Move vptr_{fieldno,basetype} out of main_type, and update everything accordingly.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Replace the contents of ntype with the type *type. This changes the
718 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
719 the changes are propogated to all types in the TYPE_CHAIN.
720
721 In order to build recursive types, it's inevitable that we'll need
722 to update types in place --- but this sort of indiscriminate
723 smashing is ugly, and needs to be replaced with something more
724 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
725 clear if more steps are needed. */
726
727 void
728 replace_type (struct type *ntype, struct type *type)
729 {
730 struct type *chain;
731
732 /* These two types had better be in the same objfile. Otherwise,
733 the assignment of one type's main type structure to the other
734 will produce a type with references to objects (names; field
735 lists; etc.) allocated on an objfile other than its own. */
736 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
737
738 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
739
740 /* The type length is not a part of the main type. Update it for
741 each type on the variant chain. */
742 chain = ntype;
743 do
744 {
745 /* Assert that this element of the chain has no address-class bits
746 set in its flags. Such type variants might have type lengths
747 which are supposed to be different from the non-address-class
748 variants. This assertion shouldn't ever be triggered because
749 symbol readers which do construct address-class variants don't
750 call replace_type(). */
751 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
752
753 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
754 chain = TYPE_CHAIN (chain);
755 }
756 while (ntype != chain);
757
758 /* Assert that the two types have equivalent instance qualifiers.
759 This should be true for at least all of our debug readers. */
760 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
761 }
762
763 /* Implement direct support for MEMBER_TYPE in GNU C++.
764 May need to construct such a type if this is the first use.
765 The TYPE is the type of the member. The DOMAIN is the type
766 of the aggregate that the member belongs to. */
767
768 struct type *
769 lookup_memberptr_type (struct type *type, struct type *domain)
770 {
771 struct type *mtype;
772
773 mtype = alloc_type_copy (type);
774 smash_to_memberptr_type (mtype, domain, type);
775 return mtype;
776 }
777
778 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
779
780 struct type *
781 lookup_methodptr_type (struct type *to_type)
782 {
783 struct type *mtype;
784
785 mtype = alloc_type_copy (to_type);
786 smash_to_methodptr_type (mtype, to_type);
787 return mtype;
788 }
789
790 /* Allocate a stub method whose return type is TYPE. This apparently
791 happens for speed of symbol reading, since parsing out the
792 arguments to the method is cpu-intensive, the way we are doing it.
793 So, we will fill in arguments later. This always returns a fresh
794 type. */
795
796 struct type *
797 allocate_stub_method (struct type *type)
798 {
799 struct type *mtype;
800
801 mtype = alloc_type_copy (type);
802 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
803 TYPE_LENGTH (mtype) = 1;
804 TYPE_STUB (mtype) = 1;
805 TYPE_TARGET_TYPE (mtype) = type;
806 /* TYPE_SELF_TYPE (mtype) = unknown yet */
807 return mtype;
808 }
809
810 /* Create a range type with a dynamic range from LOW_BOUND to
811 HIGH_BOUND, inclusive. See create_range_type for further details. */
812
813 struct type *
814 create_range_type (struct type *result_type, struct type *index_type,
815 const struct dynamic_prop *low_bound,
816 const struct dynamic_prop *high_bound)
817 {
818 if (result_type == NULL)
819 result_type = alloc_type_copy (index_type);
820 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
821 TYPE_TARGET_TYPE (result_type) = index_type;
822 if (TYPE_STUB (index_type))
823 TYPE_TARGET_STUB (result_type) = 1;
824 else
825 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
826
827 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
828 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
829 TYPE_RANGE_DATA (result_type)->low = *low_bound;
830 TYPE_RANGE_DATA (result_type)->high = *high_bound;
831
832 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
833 TYPE_UNSIGNED (result_type) = 1;
834
835 /* Ada allows the declaration of range types whose upper bound is
836 less than the lower bound, so checking the lower bound is not
837 enough. Make sure we do not mark a range type whose upper bound
838 is negative as unsigned. */
839 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
840 TYPE_UNSIGNED (result_type) = 0;
841
842 return result_type;
843 }
844
845 /* Create a range type using either a blank type supplied in
846 RESULT_TYPE, or creating a new type, inheriting the objfile from
847 INDEX_TYPE.
848
849 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
850 to HIGH_BOUND, inclusive.
851
852 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
853 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
854
855 struct type *
856 create_static_range_type (struct type *result_type, struct type *index_type,
857 LONGEST low_bound, LONGEST high_bound)
858 {
859 struct dynamic_prop low, high;
860
861 low.kind = PROP_CONST;
862 low.data.const_val = low_bound;
863
864 high.kind = PROP_CONST;
865 high.data.const_val = high_bound;
866
867 result_type = create_range_type (result_type, index_type, &low, &high);
868
869 return result_type;
870 }
871
872 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
873 are static, otherwise returns 0. */
874
875 static int
876 has_static_range (const struct range_bounds *bounds)
877 {
878 return (bounds->low.kind == PROP_CONST
879 && bounds->high.kind == PROP_CONST);
880 }
881
882
883 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
884 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
885 bounds will fit in LONGEST), or -1 otherwise. */
886
887 int
888 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
889 {
890 CHECK_TYPEDEF (type);
891 switch (TYPE_CODE (type))
892 {
893 case TYPE_CODE_RANGE:
894 *lowp = TYPE_LOW_BOUND (type);
895 *highp = TYPE_HIGH_BOUND (type);
896 return 1;
897 case TYPE_CODE_ENUM:
898 if (TYPE_NFIELDS (type) > 0)
899 {
900 /* The enums may not be sorted by value, so search all
901 entries. */
902 int i;
903
904 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
905 for (i = 0; i < TYPE_NFIELDS (type); i++)
906 {
907 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
908 *lowp = TYPE_FIELD_ENUMVAL (type, i);
909 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
910 *highp = TYPE_FIELD_ENUMVAL (type, i);
911 }
912
913 /* Set unsigned indicator if warranted. */
914 if (*lowp >= 0)
915 {
916 TYPE_UNSIGNED (type) = 1;
917 }
918 }
919 else
920 {
921 *lowp = 0;
922 *highp = -1;
923 }
924 return 0;
925 case TYPE_CODE_BOOL:
926 *lowp = 0;
927 *highp = 1;
928 return 0;
929 case TYPE_CODE_INT:
930 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
931 return -1;
932 if (!TYPE_UNSIGNED (type))
933 {
934 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
935 *highp = -*lowp - 1;
936 return 0;
937 }
938 /* ... fall through for unsigned ints ... */
939 case TYPE_CODE_CHAR:
940 *lowp = 0;
941 /* This round-about calculation is to avoid shifting by
942 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
943 if TYPE_LENGTH (type) == sizeof (LONGEST). */
944 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
945 *highp = (*highp - 1) | *highp;
946 return 0;
947 default:
948 return -1;
949 }
950 }
951
952 /* Assuming TYPE is a simple, non-empty array type, compute its upper
953 and lower bound. Save the low bound into LOW_BOUND if not NULL.
954 Save the high bound into HIGH_BOUND if not NULL.
955
956 Return 1 if the operation was successful. Return zero otherwise,
957 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
958
959 We now simply use get_discrete_bounds call to get the values
960 of the low and high bounds.
961 get_discrete_bounds can return three values:
962 1, meaning that index is a range,
963 0, meaning that index is a discrete type,
964 or -1 for failure. */
965
966 int
967 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
968 {
969 struct type *index = TYPE_INDEX_TYPE (type);
970 LONGEST low = 0;
971 LONGEST high = 0;
972 int res;
973
974 if (index == NULL)
975 return 0;
976
977 res = get_discrete_bounds (index, &low, &high);
978 if (res == -1)
979 return 0;
980
981 /* Check if the array bounds are undefined. */
982 if (res == 1
983 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
984 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
985 return 0;
986
987 if (low_bound)
988 *low_bound = low;
989
990 if (high_bound)
991 *high_bound = high;
992
993 return 1;
994 }
995
996 /* Create an array type using either a blank type supplied in
997 RESULT_TYPE, or creating a new type, inheriting the objfile from
998 RANGE_TYPE.
999
1000 Elements will be of type ELEMENT_TYPE, the indices will be of type
1001 RANGE_TYPE.
1002
1003 If BIT_STRIDE is not zero, build a packed array type whose element
1004 size is BIT_STRIDE. Otherwise, ignore this parameter.
1005
1006 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1007 sure it is TYPE_CODE_UNDEF before we bash it into an array
1008 type? */
1009
1010 struct type *
1011 create_array_type_with_stride (struct type *result_type,
1012 struct type *element_type,
1013 struct type *range_type,
1014 unsigned int bit_stride)
1015 {
1016 if (result_type == NULL)
1017 result_type = alloc_type_copy (range_type);
1018
1019 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1020 TYPE_TARGET_TYPE (result_type) = element_type;
1021 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1022 {
1023 LONGEST low_bound, high_bound;
1024
1025 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1026 low_bound = high_bound = 0;
1027 CHECK_TYPEDEF (element_type);
1028 /* Be careful when setting the array length. Ada arrays can be
1029 empty arrays with the high_bound being smaller than the low_bound.
1030 In such cases, the array length should be zero. */
1031 if (high_bound < low_bound)
1032 TYPE_LENGTH (result_type) = 0;
1033 else if (bit_stride > 0)
1034 TYPE_LENGTH (result_type) =
1035 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1036 else
1037 TYPE_LENGTH (result_type) =
1038 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1039 }
1040 else
1041 {
1042 /* This type is dynamic and its length needs to be computed
1043 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1044 undefined by setting it to zero. Although we are not expected
1045 to trust TYPE_LENGTH in this case, setting the size to zero
1046 allows us to avoid allocating objects of random sizes in case
1047 we accidently do. */
1048 TYPE_LENGTH (result_type) = 0;
1049 }
1050
1051 TYPE_NFIELDS (result_type) = 1;
1052 TYPE_FIELDS (result_type) =
1053 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1054 TYPE_INDEX_TYPE (result_type) = range_type;
1055 if (bit_stride > 0)
1056 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1057
1058 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1059 if (TYPE_LENGTH (result_type) == 0)
1060 TYPE_TARGET_STUB (result_type) = 1;
1061
1062 return result_type;
1063 }
1064
1065 /* Same as create_array_type_with_stride but with no bit_stride
1066 (BIT_STRIDE = 0), thus building an unpacked array. */
1067
1068 struct type *
1069 create_array_type (struct type *result_type,
1070 struct type *element_type,
1071 struct type *range_type)
1072 {
1073 return create_array_type_with_stride (result_type, element_type,
1074 range_type, 0);
1075 }
1076
1077 struct type *
1078 lookup_array_range_type (struct type *element_type,
1079 LONGEST low_bound, LONGEST high_bound)
1080 {
1081 struct gdbarch *gdbarch = get_type_arch (element_type);
1082 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1083 struct type *range_type
1084 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1085
1086 return create_array_type (NULL, element_type, range_type);
1087 }
1088
1089 /* Create a string type using either a blank type supplied in
1090 RESULT_TYPE, or creating a new type. String types are similar
1091 enough to array of char types that we can use create_array_type to
1092 build the basic type and then bash it into a string type.
1093
1094 For fixed length strings, the range type contains 0 as the lower
1095 bound and the length of the string minus one as the upper bound.
1096
1097 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1098 sure it is TYPE_CODE_UNDEF before we bash it into a string
1099 type? */
1100
1101 struct type *
1102 create_string_type (struct type *result_type,
1103 struct type *string_char_type,
1104 struct type *range_type)
1105 {
1106 result_type = create_array_type (result_type,
1107 string_char_type,
1108 range_type);
1109 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1110 return result_type;
1111 }
1112
1113 struct type *
1114 lookup_string_range_type (struct type *string_char_type,
1115 LONGEST low_bound, LONGEST high_bound)
1116 {
1117 struct type *result_type;
1118
1119 result_type = lookup_array_range_type (string_char_type,
1120 low_bound, high_bound);
1121 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1122 return result_type;
1123 }
1124
1125 struct type *
1126 create_set_type (struct type *result_type, struct type *domain_type)
1127 {
1128 if (result_type == NULL)
1129 result_type = alloc_type_copy (domain_type);
1130
1131 TYPE_CODE (result_type) = TYPE_CODE_SET;
1132 TYPE_NFIELDS (result_type) = 1;
1133 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1134
1135 if (!TYPE_STUB (domain_type))
1136 {
1137 LONGEST low_bound, high_bound, bit_length;
1138
1139 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1140 low_bound = high_bound = 0;
1141 bit_length = high_bound - low_bound + 1;
1142 TYPE_LENGTH (result_type)
1143 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1144 if (low_bound >= 0)
1145 TYPE_UNSIGNED (result_type) = 1;
1146 }
1147 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1148
1149 return result_type;
1150 }
1151
1152 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1153 and any array types nested inside it. */
1154
1155 void
1156 make_vector_type (struct type *array_type)
1157 {
1158 struct type *inner_array, *elt_type;
1159 int flags;
1160
1161 /* Find the innermost array type, in case the array is
1162 multi-dimensional. */
1163 inner_array = array_type;
1164 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1165 inner_array = TYPE_TARGET_TYPE (inner_array);
1166
1167 elt_type = TYPE_TARGET_TYPE (inner_array);
1168 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1169 {
1170 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1171 elt_type = make_qualified_type (elt_type, flags, NULL);
1172 TYPE_TARGET_TYPE (inner_array) = elt_type;
1173 }
1174
1175 TYPE_VECTOR (array_type) = 1;
1176 }
1177
1178 struct type *
1179 init_vector_type (struct type *elt_type, int n)
1180 {
1181 struct type *array_type;
1182
1183 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1184 make_vector_type (array_type);
1185 return array_type;
1186 }
1187
1188 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1189 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1190 confusing. "self" is a common enough replacement for "this".
1191 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1192 TYPE_CODE_METHOD. */
1193
1194 struct type *
1195 internal_type_self_type (struct type *type)
1196 {
1197 switch (TYPE_CODE (type))
1198 {
1199 case TYPE_CODE_METHODPTR:
1200 case TYPE_CODE_MEMBERPTR:
1201 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1202 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1203 case TYPE_CODE_METHOD:
1204 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1205 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1206 default:
1207 gdb_assert_not_reached ("bad type");
1208 }
1209 }
1210
1211 /* Set the type of the class that TYPE belongs to.
1212 In c++ this is the class of "this".
1213 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1214 TYPE_CODE_METHOD. */
1215
1216 void
1217 set_type_self_type (struct type *type, struct type *self_type)
1218 {
1219 switch (TYPE_CODE (type))
1220 {
1221 case TYPE_CODE_METHODPTR:
1222 case TYPE_CODE_MEMBERPTR:
1223 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1224 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1225 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1226 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1227 break;
1228 case TYPE_CODE_METHOD:
1229 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1230 INIT_FUNC_SPECIFIC (type);
1231 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1232 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1233 break;
1234 default:
1235 gdb_assert_not_reached ("bad type");
1236 }
1237 }
1238
1239 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1240 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1241 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1242 TYPE doesn't include the offset (that's the value of the MEMBER
1243 itself), but does include the structure type into which it points
1244 (for some reason).
1245
1246 When "smashing" the type, we preserve the objfile that the old type
1247 pointed to, since we aren't changing where the type is actually
1248 allocated. */
1249
1250 void
1251 smash_to_memberptr_type (struct type *type, struct type *self_type,
1252 struct type *to_type)
1253 {
1254 smash_type (type);
1255 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1256 TYPE_TARGET_TYPE (type) = to_type;
1257 set_type_self_type (type, self_type);
1258 /* Assume that a data member pointer is the same size as a normal
1259 pointer. */
1260 TYPE_LENGTH (type)
1261 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1262 }
1263
1264 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1265
1266 When "smashing" the type, we preserve the objfile that the old type
1267 pointed to, since we aren't changing where the type is actually
1268 allocated. */
1269
1270 void
1271 smash_to_methodptr_type (struct type *type, struct type *to_type)
1272 {
1273 smash_type (type);
1274 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1275 TYPE_TARGET_TYPE (type) = to_type;
1276 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1277 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1278 }
1279
1280 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1281 METHOD just means `function that gets an extra "this" argument'.
1282
1283 When "smashing" the type, we preserve the objfile that the old type
1284 pointed to, since we aren't changing where the type is actually
1285 allocated. */
1286
1287 void
1288 smash_to_method_type (struct type *type, struct type *self_type,
1289 struct type *to_type, struct field *args,
1290 int nargs, int varargs)
1291 {
1292 smash_type (type);
1293 TYPE_CODE (type) = TYPE_CODE_METHOD;
1294 TYPE_TARGET_TYPE (type) = to_type;
1295 set_type_self_type (type, self_type);
1296 TYPE_FIELDS (type) = args;
1297 TYPE_NFIELDS (type) = nargs;
1298 if (varargs)
1299 TYPE_VARARGS (type) = 1;
1300 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1301 }
1302
1303 /* Return a typename for a struct/union/enum type without "struct ",
1304 "union ", or "enum ". If the type has a NULL name, return NULL. */
1305
1306 const char *
1307 type_name_no_tag (const struct type *type)
1308 {
1309 if (TYPE_TAG_NAME (type) != NULL)
1310 return TYPE_TAG_NAME (type);
1311
1312 /* Is there code which expects this to return the name if there is
1313 no tag name? My guess is that this is mainly used for C++ in
1314 cases where the two will always be the same. */
1315 return TYPE_NAME (type);
1316 }
1317
1318 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1319 Since GCC PR debug/47510 DWARF provides associated information to detect the
1320 anonymous class linkage name from its typedef.
1321
1322 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1323 apply it itself. */
1324
1325 const char *
1326 type_name_no_tag_or_error (struct type *type)
1327 {
1328 struct type *saved_type = type;
1329 const char *name;
1330 struct objfile *objfile;
1331
1332 CHECK_TYPEDEF (type);
1333
1334 name = type_name_no_tag (type);
1335 if (name != NULL)
1336 return name;
1337
1338 name = type_name_no_tag (saved_type);
1339 objfile = TYPE_OBJFILE (saved_type);
1340 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1341 name ? name : "<anonymous>",
1342 objfile ? objfile_name (objfile) : "<arch>");
1343 }
1344
1345 /* Lookup a typedef or primitive type named NAME, visible in lexical
1346 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1347 suitably defined. */
1348
1349 struct type *
1350 lookup_typename (const struct language_defn *language,
1351 struct gdbarch *gdbarch, const char *name,
1352 const struct block *block, int noerr)
1353 {
1354 struct symbol *sym;
1355 struct type *type;
1356
1357 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1358 language->la_language, NULL);
1359 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1360 return SYMBOL_TYPE (sym);
1361
1362 if (noerr)
1363 return NULL;
1364 error (_("No type named %s."), name);
1365 }
1366
1367 struct type *
1368 lookup_unsigned_typename (const struct language_defn *language,
1369 struct gdbarch *gdbarch, const char *name)
1370 {
1371 char *uns = alloca (strlen (name) + 10);
1372
1373 strcpy (uns, "unsigned ");
1374 strcpy (uns + 9, name);
1375 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1376 }
1377
1378 struct type *
1379 lookup_signed_typename (const struct language_defn *language,
1380 struct gdbarch *gdbarch, const char *name)
1381 {
1382 struct type *t;
1383 char *uns = alloca (strlen (name) + 8);
1384
1385 strcpy (uns, "signed ");
1386 strcpy (uns + 7, name);
1387 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1388 /* If we don't find "signed FOO" just try again with plain "FOO". */
1389 if (t != NULL)
1390 return t;
1391 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1392 }
1393
1394 /* Lookup a structure type named "struct NAME",
1395 visible in lexical block BLOCK. */
1396
1397 struct type *
1398 lookup_struct (const char *name, const struct block *block)
1399 {
1400 struct symbol *sym;
1401
1402 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1403
1404 if (sym == NULL)
1405 {
1406 error (_("No struct type named %s."), name);
1407 }
1408 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1409 {
1410 error (_("This context has class, union or enum %s, not a struct."),
1411 name);
1412 }
1413 return (SYMBOL_TYPE (sym));
1414 }
1415
1416 /* Lookup a union type named "union NAME",
1417 visible in lexical block BLOCK. */
1418
1419 struct type *
1420 lookup_union (const char *name, const struct block *block)
1421 {
1422 struct symbol *sym;
1423 struct type *t;
1424
1425 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1426
1427 if (sym == NULL)
1428 error (_("No union type named %s."), name);
1429
1430 t = SYMBOL_TYPE (sym);
1431
1432 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1433 return t;
1434
1435 /* If we get here, it's not a union. */
1436 error (_("This context has class, struct or enum %s, not a union."),
1437 name);
1438 }
1439
1440 /* Lookup an enum type named "enum NAME",
1441 visible in lexical block BLOCK. */
1442
1443 struct type *
1444 lookup_enum (const char *name, const struct block *block)
1445 {
1446 struct symbol *sym;
1447
1448 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1449 if (sym == NULL)
1450 {
1451 error (_("No enum type named %s."), name);
1452 }
1453 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1454 {
1455 error (_("This context has class, struct or union %s, not an enum."),
1456 name);
1457 }
1458 return (SYMBOL_TYPE (sym));
1459 }
1460
1461 /* Lookup a template type named "template NAME<TYPE>",
1462 visible in lexical block BLOCK. */
1463
1464 struct type *
1465 lookup_template_type (char *name, struct type *type,
1466 const struct block *block)
1467 {
1468 struct symbol *sym;
1469 char *nam = (char *)
1470 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1471
1472 strcpy (nam, name);
1473 strcat (nam, "<");
1474 strcat (nam, TYPE_NAME (type));
1475 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1476
1477 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1478
1479 if (sym == NULL)
1480 {
1481 error (_("No template type named %s."), name);
1482 }
1483 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1484 {
1485 error (_("This context has class, union or enum %s, not a struct."),
1486 name);
1487 }
1488 return (SYMBOL_TYPE (sym));
1489 }
1490
1491 /* Given a type TYPE, lookup the type of the component of type named
1492 NAME.
1493
1494 TYPE can be either a struct or union, or a pointer or reference to
1495 a struct or union. If it is a pointer or reference, its target
1496 type is automatically used. Thus '.' and '->' are interchangable,
1497 as specified for the definitions of the expression element types
1498 STRUCTOP_STRUCT and STRUCTOP_PTR.
1499
1500 If NOERR is nonzero, return zero if NAME is not suitably defined.
1501 If NAME is the name of a baseclass type, return that type. */
1502
1503 struct type *
1504 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1505 {
1506 int i;
1507 char *typename;
1508
1509 for (;;)
1510 {
1511 CHECK_TYPEDEF (type);
1512 if (TYPE_CODE (type) != TYPE_CODE_PTR
1513 && TYPE_CODE (type) != TYPE_CODE_REF)
1514 break;
1515 type = TYPE_TARGET_TYPE (type);
1516 }
1517
1518 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1519 && TYPE_CODE (type) != TYPE_CODE_UNION)
1520 {
1521 typename = type_to_string (type);
1522 make_cleanup (xfree, typename);
1523 error (_("Type %s is not a structure or union type."), typename);
1524 }
1525
1526 #if 0
1527 /* FIXME: This change put in by Michael seems incorrect for the case
1528 where the structure tag name is the same as the member name.
1529 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1530 foo; } bell;" Disabled by fnf. */
1531 {
1532 char *typename;
1533
1534 typename = type_name_no_tag (type);
1535 if (typename != NULL && strcmp (typename, name) == 0)
1536 return type;
1537 }
1538 #endif
1539
1540 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1541 {
1542 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1543
1544 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1545 {
1546 return TYPE_FIELD_TYPE (type, i);
1547 }
1548 else if (!t_field_name || *t_field_name == '\0')
1549 {
1550 struct type *subtype
1551 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1552
1553 if (subtype != NULL)
1554 return subtype;
1555 }
1556 }
1557
1558 /* OK, it's not in this class. Recursively check the baseclasses. */
1559 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1560 {
1561 struct type *t;
1562
1563 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1564 if (t != NULL)
1565 {
1566 return t;
1567 }
1568 }
1569
1570 if (noerr)
1571 {
1572 return NULL;
1573 }
1574
1575 typename = type_to_string (type);
1576 make_cleanup (xfree, typename);
1577 error (_("Type %s has no component named %s."), typename, name);
1578 }
1579
1580 /* Store in *MAX the largest number representable by unsigned integer type
1581 TYPE. */
1582
1583 void
1584 get_unsigned_type_max (struct type *type, ULONGEST *max)
1585 {
1586 unsigned int n;
1587
1588 CHECK_TYPEDEF (type);
1589 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1590 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1591
1592 /* Written this way to avoid overflow. */
1593 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1594 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1595 }
1596
1597 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1598 signed integer type TYPE. */
1599
1600 void
1601 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1602 {
1603 unsigned int n;
1604
1605 CHECK_TYPEDEF (type);
1606 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1607 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1608
1609 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1610 *min = -((ULONGEST) 1 << (n - 1));
1611 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1612 }
1613
1614 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1615 cplus_stuff.vptr_fieldno.
1616
1617 cplus_stuff is initialized to cplus_struct_default which does not
1618 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1619 designated initializers). We cope with that here. */
1620
1621 int
1622 internal_type_vptr_fieldno (struct type *type)
1623 {
1624 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1625 || TYPE_CODE (type) == TYPE_CODE_UNION);
1626 if (!HAVE_CPLUS_STRUCT (type))
1627 return -1;
1628 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1629 }
1630
1631 /* Set the value of cplus_stuff.vptr_fieldno. */
1632
1633 void
1634 set_type_vptr_fieldno (struct type *type, int fieldno)
1635 {
1636 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1637 || TYPE_CODE (type) == TYPE_CODE_UNION);
1638 if (!HAVE_CPLUS_STRUCT (type))
1639 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1640 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1641 }
1642
1643 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1644 cplus_stuff.vptr_basetype. */
1645
1646 struct type *
1647 internal_type_vptr_basetype (struct type *type)
1648 {
1649 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1650 || TYPE_CODE (type) == TYPE_CODE_UNION);
1651 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1652 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1653 }
1654
1655 /* Set the value of cplus_stuff.vptr_basetype. */
1656
1657 void
1658 set_type_vptr_basetype (struct type *type, struct type *basetype)
1659 {
1660 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1661 || TYPE_CODE (type) == TYPE_CODE_UNION);
1662 if (!HAVE_CPLUS_STRUCT (type))
1663 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1664 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1665 }
1666
1667 /* Lookup the vptr basetype/fieldno values for TYPE.
1668 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1669 vptr_fieldno. Also, if found and basetype is from the same objfile,
1670 cache the results.
1671 If not found, return -1 and ignore BASETYPEP.
1672 Callers should be aware that in some cases (for example,
1673 the type or one of its baseclasses is a stub type and we are
1674 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1675 this function will not be able to find the
1676 virtual function table pointer, and vptr_fieldno will remain -1 and
1677 vptr_basetype will remain NULL or incomplete. */
1678
1679 int
1680 get_vptr_fieldno (struct type *type, struct type **basetypep)
1681 {
1682 CHECK_TYPEDEF (type);
1683
1684 if (TYPE_VPTR_FIELDNO (type) < 0)
1685 {
1686 int i;
1687
1688 /* We must start at zero in case the first (and only) baseclass
1689 is virtual (and hence we cannot share the table pointer). */
1690 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1691 {
1692 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1693 int fieldno;
1694 struct type *basetype;
1695
1696 fieldno = get_vptr_fieldno (baseclass, &basetype);
1697 if (fieldno >= 0)
1698 {
1699 /* If the type comes from a different objfile we can't cache
1700 it, it may have a different lifetime. PR 2384 */
1701 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1702 {
1703 set_type_vptr_fieldno (type, fieldno);
1704 set_type_vptr_basetype (type, basetype);
1705 }
1706 if (basetypep)
1707 *basetypep = basetype;
1708 return fieldno;
1709 }
1710 }
1711
1712 /* Not found. */
1713 return -1;
1714 }
1715 else
1716 {
1717 if (basetypep)
1718 *basetypep = TYPE_VPTR_BASETYPE (type);
1719 return TYPE_VPTR_FIELDNO (type);
1720 }
1721 }
1722
1723 static void
1724 stub_noname_complaint (void)
1725 {
1726 complaint (&symfile_complaints, _("stub type has NULL name"));
1727 }
1728
1729 /* Worker for is_dynamic_type. */
1730
1731 static int
1732 is_dynamic_type_internal (struct type *type, int top_level)
1733 {
1734 type = check_typedef (type);
1735
1736 /* We only want to recognize references at the outermost level. */
1737 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1738 type = check_typedef (TYPE_TARGET_TYPE (type));
1739
1740 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1741 dynamic, even if the type itself is statically defined.
1742 From a user's point of view, this may appear counter-intuitive;
1743 but it makes sense in this context, because the point is to determine
1744 whether any part of the type needs to be resolved before it can
1745 be exploited. */
1746 if (TYPE_DATA_LOCATION (type) != NULL
1747 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1748 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1749 return 1;
1750
1751 switch (TYPE_CODE (type))
1752 {
1753 case TYPE_CODE_RANGE:
1754 {
1755 /* A range type is obviously dynamic if it has at least one
1756 dynamic bound. But also consider the range type to be
1757 dynamic when its subtype is dynamic, even if the bounds
1758 of the range type are static. It allows us to assume that
1759 the subtype of a static range type is also static. */
1760 return (!has_static_range (TYPE_RANGE_DATA (type))
1761 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1762 }
1763
1764 case TYPE_CODE_ARRAY:
1765 {
1766 gdb_assert (TYPE_NFIELDS (type) == 1);
1767
1768 /* The array is dynamic if either the bounds are dynamic,
1769 or the elements it contains have a dynamic contents. */
1770 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1771 return 1;
1772 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1773 }
1774
1775 case TYPE_CODE_STRUCT:
1776 case TYPE_CODE_UNION:
1777 {
1778 int i;
1779
1780 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1781 if (!field_is_static (&TYPE_FIELD (type, i))
1782 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1783 return 1;
1784 }
1785 break;
1786 }
1787
1788 return 0;
1789 }
1790
1791 /* See gdbtypes.h. */
1792
1793 int
1794 is_dynamic_type (struct type *type)
1795 {
1796 return is_dynamic_type_internal (type, 1);
1797 }
1798
1799 static struct type *resolve_dynamic_type_internal
1800 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1801
1802 /* Given a dynamic range type (dyn_range_type) and a stack of
1803 struct property_addr_info elements, return a static version
1804 of that type. */
1805
1806 static struct type *
1807 resolve_dynamic_range (struct type *dyn_range_type,
1808 struct property_addr_info *addr_stack)
1809 {
1810 CORE_ADDR value;
1811 struct type *static_range_type, *static_target_type;
1812 const struct dynamic_prop *prop;
1813 const struct dwarf2_locexpr_baton *baton;
1814 struct dynamic_prop low_bound, high_bound;
1815
1816 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1817
1818 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1819 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1820 {
1821 low_bound.kind = PROP_CONST;
1822 low_bound.data.const_val = value;
1823 }
1824 else
1825 {
1826 low_bound.kind = PROP_UNDEFINED;
1827 low_bound.data.const_val = 0;
1828 }
1829
1830 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1831 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1832 {
1833 high_bound.kind = PROP_CONST;
1834 high_bound.data.const_val = value;
1835
1836 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1837 high_bound.data.const_val
1838 = low_bound.data.const_val + high_bound.data.const_val - 1;
1839 }
1840 else
1841 {
1842 high_bound.kind = PROP_UNDEFINED;
1843 high_bound.data.const_val = 0;
1844 }
1845
1846 static_target_type
1847 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1848 addr_stack, 0);
1849 static_range_type = create_range_type (copy_type (dyn_range_type),
1850 static_target_type,
1851 &low_bound, &high_bound);
1852 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1853 return static_range_type;
1854 }
1855
1856 /* Resolves dynamic bound values of an array type TYPE to static ones.
1857 ADDR_STACK is a stack of struct property_addr_info to be used
1858 if needed during the dynamic resolution. */
1859
1860 static struct type *
1861 resolve_dynamic_array (struct type *type,
1862 struct property_addr_info *addr_stack)
1863 {
1864 CORE_ADDR value;
1865 struct type *elt_type;
1866 struct type *range_type;
1867 struct type *ary_dim;
1868
1869 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1870
1871 elt_type = type;
1872 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1873 range_type = resolve_dynamic_range (range_type, addr_stack);
1874
1875 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1876
1877 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1878 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1879 else
1880 elt_type = TYPE_TARGET_TYPE (type);
1881
1882 return create_array_type (copy_type (type),
1883 elt_type,
1884 range_type);
1885 }
1886
1887 /* Resolve dynamic bounds of members of the union TYPE to static
1888 bounds. ADDR_STACK is a stack of struct property_addr_info
1889 to be used if needed during the dynamic resolution. */
1890
1891 static struct type *
1892 resolve_dynamic_union (struct type *type,
1893 struct property_addr_info *addr_stack)
1894 {
1895 struct type *resolved_type;
1896 int i;
1897 unsigned int max_len = 0;
1898
1899 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1900
1901 resolved_type = copy_type (type);
1902 TYPE_FIELDS (resolved_type)
1903 = TYPE_ALLOC (resolved_type,
1904 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1905 memcpy (TYPE_FIELDS (resolved_type),
1906 TYPE_FIELDS (type),
1907 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1908 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1909 {
1910 struct type *t;
1911
1912 if (field_is_static (&TYPE_FIELD (type, i)))
1913 continue;
1914
1915 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1916 addr_stack, 0);
1917 TYPE_FIELD_TYPE (resolved_type, i) = t;
1918 if (TYPE_LENGTH (t) > max_len)
1919 max_len = TYPE_LENGTH (t);
1920 }
1921
1922 TYPE_LENGTH (resolved_type) = max_len;
1923 return resolved_type;
1924 }
1925
1926 /* Resolve dynamic bounds of members of the struct TYPE to static
1927 bounds. ADDR_STACK is a stack of struct property_addr_info to
1928 be used if needed during the dynamic resolution. */
1929
1930 static struct type *
1931 resolve_dynamic_struct (struct type *type,
1932 struct property_addr_info *addr_stack)
1933 {
1934 struct type *resolved_type;
1935 int i;
1936 unsigned resolved_type_bit_length = 0;
1937
1938 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1939 gdb_assert (TYPE_NFIELDS (type) > 0);
1940
1941 resolved_type = copy_type (type);
1942 TYPE_FIELDS (resolved_type)
1943 = TYPE_ALLOC (resolved_type,
1944 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1945 memcpy (TYPE_FIELDS (resolved_type),
1946 TYPE_FIELDS (type),
1947 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1948 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1949 {
1950 unsigned new_bit_length;
1951 struct property_addr_info pinfo;
1952
1953 if (field_is_static (&TYPE_FIELD (type, i)))
1954 continue;
1955
1956 /* As we know this field is not a static field, the field's
1957 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1958 this is the case, but only trigger a simple error rather
1959 than an internal error if that fails. While failing
1960 that verification indicates a bug in our code, the error
1961 is not severe enough to suggest to the user he stops
1962 his debugging session because of it. */
1963 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1964 error (_("Cannot determine struct field location"
1965 " (invalid location kind)"));
1966
1967 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1968 pinfo.addr = addr_stack->addr;
1969 pinfo.next = addr_stack;
1970
1971 TYPE_FIELD_TYPE (resolved_type, i)
1972 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1973 &pinfo, 0);
1974 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1975 == FIELD_LOC_KIND_BITPOS);
1976
1977 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1978 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1979 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1980 else
1981 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1982 * TARGET_CHAR_BIT);
1983
1984 /* Normally, we would use the position and size of the last field
1985 to determine the size of the enclosing structure. But GCC seems
1986 to be encoding the position of some fields incorrectly when
1987 the struct contains a dynamic field that is not placed last.
1988 So we compute the struct size based on the field that has
1989 the highest position + size - probably the best we can do. */
1990 if (new_bit_length > resolved_type_bit_length)
1991 resolved_type_bit_length = new_bit_length;
1992 }
1993
1994 TYPE_LENGTH (resolved_type)
1995 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1996
1997 return resolved_type;
1998 }
1999
2000 /* Worker for resolved_dynamic_type. */
2001
2002 static struct type *
2003 resolve_dynamic_type_internal (struct type *type,
2004 struct property_addr_info *addr_stack,
2005 int top_level)
2006 {
2007 struct type *real_type = check_typedef (type);
2008 struct type *resolved_type = type;
2009 const struct dynamic_prop *prop;
2010 CORE_ADDR value;
2011
2012 if (!is_dynamic_type_internal (real_type, top_level))
2013 return type;
2014
2015 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2016 {
2017 resolved_type = copy_type (type);
2018 TYPE_TARGET_TYPE (resolved_type)
2019 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2020 top_level);
2021 }
2022 else
2023 {
2024 /* Before trying to resolve TYPE, make sure it is not a stub. */
2025 type = real_type;
2026
2027 switch (TYPE_CODE (type))
2028 {
2029 case TYPE_CODE_REF:
2030 {
2031 struct property_addr_info pinfo;
2032
2033 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2034 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2035 pinfo.next = addr_stack;
2036
2037 resolved_type = copy_type (type);
2038 TYPE_TARGET_TYPE (resolved_type)
2039 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2040 &pinfo, top_level);
2041 break;
2042 }
2043
2044 case TYPE_CODE_ARRAY:
2045 resolved_type = resolve_dynamic_array (type, addr_stack);
2046 break;
2047
2048 case TYPE_CODE_RANGE:
2049 resolved_type = resolve_dynamic_range (type, addr_stack);
2050 break;
2051
2052 case TYPE_CODE_UNION:
2053 resolved_type = resolve_dynamic_union (type, addr_stack);
2054 break;
2055
2056 case TYPE_CODE_STRUCT:
2057 resolved_type = resolve_dynamic_struct (type, addr_stack);
2058 break;
2059 }
2060 }
2061
2062 /* Resolve data_location attribute. */
2063 prop = TYPE_DATA_LOCATION (resolved_type);
2064 if (dwarf2_evaluate_property (prop, addr_stack, &value))
2065 {
2066 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2067 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2068 }
2069 else
2070 TYPE_DATA_LOCATION (resolved_type) = NULL;
2071
2072 return resolved_type;
2073 }
2074
2075 /* See gdbtypes.h */
2076
2077 struct type *
2078 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2079 {
2080 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2081
2082 return resolve_dynamic_type_internal (type, &pinfo, 1);
2083 }
2084
2085 /* Find the real type of TYPE. This function returns the real type,
2086 after removing all layers of typedefs, and completing opaque or stub
2087 types. Completion changes the TYPE argument, but stripping of
2088 typedefs does not.
2089
2090 Instance flags (e.g. const/volatile) are preserved as typedefs are
2091 stripped. If necessary a new qualified form of the underlying type
2092 is created.
2093
2094 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2095 not been computed and we're either in the middle of reading symbols, or
2096 there was no name for the typedef in the debug info.
2097
2098 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2099 QUITs in the symbol reading code can also throw.
2100 Thus this function can throw an exception.
2101
2102 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2103 the target type.
2104
2105 If this is a stubbed struct (i.e. declared as struct foo *), see if
2106 we can find a full definition in some other file. If so, copy this
2107 definition, so we can use it in future. There used to be a comment
2108 (but not any code) that if we don't find a full definition, we'd
2109 set a flag so we don't spend time in the future checking the same
2110 type. That would be a mistake, though--we might load in more
2111 symbols which contain a full definition for the type. */
2112
2113 struct type *
2114 check_typedef (struct type *type)
2115 {
2116 struct type *orig_type = type;
2117 /* While we're removing typedefs, we don't want to lose qualifiers.
2118 E.g., const/volatile. */
2119 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2120
2121 gdb_assert (type);
2122
2123 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 {
2125 if (!TYPE_TARGET_TYPE (type))
2126 {
2127 const char *name;
2128 struct symbol *sym;
2129
2130 /* It is dangerous to call lookup_symbol if we are currently
2131 reading a symtab. Infinite recursion is one danger. */
2132 if (currently_reading_symtab)
2133 return make_qualified_type (type, instance_flags, NULL);
2134
2135 name = type_name_no_tag (type);
2136 /* FIXME: shouldn't we separately check the TYPE_NAME and
2137 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2138 VAR_DOMAIN as appropriate? (this code was written before
2139 TYPE_NAME and TYPE_TAG_NAME were separate). */
2140 if (name == NULL)
2141 {
2142 stub_noname_complaint ();
2143 return make_qualified_type (type, instance_flags, NULL);
2144 }
2145 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2146 if (sym)
2147 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2148 else /* TYPE_CODE_UNDEF */
2149 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2150 }
2151 type = TYPE_TARGET_TYPE (type);
2152
2153 /* Preserve the instance flags as we traverse down the typedef chain.
2154
2155 Handling address spaces/classes is nasty, what do we do if there's a
2156 conflict?
2157 E.g., what if an outer typedef marks the type as class_1 and an inner
2158 typedef marks the type as class_2?
2159 This is the wrong place to do such error checking. We leave it to
2160 the code that created the typedef in the first place to flag the
2161 error. We just pick the outer address space (akin to letting the
2162 outer cast in a chain of casting win), instead of assuming
2163 "it can't happen". */
2164 {
2165 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2166 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2167 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2168 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2169
2170 /* Treat code vs data spaces and address classes separately. */
2171 if ((instance_flags & ALL_SPACES) != 0)
2172 new_instance_flags &= ~ALL_SPACES;
2173 if ((instance_flags & ALL_CLASSES) != 0)
2174 new_instance_flags &= ~ALL_CLASSES;
2175
2176 instance_flags |= new_instance_flags;
2177 }
2178 }
2179
2180 /* If this is a struct/class/union with no fields, then check
2181 whether a full definition exists somewhere else. This is for
2182 systems where a type definition with no fields is issued for such
2183 types, instead of identifying them as stub types in the first
2184 place. */
2185
2186 if (TYPE_IS_OPAQUE (type)
2187 && opaque_type_resolution
2188 && !currently_reading_symtab)
2189 {
2190 const char *name = type_name_no_tag (type);
2191 struct type *newtype;
2192
2193 if (name == NULL)
2194 {
2195 stub_noname_complaint ();
2196 return make_qualified_type (type, instance_flags, NULL);
2197 }
2198 newtype = lookup_transparent_type (name);
2199
2200 if (newtype)
2201 {
2202 /* If the resolved type and the stub are in the same
2203 objfile, then replace the stub type with the real deal.
2204 But if they're in separate objfiles, leave the stub
2205 alone; we'll just look up the transparent type every time
2206 we call check_typedef. We can't create pointers between
2207 types allocated to different objfiles, since they may
2208 have different lifetimes. Trying to copy NEWTYPE over to
2209 TYPE's objfile is pointless, too, since you'll have to
2210 move over any other types NEWTYPE refers to, which could
2211 be an unbounded amount of stuff. */
2212 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2213 type = make_qualified_type (newtype,
2214 TYPE_INSTANCE_FLAGS (type),
2215 type);
2216 else
2217 type = newtype;
2218 }
2219 }
2220 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2221 types. */
2222 else if (TYPE_STUB (type) && !currently_reading_symtab)
2223 {
2224 const char *name = type_name_no_tag (type);
2225 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2226 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2227 as appropriate? (this code was written before TYPE_NAME and
2228 TYPE_TAG_NAME were separate). */
2229 struct symbol *sym;
2230
2231 if (name == NULL)
2232 {
2233 stub_noname_complaint ();
2234 return make_qualified_type (type, instance_flags, NULL);
2235 }
2236 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2237 if (sym)
2238 {
2239 /* Same as above for opaque types, we can replace the stub
2240 with the complete type only if they are in the same
2241 objfile. */
2242 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2243 type = make_qualified_type (SYMBOL_TYPE (sym),
2244 TYPE_INSTANCE_FLAGS (type),
2245 type);
2246 else
2247 type = SYMBOL_TYPE (sym);
2248 }
2249 }
2250
2251 if (TYPE_TARGET_STUB (type))
2252 {
2253 struct type *range_type;
2254 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2255
2256 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2257 {
2258 /* Nothing we can do. */
2259 }
2260 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2261 {
2262 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2263 TYPE_TARGET_STUB (type) = 0;
2264 }
2265 }
2266
2267 type = make_qualified_type (type, instance_flags, NULL);
2268
2269 /* Cache TYPE_LENGTH for future use. */
2270 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2271
2272 return type;
2273 }
2274
2275 /* Parse a type expression in the string [P..P+LENGTH). If an error
2276 occurs, silently return a void type. */
2277
2278 static struct type *
2279 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2280 {
2281 struct ui_file *saved_gdb_stderr;
2282 struct type *type = NULL; /* Initialize to keep gcc happy. */
2283 volatile struct gdb_exception except;
2284
2285 /* Suppress error messages. */
2286 saved_gdb_stderr = gdb_stderr;
2287 gdb_stderr = ui_file_new ();
2288
2289 /* Call parse_and_eval_type() without fear of longjmp()s. */
2290 TRY_CATCH (except, RETURN_MASK_ERROR)
2291 {
2292 type = parse_and_eval_type (p, length);
2293 }
2294
2295 if (except.reason < 0)
2296 type = builtin_type (gdbarch)->builtin_void;
2297
2298 /* Stop suppressing error messages. */
2299 ui_file_delete (gdb_stderr);
2300 gdb_stderr = saved_gdb_stderr;
2301
2302 return type;
2303 }
2304
2305 /* Ugly hack to convert method stubs into method types.
2306
2307 He ain't kiddin'. This demangles the name of the method into a
2308 string including argument types, parses out each argument type,
2309 generates a string casting a zero to that type, evaluates the
2310 string, and stuffs the resulting type into an argtype vector!!!
2311 Then it knows the type of the whole function (including argument
2312 types for overloading), which info used to be in the stab's but was
2313 removed to hack back the space required for them. */
2314
2315 static void
2316 check_stub_method (struct type *type, int method_id, int signature_id)
2317 {
2318 struct gdbarch *gdbarch = get_type_arch (type);
2319 struct fn_field *f;
2320 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2321 char *demangled_name = gdb_demangle (mangled_name,
2322 DMGL_PARAMS | DMGL_ANSI);
2323 char *argtypetext, *p;
2324 int depth = 0, argcount = 1;
2325 struct field *argtypes;
2326 struct type *mtype;
2327
2328 /* Make sure we got back a function string that we can use. */
2329 if (demangled_name)
2330 p = strchr (demangled_name, '(');
2331 else
2332 p = NULL;
2333
2334 if (demangled_name == NULL || p == NULL)
2335 error (_("Internal: Cannot demangle mangled name `%s'."),
2336 mangled_name);
2337
2338 /* Now, read in the parameters that define this type. */
2339 p += 1;
2340 argtypetext = p;
2341 while (*p)
2342 {
2343 if (*p == '(' || *p == '<')
2344 {
2345 depth += 1;
2346 }
2347 else if (*p == ')' || *p == '>')
2348 {
2349 depth -= 1;
2350 }
2351 else if (*p == ',' && depth == 0)
2352 {
2353 argcount += 1;
2354 }
2355
2356 p += 1;
2357 }
2358
2359 /* If we read one argument and it was ``void'', don't count it. */
2360 if (strncmp (argtypetext, "(void)", 6) == 0)
2361 argcount -= 1;
2362
2363 /* We need one extra slot, for the THIS pointer. */
2364
2365 argtypes = (struct field *)
2366 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2367 p = argtypetext;
2368
2369 /* Add THIS pointer for non-static methods. */
2370 f = TYPE_FN_FIELDLIST1 (type, method_id);
2371 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2372 argcount = 0;
2373 else
2374 {
2375 argtypes[0].type = lookup_pointer_type (type);
2376 argcount = 1;
2377 }
2378
2379 if (*p != ')') /* () means no args, skip while. */
2380 {
2381 depth = 0;
2382 while (*p)
2383 {
2384 if (depth <= 0 && (*p == ',' || *p == ')'))
2385 {
2386 /* Avoid parsing of ellipsis, they will be handled below.
2387 Also avoid ``void'' as above. */
2388 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2389 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2390 {
2391 argtypes[argcount].type =
2392 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2393 argcount += 1;
2394 }
2395 argtypetext = p + 1;
2396 }
2397
2398 if (*p == '(' || *p == '<')
2399 {
2400 depth += 1;
2401 }
2402 else if (*p == ')' || *p == '>')
2403 {
2404 depth -= 1;
2405 }
2406
2407 p += 1;
2408 }
2409 }
2410
2411 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2412
2413 /* Now update the old "stub" type into a real type. */
2414 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2415 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2416 We want a method (TYPE_CODE_METHOD). */
2417 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2418 argtypes, argcount, p[-2] == '.');
2419 TYPE_STUB (mtype) = 0;
2420 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2421
2422 xfree (demangled_name);
2423 }
2424
2425 /* This is the external interface to check_stub_method, above. This
2426 function unstubs all of the signatures for TYPE's METHOD_ID method
2427 name. After calling this function TYPE_FN_FIELD_STUB will be
2428 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2429 correct.
2430
2431 This function unfortunately can not die until stabs do. */
2432
2433 void
2434 check_stub_method_group (struct type *type, int method_id)
2435 {
2436 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2437 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2438 int j, found_stub = 0;
2439
2440 for (j = 0; j < len; j++)
2441 if (TYPE_FN_FIELD_STUB (f, j))
2442 {
2443 found_stub = 1;
2444 check_stub_method (type, method_id, j);
2445 }
2446
2447 /* GNU v3 methods with incorrect names were corrected when we read
2448 in type information, because it was cheaper to do it then. The
2449 only GNU v2 methods with incorrect method names are operators and
2450 destructors; destructors were also corrected when we read in type
2451 information.
2452
2453 Therefore the only thing we need to handle here are v2 operator
2454 names. */
2455 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2456 {
2457 int ret;
2458 char dem_opname[256];
2459
2460 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2461 method_id),
2462 dem_opname, DMGL_ANSI);
2463 if (!ret)
2464 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2465 method_id),
2466 dem_opname, 0);
2467 if (ret)
2468 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2469 }
2470 }
2471
2472 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2473 const struct cplus_struct_type cplus_struct_default = { };
2474
2475 void
2476 allocate_cplus_struct_type (struct type *type)
2477 {
2478 if (HAVE_CPLUS_STRUCT (type))
2479 /* Structure was already allocated. Nothing more to do. */
2480 return;
2481
2482 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2483 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2484 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2485 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2486 set_type_vptr_fieldno (type, -1);
2487 }
2488
2489 const struct gnat_aux_type gnat_aux_default =
2490 { NULL };
2491
2492 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2493 and allocate the associated gnat-specific data. The gnat-specific
2494 data is also initialized to gnat_aux_default. */
2495
2496 void
2497 allocate_gnat_aux_type (struct type *type)
2498 {
2499 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2500 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2501 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2502 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2503 }
2504
2505 /* Helper function to initialize the standard scalar types.
2506
2507 If NAME is non-NULL, then it is used to initialize the type name.
2508 Note that NAME is not copied; it is required to have a lifetime at
2509 least as long as OBJFILE. */
2510
2511 struct type *
2512 init_type (enum type_code code, int length, int flags,
2513 const char *name, struct objfile *objfile)
2514 {
2515 struct type *type;
2516
2517 type = alloc_type (objfile);
2518 TYPE_CODE (type) = code;
2519 TYPE_LENGTH (type) = length;
2520
2521 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2522 if (flags & TYPE_FLAG_UNSIGNED)
2523 TYPE_UNSIGNED (type) = 1;
2524 if (flags & TYPE_FLAG_NOSIGN)
2525 TYPE_NOSIGN (type) = 1;
2526 if (flags & TYPE_FLAG_STUB)
2527 TYPE_STUB (type) = 1;
2528 if (flags & TYPE_FLAG_TARGET_STUB)
2529 TYPE_TARGET_STUB (type) = 1;
2530 if (flags & TYPE_FLAG_STATIC)
2531 TYPE_STATIC (type) = 1;
2532 if (flags & TYPE_FLAG_PROTOTYPED)
2533 TYPE_PROTOTYPED (type) = 1;
2534 if (flags & TYPE_FLAG_INCOMPLETE)
2535 TYPE_INCOMPLETE (type) = 1;
2536 if (flags & TYPE_FLAG_VARARGS)
2537 TYPE_VARARGS (type) = 1;
2538 if (flags & TYPE_FLAG_VECTOR)
2539 TYPE_VECTOR (type) = 1;
2540 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2541 TYPE_STUB_SUPPORTED (type) = 1;
2542 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2543 TYPE_FIXED_INSTANCE (type) = 1;
2544 if (flags & TYPE_FLAG_GNU_IFUNC)
2545 TYPE_GNU_IFUNC (type) = 1;
2546
2547 TYPE_NAME (type) = name;
2548
2549 /* C++ fancies. */
2550
2551 if (name && strcmp (name, "char") == 0)
2552 TYPE_NOSIGN (type) = 1;
2553
2554 switch (code)
2555 {
2556 case TYPE_CODE_STRUCT:
2557 case TYPE_CODE_UNION:
2558 case TYPE_CODE_NAMESPACE:
2559 INIT_CPLUS_SPECIFIC (type);
2560 break;
2561 case TYPE_CODE_FLT:
2562 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2563 break;
2564 case TYPE_CODE_FUNC:
2565 INIT_FUNC_SPECIFIC (type);
2566 break;
2567 }
2568 return type;
2569 }
2570 \f
2571 /* Queries on types. */
2572
2573 int
2574 can_dereference (struct type *t)
2575 {
2576 /* FIXME: Should we return true for references as well as
2577 pointers? */
2578 CHECK_TYPEDEF (t);
2579 return
2580 (t != NULL
2581 && TYPE_CODE (t) == TYPE_CODE_PTR
2582 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2583 }
2584
2585 int
2586 is_integral_type (struct type *t)
2587 {
2588 CHECK_TYPEDEF (t);
2589 return
2590 ((t != NULL)
2591 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2592 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2593 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2594 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2595 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2596 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2597 }
2598
2599 /* Return true if TYPE is scalar. */
2600
2601 static int
2602 is_scalar_type (struct type *type)
2603 {
2604 CHECK_TYPEDEF (type);
2605
2606 switch (TYPE_CODE (type))
2607 {
2608 case TYPE_CODE_ARRAY:
2609 case TYPE_CODE_STRUCT:
2610 case TYPE_CODE_UNION:
2611 case TYPE_CODE_SET:
2612 case TYPE_CODE_STRING:
2613 return 0;
2614 default:
2615 return 1;
2616 }
2617 }
2618
2619 /* Return true if T is scalar, or a composite type which in practice has
2620 the memory layout of a scalar type. E.g., an array or struct with only
2621 one scalar element inside it, or a union with only scalar elements. */
2622
2623 int
2624 is_scalar_type_recursive (struct type *t)
2625 {
2626 CHECK_TYPEDEF (t);
2627
2628 if (is_scalar_type (t))
2629 return 1;
2630 /* Are we dealing with an array or string of known dimensions? */
2631 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2632 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2633 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2634 {
2635 LONGEST low_bound, high_bound;
2636 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2637
2638 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2639
2640 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2641 }
2642 /* Are we dealing with a struct with one element? */
2643 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2644 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2645 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2646 {
2647 int i, n = TYPE_NFIELDS (t);
2648
2649 /* If all elements of the union are scalar, then the union is scalar. */
2650 for (i = 0; i < n; i++)
2651 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2652 return 0;
2653
2654 return 1;
2655 }
2656
2657 return 0;
2658 }
2659
2660 /* Return true is T is a class or a union. False otherwise. */
2661
2662 int
2663 class_or_union_p (const struct type *t)
2664 {
2665 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2666 || TYPE_CODE (t) == TYPE_CODE_UNION);
2667 }
2668
2669 /* A helper function which returns true if types A and B represent the
2670 "same" class type. This is true if the types have the same main
2671 type, or the same name. */
2672
2673 int
2674 class_types_same_p (const struct type *a, const struct type *b)
2675 {
2676 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2677 || (TYPE_NAME (a) && TYPE_NAME (b)
2678 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2679 }
2680
2681 /* If BASE is an ancestor of DCLASS return the distance between them.
2682 otherwise return -1;
2683 eg:
2684
2685 class A {};
2686 class B: public A {};
2687 class C: public B {};
2688 class D: C {};
2689
2690 distance_to_ancestor (A, A, 0) = 0
2691 distance_to_ancestor (A, B, 0) = 1
2692 distance_to_ancestor (A, C, 0) = 2
2693 distance_to_ancestor (A, D, 0) = 3
2694
2695 If PUBLIC is 1 then only public ancestors are considered,
2696 and the function returns the distance only if BASE is a public ancestor
2697 of DCLASS.
2698 Eg:
2699
2700 distance_to_ancestor (A, D, 1) = -1. */
2701
2702 static int
2703 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2704 {
2705 int i;
2706 int d;
2707
2708 CHECK_TYPEDEF (base);
2709 CHECK_TYPEDEF (dclass);
2710
2711 if (class_types_same_p (base, dclass))
2712 return 0;
2713
2714 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2715 {
2716 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2717 continue;
2718
2719 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2720 if (d >= 0)
2721 return 1 + d;
2722 }
2723
2724 return -1;
2725 }
2726
2727 /* Check whether BASE is an ancestor or base class or DCLASS
2728 Return 1 if so, and 0 if not.
2729 Note: If BASE and DCLASS are of the same type, this function
2730 will return 1. So for some class A, is_ancestor (A, A) will
2731 return 1. */
2732
2733 int
2734 is_ancestor (struct type *base, struct type *dclass)
2735 {
2736 return distance_to_ancestor (base, dclass, 0) >= 0;
2737 }
2738
2739 /* Like is_ancestor, but only returns true when BASE is a public
2740 ancestor of DCLASS. */
2741
2742 int
2743 is_public_ancestor (struct type *base, struct type *dclass)
2744 {
2745 return distance_to_ancestor (base, dclass, 1) >= 0;
2746 }
2747
2748 /* A helper function for is_unique_ancestor. */
2749
2750 static int
2751 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2752 int *offset,
2753 const gdb_byte *valaddr, int embedded_offset,
2754 CORE_ADDR address, struct value *val)
2755 {
2756 int i, count = 0;
2757
2758 CHECK_TYPEDEF (base);
2759 CHECK_TYPEDEF (dclass);
2760
2761 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2762 {
2763 struct type *iter;
2764 int this_offset;
2765
2766 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2767
2768 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2769 address, val);
2770
2771 if (class_types_same_p (base, iter))
2772 {
2773 /* If this is the first subclass, set *OFFSET and set count
2774 to 1. Otherwise, if this is at the same offset as
2775 previous instances, do nothing. Otherwise, increment
2776 count. */
2777 if (*offset == -1)
2778 {
2779 *offset = this_offset;
2780 count = 1;
2781 }
2782 else if (this_offset == *offset)
2783 {
2784 /* Nothing. */
2785 }
2786 else
2787 ++count;
2788 }
2789 else
2790 count += is_unique_ancestor_worker (base, iter, offset,
2791 valaddr,
2792 embedded_offset + this_offset,
2793 address, val);
2794 }
2795
2796 return count;
2797 }
2798
2799 /* Like is_ancestor, but only returns true if BASE is a unique base
2800 class of the type of VAL. */
2801
2802 int
2803 is_unique_ancestor (struct type *base, struct value *val)
2804 {
2805 int offset = -1;
2806
2807 return is_unique_ancestor_worker (base, value_type (val), &offset,
2808 value_contents_for_printing (val),
2809 value_embedded_offset (val),
2810 value_address (val), val) == 1;
2811 }
2812
2813 \f
2814 /* Overload resolution. */
2815
2816 /* Return the sum of the rank of A with the rank of B. */
2817
2818 struct rank
2819 sum_ranks (struct rank a, struct rank b)
2820 {
2821 struct rank c;
2822 c.rank = a.rank + b.rank;
2823 c.subrank = a.subrank + b.subrank;
2824 return c;
2825 }
2826
2827 /* Compare rank A and B and return:
2828 0 if a = b
2829 1 if a is better than b
2830 -1 if b is better than a. */
2831
2832 int
2833 compare_ranks (struct rank a, struct rank b)
2834 {
2835 if (a.rank == b.rank)
2836 {
2837 if (a.subrank == b.subrank)
2838 return 0;
2839 if (a.subrank < b.subrank)
2840 return 1;
2841 if (a.subrank > b.subrank)
2842 return -1;
2843 }
2844
2845 if (a.rank < b.rank)
2846 return 1;
2847
2848 /* a.rank > b.rank */
2849 return -1;
2850 }
2851
2852 /* Functions for overload resolution begin here. */
2853
2854 /* Compare two badness vectors A and B and return the result.
2855 0 => A and B are identical
2856 1 => A and B are incomparable
2857 2 => A is better than B
2858 3 => A is worse than B */
2859
2860 int
2861 compare_badness (struct badness_vector *a, struct badness_vector *b)
2862 {
2863 int i;
2864 int tmp;
2865 short found_pos = 0; /* any positives in c? */
2866 short found_neg = 0; /* any negatives in c? */
2867
2868 /* differing lengths => incomparable */
2869 if (a->length != b->length)
2870 return 1;
2871
2872 /* Subtract b from a */
2873 for (i = 0; i < a->length; i++)
2874 {
2875 tmp = compare_ranks (b->rank[i], a->rank[i]);
2876 if (tmp > 0)
2877 found_pos = 1;
2878 else if (tmp < 0)
2879 found_neg = 1;
2880 }
2881
2882 if (found_pos)
2883 {
2884 if (found_neg)
2885 return 1; /* incomparable */
2886 else
2887 return 3; /* A > B */
2888 }
2889 else
2890 /* no positives */
2891 {
2892 if (found_neg)
2893 return 2; /* A < B */
2894 else
2895 return 0; /* A == B */
2896 }
2897 }
2898
2899 /* Rank a function by comparing its parameter types (PARMS, length
2900 NPARMS), to the types of an argument list (ARGS, length NARGS).
2901 Return a pointer to a badness vector. This has NARGS + 1
2902 entries. */
2903
2904 struct badness_vector *
2905 rank_function (struct type **parms, int nparms,
2906 struct value **args, int nargs)
2907 {
2908 int i;
2909 struct badness_vector *bv;
2910 int min_len = nparms < nargs ? nparms : nargs;
2911
2912 bv = xmalloc (sizeof (struct badness_vector));
2913 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2914 bv->rank = XNEWVEC (struct rank, nargs + 1);
2915
2916 /* First compare the lengths of the supplied lists.
2917 If there is a mismatch, set it to a high value. */
2918
2919 /* pai/1997-06-03 FIXME: when we have debug info about default
2920 arguments and ellipsis parameter lists, we should consider those
2921 and rank the length-match more finely. */
2922
2923 LENGTH_MATCH (bv) = (nargs != nparms)
2924 ? LENGTH_MISMATCH_BADNESS
2925 : EXACT_MATCH_BADNESS;
2926
2927 /* Now rank all the parameters of the candidate function. */
2928 for (i = 1; i <= min_len; i++)
2929 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2930 args[i - 1]);
2931
2932 /* If more arguments than parameters, add dummy entries. */
2933 for (i = min_len + 1; i <= nargs; i++)
2934 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2935
2936 return bv;
2937 }
2938
2939 /* Compare the names of two integer types, assuming that any sign
2940 qualifiers have been checked already. We do it this way because
2941 there may be an "int" in the name of one of the types. */
2942
2943 static int
2944 integer_types_same_name_p (const char *first, const char *second)
2945 {
2946 int first_p, second_p;
2947
2948 /* If both are shorts, return 1; if neither is a short, keep
2949 checking. */
2950 first_p = (strstr (first, "short") != NULL);
2951 second_p = (strstr (second, "short") != NULL);
2952 if (first_p && second_p)
2953 return 1;
2954 if (first_p || second_p)
2955 return 0;
2956
2957 /* Likewise for long. */
2958 first_p = (strstr (first, "long") != NULL);
2959 second_p = (strstr (second, "long") != NULL);
2960 if (first_p && second_p)
2961 return 1;
2962 if (first_p || second_p)
2963 return 0;
2964
2965 /* Likewise for char. */
2966 first_p = (strstr (first, "char") != NULL);
2967 second_p = (strstr (second, "char") != NULL);
2968 if (first_p && second_p)
2969 return 1;
2970 if (first_p || second_p)
2971 return 0;
2972
2973 /* They must both be ints. */
2974 return 1;
2975 }
2976
2977 /* Compares type A to type B returns 1 if the represent the same type
2978 0 otherwise. */
2979
2980 int
2981 types_equal (struct type *a, struct type *b)
2982 {
2983 /* Identical type pointers. */
2984 /* However, this still doesn't catch all cases of same type for b
2985 and a. The reason is that builtin types are different from
2986 the same ones constructed from the object. */
2987 if (a == b)
2988 return 1;
2989
2990 /* Resolve typedefs */
2991 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2992 a = check_typedef (a);
2993 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2994 b = check_typedef (b);
2995
2996 /* If after resolving typedefs a and b are not of the same type
2997 code then they are not equal. */
2998 if (TYPE_CODE (a) != TYPE_CODE (b))
2999 return 0;
3000
3001 /* If a and b are both pointers types or both reference types then
3002 they are equal of the same type iff the objects they refer to are
3003 of the same type. */
3004 if (TYPE_CODE (a) == TYPE_CODE_PTR
3005 || TYPE_CODE (a) == TYPE_CODE_REF)
3006 return types_equal (TYPE_TARGET_TYPE (a),
3007 TYPE_TARGET_TYPE (b));
3008
3009 /* Well, damnit, if the names are exactly the same, I'll say they
3010 are exactly the same. This happens when we generate method
3011 stubs. The types won't point to the same address, but they
3012 really are the same. */
3013
3014 if (TYPE_NAME (a) && TYPE_NAME (b)
3015 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3016 return 1;
3017
3018 /* Check if identical after resolving typedefs. */
3019 if (a == b)
3020 return 1;
3021
3022 /* Two function types are equal if their argument and return types
3023 are equal. */
3024 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3025 {
3026 int i;
3027
3028 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3029 return 0;
3030
3031 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3032 return 0;
3033
3034 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3035 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3036 return 0;
3037
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043 \f
3044 /* Deep comparison of types. */
3045
3046 /* An entry in the type-equality bcache. */
3047
3048 typedef struct type_equality_entry
3049 {
3050 struct type *type1, *type2;
3051 } type_equality_entry_d;
3052
3053 DEF_VEC_O (type_equality_entry_d);
3054
3055 /* A helper function to compare two strings. Returns 1 if they are
3056 the same, 0 otherwise. Handles NULLs properly. */
3057
3058 static int
3059 compare_maybe_null_strings (const char *s, const char *t)
3060 {
3061 if (s == NULL && t != NULL)
3062 return 0;
3063 else if (s != NULL && t == NULL)
3064 return 0;
3065 else if (s == NULL && t== NULL)
3066 return 1;
3067 return strcmp (s, t) == 0;
3068 }
3069
3070 /* A helper function for check_types_worklist that checks two types for
3071 "deep" equality. Returns non-zero if the types are considered the
3072 same, zero otherwise. */
3073
3074 static int
3075 check_types_equal (struct type *type1, struct type *type2,
3076 VEC (type_equality_entry_d) **worklist)
3077 {
3078 CHECK_TYPEDEF (type1);
3079 CHECK_TYPEDEF (type2);
3080
3081 if (type1 == type2)
3082 return 1;
3083
3084 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3085 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3086 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3087 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3088 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3089 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3090 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3091 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3092 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3093 return 0;
3094
3095 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3096 TYPE_TAG_NAME (type2)))
3097 return 0;
3098 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3099 return 0;
3100
3101 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3102 {
3103 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3104 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3105 return 0;
3106 }
3107 else
3108 {
3109 int i;
3110
3111 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3112 {
3113 const struct field *field1 = &TYPE_FIELD (type1, i);
3114 const struct field *field2 = &TYPE_FIELD (type2, i);
3115 struct type_equality_entry entry;
3116
3117 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3118 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3119 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3120 return 0;
3121 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3122 FIELD_NAME (*field2)))
3123 return 0;
3124 switch (FIELD_LOC_KIND (*field1))
3125 {
3126 case FIELD_LOC_KIND_BITPOS:
3127 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3128 return 0;
3129 break;
3130 case FIELD_LOC_KIND_ENUMVAL:
3131 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3132 return 0;
3133 break;
3134 case FIELD_LOC_KIND_PHYSADDR:
3135 if (FIELD_STATIC_PHYSADDR (*field1)
3136 != FIELD_STATIC_PHYSADDR (*field2))
3137 return 0;
3138 break;
3139 case FIELD_LOC_KIND_PHYSNAME:
3140 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3141 FIELD_STATIC_PHYSNAME (*field2)))
3142 return 0;
3143 break;
3144 case FIELD_LOC_KIND_DWARF_BLOCK:
3145 {
3146 struct dwarf2_locexpr_baton *block1, *block2;
3147
3148 block1 = FIELD_DWARF_BLOCK (*field1);
3149 block2 = FIELD_DWARF_BLOCK (*field2);
3150 if (block1->per_cu != block2->per_cu
3151 || block1->size != block2->size
3152 || memcmp (block1->data, block2->data, block1->size) != 0)
3153 return 0;
3154 }
3155 break;
3156 default:
3157 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3158 "%d by check_types_equal"),
3159 FIELD_LOC_KIND (*field1));
3160 }
3161
3162 entry.type1 = FIELD_TYPE (*field1);
3163 entry.type2 = FIELD_TYPE (*field2);
3164 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3165 }
3166 }
3167
3168 if (TYPE_TARGET_TYPE (type1) != NULL)
3169 {
3170 struct type_equality_entry entry;
3171
3172 if (TYPE_TARGET_TYPE (type2) == NULL)
3173 return 0;
3174
3175 entry.type1 = TYPE_TARGET_TYPE (type1);
3176 entry.type2 = TYPE_TARGET_TYPE (type2);
3177 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3178 }
3179 else if (TYPE_TARGET_TYPE (type2) != NULL)
3180 return 0;
3181
3182 return 1;
3183 }
3184
3185 /* Check types on a worklist for equality. Returns zero if any pair
3186 is not equal, non-zero if they are all considered equal. */
3187
3188 static int
3189 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3190 struct bcache *cache)
3191 {
3192 while (!VEC_empty (type_equality_entry_d, *worklist))
3193 {
3194 struct type_equality_entry entry;
3195 int added;
3196
3197 entry = *VEC_last (type_equality_entry_d, *worklist);
3198 VEC_pop (type_equality_entry_d, *worklist);
3199
3200 /* If the type pair has already been visited, we know it is
3201 ok. */
3202 bcache_full (&entry, sizeof (entry), cache, &added);
3203 if (!added)
3204 continue;
3205
3206 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3207 return 0;
3208 }
3209
3210 return 1;
3211 }
3212
3213 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3214 "deep comparison". Otherwise return zero. */
3215
3216 int
3217 types_deeply_equal (struct type *type1, struct type *type2)
3218 {
3219 volatile struct gdb_exception except;
3220 int result = 0;
3221 struct bcache *cache;
3222 VEC (type_equality_entry_d) *worklist = NULL;
3223 struct type_equality_entry entry;
3224
3225 gdb_assert (type1 != NULL && type2 != NULL);
3226
3227 /* Early exit for the simple case. */
3228 if (type1 == type2)
3229 return 1;
3230
3231 cache = bcache_xmalloc (NULL, NULL);
3232
3233 entry.type1 = type1;
3234 entry.type2 = type2;
3235 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3236
3237 TRY_CATCH (except, RETURN_MASK_ALL)
3238 {
3239 result = check_types_worklist (&worklist, cache);
3240 }
3241 /* check_types_worklist calls several nested helper functions,
3242 some of which can raise a GDB Exception, so we just check
3243 and rethrow here. If there is a GDB exception, a comparison
3244 is not capable (or trusted), so exit. */
3245 bcache_xfree (cache);
3246 VEC_free (type_equality_entry_d, worklist);
3247 /* Rethrow if there was a problem. */
3248 if (except.reason < 0)
3249 throw_exception (except);
3250
3251 return result;
3252 }
3253 \f
3254 /* Compare one type (PARM) for compatibility with another (ARG).
3255 * PARM is intended to be the parameter type of a function; and
3256 * ARG is the supplied argument's type. This function tests if
3257 * the latter can be converted to the former.
3258 * VALUE is the argument's value or NULL if none (or called recursively)
3259 *
3260 * Return 0 if they are identical types;
3261 * Otherwise, return an integer which corresponds to how compatible
3262 * PARM is to ARG. The higher the return value, the worse the match.
3263 * Generally the "bad" conversions are all uniformly assigned a 100. */
3264
3265 struct rank
3266 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3267 {
3268 struct rank rank = {0,0};
3269
3270 if (types_equal (parm, arg))
3271 return EXACT_MATCH_BADNESS;
3272
3273 /* Resolve typedefs */
3274 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3275 parm = check_typedef (parm);
3276 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3277 arg = check_typedef (arg);
3278
3279 /* See through references, since we can almost make non-references
3280 references. */
3281 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3282 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3283 REFERENCE_CONVERSION_BADNESS));
3284 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3285 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3286 REFERENCE_CONVERSION_BADNESS));
3287 if (overload_debug)
3288 /* Debugging only. */
3289 fprintf_filtered (gdb_stderr,
3290 "------ Arg is %s [%d], parm is %s [%d]\n",
3291 TYPE_NAME (arg), TYPE_CODE (arg),
3292 TYPE_NAME (parm), TYPE_CODE (parm));
3293
3294 /* x -> y means arg of type x being supplied for parameter of type y. */
3295
3296 switch (TYPE_CODE (parm))
3297 {
3298 case TYPE_CODE_PTR:
3299 switch (TYPE_CODE (arg))
3300 {
3301 case TYPE_CODE_PTR:
3302
3303 /* Allowed pointer conversions are:
3304 (a) pointer to void-pointer conversion. */
3305 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3306 return VOID_PTR_CONVERSION_BADNESS;
3307
3308 /* (b) pointer to ancestor-pointer conversion. */
3309 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3310 TYPE_TARGET_TYPE (arg),
3311 0);
3312 if (rank.subrank >= 0)
3313 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3314
3315 return INCOMPATIBLE_TYPE_BADNESS;
3316 case TYPE_CODE_ARRAY:
3317 if (types_equal (TYPE_TARGET_TYPE (parm),
3318 TYPE_TARGET_TYPE (arg)))
3319 return EXACT_MATCH_BADNESS;
3320 return INCOMPATIBLE_TYPE_BADNESS;
3321 case TYPE_CODE_FUNC:
3322 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3323 case TYPE_CODE_INT:
3324 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3325 {
3326 if (value_as_long (value) == 0)
3327 {
3328 /* Null pointer conversion: allow it to be cast to a pointer.
3329 [4.10.1 of C++ standard draft n3290] */
3330 return NULL_POINTER_CONVERSION_BADNESS;
3331 }
3332 else
3333 {
3334 /* If type checking is disabled, allow the conversion. */
3335 if (!strict_type_checking)
3336 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3337 }
3338 }
3339 /* fall through */
3340 case TYPE_CODE_ENUM:
3341 case TYPE_CODE_FLAGS:
3342 case TYPE_CODE_CHAR:
3343 case TYPE_CODE_RANGE:
3344 case TYPE_CODE_BOOL:
3345 default:
3346 return INCOMPATIBLE_TYPE_BADNESS;
3347 }
3348 case TYPE_CODE_ARRAY:
3349 switch (TYPE_CODE (arg))
3350 {
3351 case TYPE_CODE_PTR:
3352 case TYPE_CODE_ARRAY:
3353 return rank_one_type (TYPE_TARGET_TYPE (parm),
3354 TYPE_TARGET_TYPE (arg), NULL);
3355 default:
3356 return INCOMPATIBLE_TYPE_BADNESS;
3357 }
3358 case TYPE_CODE_FUNC:
3359 switch (TYPE_CODE (arg))
3360 {
3361 case TYPE_CODE_PTR: /* funcptr -> func */
3362 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3363 default:
3364 return INCOMPATIBLE_TYPE_BADNESS;
3365 }
3366 case TYPE_CODE_INT:
3367 switch (TYPE_CODE (arg))
3368 {
3369 case TYPE_CODE_INT:
3370 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3371 {
3372 /* Deal with signed, unsigned, and plain chars and
3373 signed and unsigned ints. */
3374 if (TYPE_NOSIGN (parm))
3375 {
3376 /* This case only for character types. */
3377 if (TYPE_NOSIGN (arg))
3378 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3379 else /* signed/unsigned char -> plain char */
3380 return INTEGER_CONVERSION_BADNESS;
3381 }
3382 else if (TYPE_UNSIGNED (parm))
3383 {
3384 if (TYPE_UNSIGNED (arg))
3385 {
3386 /* unsigned int -> unsigned int, or
3387 unsigned long -> unsigned long */
3388 if (integer_types_same_name_p (TYPE_NAME (parm),
3389 TYPE_NAME (arg)))
3390 return EXACT_MATCH_BADNESS;
3391 else if (integer_types_same_name_p (TYPE_NAME (arg),
3392 "int")
3393 && integer_types_same_name_p (TYPE_NAME (parm),
3394 "long"))
3395 /* unsigned int -> unsigned long */
3396 return INTEGER_PROMOTION_BADNESS;
3397 else
3398 /* unsigned long -> unsigned int */
3399 return INTEGER_CONVERSION_BADNESS;
3400 }
3401 else
3402 {
3403 if (integer_types_same_name_p (TYPE_NAME (arg),
3404 "long")
3405 && integer_types_same_name_p (TYPE_NAME (parm),
3406 "int"))
3407 /* signed long -> unsigned int */
3408 return INTEGER_CONVERSION_BADNESS;
3409 else
3410 /* signed int/long -> unsigned int/long */
3411 return INTEGER_CONVERSION_BADNESS;
3412 }
3413 }
3414 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3415 {
3416 if (integer_types_same_name_p (TYPE_NAME (parm),
3417 TYPE_NAME (arg)))
3418 return EXACT_MATCH_BADNESS;
3419 else if (integer_types_same_name_p (TYPE_NAME (arg),
3420 "int")
3421 && integer_types_same_name_p (TYPE_NAME (parm),
3422 "long"))
3423 return INTEGER_PROMOTION_BADNESS;
3424 else
3425 return INTEGER_CONVERSION_BADNESS;
3426 }
3427 else
3428 return INTEGER_CONVERSION_BADNESS;
3429 }
3430 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3431 return INTEGER_PROMOTION_BADNESS;
3432 else
3433 return INTEGER_CONVERSION_BADNESS;
3434 case TYPE_CODE_ENUM:
3435 case TYPE_CODE_FLAGS:
3436 case TYPE_CODE_CHAR:
3437 case TYPE_CODE_RANGE:
3438 case TYPE_CODE_BOOL:
3439 if (TYPE_DECLARED_CLASS (arg))
3440 return INCOMPATIBLE_TYPE_BADNESS;
3441 return INTEGER_PROMOTION_BADNESS;
3442 case TYPE_CODE_FLT:
3443 return INT_FLOAT_CONVERSION_BADNESS;
3444 case TYPE_CODE_PTR:
3445 return NS_POINTER_CONVERSION_BADNESS;
3446 default:
3447 return INCOMPATIBLE_TYPE_BADNESS;
3448 }
3449 break;
3450 case TYPE_CODE_ENUM:
3451 switch (TYPE_CODE (arg))
3452 {
3453 case TYPE_CODE_INT:
3454 case TYPE_CODE_CHAR:
3455 case TYPE_CODE_RANGE:
3456 case TYPE_CODE_BOOL:
3457 case TYPE_CODE_ENUM:
3458 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3459 return INCOMPATIBLE_TYPE_BADNESS;
3460 return INTEGER_CONVERSION_BADNESS;
3461 case TYPE_CODE_FLT:
3462 return INT_FLOAT_CONVERSION_BADNESS;
3463 default:
3464 return INCOMPATIBLE_TYPE_BADNESS;
3465 }
3466 break;
3467 case TYPE_CODE_CHAR:
3468 switch (TYPE_CODE (arg))
3469 {
3470 case TYPE_CODE_RANGE:
3471 case TYPE_CODE_BOOL:
3472 case TYPE_CODE_ENUM:
3473 if (TYPE_DECLARED_CLASS (arg))
3474 return INCOMPATIBLE_TYPE_BADNESS;
3475 return INTEGER_CONVERSION_BADNESS;
3476 case TYPE_CODE_FLT:
3477 return INT_FLOAT_CONVERSION_BADNESS;
3478 case TYPE_CODE_INT:
3479 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3480 return INTEGER_CONVERSION_BADNESS;
3481 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3482 return INTEGER_PROMOTION_BADNESS;
3483 /* >>> !! else fall through !! <<< */
3484 case TYPE_CODE_CHAR:
3485 /* Deal with signed, unsigned, and plain chars for C++ and
3486 with int cases falling through from previous case. */
3487 if (TYPE_NOSIGN (parm))
3488 {
3489 if (TYPE_NOSIGN (arg))
3490 return EXACT_MATCH_BADNESS;
3491 else
3492 return INTEGER_CONVERSION_BADNESS;
3493 }
3494 else if (TYPE_UNSIGNED (parm))
3495 {
3496 if (TYPE_UNSIGNED (arg))
3497 return EXACT_MATCH_BADNESS;
3498 else
3499 return INTEGER_PROMOTION_BADNESS;
3500 }
3501 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3502 return EXACT_MATCH_BADNESS;
3503 else
3504 return INTEGER_CONVERSION_BADNESS;
3505 default:
3506 return INCOMPATIBLE_TYPE_BADNESS;
3507 }
3508 break;
3509 case TYPE_CODE_RANGE:
3510 switch (TYPE_CODE (arg))
3511 {
3512 case TYPE_CODE_INT:
3513 case TYPE_CODE_CHAR:
3514 case TYPE_CODE_RANGE:
3515 case TYPE_CODE_BOOL:
3516 case TYPE_CODE_ENUM:
3517 return INTEGER_CONVERSION_BADNESS;
3518 case TYPE_CODE_FLT:
3519 return INT_FLOAT_CONVERSION_BADNESS;
3520 default:
3521 return INCOMPATIBLE_TYPE_BADNESS;
3522 }
3523 break;
3524 case TYPE_CODE_BOOL:
3525 switch (TYPE_CODE (arg))
3526 {
3527 /* n3290 draft, section 4.12.1 (conv.bool):
3528
3529 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3530 pointer to member type can be converted to a prvalue of type
3531 bool. A zero value, null pointer value, or null member pointer
3532 value is converted to false; any other value is converted to
3533 true. A prvalue of type std::nullptr_t can be converted to a
3534 prvalue of type bool; the resulting value is false." */
3535 case TYPE_CODE_INT:
3536 case TYPE_CODE_CHAR:
3537 case TYPE_CODE_ENUM:
3538 case TYPE_CODE_FLT:
3539 case TYPE_CODE_MEMBERPTR:
3540 case TYPE_CODE_PTR:
3541 return BOOL_CONVERSION_BADNESS;
3542 case TYPE_CODE_RANGE:
3543 return INCOMPATIBLE_TYPE_BADNESS;
3544 case TYPE_CODE_BOOL:
3545 return EXACT_MATCH_BADNESS;
3546 default:
3547 return INCOMPATIBLE_TYPE_BADNESS;
3548 }
3549 break;
3550 case TYPE_CODE_FLT:
3551 switch (TYPE_CODE (arg))
3552 {
3553 case TYPE_CODE_FLT:
3554 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3555 return FLOAT_PROMOTION_BADNESS;
3556 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3557 return EXACT_MATCH_BADNESS;
3558 else
3559 return FLOAT_CONVERSION_BADNESS;
3560 case TYPE_CODE_INT:
3561 case TYPE_CODE_BOOL:
3562 case TYPE_CODE_ENUM:
3563 case TYPE_CODE_RANGE:
3564 case TYPE_CODE_CHAR:
3565 return INT_FLOAT_CONVERSION_BADNESS;
3566 default:
3567 return INCOMPATIBLE_TYPE_BADNESS;
3568 }
3569 break;
3570 case TYPE_CODE_COMPLEX:
3571 switch (TYPE_CODE (arg))
3572 { /* Strictly not needed for C++, but... */
3573 case TYPE_CODE_FLT:
3574 return FLOAT_PROMOTION_BADNESS;
3575 case TYPE_CODE_COMPLEX:
3576 return EXACT_MATCH_BADNESS;
3577 default:
3578 return INCOMPATIBLE_TYPE_BADNESS;
3579 }
3580 break;
3581 case TYPE_CODE_STRUCT:
3582 switch (TYPE_CODE (arg))
3583 {
3584 case TYPE_CODE_STRUCT:
3585 /* Check for derivation */
3586 rank.subrank = distance_to_ancestor (parm, arg, 0);
3587 if (rank.subrank >= 0)
3588 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3589 /* else fall through */
3590 default:
3591 return INCOMPATIBLE_TYPE_BADNESS;
3592 }
3593 break;
3594 case TYPE_CODE_UNION:
3595 switch (TYPE_CODE (arg))
3596 {
3597 case TYPE_CODE_UNION:
3598 default:
3599 return INCOMPATIBLE_TYPE_BADNESS;
3600 }
3601 break;
3602 case TYPE_CODE_MEMBERPTR:
3603 switch (TYPE_CODE (arg))
3604 {
3605 default:
3606 return INCOMPATIBLE_TYPE_BADNESS;
3607 }
3608 break;
3609 case TYPE_CODE_METHOD:
3610 switch (TYPE_CODE (arg))
3611 {
3612
3613 default:
3614 return INCOMPATIBLE_TYPE_BADNESS;
3615 }
3616 break;
3617 case TYPE_CODE_REF:
3618 switch (TYPE_CODE (arg))
3619 {
3620
3621 default:
3622 return INCOMPATIBLE_TYPE_BADNESS;
3623 }
3624
3625 break;
3626 case TYPE_CODE_SET:
3627 switch (TYPE_CODE (arg))
3628 {
3629 /* Not in C++ */
3630 case TYPE_CODE_SET:
3631 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3632 TYPE_FIELD_TYPE (arg, 0), NULL);
3633 default:
3634 return INCOMPATIBLE_TYPE_BADNESS;
3635 }
3636 break;
3637 case TYPE_CODE_VOID:
3638 default:
3639 return INCOMPATIBLE_TYPE_BADNESS;
3640 } /* switch (TYPE_CODE (arg)) */
3641 }
3642
3643 /* End of functions for overload resolution. */
3644 \f
3645 /* Routines to pretty-print types. */
3646
3647 static void
3648 print_bit_vector (B_TYPE *bits, int nbits)
3649 {
3650 int bitno;
3651
3652 for (bitno = 0; bitno < nbits; bitno++)
3653 {
3654 if ((bitno % 8) == 0)
3655 {
3656 puts_filtered (" ");
3657 }
3658 if (B_TST (bits, bitno))
3659 printf_filtered (("1"));
3660 else
3661 printf_filtered (("0"));
3662 }
3663 }
3664
3665 /* Note the first arg should be the "this" pointer, we may not want to
3666 include it since we may get into a infinitely recursive
3667 situation. */
3668
3669 static void
3670 print_args (struct field *args, int nargs, int spaces)
3671 {
3672 if (args != NULL)
3673 {
3674 int i;
3675
3676 for (i = 0; i < nargs; i++)
3677 {
3678 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3679 args[i].name != NULL ? args[i].name : "<NULL>");
3680 recursive_dump_type (args[i].type, spaces + 2);
3681 }
3682 }
3683 }
3684
3685 int
3686 field_is_static (struct field *f)
3687 {
3688 /* "static" fields are the fields whose location is not relative
3689 to the address of the enclosing struct. It would be nice to
3690 have a dedicated flag that would be set for static fields when
3691 the type is being created. But in practice, checking the field
3692 loc_kind should give us an accurate answer. */
3693 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3694 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3695 }
3696
3697 static void
3698 dump_fn_fieldlists (struct type *type, int spaces)
3699 {
3700 int method_idx;
3701 int overload_idx;
3702 struct fn_field *f;
3703
3704 printfi_filtered (spaces, "fn_fieldlists ");
3705 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3706 printf_filtered ("\n");
3707 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3708 {
3709 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3710 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3711 method_idx,
3712 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3713 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3714 gdb_stdout);
3715 printf_filtered (_(") length %d\n"),
3716 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3717 for (overload_idx = 0;
3718 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3719 overload_idx++)
3720 {
3721 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3722 overload_idx,
3723 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3724 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3725 gdb_stdout);
3726 printf_filtered (")\n");
3727 printfi_filtered (spaces + 8, "type ");
3728 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3729 gdb_stdout);
3730 printf_filtered ("\n");
3731
3732 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3733 spaces + 8 + 2);
3734
3735 printfi_filtered (spaces + 8, "args ");
3736 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3737 gdb_stdout);
3738 printf_filtered ("\n");
3739 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3740 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3741 spaces + 8 + 2);
3742 printfi_filtered (spaces + 8, "fcontext ");
3743 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3744 gdb_stdout);
3745 printf_filtered ("\n");
3746
3747 printfi_filtered (spaces + 8, "is_const %d\n",
3748 TYPE_FN_FIELD_CONST (f, overload_idx));
3749 printfi_filtered (spaces + 8, "is_volatile %d\n",
3750 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3751 printfi_filtered (spaces + 8, "is_private %d\n",
3752 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3753 printfi_filtered (spaces + 8, "is_protected %d\n",
3754 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3755 printfi_filtered (spaces + 8, "is_stub %d\n",
3756 TYPE_FN_FIELD_STUB (f, overload_idx));
3757 printfi_filtered (spaces + 8, "voffset %u\n",
3758 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3759 }
3760 }
3761 }
3762
3763 static void
3764 print_cplus_stuff (struct type *type, int spaces)
3765 {
3766 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3767 printfi_filtered (spaces, "vptr_basetype ");
3768 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3769 puts_filtered ("\n");
3770 if (TYPE_VPTR_BASETYPE (type) != NULL)
3771 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3772
3773 printfi_filtered (spaces, "n_baseclasses %d\n",
3774 TYPE_N_BASECLASSES (type));
3775 printfi_filtered (spaces, "nfn_fields %d\n",
3776 TYPE_NFN_FIELDS (type));
3777 if (TYPE_N_BASECLASSES (type) > 0)
3778 {
3779 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3780 TYPE_N_BASECLASSES (type));
3781 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3782 gdb_stdout);
3783 printf_filtered (")");
3784
3785 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3786 TYPE_N_BASECLASSES (type));
3787 puts_filtered ("\n");
3788 }
3789 if (TYPE_NFIELDS (type) > 0)
3790 {
3791 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3792 {
3793 printfi_filtered (spaces,
3794 "private_field_bits (%d bits at *",
3795 TYPE_NFIELDS (type));
3796 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3797 gdb_stdout);
3798 printf_filtered (")");
3799 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3800 TYPE_NFIELDS (type));
3801 puts_filtered ("\n");
3802 }
3803 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3804 {
3805 printfi_filtered (spaces,
3806 "protected_field_bits (%d bits at *",
3807 TYPE_NFIELDS (type));
3808 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3809 gdb_stdout);
3810 printf_filtered (")");
3811 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3812 TYPE_NFIELDS (type));
3813 puts_filtered ("\n");
3814 }
3815 }
3816 if (TYPE_NFN_FIELDS (type) > 0)
3817 {
3818 dump_fn_fieldlists (type, spaces);
3819 }
3820 }
3821
3822 /* Print the contents of the TYPE's type_specific union, assuming that
3823 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3824
3825 static void
3826 print_gnat_stuff (struct type *type, int spaces)
3827 {
3828 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3829
3830 recursive_dump_type (descriptive_type, spaces + 2);
3831 }
3832
3833 static struct obstack dont_print_type_obstack;
3834
3835 void
3836 recursive_dump_type (struct type *type, int spaces)
3837 {
3838 int idx;
3839
3840 if (spaces == 0)
3841 obstack_begin (&dont_print_type_obstack, 0);
3842
3843 if (TYPE_NFIELDS (type) > 0
3844 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3845 {
3846 struct type **first_dont_print
3847 = (struct type **) obstack_base (&dont_print_type_obstack);
3848
3849 int i = (struct type **)
3850 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3851
3852 while (--i >= 0)
3853 {
3854 if (type == first_dont_print[i])
3855 {
3856 printfi_filtered (spaces, "type node ");
3857 gdb_print_host_address (type, gdb_stdout);
3858 printf_filtered (_(" <same as already seen type>\n"));
3859 return;
3860 }
3861 }
3862
3863 obstack_ptr_grow (&dont_print_type_obstack, type);
3864 }
3865
3866 printfi_filtered (spaces, "type node ");
3867 gdb_print_host_address (type, gdb_stdout);
3868 printf_filtered ("\n");
3869 printfi_filtered (spaces, "name '%s' (",
3870 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3871 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3872 printf_filtered (")\n");
3873 printfi_filtered (spaces, "tagname '%s' (",
3874 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3875 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3876 printf_filtered (")\n");
3877 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3878 switch (TYPE_CODE (type))
3879 {
3880 case TYPE_CODE_UNDEF:
3881 printf_filtered ("(TYPE_CODE_UNDEF)");
3882 break;
3883 case TYPE_CODE_PTR:
3884 printf_filtered ("(TYPE_CODE_PTR)");
3885 break;
3886 case TYPE_CODE_ARRAY:
3887 printf_filtered ("(TYPE_CODE_ARRAY)");
3888 break;
3889 case TYPE_CODE_STRUCT:
3890 printf_filtered ("(TYPE_CODE_STRUCT)");
3891 break;
3892 case TYPE_CODE_UNION:
3893 printf_filtered ("(TYPE_CODE_UNION)");
3894 break;
3895 case TYPE_CODE_ENUM:
3896 printf_filtered ("(TYPE_CODE_ENUM)");
3897 break;
3898 case TYPE_CODE_FLAGS:
3899 printf_filtered ("(TYPE_CODE_FLAGS)");
3900 break;
3901 case TYPE_CODE_FUNC:
3902 printf_filtered ("(TYPE_CODE_FUNC)");
3903 break;
3904 case TYPE_CODE_INT:
3905 printf_filtered ("(TYPE_CODE_INT)");
3906 break;
3907 case TYPE_CODE_FLT:
3908 printf_filtered ("(TYPE_CODE_FLT)");
3909 break;
3910 case TYPE_CODE_VOID:
3911 printf_filtered ("(TYPE_CODE_VOID)");
3912 break;
3913 case TYPE_CODE_SET:
3914 printf_filtered ("(TYPE_CODE_SET)");
3915 break;
3916 case TYPE_CODE_RANGE:
3917 printf_filtered ("(TYPE_CODE_RANGE)");
3918 break;
3919 case TYPE_CODE_STRING:
3920 printf_filtered ("(TYPE_CODE_STRING)");
3921 break;
3922 case TYPE_CODE_ERROR:
3923 printf_filtered ("(TYPE_CODE_ERROR)");
3924 break;
3925 case TYPE_CODE_MEMBERPTR:
3926 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3927 break;
3928 case TYPE_CODE_METHODPTR:
3929 printf_filtered ("(TYPE_CODE_METHODPTR)");
3930 break;
3931 case TYPE_CODE_METHOD:
3932 printf_filtered ("(TYPE_CODE_METHOD)");
3933 break;
3934 case TYPE_CODE_REF:
3935 printf_filtered ("(TYPE_CODE_REF)");
3936 break;
3937 case TYPE_CODE_CHAR:
3938 printf_filtered ("(TYPE_CODE_CHAR)");
3939 break;
3940 case TYPE_CODE_BOOL:
3941 printf_filtered ("(TYPE_CODE_BOOL)");
3942 break;
3943 case TYPE_CODE_COMPLEX:
3944 printf_filtered ("(TYPE_CODE_COMPLEX)");
3945 break;
3946 case TYPE_CODE_TYPEDEF:
3947 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3948 break;
3949 case TYPE_CODE_NAMESPACE:
3950 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3951 break;
3952 default:
3953 printf_filtered ("(UNKNOWN TYPE CODE)");
3954 break;
3955 }
3956 puts_filtered ("\n");
3957 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3958 if (TYPE_OBJFILE_OWNED (type))
3959 {
3960 printfi_filtered (spaces, "objfile ");
3961 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3962 }
3963 else
3964 {
3965 printfi_filtered (spaces, "gdbarch ");
3966 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3967 }
3968 printf_filtered ("\n");
3969 printfi_filtered (spaces, "target_type ");
3970 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3971 printf_filtered ("\n");
3972 if (TYPE_TARGET_TYPE (type) != NULL)
3973 {
3974 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3975 }
3976 printfi_filtered (spaces, "pointer_type ");
3977 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3978 printf_filtered ("\n");
3979 printfi_filtered (spaces, "reference_type ");
3980 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3981 printf_filtered ("\n");
3982 printfi_filtered (spaces, "type_chain ");
3983 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3984 printf_filtered ("\n");
3985 printfi_filtered (spaces, "instance_flags 0x%x",
3986 TYPE_INSTANCE_FLAGS (type));
3987 if (TYPE_CONST (type))
3988 {
3989 puts_filtered (" TYPE_FLAG_CONST");
3990 }
3991 if (TYPE_VOLATILE (type))
3992 {
3993 puts_filtered (" TYPE_FLAG_VOLATILE");
3994 }
3995 if (TYPE_CODE_SPACE (type))
3996 {
3997 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3998 }
3999 if (TYPE_DATA_SPACE (type))
4000 {
4001 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4002 }
4003 if (TYPE_ADDRESS_CLASS_1 (type))
4004 {
4005 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4006 }
4007 if (TYPE_ADDRESS_CLASS_2 (type))
4008 {
4009 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4010 }
4011 if (TYPE_RESTRICT (type))
4012 {
4013 puts_filtered (" TYPE_FLAG_RESTRICT");
4014 }
4015 puts_filtered ("\n");
4016
4017 printfi_filtered (spaces, "flags");
4018 if (TYPE_UNSIGNED (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_UNSIGNED");
4021 }
4022 if (TYPE_NOSIGN (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_NOSIGN");
4025 }
4026 if (TYPE_STUB (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_STUB");
4029 }
4030 if (TYPE_TARGET_STUB (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4033 }
4034 if (TYPE_STATIC (type))
4035 {
4036 puts_filtered (" TYPE_FLAG_STATIC");
4037 }
4038 if (TYPE_PROTOTYPED (type))
4039 {
4040 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4041 }
4042 if (TYPE_INCOMPLETE (type))
4043 {
4044 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4045 }
4046 if (TYPE_VARARGS (type))
4047 {
4048 puts_filtered (" TYPE_FLAG_VARARGS");
4049 }
4050 /* This is used for things like AltiVec registers on ppc. Gcc emits
4051 an attribute for the array type, which tells whether or not we
4052 have a vector, instead of a regular array. */
4053 if (TYPE_VECTOR (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_VECTOR");
4056 }
4057 if (TYPE_FIXED_INSTANCE (type))
4058 {
4059 puts_filtered (" TYPE_FIXED_INSTANCE");
4060 }
4061 if (TYPE_STUB_SUPPORTED (type))
4062 {
4063 puts_filtered (" TYPE_STUB_SUPPORTED");
4064 }
4065 if (TYPE_NOTTEXT (type))
4066 {
4067 puts_filtered (" TYPE_NOTTEXT");
4068 }
4069 puts_filtered ("\n");
4070 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4071 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4072 puts_filtered ("\n");
4073 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4074 {
4075 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4076 printfi_filtered (spaces + 2,
4077 "[%d] enumval %s type ",
4078 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4079 else
4080 printfi_filtered (spaces + 2,
4081 "[%d] bitpos %d bitsize %d type ",
4082 idx, TYPE_FIELD_BITPOS (type, idx),
4083 TYPE_FIELD_BITSIZE (type, idx));
4084 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4085 printf_filtered (" name '%s' (",
4086 TYPE_FIELD_NAME (type, idx) != NULL
4087 ? TYPE_FIELD_NAME (type, idx)
4088 : "<NULL>");
4089 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4090 printf_filtered (")\n");
4091 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4092 {
4093 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4094 }
4095 }
4096 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4097 {
4098 printfi_filtered (spaces, "low %s%s high %s%s\n",
4099 plongest (TYPE_LOW_BOUND (type)),
4100 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4101 plongest (TYPE_HIGH_BOUND (type)),
4102 TYPE_HIGH_BOUND_UNDEFINED (type)
4103 ? " (undefined)" : "");
4104 }
4105
4106 switch (TYPE_SPECIFIC_FIELD (type))
4107 {
4108 case TYPE_SPECIFIC_CPLUS_STUFF:
4109 printfi_filtered (spaces, "cplus_stuff ");
4110 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4111 gdb_stdout);
4112 puts_filtered ("\n");
4113 print_cplus_stuff (type, spaces);
4114 break;
4115
4116 case TYPE_SPECIFIC_GNAT_STUFF:
4117 printfi_filtered (spaces, "gnat_stuff ");
4118 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4119 puts_filtered ("\n");
4120 print_gnat_stuff (type, spaces);
4121 break;
4122
4123 case TYPE_SPECIFIC_FLOATFORMAT:
4124 printfi_filtered (spaces, "floatformat ");
4125 if (TYPE_FLOATFORMAT (type) == NULL)
4126 puts_filtered ("(null)");
4127 else
4128 {
4129 puts_filtered ("{ ");
4130 if (TYPE_FLOATFORMAT (type)[0] == NULL
4131 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4132 puts_filtered ("(null)");
4133 else
4134 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4135
4136 puts_filtered (", ");
4137 if (TYPE_FLOATFORMAT (type)[1] == NULL
4138 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4139 puts_filtered ("(null)");
4140 else
4141 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4142
4143 puts_filtered (" }");
4144 }
4145 puts_filtered ("\n");
4146 break;
4147
4148 case TYPE_SPECIFIC_FUNC:
4149 printfi_filtered (spaces, "calling_convention %d\n",
4150 TYPE_CALLING_CONVENTION (type));
4151 /* tail_call_list is not printed. */
4152 break;
4153
4154 case TYPE_SPECIFIC_SELF_TYPE:
4155 printfi_filtered (spaces, "self_type ");
4156 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4157 puts_filtered ("\n");
4158 break;
4159 }
4160
4161 if (spaces == 0)
4162 obstack_free (&dont_print_type_obstack, NULL);
4163 }
4164 \f
4165 /* Trivial helpers for the libiberty hash table, for mapping one
4166 type to another. */
4167
4168 struct type_pair
4169 {
4170 struct type *old, *new;
4171 };
4172
4173 static hashval_t
4174 type_pair_hash (const void *item)
4175 {
4176 const struct type_pair *pair = item;
4177
4178 return htab_hash_pointer (pair->old);
4179 }
4180
4181 static int
4182 type_pair_eq (const void *item_lhs, const void *item_rhs)
4183 {
4184 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4185
4186 return lhs->old == rhs->old;
4187 }
4188
4189 /* Allocate the hash table used by copy_type_recursive to walk
4190 types without duplicates. We use OBJFILE's obstack, because
4191 OBJFILE is about to be deleted. */
4192
4193 htab_t
4194 create_copied_types_hash (struct objfile *objfile)
4195 {
4196 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4197 NULL, &objfile->objfile_obstack,
4198 hashtab_obstack_allocate,
4199 dummy_obstack_deallocate);
4200 }
4201
4202 /* Recursively copy (deep copy) TYPE, if it is associated with
4203 OBJFILE. Return a new type allocated using malloc, a saved type if
4204 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4205 not associated with OBJFILE. */
4206
4207 struct type *
4208 copy_type_recursive (struct objfile *objfile,
4209 struct type *type,
4210 htab_t copied_types)
4211 {
4212 struct type_pair *stored, pair;
4213 void **slot;
4214 struct type *new_type;
4215
4216 if (! TYPE_OBJFILE_OWNED (type))
4217 return type;
4218
4219 /* This type shouldn't be pointing to any types in other objfiles;
4220 if it did, the type might disappear unexpectedly. */
4221 gdb_assert (TYPE_OBJFILE (type) == objfile);
4222
4223 pair.old = type;
4224 slot = htab_find_slot (copied_types, &pair, INSERT);
4225 if (*slot != NULL)
4226 return ((struct type_pair *) *slot)->new;
4227
4228 new_type = alloc_type_arch (get_type_arch (type));
4229
4230 /* We must add the new type to the hash table immediately, in case
4231 we encounter this type again during a recursive call below. */
4232 stored
4233 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4234 stored->old = type;
4235 stored->new = new_type;
4236 *slot = stored;
4237
4238 /* Copy the common fields of types. For the main type, we simply
4239 copy the entire thing and then update specific fields as needed. */
4240 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4241 TYPE_OBJFILE_OWNED (new_type) = 0;
4242 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4243
4244 if (TYPE_NAME (type))
4245 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4246 if (TYPE_TAG_NAME (type))
4247 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4248
4249 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4250 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4251
4252 /* Copy the fields. */
4253 if (TYPE_NFIELDS (type))
4254 {
4255 int i, nfields;
4256
4257 nfields = TYPE_NFIELDS (type);
4258 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4259 for (i = 0; i < nfields; i++)
4260 {
4261 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4262 TYPE_FIELD_ARTIFICIAL (type, i);
4263 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4264 if (TYPE_FIELD_TYPE (type, i))
4265 TYPE_FIELD_TYPE (new_type, i)
4266 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4267 copied_types);
4268 if (TYPE_FIELD_NAME (type, i))
4269 TYPE_FIELD_NAME (new_type, i) =
4270 xstrdup (TYPE_FIELD_NAME (type, i));
4271 switch (TYPE_FIELD_LOC_KIND (type, i))
4272 {
4273 case FIELD_LOC_KIND_BITPOS:
4274 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4275 TYPE_FIELD_BITPOS (type, i));
4276 break;
4277 case FIELD_LOC_KIND_ENUMVAL:
4278 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4279 TYPE_FIELD_ENUMVAL (type, i));
4280 break;
4281 case FIELD_LOC_KIND_PHYSADDR:
4282 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4283 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4284 break;
4285 case FIELD_LOC_KIND_PHYSNAME:
4286 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4287 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4288 i)));
4289 break;
4290 default:
4291 internal_error (__FILE__, __LINE__,
4292 _("Unexpected type field location kind: %d"),
4293 TYPE_FIELD_LOC_KIND (type, i));
4294 }
4295 }
4296 }
4297
4298 /* For range types, copy the bounds information. */
4299 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4300 {
4301 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4302 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4303 }
4304
4305 /* Copy the data location information. */
4306 if (TYPE_DATA_LOCATION (type) != NULL)
4307 {
4308 TYPE_DATA_LOCATION (new_type)
4309 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4310 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4311 sizeof (struct dynamic_prop));
4312 }
4313
4314 /* Copy pointers to other types. */
4315 if (TYPE_TARGET_TYPE (type))
4316 TYPE_TARGET_TYPE (new_type) =
4317 copy_type_recursive (objfile,
4318 TYPE_TARGET_TYPE (type),
4319 copied_types);
4320
4321 /* Maybe copy the type_specific bits.
4322
4323 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4324 base classes and methods. There's no fundamental reason why we
4325 can't, but at the moment it is not needed. */
4326
4327 switch (TYPE_SPECIFIC_FIELD (type))
4328 {
4329 case TYPE_SPECIFIC_NONE:
4330 break;
4331 case TYPE_SPECIFIC_FUNC:
4332 INIT_FUNC_SPECIFIC (new_type);
4333 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4334 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4335 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4336 break;
4337 case TYPE_SPECIFIC_FLOATFORMAT:
4338 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4339 break;
4340 case TYPE_SPECIFIC_CPLUS_STUFF:
4341 INIT_CPLUS_SPECIFIC (new_type);
4342 break;
4343 case TYPE_SPECIFIC_GNAT_STUFF:
4344 INIT_GNAT_SPECIFIC (new_type);
4345 break;
4346 case TYPE_SPECIFIC_SELF_TYPE:
4347 set_type_self_type (new_type,
4348 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4349 copied_types));
4350 break;
4351 default:
4352 gdb_assert_not_reached ("bad type_specific_kind");
4353 }
4354
4355 return new_type;
4356 }
4357
4358 /* Make a copy of the given TYPE, except that the pointer & reference
4359 types are not preserved.
4360
4361 This function assumes that the given type has an associated objfile.
4362 This objfile is used to allocate the new type. */
4363
4364 struct type *
4365 copy_type (const struct type *type)
4366 {
4367 struct type *new_type;
4368
4369 gdb_assert (TYPE_OBJFILE_OWNED (type));
4370
4371 new_type = alloc_type_copy (type);
4372 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4373 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4374 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4375 sizeof (struct main_type));
4376 if (TYPE_DATA_LOCATION (type) != NULL)
4377 {
4378 TYPE_DATA_LOCATION (new_type)
4379 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4380 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4381 sizeof (struct dynamic_prop));
4382 }
4383
4384 return new_type;
4385 }
4386 \f
4387 /* Helper functions to initialize architecture-specific types. */
4388
4389 /* Allocate a type structure associated with GDBARCH and set its
4390 CODE, LENGTH, and NAME fields. */
4391
4392 struct type *
4393 arch_type (struct gdbarch *gdbarch,
4394 enum type_code code, int length, char *name)
4395 {
4396 struct type *type;
4397
4398 type = alloc_type_arch (gdbarch);
4399 TYPE_CODE (type) = code;
4400 TYPE_LENGTH (type) = length;
4401
4402 if (name)
4403 TYPE_NAME (type) = xstrdup (name);
4404
4405 return type;
4406 }
4407
4408 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4409 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4410 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4411
4412 struct type *
4413 arch_integer_type (struct gdbarch *gdbarch,
4414 int bit, int unsigned_p, char *name)
4415 {
4416 struct type *t;
4417
4418 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4419 if (unsigned_p)
4420 TYPE_UNSIGNED (t) = 1;
4421 if (name && strcmp (name, "char") == 0)
4422 TYPE_NOSIGN (t) = 1;
4423
4424 return t;
4425 }
4426
4427 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4428 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4429 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4430
4431 struct type *
4432 arch_character_type (struct gdbarch *gdbarch,
4433 int bit, int unsigned_p, char *name)
4434 {
4435 struct type *t;
4436
4437 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4438 if (unsigned_p)
4439 TYPE_UNSIGNED (t) = 1;
4440
4441 return t;
4442 }
4443
4444 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4445 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4446 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4447
4448 struct type *
4449 arch_boolean_type (struct gdbarch *gdbarch,
4450 int bit, int unsigned_p, char *name)
4451 {
4452 struct type *t;
4453
4454 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4455 if (unsigned_p)
4456 TYPE_UNSIGNED (t) = 1;
4457
4458 return t;
4459 }
4460
4461 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4462 BIT is the type size in bits; if BIT equals -1, the size is
4463 determined by the floatformat. NAME is the type name. Set the
4464 TYPE_FLOATFORMAT from FLOATFORMATS. */
4465
4466 struct type *
4467 arch_float_type (struct gdbarch *gdbarch,
4468 int bit, char *name, const struct floatformat **floatformats)
4469 {
4470 struct type *t;
4471
4472 if (bit == -1)
4473 {
4474 gdb_assert (floatformats != NULL);
4475 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4476 bit = floatformats[0]->totalsize;
4477 }
4478 gdb_assert (bit >= 0);
4479
4480 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4481 TYPE_FLOATFORMAT (t) = floatformats;
4482 return t;
4483 }
4484
4485 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4486 NAME is the type name. TARGET_TYPE is the component float type. */
4487
4488 struct type *
4489 arch_complex_type (struct gdbarch *gdbarch,
4490 char *name, struct type *target_type)
4491 {
4492 struct type *t;
4493
4494 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4495 2 * TYPE_LENGTH (target_type), name);
4496 TYPE_TARGET_TYPE (t) = target_type;
4497 return t;
4498 }
4499
4500 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4501 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4502
4503 struct type *
4504 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4505 {
4506 int nfields = length * TARGET_CHAR_BIT;
4507 struct type *type;
4508
4509 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4510 TYPE_UNSIGNED (type) = 1;
4511 TYPE_NFIELDS (type) = nfields;
4512 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4513
4514 return type;
4515 }
4516
4517 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4518 position BITPOS is called NAME. */
4519
4520 void
4521 append_flags_type_flag (struct type *type, int bitpos, char *name)
4522 {
4523 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4524 gdb_assert (bitpos < TYPE_NFIELDS (type));
4525 gdb_assert (bitpos >= 0);
4526
4527 if (name)
4528 {
4529 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4530 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4531 }
4532 else
4533 {
4534 /* Don't show this field to the user. */
4535 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4536 }
4537 }
4538
4539 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4540 specified by CODE) associated with GDBARCH. NAME is the type name. */
4541
4542 struct type *
4543 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4544 {
4545 struct type *t;
4546
4547 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4548 t = arch_type (gdbarch, code, 0, NULL);
4549 TYPE_TAG_NAME (t) = name;
4550 INIT_CPLUS_SPECIFIC (t);
4551 return t;
4552 }
4553
4554 /* Add new field with name NAME and type FIELD to composite type T.
4555 Do not set the field's position or adjust the type's length;
4556 the caller should do so. Return the new field. */
4557
4558 struct field *
4559 append_composite_type_field_raw (struct type *t, char *name,
4560 struct type *field)
4561 {
4562 struct field *f;
4563
4564 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4565 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4566 sizeof (struct field) * TYPE_NFIELDS (t));
4567 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4568 memset (f, 0, sizeof f[0]);
4569 FIELD_TYPE (f[0]) = field;
4570 FIELD_NAME (f[0]) = name;
4571 return f;
4572 }
4573
4574 /* Add new field with name NAME and type FIELD to composite type T.
4575 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4576
4577 void
4578 append_composite_type_field_aligned (struct type *t, char *name,
4579 struct type *field, int alignment)
4580 {
4581 struct field *f = append_composite_type_field_raw (t, name, field);
4582
4583 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4584 {
4585 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4586 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4587 }
4588 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4589 {
4590 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4591 if (TYPE_NFIELDS (t) > 1)
4592 {
4593 SET_FIELD_BITPOS (f[0],
4594 (FIELD_BITPOS (f[-1])
4595 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4596 * TARGET_CHAR_BIT)));
4597
4598 if (alignment)
4599 {
4600 int left;
4601
4602 alignment *= TARGET_CHAR_BIT;
4603 left = FIELD_BITPOS (f[0]) % alignment;
4604
4605 if (left)
4606 {
4607 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4608 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4609 }
4610 }
4611 }
4612 }
4613 }
4614
4615 /* Add new field with name NAME and type FIELD to composite type T. */
4616
4617 void
4618 append_composite_type_field (struct type *t, char *name,
4619 struct type *field)
4620 {
4621 append_composite_type_field_aligned (t, name, field, 0);
4622 }
4623
4624 static struct gdbarch_data *gdbtypes_data;
4625
4626 const struct builtin_type *
4627 builtin_type (struct gdbarch *gdbarch)
4628 {
4629 return gdbarch_data (gdbarch, gdbtypes_data);
4630 }
4631
4632 static void *
4633 gdbtypes_post_init (struct gdbarch *gdbarch)
4634 {
4635 struct builtin_type *builtin_type
4636 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4637
4638 /* Basic types. */
4639 builtin_type->builtin_void
4640 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4641 builtin_type->builtin_char
4642 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4643 !gdbarch_char_signed (gdbarch), "char");
4644 builtin_type->builtin_signed_char
4645 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4646 0, "signed char");
4647 builtin_type->builtin_unsigned_char
4648 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4649 1, "unsigned char");
4650 builtin_type->builtin_short
4651 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4652 0, "short");
4653 builtin_type->builtin_unsigned_short
4654 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4655 1, "unsigned short");
4656 builtin_type->builtin_int
4657 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4658 0, "int");
4659 builtin_type->builtin_unsigned_int
4660 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4661 1, "unsigned int");
4662 builtin_type->builtin_long
4663 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4664 0, "long");
4665 builtin_type->builtin_unsigned_long
4666 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4667 1, "unsigned long");
4668 builtin_type->builtin_long_long
4669 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4670 0, "long long");
4671 builtin_type->builtin_unsigned_long_long
4672 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4673 1, "unsigned long long");
4674 builtin_type->builtin_float
4675 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4676 "float", gdbarch_float_format (gdbarch));
4677 builtin_type->builtin_double
4678 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4679 "double", gdbarch_double_format (gdbarch));
4680 builtin_type->builtin_long_double
4681 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4682 "long double", gdbarch_long_double_format (gdbarch));
4683 builtin_type->builtin_complex
4684 = arch_complex_type (gdbarch, "complex",
4685 builtin_type->builtin_float);
4686 builtin_type->builtin_double_complex
4687 = arch_complex_type (gdbarch, "double complex",
4688 builtin_type->builtin_double);
4689 builtin_type->builtin_string
4690 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4691 builtin_type->builtin_bool
4692 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4693
4694 /* The following three are about decimal floating point types, which
4695 are 32-bits, 64-bits and 128-bits respectively. */
4696 builtin_type->builtin_decfloat
4697 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4698 builtin_type->builtin_decdouble
4699 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4700 builtin_type->builtin_declong
4701 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4702
4703 /* "True" character types. */
4704 builtin_type->builtin_true_char
4705 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4706 builtin_type->builtin_true_unsigned_char
4707 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4708
4709 /* Fixed-size integer types. */
4710 builtin_type->builtin_int0
4711 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4712 builtin_type->builtin_int8
4713 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4714 builtin_type->builtin_uint8
4715 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4716 builtin_type->builtin_int16
4717 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4718 builtin_type->builtin_uint16
4719 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4720 builtin_type->builtin_int32
4721 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4722 builtin_type->builtin_uint32
4723 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4724 builtin_type->builtin_int64
4725 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4726 builtin_type->builtin_uint64
4727 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4728 builtin_type->builtin_int128
4729 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4730 builtin_type->builtin_uint128
4731 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4732 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4733 TYPE_INSTANCE_FLAG_NOTTEXT;
4734 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4735 TYPE_INSTANCE_FLAG_NOTTEXT;
4736
4737 /* Wide character types. */
4738 builtin_type->builtin_char16
4739 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4740 builtin_type->builtin_char32
4741 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4742
4743
4744 /* Default data/code pointer types. */
4745 builtin_type->builtin_data_ptr
4746 = lookup_pointer_type (builtin_type->builtin_void);
4747 builtin_type->builtin_func_ptr
4748 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4749 builtin_type->builtin_func_func
4750 = lookup_function_type (builtin_type->builtin_func_ptr);
4751
4752 /* This type represents a GDB internal function. */
4753 builtin_type->internal_fn
4754 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4755 "<internal function>");
4756
4757 /* This type represents an xmethod. */
4758 builtin_type->xmethod
4759 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4760
4761 return builtin_type;
4762 }
4763
4764 /* This set of objfile-based types is intended to be used by symbol
4765 readers as basic types. */
4766
4767 static const struct objfile_data *objfile_type_data;
4768
4769 const struct objfile_type *
4770 objfile_type (struct objfile *objfile)
4771 {
4772 struct gdbarch *gdbarch;
4773 struct objfile_type *objfile_type
4774 = objfile_data (objfile, objfile_type_data);
4775
4776 if (objfile_type)
4777 return objfile_type;
4778
4779 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4780 1, struct objfile_type);
4781
4782 /* Use the objfile architecture to determine basic type properties. */
4783 gdbarch = get_objfile_arch (objfile);
4784
4785 /* Basic types. */
4786 objfile_type->builtin_void
4787 = init_type (TYPE_CODE_VOID, 1,
4788 0,
4789 "void", objfile);
4790
4791 objfile_type->builtin_char
4792 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4793 (TYPE_FLAG_NOSIGN
4794 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4795 "char", objfile);
4796 objfile_type->builtin_signed_char
4797 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4798 0,
4799 "signed char", objfile);
4800 objfile_type->builtin_unsigned_char
4801 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4802 TYPE_FLAG_UNSIGNED,
4803 "unsigned char", objfile);
4804 objfile_type->builtin_short
4805 = init_type (TYPE_CODE_INT,
4806 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4807 0, "short", objfile);
4808 objfile_type->builtin_unsigned_short
4809 = init_type (TYPE_CODE_INT,
4810 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4811 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4812 objfile_type->builtin_int
4813 = init_type (TYPE_CODE_INT,
4814 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4815 0, "int", objfile);
4816 objfile_type->builtin_unsigned_int
4817 = init_type (TYPE_CODE_INT,
4818 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4819 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4820 objfile_type->builtin_long
4821 = init_type (TYPE_CODE_INT,
4822 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4823 0, "long", objfile);
4824 objfile_type->builtin_unsigned_long
4825 = init_type (TYPE_CODE_INT,
4826 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4827 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4828 objfile_type->builtin_long_long
4829 = init_type (TYPE_CODE_INT,
4830 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4831 0, "long long", objfile);
4832 objfile_type->builtin_unsigned_long_long
4833 = init_type (TYPE_CODE_INT,
4834 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4835 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4836
4837 objfile_type->builtin_float
4838 = init_type (TYPE_CODE_FLT,
4839 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4840 0, "float", objfile);
4841 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4842 = gdbarch_float_format (gdbarch);
4843 objfile_type->builtin_double
4844 = init_type (TYPE_CODE_FLT,
4845 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4846 0, "double", objfile);
4847 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4848 = gdbarch_double_format (gdbarch);
4849 objfile_type->builtin_long_double
4850 = init_type (TYPE_CODE_FLT,
4851 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4852 0, "long double", objfile);
4853 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4854 = gdbarch_long_double_format (gdbarch);
4855
4856 /* This type represents a type that was unrecognized in symbol read-in. */
4857 objfile_type->builtin_error
4858 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4859
4860 /* The following set of types is used for symbols with no
4861 debug information. */
4862 objfile_type->nodebug_text_symbol
4863 = init_type (TYPE_CODE_FUNC, 1, 0,
4864 "<text variable, no debug info>", objfile);
4865 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4866 = objfile_type->builtin_int;
4867 objfile_type->nodebug_text_gnu_ifunc_symbol
4868 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4869 "<text gnu-indirect-function variable, no debug info>",
4870 objfile);
4871 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4872 = objfile_type->nodebug_text_symbol;
4873 objfile_type->nodebug_got_plt_symbol
4874 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4875 "<text from jump slot in .got.plt, no debug info>",
4876 objfile);
4877 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4878 = objfile_type->nodebug_text_symbol;
4879 objfile_type->nodebug_data_symbol
4880 = init_type (TYPE_CODE_INT,
4881 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4882 "<data variable, no debug info>", objfile);
4883 objfile_type->nodebug_unknown_symbol
4884 = init_type (TYPE_CODE_INT, 1, 0,
4885 "<variable (not text or data), no debug info>", objfile);
4886 objfile_type->nodebug_tls_symbol
4887 = init_type (TYPE_CODE_INT,
4888 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4889 "<thread local variable, no debug info>", objfile);
4890
4891 /* NOTE: on some targets, addresses and pointers are not necessarily
4892 the same.
4893
4894 The upshot is:
4895 - gdb's `struct type' always describes the target's
4896 representation.
4897 - gdb's `struct value' objects should always hold values in
4898 target form.
4899 - gdb's CORE_ADDR values are addresses in the unified virtual
4900 address space that the assembler and linker work with. Thus,
4901 since target_read_memory takes a CORE_ADDR as an argument, it
4902 can access any memory on the target, even if the processor has
4903 separate code and data address spaces.
4904
4905 In this context, objfile_type->builtin_core_addr is a bit odd:
4906 it's a target type for a value the target will never see. It's
4907 only used to hold the values of (typeless) linker symbols, which
4908 are indeed in the unified virtual address space. */
4909
4910 objfile_type->builtin_core_addr
4911 = init_type (TYPE_CODE_INT,
4912 gdbarch_addr_bit (gdbarch) / 8,
4913 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4914
4915 set_objfile_data (objfile, objfile_type_data, objfile_type);
4916 return objfile_type;
4917 }
4918
4919 extern initialize_file_ftype _initialize_gdbtypes;
4920
4921 void
4922 _initialize_gdbtypes (void)
4923 {
4924 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4925 objfile_type_data = register_objfile_data ();
4926
4927 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4928 _("Set debugging of C++ overloading."),
4929 _("Show debugging of C++ overloading."),
4930 _("When enabled, ranking of the "
4931 "functions is displayed."),
4932 NULL,
4933 show_overload_debug,
4934 &setdebuglist, &showdebuglist);
4935
4936 /* Add user knob for controlling resolution of opaque types. */
4937 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4938 &opaque_type_resolution,
4939 _("Set resolution of opaque struct/class/union"
4940 " types (if set before loading symbols)."),
4941 _("Show resolution of opaque struct/class/union"
4942 " types (if set before loading symbols)."),
4943 NULL, NULL,
4944 show_opaque_type_resolution,
4945 &setlist, &showlist);
4946
4947 /* Add an option to permit non-strict type checking. */
4948 add_setshow_boolean_cmd ("type", class_support,
4949 &strict_type_checking,
4950 _("Set strict type checking."),
4951 _("Show strict type checking."),
4952 NULL, NULL,
4953 show_strict_type_checking,
4954 &setchecklist, &showchecklist);
4955 }
This page took 0.13991 seconds and 4 git commands to generate.