Fix racy tests in gdb.base/setshow.exp
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114 };
115
116
117 int opaque_type_resolution = 1;
118 static void
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
125 value);
126 }
127
128 int overload_debug = 0;
129 static void
130 show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
135 }
136
137 struct extra
138 {
139 char str[128];
140 int len;
141 }; /* Maximum extension is 128! FIXME */
142
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
147
148
149 /* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
152
153 struct type *
154 alloc_type (struct objfile *objfile)
155 {
156 struct type *type;
157
158 gdb_assert (objfile != NULL);
159
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
165
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
174
175 return type;
176 }
177
178 /* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182 struct type *
183 alloc_type_arch (struct gdbarch *gdbarch)
184 {
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204 }
205
206 /* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210 struct type *
211 alloc_type_copy (const struct type *type)
212 {
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217 }
218
219 /* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222 struct gdbarch *
223 get_type_arch (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229 }
230
231
232 /* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236 static struct type *
237 alloc_type_instance (struct type *oldtype)
238 {
239 struct type *type;
240
241 /* Allocate the structure. */
242
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
245 else
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
253 return type;
254 }
255
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
258 static void
259 smash_type (struct type *type)
260 {
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274 }
275
276 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281 struct type *
282 make_pointer_type (struct type *type, struct type **typeptr)
283 {
284 struct type *ntype; /* New type */
285 struct type *chain;
286
287 ntype = TYPE_POINTER_TYPE (type);
288
289 if (ntype)
290 {
291 if (typeptr == 0)
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
295 {
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
297 return ntype;
298 }
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
303 ntype = alloc_type_copy (type);
304 if (typeptr)
305 *typeptr = ntype;
306 }
307 else /* We have storage, but need to reset it. */
308 {
309 ntype = *typeptr;
310 chain = TYPE_CHAIN (ntype);
311 smash_type (ntype);
312 TYPE_CHAIN (ntype) = chain;
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
320
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
329
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
341 return ntype;
342 }
343
344 /* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347 struct type *
348 lookup_pointer_type (struct type *type)
349 {
350 return make_pointer_type (type, (struct type **) 0);
351 }
352
353 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
357
358 struct type *
359 make_reference_type (struct type *type, struct type **typeptr)
360 {
361 struct type *ntype; /* New type */
362 struct type *chain;
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
366 if (ntype)
367 {
368 if (typeptr == 0)
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
372 {
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
374 return ntype;
375 }
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type_copy (type);
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else /* We have storage, but need to reset it. */
385 {
386 ntype = *typeptr;
387 chain = TYPE_CHAIN (ntype);
388 smash_type (ntype);
389 TYPE_CHAIN (ntype) = chain;
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
398
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
402
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
414 return ntype;
415 }
416
417 /* Same as above, but caller doesn't care about memory allocation
418 details. */
419
420 struct type *
421 lookup_reference_type (struct type *type)
422 {
423 return make_reference_type (type, (struct type **) 0);
424 }
425
426 /* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
430
431 struct type *
432 make_function_type (struct type *type, struct type **typeptr)
433 {
434 struct type *ntype; /* New type */
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
438 ntype = alloc_type_copy (type);
439 if (typeptr)
440 *typeptr = ntype;
441 }
442 else /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 smash_type (ntype);
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452
453 return ntype;
454 }
455
456
457 /* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460 struct type *
461 lookup_function_type (struct type *type)
462 {
463 return make_function_type (type, (struct type **) 0);
464 }
465
466 /* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468 extern int
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470 {
471 int type_flags;
472
473 /* Check for known address space delimiters. */
474 if (!strcmp (space_identifier, "code"))
475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
476 else if (!strcmp (space_identifier, "data"))
477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
482 return type_flags;
483 else
484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
485 }
486
487 /* Identify address space identifier by integer flag as defined in
488 gdbtypes.h -- return the string version of the adress space name. */
489
490 const char *
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492 {
493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494 return "code";
495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496 return "data";
497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500 else
501 return NULL;
502 }
503
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
508
509 static struct type *
510 make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
512 {
513 struct type *ntype;
514
515 ntype = type;
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
523
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
539
540 /* Pointers or references to the original type are not relevant to
541 the new type. */
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
555 return ntype;
556 }
557
558 /* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
566
567 struct type *
568 make_type_with_address_space (struct type *type, int space_flag)
569 {
570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577 }
578
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
584
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
590 struct type *
591 make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
594 {
595 struct type *ntype; /* New type */
596
597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
600
601 if (cnst)
602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
603
604 if (voltl)
605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606
607 if (typeptr && *typeptr != NULL)
608 {
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622 }
623
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
626
627 if (typeptr != NULL)
628 *typeptr = ntype;
629
630 return ntype;
631 }
632
633 /* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
636
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
642 void
643 replace_type (struct type *ntype, struct type *type)
644 {
645 struct type *chain;
646
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
657 chain = ntype;
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
672
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676 }
677
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683 struct type *
684 lookup_memberptr_type (struct type *type, struct type *domain)
685 {
686 struct type *mtype;
687
688 mtype = alloc_type_copy (type);
689 smash_to_memberptr_type (mtype, domain, type);
690 return mtype;
691 }
692
693 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695 struct type *
696 lookup_methodptr_type (struct type *to_type)
697 {
698 struct type *mtype;
699
700 mtype = alloc_type_copy (to_type);
701 smash_to_methodptr_type (mtype, to_type);
702 return mtype;
703 }
704
705 /* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
710
711 struct type *
712 allocate_stub_method (struct type *type)
713 {
714 struct type *mtype;
715
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
722 return mtype;
723 }
724
725 /* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
728
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
731
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
734
735 struct type *
736 create_range_type (struct type *result_type, struct type *index_type,
737 LONGEST low_bound, LONGEST high_bound)
738 {
739 if (result_type == NULL)
740 result_type = alloc_type_copy (index_type);
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
743 if (TYPE_STUB (index_type))
744 TYPE_TARGET_STUB (result_type) = 1;
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
751
752 if (low_bound >= 0)
753 TYPE_UNSIGNED (result_type) = 1;
754
755 return result_type;
756 }
757
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
761
762 int
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764 {
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
776 entries. */
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
788 /* Set unsigned indicator if warranted. */
789 if (*lowp >= 0)
790 {
791 TYPE_UNSIGNED (type) = 1;
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 *highp = -*lowp - 1;
811 return 0;
812 }
813 /* ... fall through for unsigned ints ... */
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825 }
826
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841 int
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843 {
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869 }
870
871 /* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
881
882 struct type *
883 create_array_type (struct type *result_type,
884 struct type *element_type,
885 struct type *range_type)
886 {
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
890 result_type = alloc_type_copy (range_type);
891
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908 TYPE_INDEX_TYPE (result_type) = range_type;
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
912 if (TYPE_LENGTH (result_type) == 0)
913 TYPE_TARGET_STUB (result_type) = 1;
914
915 return result_type;
916 }
917
918 struct type *
919 lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921 {
922 struct gdbarch *gdbarch = get_type_arch (element_type);
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
926
927 return create_array_type (NULL, element_type, range_type);
928 }
929
930 /* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
941
942 struct type *
943 create_string_type (struct type *result_type,
944 struct type *string_char_type,
945 struct type *range_type)
946 {
947 result_type = create_array_type (result_type,
948 string_char_type,
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
951 return result_type;
952 }
953
954 struct type *
955 lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957 {
958 struct type *result_type;
959
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964 }
965
966 struct type *
967 create_set_type (struct type *result_type, struct type *domain_type)
968 {
969 if (result_type == NULL)
970 result_type = alloc_type_copy (domain_type);
971
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975
976 if (!TYPE_STUB (domain_type))
977 {
978 LONGEST low_bound, high_bound, bit_length;
979
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985 if (low_bound >= 0)
986 TYPE_UNSIGNED (result_type) = 1;
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
990 return result_type;
991 }
992
993 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996 void
997 make_vector_type (struct type *array_type)
998 {
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
1016 TYPE_VECTOR (array_type) = 1;
1017 }
1018
1019 struct type *
1020 init_vector_type (struct type *elt_type, int n)
1021 {
1022 struct type *array_type;
1023
1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025 make_vector_type (array_type);
1026 return array_type;
1027 }
1028
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
1035
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
1038 allocated. */
1039
1040 void
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
1043 {
1044 smash_type (type);
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052 }
1053
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060 void
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1062 {
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068 }
1069
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
1075 allocated. */
1076
1077 void
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
1081 {
1082 smash_type (type);
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
1088 TYPE_VARARGS (type) = 1;
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091 }
1092
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096 char *
1097 type_name_no_tag (const struct type *type)
1098 {
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
1105 return TYPE_NAME (type);
1106 }
1107
1108 /* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
1111
1112 struct type *
1113 lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
1115 const struct block *block, int noerr)
1116 {
1117 struct symbol *sym;
1118 struct type *tmp;
1119
1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122 {
1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1124 if (tmp)
1125 {
1126 return tmp;
1127 }
1128 else if (!tmp && noerr)
1129 {
1130 return NULL;
1131 }
1132 else
1133 {
1134 error (_("No type named %s."), name);
1135 }
1136 }
1137 return (SYMBOL_TYPE (sym));
1138 }
1139
1140 struct type *
1141 lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
1143 {
1144 char *uns = alloca (strlen (name) + 10);
1145
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1149 }
1150
1151 struct type *
1152 lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
1154 {
1155 struct type *t;
1156 char *uns = alloca (strlen (name) + 8);
1157
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
1162 if (t != NULL)
1163 return t;
1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1165 }
1166
1167 /* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1169
1170 struct type *
1171 lookup_struct (char *name, struct block *block)
1172 {
1173 struct symbol *sym;
1174
1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1176
1177 if (sym == NULL)
1178 {
1179 error (_("No struct type named %s."), name);
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
1185 }
1186 return (SYMBOL_TYPE (sym));
1187 }
1188
1189 /* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1191
1192 struct type *
1193 lookup_union (char *name, struct block *block)
1194 {
1195 struct symbol *sym;
1196 struct type *t;
1197
1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1199
1200 if (sym == NULL)
1201 error (_("No union type named %s."), name);
1202
1203 t = SYMBOL_TYPE (sym);
1204
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1206 return t;
1207
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1210 name);
1211 }
1212
1213
1214 /* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1216
1217 struct type *
1218 lookup_enum (char *name, struct block *block)
1219 {
1220 struct symbol *sym;
1221
1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1223 if (sym == NULL)
1224 {
1225 error (_("No enum type named %s."), name);
1226 }
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228 {
1229 error (_("This context has class, struct or union %s, not an enum."),
1230 name);
1231 }
1232 return (SYMBOL_TYPE (sym));
1233 }
1234
1235 /* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1237
1238 struct type *
1239 lookup_template_type (char *name, struct type *type,
1240 struct block *block)
1241 {
1242 struct symbol *sym;
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1245
1246 strcpy (nam, name);
1247 strcat (nam, "<");
1248 strcat (nam, TYPE_NAME (type));
1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1250
1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1252
1253 if (sym == NULL)
1254 {
1255 error (_("No template type named %s."), name);
1256 }
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258 {
1259 error (_("This context has class, union or enum %s, not a struct."),
1260 name);
1261 }
1262 return (SYMBOL_TYPE (sym));
1263 }
1264
1265 /* Given a type TYPE, lookup the type of the component of type named
1266 NAME.
1267
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
1273
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1276
1277 struct type *
1278 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1279 {
1280 int i;
1281 char *typename;
1282
1283 for (;;)
1284 {
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1288 break;
1289 type = TYPE_TARGET_TYPE (type);
1290 }
1291
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
1294 {
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
1298 }
1299
1300 #if 0
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
1303 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1304 foo; } bell;" Disabled by fnf. */
1305 {
1306 char *typename;
1307
1308 typename = type_name_no_tag (type);
1309 if (typename != NULL && strcmp (typename, name) == 0)
1310 return type;
1311 }
1312 #endif
1313
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315 {
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1317
1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1319 {
1320 return TYPE_FIELD_TYPE (type, i);
1321 }
1322 else if (!t_field_name || *t_field_name == '\0')
1323 {
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326
1327 if (subtype != NULL)
1328 return subtype;
1329 }
1330 }
1331
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334 {
1335 struct type *t;
1336
1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1338 if (t != NULL)
1339 {
1340 return t;
1341 }
1342 }
1343
1344 if (noerr)
1345 {
1346 return NULL;
1347 }
1348
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
1352 }
1353
1354 /* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1357 cache the results.
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
1360 the type or one of its baseclasses is a stub type and we are
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
1363 virtual function table pointer, and vptr_fieldno will remain -1 and
1364 vptr_basetype will remain NULL or incomplete. */
1365
1366 int
1367 get_vptr_fieldno (struct type *type, struct type **basetypep)
1368 {
1369 CHECK_TYPEDEF (type);
1370
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1372 {
1373 int i;
1374
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 {
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 int fieldno;
1381 struct type *basetype;
1382
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 if (fieldno >= 0)
1385 {
1386 /* If the type comes from a different objfile we can't cache
1387 it, it may have a different lifetime. PR 2384 */
1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1389 {
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1392 }
1393 if (basetypep)
1394 *basetypep = basetype;
1395 return fieldno;
1396 }
1397 }
1398
1399 /* Not found. */
1400 return -1;
1401 }
1402 else
1403 {
1404 if (basetypep)
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
1407 }
1408 }
1409
1410 static void
1411 stub_noname_complaint (void)
1412 {
1413 complaint (&symfile_complaints, _("stub type has NULL name"));
1414 }
1415
1416 /* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1419 typedefs does not.
1420
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1423 is created.
1424
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1428
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430 the target type.
1431
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
1433 we can find a full definition in some other file. If so, copy this
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
1438 symbols which contain a full definition for the type. */
1439
1440 struct type *
1441 check_typedef (struct type *type)
1442 {
1443 struct type *orig_type = type;
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1447
1448 gdb_assert (type);
1449
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 {
1452 if (!TYPE_TARGET_TYPE (type))
1453 {
1454 char *name;
1455 struct symbol *sym;
1456
1457 /* It is dangerous to call lookup_symbol if we are currently
1458 reading a symtab. Infinite recursion is one danger. */
1459 if (currently_reading_symtab)
1460 return make_qualified_type (type, instance_flags, NULL);
1461
1462 name = type_name_no_tag (type);
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
1467 if (name == NULL)
1468 {
1469 stub_noname_complaint ();
1470 return make_qualified_type (type, instance_flags, NULL);
1471 }
1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1473 if (sym)
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1475 else /* TYPE_CODE_UNDEF */
1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1477 }
1478 type = TYPE_TARGET_TYPE (type);
1479
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1481
1482 Handling address spaces/classes is nasty, what do we do if there's a
1483 conflict?
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1491 {
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1502
1503 instance_flags |= new_instance_flags;
1504 }
1505 }
1506
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1511 place. */
1512
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
1516 {
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
1519
1520 if (name == NULL)
1521 {
1522 stub_noname_complaint ();
1523 return make_qualified_type (type, instance_flags, NULL);
1524 }
1525 newtype = lookup_transparent_type (name);
1526
1527 if (newtype)
1528 {
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1542 type);
1543 else
1544 type = newtype;
1545 }
1546 }
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548 types. */
1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
1550 {
1551 char *name = type_name_no_tag (type);
1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
1556 struct symbol *sym;
1557
1558 if (name == NULL)
1559 {
1560 stub_noname_complaint ();
1561 return make_qualified_type (type, instance_flags, NULL);
1562 }
1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1564 if (sym)
1565 {
1566 /* Same as above for opaque types, we can replace the stub
1567 with the complete type only if they are in the same
1568 objfile. */
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1572 type);
1573 else
1574 type = SYMBOL_TYPE (sym);
1575 }
1576 }
1577
1578 if (TYPE_TARGET_STUB (type))
1579 {
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582
1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1584 {
1585 /* Nothing we can do. */
1586 }
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1590 == TYPE_CODE_RANGE))
1591 {
1592 /* Now recompute the length of the array type, based on its
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
1595 is smaller than the low bound. */
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 ULONGEST len;
1599
1600 if (high_bound < low_bound)
1601 len = 0;
1602 else
1603 {
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
1609 high-order bit on). It uses the fact that
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
1614 from unsigned int to ULONGEST. */
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1617
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 || len > UINT_MAX)
1621 len = 0;
1622 }
1623 TYPE_LENGTH (type) = len;
1624 TYPE_TARGET_STUB (type) = 0;
1625 }
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 {
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1629 TYPE_TARGET_STUB (type) = 0;
1630 }
1631 }
1632
1633 type = make_qualified_type (type, instance_flags, NULL);
1634
1635 /* Cache TYPE_LENGTH for future use. */
1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1637
1638 return type;
1639 }
1640
1641 /* Parse a type expression in the string [P..P+LENGTH). If an error
1642 occurs, silently return a void type. */
1643
1644 static struct type *
1645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1646 {
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
1650 /* Suppress error messages. */
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
1655 if (!gdb_parse_and_eval_type (p, length, &type))
1656 type = builtin_type (gdbarch)->builtin_void;
1657
1658 /* Stop suppressing error messages. */
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663 }
1664
1665 /* Ugly hack to convert method stubs into method types.
1666
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
1674
1675 static void
1676 check_stub_method (struct type *type, int method_id, int signature_id)
1677 {
1678 struct gdbarch *gdbarch = get_type_arch (type);
1679 struct fn_field *f;
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
1685 struct field *argtypes;
1686 struct type *mtype;
1687
1688 /* Make sure we got back a function string that we can use. */
1689 if (demangled_name)
1690 p = strchr (demangled_name, '(');
1691 else
1692 p = NULL;
1693
1694 if (demangled_name == NULL || p == NULL)
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1696 mangled_name);
1697
1698 /* Now, read in the parameters that define this type. */
1699 p += 1;
1700 argtypetext = p;
1701 while (*p)
1702 {
1703 if (*p == '(' || *p == '<')
1704 {
1705 depth += 1;
1706 }
1707 else if (*p == ')' || *p == '>')
1708 {
1709 depth -= 1;
1710 }
1711 else if (*p == ',' && depth == 0)
1712 {
1713 argcount += 1;
1714 }
1715
1716 p += 1;
1717 }
1718
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1721 argcount -= 1;
1722
1723 /* We need one extra slot, for the THIS pointer. */
1724
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1727 p = argtypetext;
1728
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732 argcount = 0;
1733 else
1734 {
1735 argtypes[0].type = lookup_pointer_type (type);
1736 argcount = 1;
1737 }
1738
1739 if (*p != ')') /* () means no args, skip while. */
1740 {
1741 depth = 0;
1742 while (*p)
1743 {
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1745 {
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1750 {
1751 argtypes[argcount].type =
1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1753 argcount += 1;
1754 }
1755 argtypetext = p + 1;
1756 }
1757
1758 if (*p == '(' || *p == '<')
1759 {
1760 depth += 1;
1761 }
1762 else if (*p == ')' || *p == '>')
1763 {
1764 depth -= 1;
1765 }
1766
1767 p += 1;
1768 }
1769 }
1770
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
1778 TYPE_STUB (mtype) = 0;
1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1780 if (p[-2] == '.')
1781 TYPE_VARARGS (mtype) = 1;
1782
1783 xfree (demangled_name);
1784 }
1785
1786 /* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790 correct.
1791
1792 This function unfortunately can not die until stabs do. */
1793
1794 void
1795 check_stub_method_group (struct type *type, int method_id)
1796 {
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1799 int j, found_stub = 0;
1800
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1803 {
1804 found_stub = 1;
1805 check_stub_method (type, method_id, j);
1806 }
1807
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1812 information.
1813
1814 Therefore the only thing we need to handle here are v2 operator
1815 names. */
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817 {
1818 int ret;
1819 char dem_opname[256];
1820
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 method_id),
1823 dem_opname, DMGL_ANSI);
1824 if (!ret)
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 method_id),
1827 dem_opname, 0);
1828 if (ret)
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830 }
1831 }
1832
1833 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834 const struct cplus_struct_type cplus_struct_default = { };
1835
1836 void
1837 allocate_cplus_struct_type (struct type *type)
1838 {
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1841 return;
1842
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1847 }
1848
1849 const struct gnat_aux_type gnat_aux_default =
1850 { NULL };
1851
1852 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1855 void
1856 allocate_gnat_aux_type (struct type *type)
1857 {
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862 }
1863
1864
1865 /* Helper function to initialize the standard scalar types.
1866
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
1871
1872 struct type *
1873 init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
1875 {
1876 struct type *type;
1877
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
1881
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
1905 if (flags & TYPE_FLAG_GNU_IFUNC)
1906 TYPE_GNU_IFUNC (type) = 1;
1907
1908 if (name)
1909 TYPE_NAME (type) = obsavestring (name, strlen (name),
1910 &objfile->objfile_obstack);
1911
1912 /* C++ fancies. */
1913
1914 if (name && strcmp (name, "char") == 0)
1915 TYPE_NOSIGN (type) = 1;
1916
1917 switch (code)
1918 {
1919 case TYPE_CODE_STRUCT:
1920 case TYPE_CODE_UNION:
1921 case TYPE_CODE_NAMESPACE:
1922 INIT_CPLUS_SPECIFIC (type);
1923 break;
1924 case TYPE_CODE_FLT:
1925 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1926 break;
1927 case TYPE_CODE_FUNC:
1928 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1929 break;
1930 }
1931 return type;
1932 }
1933
1934 int
1935 can_dereference (struct type *t)
1936 {
1937 /* FIXME: Should we return true for references as well as
1938 pointers? */
1939 CHECK_TYPEDEF (t);
1940 return
1941 (t != NULL
1942 && TYPE_CODE (t) == TYPE_CODE_PTR
1943 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1944 }
1945
1946 int
1947 is_integral_type (struct type *t)
1948 {
1949 CHECK_TYPEDEF (t);
1950 return
1951 ((t != NULL)
1952 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1953 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1954 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1955 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1956 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1957 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1958 }
1959
1960 /* Return true if TYPE is scalar. */
1961
1962 static int
1963 is_scalar_type (struct type *type)
1964 {
1965 CHECK_TYPEDEF (type);
1966
1967 switch (TYPE_CODE (type))
1968 {
1969 case TYPE_CODE_ARRAY:
1970 case TYPE_CODE_STRUCT:
1971 case TYPE_CODE_UNION:
1972 case TYPE_CODE_SET:
1973 case TYPE_CODE_STRING:
1974 case TYPE_CODE_BITSTRING:
1975 return 0;
1976 default:
1977 return 1;
1978 }
1979 }
1980
1981 /* Return true if T is scalar, or a composite type which in practice has
1982 the memory layout of a scalar type. E.g., an array or struct with only
1983 one scalar element inside it, or a union with only scalar elements. */
1984
1985 int
1986 is_scalar_type_recursive (struct type *t)
1987 {
1988 CHECK_TYPEDEF (t);
1989
1990 if (is_scalar_type (t))
1991 return 1;
1992 /* Are we dealing with an array or string of known dimensions? */
1993 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
1994 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
1995 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
1996 {
1997 LONGEST low_bound, high_bound;
1998 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
1999
2000 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2001
2002 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2003 }
2004 /* Are we dealing with a struct with one element? */
2005 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2006 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2007 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2008 {
2009 int i, n = TYPE_NFIELDS (t);
2010
2011 /* If all elements of the union are scalar, then the union is scalar. */
2012 for (i = 0; i < n; i++)
2013 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2014 return 0;
2015
2016 return 1;
2017 }
2018
2019 return 0;
2020 }
2021
2022 /* A helper function which returns true if types A and B represent the
2023 "same" class type. This is true if the types have the same main
2024 type, or the same name. */
2025
2026 int
2027 class_types_same_p (const struct type *a, const struct type *b)
2028 {
2029 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2030 || (TYPE_NAME (a) && TYPE_NAME (b)
2031 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2032 }
2033
2034 /* If BASE is an ancestor of DCLASS return the distance between them.
2035 otherwise return -1;
2036 eg:
2037
2038 class A {};
2039 class B: public A {};
2040 class C: public B {};
2041 class D: C {};
2042
2043 distance_to_ancestor (A, A, 0) = 0
2044 distance_to_ancestor (A, B, 0) = 1
2045 distance_to_ancestor (A, C, 0) = 2
2046 distance_to_ancestor (A, D, 0) = 3
2047
2048 If PUBLIC is 1 then only public ancestors are considered,
2049 and the function returns the distance only if BASE is a public ancestor
2050 of DCLASS.
2051 Eg:
2052
2053 distance_to_ancestor (A, D, 1) = -1. */
2054
2055 static int
2056 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2057 {
2058 int i;
2059 int d;
2060
2061 CHECK_TYPEDEF (base);
2062 CHECK_TYPEDEF (dclass);
2063
2064 if (class_types_same_p (base, dclass))
2065 return 0;
2066
2067 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2068 {
2069 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2070 continue;
2071
2072 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2073 if (d >= 0)
2074 return 1 + d;
2075 }
2076
2077 return -1;
2078 }
2079
2080 /* Check whether BASE is an ancestor or base class or DCLASS
2081 Return 1 if so, and 0 if not.
2082 Note: If BASE and DCLASS are of the same type, this function
2083 will return 1. So for some class A, is_ancestor (A, A) will
2084 return 1. */
2085
2086 int
2087 is_ancestor (struct type *base, struct type *dclass)
2088 {
2089 return distance_to_ancestor (base, dclass, 0) >= 0;
2090 }
2091
2092 /* Like is_ancestor, but only returns true when BASE is a public
2093 ancestor of DCLASS. */
2094
2095 int
2096 is_public_ancestor (struct type *base, struct type *dclass)
2097 {
2098 return distance_to_ancestor (base, dclass, 1) >= 0;
2099 }
2100
2101 /* A helper function for is_unique_ancestor. */
2102
2103 static int
2104 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2105 int *offset,
2106 const gdb_byte *valaddr, int embedded_offset,
2107 CORE_ADDR address, struct value *val)
2108 {
2109 int i, count = 0;
2110
2111 CHECK_TYPEDEF (base);
2112 CHECK_TYPEDEF (dclass);
2113
2114 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2115 {
2116 struct type *iter;
2117 int this_offset;
2118
2119 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2120
2121 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2122 address, val);
2123
2124 if (class_types_same_p (base, iter))
2125 {
2126 /* If this is the first subclass, set *OFFSET and set count
2127 to 1. Otherwise, if this is at the same offset as
2128 previous instances, do nothing. Otherwise, increment
2129 count. */
2130 if (*offset == -1)
2131 {
2132 *offset = this_offset;
2133 count = 1;
2134 }
2135 else if (this_offset == *offset)
2136 {
2137 /* Nothing. */
2138 }
2139 else
2140 ++count;
2141 }
2142 else
2143 count += is_unique_ancestor_worker (base, iter, offset,
2144 valaddr,
2145 embedded_offset + this_offset,
2146 address, val);
2147 }
2148
2149 return count;
2150 }
2151
2152 /* Like is_ancestor, but only returns true if BASE is a unique base
2153 class of the type of VAL. */
2154
2155 int
2156 is_unique_ancestor (struct type *base, struct value *val)
2157 {
2158 int offset = -1;
2159
2160 return is_unique_ancestor_worker (base, value_type (val), &offset,
2161 value_contents_for_printing (val),
2162 value_embedded_offset (val),
2163 value_address (val), val) == 1;
2164 }
2165
2166 \f
2167
2168 /* Return the sum of the rank of A with the rank of B. */
2169
2170 struct rank
2171 sum_ranks (struct rank a, struct rank b)
2172 {
2173 struct rank c;
2174 c.rank = a.rank + b.rank;
2175 c.subrank = a.subrank + b.subrank;
2176 return c;
2177 }
2178
2179 /* Compare rank A and B and return:
2180 0 if a = b
2181 1 if a is better than b
2182 -1 if b is better than a. */
2183
2184 int
2185 compare_ranks (struct rank a, struct rank b)
2186 {
2187 if (a.rank == b.rank)
2188 {
2189 if (a.subrank == b.subrank)
2190 return 0;
2191 if (a.subrank < b.subrank)
2192 return 1;
2193 if (a.subrank > b.subrank)
2194 return -1;
2195 }
2196
2197 if (a.rank < b.rank)
2198 return 1;
2199
2200 /* a.rank > b.rank */
2201 return -1;
2202 }
2203
2204 /* Functions for overload resolution begin here. */
2205
2206 /* Compare two badness vectors A and B and return the result.
2207 0 => A and B are identical
2208 1 => A and B are incomparable
2209 2 => A is better than B
2210 3 => A is worse than B */
2211
2212 int
2213 compare_badness (struct badness_vector *a, struct badness_vector *b)
2214 {
2215 int i;
2216 int tmp;
2217 short found_pos = 0; /* any positives in c? */
2218 short found_neg = 0; /* any negatives in c? */
2219
2220 /* differing lengths => incomparable */
2221 if (a->length != b->length)
2222 return 1;
2223
2224 /* Subtract b from a */
2225 for (i = 0; i < a->length; i++)
2226 {
2227 tmp = compare_ranks (b->rank[i], a->rank[i]);
2228 if (tmp > 0)
2229 found_pos = 1;
2230 else if (tmp < 0)
2231 found_neg = 1;
2232 }
2233
2234 if (found_pos)
2235 {
2236 if (found_neg)
2237 return 1; /* incomparable */
2238 else
2239 return 3; /* A > B */
2240 }
2241 else
2242 /* no positives */
2243 {
2244 if (found_neg)
2245 return 2; /* A < B */
2246 else
2247 return 0; /* A == B */
2248 }
2249 }
2250
2251 /* Rank a function by comparing its parameter types (PARMS, length
2252 NPARMS), to the types of an argument list (ARGS, length NARGS).
2253 Return a pointer to a badness vector. This has NARGS + 1
2254 entries. */
2255
2256 struct badness_vector *
2257 rank_function (struct type **parms, int nparms,
2258 struct type **args, int nargs)
2259 {
2260 int i;
2261 struct badness_vector *bv;
2262 int min_len = nparms < nargs ? nparms : nargs;
2263
2264 bv = xmalloc (sizeof (struct badness_vector));
2265 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2266 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2267
2268 /* First compare the lengths of the supplied lists.
2269 If there is a mismatch, set it to a high value. */
2270
2271 /* pai/1997-06-03 FIXME: when we have debug info about default
2272 arguments and ellipsis parameter lists, we should consider those
2273 and rank the length-match more finely. */
2274
2275 LENGTH_MATCH (bv) = (nargs != nparms)
2276 ? LENGTH_MISMATCH_BADNESS
2277 : EXACT_MATCH_BADNESS;
2278
2279 /* Now rank all the parameters of the candidate function. */
2280 for (i = 1; i <= min_len; i++)
2281 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2282
2283 /* If more arguments than parameters, add dummy entries. */
2284 for (i = min_len + 1; i <= nargs; i++)
2285 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2286
2287 return bv;
2288 }
2289
2290 /* Compare the names of two integer types, assuming that any sign
2291 qualifiers have been checked already. We do it this way because
2292 there may be an "int" in the name of one of the types. */
2293
2294 static int
2295 integer_types_same_name_p (const char *first, const char *second)
2296 {
2297 int first_p, second_p;
2298
2299 /* If both are shorts, return 1; if neither is a short, keep
2300 checking. */
2301 first_p = (strstr (first, "short") != NULL);
2302 second_p = (strstr (second, "short") != NULL);
2303 if (first_p && second_p)
2304 return 1;
2305 if (first_p || second_p)
2306 return 0;
2307
2308 /* Likewise for long. */
2309 first_p = (strstr (first, "long") != NULL);
2310 second_p = (strstr (second, "long") != NULL);
2311 if (first_p && second_p)
2312 return 1;
2313 if (first_p || second_p)
2314 return 0;
2315
2316 /* Likewise for char. */
2317 first_p = (strstr (first, "char") != NULL);
2318 second_p = (strstr (second, "char") != NULL);
2319 if (first_p && second_p)
2320 return 1;
2321 if (first_p || second_p)
2322 return 0;
2323
2324 /* They must both be ints. */
2325 return 1;
2326 }
2327
2328 /* Compares type A to type B returns 1 if the represent the same type
2329 0 otherwise. */
2330
2331 static int
2332 types_equal (struct type *a, struct type *b)
2333 {
2334 /* Identical type pointers. */
2335 /* However, this still doesn't catch all cases of same type for b
2336 and a. The reason is that builtin types are different from
2337 the same ones constructed from the object. */
2338 if (a == b)
2339 return 1;
2340
2341 /* Resolve typedefs */
2342 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2343 a = check_typedef (a);
2344 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2345 b = check_typedef (b);
2346
2347 /* If after resolving typedefs a and b are not of the same type
2348 code then they are not equal. */
2349 if (TYPE_CODE (a) != TYPE_CODE (b))
2350 return 0;
2351
2352 /* If a and b are both pointers types or both reference types then
2353 they are equal of the same type iff the objects they refer to are
2354 of the same type. */
2355 if (TYPE_CODE (a) == TYPE_CODE_PTR
2356 || TYPE_CODE (a) == TYPE_CODE_REF)
2357 return types_equal (TYPE_TARGET_TYPE (a),
2358 TYPE_TARGET_TYPE (b));
2359
2360 /* Well, damnit, if the names are exactly the same, I'll say they
2361 are exactly the same. This happens when we generate method
2362 stubs. The types won't point to the same address, but they
2363 really are the same. */
2364
2365 if (TYPE_NAME (a) && TYPE_NAME (b)
2366 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2367 return 1;
2368
2369 /* Check if identical after resolving typedefs. */
2370 if (a == b)
2371 return 1;
2372
2373 return 0;
2374 }
2375
2376 /* Compare one type (PARM) for compatibility with another (ARG).
2377 * PARM is intended to be the parameter type of a function; and
2378 * ARG is the supplied argument's type. This function tests if
2379 * the latter can be converted to the former.
2380 *
2381 * Return 0 if they are identical types;
2382 * Otherwise, return an integer which corresponds to how compatible
2383 * PARM is to ARG. The higher the return value, the worse the match.
2384 * Generally the "bad" conversions are all uniformly assigned a 100. */
2385
2386 struct rank
2387 rank_one_type (struct type *parm, struct type *arg)
2388 {
2389 struct rank rank = {0,0};
2390
2391 if (types_equal (parm, arg))
2392 return EXACT_MATCH_BADNESS;
2393
2394 /* Resolve typedefs */
2395 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2396 parm = check_typedef (parm);
2397 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2398 arg = check_typedef (arg);
2399
2400 /* See through references, since we can almost make non-references
2401 references. */
2402 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2403 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2404 REFERENCE_CONVERSION_BADNESS));
2405 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2406 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2407 REFERENCE_CONVERSION_BADNESS));
2408 if (overload_debug)
2409 /* Debugging only. */
2410 fprintf_filtered (gdb_stderr,
2411 "------ Arg is %s [%d], parm is %s [%d]\n",
2412 TYPE_NAME (arg), TYPE_CODE (arg),
2413 TYPE_NAME (parm), TYPE_CODE (parm));
2414
2415 /* x -> y means arg of type x being supplied for parameter of type y. */
2416
2417 switch (TYPE_CODE (parm))
2418 {
2419 case TYPE_CODE_PTR:
2420 switch (TYPE_CODE (arg))
2421 {
2422 case TYPE_CODE_PTR:
2423
2424 /* Allowed pointer conversions are:
2425 (a) pointer to void-pointer conversion. */
2426 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2427 return VOID_PTR_CONVERSION_BADNESS;
2428
2429 /* (b) pointer to ancestor-pointer conversion. */
2430 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2431 TYPE_TARGET_TYPE (arg),
2432 0);
2433 if (rank.subrank >= 0)
2434 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2435
2436 return INCOMPATIBLE_TYPE_BADNESS;
2437 case TYPE_CODE_ARRAY:
2438 if (types_equal (TYPE_TARGET_TYPE (parm),
2439 TYPE_TARGET_TYPE (arg)))
2440 return EXACT_MATCH_BADNESS;
2441 return INCOMPATIBLE_TYPE_BADNESS;
2442 case TYPE_CODE_FUNC:
2443 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2444 case TYPE_CODE_INT:
2445 case TYPE_CODE_ENUM:
2446 case TYPE_CODE_FLAGS:
2447 case TYPE_CODE_CHAR:
2448 case TYPE_CODE_RANGE:
2449 case TYPE_CODE_BOOL:
2450 default:
2451 return INCOMPATIBLE_TYPE_BADNESS;
2452 }
2453 case TYPE_CODE_ARRAY:
2454 switch (TYPE_CODE (arg))
2455 {
2456 case TYPE_CODE_PTR:
2457 case TYPE_CODE_ARRAY:
2458 return rank_one_type (TYPE_TARGET_TYPE (parm),
2459 TYPE_TARGET_TYPE (arg));
2460 default:
2461 return INCOMPATIBLE_TYPE_BADNESS;
2462 }
2463 case TYPE_CODE_FUNC:
2464 switch (TYPE_CODE (arg))
2465 {
2466 case TYPE_CODE_PTR: /* funcptr -> func */
2467 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2468 default:
2469 return INCOMPATIBLE_TYPE_BADNESS;
2470 }
2471 case TYPE_CODE_INT:
2472 switch (TYPE_CODE (arg))
2473 {
2474 case TYPE_CODE_INT:
2475 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2476 {
2477 /* Deal with signed, unsigned, and plain chars and
2478 signed and unsigned ints. */
2479 if (TYPE_NOSIGN (parm))
2480 {
2481 /* This case only for character types. */
2482 if (TYPE_NOSIGN (arg))
2483 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2484 else /* signed/unsigned char -> plain char */
2485 return INTEGER_CONVERSION_BADNESS;
2486 }
2487 else if (TYPE_UNSIGNED (parm))
2488 {
2489 if (TYPE_UNSIGNED (arg))
2490 {
2491 /* unsigned int -> unsigned int, or
2492 unsigned long -> unsigned long */
2493 if (integer_types_same_name_p (TYPE_NAME (parm),
2494 TYPE_NAME (arg)))
2495 return EXACT_MATCH_BADNESS;
2496 else if (integer_types_same_name_p (TYPE_NAME (arg),
2497 "int")
2498 && integer_types_same_name_p (TYPE_NAME (parm),
2499 "long"))
2500 /* unsigned int -> unsigned long */
2501 return INTEGER_PROMOTION_BADNESS;
2502 else
2503 /* unsigned long -> unsigned int */
2504 return INTEGER_CONVERSION_BADNESS;
2505 }
2506 else
2507 {
2508 if (integer_types_same_name_p (TYPE_NAME (arg),
2509 "long")
2510 && integer_types_same_name_p (TYPE_NAME (parm),
2511 "int"))
2512 /* signed long -> unsigned int */
2513 return INTEGER_CONVERSION_BADNESS;
2514 else
2515 /* signed int/long -> unsigned int/long */
2516 return INTEGER_CONVERSION_BADNESS;
2517 }
2518 }
2519 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2520 {
2521 if (integer_types_same_name_p (TYPE_NAME (parm),
2522 TYPE_NAME (arg)))
2523 return EXACT_MATCH_BADNESS;
2524 else if (integer_types_same_name_p (TYPE_NAME (arg),
2525 "int")
2526 && integer_types_same_name_p (TYPE_NAME (parm),
2527 "long"))
2528 return INTEGER_PROMOTION_BADNESS;
2529 else
2530 return INTEGER_CONVERSION_BADNESS;
2531 }
2532 else
2533 return INTEGER_CONVERSION_BADNESS;
2534 }
2535 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2536 return INTEGER_PROMOTION_BADNESS;
2537 else
2538 return INTEGER_CONVERSION_BADNESS;
2539 case TYPE_CODE_ENUM:
2540 case TYPE_CODE_FLAGS:
2541 case TYPE_CODE_CHAR:
2542 case TYPE_CODE_RANGE:
2543 case TYPE_CODE_BOOL:
2544 return INTEGER_PROMOTION_BADNESS;
2545 case TYPE_CODE_FLT:
2546 return INT_FLOAT_CONVERSION_BADNESS;
2547 case TYPE_CODE_PTR:
2548 return NS_POINTER_CONVERSION_BADNESS;
2549 default:
2550 return INCOMPATIBLE_TYPE_BADNESS;
2551 }
2552 break;
2553 case TYPE_CODE_ENUM:
2554 switch (TYPE_CODE (arg))
2555 {
2556 case TYPE_CODE_INT:
2557 case TYPE_CODE_CHAR:
2558 case TYPE_CODE_RANGE:
2559 case TYPE_CODE_BOOL:
2560 case TYPE_CODE_ENUM:
2561 return INTEGER_CONVERSION_BADNESS;
2562 case TYPE_CODE_FLT:
2563 return INT_FLOAT_CONVERSION_BADNESS;
2564 default:
2565 return INCOMPATIBLE_TYPE_BADNESS;
2566 }
2567 break;
2568 case TYPE_CODE_CHAR:
2569 switch (TYPE_CODE (arg))
2570 {
2571 case TYPE_CODE_RANGE:
2572 case TYPE_CODE_BOOL:
2573 case TYPE_CODE_ENUM:
2574 return INTEGER_CONVERSION_BADNESS;
2575 case TYPE_CODE_FLT:
2576 return INT_FLOAT_CONVERSION_BADNESS;
2577 case TYPE_CODE_INT:
2578 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2579 return INTEGER_CONVERSION_BADNESS;
2580 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2581 return INTEGER_PROMOTION_BADNESS;
2582 /* >>> !! else fall through !! <<< */
2583 case TYPE_CODE_CHAR:
2584 /* Deal with signed, unsigned, and plain chars for C++ and
2585 with int cases falling through from previous case. */
2586 if (TYPE_NOSIGN (parm))
2587 {
2588 if (TYPE_NOSIGN (arg))
2589 return EXACT_MATCH_BADNESS;
2590 else
2591 return INTEGER_CONVERSION_BADNESS;
2592 }
2593 else if (TYPE_UNSIGNED (parm))
2594 {
2595 if (TYPE_UNSIGNED (arg))
2596 return EXACT_MATCH_BADNESS;
2597 else
2598 return INTEGER_PROMOTION_BADNESS;
2599 }
2600 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2601 return EXACT_MATCH_BADNESS;
2602 else
2603 return INTEGER_CONVERSION_BADNESS;
2604 default:
2605 return INCOMPATIBLE_TYPE_BADNESS;
2606 }
2607 break;
2608 case TYPE_CODE_RANGE:
2609 switch (TYPE_CODE (arg))
2610 {
2611 case TYPE_CODE_INT:
2612 case TYPE_CODE_CHAR:
2613 case TYPE_CODE_RANGE:
2614 case TYPE_CODE_BOOL:
2615 case TYPE_CODE_ENUM:
2616 return INTEGER_CONVERSION_BADNESS;
2617 case TYPE_CODE_FLT:
2618 return INT_FLOAT_CONVERSION_BADNESS;
2619 default:
2620 return INCOMPATIBLE_TYPE_BADNESS;
2621 }
2622 break;
2623 case TYPE_CODE_BOOL:
2624 switch (TYPE_CODE (arg))
2625 {
2626 case TYPE_CODE_INT:
2627 case TYPE_CODE_CHAR:
2628 case TYPE_CODE_RANGE:
2629 case TYPE_CODE_ENUM:
2630 case TYPE_CODE_FLT:
2631 return INCOMPATIBLE_TYPE_BADNESS;
2632 case TYPE_CODE_PTR:
2633 return BOOL_PTR_CONVERSION_BADNESS;
2634 case TYPE_CODE_BOOL:
2635 return EXACT_MATCH_BADNESS;
2636 default:
2637 return INCOMPATIBLE_TYPE_BADNESS;
2638 }
2639 break;
2640 case TYPE_CODE_FLT:
2641 switch (TYPE_CODE (arg))
2642 {
2643 case TYPE_CODE_FLT:
2644 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2645 return FLOAT_PROMOTION_BADNESS;
2646 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2647 return EXACT_MATCH_BADNESS;
2648 else
2649 return FLOAT_CONVERSION_BADNESS;
2650 case TYPE_CODE_INT:
2651 case TYPE_CODE_BOOL:
2652 case TYPE_CODE_ENUM:
2653 case TYPE_CODE_RANGE:
2654 case TYPE_CODE_CHAR:
2655 return INT_FLOAT_CONVERSION_BADNESS;
2656 default:
2657 return INCOMPATIBLE_TYPE_BADNESS;
2658 }
2659 break;
2660 case TYPE_CODE_COMPLEX:
2661 switch (TYPE_CODE (arg))
2662 { /* Strictly not needed for C++, but... */
2663 case TYPE_CODE_FLT:
2664 return FLOAT_PROMOTION_BADNESS;
2665 case TYPE_CODE_COMPLEX:
2666 return EXACT_MATCH_BADNESS;
2667 default:
2668 return INCOMPATIBLE_TYPE_BADNESS;
2669 }
2670 break;
2671 case TYPE_CODE_STRUCT:
2672 /* currently same as TYPE_CODE_CLASS. */
2673 switch (TYPE_CODE (arg))
2674 {
2675 case TYPE_CODE_STRUCT:
2676 /* Check for derivation */
2677 rank.subrank = distance_to_ancestor (parm, arg, 0);
2678 if (rank.subrank >= 0)
2679 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2680 /* else fall through */
2681 default:
2682 return INCOMPATIBLE_TYPE_BADNESS;
2683 }
2684 break;
2685 case TYPE_CODE_UNION:
2686 switch (TYPE_CODE (arg))
2687 {
2688 case TYPE_CODE_UNION:
2689 default:
2690 return INCOMPATIBLE_TYPE_BADNESS;
2691 }
2692 break;
2693 case TYPE_CODE_MEMBERPTR:
2694 switch (TYPE_CODE (arg))
2695 {
2696 default:
2697 return INCOMPATIBLE_TYPE_BADNESS;
2698 }
2699 break;
2700 case TYPE_CODE_METHOD:
2701 switch (TYPE_CODE (arg))
2702 {
2703
2704 default:
2705 return INCOMPATIBLE_TYPE_BADNESS;
2706 }
2707 break;
2708 case TYPE_CODE_REF:
2709 switch (TYPE_CODE (arg))
2710 {
2711
2712 default:
2713 return INCOMPATIBLE_TYPE_BADNESS;
2714 }
2715
2716 break;
2717 case TYPE_CODE_SET:
2718 switch (TYPE_CODE (arg))
2719 {
2720 /* Not in C++ */
2721 case TYPE_CODE_SET:
2722 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2723 TYPE_FIELD_TYPE (arg, 0));
2724 default:
2725 return INCOMPATIBLE_TYPE_BADNESS;
2726 }
2727 break;
2728 case TYPE_CODE_VOID:
2729 default:
2730 return INCOMPATIBLE_TYPE_BADNESS;
2731 } /* switch (TYPE_CODE (arg)) */
2732 }
2733
2734
2735 /* End of functions for overload resolution. */
2736
2737 static void
2738 print_bit_vector (B_TYPE *bits, int nbits)
2739 {
2740 int bitno;
2741
2742 for (bitno = 0; bitno < nbits; bitno++)
2743 {
2744 if ((bitno % 8) == 0)
2745 {
2746 puts_filtered (" ");
2747 }
2748 if (B_TST (bits, bitno))
2749 printf_filtered (("1"));
2750 else
2751 printf_filtered (("0"));
2752 }
2753 }
2754
2755 /* Note the first arg should be the "this" pointer, we may not want to
2756 include it since we may get into a infinitely recursive
2757 situation. */
2758
2759 static void
2760 print_arg_types (struct field *args, int nargs, int spaces)
2761 {
2762 if (args != NULL)
2763 {
2764 int i;
2765
2766 for (i = 0; i < nargs; i++)
2767 recursive_dump_type (args[i].type, spaces + 2);
2768 }
2769 }
2770
2771 int
2772 field_is_static (struct field *f)
2773 {
2774 /* "static" fields are the fields whose location is not relative
2775 to the address of the enclosing struct. It would be nice to
2776 have a dedicated flag that would be set for static fields when
2777 the type is being created. But in practice, checking the field
2778 loc_kind should give us an accurate answer. */
2779 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2780 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2781 }
2782
2783 static void
2784 dump_fn_fieldlists (struct type *type, int spaces)
2785 {
2786 int method_idx;
2787 int overload_idx;
2788 struct fn_field *f;
2789
2790 printfi_filtered (spaces, "fn_fieldlists ");
2791 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2792 printf_filtered ("\n");
2793 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2794 {
2795 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2796 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2797 method_idx,
2798 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2799 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2800 gdb_stdout);
2801 printf_filtered (_(") length %d\n"),
2802 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2803 for (overload_idx = 0;
2804 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2805 overload_idx++)
2806 {
2807 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2808 overload_idx,
2809 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2810 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2811 gdb_stdout);
2812 printf_filtered (")\n");
2813 printfi_filtered (spaces + 8, "type ");
2814 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2815 gdb_stdout);
2816 printf_filtered ("\n");
2817
2818 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2819 spaces + 8 + 2);
2820
2821 printfi_filtered (spaces + 8, "args ");
2822 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2823 gdb_stdout);
2824 printf_filtered ("\n");
2825
2826 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2827 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2828 overload_idx)),
2829 spaces);
2830 printfi_filtered (spaces + 8, "fcontext ");
2831 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2832 gdb_stdout);
2833 printf_filtered ("\n");
2834
2835 printfi_filtered (spaces + 8, "is_const %d\n",
2836 TYPE_FN_FIELD_CONST (f, overload_idx));
2837 printfi_filtered (spaces + 8, "is_volatile %d\n",
2838 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2839 printfi_filtered (spaces + 8, "is_private %d\n",
2840 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2841 printfi_filtered (spaces + 8, "is_protected %d\n",
2842 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2843 printfi_filtered (spaces + 8, "is_stub %d\n",
2844 TYPE_FN_FIELD_STUB (f, overload_idx));
2845 printfi_filtered (spaces + 8, "voffset %u\n",
2846 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2847 }
2848 }
2849 }
2850
2851 static void
2852 print_cplus_stuff (struct type *type, int spaces)
2853 {
2854 printfi_filtered (spaces, "n_baseclasses %d\n",
2855 TYPE_N_BASECLASSES (type));
2856 printfi_filtered (spaces, "nfn_fields %d\n",
2857 TYPE_NFN_FIELDS (type));
2858 printfi_filtered (spaces, "nfn_fields_total %d\n",
2859 TYPE_NFN_FIELDS_TOTAL (type));
2860 if (TYPE_N_BASECLASSES (type) > 0)
2861 {
2862 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2863 TYPE_N_BASECLASSES (type));
2864 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2865 gdb_stdout);
2866 printf_filtered (")");
2867
2868 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2869 TYPE_N_BASECLASSES (type));
2870 puts_filtered ("\n");
2871 }
2872 if (TYPE_NFIELDS (type) > 0)
2873 {
2874 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2875 {
2876 printfi_filtered (spaces,
2877 "private_field_bits (%d bits at *",
2878 TYPE_NFIELDS (type));
2879 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2880 gdb_stdout);
2881 printf_filtered (")");
2882 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2883 TYPE_NFIELDS (type));
2884 puts_filtered ("\n");
2885 }
2886 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2887 {
2888 printfi_filtered (spaces,
2889 "protected_field_bits (%d bits at *",
2890 TYPE_NFIELDS (type));
2891 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2892 gdb_stdout);
2893 printf_filtered (")");
2894 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2895 TYPE_NFIELDS (type));
2896 puts_filtered ("\n");
2897 }
2898 }
2899 if (TYPE_NFN_FIELDS (type) > 0)
2900 {
2901 dump_fn_fieldlists (type, spaces);
2902 }
2903 }
2904
2905 /* Print the contents of the TYPE's type_specific union, assuming that
2906 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2907
2908 static void
2909 print_gnat_stuff (struct type *type, int spaces)
2910 {
2911 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2912
2913 recursive_dump_type (descriptive_type, spaces + 2);
2914 }
2915
2916 static struct obstack dont_print_type_obstack;
2917
2918 void
2919 recursive_dump_type (struct type *type, int spaces)
2920 {
2921 int idx;
2922
2923 if (spaces == 0)
2924 obstack_begin (&dont_print_type_obstack, 0);
2925
2926 if (TYPE_NFIELDS (type) > 0
2927 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2928 {
2929 struct type **first_dont_print
2930 = (struct type **) obstack_base (&dont_print_type_obstack);
2931
2932 int i = (struct type **)
2933 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2934
2935 while (--i >= 0)
2936 {
2937 if (type == first_dont_print[i])
2938 {
2939 printfi_filtered (spaces, "type node ");
2940 gdb_print_host_address (type, gdb_stdout);
2941 printf_filtered (_(" <same as already seen type>\n"));
2942 return;
2943 }
2944 }
2945
2946 obstack_ptr_grow (&dont_print_type_obstack, type);
2947 }
2948
2949 printfi_filtered (spaces, "type node ");
2950 gdb_print_host_address (type, gdb_stdout);
2951 printf_filtered ("\n");
2952 printfi_filtered (spaces, "name '%s' (",
2953 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2954 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2955 printf_filtered (")\n");
2956 printfi_filtered (spaces, "tagname '%s' (",
2957 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2958 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2959 printf_filtered (")\n");
2960 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2961 switch (TYPE_CODE (type))
2962 {
2963 case TYPE_CODE_UNDEF:
2964 printf_filtered ("(TYPE_CODE_UNDEF)");
2965 break;
2966 case TYPE_CODE_PTR:
2967 printf_filtered ("(TYPE_CODE_PTR)");
2968 break;
2969 case TYPE_CODE_ARRAY:
2970 printf_filtered ("(TYPE_CODE_ARRAY)");
2971 break;
2972 case TYPE_CODE_STRUCT:
2973 printf_filtered ("(TYPE_CODE_STRUCT)");
2974 break;
2975 case TYPE_CODE_UNION:
2976 printf_filtered ("(TYPE_CODE_UNION)");
2977 break;
2978 case TYPE_CODE_ENUM:
2979 printf_filtered ("(TYPE_CODE_ENUM)");
2980 break;
2981 case TYPE_CODE_FLAGS:
2982 printf_filtered ("(TYPE_CODE_FLAGS)");
2983 break;
2984 case TYPE_CODE_FUNC:
2985 printf_filtered ("(TYPE_CODE_FUNC)");
2986 break;
2987 case TYPE_CODE_INT:
2988 printf_filtered ("(TYPE_CODE_INT)");
2989 break;
2990 case TYPE_CODE_FLT:
2991 printf_filtered ("(TYPE_CODE_FLT)");
2992 break;
2993 case TYPE_CODE_VOID:
2994 printf_filtered ("(TYPE_CODE_VOID)");
2995 break;
2996 case TYPE_CODE_SET:
2997 printf_filtered ("(TYPE_CODE_SET)");
2998 break;
2999 case TYPE_CODE_RANGE:
3000 printf_filtered ("(TYPE_CODE_RANGE)");
3001 break;
3002 case TYPE_CODE_STRING:
3003 printf_filtered ("(TYPE_CODE_STRING)");
3004 break;
3005 case TYPE_CODE_BITSTRING:
3006 printf_filtered ("(TYPE_CODE_BITSTRING)");
3007 break;
3008 case TYPE_CODE_ERROR:
3009 printf_filtered ("(TYPE_CODE_ERROR)");
3010 break;
3011 case TYPE_CODE_MEMBERPTR:
3012 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3013 break;
3014 case TYPE_CODE_METHODPTR:
3015 printf_filtered ("(TYPE_CODE_METHODPTR)");
3016 break;
3017 case TYPE_CODE_METHOD:
3018 printf_filtered ("(TYPE_CODE_METHOD)");
3019 break;
3020 case TYPE_CODE_REF:
3021 printf_filtered ("(TYPE_CODE_REF)");
3022 break;
3023 case TYPE_CODE_CHAR:
3024 printf_filtered ("(TYPE_CODE_CHAR)");
3025 break;
3026 case TYPE_CODE_BOOL:
3027 printf_filtered ("(TYPE_CODE_BOOL)");
3028 break;
3029 case TYPE_CODE_COMPLEX:
3030 printf_filtered ("(TYPE_CODE_COMPLEX)");
3031 break;
3032 case TYPE_CODE_TYPEDEF:
3033 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3034 break;
3035 case TYPE_CODE_NAMESPACE:
3036 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3037 break;
3038 default:
3039 printf_filtered ("(UNKNOWN TYPE CODE)");
3040 break;
3041 }
3042 puts_filtered ("\n");
3043 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3044 if (TYPE_OBJFILE_OWNED (type))
3045 {
3046 printfi_filtered (spaces, "objfile ");
3047 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3048 }
3049 else
3050 {
3051 printfi_filtered (spaces, "gdbarch ");
3052 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3053 }
3054 printf_filtered ("\n");
3055 printfi_filtered (spaces, "target_type ");
3056 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3057 printf_filtered ("\n");
3058 if (TYPE_TARGET_TYPE (type) != NULL)
3059 {
3060 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3061 }
3062 printfi_filtered (spaces, "pointer_type ");
3063 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3064 printf_filtered ("\n");
3065 printfi_filtered (spaces, "reference_type ");
3066 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3067 printf_filtered ("\n");
3068 printfi_filtered (spaces, "type_chain ");
3069 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3070 printf_filtered ("\n");
3071 printfi_filtered (spaces, "instance_flags 0x%x",
3072 TYPE_INSTANCE_FLAGS (type));
3073 if (TYPE_CONST (type))
3074 {
3075 puts_filtered (" TYPE_FLAG_CONST");
3076 }
3077 if (TYPE_VOLATILE (type))
3078 {
3079 puts_filtered (" TYPE_FLAG_VOLATILE");
3080 }
3081 if (TYPE_CODE_SPACE (type))
3082 {
3083 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3084 }
3085 if (TYPE_DATA_SPACE (type))
3086 {
3087 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3088 }
3089 if (TYPE_ADDRESS_CLASS_1 (type))
3090 {
3091 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3092 }
3093 if (TYPE_ADDRESS_CLASS_2 (type))
3094 {
3095 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3096 }
3097 puts_filtered ("\n");
3098
3099 printfi_filtered (spaces, "flags");
3100 if (TYPE_UNSIGNED (type))
3101 {
3102 puts_filtered (" TYPE_FLAG_UNSIGNED");
3103 }
3104 if (TYPE_NOSIGN (type))
3105 {
3106 puts_filtered (" TYPE_FLAG_NOSIGN");
3107 }
3108 if (TYPE_STUB (type))
3109 {
3110 puts_filtered (" TYPE_FLAG_STUB");
3111 }
3112 if (TYPE_TARGET_STUB (type))
3113 {
3114 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3115 }
3116 if (TYPE_STATIC (type))
3117 {
3118 puts_filtered (" TYPE_FLAG_STATIC");
3119 }
3120 if (TYPE_PROTOTYPED (type))
3121 {
3122 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3123 }
3124 if (TYPE_INCOMPLETE (type))
3125 {
3126 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3127 }
3128 if (TYPE_VARARGS (type))
3129 {
3130 puts_filtered (" TYPE_FLAG_VARARGS");
3131 }
3132 /* This is used for things like AltiVec registers on ppc. Gcc emits
3133 an attribute for the array type, which tells whether or not we
3134 have a vector, instead of a regular array. */
3135 if (TYPE_VECTOR (type))
3136 {
3137 puts_filtered (" TYPE_FLAG_VECTOR");
3138 }
3139 if (TYPE_FIXED_INSTANCE (type))
3140 {
3141 puts_filtered (" TYPE_FIXED_INSTANCE");
3142 }
3143 if (TYPE_STUB_SUPPORTED (type))
3144 {
3145 puts_filtered (" TYPE_STUB_SUPPORTED");
3146 }
3147 if (TYPE_NOTTEXT (type))
3148 {
3149 puts_filtered (" TYPE_NOTTEXT");
3150 }
3151 puts_filtered ("\n");
3152 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3153 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3154 puts_filtered ("\n");
3155 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3156 {
3157 printfi_filtered (spaces + 2,
3158 "[%d] bitpos %d bitsize %d type ",
3159 idx, TYPE_FIELD_BITPOS (type, idx),
3160 TYPE_FIELD_BITSIZE (type, idx));
3161 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3162 printf_filtered (" name '%s' (",
3163 TYPE_FIELD_NAME (type, idx) != NULL
3164 ? TYPE_FIELD_NAME (type, idx)
3165 : "<NULL>");
3166 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3167 printf_filtered (")\n");
3168 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3169 {
3170 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3171 }
3172 }
3173 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3174 {
3175 printfi_filtered (spaces, "low %s%s high %s%s\n",
3176 plongest (TYPE_LOW_BOUND (type)),
3177 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3178 plongest (TYPE_HIGH_BOUND (type)),
3179 TYPE_HIGH_BOUND_UNDEFINED (type)
3180 ? " (undefined)" : "");
3181 }
3182 printfi_filtered (spaces, "vptr_basetype ");
3183 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3184 puts_filtered ("\n");
3185 if (TYPE_VPTR_BASETYPE (type) != NULL)
3186 {
3187 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3188 }
3189 printfi_filtered (spaces, "vptr_fieldno %d\n",
3190 TYPE_VPTR_FIELDNO (type));
3191
3192 switch (TYPE_SPECIFIC_FIELD (type))
3193 {
3194 case TYPE_SPECIFIC_CPLUS_STUFF:
3195 printfi_filtered (spaces, "cplus_stuff ");
3196 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3197 gdb_stdout);
3198 puts_filtered ("\n");
3199 print_cplus_stuff (type, spaces);
3200 break;
3201
3202 case TYPE_SPECIFIC_GNAT_STUFF:
3203 printfi_filtered (spaces, "gnat_stuff ");
3204 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3205 puts_filtered ("\n");
3206 print_gnat_stuff (type, spaces);
3207 break;
3208
3209 case TYPE_SPECIFIC_FLOATFORMAT:
3210 printfi_filtered (spaces, "floatformat ");
3211 if (TYPE_FLOATFORMAT (type) == NULL)
3212 puts_filtered ("(null)");
3213 else
3214 {
3215 puts_filtered ("{ ");
3216 if (TYPE_FLOATFORMAT (type)[0] == NULL
3217 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3218 puts_filtered ("(null)");
3219 else
3220 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3221
3222 puts_filtered (", ");
3223 if (TYPE_FLOATFORMAT (type)[1] == NULL
3224 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3225 puts_filtered ("(null)");
3226 else
3227 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3228
3229 puts_filtered (" }");
3230 }
3231 puts_filtered ("\n");
3232 break;
3233
3234 case TYPE_SPECIFIC_CALLING_CONVENTION:
3235 printfi_filtered (spaces, "calling_convention %d\n",
3236 TYPE_CALLING_CONVENTION (type));
3237 break;
3238 }
3239
3240 if (spaces == 0)
3241 obstack_free (&dont_print_type_obstack, NULL);
3242 }
3243
3244 /* Trivial helpers for the libiberty hash table, for mapping one
3245 type to another. */
3246
3247 struct type_pair
3248 {
3249 struct type *old, *new;
3250 };
3251
3252 static hashval_t
3253 type_pair_hash (const void *item)
3254 {
3255 const struct type_pair *pair = item;
3256
3257 return htab_hash_pointer (pair->old);
3258 }
3259
3260 static int
3261 type_pair_eq (const void *item_lhs, const void *item_rhs)
3262 {
3263 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3264
3265 return lhs->old == rhs->old;
3266 }
3267
3268 /* Allocate the hash table used by copy_type_recursive to walk
3269 types without duplicates. We use OBJFILE's obstack, because
3270 OBJFILE is about to be deleted. */
3271
3272 htab_t
3273 create_copied_types_hash (struct objfile *objfile)
3274 {
3275 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3276 NULL, &objfile->objfile_obstack,
3277 hashtab_obstack_allocate,
3278 dummy_obstack_deallocate);
3279 }
3280
3281 /* Recursively copy (deep copy) TYPE, if it is associated with
3282 OBJFILE. Return a new type allocated using malloc, a saved type if
3283 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3284 not associated with OBJFILE. */
3285
3286 struct type *
3287 copy_type_recursive (struct objfile *objfile,
3288 struct type *type,
3289 htab_t copied_types)
3290 {
3291 struct type_pair *stored, pair;
3292 void **slot;
3293 struct type *new_type;
3294
3295 if (! TYPE_OBJFILE_OWNED (type))
3296 return type;
3297
3298 /* This type shouldn't be pointing to any types in other objfiles;
3299 if it did, the type might disappear unexpectedly. */
3300 gdb_assert (TYPE_OBJFILE (type) == objfile);
3301
3302 pair.old = type;
3303 slot = htab_find_slot (copied_types, &pair, INSERT);
3304 if (*slot != NULL)
3305 return ((struct type_pair *) *slot)->new;
3306
3307 new_type = alloc_type_arch (get_type_arch (type));
3308
3309 /* We must add the new type to the hash table immediately, in case
3310 we encounter this type again during a recursive call below. */
3311 stored
3312 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3313 stored->old = type;
3314 stored->new = new_type;
3315 *slot = stored;
3316
3317 /* Copy the common fields of types. For the main type, we simply
3318 copy the entire thing and then update specific fields as needed. */
3319 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3320 TYPE_OBJFILE_OWNED (new_type) = 0;
3321 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3322
3323 if (TYPE_NAME (type))
3324 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3325 if (TYPE_TAG_NAME (type))
3326 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3327
3328 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3329 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3330
3331 /* Copy the fields. */
3332 if (TYPE_NFIELDS (type))
3333 {
3334 int i, nfields;
3335
3336 nfields = TYPE_NFIELDS (type);
3337 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3338 for (i = 0; i < nfields; i++)
3339 {
3340 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3341 TYPE_FIELD_ARTIFICIAL (type, i);
3342 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3343 if (TYPE_FIELD_TYPE (type, i))
3344 TYPE_FIELD_TYPE (new_type, i)
3345 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3346 copied_types);
3347 if (TYPE_FIELD_NAME (type, i))
3348 TYPE_FIELD_NAME (new_type, i) =
3349 xstrdup (TYPE_FIELD_NAME (type, i));
3350 switch (TYPE_FIELD_LOC_KIND (type, i))
3351 {
3352 case FIELD_LOC_KIND_BITPOS:
3353 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3354 TYPE_FIELD_BITPOS (type, i));
3355 break;
3356 case FIELD_LOC_KIND_PHYSADDR:
3357 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3358 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3359 break;
3360 case FIELD_LOC_KIND_PHYSNAME:
3361 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3362 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3363 i)));
3364 break;
3365 default:
3366 internal_error (__FILE__, __LINE__,
3367 _("Unexpected type field location kind: %d"),
3368 TYPE_FIELD_LOC_KIND (type, i));
3369 }
3370 }
3371 }
3372
3373 /* For range types, copy the bounds information. */
3374 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3375 {
3376 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3377 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3378 }
3379
3380 /* Copy pointers to other types. */
3381 if (TYPE_TARGET_TYPE (type))
3382 TYPE_TARGET_TYPE (new_type) =
3383 copy_type_recursive (objfile,
3384 TYPE_TARGET_TYPE (type),
3385 copied_types);
3386 if (TYPE_VPTR_BASETYPE (type))
3387 TYPE_VPTR_BASETYPE (new_type) =
3388 copy_type_recursive (objfile,
3389 TYPE_VPTR_BASETYPE (type),
3390 copied_types);
3391 /* Maybe copy the type_specific bits.
3392
3393 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3394 base classes and methods. There's no fundamental reason why we
3395 can't, but at the moment it is not needed. */
3396
3397 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3398 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3399 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3400 || TYPE_CODE (type) == TYPE_CODE_UNION
3401 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3402 INIT_CPLUS_SPECIFIC (new_type);
3403
3404 return new_type;
3405 }
3406
3407 /* Make a copy of the given TYPE, except that the pointer & reference
3408 types are not preserved.
3409
3410 This function assumes that the given type has an associated objfile.
3411 This objfile is used to allocate the new type. */
3412
3413 struct type *
3414 copy_type (const struct type *type)
3415 {
3416 struct type *new_type;
3417
3418 gdb_assert (TYPE_OBJFILE_OWNED (type));
3419
3420 new_type = alloc_type_copy (type);
3421 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3422 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3423 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3424 sizeof (struct main_type));
3425
3426 return new_type;
3427 }
3428
3429
3430 /* Helper functions to initialize architecture-specific types. */
3431
3432 /* Allocate a type structure associated with GDBARCH and set its
3433 CODE, LENGTH, and NAME fields. */
3434 struct type *
3435 arch_type (struct gdbarch *gdbarch,
3436 enum type_code code, int length, char *name)
3437 {
3438 struct type *type;
3439
3440 type = alloc_type_arch (gdbarch);
3441 TYPE_CODE (type) = code;
3442 TYPE_LENGTH (type) = length;
3443
3444 if (name)
3445 TYPE_NAME (type) = xstrdup (name);
3446
3447 return type;
3448 }
3449
3450 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3451 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3452 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3453 struct type *
3454 arch_integer_type (struct gdbarch *gdbarch,
3455 int bit, int unsigned_p, char *name)
3456 {
3457 struct type *t;
3458
3459 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3460 if (unsigned_p)
3461 TYPE_UNSIGNED (t) = 1;
3462 if (name && strcmp (name, "char") == 0)
3463 TYPE_NOSIGN (t) = 1;
3464
3465 return t;
3466 }
3467
3468 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3469 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3470 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3471 struct type *
3472 arch_character_type (struct gdbarch *gdbarch,
3473 int bit, int unsigned_p, char *name)
3474 {
3475 struct type *t;
3476
3477 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3478 if (unsigned_p)
3479 TYPE_UNSIGNED (t) = 1;
3480
3481 return t;
3482 }
3483
3484 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3485 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3486 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3487 struct type *
3488 arch_boolean_type (struct gdbarch *gdbarch,
3489 int bit, int unsigned_p, char *name)
3490 {
3491 struct type *t;
3492
3493 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3494 if (unsigned_p)
3495 TYPE_UNSIGNED (t) = 1;
3496
3497 return t;
3498 }
3499
3500 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3501 BIT is the type size in bits; if BIT equals -1, the size is
3502 determined by the floatformat. NAME is the type name. Set the
3503 TYPE_FLOATFORMAT from FLOATFORMATS. */
3504 struct type *
3505 arch_float_type (struct gdbarch *gdbarch,
3506 int bit, char *name, const struct floatformat **floatformats)
3507 {
3508 struct type *t;
3509
3510 if (bit == -1)
3511 {
3512 gdb_assert (floatformats != NULL);
3513 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3514 bit = floatformats[0]->totalsize;
3515 }
3516 gdb_assert (bit >= 0);
3517
3518 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3519 TYPE_FLOATFORMAT (t) = floatformats;
3520 return t;
3521 }
3522
3523 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3524 NAME is the type name. TARGET_TYPE is the component float type. */
3525 struct type *
3526 arch_complex_type (struct gdbarch *gdbarch,
3527 char *name, struct type *target_type)
3528 {
3529 struct type *t;
3530
3531 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3532 2 * TYPE_LENGTH (target_type), name);
3533 TYPE_TARGET_TYPE (t) = target_type;
3534 return t;
3535 }
3536
3537 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3538 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3539 struct type *
3540 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3541 {
3542 int nfields = length * TARGET_CHAR_BIT;
3543 struct type *type;
3544
3545 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3546 TYPE_UNSIGNED (type) = 1;
3547 TYPE_NFIELDS (type) = nfields;
3548 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3549
3550 return type;
3551 }
3552
3553 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3554 position BITPOS is called NAME. */
3555 void
3556 append_flags_type_flag (struct type *type, int bitpos, char *name)
3557 {
3558 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3559 gdb_assert (bitpos < TYPE_NFIELDS (type));
3560 gdb_assert (bitpos >= 0);
3561
3562 if (name)
3563 {
3564 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3565 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3566 }
3567 else
3568 {
3569 /* Don't show this field to the user. */
3570 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3571 }
3572 }
3573
3574 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3575 specified by CODE) associated with GDBARCH. NAME is the type name. */
3576 struct type *
3577 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3578 {
3579 struct type *t;
3580
3581 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3582 t = arch_type (gdbarch, code, 0, NULL);
3583 TYPE_TAG_NAME (t) = name;
3584 INIT_CPLUS_SPECIFIC (t);
3585 return t;
3586 }
3587
3588 /* Add new field with name NAME and type FIELD to composite type T.
3589 Do not set the field's position or adjust the type's length;
3590 the caller should do so. Return the new field. */
3591 struct field *
3592 append_composite_type_field_raw (struct type *t, char *name,
3593 struct type *field)
3594 {
3595 struct field *f;
3596
3597 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3598 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3599 sizeof (struct field) * TYPE_NFIELDS (t));
3600 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3601 memset (f, 0, sizeof f[0]);
3602 FIELD_TYPE (f[0]) = field;
3603 FIELD_NAME (f[0]) = name;
3604 return f;
3605 }
3606
3607 /* Add new field with name NAME and type FIELD to composite type T.
3608 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3609 void
3610 append_composite_type_field_aligned (struct type *t, char *name,
3611 struct type *field, int alignment)
3612 {
3613 struct field *f = append_composite_type_field_raw (t, name, field);
3614
3615 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3616 {
3617 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3618 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3619 }
3620 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3621 {
3622 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3623 if (TYPE_NFIELDS (t) > 1)
3624 {
3625 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3626 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3627 * TARGET_CHAR_BIT));
3628
3629 if (alignment)
3630 {
3631 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3632
3633 if (left)
3634 {
3635 FIELD_BITPOS (f[0]) += left;
3636 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3637 }
3638 }
3639 }
3640 }
3641 }
3642
3643 /* Add new field with name NAME and type FIELD to composite type T. */
3644 void
3645 append_composite_type_field (struct type *t, char *name,
3646 struct type *field)
3647 {
3648 append_composite_type_field_aligned (t, name, field, 0);
3649 }
3650
3651
3652 static struct gdbarch_data *gdbtypes_data;
3653
3654 const struct builtin_type *
3655 builtin_type (struct gdbarch *gdbarch)
3656 {
3657 return gdbarch_data (gdbarch, gdbtypes_data);
3658 }
3659
3660 static void *
3661 gdbtypes_post_init (struct gdbarch *gdbarch)
3662 {
3663 struct builtin_type *builtin_type
3664 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3665
3666 /* Basic types. */
3667 builtin_type->builtin_void
3668 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3669 builtin_type->builtin_char
3670 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3671 !gdbarch_char_signed (gdbarch), "char");
3672 builtin_type->builtin_signed_char
3673 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3674 0, "signed char");
3675 builtin_type->builtin_unsigned_char
3676 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3677 1, "unsigned char");
3678 builtin_type->builtin_short
3679 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3680 0, "short");
3681 builtin_type->builtin_unsigned_short
3682 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3683 1, "unsigned short");
3684 builtin_type->builtin_int
3685 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3686 0, "int");
3687 builtin_type->builtin_unsigned_int
3688 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3689 1, "unsigned int");
3690 builtin_type->builtin_long
3691 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3692 0, "long");
3693 builtin_type->builtin_unsigned_long
3694 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3695 1, "unsigned long");
3696 builtin_type->builtin_long_long
3697 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3698 0, "long long");
3699 builtin_type->builtin_unsigned_long_long
3700 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3701 1, "unsigned long long");
3702 builtin_type->builtin_float
3703 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3704 "float", gdbarch_float_format (gdbarch));
3705 builtin_type->builtin_double
3706 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3707 "double", gdbarch_double_format (gdbarch));
3708 builtin_type->builtin_long_double
3709 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3710 "long double", gdbarch_long_double_format (gdbarch));
3711 builtin_type->builtin_complex
3712 = arch_complex_type (gdbarch, "complex",
3713 builtin_type->builtin_float);
3714 builtin_type->builtin_double_complex
3715 = arch_complex_type (gdbarch, "double complex",
3716 builtin_type->builtin_double);
3717 builtin_type->builtin_string
3718 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3719 builtin_type->builtin_bool
3720 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3721
3722 /* The following three are about decimal floating point types, which
3723 are 32-bits, 64-bits and 128-bits respectively. */
3724 builtin_type->builtin_decfloat
3725 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3726 builtin_type->builtin_decdouble
3727 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3728 builtin_type->builtin_declong
3729 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3730
3731 /* "True" character types. */
3732 builtin_type->builtin_true_char
3733 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3734 builtin_type->builtin_true_unsigned_char
3735 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3736
3737 /* Fixed-size integer types. */
3738 builtin_type->builtin_int0
3739 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3740 builtin_type->builtin_int8
3741 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3742 builtin_type->builtin_uint8
3743 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3744 builtin_type->builtin_int16
3745 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3746 builtin_type->builtin_uint16
3747 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3748 builtin_type->builtin_int32
3749 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3750 builtin_type->builtin_uint32
3751 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3752 builtin_type->builtin_int64
3753 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3754 builtin_type->builtin_uint64
3755 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3756 builtin_type->builtin_int128
3757 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3758 builtin_type->builtin_uint128
3759 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3760 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3761 TYPE_INSTANCE_FLAG_NOTTEXT;
3762 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3763 TYPE_INSTANCE_FLAG_NOTTEXT;
3764
3765 /* Wide character types. */
3766 builtin_type->builtin_char16
3767 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3768 builtin_type->builtin_char32
3769 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3770
3771
3772 /* Default data/code pointer types. */
3773 builtin_type->builtin_data_ptr
3774 = lookup_pointer_type (builtin_type->builtin_void);
3775 builtin_type->builtin_func_ptr
3776 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3777 builtin_type->builtin_func_func
3778 = lookup_function_type (builtin_type->builtin_func_ptr);
3779
3780 /* This type represents a GDB internal function. */
3781 builtin_type->internal_fn
3782 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3783 "<internal function>");
3784
3785 return builtin_type;
3786 }
3787
3788
3789 /* This set of objfile-based types is intended to be used by symbol
3790 readers as basic types. */
3791
3792 static const struct objfile_data *objfile_type_data;
3793
3794 const struct objfile_type *
3795 objfile_type (struct objfile *objfile)
3796 {
3797 struct gdbarch *gdbarch;
3798 struct objfile_type *objfile_type
3799 = objfile_data (objfile, objfile_type_data);
3800
3801 if (objfile_type)
3802 return objfile_type;
3803
3804 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3805 1, struct objfile_type);
3806
3807 /* Use the objfile architecture to determine basic type properties. */
3808 gdbarch = get_objfile_arch (objfile);
3809
3810 /* Basic types. */
3811 objfile_type->builtin_void
3812 = init_type (TYPE_CODE_VOID, 1,
3813 0,
3814 "void", objfile);
3815
3816 objfile_type->builtin_char
3817 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3818 (TYPE_FLAG_NOSIGN
3819 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3820 "char", objfile);
3821 objfile_type->builtin_signed_char
3822 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3823 0,
3824 "signed char", objfile);
3825 objfile_type->builtin_unsigned_char
3826 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3827 TYPE_FLAG_UNSIGNED,
3828 "unsigned char", objfile);
3829 objfile_type->builtin_short
3830 = init_type (TYPE_CODE_INT,
3831 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3832 0, "short", objfile);
3833 objfile_type->builtin_unsigned_short
3834 = init_type (TYPE_CODE_INT,
3835 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3836 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3837 objfile_type->builtin_int
3838 = init_type (TYPE_CODE_INT,
3839 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3840 0, "int", objfile);
3841 objfile_type->builtin_unsigned_int
3842 = init_type (TYPE_CODE_INT,
3843 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3844 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3845 objfile_type->builtin_long
3846 = init_type (TYPE_CODE_INT,
3847 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3848 0, "long", objfile);
3849 objfile_type->builtin_unsigned_long
3850 = init_type (TYPE_CODE_INT,
3851 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3852 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3853 objfile_type->builtin_long_long
3854 = init_type (TYPE_CODE_INT,
3855 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3856 0, "long long", objfile);
3857 objfile_type->builtin_unsigned_long_long
3858 = init_type (TYPE_CODE_INT,
3859 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3860 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3861
3862 objfile_type->builtin_float
3863 = init_type (TYPE_CODE_FLT,
3864 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3865 0, "float", objfile);
3866 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3867 = gdbarch_float_format (gdbarch);
3868 objfile_type->builtin_double
3869 = init_type (TYPE_CODE_FLT,
3870 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3871 0, "double", objfile);
3872 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3873 = gdbarch_double_format (gdbarch);
3874 objfile_type->builtin_long_double
3875 = init_type (TYPE_CODE_FLT,
3876 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3877 0, "long double", objfile);
3878 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3879 = gdbarch_long_double_format (gdbarch);
3880
3881 /* This type represents a type that was unrecognized in symbol read-in. */
3882 objfile_type->builtin_error
3883 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3884
3885 /* The following set of types is used for symbols with no
3886 debug information. */
3887 objfile_type->nodebug_text_symbol
3888 = init_type (TYPE_CODE_FUNC, 1, 0,
3889 "<text variable, no debug info>", objfile);
3890 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3891 = objfile_type->builtin_int;
3892 objfile_type->nodebug_text_gnu_ifunc_symbol
3893 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3894 "<text gnu-indirect-function variable, no debug info>",
3895 objfile);
3896 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3897 = objfile_type->nodebug_text_symbol;
3898 objfile_type->nodebug_got_plt_symbol
3899 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3900 "<text from jump slot in .got.plt, no debug info>",
3901 objfile);
3902 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3903 = objfile_type->nodebug_text_symbol;
3904 objfile_type->nodebug_data_symbol
3905 = init_type (TYPE_CODE_INT,
3906 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3907 "<data variable, no debug info>", objfile);
3908 objfile_type->nodebug_unknown_symbol
3909 = init_type (TYPE_CODE_INT, 1, 0,
3910 "<variable (not text or data), no debug info>", objfile);
3911 objfile_type->nodebug_tls_symbol
3912 = init_type (TYPE_CODE_INT,
3913 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3914 "<thread local variable, no debug info>", objfile);
3915
3916 /* NOTE: on some targets, addresses and pointers are not necessarily
3917 the same --- for example, on the D10V, pointers are 16 bits long,
3918 but addresses are 32 bits long. See doc/gdbint.texinfo,
3919 ``Pointers Are Not Always Addresses''.
3920
3921 The upshot is:
3922 - gdb's `struct type' always describes the target's
3923 representation.
3924 - gdb's `struct value' objects should always hold values in
3925 target form.
3926 - gdb's CORE_ADDR values are addresses in the unified virtual
3927 address space that the assembler and linker work with. Thus,
3928 since target_read_memory takes a CORE_ADDR as an argument, it
3929 can access any memory on the target, even if the processor has
3930 separate code and data address spaces.
3931
3932 So, for example:
3933 - If v is a value holding a D10V code pointer, its contents are
3934 in target form: a big-endian address left-shifted two bits.
3935 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3936 sizeof (void *) == 2 on the target.
3937
3938 In this context, objfile_type->builtin_core_addr is a bit odd:
3939 it's a target type for a value the target will never see. It's
3940 only used to hold the values of (typeless) linker symbols, which
3941 are indeed in the unified virtual address space. */
3942
3943 objfile_type->builtin_core_addr
3944 = init_type (TYPE_CODE_INT,
3945 gdbarch_addr_bit (gdbarch) / 8,
3946 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3947
3948 set_objfile_data (objfile, objfile_type_data, objfile_type);
3949 return objfile_type;
3950 }
3951
3952
3953 extern void _initialize_gdbtypes (void);
3954 void
3955 _initialize_gdbtypes (void)
3956 {
3957 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3958 objfile_type_data = register_objfile_data ();
3959
3960 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3961 _("Set debugging of C++ overloading."),
3962 _("Show debugging of C++ overloading."),
3963 _("When enabled, ranking of the "
3964 "functions is displayed."),
3965 NULL,
3966 show_overload_debug,
3967 &setdebuglist, &showdebuglist);
3968
3969 /* Add user knob for controlling resolution of opaque types. */
3970 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3971 &opaque_type_resolution,
3972 _("Set resolution of opaque struct/class/union"
3973 " types (if set before loading symbols)."),
3974 _("Show resolution of opaque struct/class/union"
3975 " types (if set before loading symbols)."),
3976 NULL, NULL,
3977 show_opaque_type_resolution,
3978 &setlist, &showlist);
3979 }
This page took 0.130335 seconds and 4 git commands to generate.