtin_unsigned_long
3900 = init_type (TYPE_CODE_INT,
3901 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3902 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3903 objfile_type->builtin_long_long
3904 = init_type (TYPE_CODE_INT,
3905 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3906 0, "long long", objfile);
3907 objfile_type->builtin_unsigned_long_long
3908 = init_type (TYPE_CODE_INT,
3909 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3910 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3911
3912 objfile_type->builtin_float
3913 = init_type (TYPE_CODE_FLT,
3914 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3915 0, "float", objfile);
3916 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3917 = gdbarch_float_format (gdbarch);
3918 objfile_type->builtin_double
3919 = init_type (TYPE_CODE_FLT,
3920 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3921 0, "double", objfile);
3922 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3923 = gdbarch_double_format (gdbarch);
3924 objfile_type->builtin_long_double
3925 = init_type (TYPE_CODE_FLT,
3926 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3927 0, "long double", objfile);
3928 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3929 = gdbarch_long_double_format (gdbarch);
3930
3931 /* This type represents a type that was unrecognized in symbol read-in. */
3932 objfile_type->builtin_error
3933 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3934
3935 /* The following set of types is used for symbols with no
3936 debug information. */
3937 objfile_type->nodebug_text_symbol
3938 = init_type (TYPE_CODE_FUNC, 1, 0,
3939 "<text variable, no debug info>", objfile);
3940 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3941 = objfile_type->builtin_int;
3942 objfile_type->nodebug_text_gnu_ifunc_symbol
3943 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3944 "<text gnu-indirect-function variable, no debug info>",
3945 objfile);
3946 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3947 = objfile_type->nodebug_text_symbol;
3948 objfile_type->nodebug_got_plt_symbol
3949 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3950 "<text from jump slot in .got.plt, no debug info>",
3951 objfile);
3952 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3953 = objfile_type->nodebug_text_symbol;
3954 objfile_type->nodebug_data_symbol
3955 = init_type (TYPE_CODE_INT,
3956 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3957 "<data variable, no debug info>", objfile);
3958 objfile_type->nodebug_unknown_symbol
3959 = init_type (TYPE_CODE_INT, 1, 0,
3960 "<variable (not text or data), no debug info>", objfile);
3961 objfile_type->nodebug_tls_symbol
3962 = init_type (TYPE_CODE_INT,
3963 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3964 "<thread local variable, no debug info>", objfile);
3965
3966 /* NOTE: on some targets, addresses and pointers are not necessarily
3967 the same --- for example, on the D10V, pointers are 16 bits long,
3968 but addresses are 32 bits long. See doc/gdbint.texinfo,
3969 ``Pointers Are Not Always Addresses''.
3970
3971 The upshot is:
3972 - gdb's `struct type' always describes the target's
3973 representation.
3974 - gdb's `struct value' objects should always hold values in
3975 target form.
3976 - gdb's CORE_ADDR values are addresses in the unified virtual
3977 address space that the assembler and linker work with. Thus,
3978 since target_read_memory takes a CORE_ADDR as an argument, it
3979 can access any memory on the target, even if the processor has
3980 separate code and data address spaces.
3981
3982 So, for example:
3983 - If v is a value holding a D10V code pointer, its contents are
3984 in target form: a big-endian address left-shifted two bits.
3985 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3986 sizeof (void *) == 2 on the target.
3987
3988 In this context, objfile_type->builtin_core_addr is a bit odd:
3989 it's a target type for a value the target will never see. It's
3990 only used to hold the values of (typeless) linker symbols, which
3991 are indeed in the unified virtual address space. */
3992
3993 objfile_type->builtin_core_addr
3994 = init_type (TYPE_CODE_INT,
3995 gdbarch_addr_bit (gdbarch) / 8,
3996 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3997
3998 set_objfile_data (objfile, objfile_type_data, objfile_type);
3999 return objfile_type;
4000 }
4001
4002
4003 extern void _initialize_gdbtypes (void);
4004 void
4005 _initialize_gdbtypes (void)
4006 {
4007 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4008 objfile_type_data = register_objfile_data ();
4009
4010 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4011 _("Set debugging of C++ overloading."),
4012 _("Show debugging of C++ overloading."),
4013 _("When enabled, ranking of the "
4014 "functions is displayed."),
4015 NULL,
4016 show_overload_debug,
4017 &setdebuglist, &showdebuglist);
4018
4019 /* Add user knob for controlling resolution of opaque types. */
4020 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4021 &opaque_type_resolution,
4022 _("Set resolution of opaque struct/class/union"
4023 " types (if set before loading symbols)."),
4024 _("Show resolution of opaque struct/class/union"
4025 " types (if set before loading symbols)."),
4026 NULL, NULL,
4027 show_opaque_type_resolution,
4028 &setlist, &showlist);
4029 }
This page took 0.113598 seconds and 4 git commands to generate.