Add amd64_x32_linux_record_tdep and amd64_x32_sys
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_VPTR_FIELDNO (type) = -1;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the heap. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = XZALLOC (struct type);
205 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_VPTR_FIELDNO (type) = -1;
214 TYPE_CHAIN (type) = type; /* Chain back to itself. */
215
216 return type;
217 }
218
219 /* If TYPE is objfile-associated, allocate a new type structure
220 associated with the same objfile. If TYPE is gdbarch-associated,
221 allocate a new type structure associated with the same gdbarch. */
222
223 struct type *
224 alloc_type_copy (const struct type *type)
225 {
226 if (TYPE_OBJFILE_OWNED (type))
227 return alloc_type (TYPE_OWNER (type).objfile);
228 else
229 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 }
231
232 /* If TYPE is gdbarch-associated, return that architecture.
233 If TYPE is objfile-associated, return that objfile's architecture. */
234
235 struct gdbarch *
236 get_type_arch (const struct type *type)
237 {
238 if (TYPE_OBJFILE_OWNED (type))
239 return get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 return TYPE_OWNER (type).gdbarch;
242 }
243
244 /* See gdbtypes.h. */
245
246 struct type *
247 get_target_type (struct type *type)
248 {
249 if (type != NULL)
250 {
251 type = TYPE_TARGET_TYPE (type);
252 if (type != NULL)
253 type = check_typedef (type);
254 }
255
256 return type;
257 }
258
259 /* Alloc a new type instance structure, fill it with some defaults,
260 and point it at OLDTYPE. Allocate the new type instance from the
261 same place as OLDTYPE. */
262
263 static struct type *
264 alloc_type_instance (struct type *oldtype)
265 {
266 struct type *type;
267
268 /* Allocate the structure. */
269
270 if (! TYPE_OBJFILE_OWNED (oldtype))
271 type = XZALLOC (struct type);
272 else
273 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
274 struct type);
275
276 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
277
278 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
279
280 return type;
281 }
282
283 /* Clear all remnants of the previous type at TYPE, in preparation for
284 replacing it with something else. Preserve owner information. */
285
286 static void
287 smash_type (struct type *type)
288 {
289 int objfile_owned = TYPE_OBJFILE_OWNED (type);
290 union type_owner owner = TYPE_OWNER (type);
291
292 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
293
294 /* Restore owner information. */
295 TYPE_OBJFILE_OWNED (type) = objfile_owned;
296 TYPE_OWNER (type) = owner;
297
298 /* For now, delete the rings. */
299 TYPE_CHAIN (type) = type;
300
301 /* For now, leave the pointer/reference types alone. */
302 }
303
304 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
305 to a pointer to memory where the pointer type should be stored.
306 If *TYPEPTR is zero, update it to point to the pointer type we return.
307 We allocate new memory if needed. */
308
309 struct type *
310 make_pointer_type (struct type *type, struct type **typeptr)
311 {
312 struct type *ntype; /* New type */
313 struct type *chain;
314
315 ntype = TYPE_POINTER_TYPE (type);
316
317 if (ntype)
318 {
319 if (typeptr == 0)
320 return ntype; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type_copy (type);
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else /* We have storage, but need to reset it. */
336 {
337 ntype = *typeptr;
338 chain = TYPE_CHAIN (ntype);
339 smash_type (ntype);
340 TYPE_CHAIN (ntype) = chain;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_POINTER_TYPE (type) = ntype;
345
346 /* FIXME! Assumes the machine has only one representation for pointers! */
347
348 TYPE_LENGTH (ntype)
349 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
350 TYPE_CODE (ntype) = TYPE_CODE_PTR;
351
352 /* Mark pointers as unsigned. The target converts between pointers
353 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
354 gdbarch_address_to_pointer. */
355 TYPE_UNSIGNED (ntype) = 1;
356
357 /* Update the length of all the other variants of this type. */
358 chain = TYPE_CHAIN (ntype);
359 while (chain != ntype)
360 {
361 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
362 chain = TYPE_CHAIN (chain);
363 }
364
365 return ntype;
366 }
367
368 /* Given a type TYPE, return a type of pointers to that type.
369 May need to construct such a type if this is the first use. */
370
371 struct type *
372 lookup_pointer_type (struct type *type)
373 {
374 return make_pointer_type (type, (struct type **) 0);
375 }
376
377 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
378 points to a pointer to memory where the reference type should be
379 stored. If *TYPEPTR is zero, update it to point to the reference
380 type we return. We allocate new memory if needed. */
381
382 struct type *
383 make_reference_type (struct type *type, struct type **typeptr)
384 {
385 struct type *ntype; /* New type */
386 struct type *chain;
387
388 ntype = TYPE_REFERENCE_TYPE (type);
389
390 if (ntype)
391 {
392 if (typeptr == 0)
393 return ntype; /* Don't care about alloc,
394 and have new type. */
395 else if (*typeptr == 0)
396 {
397 *typeptr = ntype; /* Tracking alloc, and have new type. */
398 return ntype;
399 }
400 }
401
402 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
403 {
404 ntype = alloc_type_copy (type);
405 if (typeptr)
406 *typeptr = ntype;
407 }
408 else /* We have storage, but need to reset it. */
409 {
410 ntype = *typeptr;
411 chain = TYPE_CHAIN (ntype);
412 smash_type (ntype);
413 TYPE_CHAIN (ntype) = chain;
414 }
415
416 TYPE_TARGET_TYPE (ntype) = type;
417 TYPE_REFERENCE_TYPE (type) = ntype;
418
419 /* FIXME! Assume the machine has only one representation for
420 references, and that it matches the (only) representation for
421 pointers! */
422
423 TYPE_LENGTH (ntype) =
424 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
425 TYPE_CODE (ntype) = TYPE_CODE_REF;
426
427 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
428 TYPE_REFERENCE_TYPE (type) = ntype;
429
430 /* Update the length of all the other variants of this type. */
431 chain = TYPE_CHAIN (ntype);
432 while (chain != ntype)
433 {
434 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
435 chain = TYPE_CHAIN (chain);
436 }
437
438 return ntype;
439 }
440
441 /* Same as above, but caller doesn't care about memory allocation
442 details. */
443
444 struct type *
445 lookup_reference_type (struct type *type)
446 {
447 return make_reference_type (type, (struct type **) 0);
448 }
449
450 /* Lookup a function type that returns type TYPE. TYPEPTR, if
451 nonzero, points to a pointer to memory where the function type
452 should be stored. If *TYPEPTR is zero, update it to point to the
453 function type we return. We allocate new memory if needed. */
454
455 struct type *
456 make_function_type (struct type *type, struct type **typeptr)
457 {
458 struct type *ntype; /* New type */
459
460 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
461 {
462 ntype = alloc_type_copy (type);
463 if (typeptr)
464 *typeptr = ntype;
465 }
466 else /* We have storage, but need to reset it. */
467 {
468 ntype = *typeptr;
469 smash_type (ntype);
470 }
471
472 TYPE_TARGET_TYPE (ntype) = type;
473
474 TYPE_LENGTH (ntype) = 1;
475 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
476
477 INIT_FUNC_SPECIFIC (ntype);
478
479 return ntype;
480 }
481
482 /* Given a type TYPE, return a type of functions that return that type.
483 May need to construct such a type if this is the first use. */
484
485 struct type *
486 lookup_function_type (struct type *type)
487 {
488 return make_function_type (type, (struct type **) 0);
489 }
490
491 /* Given a type TYPE and argument types, return the appropriate
492 function type. If the final type in PARAM_TYPES is NULL, make a
493 varargs function. */
494
495 struct type *
496 lookup_function_type_with_arguments (struct type *type,
497 int nparams,
498 struct type **param_types)
499 {
500 struct type *fn = make_function_type (type, (struct type **) 0);
501 int i;
502
503 if (nparams > 0)
504 {
505 if (param_types[nparams - 1] == NULL)
506 {
507 --nparams;
508 TYPE_VARARGS (fn) = 1;
509 }
510 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
511 == TYPE_CODE_VOID)
512 {
513 --nparams;
514 /* Caller should have ensured this. */
515 gdb_assert (nparams == 0);
516 TYPE_PROTOTYPED (fn) = 1;
517 }
518 }
519
520 TYPE_NFIELDS (fn) = nparams;
521 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
522 for (i = 0; i < nparams; ++i)
523 TYPE_FIELD_TYPE (fn, i) = param_types[i];
524
525 return fn;
526 }
527
528 /* Identify address space identifier by name --
529 return the integer flag defined in gdbtypes.h. */
530
531 int
532 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
533 {
534 int type_flags;
535
536 /* Check for known address space delimiters. */
537 if (!strcmp (space_identifier, "code"))
538 return TYPE_INSTANCE_FLAG_CODE_SPACE;
539 else if (!strcmp (space_identifier, "data"))
540 return TYPE_INSTANCE_FLAG_DATA_SPACE;
541 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
542 && gdbarch_address_class_name_to_type_flags (gdbarch,
543 space_identifier,
544 &type_flags))
545 return type_flags;
546 else
547 error (_("Unknown address space specifier: \"%s\""), space_identifier);
548 }
549
550 /* Identify address space identifier by integer flag as defined in
551 gdbtypes.h -- return the string version of the adress space name. */
552
553 const char *
554 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
555 {
556 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
557 return "code";
558 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
559 return "data";
560 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
561 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
562 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
563 else
564 return NULL;
565 }
566
567 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
568
569 If STORAGE is non-NULL, create the new type instance there.
570 STORAGE must be in the same obstack as TYPE. */
571
572 static struct type *
573 make_qualified_type (struct type *type, int new_flags,
574 struct type *storage)
575 {
576 struct type *ntype;
577
578 ntype = type;
579 do
580 {
581 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
582 return ntype;
583 ntype = TYPE_CHAIN (ntype);
584 }
585 while (ntype != type);
586
587 /* Create a new type instance. */
588 if (storage == NULL)
589 ntype = alloc_type_instance (type);
590 else
591 {
592 /* If STORAGE was provided, it had better be in the same objfile
593 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
594 if one objfile is freed and the other kept, we'd have
595 dangling pointers. */
596 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
597
598 ntype = storage;
599 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
600 TYPE_CHAIN (ntype) = ntype;
601 }
602
603 /* Pointers or references to the original type are not relevant to
604 the new type. */
605 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
606 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
607
608 /* Chain the new qualified type to the old type. */
609 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
610 TYPE_CHAIN (type) = ntype;
611
612 /* Now set the instance flags and return the new type. */
613 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
614
615 /* Set length of new type to that of the original type. */
616 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
617
618 return ntype;
619 }
620
621 /* Make an address-space-delimited variant of a type -- a type that
622 is identical to the one supplied except that it has an address
623 space attribute attached to it (such as "code" or "data").
624
625 The space attributes "code" and "data" are for Harvard
626 architectures. The address space attributes are for architectures
627 which have alternately sized pointers or pointers with alternate
628 representations. */
629
630 struct type *
631 make_type_with_address_space (struct type *type, int space_flag)
632 {
633 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
634 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
635 | TYPE_INSTANCE_FLAG_DATA_SPACE
636 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
637 | space_flag);
638
639 return make_qualified_type (type, new_flags, NULL);
640 }
641
642 /* Make a "c-v" variant of a type -- a type that is identical to the
643 one supplied except that it may have const or volatile attributes
644 CNST is a flag for setting the const attribute
645 VOLTL is a flag for setting the volatile attribute
646 TYPE is the base type whose variant we are creating.
647
648 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
649 storage to hold the new qualified type; *TYPEPTR and TYPE must be
650 in the same objfile. Otherwise, allocate fresh memory for the new
651 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
652 new type we construct. */
653
654 struct type *
655 make_cv_type (int cnst, int voltl,
656 struct type *type,
657 struct type **typeptr)
658 {
659 struct type *ntype; /* New type */
660
661 int new_flags = (TYPE_INSTANCE_FLAGS (type)
662 & ~(TYPE_INSTANCE_FLAG_CONST
663 | TYPE_INSTANCE_FLAG_VOLATILE));
664
665 if (cnst)
666 new_flags |= TYPE_INSTANCE_FLAG_CONST;
667
668 if (voltl)
669 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
670
671 if (typeptr && *typeptr != NULL)
672 {
673 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
674 a C-V variant chain that threads across objfiles: if one
675 objfile gets freed, then the other has a broken C-V chain.
676
677 This code used to try to copy over the main type from TYPE to
678 *TYPEPTR if they were in different objfiles, but that's
679 wrong, too: TYPE may have a field list or member function
680 lists, which refer to types of their own, etc. etc. The
681 whole shebang would need to be copied over recursively; you
682 can't have inter-objfile pointers. The only thing to do is
683 to leave stub types as stub types, and look them up afresh by
684 name each time you encounter them. */
685 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
686 }
687
688 ntype = make_qualified_type (type, new_flags,
689 typeptr ? *typeptr : NULL);
690
691 if (typeptr != NULL)
692 *typeptr = ntype;
693
694 return ntype;
695 }
696
697 /* Make a 'restrict'-qualified version of TYPE. */
698
699 struct type *
700 make_restrict_type (struct type *type)
701 {
702 return make_qualified_type (type,
703 (TYPE_INSTANCE_FLAGS (type)
704 | TYPE_INSTANCE_FLAG_RESTRICT),
705 NULL);
706 }
707
708 /* Replace the contents of ntype with the type *type. This changes the
709 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
710 the changes are propogated to all types in the TYPE_CHAIN.
711
712 In order to build recursive types, it's inevitable that we'll need
713 to update types in place --- but this sort of indiscriminate
714 smashing is ugly, and needs to be replaced with something more
715 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
716 clear if more steps are needed. */
717
718 void
719 replace_type (struct type *ntype, struct type *type)
720 {
721 struct type *chain;
722
723 /* These two types had better be in the same objfile. Otherwise,
724 the assignment of one type's main type structure to the other
725 will produce a type with references to objects (names; field
726 lists; etc.) allocated on an objfile other than its own. */
727 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
728
729 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
730
731 /* The type length is not a part of the main type. Update it for
732 each type on the variant chain. */
733 chain = ntype;
734 do
735 {
736 /* Assert that this element of the chain has no address-class bits
737 set in its flags. Such type variants might have type lengths
738 which are supposed to be different from the non-address-class
739 variants. This assertion shouldn't ever be triggered because
740 symbol readers which do construct address-class variants don't
741 call replace_type(). */
742 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
743
744 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
745 chain = TYPE_CHAIN (chain);
746 }
747 while (ntype != chain);
748
749 /* Assert that the two types have equivalent instance qualifiers.
750 This should be true for at least all of our debug readers. */
751 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
752 }
753
754 /* Implement direct support for MEMBER_TYPE in GNU C++.
755 May need to construct such a type if this is the first use.
756 The TYPE is the type of the member. The DOMAIN is the type
757 of the aggregate that the member belongs to. */
758
759 struct type *
760 lookup_memberptr_type (struct type *type, struct type *domain)
761 {
762 struct type *mtype;
763
764 mtype = alloc_type_copy (type);
765 smash_to_memberptr_type (mtype, domain, type);
766 return mtype;
767 }
768
769 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
770
771 struct type *
772 lookup_methodptr_type (struct type *to_type)
773 {
774 struct type *mtype;
775
776 mtype = alloc_type_copy (to_type);
777 smash_to_methodptr_type (mtype, to_type);
778 return mtype;
779 }
780
781 /* Allocate a stub method whose return type is TYPE. This apparently
782 happens for speed of symbol reading, since parsing out the
783 arguments to the method is cpu-intensive, the way we are doing it.
784 So, we will fill in arguments later. This always returns a fresh
785 type. */
786
787 struct type *
788 allocate_stub_method (struct type *type)
789 {
790 struct type *mtype;
791
792 mtype = alloc_type_copy (type);
793 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
794 TYPE_LENGTH (mtype) = 1;
795 TYPE_STUB (mtype) = 1;
796 TYPE_TARGET_TYPE (mtype) = type;
797 /* _DOMAIN_TYPE (mtype) = unknown yet */
798 return mtype;
799 }
800
801 /* Create a range type using either a blank type supplied in
802 RESULT_TYPE, or creating a new type, inheriting the objfile from
803 INDEX_TYPE.
804
805 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
806 to HIGH_BOUND, inclusive.
807
808 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
809 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
810
811 struct type *
812 create_range_type (struct type *result_type, struct type *index_type,
813 LONGEST low_bound, LONGEST high_bound)
814 {
815 if (result_type == NULL)
816 result_type = alloc_type_copy (index_type);
817 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
818 TYPE_TARGET_TYPE (result_type) = index_type;
819 if (TYPE_STUB (index_type))
820 TYPE_TARGET_STUB (result_type) = 1;
821 else
822 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
823 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
824 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
825 TYPE_LOW_BOUND (result_type) = low_bound;
826 TYPE_HIGH_BOUND (result_type) = high_bound;
827
828 if (low_bound >= 0)
829 TYPE_UNSIGNED (result_type) = 1;
830
831 return result_type;
832 }
833
834 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
835 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
836 bounds will fit in LONGEST), or -1 otherwise. */
837
838 int
839 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
840 {
841 CHECK_TYPEDEF (type);
842 switch (TYPE_CODE (type))
843 {
844 case TYPE_CODE_RANGE:
845 *lowp = TYPE_LOW_BOUND (type);
846 *highp = TYPE_HIGH_BOUND (type);
847 return 1;
848 case TYPE_CODE_ENUM:
849 if (TYPE_NFIELDS (type) > 0)
850 {
851 /* The enums may not be sorted by value, so search all
852 entries. */
853 int i;
854
855 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
856 for (i = 0; i < TYPE_NFIELDS (type); i++)
857 {
858 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
859 *lowp = TYPE_FIELD_ENUMVAL (type, i);
860 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
861 *highp = TYPE_FIELD_ENUMVAL (type, i);
862 }
863
864 /* Set unsigned indicator if warranted. */
865 if (*lowp >= 0)
866 {
867 TYPE_UNSIGNED (type) = 1;
868 }
869 }
870 else
871 {
872 *lowp = 0;
873 *highp = -1;
874 }
875 return 0;
876 case TYPE_CODE_BOOL:
877 *lowp = 0;
878 *highp = 1;
879 return 0;
880 case TYPE_CODE_INT:
881 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
882 return -1;
883 if (!TYPE_UNSIGNED (type))
884 {
885 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
886 *highp = -*lowp - 1;
887 return 0;
888 }
889 /* ... fall through for unsigned ints ... */
890 case TYPE_CODE_CHAR:
891 *lowp = 0;
892 /* This round-about calculation is to avoid shifting by
893 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
894 if TYPE_LENGTH (type) == sizeof (LONGEST). */
895 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
896 *highp = (*highp - 1) | *highp;
897 return 0;
898 default:
899 return -1;
900 }
901 }
902
903 /* Assuming TYPE is a simple, non-empty array type, compute its upper
904 and lower bound. Save the low bound into LOW_BOUND if not NULL.
905 Save the high bound into HIGH_BOUND if not NULL.
906
907 Return 1 if the operation was successful. Return zero otherwise,
908 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
909
910 We now simply use get_discrete_bounds call to get the values
911 of the low and high bounds.
912 get_discrete_bounds can return three values:
913 1, meaning that index is a range,
914 0, meaning that index is a discrete type,
915 or -1 for failure. */
916
917 int
918 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
919 {
920 struct type *index = TYPE_INDEX_TYPE (type);
921 LONGEST low = 0;
922 LONGEST high = 0;
923 int res;
924
925 if (index == NULL)
926 return 0;
927
928 res = get_discrete_bounds (index, &low, &high);
929 if (res == -1)
930 return 0;
931
932 /* Check if the array bounds are undefined. */
933 if (res == 1
934 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
935 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
936 return 0;
937
938 if (low_bound)
939 *low_bound = low;
940
941 if (high_bound)
942 *high_bound = high;
943
944 return 1;
945 }
946
947 /* Create an array type using either a blank type supplied in
948 RESULT_TYPE, or creating a new type, inheriting the objfile from
949 RANGE_TYPE.
950
951 Elements will be of type ELEMENT_TYPE, the indices will be of type
952 RANGE_TYPE.
953
954 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
955 sure it is TYPE_CODE_UNDEF before we bash it into an array
956 type? */
957
958 struct type *
959 create_array_type (struct type *result_type,
960 struct type *element_type,
961 struct type *range_type)
962 {
963 LONGEST low_bound, high_bound;
964
965 if (result_type == NULL)
966 result_type = alloc_type_copy (range_type);
967
968 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
969 TYPE_TARGET_TYPE (result_type) = element_type;
970 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
971 low_bound = high_bound = 0;
972 CHECK_TYPEDEF (element_type);
973 /* Be careful when setting the array length. Ada arrays can be
974 empty arrays with the high_bound being smaller than the low_bound.
975 In such cases, the array length should be zero. */
976 if (high_bound < low_bound)
977 TYPE_LENGTH (result_type) = 0;
978 else
979 TYPE_LENGTH (result_type) =
980 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
981 TYPE_NFIELDS (result_type) = 1;
982 TYPE_FIELDS (result_type) =
983 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
984 TYPE_INDEX_TYPE (result_type) = range_type;
985 TYPE_VPTR_FIELDNO (result_type) = -1;
986
987 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
988 if (TYPE_LENGTH (result_type) == 0)
989 TYPE_TARGET_STUB (result_type) = 1;
990
991 return result_type;
992 }
993
994 struct type *
995 lookup_array_range_type (struct type *element_type,
996 LONGEST low_bound, LONGEST high_bound)
997 {
998 struct gdbarch *gdbarch = get_type_arch (element_type);
999 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1000 struct type *range_type
1001 = create_range_type (NULL, index_type, low_bound, high_bound);
1002
1003 return create_array_type (NULL, element_type, range_type);
1004 }
1005
1006 /* Create a string type using either a blank type supplied in
1007 RESULT_TYPE, or creating a new type. String types are similar
1008 enough to array of char types that we can use create_array_type to
1009 build the basic type and then bash it into a string type.
1010
1011 For fixed length strings, the range type contains 0 as the lower
1012 bound and the length of the string minus one as the upper bound.
1013
1014 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1015 sure it is TYPE_CODE_UNDEF before we bash it into a string
1016 type? */
1017
1018 struct type *
1019 create_string_type (struct type *result_type,
1020 struct type *string_char_type,
1021 struct type *range_type)
1022 {
1023 result_type = create_array_type (result_type,
1024 string_char_type,
1025 range_type);
1026 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1027 return result_type;
1028 }
1029
1030 struct type *
1031 lookup_string_range_type (struct type *string_char_type,
1032 LONGEST low_bound, LONGEST high_bound)
1033 {
1034 struct type *result_type;
1035
1036 result_type = lookup_array_range_type (string_char_type,
1037 low_bound, high_bound);
1038 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1039 return result_type;
1040 }
1041
1042 struct type *
1043 create_set_type (struct type *result_type, struct type *domain_type)
1044 {
1045 if (result_type == NULL)
1046 result_type = alloc_type_copy (domain_type);
1047
1048 TYPE_CODE (result_type) = TYPE_CODE_SET;
1049 TYPE_NFIELDS (result_type) = 1;
1050 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1051
1052 if (!TYPE_STUB (domain_type))
1053 {
1054 LONGEST low_bound, high_bound, bit_length;
1055
1056 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1057 low_bound = high_bound = 0;
1058 bit_length = high_bound - low_bound + 1;
1059 TYPE_LENGTH (result_type)
1060 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1061 if (low_bound >= 0)
1062 TYPE_UNSIGNED (result_type) = 1;
1063 }
1064 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1065
1066 return result_type;
1067 }
1068
1069 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1070 and any array types nested inside it. */
1071
1072 void
1073 make_vector_type (struct type *array_type)
1074 {
1075 struct type *inner_array, *elt_type;
1076 int flags;
1077
1078 /* Find the innermost array type, in case the array is
1079 multi-dimensional. */
1080 inner_array = array_type;
1081 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1082 inner_array = TYPE_TARGET_TYPE (inner_array);
1083
1084 elt_type = TYPE_TARGET_TYPE (inner_array);
1085 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1086 {
1087 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1088 elt_type = make_qualified_type (elt_type, flags, NULL);
1089 TYPE_TARGET_TYPE (inner_array) = elt_type;
1090 }
1091
1092 TYPE_VECTOR (array_type) = 1;
1093 }
1094
1095 struct type *
1096 init_vector_type (struct type *elt_type, int n)
1097 {
1098 struct type *array_type;
1099
1100 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1101 make_vector_type (array_type);
1102 return array_type;
1103 }
1104
1105 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1106 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1107 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1108 TYPE doesn't include the offset (that's the value of the MEMBER
1109 itself), but does include the structure type into which it points
1110 (for some reason).
1111
1112 When "smashing" the type, we preserve the objfile that the old type
1113 pointed to, since we aren't changing where the type is actually
1114 allocated. */
1115
1116 void
1117 smash_to_memberptr_type (struct type *type, struct type *domain,
1118 struct type *to_type)
1119 {
1120 smash_type (type);
1121 TYPE_TARGET_TYPE (type) = to_type;
1122 TYPE_DOMAIN_TYPE (type) = domain;
1123 /* Assume that a data member pointer is the same size as a normal
1124 pointer. */
1125 TYPE_LENGTH (type)
1126 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1127 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1128 }
1129
1130 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1131
1132 When "smashing" the type, we preserve the objfile that the old type
1133 pointed to, since we aren't changing where the type is actually
1134 allocated. */
1135
1136 void
1137 smash_to_methodptr_type (struct type *type, struct type *to_type)
1138 {
1139 smash_type (type);
1140 TYPE_TARGET_TYPE (type) = to_type;
1141 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1142 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1143 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1144 }
1145
1146 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1147 METHOD just means `function that gets an extra "this" argument'.
1148
1149 When "smashing" the type, we preserve the objfile that the old type
1150 pointed to, since we aren't changing where the type is actually
1151 allocated. */
1152
1153 void
1154 smash_to_method_type (struct type *type, struct type *domain,
1155 struct type *to_type, struct field *args,
1156 int nargs, int varargs)
1157 {
1158 smash_type (type);
1159 TYPE_TARGET_TYPE (type) = to_type;
1160 TYPE_DOMAIN_TYPE (type) = domain;
1161 TYPE_FIELDS (type) = args;
1162 TYPE_NFIELDS (type) = nargs;
1163 if (varargs)
1164 TYPE_VARARGS (type) = 1;
1165 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1166 TYPE_CODE (type) = TYPE_CODE_METHOD;
1167 }
1168
1169 /* Return a typename for a struct/union/enum type without "struct ",
1170 "union ", or "enum ". If the type has a NULL name, return NULL. */
1171
1172 const char *
1173 type_name_no_tag (const struct type *type)
1174 {
1175 if (TYPE_TAG_NAME (type) != NULL)
1176 return TYPE_TAG_NAME (type);
1177
1178 /* Is there code which expects this to return the name if there is
1179 no tag name? My guess is that this is mainly used for C++ in
1180 cases where the two will always be the same. */
1181 return TYPE_NAME (type);
1182 }
1183
1184 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1185 Since GCC PR debug/47510 DWARF provides associated information to detect the
1186 anonymous class linkage name from its typedef.
1187
1188 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1189 apply it itself. */
1190
1191 const char *
1192 type_name_no_tag_or_error (struct type *type)
1193 {
1194 struct type *saved_type = type;
1195 const char *name;
1196 struct objfile *objfile;
1197
1198 CHECK_TYPEDEF (type);
1199
1200 name = type_name_no_tag (type);
1201 if (name != NULL)
1202 return name;
1203
1204 name = type_name_no_tag (saved_type);
1205 objfile = TYPE_OBJFILE (saved_type);
1206 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1207 name ? name : "<anonymous>",
1208 objfile ? objfile_name (objfile) : "<arch>");
1209 }
1210
1211 /* Lookup a typedef or primitive type named NAME, visible in lexical
1212 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1213 suitably defined. */
1214
1215 struct type *
1216 lookup_typename (const struct language_defn *language,
1217 struct gdbarch *gdbarch, const char *name,
1218 const struct block *block, int noerr)
1219 {
1220 struct symbol *sym;
1221 struct type *type;
1222
1223 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1224 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1225 return SYMBOL_TYPE (sym);
1226
1227 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1228 if (type)
1229 return type;
1230
1231 if (noerr)
1232 return NULL;
1233 error (_("No type named %s."), name);
1234 }
1235
1236 struct type *
1237 lookup_unsigned_typename (const struct language_defn *language,
1238 struct gdbarch *gdbarch, const char *name)
1239 {
1240 char *uns = alloca (strlen (name) + 10);
1241
1242 strcpy (uns, "unsigned ");
1243 strcpy (uns + 9, name);
1244 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1245 }
1246
1247 struct type *
1248 lookup_signed_typename (const struct language_defn *language,
1249 struct gdbarch *gdbarch, const char *name)
1250 {
1251 struct type *t;
1252 char *uns = alloca (strlen (name) + 8);
1253
1254 strcpy (uns, "signed ");
1255 strcpy (uns + 7, name);
1256 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1257 /* If we don't find "signed FOO" just try again with plain "FOO". */
1258 if (t != NULL)
1259 return t;
1260 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1261 }
1262
1263 /* Lookup a structure type named "struct NAME",
1264 visible in lexical block BLOCK. */
1265
1266 struct type *
1267 lookup_struct (const char *name, const struct block *block)
1268 {
1269 struct symbol *sym;
1270
1271 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1272
1273 if (sym == NULL)
1274 {
1275 error (_("No struct type named %s."), name);
1276 }
1277 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1278 {
1279 error (_("This context has class, union or enum %s, not a struct."),
1280 name);
1281 }
1282 return (SYMBOL_TYPE (sym));
1283 }
1284
1285 /* Lookup a union type named "union NAME",
1286 visible in lexical block BLOCK. */
1287
1288 struct type *
1289 lookup_union (const char *name, const struct block *block)
1290 {
1291 struct symbol *sym;
1292 struct type *t;
1293
1294 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1295
1296 if (sym == NULL)
1297 error (_("No union type named %s."), name);
1298
1299 t = SYMBOL_TYPE (sym);
1300
1301 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1302 return t;
1303
1304 /* If we get here, it's not a union. */
1305 error (_("This context has class, struct or enum %s, not a union."),
1306 name);
1307 }
1308
1309 /* Lookup an enum type named "enum NAME",
1310 visible in lexical block BLOCK. */
1311
1312 struct type *
1313 lookup_enum (const char *name, const struct block *block)
1314 {
1315 struct symbol *sym;
1316
1317 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1318 if (sym == NULL)
1319 {
1320 error (_("No enum type named %s."), name);
1321 }
1322 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1323 {
1324 error (_("This context has class, struct or union %s, not an enum."),
1325 name);
1326 }
1327 return (SYMBOL_TYPE (sym));
1328 }
1329
1330 /* Lookup a template type named "template NAME<TYPE>",
1331 visible in lexical block BLOCK. */
1332
1333 struct type *
1334 lookup_template_type (char *name, struct type *type,
1335 const struct block *block)
1336 {
1337 struct symbol *sym;
1338 char *nam = (char *)
1339 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1340
1341 strcpy (nam, name);
1342 strcat (nam, "<");
1343 strcat (nam, TYPE_NAME (type));
1344 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1345
1346 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1347
1348 if (sym == NULL)
1349 {
1350 error (_("No template type named %s."), name);
1351 }
1352 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1353 {
1354 error (_("This context has class, union or enum %s, not a struct."),
1355 name);
1356 }
1357 return (SYMBOL_TYPE (sym));
1358 }
1359
1360 /* Given a type TYPE, lookup the type of the component of type named
1361 NAME.
1362
1363 TYPE can be either a struct or union, or a pointer or reference to
1364 a struct or union. If it is a pointer or reference, its target
1365 type is automatically used. Thus '.' and '->' are interchangable,
1366 as specified for the definitions of the expression element types
1367 STRUCTOP_STRUCT and STRUCTOP_PTR.
1368
1369 If NOERR is nonzero, return zero if NAME is not suitably defined.
1370 If NAME is the name of a baseclass type, return that type. */
1371
1372 struct type *
1373 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1374 {
1375 int i;
1376 char *typename;
1377
1378 for (;;)
1379 {
1380 CHECK_TYPEDEF (type);
1381 if (TYPE_CODE (type) != TYPE_CODE_PTR
1382 && TYPE_CODE (type) != TYPE_CODE_REF)
1383 break;
1384 type = TYPE_TARGET_TYPE (type);
1385 }
1386
1387 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1388 && TYPE_CODE (type) != TYPE_CODE_UNION)
1389 {
1390 typename = type_to_string (type);
1391 make_cleanup (xfree, typename);
1392 error (_("Type %s is not a structure or union type."), typename);
1393 }
1394
1395 #if 0
1396 /* FIXME: This change put in by Michael seems incorrect for the case
1397 where the structure tag name is the same as the member name.
1398 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1399 foo; } bell;" Disabled by fnf. */
1400 {
1401 char *typename;
1402
1403 typename = type_name_no_tag (type);
1404 if (typename != NULL && strcmp (typename, name) == 0)
1405 return type;
1406 }
1407 #endif
1408
1409 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1410 {
1411 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1412
1413 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1414 {
1415 return TYPE_FIELD_TYPE (type, i);
1416 }
1417 else if (!t_field_name || *t_field_name == '\0')
1418 {
1419 struct type *subtype
1420 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1421
1422 if (subtype != NULL)
1423 return subtype;
1424 }
1425 }
1426
1427 /* OK, it's not in this class. Recursively check the baseclasses. */
1428 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1429 {
1430 struct type *t;
1431
1432 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1433 if (t != NULL)
1434 {
1435 return t;
1436 }
1437 }
1438
1439 if (noerr)
1440 {
1441 return NULL;
1442 }
1443
1444 typename = type_to_string (type);
1445 make_cleanup (xfree, typename);
1446 error (_("Type %s has no component named %s."), typename, name);
1447 }
1448
1449 /* Lookup the vptr basetype/fieldno values for TYPE.
1450 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1451 vptr_fieldno. Also, if found and basetype is from the same objfile,
1452 cache the results.
1453 If not found, return -1 and ignore BASETYPEP.
1454 Callers should be aware that in some cases (for example,
1455 the type or one of its baseclasses is a stub type and we are
1456 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1457 this function will not be able to find the
1458 virtual function table pointer, and vptr_fieldno will remain -1 and
1459 vptr_basetype will remain NULL or incomplete. */
1460
1461 int
1462 get_vptr_fieldno (struct type *type, struct type **basetypep)
1463 {
1464 CHECK_TYPEDEF (type);
1465
1466 if (TYPE_VPTR_FIELDNO (type) < 0)
1467 {
1468 int i;
1469
1470 /* We must start at zero in case the first (and only) baseclass
1471 is virtual (and hence we cannot share the table pointer). */
1472 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1473 {
1474 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1475 int fieldno;
1476 struct type *basetype;
1477
1478 fieldno = get_vptr_fieldno (baseclass, &basetype);
1479 if (fieldno >= 0)
1480 {
1481 /* If the type comes from a different objfile we can't cache
1482 it, it may have a different lifetime. PR 2384 */
1483 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1484 {
1485 TYPE_VPTR_FIELDNO (type) = fieldno;
1486 TYPE_VPTR_BASETYPE (type) = basetype;
1487 }
1488 if (basetypep)
1489 *basetypep = basetype;
1490 return fieldno;
1491 }
1492 }
1493
1494 /* Not found. */
1495 return -1;
1496 }
1497 else
1498 {
1499 if (basetypep)
1500 *basetypep = TYPE_VPTR_BASETYPE (type);
1501 return TYPE_VPTR_FIELDNO (type);
1502 }
1503 }
1504
1505 static void
1506 stub_noname_complaint (void)
1507 {
1508 complaint (&symfile_complaints, _("stub type has NULL name"));
1509 }
1510
1511 /* Find the real type of TYPE. This function returns the real type,
1512 after removing all layers of typedefs, and completing opaque or stub
1513 types. Completion changes the TYPE argument, but stripping of
1514 typedefs does not.
1515
1516 Instance flags (e.g. const/volatile) are preserved as typedefs are
1517 stripped. If necessary a new qualified form of the underlying type
1518 is created.
1519
1520 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1521 not been computed and we're either in the middle of reading symbols, or
1522 there was no name for the typedef in the debug info.
1523
1524 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1525 QUITs in the symbol reading code can also throw.
1526 Thus this function can throw an exception.
1527
1528 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1529 the target type.
1530
1531 If this is a stubbed struct (i.e. declared as struct foo *), see if
1532 we can find a full definition in some other file. If so, copy this
1533 definition, so we can use it in future. There used to be a comment
1534 (but not any code) that if we don't find a full definition, we'd
1535 set a flag so we don't spend time in the future checking the same
1536 type. That would be a mistake, though--we might load in more
1537 symbols which contain a full definition for the type. */
1538
1539 struct type *
1540 check_typedef (struct type *type)
1541 {
1542 struct type *orig_type = type;
1543 /* While we're removing typedefs, we don't want to lose qualifiers.
1544 E.g., const/volatile. */
1545 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1546
1547 gdb_assert (type);
1548
1549 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1550 {
1551 if (!TYPE_TARGET_TYPE (type))
1552 {
1553 const char *name;
1554 struct symbol *sym;
1555
1556 /* It is dangerous to call lookup_symbol if we are currently
1557 reading a symtab. Infinite recursion is one danger. */
1558 if (currently_reading_symtab)
1559 return make_qualified_type (type, instance_flags, NULL);
1560
1561 name = type_name_no_tag (type);
1562 /* FIXME: shouldn't we separately check the TYPE_NAME and
1563 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1564 VAR_DOMAIN as appropriate? (this code was written before
1565 TYPE_NAME and TYPE_TAG_NAME were separate). */
1566 if (name == NULL)
1567 {
1568 stub_noname_complaint ();
1569 return make_qualified_type (type, instance_flags, NULL);
1570 }
1571 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1572 if (sym)
1573 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1574 else /* TYPE_CODE_UNDEF */
1575 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1576 }
1577 type = TYPE_TARGET_TYPE (type);
1578
1579 /* Preserve the instance flags as we traverse down the typedef chain.
1580
1581 Handling address spaces/classes is nasty, what do we do if there's a
1582 conflict?
1583 E.g., what if an outer typedef marks the type as class_1 and an inner
1584 typedef marks the type as class_2?
1585 This is the wrong place to do such error checking. We leave it to
1586 the code that created the typedef in the first place to flag the
1587 error. We just pick the outer address space (akin to letting the
1588 outer cast in a chain of casting win), instead of assuming
1589 "it can't happen". */
1590 {
1591 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1592 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1593 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1594 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1595
1596 /* Treat code vs data spaces and address classes separately. */
1597 if ((instance_flags & ALL_SPACES) != 0)
1598 new_instance_flags &= ~ALL_SPACES;
1599 if ((instance_flags & ALL_CLASSES) != 0)
1600 new_instance_flags &= ~ALL_CLASSES;
1601
1602 instance_flags |= new_instance_flags;
1603 }
1604 }
1605
1606 /* If this is a struct/class/union with no fields, then check
1607 whether a full definition exists somewhere else. This is for
1608 systems where a type definition with no fields is issued for such
1609 types, instead of identifying them as stub types in the first
1610 place. */
1611
1612 if (TYPE_IS_OPAQUE (type)
1613 && opaque_type_resolution
1614 && !currently_reading_symtab)
1615 {
1616 const char *name = type_name_no_tag (type);
1617 struct type *newtype;
1618
1619 if (name == NULL)
1620 {
1621 stub_noname_complaint ();
1622 return make_qualified_type (type, instance_flags, NULL);
1623 }
1624 newtype = lookup_transparent_type (name);
1625
1626 if (newtype)
1627 {
1628 /* If the resolved type and the stub are in the same
1629 objfile, then replace the stub type with the real deal.
1630 But if they're in separate objfiles, leave the stub
1631 alone; we'll just look up the transparent type every time
1632 we call check_typedef. We can't create pointers between
1633 types allocated to different objfiles, since they may
1634 have different lifetimes. Trying to copy NEWTYPE over to
1635 TYPE's objfile is pointless, too, since you'll have to
1636 move over any other types NEWTYPE refers to, which could
1637 be an unbounded amount of stuff. */
1638 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1639 type = make_qualified_type (newtype,
1640 TYPE_INSTANCE_FLAGS (type),
1641 type);
1642 else
1643 type = newtype;
1644 }
1645 }
1646 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1647 types. */
1648 else if (TYPE_STUB (type) && !currently_reading_symtab)
1649 {
1650 const char *name = type_name_no_tag (type);
1651 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1652 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1653 as appropriate? (this code was written before TYPE_NAME and
1654 TYPE_TAG_NAME were separate). */
1655 struct symbol *sym;
1656
1657 if (name == NULL)
1658 {
1659 stub_noname_complaint ();
1660 return make_qualified_type (type, instance_flags, NULL);
1661 }
1662 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1663 if (sym)
1664 {
1665 /* Same as above for opaque types, we can replace the stub
1666 with the complete type only if they are in the same
1667 objfile. */
1668 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1669 type = make_qualified_type (SYMBOL_TYPE (sym),
1670 TYPE_INSTANCE_FLAGS (type),
1671 type);
1672 else
1673 type = SYMBOL_TYPE (sym);
1674 }
1675 }
1676
1677 if (TYPE_TARGET_STUB (type))
1678 {
1679 struct type *range_type;
1680 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1681
1682 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1683 {
1684 /* Nothing we can do. */
1685 }
1686 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1687 && TYPE_NFIELDS (type) == 1
1688 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1689 == TYPE_CODE_RANGE))
1690 {
1691 /* Now recompute the length of the array type, based on its
1692 number of elements and the target type's length.
1693 Watch out for Ada null Ada arrays where the high bound
1694 is smaller than the low bound. */
1695 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1696 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1697 ULONGEST len;
1698
1699 if (high_bound < low_bound)
1700 len = 0;
1701 else
1702 {
1703 /* For now, we conservatively take the array length to be 0
1704 if its length exceeds UINT_MAX. The code below assumes
1705 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1706 which is technically not guaranteed by C, but is usually true
1707 (because it would be true if x were unsigned with its
1708 high-order bit on). It uses the fact that
1709 high_bound-low_bound is always representable in
1710 ULONGEST and that if high_bound-low_bound+1 overflows,
1711 it overflows to 0. We must change these tests if we
1712 decide to increase the representation of TYPE_LENGTH
1713 from unsigned int to ULONGEST. */
1714 ULONGEST ulow = low_bound, uhigh = high_bound;
1715 ULONGEST tlen = TYPE_LENGTH (target_type);
1716
1717 len = tlen * (uhigh - ulow + 1);
1718 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1719 || len > UINT_MAX)
1720 len = 0;
1721 }
1722 TYPE_LENGTH (type) = len;
1723 TYPE_TARGET_STUB (type) = 0;
1724 }
1725 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1726 {
1727 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1728 TYPE_TARGET_STUB (type) = 0;
1729 }
1730 }
1731
1732 type = make_qualified_type (type, instance_flags, NULL);
1733
1734 /* Cache TYPE_LENGTH for future use. */
1735 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1736
1737 return type;
1738 }
1739
1740 /* Parse a type expression in the string [P..P+LENGTH). If an error
1741 occurs, silently return a void type. */
1742
1743 static struct type *
1744 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1745 {
1746 struct ui_file *saved_gdb_stderr;
1747 struct type *type = NULL; /* Initialize to keep gcc happy. */
1748 volatile struct gdb_exception except;
1749
1750 /* Suppress error messages. */
1751 saved_gdb_stderr = gdb_stderr;
1752 gdb_stderr = ui_file_new ();
1753
1754 /* Call parse_and_eval_type() without fear of longjmp()s. */
1755 TRY_CATCH (except, RETURN_MASK_ERROR)
1756 {
1757 type = parse_and_eval_type (p, length);
1758 }
1759
1760 if (except.reason < 0)
1761 type = builtin_type (gdbarch)->builtin_void;
1762
1763 /* Stop suppressing error messages. */
1764 ui_file_delete (gdb_stderr);
1765 gdb_stderr = saved_gdb_stderr;
1766
1767 return type;
1768 }
1769
1770 /* Ugly hack to convert method stubs into method types.
1771
1772 He ain't kiddin'. This demangles the name of the method into a
1773 string including argument types, parses out each argument type,
1774 generates a string casting a zero to that type, evaluates the
1775 string, and stuffs the resulting type into an argtype vector!!!
1776 Then it knows the type of the whole function (including argument
1777 types for overloading), which info used to be in the stab's but was
1778 removed to hack back the space required for them. */
1779
1780 static void
1781 check_stub_method (struct type *type, int method_id, int signature_id)
1782 {
1783 struct gdbarch *gdbarch = get_type_arch (type);
1784 struct fn_field *f;
1785 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1786 char *demangled_name = gdb_demangle (mangled_name,
1787 DMGL_PARAMS | DMGL_ANSI);
1788 char *argtypetext, *p;
1789 int depth = 0, argcount = 1;
1790 struct field *argtypes;
1791 struct type *mtype;
1792
1793 /* Make sure we got back a function string that we can use. */
1794 if (demangled_name)
1795 p = strchr (demangled_name, '(');
1796 else
1797 p = NULL;
1798
1799 if (demangled_name == NULL || p == NULL)
1800 error (_("Internal: Cannot demangle mangled name `%s'."),
1801 mangled_name);
1802
1803 /* Now, read in the parameters that define this type. */
1804 p += 1;
1805 argtypetext = p;
1806 while (*p)
1807 {
1808 if (*p == '(' || *p == '<')
1809 {
1810 depth += 1;
1811 }
1812 else if (*p == ')' || *p == '>')
1813 {
1814 depth -= 1;
1815 }
1816 else if (*p == ',' && depth == 0)
1817 {
1818 argcount += 1;
1819 }
1820
1821 p += 1;
1822 }
1823
1824 /* If we read one argument and it was ``void'', don't count it. */
1825 if (strncmp (argtypetext, "(void)", 6) == 0)
1826 argcount -= 1;
1827
1828 /* We need one extra slot, for the THIS pointer. */
1829
1830 argtypes = (struct field *)
1831 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1832 p = argtypetext;
1833
1834 /* Add THIS pointer for non-static methods. */
1835 f = TYPE_FN_FIELDLIST1 (type, method_id);
1836 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1837 argcount = 0;
1838 else
1839 {
1840 argtypes[0].type = lookup_pointer_type (type);
1841 argcount = 1;
1842 }
1843
1844 if (*p != ')') /* () means no args, skip while. */
1845 {
1846 depth = 0;
1847 while (*p)
1848 {
1849 if (depth <= 0 && (*p == ',' || *p == ')'))
1850 {
1851 /* Avoid parsing of ellipsis, they will be handled below.
1852 Also avoid ``void'' as above. */
1853 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1854 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1855 {
1856 argtypes[argcount].type =
1857 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1858 argcount += 1;
1859 }
1860 argtypetext = p + 1;
1861 }
1862
1863 if (*p == '(' || *p == '<')
1864 {
1865 depth += 1;
1866 }
1867 else if (*p == ')' || *p == '>')
1868 {
1869 depth -= 1;
1870 }
1871
1872 p += 1;
1873 }
1874 }
1875
1876 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1877
1878 /* Now update the old "stub" type into a real type. */
1879 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1880 TYPE_DOMAIN_TYPE (mtype) = type;
1881 TYPE_FIELDS (mtype) = argtypes;
1882 TYPE_NFIELDS (mtype) = argcount;
1883 TYPE_STUB (mtype) = 0;
1884 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1885 if (p[-2] == '.')
1886 TYPE_VARARGS (mtype) = 1;
1887
1888 xfree (demangled_name);
1889 }
1890
1891 /* This is the external interface to check_stub_method, above. This
1892 function unstubs all of the signatures for TYPE's METHOD_ID method
1893 name. After calling this function TYPE_FN_FIELD_STUB will be
1894 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1895 correct.
1896
1897 This function unfortunately can not die until stabs do. */
1898
1899 void
1900 check_stub_method_group (struct type *type, int method_id)
1901 {
1902 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1903 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1904 int j, found_stub = 0;
1905
1906 for (j = 0; j < len; j++)
1907 if (TYPE_FN_FIELD_STUB (f, j))
1908 {
1909 found_stub = 1;
1910 check_stub_method (type, method_id, j);
1911 }
1912
1913 /* GNU v3 methods with incorrect names were corrected when we read
1914 in type information, because it was cheaper to do it then. The
1915 only GNU v2 methods with incorrect method names are operators and
1916 destructors; destructors were also corrected when we read in type
1917 information.
1918
1919 Therefore the only thing we need to handle here are v2 operator
1920 names. */
1921 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1922 {
1923 int ret;
1924 char dem_opname[256];
1925
1926 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1927 method_id),
1928 dem_opname, DMGL_ANSI);
1929 if (!ret)
1930 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1931 method_id),
1932 dem_opname, 0);
1933 if (ret)
1934 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1935 }
1936 }
1937
1938 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1939 const struct cplus_struct_type cplus_struct_default = { };
1940
1941 void
1942 allocate_cplus_struct_type (struct type *type)
1943 {
1944 if (HAVE_CPLUS_STRUCT (type))
1945 /* Structure was already allocated. Nothing more to do. */
1946 return;
1947
1948 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1949 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1950 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1951 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1952 }
1953
1954 const struct gnat_aux_type gnat_aux_default =
1955 { NULL };
1956
1957 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1958 and allocate the associated gnat-specific data. The gnat-specific
1959 data is also initialized to gnat_aux_default. */
1960
1961 void
1962 allocate_gnat_aux_type (struct type *type)
1963 {
1964 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1965 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1966 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1967 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1968 }
1969
1970 /* Helper function to initialize the standard scalar types.
1971
1972 If NAME is non-NULL, then it is used to initialize the type name.
1973 Note that NAME is not copied; it is required to have a lifetime at
1974 least as long as OBJFILE. */
1975
1976 struct type *
1977 init_type (enum type_code code, int length, int flags,
1978 const char *name, struct objfile *objfile)
1979 {
1980 struct type *type;
1981
1982 type = alloc_type (objfile);
1983 TYPE_CODE (type) = code;
1984 TYPE_LENGTH (type) = length;
1985
1986 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1987 if (flags & TYPE_FLAG_UNSIGNED)
1988 TYPE_UNSIGNED (type) = 1;
1989 if (flags & TYPE_FLAG_NOSIGN)
1990 TYPE_NOSIGN (type) = 1;
1991 if (flags & TYPE_FLAG_STUB)
1992 TYPE_STUB (type) = 1;
1993 if (flags & TYPE_FLAG_TARGET_STUB)
1994 TYPE_TARGET_STUB (type) = 1;
1995 if (flags & TYPE_FLAG_STATIC)
1996 TYPE_STATIC (type) = 1;
1997 if (flags & TYPE_FLAG_PROTOTYPED)
1998 TYPE_PROTOTYPED (type) = 1;
1999 if (flags & TYPE_FLAG_INCOMPLETE)
2000 TYPE_INCOMPLETE (type) = 1;
2001 if (flags & TYPE_FLAG_VARARGS)
2002 TYPE_VARARGS (type) = 1;
2003 if (flags & TYPE_FLAG_VECTOR)
2004 TYPE_VECTOR (type) = 1;
2005 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2006 TYPE_STUB_SUPPORTED (type) = 1;
2007 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2008 TYPE_FIXED_INSTANCE (type) = 1;
2009 if (flags & TYPE_FLAG_GNU_IFUNC)
2010 TYPE_GNU_IFUNC (type) = 1;
2011
2012 TYPE_NAME (type) = name;
2013
2014 /* C++ fancies. */
2015
2016 if (name && strcmp (name, "char") == 0)
2017 TYPE_NOSIGN (type) = 1;
2018
2019 switch (code)
2020 {
2021 case TYPE_CODE_STRUCT:
2022 case TYPE_CODE_UNION:
2023 case TYPE_CODE_NAMESPACE:
2024 INIT_CPLUS_SPECIFIC (type);
2025 break;
2026 case TYPE_CODE_FLT:
2027 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2028 break;
2029 case TYPE_CODE_FUNC:
2030 INIT_FUNC_SPECIFIC (type);
2031 break;
2032 }
2033 return type;
2034 }
2035 \f
2036 /* Queries on types. */
2037
2038 int
2039 can_dereference (struct type *t)
2040 {
2041 /* FIXME: Should we return true for references as well as
2042 pointers? */
2043 CHECK_TYPEDEF (t);
2044 return
2045 (t != NULL
2046 && TYPE_CODE (t) == TYPE_CODE_PTR
2047 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2048 }
2049
2050 int
2051 is_integral_type (struct type *t)
2052 {
2053 CHECK_TYPEDEF (t);
2054 return
2055 ((t != NULL)
2056 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2057 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2058 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2059 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2060 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2061 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2062 }
2063
2064 /* Return true if TYPE is scalar. */
2065
2066 static int
2067 is_scalar_type (struct type *type)
2068 {
2069 CHECK_TYPEDEF (type);
2070
2071 switch (TYPE_CODE (type))
2072 {
2073 case TYPE_CODE_ARRAY:
2074 case TYPE_CODE_STRUCT:
2075 case TYPE_CODE_UNION:
2076 case TYPE_CODE_SET:
2077 case TYPE_CODE_STRING:
2078 return 0;
2079 default:
2080 return 1;
2081 }
2082 }
2083
2084 /* Return true if T is scalar, or a composite type which in practice has
2085 the memory layout of a scalar type. E.g., an array or struct with only
2086 one scalar element inside it, or a union with only scalar elements. */
2087
2088 int
2089 is_scalar_type_recursive (struct type *t)
2090 {
2091 CHECK_TYPEDEF (t);
2092
2093 if (is_scalar_type (t))
2094 return 1;
2095 /* Are we dealing with an array or string of known dimensions? */
2096 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2097 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2098 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2099 {
2100 LONGEST low_bound, high_bound;
2101 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2102
2103 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2104
2105 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2106 }
2107 /* Are we dealing with a struct with one element? */
2108 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2109 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2110 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2111 {
2112 int i, n = TYPE_NFIELDS (t);
2113
2114 /* If all elements of the union are scalar, then the union is scalar. */
2115 for (i = 0; i < n; i++)
2116 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2117 return 0;
2118
2119 return 1;
2120 }
2121
2122 return 0;
2123 }
2124
2125 /* A helper function which returns true if types A and B represent the
2126 "same" class type. This is true if the types have the same main
2127 type, or the same name. */
2128
2129 int
2130 class_types_same_p (const struct type *a, const struct type *b)
2131 {
2132 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2133 || (TYPE_NAME (a) && TYPE_NAME (b)
2134 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2135 }
2136
2137 /* If BASE is an ancestor of DCLASS return the distance between them.
2138 otherwise return -1;
2139 eg:
2140
2141 class A {};
2142 class B: public A {};
2143 class C: public B {};
2144 class D: C {};
2145
2146 distance_to_ancestor (A, A, 0) = 0
2147 distance_to_ancestor (A, B, 0) = 1
2148 distance_to_ancestor (A, C, 0) = 2
2149 distance_to_ancestor (A, D, 0) = 3
2150
2151 If PUBLIC is 1 then only public ancestors are considered,
2152 and the function returns the distance only if BASE is a public ancestor
2153 of DCLASS.
2154 Eg:
2155
2156 distance_to_ancestor (A, D, 1) = -1. */
2157
2158 static int
2159 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2160 {
2161 int i;
2162 int d;
2163
2164 CHECK_TYPEDEF (base);
2165 CHECK_TYPEDEF (dclass);
2166
2167 if (class_types_same_p (base, dclass))
2168 return 0;
2169
2170 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2171 {
2172 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2173 continue;
2174
2175 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2176 if (d >= 0)
2177 return 1 + d;
2178 }
2179
2180 return -1;
2181 }
2182
2183 /* Check whether BASE is an ancestor or base class or DCLASS
2184 Return 1 if so, and 0 if not.
2185 Note: If BASE and DCLASS are of the same type, this function
2186 will return 1. So for some class A, is_ancestor (A, A) will
2187 return 1. */
2188
2189 int
2190 is_ancestor (struct type *base, struct type *dclass)
2191 {
2192 return distance_to_ancestor (base, dclass, 0) >= 0;
2193 }
2194
2195 /* Like is_ancestor, but only returns true when BASE is a public
2196 ancestor of DCLASS. */
2197
2198 int
2199 is_public_ancestor (struct type *base, struct type *dclass)
2200 {
2201 return distance_to_ancestor (base, dclass, 1) >= 0;
2202 }
2203
2204 /* A helper function for is_unique_ancestor. */
2205
2206 static int
2207 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2208 int *offset,
2209 const gdb_byte *valaddr, int embedded_offset,
2210 CORE_ADDR address, struct value *val)
2211 {
2212 int i, count = 0;
2213
2214 CHECK_TYPEDEF (base);
2215 CHECK_TYPEDEF (dclass);
2216
2217 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2218 {
2219 struct type *iter;
2220 int this_offset;
2221
2222 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2223
2224 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2225 address, val);
2226
2227 if (class_types_same_p (base, iter))
2228 {
2229 /* If this is the first subclass, set *OFFSET and set count
2230 to 1. Otherwise, if this is at the same offset as
2231 previous instances, do nothing. Otherwise, increment
2232 count. */
2233 if (*offset == -1)
2234 {
2235 *offset = this_offset;
2236 count = 1;
2237 }
2238 else if (this_offset == *offset)
2239 {
2240 /* Nothing. */
2241 }
2242 else
2243 ++count;
2244 }
2245 else
2246 count += is_unique_ancestor_worker (base, iter, offset,
2247 valaddr,
2248 embedded_offset + this_offset,
2249 address, val);
2250 }
2251
2252 return count;
2253 }
2254
2255 /* Like is_ancestor, but only returns true if BASE is a unique base
2256 class of the type of VAL. */
2257
2258 int
2259 is_unique_ancestor (struct type *base, struct value *val)
2260 {
2261 int offset = -1;
2262
2263 return is_unique_ancestor_worker (base, value_type (val), &offset,
2264 value_contents_for_printing (val),
2265 value_embedded_offset (val),
2266 value_address (val), val) == 1;
2267 }
2268
2269 \f
2270 /* Overload resolution. */
2271
2272 /* Return the sum of the rank of A with the rank of B. */
2273
2274 struct rank
2275 sum_ranks (struct rank a, struct rank b)
2276 {
2277 struct rank c;
2278 c.rank = a.rank + b.rank;
2279 c.subrank = a.subrank + b.subrank;
2280 return c;
2281 }
2282
2283 /* Compare rank A and B and return:
2284 0 if a = b
2285 1 if a is better than b
2286 -1 if b is better than a. */
2287
2288 int
2289 compare_ranks (struct rank a, struct rank b)
2290 {
2291 if (a.rank == b.rank)
2292 {
2293 if (a.subrank == b.subrank)
2294 return 0;
2295 if (a.subrank < b.subrank)
2296 return 1;
2297 if (a.subrank > b.subrank)
2298 return -1;
2299 }
2300
2301 if (a.rank < b.rank)
2302 return 1;
2303
2304 /* a.rank > b.rank */
2305 return -1;
2306 }
2307
2308 /* Functions for overload resolution begin here. */
2309
2310 /* Compare two badness vectors A and B and return the result.
2311 0 => A and B are identical
2312 1 => A and B are incomparable
2313 2 => A is better than B
2314 3 => A is worse than B */
2315
2316 int
2317 compare_badness (struct badness_vector *a, struct badness_vector *b)
2318 {
2319 int i;
2320 int tmp;
2321 short found_pos = 0; /* any positives in c? */
2322 short found_neg = 0; /* any negatives in c? */
2323
2324 /* differing lengths => incomparable */
2325 if (a->length != b->length)
2326 return 1;
2327
2328 /* Subtract b from a */
2329 for (i = 0; i < a->length; i++)
2330 {
2331 tmp = compare_ranks (b->rank[i], a->rank[i]);
2332 if (tmp > 0)
2333 found_pos = 1;
2334 else if (tmp < 0)
2335 found_neg = 1;
2336 }
2337
2338 if (found_pos)
2339 {
2340 if (found_neg)
2341 return 1; /* incomparable */
2342 else
2343 return 3; /* A > B */
2344 }
2345 else
2346 /* no positives */
2347 {
2348 if (found_neg)
2349 return 2; /* A < B */
2350 else
2351 return 0; /* A == B */
2352 }
2353 }
2354
2355 /* Rank a function by comparing its parameter types (PARMS, length
2356 NPARMS), to the types of an argument list (ARGS, length NARGS).
2357 Return a pointer to a badness vector. This has NARGS + 1
2358 entries. */
2359
2360 struct badness_vector *
2361 rank_function (struct type **parms, int nparms,
2362 struct value **args, int nargs)
2363 {
2364 int i;
2365 struct badness_vector *bv;
2366 int min_len = nparms < nargs ? nparms : nargs;
2367
2368 bv = xmalloc (sizeof (struct badness_vector));
2369 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2370 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2371
2372 /* First compare the lengths of the supplied lists.
2373 If there is a mismatch, set it to a high value. */
2374
2375 /* pai/1997-06-03 FIXME: when we have debug info about default
2376 arguments and ellipsis parameter lists, we should consider those
2377 and rank the length-match more finely. */
2378
2379 LENGTH_MATCH (bv) = (nargs != nparms)
2380 ? LENGTH_MISMATCH_BADNESS
2381 : EXACT_MATCH_BADNESS;
2382
2383 /* Now rank all the parameters of the candidate function. */
2384 for (i = 1; i <= min_len; i++)
2385 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2386 args[i - 1]);
2387
2388 /* If more arguments than parameters, add dummy entries. */
2389 for (i = min_len + 1; i <= nargs; i++)
2390 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2391
2392 return bv;
2393 }
2394
2395 /* Compare the names of two integer types, assuming that any sign
2396 qualifiers have been checked already. We do it this way because
2397 there may be an "int" in the name of one of the types. */
2398
2399 static int
2400 integer_types_same_name_p (const char *first, const char *second)
2401 {
2402 int first_p, second_p;
2403
2404 /* If both are shorts, return 1; if neither is a short, keep
2405 checking. */
2406 first_p = (strstr (first, "short") != NULL);
2407 second_p = (strstr (second, "short") != NULL);
2408 if (first_p && second_p)
2409 return 1;
2410 if (first_p || second_p)
2411 return 0;
2412
2413 /* Likewise for long. */
2414 first_p = (strstr (first, "long") != NULL);
2415 second_p = (strstr (second, "long") != NULL);
2416 if (first_p && second_p)
2417 return 1;
2418 if (first_p || second_p)
2419 return 0;
2420
2421 /* Likewise for char. */
2422 first_p = (strstr (first, "char") != NULL);
2423 second_p = (strstr (second, "char") != NULL);
2424 if (first_p && second_p)
2425 return 1;
2426 if (first_p || second_p)
2427 return 0;
2428
2429 /* They must both be ints. */
2430 return 1;
2431 }
2432
2433 /* Compares type A to type B returns 1 if the represent the same type
2434 0 otherwise. */
2435
2436 int
2437 types_equal (struct type *a, struct type *b)
2438 {
2439 /* Identical type pointers. */
2440 /* However, this still doesn't catch all cases of same type for b
2441 and a. The reason is that builtin types are different from
2442 the same ones constructed from the object. */
2443 if (a == b)
2444 return 1;
2445
2446 /* Resolve typedefs */
2447 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2448 a = check_typedef (a);
2449 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2450 b = check_typedef (b);
2451
2452 /* If after resolving typedefs a and b are not of the same type
2453 code then they are not equal. */
2454 if (TYPE_CODE (a) != TYPE_CODE (b))
2455 return 0;
2456
2457 /* If a and b are both pointers types or both reference types then
2458 they are equal of the same type iff the objects they refer to are
2459 of the same type. */
2460 if (TYPE_CODE (a) == TYPE_CODE_PTR
2461 || TYPE_CODE (a) == TYPE_CODE_REF)
2462 return types_equal (TYPE_TARGET_TYPE (a),
2463 TYPE_TARGET_TYPE (b));
2464
2465 /* Well, damnit, if the names are exactly the same, I'll say they
2466 are exactly the same. This happens when we generate method
2467 stubs. The types won't point to the same address, but they
2468 really are the same. */
2469
2470 if (TYPE_NAME (a) && TYPE_NAME (b)
2471 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2472 return 1;
2473
2474 /* Check if identical after resolving typedefs. */
2475 if (a == b)
2476 return 1;
2477
2478 /* Two function types are equal if their argument and return types
2479 are equal. */
2480 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2481 {
2482 int i;
2483
2484 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2485 return 0;
2486
2487 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2488 return 0;
2489
2490 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2491 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2492 return 0;
2493
2494 return 1;
2495 }
2496
2497 return 0;
2498 }
2499 \f
2500 /* Deep comparison of types. */
2501
2502 /* An entry in the type-equality bcache. */
2503
2504 typedef struct type_equality_entry
2505 {
2506 struct type *type1, *type2;
2507 } type_equality_entry_d;
2508
2509 DEF_VEC_O (type_equality_entry_d);
2510
2511 /* A helper function to compare two strings. Returns 1 if they are
2512 the same, 0 otherwise. Handles NULLs properly. */
2513
2514 static int
2515 compare_maybe_null_strings (const char *s, const char *t)
2516 {
2517 if (s == NULL && t != NULL)
2518 return 0;
2519 else if (s != NULL && t == NULL)
2520 return 0;
2521 else if (s == NULL && t== NULL)
2522 return 1;
2523 return strcmp (s, t) == 0;
2524 }
2525
2526 /* A helper function for check_types_worklist that checks two types for
2527 "deep" equality. Returns non-zero if the types are considered the
2528 same, zero otherwise. */
2529
2530 static int
2531 check_types_equal (struct type *type1, struct type *type2,
2532 VEC (type_equality_entry_d) **worklist)
2533 {
2534 CHECK_TYPEDEF (type1);
2535 CHECK_TYPEDEF (type2);
2536
2537 if (type1 == type2)
2538 return 1;
2539
2540 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2541 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2542 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2543 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2544 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2545 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2546 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2547 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2548 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2549 return 0;
2550
2551 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2552 TYPE_TAG_NAME (type2)))
2553 return 0;
2554 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2555 return 0;
2556
2557 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2558 {
2559 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2560 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2561 return 0;
2562 }
2563 else
2564 {
2565 int i;
2566
2567 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2568 {
2569 const struct field *field1 = &TYPE_FIELD (type1, i);
2570 const struct field *field2 = &TYPE_FIELD (type2, i);
2571 struct type_equality_entry entry;
2572
2573 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2574 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2575 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2576 return 0;
2577 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2578 FIELD_NAME (*field2)))
2579 return 0;
2580 switch (FIELD_LOC_KIND (*field1))
2581 {
2582 case FIELD_LOC_KIND_BITPOS:
2583 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2584 return 0;
2585 break;
2586 case FIELD_LOC_KIND_ENUMVAL:
2587 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2588 return 0;
2589 break;
2590 case FIELD_LOC_KIND_PHYSADDR:
2591 if (FIELD_STATIC_PHYSADDR (*field1)
2592 != FIELD_STATIC_PHYSADDR (*field2))
2593 return 0;
2594 break;
2595 case FIELD_LOC_KIND_PHYSNAME:
2596 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2597 FIELD_STATIC_PHYSNAME (*field2)))
2598 return 0;
2599 break;
2600 case FIELD_LOC_KIND_DWARF_BLOCK:
2601 {
2602 struct dwarf2_locexpr_baton *block1, *block2;
2603
2604 block1 = FIELD_DWARF_BLOCK (*field1);
2605 block2 = FIELD_DWARF_BLOCK (*field2);
2606 if (block1->per_cu != block2->per_cu
2607 || block1->size != block2->size
2608 || memcmp (block1->data, block2->data, block1->size) != 0)
2609 return 0;
2610 }
2611 break;
2612 default:
2613 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2614 "%d by check_types_equal"),
2615 FIELD_LOC_KIND (*field1));
2616 }
2617
2618 entry.type1 = FIELD_TYPE (*field1);
2619 entry.type2 = FIELD_TYPE (*field2);
2620 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2621 }
2622 }
2623
2624 if (TYPE_TARGET_TYPE (type1) != NULL)
2625 {
2626 struct type_equality_entry entry;
2627
2628 if (TYPE_TARGET_TYPE (type2) == NULL)
2629 return 0;
2630
2631 entry.type1 = TYPE_TARGET_TYPE (type1);
2632 entry.type2 = TYPE_TARGET_TYPE (type2);
2633 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2634 }
2635 else if (TYPE_TARGET_TYPE (type2) != NULL)
2636 return 0;
2637
2638 return 1;
2639 }
2640
2641 /* Check types on a worklist for equality. Returns zero if any pair
2642 is not equal, non-zero if they are all considered equal. */
2643
2644 static int
2645 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2646 struct bcache *cache)
2647 {
2648 while (!VEC_empty (type_equality_entry_d, *worklist))
2649 {
2650 struct type_equality_entry entry;
2651 int added;
2652
2653 entry = *VEC_last (type_equality_entry_d, *worklist);
2654 VEC_pop (type_equality_entry_d, *worklist);
2655
2656 /* If the type pair has already been visited, we know it is
2657 ok. */
2658 bcache_full (&entry, sizeof (entry), cache, &added);
2659 if (!added)
2660 continue;
2661
2662 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2663 return 0;
2664 }
2665
2666 return 1;
2667 }
2668
2669 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2670 "deep comparison". Otherwise return zero. */
2671
2672 int
2673 types_deeply_equal (struct type *type1, struct type *type2)
2674 {
2675 volatile struct gdb_exception except;
2676 int result = 0;
2677 struct bcache *cache;
2678 VEC (type_equality_entry_d) *worklist = NULL;
2679 struct type_equality_entry entry;
2680
2681 gdb_assert (type1 != NULL && type2 != NULL);
2682
2683 /* Early exit for the simple case. */
2684 if (type1 == type2)
2685 return 1;
2686
2687 cache = bcache_xmalloc (NULL, NULL);
2688
2689 entry.type1 = type1;
2690 entry.type2 = type2;
2691 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2692
2693 TRY_CATCH (except, RETURN_MASK_ALL)
2694 {
2695 result = check_types_worklist (&worklist, cache);
2696 }
2697 /* check_types_worklist calls several nested helper functions,
2698 some of which can raise a GDB Exception, so we just check
2699 and rethrow here. If there is a GDB exception, a comparison
2700 is not capable (or trusted), so exit. */
2701 bcache_xfree (cache);
2702 VEC_free (type_equality_entry_d, worklist);
2703 /* Rethrow if there was a problem. */
2704 if (except.reason < 0)
2705 throw_exception (except);
2706
2707 return result;
2708 }
2709 \f
2710 /* Compare one type (PARM) for compatibility with another (ARG).
2711 * PARM is intended to be the parameter type of a function; and
2712 * ARG is the supplied argument's type. This function tests if
2713 * the latter can be converted to the former.
2714 * VALUE is the argument's value or NULL if none (or called recursively)
2715 *
2716 * Return 0 if they are identical types;
2717 * Otherwise, return an integer which corresponds to how compatible
2718 * PARM is to ARG. The higher the return value, the worse the match.
2719 * Generally the "bad" conversions are all uniformly assigned a 100. */
2720
2721 struct rank
2722 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2723 {
2724 struct rank rank = {0,0};
2725
2726 if (types_equal (parm, arg))
2727 return EXACT_MATCH_BADNESS;
2728
2729 /* Resolve typedefs */
2730 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2731 parm = check_typedef (parm);
2732 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2733 arg = check_typedef (arg);
2734
2735 /* See through references, since we can almost make non-references
2736 references. */
2737 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2738 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2739 REFERENCE_CONVERSION_BADNESS));
2740 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2741 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2742 REFERENCE_CONVERSION_BADNESS));
2743 if (overload_debug)
2744 /* Debugging only. */
2745 fprintf_filtered (gdb_stderr,
2746 "------ Arg is %s [%d], parm is %s [%d]\n",
2747 TYPE_NAME (arg), TYPE_CODE (arg),
2748 TYPE_NAME (parm), TYPE_CODE (parm));
2749
2750 /* x -> y means arg of type x being supplied for parameter of type y. */
2751
2752 switch (TYPE_CODE (parm))
2753 {
2754 case TYPE_CODE_PTR:
2755 switch (TYPE_CODE (arg))
2756 {
2757 case TYPE_CODE_PTR:
2758
2759 /* Allowed pointer conversions are:
2760 (a) pointer to void-pointer conversion. */
2761 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2762 return VOID_PTR_CONVERSION_BADNESS;
2763
2764 /* (b) pointer to ancestor-pointer conversion. */
2765 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2766 TYPE_TARGET_TYPE (arg),
2767 0);
2768 if (rank.subrank >= 0)
2769 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2770
2771 return INCOMPATIBLE_TYPE_BADNESS;
2772 case TYPE_CODE_ARRAY:
2773 if (types_equal (TYPE_TARGET_TYPE (parm),
2774 TYPE_TARGET_TYPE (arg)))
2775 return EXACT_MATCH_BADNESS;
2776 return INCOMPATIBLE_TYPE_BADNESS;
2777 case TYPE_CODE_FUNC:
2778 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2779 case TYPE_CODE_INT:
2780 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2781 {
2782 if (value_as_long (value) == 0)
2783 {
2784 /* Null pointer conversion: allow it to be cast to a pointer.
2785 [4.10.1 of C++ standard draft n3290] */
2786 return NULL_POINTER_CONVERSION_BADNESS;
2787 }
2788 else
2789 {
2790 /* If type checking is disabled, allow the conversion. */
2791 if (!strict_type_checking)
2792 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2793 }
2794 }
2795 /* fall through */
2796 case TYPE_CODE_ENUM:
2797 case TYPE_CODE_FLAGS:
2798 case TYPE_CODE_CHAR:
2799 case TYPE_CODE_RANGE:
2800 case TYPE_CODE_BOOL:
2801 default:
2802 return INCOMPATIBLE_TYPE_BADNESS;
2803 }
2804 case TYPE_CODE_ARRAY:
2805 switch (TYPE_CODE (arg))
2806 {
2807 case TYPE_CODE_PTR:
2808 case TYPE_CODE_ARRAY:
2809 return rank_one_type (TYPE_TARGET_TYPE (parm),
2810 TYPE_TARGET_TYPE (arg), NULL);
2811 default:
2812 return INCOMPATIBLE_TYPE_BADNESS;
2813 }
2814 case TYPE_CODE_FUNC:
2815 switch (TYPE_CODE (arg))
2816 {
2817 case TYPE_CODE_PTR: /* funcptr -> func */
2818 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2819 default:
2820 return INCOMPATIBLE_TYPE_BADNESS;
2821 }
2822 case TYPE_CODE_INT:
2823 switch (TYPE_CODE (arg))
2824 {
2825 case TYPE_CODE_INT:
2826 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2827 {
2828 /* Deal with signed, unsigned, and plain chars and
2829 signed and unsigned ints. */
2830 if (TYPE_NOSIGN (parm))
2831 {
2832 /* This case only for character types. */
2833 if (TYPE_NOSIGN (arg))
2834 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2835 else /* signed/unsigned char -> plain char */
2836 return INTEGER_CONVERSION_BADNESS;
2837 }
2838 else if (TYPE_UNSIGNED (parm))
2839 {
2840 if (TYPE_UNSIGNED (arg))
2841 {
2842 /* unsigned int -> unsigned int, or
2843 unsigned long -> unsigned long */
2844 if (integer_types_same_name_p (TYPE_NAME (parm),
2845 TYPE_NAME (arg)))
2846 return EXACT_MATCH_BADNESS;
2847 else if (integer_types_same_name_p (TYPE_NAME (arg),
2848 "int")
2849 && integer_types_same_name_p (TYPE_NAME (parm),
2850 "long"))
2851 /* unsigned int -> unsigned long */
2852 return INTEGER_PROMOTION_BADNESS;
2853 else
2854 /* unsigned long -> unsigned int */
2855 return INTEGER_CONVERSION_BADNESS;
2856 }
2857 else
2858 {
2859 if (integer_types_same_name_p (TYPE_NAME (arg),
2860 "long")
2861 && integer_types_same_name_p (TYPE_NAME (parm),
2862 "int"))
2863 /* signed long -> unsigned int */
2864 return INTEGER_CONVERSION_BADNESS;
2865 else
2866 /* signed int/long -> unsigned int/long */
2867 return INTEGER_CONVERSION_BADNESS;
2868 }
2869 }
2870 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2871 {
2872 if (integer_types_same_name_p (TYPE_NAME (parm),
2873 TYPE_NAME (arg)))
2874 return EXACT_MATCH_BADNESS;
2875 else if (integer_types_same_name_p (TYPE_NAME (arg),
2876 "int")
2877 && integer_types_same_name_p (TYPE_NAME (parm),
2878 "long"))
2879 return INTEGER_PROMOTION_BADNESS;
2880 else
2881 return INTEGER_CONVERSION_BADNESS;
2882 }
2883 else
2884 return INTEGER_CONVERSION_BADNESS;
2885 }
2886 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2887 return INTEGER_PROMOTION_BADNESS;
2888 else
2889 return INTEGER_CONVERSION_BADNESS;
2890 case TYPE_CODE_ENUM:
2891 case TYPE_CODE_FLAGS:
2892 case TYPE_CODE_CHAR:
2893 case TYPE_CODE_RANGE:
2894 case TYPE_CODE_BOOL:
2895 return INTEGER_PROMOTION_BADNESS;
2896 case TYPE_CODE_FLT:
2897 return INT_FLOAT_CONVERSION_BADNESS;
2898 case TYPE_CODE_PTR:
2899 return NS_POINTER_CONVERSION_BADNESS;
2900 default:
2901 return INCOMPATIBLE_TYPE_BADNESS;
2902 }
2903 break;
2904 case TYPE_CODE_ENUM:
2905 switch (TYPE_CODE (arg))
2906 {
2907 case TYPE_CODE_INT:
2908 case TYPE_CODE_CHAR:
2909 case TYPE_CODE_RANGE:
2910 case TYPE_CODE_BOOL:
2911 case TYPE_CODE_ENUM:
2912 return INTEGER_CONVERSION_BADNESS;
2913 case TYPE_CODE_FLT:
2914 return INT_FLOAT_CONVERSION_BADNESS;
2915 default:
2916 return INCOMPATIBLE_TYPE_BADNESS;
2917 }
2918 break;
2919 case TYPE_CODE_CHAR:
2920 switch (TYPE_CODE (arg))
2921 {
2922 case TYPE_CODE_RANGE:
2923 case TYPE_CODE_BOOL:
2924 case TYPE_CODE_ENUM:
2925 return INTEGER_CONVERSION_BADNESS;
2926 case TYPE_CODE_FLT:
2927 return INT_FLOAT_CONVERSION_BADNESS;
2928 case TYPE_CODE_INT:
2929 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2930 return INTEGER_CONVERSION_BADNESS;
2931 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2932 return INTEGER_PROMOTION_BADNESS;
2933 /* >>> !! else fall through !! <<< */
2934 case TYPE_CODE_CHAR:
2935 /* Deal with signed, unsigned, and plain chars for C++ and
2936 with int cases falling through from previous case. */
2937 if (TYPE_NOSIGN (parm))
2938 {
2939 if (TYPE_NOSIGN (arg))
2940 return EXACT_MATCH_BADNESS;
2941 else
2942 return INTEGER_CONVERSION_BADNESS;
2943 }
2944 else if (TYPE_UNSIGNED (parm))
2945 {
2946 if (TYPE_UNSIGNED (arg))
2947 return EXACT_MATCH_BADNESS;
2948 else
2949 return INTEGER_PROMOTION_BADNESS;
2950 }
2951 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2952 return EXACT_MATCH_BADNESS;
2953 else
2954 return INTEGER_CONVERSION_BADNESS;
2955 default:
2956 return INCOMPATIBLE_TYPE_BADNESS;
2957 }
2958 break;
2959 case TYPE_CODE_RANGE:
2960 switch (TYPE_CODE (arg))
2961 {
2962 case TYPE_CODE_INT:
2963 case TYPE_CODE_CHAR:
2964 case TYPE_CODE_RANGE:
2965 case TYPE_CODE_BOOL:
2966 case TYPE_CODE_ENUM:
2967 return INTEGER_CONVERSION_BADNESS;
2968 case TYPE_CODE_FLT:
2969 return INT_FLOAT_CONVERSION_BADNESS;
2970 default:
2971 return INCOMPATIBLE_TYPE_BADNESS;
2972 }
2973 break;
2974 case TYPE_CODE_BOOL:
2975 switch (TYPE_CODE (arg))
2976 {
2977 /* n3290 draft, section 4.12.1 (conv.bool):
2978
2979 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2980 pointer to member type can be converted to a prvalue of type
2981 bool. A zero value, null pointer value, or null member pointer
2982 value is converted to false; any other value is converted to
2983 true. A prvalue of type std::nullptr_t can be converted to a
2984 prvalue of type bool; the resulting value is false." */
2985 case TYPE_CODE_INT:
2986 case TYPE_CODE_CHAR:
2987 case TYPE_CODE_ENUM:
2988 case TYPE_CODE_FLT:
2989 case TYPE_CODE_MEMBERPTR:
2990 case TYPE_CODE_PTR:
2991 return BOOL_CONVERSION_BADNESS;
2992 case TYPE_CODE_RANGE:
2993 return INCOMPATIBLE_TYPE_BADNESS;
2994 case TYPE_CODE_BOOL:
2995 return EXACT_MATCH_BADNESS;
2996 default:
2997 return INCOMPATIBLE_TYPE_BADNESS;
2998 }
2999 break;
3000 case TYPE_CODE_FLT:
3001 switch (TYPE_CODE (arg))
3002 {
3003 case TYPE_CODE_FLT:
3004 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3005 return FLOAT_PROMOTION_BADNESS;
3006 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3007 return EXACT_MATCH_BADNESS;
3008 else
3009 return FLOAT_CONVERSION_BADNESS;
3010 case TYPE_CODE_INT:
3011 case TYPE_CODE_BOOL:
3012 case TYPE_CODE_ENUM:
3013 case TYPE_CODE_RANGE:
3014 case TYPE_CODE_CHAR:
3015 return INT_FLOAT_CONVERSION_BADNESS;
3016 default:
3017 return INCOMPATIBLE_TYPE_BADNESS;
3018 }
3019 break;
3020 case TYPE_CODE_COMPLEX:
3021 switch (TYPE_CODE (arg))
3022 { /* Strictly not needed for C++, but... */
3023 case TYPE_CODE_FLT:
3024 return FLOAT_PROMOTION_BADNESS;
3025 case TYPE_CODE_COMPLEX:
3026 return EXACT_MATCH_BADNESS;
3027 default:
3028 return INCOMPATIBLE_TYPE_BADNESS;
3029 }
3030 break;
3031 case TYPE_CODE_STRUCT:
3032 /* currently same as TYPE_CODE_CLASS. */
3033 switch (TYPE_CODE (arg))
3034 {
3035 case TYPE_CODE_STRUCT:
3036 /* Check for derivation */
3037 rank.subrank = distance_to_ancestor (parm, arg, 0);
3038 if (rank.subrank >= 0)
3039 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3040 /* else fall through */
3041 default:
3042 return INCOMPATIBLE_TYPE_BADNESS;
3043 }
3044 break;
3045 case TYPE_CODE_UNION:
3046 switch (TYPE_CODE (arg))
3047 {
3048 case TYPE_CODE_UNION:
3049 default:
3050 return INCOMPATIBLE_TYPE_BADNESS;
3051 }
3052 break;
3053 case TYPE_CODE_MEMBERPTR:
3054 switch (TYPE_CODE (arg))
3055 {
3056 default:
3057 return INCOMPATIBLE_TYPE_BADNESS;
3058 }
3059 break;
3060 case TYPE_CODE_METHOD:
3061 switch (TYPE_CODE (arg))
3062 {
3063
3064 default:
3065 return INCOMPATIBLE_TYPE_BADNESS;
3066 }
3067 break;
3068 case TYPE_CODE_REF:
3069 switch (TYPE_CODE (arg))
3070 {
3071
3072 default:
3073 return INCOMPATIBLE_TYPE_BADNESS;
3074 }
3075
3076 break;
3077 case TYPE_CODE_SET:
3078 switch (TYPE_CODE (arg))
3079 {
3080 /* Not in C++ */
3081 case TYPE_CODE_SET:
3082 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3083 TYPE_FIELD_TYPE (arg, 0), NULL);
3084 default:
3085 return INCOMPATIBLE_TYPE_BADNESS;
3086 }
3087 break;
3088 case TYPE_CODE_VOID:
3089 default:
3090 return INCOMPATIBLE_TYPE_BADNESS;
3091 } /* switch (TYPE_CODE (arg)) */
3092 }
3093
3094 /* End of functions for overload resolution. */
3095 \f
3096 /* Routines to pretty-print types. */
3097
3098 static void
3099 print_bit_vector (B_TYPE *bits, int nbits)
3100 {
3101 int bitno;
3102
3103 for (bitno = 0; bitno < nbits; bitno++)
3104 {
3105 if ((bitno % 8) == 0)
3106 {
3107 puts_filtered (" ");
3108 }
3109 if (B_TST (bits, bitno))
3110 printf_filtered (("1"));
3111 else
3112 printf_filtered (("0"));
3113 }
3114 }
3115
3116 /* Note the first arg should be the "this" pointer, we may not want to
3117 include it since we may get into a infinitely recursive
3118 situation. */
3119
3120 static void
3121 print_arg_types (struct field *args, int nargs, int spaces)
3122 {
3123 if (args != NULL)
3124 {
3125 int i;
3126
3127 for (i = 0; i < nargs; i++)
3128 recursive_dump_type (args[i].type, spaces + 2);
3129 }
3130 }
3131
3132 int
3133 field_is_static (struct field *f)
3134 {
3135 /* "static" fields are the fields whose location is not relative
3136 to the address of the enclosing struct. It would be nice to
3137 have a dedicated flag that would be set for static fields when
3138 the type is being created. But in practice, checking the field
3139 loc_kind should give us an accurate answer. */
3140 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3141 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3142 }
3143
3144 static void
3145 dump_fn_fieldlists (struct type *type, int spaces)
3146 {
3147 int method_idx;
3148 int overload_idx;
3149 struct fn_field *f;
3150
3151 printfi_filtered (spaces, "fn_fieldlists ");
3152 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3153 printf_filtered ("\n");
3154 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3155 {
3156 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3157 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3158 method_idx,
3159 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3160 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3161 gdb_stdout);
3162 printf_filtered (_(") length %d\n"),
3163 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3164 for (overload_idx = 0;
3165 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3166 overload_idx++)
3167 {
3168 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3169 overload_idx,
3170 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3171 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3172 gdb_stdout);
3173 printf_filtered (")\n");
3174 printfi_filtered (spaces + 8, "type ");
3175 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3176 gdb_stdout);
3177 printf_filtered ("\n");
3178
3179 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3180 spaces + 8 + 2);
3181
3182 printfi_filtered (spaces + 8, "args ");
3183 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3184 gdb_stdout);
3185 printf_filtered ("\n");
3186
3187 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3188 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3189 overload_idx)),
3190 spaces);
3191 printfi_filtered (spaces + 8, "fcontext ");
3192 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3193 gdb_stdout);
3194 printf_filtered ("\n");
3195
3196 printfi_filtered (spaces + 8, "is_const %d\n",
3197 TYPE_FN_FIELD_CONST (f, overload_idx));
3198 printfi_filtered (spaces + 8, "is_volatile %d\n",
3199 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3200 printfi_filtered (spaces + 8, "is_private %d\n",
3201 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3202 printfi_filtered (spaces + 8, "is_protected %d\n",
3203 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3204 printfi_filtered (spaces + 8, "is_stub %d\n",
3205 TYPE_FN_FIELD_STUB (f, overload_idx));
3206 printfi_filtered (spaces + 8, "voffset %u\n",
3207 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3208 }
3209 }
3210 }
3211
3212 static void
3213 print_cplus_stuff (struct type *type, int spaces)
3214 {
3215 printfi_filtered (spaces, "n_baseclasses %d\n",
3216 TYPE_N_BASECLASSES (type));
3217 printfi_filtered (spaces, "nfn_fields %d\n",
3218 TYPE_NFN_FIELDS (type));
3219 if (TYPE_N_BASECLASSES (type) > 0)
3220 {
3221 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3222 TYPE_N_BASECLASSES (type));
3223 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3224 gdb_stdout);
3225 printf_filtered (")");
3226
3227 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3228 TYPE_N_BASECLASSES (type));
3229 puts_filtered ("\n");
3230 }
3231 if (TYPE_NFIELDS (type) > 0)
3232 {
3233 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3234 {
3235 printfi_filtered (spaces,
3236 "private_field_bits (%d bits at *",
3237 TYPE_NFIELDS (type));
3238 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3239 gdb_stdout);
3240 printf_filtered (")");
3241 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3242 TYPE_NFIELDS (type));
3243 puts_filtered ("\n");
3244 }
3245 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3246 {
3247 printfi_filtered (spaces,
3248 "protected_field_bits (%d bits at *",
3249 TYPE_NFIELDS (type));
3250 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3251 gdb_stdout);
3252 printf_filtered (")");
3253 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3254 TYPE_NFIELDS (type));
3255 puts_filtered ("\n");
3256 }
3257 }
3258 if (TYPE_NFN_FIELDS (type) > 0)
3259 {
3260 dump_fn_fieldlists (type, spaces);
3261 }
3262 }
3263
3264 /* Print the contents of the TYPE's type_specific union, assuming that
3265 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3266
3267 static void
3268 print_gnat_stuff (struct type *type, int spaces)
3269 {
3270 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3271
3272 recursive_dump_type (descriptive_type, spaces + 2);
3273 }
3274
3275 static struct obstack dont_print_type_obstack;
3276
3277 void
3278 recursive_dump_type (struct type *type, int spaces)
3279 {
3280 int idx;
3281
3282 if (spaces == 0)
3283 obstack_begin (&dont_print_type_obstack, 0);
3284
3285 if (TYPE_NFIELDS (type) > 0
3286 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3287 {
3288 struct type **first_dont_print
3289 = (struct type **) obstack_base (&dont_print_type_obstack);
3290
3291 int i = (struct type **)
3292 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3293
3294 while (--i >= 0)
3295 {
3296 if (type == first_dont_print[i])
3297 {
3298 printfi_filtered (spaces, "type node ");
3299 gdb_print_host_address (type, gdb_stdout);
3300 printf_filtered (_(" <same as already seen type>\n"));
3301 return;
3302 }
3303 }
3304
3305 obstack_ptr_grow (&dont_print_type_obstack, type);
3306 }
3307
3308 printfi_filtered (spaces, "type node ");
3309 gdb_print_host_address (type, gdb_stdout);
3310 printf_filtered ("\n");
3311 printfi_filtered (spaces, "name '%s' (",
3312 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3313 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3314 printf_filtered (")\n");
3315 printfi_filtered (spaces, "tagname '%s' (",
3316 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3317 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3318 printf_filtered (")\n");
3319 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3320 switch (TYPE_CODE (type))
3321 {
3322 case TYPE_CODE_UNDEF:
3323 printf_filtered ("(TYPE_CODE_UNDEF)");
3324 break;
3325 case TYPE_CODE_PTR:
3326 printf_filtered ("(TYPE_CODE_PTR)");
3327 break;
3328 case TYPE_CODE_ARRAY:
3329 printf_filtered ("(TYPE_CODE_ARRAY)");
3330 break;
3331 case TYPE_CODE_STRUCT:
3332 printf_filtered ("(TYPE_CODE_STRUCT)");
3333 break;
3334 case TYPE_CODE_UNION:
3335 printf_filtered ("(TYPE_CODE_UNION)");
3336 break;
3337 case TYPE_CODE_ENUM:
3338 printf_filtered ("(TYPE_CODE_ENUM)");
3339 break;
3340 case TYPE_CODE_FLAGS:
3341 printf_filtered ("(TYPE_CODE_FLAGS)");
3342 break;
3343 case TYPE_CODE_FUNC:
3344 printf_filtered ("(TYPE_CODE_FUNC)");
3345 break;
3346 case TYPE_CODE_INT:
3347 printf_filtered ("(TYPE_CODE_INT)");
3348 break;
3349 case TYPE_CODE_FLT:
3350 printf_filtered ("(TYPE_CODE_FLT)");
3351 break;
3352 case TYPE_CODE_VOID:
3353 printf_filtered ("(TYPE_CODE_VOID)");
3354 break;
3355 case TYPE_CODE_SET:
3356 printf_filtered ("(TYPE_CODE_SET)");
3357 break;
3358 case TYPE_CODE_RANGE:
3359 printf_filtered ("(TYPE_CODE_RANGE)");
3360 break;
3361 case TYPE_CODE_STRING:
3362 printf_filtered ("(TYPE_CODE_STRING)");
3363 break;
3364 case TYPE_CODE_ERROR:
3365 printf_filtered ("(TYPE_CODE_ERROR)");
3366 break;
3367 case TYPE_CODE_MEMBERPTR:
3368 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3369 break;
3370 case TYPE_CODE_METHODPTR:
3371 printf_filtered ("(TYPE_CODE_METHODPTR)");
3372 break;
3373 case TYPE_CODE_METHOD:
3374 printf_filtered ("(TYPE_CODE_METHOD)");
3375 break;
3376 case TYPE_CODE_REF:
3377 printf_filtered ("(TYPE_CODE_REF)");
3378 break;
3379 case TYPE_CODE_CHAR:
3380 printf_filtered ("(TYPE_CODE_CHAR)");
3381 break;
3382 case TYPE_CODE_BOOL:
3383 printf_filtered ("(TYPE_CODE_BOOL)");
3384 break;
3385 case TYPE_CODE_COMPLEX:
3386 printf_filtered ("(TYPE_CODE_COMPLEX)");
3387 break;
3388 case TYPE_CODE_TYPEDEF:
3389 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3390 break;
3391 case TYPE_CODE_NAMESPACE:
3392 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3393 break;
3394 default:
3395 printf_filtered ("(UNKNOWN TYPE CODE)");
3396 break;
3397 }
3398 puts_filtered ("\n");
3399 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3400 if (TYPE_OBJFILE_OWNED (type))
3401 {
3402 printfi_filtered (spaces, "objfile ");
3403 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3404 }
3405 else
3406 {
3407 printfi_filtered (spaces, "gdbarch ");
3408 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3409 }
3410 printf_filtered ("\n");
3411 printfi_filtered (spaces, "target_type ");
3412 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3413 printf_filtered ("\n");
3414 if (TYPE_TARGET_TYPE (type) != NULL)
3415 {
3416 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3417 }
3418 printfi_filtered (spaces, "pointer_type ");
3419 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3420 printf_filtered ("\n");
3421 printfi_filtered (spaces, "reference_type ");
3422 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3423 printf_filtered ("\n");
3424 printfi_filtered (spaces, "type_chain ");
3425 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3426 printf_filtered ("\n");
3427 printfi_filtered (spaces, "instance_flags 0x%x",
3428 TYPE_INSTANCE_FLAGS (type));
3429 if (TYPE_CONST (type))
3430 {
3431 puts_filtered (" TYPE_FLAG_CONST");
3432 }
3433 if (TYPE_VOLATILE (type))
3434 {
3435 puts_filtered (" TYPE_FLAG_VOLATILE");
3436 }
3437 if (TYPE_CODE_SPACE (type))
3438 {
3439 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3440 }
3441 if (TYPE_DATA_SPACE (type))
3442 {
3443 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3444 }
3445 if (TYPE_ADDRESS_CLASS_1 (type))
3446 {
3447 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3448 }
3449 if (TYPE_ADDRESS_CLASS_2 (type))
3450 {
3451 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3452 }
3453 if (TYPE_RESTRICT (type))
3454 {
3455 puts_filtered (" TYPE_FLAG_RESTRICT");
3456 }
3457 puts_filtered ("\n");
3458
3459 printfi_filtered (spaces, "flags");
3460 if (TYPE_UNSIGNED (type))
3461 {
3462 puts_filtered (" TYPE_FLAG_UNSIGNED");
3463 }
3464 if (TYPE_NOSIGN (type))
3465 {
3466 puts_filtered (" TYPE_FLAG_NOSIGN");
3467 }
3468 if (TYPE_STUB (type))
3469 {
3470 puts_filtered (" TYPE_FLAG_STUB");
3471 }
3472 if (TYPE_TARGET_STUB (type))
3473 {
3474 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3475 }
3476 if (TYPE_STATIC (type))
3477 {
3478 puts_filtered (" TYPE_FLAG_STATIC");
3479 }
3480 if (TYPE_PROTOTYPED (type))
3481 {
3482 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3483 }
3484 if (TYPE_INCOMPLETE (type))
3485 {
3486 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3487 }
3488 if (TYPE_VARARGS (type))
3489 {
3490 puts_filtered (" TYPE_FLAG_VARARGS");
3491 }
3492 /* This is used for things like AltiVec registers on ppc. Gcc emits
3493 an attribute for the array type, which tells whether or not we
3494 have a vector, instead of a regular array. */
3495 if (TYPE_VECTOR (type))
3496 {
3497 puts_filtered (" TYPE_FLAG_VECTOR");
3498 }
3499 if (TYPE_FIXED_INSTANCE (type))
3500 {
3501 puts_filtered (" TYPE_FIXED_INSTANCE");
3502 }
3503 if (TYPE_STUB_SUPPORTED (type))
3504 {
3505 puts_filtered (" TYPE_STUB_SUPPORTED");
3506 }
3507 if (TYPE_NOTTEXT (type))
3508 {
3509 puts_filtered (" TYPE_NOTTEXT");
3510 }
3511 puts_filtered ("\n");
3512 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3513 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3514 puts_filtered ("\n");
3515 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3516 {
3517 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3518 printfi_filtered (spaces + 2,
3519 "[%d] enumval %s type ",
3520 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3521 else
3522 printfi_filtered (spaces + 2,
3523 "[%d] bitpos %d bitsize %d type ",
3524 idx, TYPE_FIELD_BITPOS (type, idx),
3525 TYPE_FIELD_BITSIZE (type, idx));
3526 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3527 printf_filtered (" name '%s' (",
3528 TYPE_FIELD_NAME (type, idx) != NULL
3529 ? TYPE_FIELD_NAME (type, idx)
3530 : "<NULL>");
3531 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3532 printf_filtered (")\n");
3533 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3534 {
3535 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3536 }
3537 }
3538 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3539 {
3540 printfi_filtered (spaces, "low %s%s high %s%s\n",
3541 plongest (TYPE_LOW_BOUND (type)),
3542 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3543 plongest (TYPE_HIGH_BOUND (type)),
3544 TYPE_HIGH_BOUND_UNDEFINED (type)
3545 ? " (undefined)" : "");
3546 }
3547 printfi_filtered (spaces, "vptr_basetype ");
3548 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3549 puts_filtered ("\n");
3550 if (TYPE_VPTR_BASETYPE (type) != NULL)
3551 {
3552 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3553 }
3554 printfi_filtered (spaces, "vptr_fieldno %d\n",
3555 TYPE_VPTR_FIELDNO (type));
3556
3557 switch (TYPE_SPECIFIC_FIELD (type))
3558 {
3559 case TYPE_SPECIFIC_CPLUS_STUFF:
3560 printfi_filtered (spaces, "cplus_stuff ");
3561 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3562 gdb_stdout);
3563 puts_filtered ("\n");
3564 print_cplus_stuff (type, spaces);
3565 break;
3566
3567 case TYPE_SPECIFIC_GNAT_STUFF:
3568 printfi_filtered (spaces, "gnat_stuff ");
3569 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3570 puts_filtered ("\n");
3571 print_gnat_stuff (type, spaces);
3572 break;
3573
3574 case TYPE_SPECIFIC_FLOATFORMAT:
3575 printfi_filtered (spaces, "floatformat ");
3576 if (TYPE_FLOATFORMAT (type) == NULL)
3577 puts_filtered ("(null)");
3578 else
3579 {
3580 puts_filtered ("{ ");
3581 if (TYPE_FLOATFORMAT (type)[0] == NULL
3582 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3583 puts_filtered ("(null)");
3584 else
3585 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3586
3587 puts_filtered (", ");
3588 if (TYPE_FLOATFORMAT (type)[1] == NULL
3589 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3590 puts_filtered ("(null)");
3591 else
3592 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3593
3594 puts_filtered (" }");
3595 }
3596 puts_filtered ("\n");
3597 break;
3598
3599 case TYPE_SPECIFIC_FUNC:
3600 printfi_filtered (spaces, "calling_convention %d\n",
3601 TYPE_CALLING_CONVENTION (type));
3602 /* tail_call_list is not printed. */
3603 break;
3604 }
3605
3606 if (spaces == 0)
3607 obstack_free (&dont_print_type_obstack, NULL);
3608 }
3609 \f
3610 /* Trivial helpers for the libiberty hash table, for mapping one
3611 type to another. */
3612
3613 struct type_pair
3614 {
3615 struct type *old, *new;
3616 };
3617
3618 static hashval_t
3619 type_pair_hash (const void *item)
3620 {
3621 const struct type_pair *pair = item;
3622
3623 return htab_hash_pointer (pair->old);
3624 }
3625
3626 static int
3627 type_pair_eq (const void *item_lhs, const void *item_rhs)
3628 {
3629 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3630
3631 return lhs->old == rhs->old;
3632 }
3633
3634 /* Allocate the hash table used by copy_type_recursive to walk
3635 types without duplicates. We use OBJFILE's obstack, because
3636 OBJFILE is about to be deleted. */
3637
3638 htab_t
3639 create_copied_types_hash (struct objfile *objfile)
3640 {
3641 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3642 NULL, &objfile->objfile_obstack,
3643 hashtab_obstack_allocate,
3644 dummy_obstack_deallocate);
3645 }
3646
3647 /* Recursively copy (deep copy) TYPE, if it is associated with
3648 OBJFILE. Return a new type allocated using malloc, a saved type if
3649 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3650 not associated with OBJFILE. */
3651
3652 struct type *
3653 copy_type_recursive (struct objfile *objfile,
3654 struct type *type,
3655 htab_t copied_types)
3656 {
3657 struct type_pair *stored, pair;
3658 void **slot;
3659 struct type *new_type;
3660
3661 if (! TYPE_OBJFILE_OWNED (type))
3662 return type;
3663
3664 /* This type shouldn't be pointing to any types in other objfiles;
3665 if it did, the type might disappear unexpectedly. */
3666 gdb_assert (TYPE_OBJFILE (type) == objfile);
3667
3668 pair.old = type;
3669 slot = htab_find_slot (copied_types, &pair, INSERT);
3670 if (*slot != NULL)
3671 return ((struct type_pair *) *slot)->new;
3672
3673 new_type = alloc_type_arch (get_type_arch (type));
3674
3675 /* We must add the new type to the hash table immediately, in case
3676 we encounter this type again during a recursive call below. */
3677 stored
3678 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3679 stored->old = type;
3680 stored->new = new_type;
3681 *slot = stored;
3682
3683 /* Copy the common fields of types. For the main type, we simply
3684 copy the entire thing and then update specific fields as needed. */
3685 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3686 TYPE_OBJFILE_OWNED (new_type) = 0;
3687 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3688
3689 if (TYPE_NAME (type))
3690 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3691 if (TYPE_TAG_NAME (type))
3692 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3693
3694 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3695 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3696
3697 /* Copy the fields. */
3698 if (TYPE_NFIELDS (type))
3699 {
3700 int i, nfields;
3701
3702 nfields = TYPE_NFIELDS (type);
3703 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3704 for (i = 0; i < nfields; i++)
3705 {
3706 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3707 TYPE_FIELD_ARTIFICIAL (type, i);
3708 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3709 if (TYPE_FIELD_TYPE (type, i))
3710 TYPE_FIELD_TYPE (new_type, i)
3711 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3712 copied_types);
3713 if (TYPE_FIELD_NAME (type, i))
3714 TYPE_FIELD_NAME (new_type, i) =
3715 xstrdup (TYPE_FIELD_NAME (type, i));
3716 switch (TYPE_FIELD_LOC_KIND (type, i))
3717 {
3718 case FIELD_LOC_KIND_BITPOS:
3719 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3720 TYPE_FIELD_BITPOS (type, i));
3721 break;
3722 case FIELD_LOC_KIND_ENUMVAL:
3723 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3724 TYPE_FIELD_ENUMVAL (type, i));
3725 break;
3726 case FIELD_LOC_KIND_PHYSADDR:
3727 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3728 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3729 break;
3730 case FIELD_LOC_KIND_PHYSNAME:
3731 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3732 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3733 i)));
3734 break;
3735 default:
3736 internal_error (__FILE__, __LINE__,
3737 _("Unexpected type field location kind: %d"),
3738 TYPE_FIELD_LOC_KIND (type, i));
3739 }
3740 }
3741 }
3742
3743 /* For range types, copy the bounds information. */
3744 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3745 {
3746 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3747 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3748 }
3749
3750 /* Copy pointers to other types. */
3751 if (TYPE_TARGET_TYPE (type))
3752 TYPE_TARGET_TYPE (new_type) =
3753 copy_type_recursive (objfile,
3754 TYPE_TARGET_TYPE (type),
3755 copied_types);
3756 if (TYPE_VPTR_BASETYPE (type))
3757 TYPE_VPTR_BASETYPE (new_type) =
3758 copy_type_recursive (objfile,
3759 TYPE_VPTR_BASETYPE (type),
3760 copied_types);
3761 /* Maybe copy the type_specific bits.
3762
3763 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3764 base classes and methods. There's no fundamental reason why we
3765 can't, but at the moment it is not needed. */
3766
3767 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3768 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3769 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3770 || TYPE_CODE (type) == TYPE_CODE_UNION
3771 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3772 INIT_CPLUS_SPECIFIC (new_type);
3773
3774 return new_type;
3775 }
3776
3777 /* Make a copy of the given TYPE, except that the pointer & reference
3778 types are not preserved.
3779
3780 This function assumes that the given type has an associated objfile.
3781 This objfile is used to allocate the new type. */
3782
3783 struct type *
3784 copy_type (const struct type *type)
3785 {
3786 struct type *new_type;
3787
3788 gdb_assert (TYPE_OBJFILE_OWNED (type));
3789
3790 new_type = alloc_type_copy (type);
3791 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3792 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3793 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3794 sizeof (struct main_type));
3795
3796 return new_type;
3797 }
3798 \f
3799 /* Helper functions to initialize architecture-specific types. */
3800
3801 /* Allocate a type structure associated with GDBARCH and set its
3802 CODE, LENGTH, and NAME fields. */
3803
3804 struct type *
3805 arch_type (struct gdbarch *gdbarch,
3806 enum type_code code, int length, char *name)
3807 {
3808 struct type *type;
3809
3810 type = alloc_type_arch (gdbarch);
3811 TYPE_CODE (type) = code;
3812 TYPE_LENGTH (type) = length;
3813
3814 if (name)
3815 TYPE_NAME (type) = xstrdup (name);
3816
3817 return type;
3818 }
3819
3820 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3821 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3822 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3823
3824 struct type *
3825 arch_integer_type (struct gdbarch *gdbarch,
3826 int bit, int unsigned_p, char *name)
3827 {
3828 struct type *t;
3829
3830 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3831 if (unsigned_p)
3832 TYPE_UNSIGNED (t) = 1;
3833 if (name && strcmp (name, "char") == 0)
3834 TYPE_NOSIGN (t) = 1;
3835
3836 return t;
3837 }
3838
3839 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3840 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3841 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3842
3843 struct type *
3844 arch_character_type (struct gdbarch *gdbarch,
3845 int bit, int unsigned_p, char *name)
3846 {
3847 struct type *t;
3848
3849 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3850 if (unsigned_p)
3851 TYPE_UNSIGNED (t) = 1;
3852
3853 return t;
3854 }
3855
3856 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3857 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3858 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3859
3860 struct type *
3861 arch_boolean_type (struct gdbarch *gdbarch,
3862 int bit, int unsigned_p, char *name)
3863 {
3864 struct type *t;
3865
3866 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3867 if (unsigned_p)
3868 TYPE_UNSIGNED (t) = 1;
3869
3870 return t;
3871 }
3872
3873 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3874 BIT is the type size in bits; if BIT equals -1, the size is
3875 determined by the floatformat. NAME is the type name. Set the
3876 TYPE_FLOATFORMAT from FLOATFORMATS. */
3877
3878 struct type *
3879 arch_float_type (struct gdbarch *gdbarch,
3880 int bit, char *name, const struct floatformat **floatformats)
3881 {
3882 struct type *t;
3883
3884 if (bit == -1)
3885 {
3886 gdb_assert (floatformats != NULL);
3887 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3888 bit = floatformats[0]->totalsize;
3889 }
3890 gdb_assert (bit >= 0);
3891
3892 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3893 TYPE_FLOATFORMAT (t) = floatformats;
3894 return t;
3895 }
3896
3897 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3898 NAME is the type name. TARGET_TYPE is the component float type. */
3899
3900 struct type *
3901 arch_complex_type (struct gdbarch *gdbarch,
3902 char *name, struct type *target_type)
3903 {
3904 struct type *t;
3905
3906 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3907 2 * TYPE_LENGTH (target_type), name);
3908 TYPE_TARGET_TYPE (t) = target_type;
3909 return t;
3910 }
3911
3912 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3913 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3914
3915 struct type *
3916 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3917 {
3918 int nfields = length * TARGET_CHAR_BIT;
3919 struct type *type;
3920
3921 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3922 TYPE_UNSIGNED (type) = 1;
3923 TYPE_NFIELDS (type) = nfields;
3924 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3925
3926 return type;
3927 }
3928
3929 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3930 position BITPOS is called NAME. */
3931
3932 void
3933 append_flags_type_flag (struct type *type, int bitpos, char *name)
3934 {
3935 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3936 gdb_assert (bitpos < TYPE_NFIELDS (type));
3937 gdb_assert (bitpos >= 0);
3938
3939 if (name)
3940 {
3941 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3942 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3943 }
3944 else
3945 {
3946 /* Don't show this field to the user. */
3947 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3948 }
3949 }
3950
3951 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3952 specified by CODE) associated with GDBARCH. NAME is the type name. */
3953
3954 struct type *
3955 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3956 {
3957 struct type *t;
3958
3959 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3960 t = arch_type (gdbarch, code, 0, NULL);
3961 TYPE_TAG_NAME (t) = name;
3962 INIT_CPLUS_SPECIFIC (t);
3963 return t;
3964 }
3965
3966 /* Add new field with name NAME and type FIELD to composite type T.
3967 Do not set the field's position or adjust the type's length;
3968 the caller should do so. Return the new field. */
3969
3970 struct field *
3971 append_composite_type_field_raw (struct type *t, char *name,
3972 struct type *field)
3973 {
3974 struct field *f;
3975
3976 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3977 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3978 sizeof (struct field) * TYPE_NFIELDS (t));
3979 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3980 memset (f, 0, sizeof f[0]);
3981 FIELD_TYPE (f[0]) = field;
3982 FIELD_NAME (f[0]) = name;
3983 return f;
3984 }
3985
3986 /* Add new field with name NAME and type FIELD to composite type T.
3987 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3988
3989 void
3990 append_composite_type_field_aligned (struct type *t, char *name,
3991 struct type *field, int alignment)
3992 {
3993 struct field *f = append_composite_type_field_raw (t, name, field);
3994
3995 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3996 {
3997 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3998 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3999 }
4000 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4001 {
4002 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4003 if (TYPE_NFIELDS (t) > 1)
4004 {
4005 SET_FIELD_BITPOS (f[0],
4006 (FIELD_BITPOS (f[-1])
4007 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4008 * TARGET_CHAR_BIT)));
4009
4010 if (alignment)
4011 {
4012 int left;
4013
4014 alignment *= TARGET_CHAR_BIT;
4015 left = FIELD_BITPOS (f[0]) % alignment;
4016
4017 if (left)
4018 {
4019 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4020 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4021 }
4022 }
4023 }
4024 }
4025 }
4026
4027 /* Add new field with name NAME and type FIELD to composite type T. */
4028
4029 void
4030 append_composite_type_field (struct type *t, char *name,
4031 struct type *field)
4032 {
4033 append_composite_type_field_aligned (t, name, field, 0);
4034 }
4035
4036 static struct gdbarch_data *gdbtypes_data;
4037
4038 const struct builtin_type *
4039 builtin_type (struct gdbarch *gdbarch)
4040 {
4041 return gdbarch_data (gdbarch, gdbtypes_data);
4042 }
4043
4044 static void *
4045 gdbtypes_post_init (struct gdbarch *gdbarch)
4046 {
4047 struct builtin_type *builtin_type
4048 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4049
4050 /* Basic types. */
4051 builtin_type->builtin_void
4052 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4053 builtin_type->builtin_char
4054 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4055 !gdbarch_char_signed (gdbarch), "char");
4056 builtin_type->builtin_signed_char
4057 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4058 0, "signed char");
4059 builtin_type->builtin_unsigned_char
4060 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4061 1, "unsigned char");
4062 builtin_type->builtin_short
4063 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4064 0, "short");
4065 builtin_type->builtin_unsigned_short
4066 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4067 1, "unsigned short");
4068 builtin_type->builtin_int
4069 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4070 0, "int");
4071 builtin_type->builtin_unsigned_int
4072 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4073 1, "unsigned int");
4074 builtin_type->builtin_long
4075 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4076 0, "long");
4077 builtin_type->builtin_unsigned_long
4078 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4079 1, "unsigned long");
4080 builtin_type->builtin_long_long
4081 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4082 0, "long long");
4083 builtin_type->builtin_unsigned_long_long
4084 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4085 1, "unsigned long long");
4086 builtin_type->builtin_float
4087 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4088 "float", gdbarch_float_format (gdbarch));
4089 builtin_type->builtin_double
4090 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4091 "double", gdbarch_double_format (gdbarch));
4092 builtin_type->builtin_long_double
4093 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4094 "long double", gdbarch_long_double_format (gdbarch));
4095 builtin_type->builtin_complex
4096 = arch_complex_type (gdbarch, "complex",
4097 builtin_type->builtin_float);
4098 builtin_type->builtin_double_complex
4099 = arch_complex_type (gdbarch, "double complex",
4100 builtin_type->builtin_double);
4101 builtin_type->builtin_string
4102 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4103 builtin_type->builtin_bool
4104 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4105
4106 /* The following three are about decimal floating point types, which
4107 are 32-bits, 64-bits and 128-bits respectively. */
4108 builtin_type->builtin_decfloat
4109 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4110 builtin_type->builtin_decdouble
4111 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4112 builtin_type->builtin_declong
4113 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4114
4115 /* "True" character types. */
4116 builtin_type->builtin_true_char
4117 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4118 builtin_type->builtin_true_unsigned_char
4119 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4120
4121 /* Fixed-size integer types. */
4122 builtin_type->builtin_int0
4123 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4124 builtin_type->builtin_int8
4125 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4126 builtin_type->builtin_uint8
4127 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4128 builtin_type->builtin_int16
4129 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4130 builtin_type->builtin_uint16
4131 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4132 builtin_type->builtin_int32
4133 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4134 builtin_type->builtin_uint32
4135 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4136 builtin_type->builtin_int64
4137 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4138 builtin_type->builtin_uint64
4139 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4140 builtin_type->builtin_int128
4141 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4142 builtin_type->builtin_uint128
4143 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4144 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4145 TYPE_INSTANCE_FLAG_NOTTEXT;
4146 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4147 TYPE_INSTANCE_FLAG_NOTTEXT;
4148
4149 /* Wide character types. */
4150 builtin_type->builtin_char16
4151 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4152 builtin_type->builtin_char32
4153 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4154
4155
4156 /* Default data/code pointer types. */
4157 builtin_type->builtin_data_ptr
4158 = lookup_pointer_type (builtin_type->builtin_void);
4159 builtin_type->builtin_func_ptr
4160 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4161 builtin_type->builtin_func_func
4162 = lookup_function_type (builtin_type->builtin_func_ptr);
4163
4164 /* This type represents a GDB internal function. */
4165 builtin_type->internal_fn
4166 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4167 "<internal function>");
4168
4169 return builtin_type;
4170 }
4171
4172 /* This set of objfile-based types is intended to be used by symbol
4173 readers as basic types. */
4174
4175 static const struct objfile_data *objfile_type_data;
4176
4177 const struct objfile_type *
4178 objfile_type (struct objfile *objfile)
4179 {
4180 struct gdbarch *gdbarch;
4181 struct objfile_type *objfile_type
4182 = objfile_data (objfile, objfile_type_data);
4183
4184 if (objfile_type)
4185 return objfile_type;
4186
4187 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4188 1, struct objfile_type);
4189
4190 /* Use the objfile architecture to determine basic type properties. */
4191 gdbarch = get_objfile_arch (objfile);
4192
4193 /* Basic types. */
4194 objfile_type->builtin_void
4195 = init_type (TYPE_CODE_VOID, 1,
4196 0,
4197 "void", objfile);
4198
4199 objfile_type->builtin_char
4200 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4201 (TYPE_FLAG_NOSIGN
4202 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4203 "char", objfile);
4204 objfile_type->builtin_signed_char
4205 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4206 0,
4207 "signed char", objfile);
4208 objfile_type->builtin_unsigned_char
4209 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4210 TYPE_FLAG_UNSIGNED,
4211 "unsigned char", objfile);
4212 objfile_type->builtin_short
4213 = init_type (TYPE_CODE_INT,
4214 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4215 0, "short", objfile);
4216 objfile_type->builtin_unsigned_short
4217 = init_type (TYPE_CODE_INT,
4218 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4219 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4220 objfile_type->builtin_int
4221 = init_type (TYPE_CODE_INT,
4222 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4223 0, "int", objfile);
4224 objfile_type->builtin_unsigned_int
4225 = init_type (TYPE_CODE_INT,
4226 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4227 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4228 objfile_type->builtin_long
4229 = init_type (TYPE_CODE_INT,
4230 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4231 0, "long", objfile);
4232 objfile_type->builtin_unsigned_long
4233 = init_type (TYPE_CODE_INT,
4234 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4235 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4236 objfile_type->builtin_long_long
4237 = init_type (TYPE_CODE_INT,
4238 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4239 0, "long long", objfile);
4240 objfile_type->builtin_unsigned_long_long
4241 = init_type (TYPE_CODE_INT,
4242 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4243 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4244
4245 objfile_type->builtin_float
4246 = init_type (TYPE_CODE_FLT,
4247 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4248 0, "float", objfile);
4249 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4250 = gdbarch_float_format (gdbarch);
4251 objfile_type->builtin_double
4252 = init_type (TYPE_CODE_FLT,
4253 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4254 0, "double", objfile);
4255 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4256 = gdbarch_double_format (gdbarch);
4257 objfile_type->builtin_long_double
4258 = init_type (TYPE_CODE_FLT,
4259 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4260 0, "long double", objfile);
4261 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4262 = gdbarch_long_double_format (gdbarch);
4263
4264 /* This type represents a type that was unrecognized in symbol read-in. */
4265 objfile_type->builtin_error
4266 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4267
4268 /* The following set of types is used for symbols with no
4269 debug information. */
4270 objfile_type->nodebug_text_symbol
4271 = init_type (TYPE_CODE_FUNC, 1, 0,
4272 "<text variable, no debug info>", objfile);
4273 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4274 = objfile_type->builtin_int;
4275 objfile_type->nodebug_text_gnu_ifunc_symbol
4276 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4277 "<text gnu-indirect-function variable, no debug info>",
4278 objfile);
4279 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4280 = objfile_type->nodebug_text_symbol;
4281 objfile_type->nodebug_got_plt_symbol
4282 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4283 "<text from jump slot in .got.plt, no debug info>",
4284 objfile);
4285 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4286 = objfile_type->nodebug_text_symbol;
4287 objfile_type->nodebug_data_symbol
4288 = init_type (TYPE_CODE_INT,
4289 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4290 "<data variable, no debug info>", objfile);
4291 objfile_type->nodebug_unknown_symbol
4292 = init_type (TYPE_CODE_INT, 1, 0,
4293 "<variable (not text or data), no debug info>", objfile);
4294 objfile_type->nodebug_tls_symbol
4295 = init_type (TYPE_CODE_INT,
4296 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4297 "<thread local variable, no debug info>", objfile);
4298
4299 /* NOTE: on some targets, addresses and pointers are not necessarily
4300 the same.
4301
4302 The upshot is:
4303 - gdb's `struct type' always describes the target's
4304 representation.
4305 - gdb's `struct value' objects should always hold values in
4306 target form.
4307 - gdb's CORE_ADDR values are addresses in the unified virtual
4308 address space that the assembler and linker work with. Thus,
4309 since target_read_memory takes a CORE_ADDR as an argument, it
4310 can access any memory on the target, even if the processor has
4311 separate code and data address spaces.
4312
4313 In this context, objfile_type->builtin_core_addr is a bit odd:
4314 it's a target type for a value the target will never see. It's
4315 only used to hold the values of (typeless) linker symbols, which
4316 are indeed in the unified virtual address space. */
4317
4318 objfile_type->builtin_core_addr
4319 = init_type (TYPE_CODE_INT,
4320 gdbarch_addr_bit (gdbarch) / 8,
4321 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4322
4323 set_objfile_data (objfile, objfile_type_data, objfile_type);
4324 return objfile_type;
4325 }
4326
4327 extern initialize_file_ftype _initialize_gdbtypes;
4328
4329 void
4330 _initialize_gdbtypes (void)
4331 {
4332 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4333 objfile_type_data = register_objfile_data ();
4334
4335 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4336 _("Set debugging of C++ overloading."),
4337 _("Show debugging of C++ overloading."),
4338 _("When enabled, ranking of the "
4339 "functions is displayed."),
4340 NULL,
4341 show_overload_debug,
4342 &setdebuglist, &showdebuglist);
4343
4344 /* Add user knob for controlling resolution of opaque types. */
4345 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4346 &opaque_type_resolution,
4347 _("Set resolution of opaque struct/class/union"
4348 " types (if set before loading symbols)."),
4349 _("Show resolution of opaque struct/class/union"
4350 " types (if set before loading symbols)."),
4351 NULL, NULL,
4352 show_opaque_type_resolution,
4353 &setlist, &showlist);
4354
4355 /* Add an option to permit non-strict type checking. */
4356 add_setshow_boolean_cmd ("type", class_support,
4357 &strict_type_checking,
4358 _("Set strict type checking."),
4359 _("Show strict type checking."),
4360 NULL, NULL,
4361 show_strict_type_checking,
4362 &setchecklist, &showchecklist);
4363 }
This page took 0.173798 seconds and 4 git commands to generate.