2012-10-26 Pedro Alves <palves@redhat.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40
41 /* Initialize BADNESS constants. */
42
43 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
44
45 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
47
48 const struct rank EXACT_MATCH_BADNESS = {0,0};
49
50 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
58 const struct rank BASE_CONVERSION_BADNESS = {2,0};
59 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
60 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
61 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
62 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
63
64 /* Floatformat pairs. */
65 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_ieee_half_big,
67 &floatformat_ieee_half_little
68 };
69 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_single_big,
71 &floatformat_ieee_single_little
72 };
73 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_double_big,
75 &floatformat_ieee_double_little
76 };
77 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_littlebyte_bigword
80 };
81 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_i387_ext,
83 &floatformat_i387_ext
84 };
85 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_m68881_ext,
87 &floatformat_m68881_ext
88 };
89 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_arm_ext_big,
91 &floatformat_arm_ext_littlebyte_bigword
92 };
93 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_ia64_spill_big,
95 &floatformat_ia64_spill_little
96 };
97 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_quad_big,
99 &floatformat_ia64_quad_little
100 };
101 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_vax_f,
103 &floatformat_vax_f
104 };
105 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_d,
107 &floatformat_vax_d
108 };
109 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_ibm_long_double,
111 &floatformat_ibm_long_double
112 };
113
114 /* Should opaque types be resolved? */
115
116 static int opaque_type_resolution = 1;
117
118 /* A flag to enable printing of debugging information of C++
119 overloading. */
120
121 unsigned int overload_debug = 0;
122
123 /* A flag to enable strict type checking. */
124
125 static int strict_type_checking = 1;
126
127 /* A function to show whether opaque types are resolved. */
128
129 static void
130 show_opaque_type_resolution (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c,
132 const char *value)
133 {
134 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
135 "(if set before loading symbols) is %s.\n"),
136 value);
137 }
138
139 /* A function to show whether C++ overload debugging is enabled. */
140
141 static void
142 show_overload_debug (struct ui_file *file, int from_tty,
143 struct cmd_list_element *c, const char *value)
144 {
145 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
146 value);
147 }
148
149 /* A function to show the status of strict type checking. */
150
151 static void
152 show_strict_type_checking (struct ui_file *file, int from_tty,
153 struct cmd_list_element *c, const char *value)
154 {
155 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
156 }
157
158 \f
159 /* Allocate a new OBJFILE-associated type structure and fill it
160 with some defaults. Space for the type structure is allocated
161 on the objfile's objfile_obstack. */
162
163 struct type *
164 alloc_type (struct objfile *objfile)
165 {
166 struct type *type;
167
168 gdb_assert (objfile != NULL);
169
170 /* Alloc the structure and start off with all fields zeroed. */
171 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
172 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
173 struct main_type);
174 OBJSTAT (objfile, n_types++);
175
176 TYPE_OBJFILE_OWNED (type) = 1;
177 TYPE_OWNER (type).objfile = objfile;
178
179 /* Initialize the fields that might not be zero. */
180
181 TYPE_CODE (type) = TYPE_CODE_UNDEF;
182 TYPE_VPTR_FIELDNO (type) = -1;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XZALLOC (struct type);
202 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_VPTR_FIELDNO (type) = -1;
211 TYPE_CHAIN (type) = type; /* Chain back to itself. */
212
213 return type;
214 }
215
216 /* If TYPE is objfile-associated, allocate a new type structure
217 associated with the same objfile. If TYPE is gdbarch-associated,
218 allocate a new type structure associated with the same gdbarch. */
219
220 struct type *
221 alloc_type_copy (const struct type *type)
222 {
223 if (TYPE_OBJFILE_OWNED (type))
224 return alloc_type (TYPE_OWNER (type).objfile);
225 else
226 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
227 }
228
229 /* If TYPE is gdbarch-associated, return that architecture.
230 If TYPE is objfile-associated, return that objfile's architecture. */
231
232 struct gdbarch *
233 get_type_arch (const struct type *type)
234 {
235 if (TYPE_OBJFILE_OWNED (type))
236 return get_objfile_arch (TYPE_OWNER (type).objfile);
237 else
238 return TYPE_OWNER (type).gdbarch;
239 }
240
241 /* Alloc a new type instance structure, fill it with some defaults,
242 and point it at OLDTYPE. Allocate the new type instance from the
243 same place as OLDTYPE. */
244
245 static struct type *
246 alloc_type_instance (struct type *oldtype)
247 {
248 struct type *type;
249
250 /* Allocate the structure. */
251
252 if (! TYPE_OBJFILE_OWNED (oldtype))
253 type = XZALLOC (struct type);
254 else
255 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
256 struct type);
257
258 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
259
260 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
261
262 return type;
263 }
264
265 /* Clear all remnants of the previous type at TYPE, in preparation for
266 replacing it with something else. Preserve owner information. */
267
268 static void
269 smash_type (struct type *type)
270 {
271 int objfile_owned = TYPE_OBJFILE_OWNED (type);
272 union type_owner owner = TYPE_OWNER (type);
273
274 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
275
276 /* Restore owner information. */
277 TYPE_OBJFILE_OWNED (type) = objfile_owned;
278 TYPE_OWNER (type) = owner;
279
280 /* For now, delete the rings. */
281 TYPE_CHAIN (type) = type;
282
283 /* For now, leave the pointer/reference types alone. */
284 }
285
286 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
287 to a pointer to memory where the pointer type should be stored.
288 If *TYPEPTR is zero, update it to point to the pointer type we return.
289 We allocate new memory if needed. */
290
291 struct type *
292 make_pointer_type (struct type *type, struct type **typeptr)
293 {
294 struct type *ntype; /* New type */
295 struct type *chain;
296
297 ntype = TYPE_POINTER_TYPE (type);
298
299 if (ntype)
300 {
301 if (typeptr == 0)
302 return ntype; /* Don't care about alloc,
303 and have new type. */
304 else if (*typeptr == 0)
305 {
306 *typeptr = ntype; /* Tracking alloc, and have new type. */
307 return ntype;
308 }
309 }
310
311 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
312 {
313 ntype = alloc_type_copy (type);
314 if (typeptr)
315 *typeptr = ntype;
316 }
317 else /* We have storage, but need to reset it. */
318 {
319 ntype = *typeptr;
320 chain = TYPE_CHAIN (ntype);
321 smash_type (ntype);
322 TYPE_CHAIN (ntype) = chain;
323 }
324
325 TYPE_TARGET_TYPE (ntype) = type;
326 TYPE_POINTER_TYPE (type) = ntype;
327
328 /* FIXME! Assumes the machine has only one representation for pointers! */
329
330 TYPE_LENGTH (ntype)
331 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
332 TYPE_CODE (ntype) = TYPE_CODE_PTR;
333
334 /* Mark pointers as unsigned. The target converts between pointers
335 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
336 gdbarch_address_to_pointer. */
337 TYPE_UNSIGNED (ntype) = 1;
338
339 /* Update the length of all the other variants of this type. */
340 chain = TYPE_CHAIN (ntype);
341 while (chain != ntype)
342 {
343 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
344 chain = TYPE_CHAIN (chain);
345 }
346
347 return ntype;
348 }
349
350 /* Given a type TYPE, return a type of pointers to that type.
351 May need to construct such a type if this is the first use. */
352
353 struct type *
354 lookup_pointer_type (struct type *type)
355 {
356 return make_pointer_type (type, (struct type **) 0);
357 }
358
359 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
360 points to a pointer to memory where the reference type should be
361 stored. If *TYPEPTR is zero, update it to point to the reference
362 type we return. We allocate new memory if needed. */
363
364 struct type *
365 make_reference_type (struct type *type, struct type **typeptr)
366 {
367 struct type *ntype; /* New type */
368 struct type *chain;
369
370 ntype = TYPE_REFERENCE_TYPE (type);
371
372 if (ntype)
373 {
374 if (typeptr == 0)
375 return ntype; /* Don't care about alloc,
376 and have new type. */
377 else if (*typeptr == 0)
378 {
379 *typeptr = ntype; /* Tracking alloc, and have new type. */
380 return ntype;
381 }
382 }
383
384 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
385 {
386 ntype = alloc_type_copy (type);
387 if (typeptr)
388 *typeptr = ntype;
389 }
390 else /* We have storage, but need to reset it. */
391 {
392 ntype = *typeptr;
393 chain = TYPE_CHAIN (ntype);
394 smash_type (ntype);
395 TYPE_CHAIN (ntype) = chain;
396 }
397
398 TYPE_TARGET_TYPE (ntype) = type;
399 TYPE_REFERENCE_TYPE (type) = ntype;
400
401 /* FIXME! Assume the machine has only one representation for
402 references, and that it matches the (only) representation for
403 pointers! */
404
405 TYPE_LENGTH (ntype) =
406 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
407 TYPE_CODE (ntype) = TYPE_CODE_REF;
408
409 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
410 TYPE_REFERENCE_TYPE (type) = ntype;
411
412 /* Update the length of all the other variants of this type. */
413 chain = TYPE_CHAIN (ntype);
414 while (chain != ntype)
415 {
416 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
417 chain = TYPE_CHAIN (chain);
418 }
419
420 return ntype;
421 }
422
423 /* Same as above, but caller doesn't care about memory allocation
424 details. */
425
426 struct type *
427 lookup_reference_type (struct type *type)
428 {
429 return make_reference_type (type, (struct type **) 0);
430 }
431
432 /* Lookup a function type that returns type TYPE. TYPEPTR, if
433 nonzero, points to a pointer to memory where the function type
434 should be stored. If *TYPEPTR is zero, update it to point to the
435 function type we return. We allocate new memory if needed. */
436
437 struct type *
438 make_function_type (struct type *type, struct type **typeptr)
439 {
440 struct type *ntype; /* New type */
441
442 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
443 {
444 ntype = alloc_type_copy (type);
445 if (typeptr)
446 *typeptr = ntype;
447 }
448 else /* We have storage, but need to reset it. */
449 {
450 ntype = *typeptr;
451 smash_type (ntype);
452 }
453
454 TYPE_TARGET_TYPE (ntype) = type;
455
456 TYPE_LENGTH (ntype) = 1;
457 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
458
459 INIT_FUNC_SPECIFIC (ntype);
460
461 return ntype;
462 }
463
464 /* Given a type TYPE, return a type of functions that return that type.
465 May need to construct such a type if this is the first use. */
466
467 struct type *
468 lookup_function_type (struct type *type)
469 {
470 return make_function_type (type, (struct type **) 0);
471 }
472
473 /* Given a type TYPE and argument types, return the appropriate
474 function type. If the final type in PARAM_TYPES is NULL, make a
475 varargs function. */
476
477 struct type *
478 lookup_function_type_with_arguments (struct type *type,
479 int nparams,
480 struct type **param_types)
481 {
482 struct type *fn = make_function_type (type, (struct type **) 0);
483 int i;
484
485 if (nparams > 0)
486 {
487 if (param_types[nparams - 1] == NULL)
488 {
489 --nparams;
490 TYPE_VARARGS (fn) = 1;
491 }
492 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
493 == TYPE_CODE_VOID)
494 {
495 --nparams;
496 /* Caller should have ensured this. */
497 gdb_assert (nparams == 0);
498 TYPE_PROTOTYPED (fn) = 1;
499 }
500 }
501
502 TYPE_NFIELDS (fn) = nparams;
503 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
504 for (i = 0; i < nparams; ++i)
505 TYPE_FIELD_TYPE (fn, i) = param_types[i];
506
507 return fn;
508 }
509
510 /* Identify address space identifier by name --
511 return the integer flag defined in gdbtypes.h. */
512
513 int
514 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
515 {
516 int type_flags;
517
518 /* Check for known address space delimiters. */
519 if (!strcmp (space_identifier, "code"))
520 return TYPE_INSTANCE_FLAG_CODE_SPACE;
521 else if (!strcmp (space_identifier, "data"))
522 return TYPE_INSTANCE_FLAG_DATA_SPACE;
523 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
524 && gdbarch_address_class_name_to_type_flags (gdbarch,
525 space_identifier,
526 &type_flags))
527 return type_flags;
528 else
529 error (_("Unknown address space specifier: \"%s\""), space_identifier);
530 }
531
532 /* Identify address space identifier by integer flag as defined in
533 gdbtypes.h -- return the string version of the adress space name. */
534
535 const char *
536 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
537 {
538 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
539 return "code";
540 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
541 return "data";
542 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
543 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
544 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
545 else
546 return NULL;
547 }
548
549 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
550
551 If STORAGE is non-NULL, create the new type instance there.
552 STORAGE must be in the same obstack as TYPE. */
553
554 static struct type *
555 make_qualified_type (struct type *type, int new_flags,
556 struct type *storage)
557 {
558 struct type *ntype;
559
560 ntype = type;
561 do
562 {
563 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
564 return ntype;
565 ntype = TYPE_CHAIN (ntype);
566 }
567 while (ntype != type);
568
569 /* Create a new type instance. */
570 if (storage == NULL)
571 ntype = alloc_type_instance (type);
572 else
573 {
574 /* If STORAGE was provided, it had better be in the same objfile
575 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
576 if one objfile is freed and the other kept, we'd have
577 dangling pointers. */
578 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
579
580 ntype = storage;
581 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
582 TYPE_CHAIN (ntype) = ntype;
583 }
584
585 /* Pointers or references to the original type are not relevant to
586 the new type. */
587 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
588 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
589
590 /* Chain the new qualified type to the old type. */
591 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
592 TYPE_CHAIN (type) = ntype;
593
594 /* Now set the instance flags and return the new type. */
595 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
596
597 /* Set length of new type to that of the original type. */
598 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
599
600 return ntype;
601 }
602
603 /* Make an address-space-delimited variant of a type -- a type that
604 is identical to the one supplied except that it has an address
605 space attribute attached to it (such as "code" or "data").
606
607 The space attributes "code" and "data" are for Harvard
608 architectures. The address space attributes are for architectures
609 which have alternately sized pointers or pointers with alternate
610 representations. */
611
612 struct type *
613 make_type_with_address_space (struct type *type, int space_flag)
614 {
615 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
616 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
617 | TYPE_INSTANCE_FLAG_DATA_SPACE
618 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
619 | space_flag);
620
621 return make_qualified_type (type, new_flags, NULL);
622 }
623
624 /* Make a "c-v" variant of a type -- a type that is identical to the
625 one supplied except that it may have const or volatile attributes
626 CNST is a flag for setting the const attribute
627 VOLTL is a flag for setting the volatile attribute
628 TYPE is the base type whose variant we are creating.
629
630 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
631 storage to hold the new qualified type; *TYPEPTR and TYPE must be
632 in the same objfile. Otherwise, allocate fresh memory for the new
633 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
634 new type we construct. */
635
636 struct type *
637 make_cv_type (int cnst, int voltl,
638 struct type *type,
639 struct type **typeptr)
640 {
641 struct type *ntype; /* New type */
642
643 int new_flags = (TYPE_INSTANCE_FLAGS (type)
644 & ~(TYPE_INSTANCE_FLAG_CONST
645 | TYPE_INSTANCE_FLAG_VOLATILE));
646
647 if (cnst)
648 new_flags |= TYPE_INSTANCE_FLAG_CONST;
649
650 if (voltl)
651 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
652
653 if (typeptr && *typeptr != NULL)
654 {
655 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
656 a C-V variant chain that threads across objfiles: if one
657 objfile gets freed, then the other has a broken C-V chain.
658
659 This code used to try to copy over the main type from TYPE to
660 *TYPEPTR if they were in different objfiles, but that's
661 wrong, too: TYPE may have a field list or member function
662 lists, which refer to types of their own, etc. etc. The
663 whole shebang would need to be copied over recursively; you
664 can't have inter-objfile pointers. The only thing to do is
665 to leave stub types as stub types, and look them up afresh by
666 name each time you encounter them. */
667 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
668 }
669
670 ntype = make_qualified_type (type, new_flags,
671 typeptr ? *typeptr : NULL);
672
673 if (typeptr != NULL)
674 *typeptr = ntype;
675
676 return ntype;
677 }
678
679 /* Replace the contents of ntype with the type *type. This changes the
680 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
681 the changes are propogated to all types in the TYPE_CHAIN.
682
683 In order to build recursive types, it's inevitable that we'll need
684 to update types in place --- but this sort of indiscriminate
685 smashing is ugly, and needs to be replaced with something more
686 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
687 clear if more steps are needed. */
688
689 void
690 replace_type (struct type *ntype, struct type *type)
691 {
692 struct type *chain;
693
694 /* These two types had better be in the same objfile. Otherwise,
695 the assignment of one type's main type structure to the other
696 will produce a type with references to objects (names; field
697 lists; etc.) allocated on an objfile other than its own. */
698 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
699
700 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
701
702 /* The type length is not a part of the main type. Update it for
703 each type on the variant chain. */
704 chain = ntype;
705 do
706 {
707 /* Assert that this element of the chain has no address-class bits
708 set in its flags. Such type variants might have type lengths
709 which are supposed to be different from the non-address-class
710 variants. This assertion shouldn't ever be triggered because
711 symbol readers which do construct address-class variants don't
712 call replace_type(). */
713 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
714
715 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
716 chain = TYPE_CHAIN (chain);
717 }
718 while (ntype != chain);
719
720 /* Assert that the two types have equivalent instance qualifiers.
721 This should be true for at least all of our debug readers. */
722 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
723 }
724
725 /* Implement direct support for MEMBER_TYPE in GNU C++.
726 May need to construct such a type if this is the first use.
727 The TYPE is the type of the member. The DOMAIN is the type
728 of the aggregate that the member belongs to. */
729
730 struct type *
731 lookup_memberptr_type (struct type *type, struct type *domain)
732 {
733 struct type *mtype;
734
735 mtype = alloc_type_copy (type);
736 smash_to_memberptr_type (mtype, domain, type);
737 return mtype;
738 }
739
740 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
741
742 struct type *
743 lookup_methodptr_type (struct type *to_type)
744 {
745 struct type *mtype;
746
747 mtype = alloc_type_copy (to_type);
748 smash_to_methodptr_type (mtype, to_type);
749 return mtype;
750 }
751
752 /* Allocate a stub method whose return type is TYPE. This apparently
753 happens for speed of symbol reading, since parsing out the
754 arguments to the method is cpu-intensive, the way we are doing it.
755 So, we will fill in arguments later. This always returns a fresh
756 type. */
757
758 struct type *
759 allocate_stub_method (struct type *type)
760 {
761 struct type *mtype;
762
763 mtype = alloc_type_copy (type);
764 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
765 TYPE_LENGTH (mtype) = 1;
766 TYPE_STUB (mtype) = 1;
767 TYPE_TARGET_TYPE (mtype) = type;
768 /* _DOMAIN_TYPE (mtype) = unknown yet */
769 return mtype;
770 }
771
772 /* Create a range type using either a blank type supplied in
773 RESULT_TYPE, or creating a new type, inheriting the objfile from
774 INDEX_TYPE.
775
776 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
777 to HIGH_BOUND, inclusive.
778
779 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
780 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
781
782 struct type *
783 create_range_type (struct type *result_type, struct type *index_type,
784 LONGEST low_bound, LONGEST high_bound)
785 {
786 if (result_type == NULL)
787 result_type = alloc_type_copy (index_type);
788 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
789 TYPE_TARGET_TYPE (result_type) = index_type;
790 if (TYPE_STUB (index_type))
791 TYPE_TARGET_STUB (result_type) = 1;
792 else
793 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
794 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
795 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
796 TYPE_LOW_BOUND (result_type) = low_bound;
797 TYPE_HIGH_BOUND (result_type) = high_bound;
798
799 if (low_bound >= 0)
800 TYPE_UNSIGNED (result_type) = 1;
801
802 return result_type;
803 }
804
805 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
806 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
807 bounds will fit in LONGEST), or -1 otherwise. */
808
809 int
810 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
811 {
812 CHECK_TYPEDEF (type);
813 switch (TYPE_CODE (type))
814 {
815 case TYPE_CODE_RANGE:
816 *lowp = TYPE_LOW_BOUND (type);
817 *highp = TYPE_HIGH_BOUND (type);
818 return 1;
819 case TYPE_CODE_ENUM:
820 if (TYPE_NFIELDS (type) > 0)
821 {
822 /* The enums may not be sorted by value, so search all
823 entries. */
824 int i;
825
826 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
827 for (i = 0; i < TYPE_NFIELDS (type); i++)
828 {
829 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
830 *lowp = TYPE_FIELD_ENUMVAL (type, i);
831 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
832 *highp = TYPE_FIELD_ENUMVAL (type, i);
833 }
834
835 /* Set unsigned indicator if warranted. */
836 if (*lowp >= 0)
837 {
838 TYPE_UNSIGNED (type) = 1;
839 }
840 }
841 else
842 {
843 *lowp = 0;
844 *highp = -1;
845 }
846 return 0;
847 case TYPE_CODE_BOOL:
848 *lowp = 0;
849 *highp = 1;
850 return 0;
851 case TYPE_CODE_INT:
852 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
853 return -1;
854 if (!TYPE_UNSIGNED (type))
855 {
856 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
857 *highp = -*lowp - 1;
858 return 0;
859 }
860 /* ... fall through for unsigned ints ... */
861 case TYPE_CODE_CHAR:
862 *lowp = 0;
863 /* This round-about calculation is to avoid shifting by
864 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
865 if TYPE_LENGTH (type) == sizeof (LONGEST). */
866 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
867 *highp = (*highp - 1) | *highp;
868 return 0;
869 default:
870 return -1;
871 }
872 }
873
874 /* Assuming TYPE is a simple, non-empty array type, compute its upper
875 and lower bound. Save the low bound into LOW_BOUND if not NULL.
876 Save the high bound into HIGH_BOUND if not NULL.
877
878 Return 1 if the operation was successful. Return zero otherwise,
879 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
880
881 We now simply use get_discrete_bounds call to get the values
882 of the low and high bounds.
883 get_discrete_bounds can return three values:
884 1, meaning that index is a range,
885 0, meaning that index is a discrete type,
886 or -1 for failure. */
887
888 int
889 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
890 {
891 struct type *index = TYPE_INDEX_TYPE (type);
892 LONGEST low = 0;
893 LONGEST high = 0;
894 int res;
895
896 if (index == NULL)
897 return 0;
898
899 res = get_discrete_bounds (index, &low, &high);
900 if (res == -1)
901 return 0;
902
903 /* Check if the array bounds are undefined. */
904 if (res == 1
905 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
906 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
907 return 0;
908
909 if (low_bound)
910 *low_bound = low;
911
912 if (high_bound)
913 *high_bound = high;
914
915 return 1;
916 }
917
918 /* Create an array type using either a blank type supplied in
919 RESULT_TYPE, or creating a new type, inheriting the objfile from
920 RANGE_TYPE.
921
922 Elements will be of type ELEMENT_TYPE, the indices will be of type
923 RANGE_TYPE.
924
925 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
926 sure it is TYPE_CODE_UNDEF before we bash it into an array
927 type? */
928
929 struct type *
930 create_array_type (struct type *result_type,
931 struct type *element_type,
932 struct type *range_type)
933 {
934 LONGEST low_bound, high_bound;
935
936 if (result_type == NULL)
937 result_type = alloc_type_copy (range_type);
938
939 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
940 TYPE_TARGET_TYPE (result_type) = element_type;
941 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
942 low_bound = high_bound = 0;
943 CHECK_TYPEDEF (element_type);
944 /* Be careful when setting the array length. Ada arrays can be
945 empty arrays with the high_bound being smaller than the low_bound.
946 In such cases, the array length should be zero. */
947 if (high_bound < low_bound)
948 TYPE_LENGTH (result_type) = 0;
949 else
950 TYPE_LENGTH (result_type) =
951 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
952 TYPE_NFIELDS (result_type) = 1;
953 TYPE_FIELDS (result_type) =
954 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
955 TYPE_INDEX_TYPE (result_type) = range_type;
956 TYPE_VPTR_FIELDNO (result_type) = -1;
957
958 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
959 if (TYPE_LENGTH (result_type) == 0)
960 TYPE_TARGET_STUB (result_type) = 1;
961
962 return result_type;
963 }
964
965 struct type *
966 lookup_array_range_type (struct type *element_type,
967 LONGEST low_bound, LONGEST high_bound)
968 {
969 struct gdbarch *gdbarch = get_type_arch (element_type);
970 struct type *index_type = builtin_type (gdbarch)->builtin_int;
971 struct type *range_type
972 = create_range_type (NULL, index_type, low_bound, high_bound);
973
974 return create_array_type (NULL, element_type, range_type);
975 }
976
977 /* Create a string type using either a blank type supplied in
978 RESULT_TYPE, or creating a new type. String types are similar
979 enough to array of char types that we can use create_array_type to
980 build the basic type and then bash it into a string type.
981
982 For fixed length strings, the range type contains 0 as the lower
983 bound and the length of the string minus one as the upper bound.
984
985 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
986 sure it is TYPE_CODE_UNDEF before we bash it into a string
987 type? */
988
989 struct type *
990 create_string_type (struct type *result_type,
991 struct type *string_char_type,
992 struct type *range_type)
993 {
994 result_type = create_array_type (result_type,
995 string_char_type,
996 range_type);
997 TYPE_CODE (result_type) = TYPE_CODE_STRING;
998 return result_type;
999 }
1000
1001 struct type *
1002 lookup_string_range_type (struct type *string_char_type,
1003 LONGEST low_bound, LONGEST high_bound)
1004 {
1005 struct type *result_type;
1006
1007 result_type = lookup_array_range_type (string_char_type,
1008 low_bound, high_bound);
1009 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1010 return result_type;
1011 }
1012
1013 struct type *
1014 create_set_type (struct type *result_type, struct type *domain_type)
1015 {
1016 if (result_type == NULL)
1017 result_type = alloc_type_copy (domain_type);
1018
1019 TYPE_CODE (result_type) = TYPE_CODE_SET;
1020 TYPE_NFIELDS (result_type) = 1;
1021 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1022
1023 if (!TYPE_STUB (domain_type))
1024 {
1025 LONGEST low_bound, high_bound, bit_length;
1026
1027 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1028 low_bound = high_bound = 0;
1029 bit_length = high_bound - low_bound + 1;
1030 TYPE_LENGTH (result_type)
1031 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1032 if (low_bound >= 0)
1033 TYPE_UNSIGNED (result_type) = 1;
1034 }
1035 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1036
1037 return result_type;
1038 }
1039
1040 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1041 and any array types nested inside it. */
1042
1043 void
1044 make_vector_type (struct type *array_type)
1045 {
1046 struct type *inner_array, *elt_type;
1047 int flags;
1048
1049 /* Find the innermost array type, in case the array is
1050 multi-dimensional. */
1051 inner_array = array_type;
1052 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1053 inner_array = TYPE_TARGET_TYPE (inner_array);
1054
1055 elt_type = TYPE_TARGET_TYPE (inner_array);
1056 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1057 {
1058 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1059 elt_type = make_qualified_type (elt_type, flags, NULL);
1060 TYPE_TARGET_TYPE (inner_array) = elt_type;
1061 }
1062
1063 TYPE_VECTOR (array_type) = 1;
1064 }
1065
1066 struct type *
1067 init_vector_type (struct type *elt_type, int n)
1068 {
1069 struct type *array_type;
1070
1071 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1072 make_vector_type (array_type);
1073 return array_type;
1074 }
1075
1076 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1077 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1078 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1079 TYPE doesn't include the offset (that's the value of the MEMBER
1080 itself), but does include the structure type into which it points
1081 (for some reason).
1082
1083 When "smashing" the type, we preserve the objfile that the old type
1084 pointed to, since we aren't changing where the type is actually
1085 allocated. */
1086
1087 void
1088 smash_to_memberptr_type (struct type *type, struct type *domain,
1089 struct type *to_type)
1090 {
1091 smash_type (type);
1092 TYPE_TARGET_TYPE (type) = to_type;
1093 TYPE_DOMAIN_TYPE (type) = domain;
1094 /* Assume that a data member pointer is the same size as a normal
1095 pointer. */
1096 TYPE_LENGTH (type)
1097 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1098 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1099 }
1100
1101 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1102
1103 When "smashing" the type, we preserve the objfile that the old type
1104 pointed to, since we aren't changing where the type is actually
1105 allocated. */
1106
1107 void
1108 smash_to_methodptr_type (struct type *type, struct type *to_type)
1109 {
1110 smash_type (type);
1111 TYPE_TARGET_TYPE (type) = to_type;
1112 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1113 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1114 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1115 }
1116
1117 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1118 METHOD just means `function that gets an extra "this" argument'.
1119
1120 When "smashing" the type, we preserve the objfile that the old type
1121 pointed to, since we aren't changing where the type is actually
1122 allocated. */
1123
1124 void
1125 smash_to_method_type (struct type *type, struct type *domain,
1126 struct type *to_type, struct field *args,
1127 int nargs, int varargs)
1128 {
1129 smash_type (type);
1130 TYPE_TARGET_TYPE (type) = to_type;
1131 TYPE_DOMAIN_TYPE (type) = domain;
1132 TYPE_FIELDS (type) = args;
1133 TYPE_NFIELDS (type) = nargs;
1134 if (varargs)
1135 TYPE_VARARGS (type) = 1;
1136 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1137 TYPE_CODE (type) = TYPE_CODE_METHOD;
1138 }
1139
1140 /* Return a typename for a struct/union/enum type without "struct ",
1141 "union ", or "enum ". If the type has a NULL name, return NULL. */
1142
1143 const char *
1144 type_name_no_tag (const struct type *type)
1145 {
1146 if (TYPE_TAG_NAME (type) != NULL)
1147 return TYPE_TAG_NAME (type);
1148
1149 /* Is there code which expects this to return the name if there is
1150 no tag name? My guess is that this is mainly used for C++ in
1151 cases where the two will always be the same. */
1152 return TYPE_NAME (type);
1153 }
1154
1155 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1156 Since GCC PR debug/47510 DWARF provides associated information to detect the
1157 anonymous class linkage name from its typedef.
1158
1159 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1160 apply it itself. */
1161
1162 const char *
1163 type_name_no_tag_or_error (struct type *type)
1164 {
1165 struct type *saved_type = type;
1166 const char *name;
1167 struct objfile *objfile;
1168
1169 CHECK_TYPEDEF (type);
1170
1171 name = type_name_no_tag (type);
1172 if (name != NULL)
1173 return name;
1174
1175 name = type_name_no_tag (saved_type);
1176 objfile = TYPE_OBJFILE (saved_type);
1177 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1178 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1179 }
1180
1181 /* Lookup a typedef or primitive type named NAME, visible in lexical
1182 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1183 suitably defined. */
1184
1185 struct type *
1186 lookup_typename (const struct language_defn *language,
1187 struct gdbarch *gdbarch, const char *name,
1188 const struct block *block, int noerr)
1189 {
1190 struct symbol *sym;
1191 struct type *type;
1192
1193 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1194 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1195 return SYMBOL_TYPE (sym);
1196
1197 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1198 if (type)
1199 return type;
1200
1201 if (noerr)
1202 return NULL;
1203 error (_("No type named %s."), name);
1204 }
1205
1206 struct type *
1207 lookup_unsigned_typename (const struct language_defn *language,
1208 struct gdbarch *gdbarch, const char *name)
1209 {
1210 char *uns = alloca (strlen (name) + 10);
1211
1212 strcpy (uns, "unsigned ");
1213 strcpy (uns + 9, name);
1214 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1215 }
1216
1217 struct type *
1218 lookup_signed_typename (const struct language_defn *language,
1219 struct gdbarch *gdbarch, const char *name)
1220 {
1221 struct type *t;
1222 char *uns = alloca (strlen (name) + 8);
1223
1224 strcpy (uns, "signed ");
1225 strcpy (uns + 7, name);
1226 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1227 /* If we don't find "signed FOO" just try again with plain "FOO". */
1228 if (t != NULL)
1229 return t;
1230 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1231 }
1232
1233 /* Lookup a structure type named "struct NAME",
1234 visible in lexical block BLOCK. */
1235
1236 struct type *
1237 lookup_struct (const char *name, struct block *block)
1238 {
1239 struct symbol *sym;
1240
1241 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1242
1243 if (sym == NULL)
1244 {
1245 error (_("No struct type named %s."), name);
1246 }
1247 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1248 {
1249 error (_("This context has class, union or enum %s, not a struct."),
1250 name);
1251 }
1252 return (SYMBOL_TYPE (sym));
1253 }
1254
1255 /* Lookup a union type named "union NAME",
1256 visible in lexical block BLOCK. */
1257
1258 struct type *
1259 lookup_union (const char *name, struct block *block)
1260 {
1261 struct symbol *sym;
1262 struct type *t;
1263
1264 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1265
1266 if (sym == NULL)
1267 error (_("No union type named %s."), name);
1268
1269 t = SYMBOL_TYPE (sym);
1270
1271 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1272 return t;
1273
1274 /* If we get here, it's not a union. */
1275 error (_("This context has class, struct or enum %s, not a union."),
1276 name);
1277 }
1278
1279 /* Lookup an enum type named "enum NAME",
1280 visible in lexical block BLOCK. */
1281
1282 struct type *
1283 lookup_enum (const char *name, struct block *block)
1284 {
1285 struct symbol *sym;
1286
1287 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1288 if (sym == NULL)
1289 {
1290 error (_("No enum type named %s."), name);
1291 }
1292 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1293 {
1294 error (_("This context has class, struct or union %s, not an enum."),
1295 name);
1296 }
1297 return (SYMBOL_TYPE (sym));
1298 }
1299
1300 /* Lookup a template type named "template NAME<TYPE>",
1301 visible in lexical block BLOCK. */
1302
1303 struct type *
1304 lookup_template_type (char *name, struct type *type,
1305 struct block *block)
1306 {
1307 struct symbol *sym;
1308 char *nam = (char *)
1309 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1310
1311 strcpy (nam, name);
1312 strcat (nam, "<");
1313 strcat (nam, TYPE_NAME (type));
1314 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1315
1316 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1317
1318 if (sym == NULL)
1319 {
1320 error (_("No template type named %s."), name);
1321 }
1322 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1323 {
1324 error (_("This context has class, union or enum %s, not a struct."),
1325 name);
1326 }
1327 return (SYMBOL_TYPE (sym));
1328 }
1329
1330 /* Given a type TYPE, lookup the type of the component of type named
1331 NAME.
1332
1333 TYPE can be either a struct or union, or a pointer or reference to
1334 a struct or union. If it is a pointer or reference, its target
1335 type is automatically used. Thus '.' and '->' are interchangable,
1336 as specified for the definitions of the expression element types
1337 STRUCTOP_STRUCT and STRUCTOP_PTR.
1338
1339 If NOERR is nonzero, return zero if NAME is not suitably defined.
1340 If NAME is the name of a baseclass type, return that type. */
1341
1342 struct type *
1343 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1344 {
1345 int i;
1346 char *typename;
1347
1348 for (;;)
1349 {
1350 CHECK_TYPEDEF (type);
1351 if (TYPE_CODE (type) != TYPE_CODE_PTR
1352 && TYPE_CODE (type) != TYPE_CODE_REF)
1353 break;
1354 type = TYPE_TARGET_TYPE (type);
1355 }
1356
1357 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1358 && TYPE_CODE (type) != TYPE_CODE_UNION)
1359 {
1360 typename = type_to_string (type);
1361 make_cleanup (xfree, typename);
1362 error (_("Type %s is not a structure or union type."), typename);
1363 }
1364
1365 #if 0
1366 /* FIXME: This change put in by Michael seems incorrect for the case
1367 where the structure tag name is the same as the member name.
1368 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1369 foo; } bell;" Disabled by fnf. */
1370 {
1371 char *typename;
1372
1373 typename = type_name_no_tag (type);
1374 if (typename != NULL && strcmp (typename, name) == 0)
1375 return type;
1376 }
1377 #endif
1378
1379 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1380 {
1381 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1382
1383 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1384 {
1385 return TYPE_FIELD_TYPE (type, i);
1386 }
1387 else if (!t_field_name || *t_field_name == '\0')
1388 {
1389 struct type *subtype
1390 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1391
1392 if (subtype != NULL)
1393 return subtype;
1394 }
1395 }
1396
1397 /* OK, it's not in this class. Recursively check the baseclasses. */
1398 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1399 {
1400 struct type *t;
1401
1402 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1403 if (t != NULL)
1404 {
1405 return t;
1406 }
1407 }
1408
1409 if (noerr)
1410 {
1411 return NULL;
1412 }
1413
1414 typename = type_to_string (type);
1415 make_cleanup (xfree, typename);
1416 error (_("Type %s has no component named %s."), typename, name);
1417 }
1418
1419 /* Lookup the vptr basetype/fieldno values for TYPE.
1420 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1421 vptr_fieldno. Also, if found and basetype is from the same objfile,
1422 cache the results.
1423 If not found, return -1 and ignore BASETYPEP.
1424 Callers should be aware that in some cases (for example,
1425 the type or one of its baseclasses is a stub type and we are
1426 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1427 this function will not be able to find the
1428 virtual function table pointer, and vptr_fieldno will remain -1 and
1429 vptr_basetype will remain NULL or incomplete. */
1430
1431 int
1432 get_vptr_fieldno (struct type *type, struct type **basetypep)
1433 {
1434 CHECK_TYPEDEF (type);
1435
1436 if (TYPE_VPTR_FIELDNO (type) < 0)
1437 {
1438 int i;
1439
1440 /* We must start at zero in case the first (and only) baseclass
1441 is virtual (and hence we cannot share the table pointer). */
1442 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1443 {
1444 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1445 int fieldno;
1446 struct type *basetype;
1447
1448 fieldno = get_vptr_fieldno (baseclass, &basetype);
1449 if (fieldno >= 0)
1450 {
1451 /* If the type comes from a different objfile we can't cache
1452 it, it may have a different lifetime. PR 2384 */
1453 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1454 {
1455 TYPE_VPTR_FIELDNO (type) = fieldno;
1456 TYPE_VPTR_BASETYPE (type) = basetype;
1457 }
1458 if (basetypep)
1459 *basetypep = basetype;
1460 return fieldno;
1461 }
1462 }
1463
1464 /* Not found. */
1465 return -1;
1466 }
1467 else
1468 {
1469 if (basetypep)
1470 *basetypep = TYPE_VPTR_BASETYPE (type);
1471 return TYPE_VPTR_FIELDNO (type);
1472 }
1473 }
1474
1475 static void
1476 stub_noname_complaint (void)
1477 {
1478 complaint (&symfile_complaints, _("stub type has NULL name"));
1479 }
1480
1481 /* Find the real type of TYPE. This function returns the real type,
1482 after removing all layers of typedefs, and completing opaque or stub
1483 types. Completion changes the TYPE argument, but stripping of
1484 typedefs does not.
1485
1486 Instance flags (e.g. const/volatile) are preserved as typedefs are
1487 stripped. If necessary a new qualified form of the underlying type
1488 is created.
1489
1490 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1491 not been computed and we're either in the middle of reading symbols, or
1492 there was no name for the typedef in the debug info.
1493
1494 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1495 QUITs in the symbol reading code can also throw.
1496 Thus this function can throw an exception.
1497
1498 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1499 the target type.
1500
1501 If this is a stubbed struct (i.e. declared as struct foo *), see if
1502 we can find a full definition in some other file. If so, copy this
1503 definition, so we can use it in future. There used to be a comment
1504 (but not any code) that if we don't find a full definition, we'd
1505 set a flag so we don't spend time in the future checking the same
1506 type. That would be a mistake, though--we might load in more
1507 symbols which contain a full definition for the type. */
1508
1509 struct type *
1510 check_typedef (struct type *type)
1511 {
1512 struct type *orig_type = type;
1513 /* While we're removing typedefs, we don't want to lose qualifiers.
1514 E.g., const/volatile. */
1515 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1516
1517 gdb_assert (type);
1518
1519 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1520 {
1521 if (!TYPE_TARGET_TYPE (type))
1522 {
1523 const char *name;
1524 struct symbol *sym;
1525
1526 /* It is dangerous to call lookup_symbol if we are currently
1527 reading a symtab. Infinite recursion is one danger. */
1528 if (currently_reading_symtab)
1529 return make_qualified_type (type, instance_flags, NULL);
1530
1531 name = type_name_no_tag (type);
1532 /* FIXME: shouldn't we separately check the TYPE_NAME and
1533 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1534 VAR_DOMAIN as appropriate? (this code was written before
1535 TYPE_NAME and TYPE_TAG_NAME were separate). */
1536 if (name == NULL)
1537 {
1538 stub_noname_complaint ();
1539 return make_qualified_type (type, instance_flags, NULL);
1540 }
1541 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1542 if (sym)
1543 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1544 else /* TYPE_CODE_UNDEF */
1545 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1546 }
1547 type = TYPE_TARGET_TYPE (type);
1548
1549 /* Preserve the instance flags as we traverse down the typedef chain.
1550
1551 Handling address spaces/classes is nasty, what do we do if there's a
1552 conflict?
1553 E.g., what if an outer typedef marks the type as class_1 and an inner
1554 typedef marks the type as class_2?
1555 This is the wrong place to do such error checking. We leave it to
1556 the code that created the typedef in the first place to flag the
1557 error. We just pick the outer address space (akin to letting the
1558 outer cast in a chain of casting win), instead of assuming
1559 "it can't happen". */
1560 {
1561 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1562 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1563 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1564 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1565
1566 /* Treat code vs data spaces and address classes separately. */
1567 if ((instance_flags & ALL_SPACES) != 0)
1568 new_instance_flags &= ~ALL_SPACES;
1569 if ((instance_flags & ALL_CLASSES) != 0)
1570 new_instance_flags &= ~ALL_CLASSES;
1571
1572 instance_flags |= new_instance_flags;
1573 }
1574 }
1575
1576 /* If this is a struct/class/union with no fields, then check
1577 whether a full definition exists somewhere else. This is for
1578 systems where a type definition with no fields is issued for such
1579 types, instead of identifying them as stub types in the first
1580 place. */
1581
1582 if (TYPE_IS_OPAQUE (type)
1583 && opaque_type_resolution
1584 && !currently_reading_symtab)
1585 {
1586 const char *name = type_name_no_tag (type);
1587 struct type *newtype;
1588
1589 if (name == NULL)
1590 {
1591 stub_noname_complaint ();
1592 return make_qualified_type (type, instance_flags, NULL);
1593 }
1594 newtype = lookup_transparent_type (name);
1595
1596 if (newtype)
1597 {
1598 /* If the resolved type and the stub are in the same
1599 objfile, then replace the stub type with the real deal.
1600 But if they're in separate objfiles, leave the stub
1601 alone; we'll just look up the transparent type every time
1602 we call check_typedef. We can't create pointers between
1603 types allocated to different objfiles, since they may
1604 have different lifetimes. Trying to copy NEWTYPE over to
1605 TYPE's objfile is pointless, too, since you'll have to
1606 move over any other types NEWTYPE refers to, which could
1607 be an unbounded amount of stuff. */
1608 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1609 type = make_qualified_type (newtype,
1610 TYPE_INSTANCE_FLAGS (type),
1611 type);
1612 else
1613 type = newtype;
1614 }
1615 }
1616 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1617 types. */
1618 else if (TYPE_STUB (type) && !currently_reading_symtab)
1619 {
1620 const char *name = type_name_no_tag (type);
1621 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1622 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1623 as appropriate? (this code was written before TYPE_NAME and
1624 TYPE_TAG_NAME were separate). */
1625 struct symbol *sym;
1626
1627 if (name == NULL)
1628 {
1629 stub_noname_complaint ();
1630 return make_qualified_type (type, instance_flags, NULL);
1631 }
1632 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1633 if (sym)
1634 {
1635 /* Same as above for opaque types, we can replace the stub
1636 with the complete type only if they are in the same
1637 objfile. */
1638 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1639 type = make_qualified_type (SYMBOL_TYPE (sym),
1640 TYPE_INSTANCE_FLAGS (type),
1641 type);
1642 else
1643 type = SYMBOL_TYPE (sym);
1644 }
1645 }
1646
1647 if (TYPE_TARGET_STUB (type))
1648 {
1649 struct type *range_type;
1650 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1651
1652 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1653 {
1654 /* Nothing we can do. */
1655 }
1656 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1657 && TYPE_NFIELDS (type) == 1
1658 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1659 == TYPE_CODE_RANGE))
1660 {
1661 /* Now recompute the length of the array type, based on its
1662 number of elements and the target type's length.
1663 Watch out for Ada null Ada arrays where the high bound
1664 is smaller than the low bound. */
1665 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1666 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1667 ULONGEST len;
1668
1669 if (high_bound < low_bound)
1670 len = 0;
1671 else
1672 {
1673 /* For now, we conservatively take the array length to be 0
1674 if its length exceeds UINT_MAX. The code below assumes
1675 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1676 which is technically not guaranteed by C, but is usually true
1677 (because it would be true if x were unsigned with its
1678 high-order bit on). It uses the fact that
1679 high_bound-low_bound is always representable in
1680 ULONGEST and that if high_bound-low_bound+1 overflows,
1681 it overflows to 0. We must change these tests if we
1682 decide to increase the representation of TYPE_LENGTH
1683 from unsigned int to ULONGEST. */
1684 ULONGEST ulow = low_bound, uhigh = high_bound;
1685 ULONGEST tlen = TYPE_LENGTH (target_type);
1686
1687 len = tlen * (uhigh - ulow + 1);
1688 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1689 || len > UINT_MAX)
1690 len = 0;
1691 }
1692 TYPE_LENGTH (type) = len;
1693 TYPE_TARGET_STUB (type) = 0;
1694 }
1695 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1696 {
1697 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1698 TYPE_TARGET_STUB (type) = 0;
1699 }
1700 }
1701
1702 type = make_qualified_type (type, instance_flags, NULL);
1703
1704 /* Cache TYPE_LENGTH for future use. */
1705 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1706
1707 return type;
1708 }
1709
1710 /* Parse a type expression in the string [P..P+LENGTH). If an error
1711 occurs, silently return a void type. */
1712
1713 static struct type *
1714 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1715 {
1716 struct ui_file *saved_gdb_stderr;
1717 struct type *type = NULL; /* Initialize to keep gcc happy. */
1718 volatile struct gdb_exception except;
1719
1720 /* Suppress error messages. */
1721 saved_gdb_stderr = gdb_stderr;
1722 gdb_stderr = ui_file_new ();
1723
1724 /* Call parse_and_eval_type() without fear of longjmp()s. */
1725 TRY_CATCH (except, RETURN_MASK_ERROR)
1726 {
1727 type = parse_and_eval_type (p, length);
1728 }
1729
1730 if (except.reason < 0)
1731 type = builtin_type (gdbarch)->builtin_void;
1732
1733 /* Stop suppressing error messages. */
1734 ui_file_delete (gdb_stderr);
1735 gdb_stderr = saved_gdb_stderr;
1736
1737 return type;
1738 }
1739
1740 /* Ugly hack to convert method stubs into method types.
1741
1742 He ain't kiddin'. This demangles the name of the method into a
1743 string including argument types, parses out each argument type,
1744 generates a string casting a zero to that type, evaluates the
1745 string, and stuffs the resulting type into an argtype vector!!!
1746 Then it knows the type of the whole function (including argument
1747 types for overloading), which info used to be in the stab's but was
1748 removed to hack back the space required for them. */
1749
1750 static void
1751 check_stub_method (struct type *type, int method_id, int signature_id)
1752 {
1753 struct gdbarch *gdbarch = get_type_arch (type);
1754 struct fn_field *f;
1755 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1756 char *demangled_name = cplus_demangle (mangled_name,
1757 DMGL_PARAMS | DMGL_ANSI);
1758 char *argtypetext, *p;
1759 int depth = 0, argcount = 1;
1760 struct field *argtypes;
1761 struct type *mtype;
1762
1763 /* Make sure we got back a function string that we can use. */
1764 if (demangled_name)
1765 p = strchr (demangled_name, '(');
1766 else
1767 p = NULL;
1768
1769 if (demangled_name == NULL || p == NULL)
1770 error (_("Internal: Cannot demangle mangled name `%s'."),
1771 mangled_name);
1772
1773 /* Now, read in the parameters that define this type. */
1774 p += 1;
1775 argtypetext = p;
1776 while (*p)
1777 {
1778 if (*p == '(' || *p == '<')
1779 {
1780 depth += 1;
1781 }
1782 else if (*p == ')' || *p == '>')
1783 {
1784 depth -= 1;
1785 }
1786 else if (*p == ',' && depth == 0)
1787 {
1788 argcount += 1;
1789 }
1790
1791 p += 1;
1792 }
1793
1794 /* If we read one argument and it was ``void'', don't count it. */
1795 if (strncmp (argtypetext, "(void)", 6) == 0)
1796 argcount -= 1;
1797
1798 /* We need one extra slot, for the THIS pointer. */
1799
1800 argtypes = (struct field *)
1801 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1802 p = argtypetext;
1803
1804 /* Add THIS pointer for non-static methods. */
1805 f = TYPE_FN_FIELDLIST1 (type, method_id);
1806 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1807 argcount = 0;
1808 else
1809 {
1810 argtypes[0].type = lookup_pointer_type (type);
1811 argcount = 1;
1812 }
1813
1814 if (*p != ')') /* () means no args, skip while. */
1815 {
1816 depth = 0;
1817 while (*p)
1818 {
1819 if (depth <= 0 && (*p == ',' || *p == ')'))
1820 {
1821 /* Avoid parsing of ellipsis, they will be handled below.
1822 Also avoid ``void'' as above. */
1823 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1824 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1825 {
1826 argtypes[argcount].type =
1827 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1828 argcount += 1;
1829 }
1830 argtypetext = p + 1;
1831 }
1832
1833 if (*p == '(' || *p == '<')
1834 {
1835 depth += 1;
1836 }
1837 else if (*p == ')' || *p == '>')
1838 {
1839 depth -= 1;
1840 }
1841
1842 p += 1;
1843 }
1844 }
1845
1846 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1847
1848 /* Now update the old "stub" type into a real type. */
1849 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1850 TYPE_DOMAIN_TYPE (mtype) = type;
1851 TYPE_FIELDS (mtype) = argtypes;
1852 TYPE_NFIELDS (mtype) = argcount;
1853 TYPE_STUB (mtype) = 0;
1854 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1855 if (p[-2] == '.')
1856 TYPE_VARARGS (mtype) = 1;
1857
1858 xfree (demangled_name);
1859 }
1860
1861 /* This is the external interface to check_stub_method, above. This
1862 function unstubs all of the signatures for TYPE's METHOD_ID method
1863 name. After calling this function TYPE_FN_FIELD_STUB will be
1864 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1865 correct.
1866
1867 This function unfortunately can not die until stabs do. */
1868
1869 void
1870 check_stub_method_group (struct type *type, int method_id)
1871 {
1872 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1873 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1874 int j, found_stub = 0;
1875
1876 for (j = 0; j < len; j++)
1877 if (TYPE_FN_FIELD_STUB (f, j))
1878 {
1879 found_stub = 1;
1880 check_stub_method (type, method_id, j);
1881 }
1882
1883 /* GNU v3 methods with incorrect names were corrected when we read
1884 in type information, because it was cheaper to do it then. The
1885 only GNU v2 methods with incorrect method names are operators and
1886 destructors; destructors were also corrected when we read in type
1887 information.
1888
1889 Therefore the only thing we need to handle here are v2 operator
1890 names. */
1891 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1892 {
1893 int ret;
1894 char dem_opname[256];
1895
1896 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1897 method_id),
1898 dem_opname, DMGL_ANSI);
1899 if (!ret)
1900 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1901 method_id),
1902 dem_opname, 0);
1903 if (ret)
1904 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1905 }
1906 }
1907
1908 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1909 const struct cplus_struct_type cplus_struct_default = { };
1910
1911 void
1912 allocate_cplus_struct_type (struct type *type)
1913 {
1914 if (HAVE_CPLUS_STRUCT (type))
1915 /* Structure was already allocated. Nothing more to do. */
1916 return;
1917
1918 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1919 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1920 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1921 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1922 }
1923
1924 const struct gnat_aux_type gnat_aux_default =
1925 { NULL };
1926
1927 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1928 and allocate the associated gnat-specific data. The gnat-specific
1929 data is also initialized to gnat_aux_default. */
1930
1931 void
1932 allocate_gnat_aux_type (struct type *type)
1933 {
1934 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1935 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1936 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1937 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1938 }
1939
1940 /* Helper function to initialize the standard scalar types.
1941
1942 If NAME is non-NULL, then we make a copy of the string pointed
1943 to by name in the objfile_obstack for that objfile, and initialize
1944 the type name to that copy. There are places (mipsread.c in particular),
1945 where init_type is called with a NULL value for NAME). */
1946
1947 struct type *
1948 init_type (enum type_code code, int length, int flags,
1949 char *name, struct objfile *objfile)
1950 {
1951 struct type *type;
1952
1953 type = alloc_type (objfile);
1954 TYPE_CODE (type) = code;
1955 TYPE_LENGTH (type) = length;
1956
1957 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1958 if (flags & TYPE_FLAG_UNSIGNED)
1959 TYPE_UNSIGNED (type) = 1;
1960 if (flags & TYPE_FLAG_NOSIGN)
1961 TYPE_NOSIGN (type) = 1;
1962 if (flags & TYPE_FLAG_STUB)
1963 TYPE_STUB (type) = 1;
1964 if (flags & TYPE_FLAG_TARGET_STUB)
1965 TYPE_TARGET_STUB (type) = 1;
1966 if (flags & TYPE_FLAG_STATIC)
1967 TYPE_STATIC (type) = 1;
1968 if (flags & TYPE_FLAG_PROTOTYPED)
1969 TYPE_PROTOTYPED (type) = 1;
1970 if (flags & TYPE_FLAG_INCOMPLETE)
1971 TYPE_INCOMPLETE (type) = 1;
1972 if (flags & TYPE_FLAG_VARARGS)
1973 TYPE_VARARGS (type) = 1;
1974 if (flags & TYPE_FLAG_VECTOR)
1975 TYPE_VECTOR (type) = 1;
1976 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1977 TYPE_STUB_SUPPORTED (type) = 1;
1978 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1979 TYPE_FIXED_INSTANCE (type) = 1;
1980 if (flags & TYPE_FLAG_GNU_IFUNC)
1981 TYPE_GNU_IFUNC (type) = 1;
1982
1983 if (name)
1984 TYPE_NAME (type) = obsavestring (name, strlen (name),
1985 &objfile->objfile_obstack);
1986
1987 /* C++ fancies. */
1988
1989 if (name && strcmp (name, "char") == 0)
1990 TYPE_NOSIGN (type) = 1;
1991
1992 switch (code)
1993 {
1994 case TYPE_CODE_STRUCT:
1995 case TYPE_CODE_UNION:
1996 case TYPE_CODE_NAMESPACE:
1997 INIT_CPLUS_SPECIFIC (type);
1998 break;
1999 case TYPE_CODE_FLT:
2000 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2001 break;
2002 case TYPE_CODE_FUNC:
2003 INIT_FUNC_SPECIFIC (type);
2004 break;
2005 }
2006 return type;
2007 }
2008 \f
2009 /* Queries on types. */
2010
2011 int
2012 can_dereference (struct type *t)
2013 {
2014 /* FIXME: Should we return true for references as well as
2015 pointers? */
2016 CHECK_TYPEDEF (t);
2017 return
2018 (t != NULL
2019 && TYPE_CODE (t) == TYPE_CODE_PTR
2020 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2021 }
2022
2023 int
2024 is_integral_type (struct type *t)
2025 {
2026 CHECK_TYPEDEF (t);
2027 return
2028 ((t != NULL)
2029 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2030 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2031 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2032 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2033 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2034 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2035 }
2036
2037 /* Return true if TYPE is scalar. */
2038
2039 static int
2040 is_scalar_type (struct type *type)
2041 {
2042 CHECK_TYPEDEF (type);
2043
2044 switch (TYPE_CODE (type))
2045 {
2046 case TYPE_CODE_ARRAY:
2047 case TYPE_CODE_STRUCT:
2048 case TYPE_CODE_UNION:
2049 case TYPE_CODE_SET:
2050 case TYPE_CODE_STRING:
2051 return 0;
2052 default:
2053 return 1;
2054 }
2055 }
2056
2057 /* Return true if T is scalar, or a composite type which in practice has
2058 the memory layout of a scalar type. E.g., an array or struct with only
2059 one scalar element inside it, or a union with only scalar elements. */
2060
2061 int
2062 is_scalar_type_recursive (struct type *t)
2063 {
2064 CHECK_TYPEDEF (t);
2065
2066 if (is_scalar_type (t))
2067 return 1;
2068 /* Are we dealing with an array or string of known dimensions? */
2069 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2070 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2071 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2072 {
2073 LONGEST low_bound, high_bound;
2074 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2075
2076 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2077
2078 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2079 }
2080 /* Are we dealing with a struct with one element? */
2081 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2082 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2083 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2084 {
2085 int i, n = TYPE_NFIELDS (t);
2086
2087 /* If all elements of the union are scalar, then the union is scalar. */
2088 for (i = 0; i < n; i++)
2089 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2090 return 0;
2091
2092 return 1;
2093 }
2094
2095 return 0;
2096 }
2097
2098 /* A helper function which returns true if types A and B represent the
2099 "same" class type. This is true if the types have the same main
2100 type, or the same name. */
2101
2102 int
2103 class_types_same_p (const struct type *a, const struct type *b)
2104 {
2105 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2106 || (TYPE_NAME (a) && TYPE_NAME (b)
2107 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2108 }
2109
2110 /* If BASE is an ancestor of DCLASS return the distance between them.
2111 otherwise return -1;
2112 eg:
2113
2114 class A {};
2115 class B: public A {};
2116 class C: public B {};
2117 class D: C {};
2118
2119 distance_to_ancestor (A, A, 0) = 0
2120 distance_to_ancestor (A, B, 0) = 1
2121 distance_to_ancestor (A, C, 0) = 2
2122 distance_to_ancestor (A, D, 0) = 3
2123
2124 If PUBLIC is 1 then only public ancestors are considered,
2125 and the function returns the distance only if BASE is a public ancestor
2126 of DCLASS.
2127 Eg:
2128
2129 distance_to_ancestor (A, D, 1) = -1. */
2130
2131 static int
2132 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2133 {
2134 int i;
2135 int d;
2136
2137 CHECK_TYPEDEF (base);
2138 CHECK_TYPEDEF (dclass);
2139
2140 if (class_types_same_p (base, dclass))
2141 return 0;
2142
2143 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2144 {
2145 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2146 continue;
2147
2148 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2149 if (d >= 0)
2150 return 1 + d;
2151 }
2152
2153 return -1;
2154 }
2155
2156 /* Check whether BASE is an ancestor or base class or DCLASS
2157 Return 1 if so, and 0 if not.
2158 Note: If BASE and DCLASS are of the same type, this function
2159 will return 1. So for some class A, is_ancestor (A, A) will
2160 return 1. */
2161
2162 int
2163 is_ancestor (struct type *base, struct type *dclass)
2164 {
2165 return distance_to_ancestor (base, dclass, 0) >= 0;
2166 }
2167
2168 /* Like is_ancestor, but only returns true when BASE is a public
2169 ancestor of DCLASS. */
2170
2171 int
2172 is_public_ancestor (struct type *base, struct type *dclass)
2173 {
2174 return distance_to_ancestor (base, dclass, 1) >= 0;
2175 }
2176
2177 /* A helper function for is_unique_ancestor. */
2178
2179 static int
2180 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2181 int *offset,
2182 const gdb_byte *valaddr, int embedded_offset,
2183 CORE_ADDR address, struct value *val)
2184 {
2185 int i, count = 0;
2186
2187 CHECK_TYPEDEF (base);
2188 CHECK_TYPEDEF (dclass);
2189
2190 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2191 {
2192 struct type *iter;
2193 int this_offset;
2194
2195 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2196
2197 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2198 address, val);
2199
2200 if (class_types_same_p (base, iter))
2201 {
2202 /* If this is the first subclass, set *OFFSET and set count
2203 to 1. Otherwise, if this is at the same offset as
2204 previous instances, do nothing. Otherwise, increment
2205 count. */
2206 if (*offset == -1)
2207 {
2208 *offset = this_offset;
2209 count = 1;
2210 }
2211 else if (this_offset == *offset)
2212 {
2213 /* Nothing. */
2214 }
2215 else
2216 ++count;
2217 }
2218 else
2219 count += is_unique_ancestor_worker (base, iter, offset,
2220 valaddr,
2221 embedded_offset + this_offset,
2222 address, val);
2223 }
2224
2225 return count;
2226 }
2227
2228 /* Like is_ancestor, but only returns true if BASE is a unique base
2229 class of the type of VAL. */
2230
2231 int
2232 is_unique_ancestor (struct type *base, struct value *val)
2233 {
2234 int offset = -1;
2235
2236 return is_unique_ancestor_worker (base, value_type (val), &offset,
2237 value_contents_for_printing (val),
2238 value_embedded_offset (val),
2239 value_address (val), val) == 1;
2240 }
2241
2242 \f
2243 /* Overload resolution. */
2244
2245 /* Return the sum of the rank of A with the rank of B. */
2246
2247 struct rank
2248 sum_ranks (struct rank a, struct rank b)
2249 {
2250 struct rank c;
2251 c.rank = a.rank + b.rank;
2252 c.subrank = a.subrank + b.subrank;
2253 return c;
2254 }
2255
2256 /* Compare rank A and B and return:
2257 0 if a = b
2258 1 if a is better than b
2259 -1 if b is better than a. */
2260
2261 int
2262 compare_ranks (struct rank a, struct rank b)
2263 {
2264 if (a.rank == b.rank)
2265 {
2266 if (a.subrank == b.subrank)
2267 return 0;
2268 if (a.subrank < b.subrank)
2269 return 1;
2270 if (a.subrank > b.subrank)
2271 return -1;
2272 }
2273
2274 if (a.rank < b.rank)
2275 return 1;
2276
2277 /* a.rank > b.rank */
2278 return -1;
2279 }
2280
2281 /* Functions for overload resolution begin here. */
2282
2283 /* Compare two badness vectors A and B and return the result.
2284 0 => A and B are identical
2285 1 => A and B are incomparable
2286 2 => A is better than B
2287 3 => A is worse than B */
2288
2289 int
2290 compare_badness (struct badness_vector *a, struct badness_vector *b)
2291 {
2292 int i;
2293 int tmp;
2294 short found_pos = 0; /* any positives in c? */
2295 short found_neg = 0; /* any negatives in c? */
2296
2297 /* differing lengths => incomparable */
2298 if (a->length != b->length)
2299 return 1;
2300
2301 /* Subtract b from a */
2302 for (i = 0; i < a->length; i++)
2303 {
2304 tmp = compare_ranks (b->rank[i], a->rank[i]);
2305 if (tmp > 0)
2306 found_pos = 1;
2307 else if (tmp < 0)
2308 found_neg = 1;
2309 }
2310
2311 if (found_pos)
2312 {
2313 if (found_neg)
2314 return 1; /* incomparable */
2315 else
2316 return 3; /* A > B */
2317 }
2318 else
2319 /* no positives */
2320 {
2321 if (found_neg)
2322 return 2; /* A < B */
2323 else
2324 return 0; /* A == B */
2325 }
2326 }
2327
2328 /* Rank a function by comparing its parameter types (PARMS, length
2329 NPARMS), to the types of an argument list (ARGS, length NARGS).
2330 Return a pointer to a badness vector. This has NARGS + 1
2331 entries. */
2332
2333 struct badness_vector *
2334 rank_function (struct type **parms, int nparms,
2335 struct value **args, int nargs)
2336 {
2337 int i;
2338 struct badness_vector *bv;
2339 int min_len = nparms < nargs ? nparms : nargs;
2340
2341 bv = xmalloc (sizeof (struct badness_vector));
2342 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2343 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2344
2345 /* First compare the lengths of the supplied lists.
2346 If there is a mismatch, set it to a high value. */
2347
2348 /* pai/1997-06-03 FIXME: when we have debug info about default
2349 arguments and ellipsis parameter lists, we should consider those
2350 and rank the length-match more finely. */
2351
2352 LENGTH_MATCH (bv) = (nargs != nparms)
2353 ? LENGTH_MISMATCH_BADNESS
2354 : EXACT_MATCH_BADNESS;
2355
2356 /* Now rank all the parameters of the candidate function. */
2357 for (i = 1; i <= min_len; i++)
2358 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2359 args[i - 1]);
2360
2361 /* If more arguments than parameters, add dummy entries. */
2362 for (i = min_len + 1; i <= nargs; i++)
2363 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2364
2365 return bv;
2366 }
2367
2368 /* Compare the names of two integer types, assuming that any sign
2369 qualifiers have been checked already. We do it this way because
2370 there may be an "int" in the name of one of the types. */
2371
2372 static int
2373 integer_types_same_name_p (const char *first, const char *second)
2374 {
2375 int first_p, second_p;
2376
2377 /* If both are shorts, return 1; if neither is a short, keep
2378 checking. */
2379 first_p = (strstr (first, "short") != NULL);
2380 second_p = (strstr (second, "short") != NULL);
2381 if (first_p && second_p)
2382 return 1;
2383 if (first_p || second_p)
2384 return 0;
2385
2386 /* Likewise for long. */
2387 first_p = (strstr (first, "long") != NULL);
2388 second_p = (strstr (second, "long") != NULL);
2389 if (first_p && second_p)
2390 return 1;
2391 if (first_p || second_p)
2392 return 0;
2393
2394 /* Likewise for char. */
2395 first_p = (strstr (first, "char") != NULL);
2396 second_p = (strstr (second, "char") != NULL);
2397 if (first_p && second_p)
2398 return 1;
2399 if (first_p || second_p)
2400 return 0;
2401
2402 /* They must both be ints. */
2403 return 1;
2404 }
2405
2406 /* Compares type A to type B returns 1 if the represent the same type
2407 0 otherwise. */
2408
2409 static int
2410 types_equal (struct type *a, struct type *b)
2411 {
2412 /* Identical type pointers. */
2413 /* However, this still doesn't catch all cases of same type for b
2414 and a. The reason is that builtin types are different from
2415 the same ones constructed from the object. */
2416 if (a == b)
2417 return 1;
2418
2419 /* Resolve typedefs */
2420 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2421 a = check_typedef (a);
2422 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2423 b = check_typedef (b);
2424
2425 /* If after resolving typedefs a and b are not of the same type
2426 code then they are not equal. */
2427 if (TYPE_CODE (a) != TYPE_CODE (b))
2428 return 0;
2429
2430 /* If a and b are both pointers types or both reference types then
2431 they are equal of the same type iff the objects they refer to are
2432 of the same type. */
2433 if (TYPE_CODE (a) == TYPE_CODE_PTR
2434 || TYPE_CODE (a) == TYPE_CODE_REF)
2435 return types_equal (TYPE_TARGET_TYPE (a),
2436 TYPE_TARGET_TYPE (b));
2437
2438 /* Well, damnit, if the names are exactly the same, I'll say they
2439 are exactly the same. This happens when we generate method
2440 stubs. The types won't point to the same address, but they
2441 really are the same. */
2442
2443 if (TYPE_NAME (a) && TYPE_NAME (b)
2444 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2445 return 1;
2446
2447 /* Check if identical after resolving typedefs. */
2448 if (a == b)
2449 return 1;
2450
2451 return 0;
2452 }
2453
2454 /* Compare one type (PARM) for compatibility with another (ARG).
2455 * PARM is intended to be the parameter type of a function; and
2456 * ARG is the supplied argument's type. This function tests if
2457 * the latter can be converted to the former.
2458 * VALUE is the argument's value or NULL if none (or called recursively)
2459 *
2460 * Return 0 if they are identical types;
2461 * Otherwise, return an integer which corresponds to how compatible
2462 * PARM is to ARG. The higher the return value, the worse the match.
2463 * Generally the "bad" conversions are all uniformly assigned a 100. */
2464
2465 struct rank
2466 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2467 {
2468 struct rank rank = {0,0};
2469
2470 if (types_equal (parm, arg))
2471 return EXACT_MATCH_BADNESS;
2472
2473 /* Resolve typedefs */
2474 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2475 parm = check_typedef (parm);
2476 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2477 arg = check_typedef (arg);
2478
2479 /* See through references, since we can almost make non-references
2480 references. */
2481 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2482 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2483 REFERENCE_CONVERSION_BADNESS));
2484 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2485 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2486 REFERENCE_CONVERSION_BADNESS));
2487 if (overload_debug)
2488 /* Debugging only. */
2489 fprintf_filtered (gdb_stderr,
2490 "------ Arg is %s [%d], parm is %s [%d]\n",
2491 TYPE_NAME (arg), TYPE_CODE (arg),
2492 TYPE_NAME (parm), TYPE_CODE (parm));
2493
2494 /* x -> y means arg of type x being supplied for parameter of type y. */
2495
2496 switch (TYPE_CODE (parm))
2497 {
2498 case TYPE_CODE_PTR:
2499 switch (TYPE_CODE (arg))
2500 {
2501 case TYPE_CODE_PTR:
2502
2503 /* Allowed pointer conversions are:
2504 (a) pointer to void-pointer conversion. */
2505 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2506 return VOID_PTR_CONVERSION_BADNESS;
2507
2508 /* (b) pointer to ancestor-pointer conversion. */
2509 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2510 TYPE_TARGET_TYPE (arg),
2511 0);
2512 if (rank.subrank >= 0)
2513 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2514
2515 return INCOMPATIBLE_TYPE_BADNESS;
2516 case TYPE_CODE_ARRAY:
2517 if (types_equal (TYPE_TARGET_TYPE (parm),
2518 TYPE_TARGET_TYPE (arg)))
2519 return EXACT_MATCH_BADNESS;
2520 return INCOMPATIBLE_TYPE_BADNESS;
2521 case TYPE_CODE_FUNC:
2522 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2523 case TYPE_CODE_INT:
2524 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2525 {
2526 if (value_as_long (value) == 0)
2527 {
2528 /* Null pointer conversion: allow it to be cast to a pointer.
2529 [4.10.1 of C++ standard draft n3290] */
2530 return NULL_POINTER_CONVERSION_BADNESS;
2531 }
2532 else
2533 {
2534 /* If type checking is disabled, allow the conversion. */
2535 if (!strict_type_checking)
2536 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2537 }
2538 }
2539 /* fall through */
2540 case TYPE_CODE_ENUM:
2541 case TYPE_CODE_FLAGS:
2542 case TYPE_CODE_CHAR:
2543 case TYPE_CODE_RANGE:
2544 case TYPE_CODE_BOOL:
2545 default:
2546 return INCOMPATIBLE_TYPE_BADNESS;
2547 }
2548 case TYPE_CODE_ARRAY:
2549 switch (TYPE_CODE (arg))
2550 {
2551 case TYPE_CODE_PTR:
2552 case TYPE_CODE_ARRAY:
2553 return rank_one_type (TYPE_TARGET_TYPE (parm),
2554 TYPE_TARGET_TYPE (arg), NULL);
2555 default:
2556 return INCOMPATIBLE_TYPE_BADNESS;
2557 }
2558 case TYPE_CODE_FUNC:
2559 switch (TYPE_CODE (arg))
2560 {
2561 case TYPE_CODE_PTR: /* funcptr -> func */
2562 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2563 default:
2564 return INCOMPATIBLE_TYPE_BADNESS;
2565 }
2566 case TYPE_CODE_INT:
2567 switch (TYPE_CODE (arg))
2568 {
2569 case TYPE_CODE_INT:
2570 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2571 {
2572 /* Deal with signed, unsigned, and plain chars and
2573 signed and unsigned ints. */
2574 if (TYPE_NOSIGN (parm))
2575 {
2576 /* This case only for character types. */
2577 if (TYPE_NOSIGN (arg))
2578 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2579 else /* signed/unsigned char -> plain char */
2580 return INTEGER_CONVERSION_BADNESS;
2581 }
2582 else if (TYPE_UNSIGNED (parm))
2583 {
2584 if (TYPE_UNSIGNED (arg))
2585 {
2586 /* unsigned int -> unsigned int, or
2587 unsigned long -> unsigned long */
2588 if (integer_types_same_name_p (TYPE_NAME (parm),
2589 TYPE_NAME (arg)))
2590 return EXACT_MATCH_BADNESS;
2591 else if (integer_types_same_name_p (TYPE_NAME (arg),
2592 "int")
2593 && integer_types_same_name_p (TYPE_NAME (parm),
2594 "long"))
2595 /* unsigned int -> unsigned long */
2596 return INTEGER_PROMOTION_BADNESS;
2597 else
2598 /* unsigned long -> unsigned int */
2599 return INTEGER_CONVERSION_BADNESS;
2600 }
2601 else
2602 {
2603 if (integer_types_same_name_p (TYPE_NAME (arg),
2604 "long")
2605 && integer_types_same_name_p (TYPE_NAME (parm),
2606 "int"))
2607 /* signed long -> unsigned int */
2608 return INTEGER_CONVERSION_BADNESS;
2609 else
2610 /* signed int/long -> unsigned int/long */
2611 return INTEGER_CONVERSION_BADNESS;
2612 }
2613 }
2614 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2615 {
2616 if (integer_types_same_name_p (TYPE_NAME (parm),
2617 TYPE_NAME (arg)))
2618 return EXACT_MATCH_BADNESS;
2619 else if (integer_types_same_name_p (TYPE_NAME (arg),
2620 "int")
2621 && integer_types_same_name_p (TYPE_NAME (parm),
2622 "long"))
2623 return INTEGER_PROMOTION_BADNESS;
2624 else
2625 return INTEGER_CONVERSION_BADNESS;
2626 }
2627 else
2628 return INTEGER_CONVERSION_BADNESS;
2629 }
2630 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2631 return INTEGER_PROMOTION_BADNESS;
2632 else
2633 return INTEGER_CONVERSION_BADNESS;
2634 case TYPE_CODE_ENUM:
2635 case TYPE_CODE_FLAGS:
2636 case TYPE_CODE_CHAR:
2637 case TYPE_CODE_RANGE:
2638 case TYPE_CODE_BOOL:
2639 return INTEGER_PROMOTION_BADNESS;
2640 case TYPE_CODE_FLT:
2641 return INT_FLOAT_CONVERSION_BADNESS;
2642 case TYPE_CODE_PTR:
2643 return NS_POINTER_CONVERSION_BADNESS;
2644 default:
2645 return INCOMPATIBLE_TYPE_BADNESS;
2646 }
2647 break;
2648 case TYPE_CODE_ENUM:
2649 switch (TYPE_CODE (arg))
2650 {
2651 case TYPE_CODE_INT:
2652 case TYPE_CODE_CHAR:
2653 case TYPE_CODE_RANGE:
2654 case TYPE_CODE_BOOL:
2655 case TYPE_CODE_ENUM:
2656 return INTEGER_CONVERSION_BADNESS;
2657 case TYPE_CODE_FLT:
2658 return INT_FLOAT_CONVERSION_BADNESS;
2659 default:
2660 return INCOMPATIBLE_TYPE_BADNESS;
2661 }
2662 break;
2663 case TYPE_CODE_CHAR:
2664 switch (TYPE_CODE (arg))
2665 {
2666 case TYPE_CODE_RANGE:
2667 case TYPE_CODE_BOOL:
2668 case TYPE_CODE_ENUM:
2669 return INTEGER_CONVERSION_BADNESS;
2670 case TYPE_CODE_FLT:
2671 return INT_FLOAT_CONVERSION_BADNESS;
2672 case TYPE_CODE_INT:
2673 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2674 return INTEGER_CONVERSION_BADNESS;
2675 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2676 return INTEGER_PROMOTION_BADNESS;
2677 /* >>> !! else fall through !! <<< */
2678 case TYPE_CODE_CHAR:
2679 /* Deal with signed, unsigned, and plain chars for C++ and
2680 with int cases falling through from previous case. */
2681 if (TYPE_NOSIGN (parm))
2682 {
2683 if (TYPE_NOSIGN (arg))
2684 return EXACT_MATCH_BADNESS;
2685 else
2686 return INTEGER_CONVERSION_BADNESS;
2687 }
2688 else if (TYPE_UNSIGNED (parm))
2689 {
2690 if (TYPE_UNSIGNED (arg))
2691 return EXACT_MATCH_BADNESS;
2692 else
2693 return INTEGER_PROMOTION_BADNESS;
2694 }
2695 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2696 return EXACT_MATCH_BADNESS;
2697 else
2698 return INTEGER_CONVERSION_BADNESS;
2699 default:
2700 return INCOMPATIBLE_TYPE_BADNESS;
2701 }
2702 break;
2703 case TYPE_CODE_RANGE:
2704 switch (TYPE_CODE (arg))
2705 {
2706 case TYPE_CODE_INT:
2707 case TYPE_CODE_CHAR:
2708 case TYPE_CODE_RANGE:
2709 case TYPE_CODE_BOOL:
2710 case TYPE_CODE_ENUM:
2711 return INTEGER_CONVERSION_BADNESS;
2712 case TYPE_CODE_FLT:
2713 return INT_FLOAT_CONVERSION_BADNESS;
2714 default:
2715 return INCOMPATIBLE_TYPE_BADNESS;
2716 }
2717 break;
2718 case TYPE_CODE_BOOL:
2719 switch (TYPE_CODE (arg))
2720 {
2721 /* n3290 draft, section 4.12.1 (conv.bool):
2722
2723 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2724 pointer to member type can be converted to a prvalue of type
2725 bool. A zero value, null pointer value, or null member pointer
2726 value is converted to false; any other value is converted to
2727 true. A prvalue of type std::nullptr_t can be converted to a
2728 prvalue of type bool; the resulting value is false." */
2729 case TYPE_CODE_INT:
2730 case TYPE_CODE_CHAR:
2731 case TYPE_CODE_ENUM:
2732 case TYPE_CODE_FLT:
2733 case TYPE_CODE_MEMBERPTR:
2734 case TYPE_CODE_PTR:
2735 return BOOL_CONVERSION_BADNESS;
2736 case TYPE_CODE_RANGE:
2737 return INCOMPATIBLE_TYPE_BADNESS;
2738 case TYPE_CODE_BOOL:
2739 return EXACT_MATCH_BADNESS;
2740 default:
2741 return INCOMPATIBLE_TYPE_BADNESS;
2742 }
2743 break;
2744 case TYPE_CODE_FLT:
2745 switch (TYPE_CODE (arg))
2746 {
2747 case TYPE_CODE_FLT:
2748 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2749 return FLOAT_PROMOTION_BADNESS;
2750 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2751 return EXACT_MATCH_BADNESS;
2752 else
2753 return FLOAT_CONVERSION_BADNESS;
2754 case TYPE_CODE_INT:
2755 case TYPE_CODE_BOOL:
2756 case TYPE_CODE_ENUM:
2757 case TYPE_CODE_RANGE:
2758 case TYPE_CODE_CHAR:
2759 return INT_FLOAT_CONVERSION_BADNESS;
2760 default:
2761 return INCOMPATIBLE_TYPE_BADNESS;
2762 }
2763 break;
2764 case TYPE_CODE_COMPLEX:
2765 switch (TYPE_CODE (arg))
2766 { /* Strictly not needed for C++, but... */
2767 case TYPE_CODE_FLT:
2768 return FLOAT_PROMOTION_BADNESS;
2769 case TYPE_CODE_COMPLEX:
2770 return EXACT_MATCH_BADNESS;
2771 default:
2772 return INCOMPATIBLE_TYPE_BADNESS;
2773 }
2774 break;
2775 case TYPE_CODE_STRUCT:
2776 /* currently same as TYPE_CODE_CLASS. */
2777 switch (TYPE_CODE (arg))
2778 {
2779 case TYPE_CODE_STRUCT:
2780 /* Check for derivation */
2781 rank.subrank = distance_to_ancestor (parm, arg, 0);
2782 if (rank.subrank >= 0)
2783 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2784 /* else fall through */
2785 default:
2786 return INCOMPATIBLE_TYPE_BADNESS;
2787 }
2788 break;
2789 case TYPE_CODE_UNION:
2790 switch (TYPE_CODE (arg))
2791 {
2792 case TYPE_CODE_UNION:
2793 default:
2794 return INCOMPATIBLE_TYPE_BADNESS;
2795 }
2796 break;
2797 case TYPE_CODE_MEMBERPTR:
2798 switch (TYPE_CODE (arg))
2799 {
2800 default:
2801 return INCOMPATIBLE_TYPE_BADNESS;
2802 }
2803 break;
2804 case TYPE_CODE_METHOD:
2805 switch (TYPE_CODE (arg))
2806 {
2807
2808 default:
2809 return INCOMPATIBLE_TYPE_BADNESS;
2810 }
2811 break;
2812 case TYPE_CODE_REF:
2813 switch (TYPE_CODE (arg))
2814 {
2815
2816 default:
2817 return INCOMPATIBLE_TYPE_BADNESS;
2818 }
2819
2820 break;
2821 case TYPE_CODE_SET:
2822 switch (TYPE_CODE (arg))
2823 {
2824 /* Not in C++ */
2825 case TYPE_CODE_SET:
2826 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2827 TYPE_FIELD_TYPE (arg, 0), NULL);
2828 default:
2829 return INCOMPATIBLE_TYPE_BADNESS;
2830 }
2831 break;
2832 case TYPE_CODE_VOID:
2833 default:
2834 return INCOMPATIBLE_TYPE_BADNESS;
2835 } /* switch (TYPE_CODE (arg)) */
2836 }
2837
2838 /* End of functions for overload resolution. */
2839 \f
2840 /* Routines to pretty-print types. */
2841
2842 static void
2843 print_bit_vector (B_TYPE *bits, int nbits)
2844 {
2845 int bitno;
2846
2847 for (bitno = 0; bitno < nbits; bitno++)
2848 {
2849 if ((bitno % 8) == 0)
2850 {
2851 puts_filtered (" ");
2852 }
2853 if (B_TST (bits, bitno))
2854 printf_filtered (("1"));
2855 else
2856 printf_filtered (("0"));
2857 }
2858 }
2859
2860 /* Note the first arg should be the "this" pointer, we may not want to
2861 include it since we may get into a infinitely recursive
2862 situation. */
2863
2864 static void
2865 print_arg_types (struct field *args, int nargs, int spaces)
2866 {
2867 if (args != NULL)
2868 {
2869 int i;
2870
2871 for (i = 0; i < nargs; i++)
2872 recursive_dump_type (args[i].type, spaces + 2);
2873 }
2874 }
2875
2876 int
2877 field_is_static (struct field *f)
2878 {
2879 /* "static" fields are the fields whose location is not relative
2880 to the address of the enclosing struct. It would be nice to
2881 have a dedicated flag that would be set for static fields when
2882 the type is being created. But in practice, checking the field
2883 loc_kind should give us an accurate answer. */
2884 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2885 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2886 }
2887
2888 static void
2889 dump_fn_fieldlists (struct type *type, int spaces)
2890 {
2891 int method_idx;
2892 int overload_idx;
2893 struct fn_field *f;
2894
2895 printfi_filtered (spaces, "fn_fieldlists ");
2896 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2897 printf_filtered ("\n");
2898 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2899 {
2900 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2901 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2902 method_idx,
2903 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2904 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2905 gdb_stdout);
2906 printf_filtered (_(") length %d\n"),
2907 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2908 for (overload_idx = 0;
2909 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2910 overload_idx++)
2911 {
2912 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2913 overload_idx,
2914 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2915 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2916 gdb_stdout);
2917 printf_filtered (")\n");
2918 printfi_filtered (spaces + 8, "type ");
2919 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2920 gdb_stdout);
2921 printf_filtered ("\n");
2922
2923 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2924 spaces + 8 + 2);
2925
2926 printfi_filtered (spaces + 8, "args ");
2927 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2928 gdb_stdout);
2929 printf_filtered ("\n");
2930
2931 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2932 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2933 overload_idx)),
2934 spaces);
2935 printfi_filtered (spaces + 8, "fcontext ");
2936 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2937 gdb_stdout);
2938 printf_filtered ("\n");
2939
2940 printfi_filtered (spaces + 8, "is_const %d\n",
2941 TYPE_FN_FIELD_CONST (f, overload_idx));
2942 printfi_filtered (spaces + 8, "is_volatile %d\n",
2943 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2944 printfi_filtered (spaces + 8, "is_private %d\n",
2945 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2946 printfi_filtered (spaces + 8, "is_protected %d\n",
2947 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2948 printfi_filtered (spaces + 8, "is_stub %d\n",
2949 TYPE_FN_FIELD_STUB (f, overload_idx));
2950 printfi_filtered (spaces + 8, "voffset %u\n",
2951 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2952 }
2953 }
2954 }
2955
2956 static void
2957 print_cplus_stuff (struct type *type, int spaces)
2958 {
2959 printfi_filtered (spaces, "n_baseclasses %d\n",
2960 TYPE_N_BASECLASSES (type));
2961 printfi_filtered (spaces, "nfn_fields %d\n",
2962 TYPE_NFN_FIELDS (type));
2963 if (TYPE_N_BASECLASSES (type) > 0)
2964 {
2965 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2966 TYPE_N_BASECLASSES (type));
2967 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2968 gdb_stdout);
2969 printf_filtered (")");
2970
2971 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2972 TYPE_N_BASECLASSES (type));
2973 puts_filtered ("\n");
2974 }
2975 if (TYPE_NFIELDS (type) > 0)
2976 {
2977 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2978 {
2979 printfi_filtered (spaces,
2980 "private_field_bits (%d bits at *",
2981 TYPE_NFIELDS (type));
2982 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2983 gdb_stdout);
2984 printf_filtered (")");
2985 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2986 TYPE_NFIELDS (type));
2987 puts_filtered ("\n");
2988 }
2989 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2990 {
2991 printfi_filtered (spaces,
2992 "protected_field_bits (%d bits at *",
2993 TYPE_NFIELDS (type));
2994 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2995 gdb_stdout);
2996 printf_filtered (")");
2997 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2998 TYPE_NFIELDS (type));
2999 puts_filtered ("\n");
3000 }
3001 }
3002 if (TYPE_NFN_FIELDS (type) > 0)
3003 {
3004 dump_fn_fieldlists (type, spaces);
3005 }
3006 }
3007
3008 /* Print the contents of the TYPE's type_specific union, assuming that
3009 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3010
3011 static void
3012 print_gnat_stuff (struct type *type, int spaces)
3013 {
3014 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3015
3016 recursive_dump_type (descriptive_type, spaces + 2);
3017 }
3018
3019 static struct obstack dont_print_type_obstack;
3020
3021 void
3022 recursive_dump_type (struct type *type, int spaces)
3023 {
3024 int idx;
3025
3026 if (spaces == 0)
3027 obstack_begin (&dont_print_type_obstack, 0);
3028
3029 if (TYPE_NFIELDS (type) > 0
3030 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3031 {
3032 struct type **first_dont_print
3033 = (struct type **) obstack_base (&dont_print_type_obstack);
3034
3035 int i = (struct type **)
3036 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3037
3038 while (--i >= 0)
3039 {
3040 if (type == first_dont_print[i])
3041 {
3042 printfi_filtered (spaces, "type node ");
3043 gdb_print_host_address (type, gdb_stdout);
3044 printf_filtered (_(" <same as already seen type>\n"));
3045 return;
3046 }
3047 }
3048
3049 obstack_ptr_grow (&dont_print_type_obstack, type);
3050 }
3051
3052 printfi_filtered (spaces, "type node ");
3053 gdb_print_host_address (type, gdb_stdout);
3054 printf_filtered ("\n");
3055 printfi_filtered (spaces, "name '%s' (",
3056 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3057 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3058 printf_filtered (")\n");
3059 printfi_filtered (spaces, "tagname '%s' (",
3060 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3061 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3062 printf_filtered (")\n");
3063 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3064 switch (TYPE_CODE (type))
3065 {
3066 case TYPE_CODE_UNDEF:
3067 printf_filtered ("(TYPE_CODE_UNDEF)");
3068 break;
3069 case TYPE_CODE_PTR:
3070 printf_filtered ("(TYPE_CODE_PTR)");
3071 break;
3072 case TYPE_CODE_ARRAY:
3073 printf_filtered ("(TYPE_CODE_ARRAY)");
3074 break;
3075 case TYPE_CODE_STRUCT:
3076 printf_filtered ("(TYPE_CODE_STRUCT)");
3077 break;
3078 case TYPE_CODE_UNION:
3079 printf_filtered ("(TYPE_CODE_UNION)");
3080 break;
3081 case TYPE_CODE_ENUM:
3082 printf_filtered ("(TYPE_CODE_ENUM)");
3083 break;
3084 case TYPE_CODE_FLAGS:
3085 printf_filtered ("(TYPE_CODE_FLAGS)");
3086 break;
3087 case TYPE_CODE_FUNC:
3088 printf_filtered ("(TYPE_CODE_FUNC)");
3089 break;
3090 case TYPE_CODE_INT:
3091 printf_filtered ("(TYPE_CODE_INT)");
3092 break;
3093 case TYPE_CODE_FLT:
3094 printf_filtered ("(TYPE_CODE_FLT)");
3095 break;
3096 case TYPE_CODE_VOID:
3097 printf_filtered ("(TYPE_CODE_VOID)");
3098 break;
3099 case TYPE_CODE_SET:
3100 printf_filtered ("(TYPE_CODE_SET)");
3101 break;
3102 case TYPE_CODE_RANGE:
3103 printf_filtered ("(TYPE_CODE_RANGE)");
3104 break;
3105 case TYPE_CODE_STRING:
3106 printf_filtered ("(TYPE_CODE_STRING)");
3107 break;
3108 case TYPE_CODE_ERROR:
3109 printf_filtered ("(TYPE_CODE_ERROR)");
3110 break;
3111 case TYPE_CODE_MEMBERPTR:
3112 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3113 break;
3114 case TYPE_CODE_METHODPTR:
3115 printf_filtered ("(TYPE_CODE_METHODPTR)");
3116 break;
3117 case TYPE_CODE_METHOD:
3118 printf_filtered ("(TYPE_CODE_METHOD)");
3119 break;
3120 case TYPE_CODE_REF:
3121 printf_filtered ("(TYPE_CODE_REF)");
3122 break;
3123 case TYPE_CODE_CHAR:
3124 printf_filtered ("(TYPE_CODE_CHAR)");
3125 break;
3126 case TYPE_CODE_BOOL:
3127 printf_filtered ("(TYPE_CODE_BOOL)");
3128 break;
3129 case TYPE_CODE_COMPLEX:
3130 printf_filtered ("(TYPE_CODE_COMPLEX)");
3131 break;
3132 case TYPE_CODE_TYPEDEF:
3133 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3134 break;
3135 case TYPE_CODE_NAMESPACE:
3136 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3137 break;
3138 default:
3139 printf_filtered ("(UNKNOWN TYPE CODE)");
3140 break;
3141 }
3142 puts_filtered ("\n");
3143 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3144 if (TYPE_OBJFILE_OWNED (type))
3145 {
3146 printfi_filtered (spaces, "objfile ");
3147 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3148 }
3149 else
3150 {
3151 printfi_filtered (spaces, "gdbarch ");
3152 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3153 }
3154 printf_filtered ("\n");
3155 printfi_filtered (spaces, "target_type ");
3156 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3157 printf_filtered ("\n");
3158 if (TYPE_TARGET_TYPE (type) != NULL)
3159 {
3160 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3161 }
3162 printfi_filtered (spaces, "pointer_type ");
3163 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3164 printf_filtered ("\n");
3165 printfi_filtered (spaces, "reference_type ");
3166 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3167 printf_filtered ("\n");
3168 printfi_filtered (spaces, "type_chain ");
3169 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3170 printf_filtered ("\n");
3171 printfi_filtered (spaces, "instance_flags 0x%x",
3172 TYPE_INSTANCE_FLAGS (type));
3173 if (TYPE_CONST (type))
3174 {
3175 puts_filtered (" TYPE_FLAG_CONST");
3176 }
3177 if (TYPE_VOLATILE (type))
3178 {
3179 puts_filtered (" TYPE_FLAG_VOLATILE");
3180 }
3181 if (TYPE_CODE_SPACE (type))
3182 {
3183 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3184 }
3185 if (TYPE_DATA_SPACE (type))
3186 {
3187 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3188 }
3189 if (TYPE_ADDRESS_CLASS_1 (type))
3190 {
3191 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3192 }
3193 if (TYPE_ADDRESS_CLASS_2 (type))
3194 {
3195 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3196 }
3197 puts_filtered ("\n");
3198
3199 printfi_filtered (spaces, "flags");
3200 if (TYPE_UNSIGNED (type))
3201 {
3202 puts_filtered (" TYPE_FLAG_UNSIGNED");
3203 }
3204 if (TYPE_NOSIGN (type))
3205 {
3206 puts_filtered (" TYPE_FLAG_NOSIGN");
3207 }
3208 if (TYPE_STUB (type))
3209 {
3210 puts_filtered (" TYPE_FLAG_STUB");
3211 }
3212 if (TYPE_TARGET_STUB (type))
3213 {
3214 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3215 }
3216 if (TYPE_STATIC (type))
3217 {
3218 puts_filtered (" TYPE_FLAG_STATIC");
3219 }
3220 if (TYPE_PROTOTYPED (type))
3221 {
3222 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3223 }
3224 if (TYPE_INCOMPLETE (type))
3225 {
3226 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3227 }
3228 if (TYPE_VARARGS (type))
3229 {
3230 puts_filtered (" TYPE_FLAG_VARARGS");
3231 }
3232 /* This is used for things like AltiVec registers on ppc. Gcc emits
3233 an attribute for the array type, which tells whether or not we
3234 have a vector, instead of a regular array. */
3235 if (TYPE_VECTOR (type))
3236 {
3237 puts_filtered (" TYPE_FLAG_VECTOR");
3238 }
3239 if (TYPE_FIXED_INSTANCE (type))
3240 {
3241 puts_filtered (" TYPE_FIXED_INSTANCE");
3242 }
3243 if (TYPE_STUB_SUPPORTED (type))
3244 {
3245 puts_filtered (" TYPE_STUB_SUPPORTED");
3246 }
3247 if (TYPE_NOTTEXT (type))
3248 {
3249 puts_filtered (" TYPE_NOTTEXT");
3250 }
3251 puts_filtered ("\n");
3252 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3253 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3254 puts_filtered ("\n");
3255 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3256 {
3257 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3258 printfi_filtered (spaces + 2,
3259 "[%d] enumval %s type ",
3260 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3261 else
3262 printfi_filtered (spaces + 2,
3263 "[%d] bitpos %d bitsize %d type ",
3264 idx, TYPE_FIELD_BITPOS (type, idx),
3265 TYPE_FIELD_BITSIZE (type, idx));
3266 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3267 printf_filtered (" name '%s' (",
3268 TYPE_FIELD_NAME (type, idx) != NULL
3269 ? TYPE_FIELD_NAME (type, idx)
3270 : "<NULL>");
3271 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3272 printf_filtered (")\n");
3273 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3274 {
3275 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3276 }
3277 }
3278 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3279 {
3280 printfi_filtered (spaces, "low %s%s high %s%s\n",
3281 plongest (TYPE_LOW_BOUND (type)),
3282 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3283 plongest (TYPE_HIGH_BOUND (type)),
3284 TYPE_HIGH_BOUND_UNDEFINED (type)
3285 ? " (undefined)" : "");
3286 }
3287 printfi_filtered (spaces, "vptr_basetype ");
3288 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3289 puts_filtered ("\n");
3290 if (TYPE_VPTR_BASETYPE (type) != NULL)
3291 {
3292 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3293 }
3294 printfi_filtered (spaces, "vptr_fieldno %d\n",
3295 TYPE_VPTR_FIELDNO (type));
3296
3297 switch (TYPE_SPECIFIC_FIELD (type))
3298 {
3299 case TYPE_SPECIFIC_CPLUS_STUFF:
3300 printfi_filtered (spaces, "cplus_stuff ");
3301 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3302 gdb_stdout);
3303 puts_filtered ("\n");
3304 print_cplus_stuff (type, spaces);
3305 break;
3306
3307 case TYPE_SPECIFIC_GNAT_STUFF:
3308 printfi_filtered (spaces, "gnat_stuff ");
3309 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3310 puts_filtered ("\n");
3311 print_gnat_stuff (type, spaces);
3312 break;
3313
3314 case TYPE_SPECIFIC_FLOATFORMAT:
3315 printfi_filtered (spaces, "floatformat ");
3316 if (TYPE_FLOATFORMAT (type) == NULL)
3317 puts_filtered ("(null)");
3318 else
3319 {
3320 puts_filtered ("{ ");
3321 if (TYPE_FLOATFORMAT (type)[0] == NULL
3322 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3323 puts_filtered ("(null)");
3324 else
3325 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3326
3327 puts_filtered (", ");
3328 if (TYPE_FLOATFORMAT (type)[1] == NULL
3329 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3330 puts_filtered ("(null)");
3331 else
3332 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3333
3334 puts_filtered (" }");
3335 }
3336 puts_filtered ("\n");
3337 break;
3338
3339 case TYPE_SPECIFIC_FUNC:
3340 printfi_filtered (spaces, "calling_convention %d\n",
3341 TYPE_CALLING_CONVENTION (type));
3342 /* tail_call_list is not printed. */
3343 break;
3344 }
3345
3346 if (spaces == 0)
3347 obstack_free (&dont_print_type_obstack, NULL);
3348 }
3349 \f
3350 /* Trivial helpers for the libiberty hash table, for mapping one
3351 type to another. */
3352
3353 struct type_pair
3354 {
3355 struct type *old, *new;
3356 };
3357
3358 static hashval_t
3359 type_pair_hash (const void *item)
3360 {
3361 const struct type_pair *pair = item;
3362
3363 return htab_hash_pointer (pair->old);
3364 }
3365
3366 static int
3367 type_pair_eq (const void *item_lhs, const void *item_rhs)
3368 {
3369 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3370
3371 return lhs->old == rhs->old;
3372 }
3373
3374 /* Allocate the hash table used by copy_type_recursive to walk
3375 types without duplicates. We use OBJFILE's obstack, because
3376 OBJFILE is about to be deleted. */
3377
3378 htab_t
3379 create_copied_types_hash (struct objfile *objfile)
3380 {
3381 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3382 NULL, &objfile->objfile_obstack,
3383 hashtab_obstack_allocate,
3384 dummy_obstack_deallocate);
3385 }
3386
3387 /* Recursively copy (deep copy) TYPE, if it is associated with
3388 OBJFILE. Return a new type allocated using malloc, a saved type if
3389 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3390 not associated with OBJFILE. */
3391
3392 struct type *
3393 copy_type_recursive (struct objfile *objfile,
3394 struct type *type,
3395 htab_t copied_types)
3396 {
3397 struct type_pair *stored, pair;
3398 void **slot;
3399 struct type *new_type;
3400
3401 if (! TYPE_OBJFILE_OWNED (type))
3402 return type;
3403
3404 /* This type shouldn't be pointing to any types in other objfiles;
3405 if it did, the type might disappear unexpectedly. */
3406 gdb_assert (TYPE_OBJFILE (type) == objfile);
3407
3408 pair.old = type;
3409 slot = htab_find_slot (copied_types, &pair, INSERT);
3410 if (*slot != NULL)
3411 return ((struct type_pair *) *slot)->new;
3412
3413 new_type = alloc_type_arch (get_type_arch (type));
3414
3415 /* We must add the new type to the hash table immediately, in case
3416 we encounter this type again during a recursive call below. */
3417 stored
3418 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3419 stored->old = type;
3420 stored->new = new_type;
3421 *slot = stored;
3422
3423 /* Copy the common fields of types. For the main type, we simply
3424 copy the entire thing and then update specific fields as needed. */
3425 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3426 TYPE_OBJFILE_OWNED (new_type) = 0;
3427 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3428
3429 if (TYPE_NAME (type))
3430 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3431 if (TYPE_TAG_NAME (type))
3432 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3433
3434 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3435 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3436
3437 /* Copy the fields. */
3438 if (TYPE_NFIELDS (type))
3439 {
3440 int i, nfields;
3441
3442 nfields = TYPE_NFIELDS (type);
3443 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3444 for (i = 0; i < nfields; i++)
3445 {
3446 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3447 TYPE_FIELD_ARTIFICIAL (type, i);
3448 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3449 if (TYPE_FIELD_TYPE (type, i))
3450 TYPE_FIELD_TYPE (new_type, i)
3451 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3452 copied_types);
3453 if (TYPE_FIELD_NAME (type, i))
3454 TYPE_FIELD_NAME (new_type, i) =
3455 xstrdup (TYPE_FIELD_NAME (type, i));
3456 switch (TYPE_FIELD_LOC_KIND (type, i))
3457 {
3458 case FIELD_LOC_KIND_BITPOS:
3459 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3460 TYPE_FIELD_BITPOS (type, i));
3461 break;
3462 case FIELD_LOC_KIND_ENUMVAL:
3463 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3464 TYPE_FIELD_ENUMVAL (type, i));
3465 break;
3466 case FIELD_LOC_KIND_PHYSADDR:
3467 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3468 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3469 break;
3470 case FIELD_LOC_KIND_PHYSNAME:
3471 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3472 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3473 i)));
3474 break;
3475 default:
3476 internal_error (__FILE__, __LINE__,
3477 _("Unexpected type field location kind: %d"),
3478 TYPE_FIELD_LOC_KIND (type, i));
3479 }
3480 }
3481 }
3482
3483 /* For range types, copy the bounds information. */
3484 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3485 {
3486 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3487 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3488 }
3489
3490 /* Copy pointers to other types. */
3491 if (TYPE_TARGET_TYPE (type))
3492 TYPE_TARGET_TYPE (new_type) =
3493 copy_type_recursive (objfile,
3494 TYPE_TARGET_TYPE (type),
3495 copied_types);
3496 if (TYPE_VPTR_BASETYPE (type))
3497 TYPE_VPTR_BASETYPE (new_type) =
3498 copy_type_recursive (objfile,
3499 TYPE_VPTR_BASETYPE (type),
3500 copied_types);
3501 /* Maybe copy the type_specific bits.
3502
3503 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3504 base classes and methods. There's no fundamental reason why we
3505 can't, but at the moment it is not needed. */
3506
3507 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3508 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3509 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3510 || TYPE_CODE (type) == TYPE_CODE_UNION
3511 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3512 INIT_CPLUS_SPECIFIC (new_type);
3513
3514 return new_type;
3515 }
3516
3517 /* Make a copy of the given TYPE, except that the pointer & reference
3518 types are not preserved.
3519
3520 This function assumes that the given type has an associated objfile.
3521 This objfile is used to allocate the new type. */
3522
3523 struct type *
3524 copy_type (const struct type *type)
3525 {
3526 struct type *new_type;
3527
3528 gdb_assert (TYPE_OBJFILE_OWNED (type));
3529
3530 new_type = alloc_type_copy (type);
3531 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3532 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3533 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3534 sizeof (struct main_type));
3535
3536 return new_type;
3537 }
3538 \f
3539 /* Helper functions to initialize architecture-specific types. */
3540
3541 /* Allocate a type structure associated with GDBARCH and set its
3542 CODE, LENGTH, and NAME fields. */
3543
3544 struct type *
3545 arch_type (struct gdbarch *gdbarch,
3546 enum type_code code, int length, char *name)
3547 {
3548 struct type *type;
3549
3550 type = alloc_type_arch (gdbarch);
3551 TYPE_CODE (type) = code;
3552 TYPE_LENGTH (type) = length;
3553
3554 if (name)
3555 TYPE_NAME (type) = xstrdup (name);
3556
3557 return type;
3558 }
3559
3560 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3561 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3562 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3563
3564 struct type *
3565 arch_integer_type (struct gdbarch *gdbarch,
3566 int bit, int unsigned_p, char *name)
3567 {
3568 struct type *t;
3569
3570 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3571 if (unsigned_p)
3572 TYPE_UNSIGNED (t) = 1;
3573 if (name && strcmp (name, "char") == 0)
3574 TYPE_NOSIGN (t) = 1;
3575
3576 return t;
3577 }
3578
3579 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3580 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3581 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3582
3583 struct type *
3584 arch_character_type (struct gdbarch *gdbarch,
3585 int bit, int unsigned_p, char *name)
3586 {
3587 struct type *t;
3588
3589 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3590 if (unsigned_p)
3591 TYPE_UNSIGNED (t) = 1;
3592
3593 return t;
3594 }
3595
3596 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3597 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3598 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3599
3600 struct type *
3601 arch_boolean_type (struct gdbarch *gdbarch,
3602 int bit, int unsigned_p, char *name)
3603 {
3604 struct type *t;
3605
3606 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3607 if (unsigned_p)
3608 TYPE_UNSIGNED (t) = 1;
3609
3610 return t;
3611 }
3612
3613 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3614 BIT is the type size in bits; if BIT equals -1, the size is
3615 determined by the floatformat. NAME is the type name. Set the
3616 TYPE_FLOATFORMAT from FLOATFORMATS. */
3617
3618 struct type *
3619 arch_float_type (struct gdbarch *gdbarch,
3620 int bit, char *name, const struct floatformat **floatformats)
3621 {
3622 struct type *t;
3623
3624 if (bit == -1)
3625 {
3626 gdb_assert (floatformats != NULL);
3627 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3628 bit = floatformats[0]->totalsize;
3629 }
3630 gdb_assert (bit >= 0);
3631
3632 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3633 TYPE_FLOATFORMAT (t) = floatformats;
3634 return t;
3635 }
3636
3637 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3638 NAME is the type name. TARGET_TYPE is the component float type. */
3639
3640 struct type *
3641 arch_complex_type (struct gdbarch *gdbarch,
3642 char *name, struct type *target_type)
3643 {
3644 struct type *t;
3645
3646 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3647 2 * TYPE_LENGTH (target_type), name);
3648 TYPE_TARGET_TYPE (t) = target_type;
3649 return t;
3650 }
3651
3652 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3653 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3654
3655 struct type *
3656 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3657 {
3658 int nfields = length * TARGET_CHAR_BIT;
3659 struct type *type;
3660
3661 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3662 TYPE_UNSIGNED (type) = 1;
3663 TYPE_NFIELDS (type) = nfields;
3664 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3665
3666 return type;
3667 }
3668
3669 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3670 position BITPOS is called NAME. */
3671
3672 void
3673 append_flags_type_flag (struct type *type, int bitpos, char *name)
3674 {
3675 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3676 gdb_assert (bitpos < TYPE_NFIELDS (type));
3677 gdb_assert (bitpos >= 0);
3678
3679 if (name)
3680 {
3681 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3682 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3683 }
3684 else
3685 {
3686 /* Don't show this field to the user. */
3687 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3688 }
3689 }
3690
3691 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3692 specified by CODE) associated with GDBARCH. NAME is the type name. */
3693
3694 struct type *
3695 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3696 {
3697 struct type *t;
3698
3699 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3700 t = arch_type (gdbarch, code, 0, NULL);
3701 TYPE_TAG_NAME (t) = name;
3702 INIT_CPLUS_SPECIFIC (t);
3703 return t;
3704 }
3705
3706 /* Add new field with name NAME and type FIELD to composite type T.
3707 Do not set the field's position or adjust the type's length;
3708 the caller should do so. Return the new field. */
3709
3710 struct field *
3711 append_composite_type_field_raw (struct type *t, char *name,
3712 struct type *field)
3713 {
3714 struct field *f;
3715
3716 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3717 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3718 sizeof (struct field) * TYPE_NFIELDS (t));
3719 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3720 memset (f, 0, sizeof f[0]);
3721 FIELD_TYPE (f[0]) = field;
3722 FIELD_NAME (f[0]) = name;
3723 return f;
3724 }
3725
3726 /* Add new field with name NAME and type FIELD to composite type T.
3727 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3728
3729 void
3730 append_composite_type_field_aligned (struct type *t, char *name,
3731 struct type *field, int alignment)
3732 {
3733 struct field *f = append_composite_type_field_raw (t, name, field);
3734
3735 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3736 {
3737 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3738 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3739 }
3740 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3741 {
3742 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3743 if (TYPE_NFIELDS (t) > 1)
3744 {
3745 SET_FIELD_BITPOS (f[0],
3746 (FIELD_BITPOS (f[-1])
3747 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3748 * TARGET_CHAR_BIT)));
3749
3750 if (alignment)
3751 {
3752 int left;
3753
3754 alignment *= TARGET_CHAR_BIT;
3755 left = FIELD_BITPOS (f[0]) % alignment;
3756
3757 if (left)
3758 {
3759 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
3760 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3761 }
3762 }
3763 }
3764 }
3765 }
3766
3767 /* Add new field with name NAME and type FIELD to composite type T. */
3768
3769 void
3770 append_composite_type_field (struct type *t, char *name,
3771 struct type *field)
3772 {
3773 append_composite_type_field_aligned (t, name, field, 0);
3774 }
3775
3776 static struct gdbarch_data *gdbtypes_data;
3777
3778 const struct builtin_type *
3779 builtin_type (struct gdbarch *gdbarch)
3780 {
3781 return gdbarch_data (gdbarch, gdbtypes_data);
3782 }
3783
3784 static void *
3785 gdbtypes_post_init (struct gdbarch *gdbarch)
3786 {
3787 struct builtin_type *builtin_type
3788 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3789
3790 /* Basic types. */
3791 builtin_type->builtin_void
3792 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3793 builtin_type->builtin_char
3794 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3795 !gdbarch_char_signed (gdbarch), "char");
3796 builtin_type->builtin_signed_char
3797 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3798 0, "signed char");
3799 builtin_type->builtin_unsigned_char
3800 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3801 1, "unsigned char");
3802 builtin_type->builtin_short
3803 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3804 0, "short");
3805 builtin_type->builtin_unsigned_short
3806 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3807 1, "unsigned short");
3808 builtin_type->builtin_int
3809 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3810 0, "int");
3811 builtin_type->builtin_unsigned_int
3812 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3813 1, "unsigned int");
3814 builtin_type->builtin_long
3815 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3816 0, "long");
3817 builtin_type->builtin_unsigned_long
3818 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3819 1, "unsigned long");
3820 builtin_type->builtin_long_long
3821 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3822 0, "long long");
3823 builtin_type->builtin_unsigned_long_long
3824 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3825 1, "unsigned long long");
3826 builtin_type->builtin_float
3827 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3828 "float", gdbarch_float_format (gdbarch));
3829 builtin_type->builtin_double
3830 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3831 "double", gdbarch_double_format (gdbarch));
3832 builtin_type->builtin_long_double
3833 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3834 "long double", gdbarch_long_double_format (gdbarch));
3835 builtin_type->builtin_complex
3836 = arch_complex_type (gdbarch, "complex",
3837 builtin_type->builtin_float);
3838 builtin_type->builtin_double_complex
3839 = arch_complex_type (gdbarch, "double complex",
3840 builtin_type->builtin_double);
3841 builtin_type->builtin_string
3842 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3843 builtin_type->builtin_bool
3844 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3845
3846 /* The following three are about decimal floating point types, which
3847 are 32-bits, 64-bits and 128-bits respectively. */
3848 builtin_type->builtin_decfloat
3849 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3850 builtin_type->builtin_decdouble
3851 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3852 builtin_type->builtin_declong
3853 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3854
3855 /* "True" character types. */
3856 builtin_type->builtin_true_char
3857 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3858 builtin_type->builtin_true_unsigned_char
3859 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3860
3861 /* Fixed-size integer types. */
3862 builtin_type->builtin_int0
3863 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3864 builtin_type->builtin_int8
3865 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3866 builtin_type->builtin_uint8
3867 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3868 builtin_type->builtin_int16
3869 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3870 builtin_type->builtin_uint16
3871 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3872 builtin_type->builtin_int32
3873 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3874 builtin_type->builtin_uint32
3875 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3876 builtin_type->builtin_int64
3877 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3878 builtin_type->builtin_uint64
3879 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3880 builtin_type->builtin_int128
3881 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3882 builtin_type->builtin_uint128
3883 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3884 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3885 TYPE_INSTANCE_FLAG_NOTTEXT;
3886 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3887 TYPE_INSTANCE_FLAG_NOTTEXT;
3888
3889 /* Wide character types. */
3890 builtin_type->builtin_char16
3891 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3892 builtin_type->builtin_char32
3893 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3894
3895
3896 /* Default data/code pointer types. */
3897 builtin_type->builtin_data_ptr
3898 = lookup_pointer_type (builtin_type->builtin_void);
3899 builtin_type->builtin_func_ptr
3900 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3901 builtin_type->builtin_func_func
3902 = lookup_function_type (builtin_type->builtin_func_ptr);
3903
3904 /* This type represents a GDB internal function. */
3905 builtin_type->internal_fn
3906 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3907 "<internal function>");
3908
3909 return builtin_type;
3910 }
3911
3912 /* This set of objfile-based types is intended to be used by symbol
3913 readers as basic types. */
3914
3915 static const struct objfile_data *objfile_type_data;
3916
3917 const struct objfile_type *
3918 objfile_type (struct objfile *objfile)
3919 {
3920 struct gdbarch *gdbarch;
3921 struct objfile_type *objfile_type
3922 = objfile_data (objfile, objfile_type_data);
3923
3924 if (objfile_type)
3925 return objfile_type;
3926
3927 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3928 1, struct objfile_type);
3929
3930 /* Use the objfile architecture to determine basic type properties. */
3931 gdbarch = get_objfile_arch (objfile);
3932
3933 /* Basic types. */
3934 objfile_type->builtin_void
3935 = init_type (TYPE_CODE_VOID, 1,
3936 0,
3937 "void", objfile);
3938
3939 objfile_type->builtin_char
3940 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3941 (TYPE_FLAG_NOSIGN
3942 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3943 "char", objfile);
3944 objfile_type->builtin_signed_char
3945 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3946 0,
3947 "signed char", objfile);
3948 objfile_type->builtin_unsigned_char
3949 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3950 TYPE_FLAG_UNSIGNED,
3951 "unsigned char", objfile);
3952 objfile_type->builtin_short
3953 = init_type (TYPE_CODE_INT,
3954 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3955 0, "short", objfile);
3956 objfile_type->builtin_unsigned_short
3957 = init_type (TYPE_CODE_INT,
3958 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3959 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3960 objfile_type->builtin_int
3961 = init_type (TYPE_CODE_INT,
3962 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3963 0, "int", objfile);
3964 objfile_type->builtin_unsigned_int
3965 = init_type (TYPE_CODE_INT,
3966 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3967 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3968 objfile_type->builtin_long
3969 = init_type (TYPE_CODE_INT,
3970 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3971 0, "long", objfile);
3972 objfile_type->builtin_unsigned_long
3973 = init_type (TYPE_CODE_INT,
3974 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3975 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3976 objfile_type->builtin_long_long
3977 = init_type (TYPE_CODE_INT,
3978 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3979 0, "long long", objfile);
3980 objfile_type->builtin_unsigned_long_long
3981 = init_type (TYPE_CODE_INT,
3982 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3983 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3984
3985 objfile_type->builtin_float
3986 = init_type (TYPE_CODE_FLT,
3987 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3988 0, "float", objfile);
3989 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3990 = gdbarch_float_format (gdbarch);
3991 objfile_type->builtin_double
3992 = init_type (TYPE_CODE_FLT,
3993 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3994 0, "double", objfile);
3995 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3996 = gdbarch_double_format (gdbarch);
3997 objfile_type->builtin_long_double
3998 = init_type (TYPE_CODE_FLT,
3999 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4000 0, "long double", objfile);
4001 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4002 = gdbarch_long_double_format (gdbarch);
4003
4004 /* This type represents a type that was unrecognized in symbol read-in. */
4005 objfile_type->builtin_error
4006 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4007
4008 /* The following set of types is used for symbols with no
4009 debug information. */
4010 objfile_type->nodebug_text_symbol
4011 = init_type (TYPE_CODE_FUNC, 1, 0,
4012 "<text variable, no debug info>", objfile);
4013 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4014 = objfile_type->builtin_int;
4015 objfile_type->nodebug_text_gnu_ifunc_symbol
4016 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4017 "<text gnu-indirect-function variable, no debug info>",
4018 objfile);
4019 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4020 = objfile_type->nodebug_text_symbol;
4021 objfile_type->nodebug_got_plt_symbol
4022 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4023 "<text from jump slot in .got.plt, no debug info>",
4024 objfile);
4025 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4026 = objfile_type->nodebug_text_symbol;
4027 objfile_type->nodebug_data_symbol
4028 = init_type (TYPE_CODE_INT,
4029 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4030 "<data variable, no debug info>", objfile);
4031 objfile_type->nodebug_unknown_symbol
4032 = init_type (TYPE_CODE_INT, 1, 0,
4033 "<variable (not text or data), no debug info>", objfile);
4034 objfile_type->nodebug_tls_symbol
4035 = init_type (TYPE_CODE_INT,
4036 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4037 "<thread local variable, no debug info>", objfile);
4038
4039 /* NOTE: on some targets, addresses and pointers are not necessarily
4040 the same --- for example, on the D10V, pointers are 16 bits long,
4041 but addresses are 32 bits long. See doc/gdbint.texinfo,
4042 ``Pointers Are Not Always Addresses''.
4043
4044 The upshot is:
4045 - gdb's `struct type' always describes the target's
4046 representation.
4047 - gdb's `struct value' objects should always hold values in
4048 target form.
4049 - gdb's CORE_ADDR values are addresses in the unified virtual
4050 address space that the assembler and linker work with. Thus,
4051 since target_read_memory takes a CORE_ADDR as an argument, it
4052 can access any memory on the target, even if the processor has
4053 separate code and data address spaces.
4054
4055 So, for example:
4056 - If v is a value holding a D10V code pointer, its contents are
4057 in target form: a big-endian address left-shifted two bits.
4058 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4059 sizeof (void *) == 2 on the target.
4060
4061 In this context, objfile_type->builtin_core_addr is a bit odd:
4062 it's a target type for a value the target will never see. It's
4063 only used to hold the values of (typeless) linker symbols, which
4064 are indeed in the unified virtual address space. */
4065
4066 objfile_type->builtin_core_addr
4067 = init_type (TYPE_CODE_INT,
4068 gdbarch_addr_bit (gdbarch) / 8,
4069 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4070
4071 set_objfile_data (objfile, objfile_type_data, objfile_type);
4072 return objfile_type;
4073 }
4074
4075 extern initialize_file_ftype _initialize_gdbtypes;
4076
4077 void
4078 _initialize_gdbtypes (void)
4079 {
4080 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4081 objfile_type_data = register_objfile_data ();
4082
4083 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4084 _("Set debugging of C++ overloading."),
4085 _("Show debugging of C++ overloading."),
4086 _("When enabled, ranking of the "
4087 "functions is displayed."),
4088 NULL,
4089 show_overload_debug,
4090 &setdebuglist, &showdebuglist);
4091
4092 /* Add user knob for controlling resolution of opaque types. */
4093 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4094 &opaque_type_resolution,
4095 _("Set resolution of opaque struct/class/union"
4096 " types (if set before loading symbols)."),
4097 _("Show resolution of opaque struct/class/union"
4098 " types (if set before loading symbols)."),
4099 NULL, NULL,
4100 show_opaque_type_resolution,
4101 &setlist, &showlist);
4102
4103 /* Add an option to permit non-strict type checking. */
4104 add_setshow_boolean_cmd ("type", class_support,
4105 &strict_type_checking,
4106 _("Set strict type checking."),
4107 _("Show strict type checking."),
4108 NULL, NULL,
4109 show_strict_type_checking,
4110 &setchecklist, &showchecklist);
4111 }
This page took 0.169767 seconds and 4 git commands to generate.