Add some missing arch_..._type helpers
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2016 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the obstack associated with GDBARCH. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
202 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* See gdbtypes.h. */
256
257 unsigned int
258 type_length_units (struct type *type)
259 {
260 struct gdbarch *arch = get_type_arch (type);
261 int unit_size = gdbarch_addressable_memory_unit_size (arch);
262
263 return TYPE_LENGTH (type) / unit_size;
264 }
265
266 /* Alloc a new type instance structure, fill it with some defaults,
267 and point it at OLDTYPE. Allocate the new type instance from the
268 same place as OLDTYPE. */
269
270 static struct type *
271 alloc_type_instance (struct type *oldtype)
272 {
273 struct type *type;
274
275 /* Allocate the structure. */
276
277 if (! TYPE_OBJFILE_OWNED (oldtype))
278 type = XCNEW (struct type);
279 else
280 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
281 struct type);
282
283 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
284
285 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
286
287 return type;
288 }
289
290 /* Clear all remnants of the previous type at TYPE, in preparation for
291 replacing it with something else. Preserve owner information. */
292
293 static void
294 smash_type (struct type *type)
295 {
296 int objfile_owned = TYPE_OBJFILE_OWNED (type);
297 union type_owner owner = TYPE_OWNER (type);
298
299 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
300
301 /* Restore owner information. */
302 TYPE_OBJFILE_OWNED (type) = objfile_owned;
303 TYPE_OWNER (type) = owner;
304
305 /* For now, delete the rings. */
306 TYPE_CHAIN (type) = type;
307
308 /* For now, leave the pointer/reference types alone. */
309 }
310
311 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
312 to a pointer to memory where the pointer type should be stored.
313 If *TYPEPTR is zero, update it to point to the pointer type we return.
314 We allocate new memory if needed. */
315
316 struct type *
317 make_pointer_type (struct type *type, struct type **typeptr)
318 {
319 struct type *ntype; /* New type */
320 struct type *chain;
321
322 ntype = TYPE_POINTER_TYPE (type);
323
324 if (ntype)
325 {
326 if (typeptr == 0)
327 return ntype; /* Don't care about alloc,
328 and have new type. */
329 else if (*typeptr == 0)
330 {
331 *typeptr = ntype; /* Tracking alloc, and have new type. */
332 return ntype;
333 }
334 }
335
336 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
337 {
338 ntype = alloc_type_copy (type);
339 if (typeptr)
340 *typeptr = ntype;
341 }
342 else /* We have storage, but need to reset it. */
343 {
344 ntype = *typeptr;
345 chain = TYPE_CHAIN (ntype);
346 smash_type (ntype);
347 TYPE_CHAIN (ntype) = chain;
348 }
349
350 TYPE_TARGET_TYPE (ntype) = type;
351 TYPE_POINTER_TYPE (type) = ntype;
352
353 /* FIXME! Assumes the machine has only one representation for pointers! */
354
355 TYPE_LENGTH (ntype)
356 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
357 TYPE_CODE (ntype) = TYPE_CODE_PTR;
358
359 /* Mark pointers as unsigned. The target converts between pointers
360 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
361 gdbarch_address_to_pointer. */
362 TYPE_UNSIGNED (ntype) = 1;
363
364 /* Update the length of all the other variants of this type. */
365 chain = TYPE_CHAIN (ntype);
366 while (chain != ntype)
367 {
368 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
369 chain = TYPE_CHAIN (chain);
370 }
371
372 return ntype;
373 }
374
375 /* Given a type TYPE, return a type of pointers to that type.
376 May need to construct such a type if this is the first use. */
377
378 struct type *
379 lookup_pointer_type (struct type *type)
380 {
381 return make_pointer_type (type, (struct type **) 0);
382 }
383
384 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
385 points to a pointer to memory where the reference type should be
386 stored. If *TYPEPTR is zero, update it to point to the reference
387 type we return. We allocate new memory if needed. */
388
389 struct type *
390 make_reference_type (struct type *type, struct type **typeptr)
391 {
392 struct type *ntype; /* New type */
393 struct type *chain;
394
395 ntype = TYPE_REFERENCE_TYPE (type);
396
397 if (ntype)
398 {
399 if (typeptr == 0)
400 return ntype; /* Don't care about alloc,
401 and have new type. */
402 else if (*typeptr == 0)
403 {
404 *typeptr = ntype; /* Tracking alloc, and have new type. */
405 return ntype;
406 }
407 }
408
409 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
410 {
411 ntype = alloc_type_copy (type);
412 if (typeptr)
413 *typeptr = ntype;
414 }
415 else /* We have storage, but need to reset it. */
416 {
417 ntype = *typeptr;
418 chain = TYPE_CHAIN (ntype);
419 smash_type (ntype);
420 TYPE_CHAIN (ntype) = chain;
421 }
422
423 TYPE_TARGET_TYPE (ntype) = type;
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* FIXME! Assume the machine has only one representation for
427 references, and that it matches the (only) representation for
428 pointers! */
429
430 TYPE_LENGTH (ntype) =
431 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
432 TYPE_CODE (ntype) = TYPE_CODE_REF;
433
434 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
435 TYPE_REFERENCE_TYPE (type) = ntype;
436
437 /* Update the length of all the other variants of this type. */
438 chain = TYPE_CHAIN (ntype);
439 while (chain != ntype)
440 {
441 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
442 chain = TYPE_CHAIN (chain);
443 }
444
445 return ntype;
446 }
447
448 /* Same as above, but caller doesn't care about memory allocation
449 details. */
450
451 struct type *
452 lookup_reference_type (struct type *type)
453 {
454 return make_reference_type (type, (struct type **) 0);
455 }
456
457 /* Lookup a function type that returns type TYPE. TYPEPTR, if
458 nonzero, points to a pointer to memory where the function type
459 should be stored. If *TYPEPTR is zero, update it to point to the
460 function type we return. We allocate new memory if needed. */
461
462 struct type *
463 make_function_type (struct type *type, struct type **typeptr)
464 {
465 struct type *ntype; /* New type */
466
467 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
468 {
469 ntype = alloc_type_copy (type);
470 if (typeptr)
471 *typeptr = ntype;
472 }
473 else /* We have storage, but need to reset it. */
474 {
475 ntype = *typeptr;
476 smash_type (ntype);
477 }
478
479 TYPE_TARGET_TYPE (ntype) = type;
480
481 TYPE_LENGTH (ntype) = 1;
482 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
483
484 INIT_FUNC_SPECIFIC (ntype);
485
486 return ntype;
487 }
488
489 /* Given a type TYPE, return a type of functions that return that type.
490 May need to construct such a type if this is the first use. */
491
492 struct type *
493 lookup_function_type (struct type *type)
494 {
495 return make_function_type (type, (struct type **) 0);
496 }
497
498 /* Given a type TYPE and argument types, return the appropriate
499 function type. If the final type in PARAM_TYPES is NULL, make a
500 varargs function. */
501
502 struct type *
503 lookup_function_type_with_arguments (struct type *type,
504 int nparams,
505 struct type **param_types)
506 {
507 struct type *fn = make_function_type (type, (struct type **) 0);
508 int i;
509
510 if (nparams > 0)
511 {
512 if (param_types[nparams - 1] == NULL)
513 {
514 --nparams;
515 TYPE_VARARGS (fn) = 1;
516 }
517 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
518 == TYPE_CODE_VOID)
519 {
520 --nparams;
521 /* Caller should have ensured this. */
522 gdb_assert (nparams == 0);
523 TYPE_PROTOTYPED (fn) = 1;
524 }
525 }
526
527 TYPE_NFIELDS (fn) = nparams;
528 TYPE_FIELDS (fn)
529 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
530 for (i = 0; i < nparams; ++i)
531 TYPE_FIELD_TYPE (fn, i) = param_types[i];
532
533 return fn;
534 }
535
536 /* Identify address space identifier by name --
537 return the integer flag defined in gdbtypes.h. */
538
539 int
540 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
541 {
542 int type_flags;
543
544 /* Check for known address space delimiters. */
545 if (!strcmp (space_identifier, "code"))
546 return TYPE_INSTANCE_FLAG_CODE_SPACE;
547 else if (!strcmp (space_identifier, "data"))
548 return TYPE_INSTANCE_FLAG_DATA_SPACE;
549 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
550 && gdbarch_address_class_name_to_type_flags (gdbarch,
551 space_identifier,
552 &type_flags))
553 return type_flags;
554 else
555 error (_("Unknown address space specifier: \"%s\""), space_identifier);
556 }
557
558 /* Identify address space identifier by integer flag as defined in
559 gdbtypes.h -- return the string version of the adress space name. */
560
561 const char *
562 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
563 {
564 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
565 return "code";
566 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
567 return "data";
568 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
569 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
570 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
571 else
572 return NULL;
573 }
574
575 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
576
577 If STORAGE is non-NULL, create the new type instance there.
578 STORAGE must be in the same obstack as TYPE. */
579
580 static struct type *
581 make_qualified_type (struct type *type, int new_flags,
582 struct type *storage)
583 {
584 struct type *ntype;
585
586 ntype = type;
587 do
588 {
589 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
590 return ntype;
591 ntype = TYPE_CHAIN (ntype);
592 }
593 while (ntype != type);
594
595 /* Create a new type instance. */
596 if (storage == NULL)
597 ntype = alloc_type_instance (type);
598 else
599 {
600 /* If STORAGE was provided, it had better be in the same objfile
601 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
602 if one objfile is freed and the other kept, we'd have
603 dangling pointers. */
604 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
605
606 ntype = storage;
607 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
608 TYPE_CHAIN (ntype) = ntype;
609 }
610
611 /* Pointers or references to the original type are not relevant to
612 the new type. */
613 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
614 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
615
616 /* Chain the new qualified type to the old type. */
617 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
618 TYPE_CHAIN (type) = ntype;
619
620 /* Now set the instance flags and return the new type. */
621 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
622
623 /* Set length of new type to that of the original type. */
624 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
625
626 return ntype;
627 }
628
629 /* Make an address-space-delimited variant of a type -- a type that
630 is identical to the one supplied except that it has an address
631 space attribute attached to it (such as "code" or "data").
632
633 The space attributes "code" and "data" are for Harvard
634 architectures. The address space attributes are for architectures
635 which have alternately sized pointers or pointers with alternate
636 representations. */
637
638 struct type *
639 make_type_with_address_space (struct type *type, int space_flag)
640 {
641 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
642 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
643 | TYPE_INSTANCE_FLAG_DATA_SPACE
644 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
645 | space_flag);
646
647 return make_qualified_type (type, new_flags, NULL);
648 }
649
650 /* Make a "c-v" variant of a type -- a type that is identical to the
651 one supplied except that it may have const or volatile attributes
652 CNST is a flag for setting the const attribute
653 VOLTL is a flag for setting the volatile attribute
654 TYPE is the base type whose variant we are creating.
655
656 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
657 storage to hold the new qualified type; *TYPEPTR and TYPE must be
658 in the same objfile. Otherwise, allocate fresh memory for the new
659 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
660 new type we construct. */
661
662 struct type *
663 make_cv_type (int cnst, int voltl,
664 struct type *type,
665 struct type **typeptr)
666 {
667 struct type *ntype; /* New type */
668
669 int new_flags = (TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CONST
671 | TYPE_INSTANCE_FLAG_VOLATILE));
672
673 if (cnst)
674 new_flags |= TYPE_INSTANCE_FLAG_CONST;
675
676 if (voltl)
677 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
678
679 if (typeptr && *typeptr != NULL)
680 {
681 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
682 a C-V variant chain that threads across objfiles: if one
683 objfile gets freed, then the other has a broken C-V chain.
684
685 This code used to try to copy over the main type from TYPE to
686 *TYPEPTR if they were in different objfiles, but that's
687 wrong, too: TYPE may have a field list or member function
688 lists, which refer to types of their own, etc. etc. The
689 whole shebang would need to be copied over recursively; you
690 can't have inter-objfile pointers. The only thing to do is
691 to leave stub types as stub types, and look them up afresh by
692 name each time you encounter them. */
693 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
694 }
695
696 ntype = make_qualified_type (type, new_flags,
697 typeptr ? *typeptr : NULL);
698
699 if (typeptr != NULL)
700 *typeptr = ntype;
701
702 return ntype;
703 }
704
705 /* Make a 'restrict'-qualified version of TYPE. */
706
707 struct type *
708 make_restrict_type (struct type *type)
709 {
710 return make_qualified_type (type,
711 (TYPE_INSTANCE_FLAGS (type)
712 | TYPE_INSTANCE_FLAG_RESTRICT),
713 NULL);
714 }
715
716 /* Make a type without const, volatile, or restrict. */
717
718 struct type *
719 make_unqualified_type (struct type *type)
720 {
721 return make_qualified_type (type,
722 (TYPE_INSTANCE_FLAGS (type)
723 & ~(TYPE_INSTANCE_FLAG_CONST
724 | TYPE_INSTANCE_FLAG_VOLATILE
725 | TYPE_INSTANCE_FLAG_RESTRICT)),
726 NULL);
727 }
728
729 /* Make a '_Atomic'-qualified version of TYPE. */
730
731 struct type *
732 make_atomic_type (struct type *type)
733 {
734 return make_qualified_type (type,
735 (TYPE_INSTANCE_FLAGS (type)
736 | TYPE_INSTANCE_FLAG_ATOMIC),
737 NULL);
738 }
739
740 /* Replace the contents of ntype with the type *type. This changes the
741 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
742 the changes are propogated to all types in the TYPE_CHAIN.
743
744 In order to build recursive types, it's inevitable that we'll need
745 to update types in place --- but this sort of indiscriminate
746 smashing is ugly, and needs to be replaced with something more
747 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
748 clear if more steps are needed. */
749
750 void
751 replace_type (struct type *ntype, struct type *type)
752 {
753 struct type *chain;
754
755 /* These two types had better be in the same objfile. Otherwise,
756 the assignment of one type's main type structure to the other
757 will produce a type with references to objects (names; field
758 lists; etc.) allocated on an objfile other than its own. */
759 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
760
761 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
762
763 /* The type length is not a part of the main type. Update it for
764 each type on the variant chain. */
765 chain = ntype;
766 do
767 {
768 /* Assert that this element of the chain has no address-class bits
769 set in its flags. Such type variants might have type lengths
770 which are supposed to be different from the non-address-class
771 variants. This assertion shouldn't ever be triggered because
772 symbol readers which do construct address-class variants don't
773 call replace_type(). */
774 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
775
776 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
777 chain = TYPE_CHAIN (chain);
778 }
779 while (ntype != chain);
780
781 /* Assert that the two types have equivalent instance qualifiers.
782 This should be true for at least all of our debug readers. */
783 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
784 }
785
786 /* Implement direct support for MEMBER_TYPE in GNU C++.
787 May need to construct such a type if this is the first use.
788 The TYPE is the type of the member. The DOMAIN is the type
789 of the aggregate that the member belongs to. */
790
791 struct type *
792 lookup_memberptr_type (struct type *type, struct type *domain)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (type);
797 smash_to_memberptr_type (mtype, domain, type);
798 return mtype;
799 }
800
801 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
802
803 struct type *
804 lookup_methodptr_type (struct type *to_type)
805 {
806 struct type *mtype;
807
808 mtype = alloc_type_copy (to_type);
809 smash_to_methodptr_type (mtype, to_type);
810 return mtype;
811 }
812
813 /* Allocate a stub method whose return type is TYPE. This apparently
814 happens for speed of symbol reading, since parsing out the
815 arguments to the method is cpu-intensive, the way we are doing it.
816 So, we will fill in arguments later. This always returns a fresh
817 type. */
818
819 struct type *
820 allocate_stub_method (struct type *type)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
826 TYPE_LENGTH (mtype) = 1;
827 TYPE_STUB (mtype) = 1;
828 TYPE_TARGET_TYPE (mtype) = type;
829 /* TYPE_SELF_TYPE (mtype) = unknown yet */
830 return mtype;
831 }
832
833 /* Create a range type with a dynamic range from LOW_BOUND to
834 HIGH_BOUND, inclusive. See create_range_type for further details. */
835
836 struct type *
837 create_range_type (struct type *result_type, struct type *index_type,
838 const struct dynamic_prop *low_bound,
839 const struct dynamic_prop *high_bound)
840 {
841 if (result_type == NULL)
842 result_type = alloc_type_copy (index_type);
843 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
844 TYPE_TARGET_TYPE (result_type) = index_type;
845 if (TYPE_STUB (index_type))
846 TYPE_TARGET_STUB (result_type) = 1;
847 else
848 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
849
850 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
851 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
852 TYPE_RANGE_DATA (result_type)->low = *low_bound;
853 TYPE_RANGE_DATA (result_type)->high = *high_bound;
854
855 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
856 TYPE_UNSIGNED (result_type) = 1;
857
858 /* Ada allows the declaration of range types whose upper bound is
859 less than the lower bound, so checking the lower bound is not
860 enough. Make sure we do not mark a range type whose upper bound
861 is negative as unsigned. */
862 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
863 TYPE_UNSIGNED (result_type) = 0;
864
865 return result_type;
866 }
867
868 /* Create a range type using either a blank type supplied in
869 RESULT_TYPE, or creating a new type, inheriting the objfile from
870 INDEX_TYPE.
871
872 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
873 to HIGH_BOUND, inclusive.
874
875 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
876 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
877
878 struct type *
879 create_static_range_type (struct type *result_type, struct type *index_type,
880 LONGEST low_bound, LONGEST high_bound)
881 {
882 struct dynamic_prop low, high;
883
884 low.kind = PROP_CONST;
885 low.data.const_val = low_bound;
886
887 high.kind = PROP_CONST;
888 high.data.const_val = high_bound;
889
890 result_type = create_range_type (result_type, index_type, &low, &high);
891
892 return result_type;
893 }
894
895 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
896 are static, otherwise returns 0. */
897
898 static int
899 has_static_range (const struct range_bounds *bounds)
900 {
901 return (bounds->low.kind == PROP_CONST
902 && bounds->high.kind == PROP_CONST);
903 }
904
905
906 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
907 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
908 bounds will fit in LONGEST), or -1 otherwise. */
909
910 int
911 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
912 {
913 type = check_typedef (type);
914 switch (TYPE_CODE (type))
915 {
916 case TYPE_CODE_RANGE:
917 *lowp = TYPE_LOW_BOUND (type);
918 *highp = TYPE_HIGH_BOUND (type);
919 return 1;
920 case TYPE_CODE_ENUM:
921 if (TYPE_NFIELDS (type) > 0)
922 {
923 /* The enums may not be sorted by value, so search all
924 entries. */
925 int i;
926
927 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
928 for (i = 0; i < TYPE_NFIELDS (type); i++)
929 {
930 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
931 *lowp = TYPE_FIELD_ENUMVAL (type, i);
932 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
933 *highp = TYPE_FIELD_ENUMVAL (type, i);
934 }
935
936 /* Set unsigned indicator if warranted. */
937 if (*lowp >= 0)
938 {
939 TYPE_UNSIGNED (type) = 1;
940 }
941 }
942 else
943 {
944 *lowp = 0;
945 *highp = -1;
946 }
947 return 0;
948 case TYPE_CODE_BOOL:
949 *lowp = 0;
950 *highp = 1;
951 return 0;
952 case TYPE_CODE_INT:
953 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
954 return -1;
955 if (!TYPE_UNSIGNED (type))
956 {
957 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
958 *highp = -*lowp - 1;
959 return 0;
960 }
961 /* ... fall through for unsigned ints ... */
962 case TYPE_CODE_CHAR:
963 *lowp = 0;
964 /* This round-about calculation is to avoid shifting by
965 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
966 if TYPE_LENGTH (type) == sizeof (LONGEST). */
967 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
968 *highp = (*highp - 1) | *highp;
969 return 0;
970 default:
971 return -1;
972 }
973 }
974
975 /* Assuming TYPE is a simple, non-empty array type, compute its upper
976 and lower bound. Save the low bound into LOW_BOUND if not NULL.
977 Save the high bound into HIGH_BOUND if not NULL.
978
979 Return 1 if the operation was successful. Return zero otherwise,
980 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
981
982 We now simply use get_discrete_bounds call to get the values
983 of the low and high bounds.
984 get_discrete_bounds can return three values:
985 1, meaning that index is a range,
986 0, meaning that index is a discrete type,
987 or -1 for failure. */
988
989 int
990 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
991 {
992 struct type *index = TYPE_INDEX_TYPE (type);
993 LONGEST low = 0;
994 LONGEST high = 0;
995 int res;
996
997 if (index == NULL)
998 return 0;
999
1000 res = get_discrete_bounds (index, &low, &high);
1001 if (res == -1)
1002 return 0;
1003
1004 /* Check if the array bounds are undefined. */
1005 if (res == 1
1006 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1007 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1008 return 0;
1009
1010 if (low_bound)
1011 *low_bound = low;
1012
1013 if (high_bound)
1014 *high_bound = high;
1015
1016 return 1;
1017 }
1018
1019 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1020 representation of a value of this type, save the corresponding
1021 position number in POS.
1022
1023 Its differs from VAL only in the case of enumeration types. In
1024 this case, the position number of the value of the first listed
1025 enumeration literal is zero; the position number of the value of
1026 each subsequent enumeration literal is one more than that of its
1027 predecessor in the list.
1028
1029 Return 1 if the operation was successful. Return zero otherwise,
1030 in which case the value of POS is unmodified.
1031 */
1032
1033 int
1034 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1035 {
1036 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1037 {
1038 int i;
1039
1040 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1041 {
1042 if (val == TYPE_FIELD_ENUMVAL (type, i))
1043 {
1044 *pos = i;
1045 return 1;
1046 }
1047 }
1048 /* Invalid enumeration value. */
1049 return 0;
1050 }
1051 else
1052 {
1053 *pos = val;
1054 return 1;
1055 }
1056 }
1057
1058 /* Create an array type using either a blank type supplied in
1059 RESULT_TYPE, or creating a new type, inheriting the objfile from
1060 RANGE_TYPE.
1061
1062 Elements will be of type ELEMENT_TYPE, the indices will be of type
1063 RANGE_TYPE.
1064
1065 If BIT_STRIDE is not zero, build a packed array type whose element
1066 size is BIT_STRIDE. Otherwise, ignore this parameter.
1067
1068 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1069 sure it is TYPE_CODE_UNDEF before we bash it into an array
1070 type? */
1071
1072 struct type *
1073 create_array_type_with_stride (struct type *result_type,
1074 struct type *element_type,
1075 struct type *range_type,
1076 unsigned int bit_stride)
1077 {
1078 if (result_type == NULL)
1079 result_type = alloc_type_copy (range_type);
1080
1081 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1082 TYPE_TARGET_TYPE (result_type) = element_type;
1083 if (has_static_range (TYPE_RANGE_DATA (range_type))
1084 && (!type_not_associated (result_type)
1085 && !type_not_allocated (result_type)))
1086 {
1087 LONGEST low_bound, high_bound;
1088
1089 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1090 low_bound = high_bound = 0;
1091 element_type = check_typedef (element_type);
1092 /* Be careful when setting the array length. Ada arrays can be
1093 empty arrays with the high_bound being smaller than the low_bound.
1094 In such cases, the array length should be zero. */
1095 if (high_bound < low_bound)
1096 TYPE_LENGTH (result_type) = 0;
1097 else if (bit_stride > 0)
1098 TYPE_LENGTH (result_type) =
1099 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1100 else
1101 TYPE_LENGTH (result_type) =
1102 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1103 }
1104 else
1105 {
1106 /* This type is dynamic and its length needs to be computed
1107 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1108 undefined by setting it to zero. Although we are not expected
1109 to trust TYPE_LENGTH in this case, setting the size to zero
1110 allows us to avoid allocating objects of random sizes in case
1111 we accidently do. */
1112 TYPE_LENGTH (result_type) = 0;
1113 }
1114
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) =
1117 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1118 TYPE_INDEX_TYPE (result_type) = range_type;
1119 if (bit_stride > 0)
1120 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1121
1122 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1123 if (TYPE_LENGTH (result_type) == 0)
1124 TYPE_TARGET_STUB (result_type) = 1;
1125
1126 return result_type;
1127 }
1128
1129 /* Same as create_array_type_with_stride but with no bit_stride
1130 (BIT_STRIDE = 0), thus building an unpacked array. */
1131
1132 struct type *
1133 create_array_type (struct type *result_type,
1134 struct type *element_type,
1135 struct type *range_type)
1136 {
1137 return create_array_type_with_stride (result_type, element_type,
1138 range_type, 0);
1139 }
1140
1141 struct type *
1142 lookup_array_range_type (struct type *element_type,
1143 LONGEST low_bound, LONGEST high_bound)
1144 {
1145 struct gdbarch *gdbarch = get_type_arch (element_type);
1146 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1147 struct type *range_type
1148 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1149
1150 return create_array_type (NULL, element_type, range_type);
1151 }
1152
1153 /* Create a string type using either a blank type supplied in
1154 RESULT_TYPE, or creating a new type. String types are similar
1155 enough to array of char types that we can use create_array_type to
1156 build the basic type and then bash it into a string type.
1157
1158 For fixed length strings, the range type contains 0 as the lower
1159 bound and the length of the string minus one as the upper bound.
1160
1161 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1162 sure it is TYPE_CODE_UNDEF before we bash it into a string
1163 type? */
1164
1165 struct type *
1166 create_string_type (struct type *result_type,
1167 struct type *string_char_type,
1168 struct type *range_type)
1169 {
1170 result_type = create_array_type (result_type,
1171 string_char_type,
1172 range_type);
1173 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1174 return result_type;
1175 }
1176
1177 struct type *
1178 lookup_string_range_type (struct type *string_char_type,
1179 LONGEST low_bound, LONGEST high_bound)
1180 {
1181 struct type *result_type;
1182
1183 result_type = lookup_array_range_type (string_char_type,
1184 low_bound, high_bound);
1185 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1186 return result_type;
1187 }
1188
1189 struct type *
1190 create_set_type (struct type *result_type, struct type *domain_type)
1191 {
1192 if (result_type == NULL)
1193 result_type = alloc_type_copy (domain_type);
1194
1195 TYPE_CODE (result_type) = TYPE_CODE_SET;
1196 TYPE_NFIELDS (result_type) = 1;
1197 TYPE_FIELDS (result_type)
1198 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1199
1200 if (!TYPE_STUB (domain_type))
1201 {
1202 LONGEST low_bound, high_bound, bit_length;
1203
1204 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1205 low_bound = high_bound = 0;
1206 bit_length = high_bound - low_bound + 1;
1207 TYPE_LENGTH (result_type)
1208 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1209 if (low_bound >= 0)
1210 TYPE_UNSIGNED (result_type) = 1;
1211 }
1212 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1213
1214 return result_type;
1215 }
1216
1217 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1218 and any array types nested inside it. */
1219
1220 void
1221 make_vector_type (struct type *array_type)
1222 {
1223 struct type *inner_array, *elt_type;
1224 int flags;
1225
1226 /* Find the innermost array type, in case the array is
1227 multi-dimensional. */
1228 inner_array = array_type;
1229 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1230 inner_array = TYPE_TARGET_TYPE (inner_array);
1231
1232 elt_type = TYPE_TARGET_TYPE (inner_array);
1233 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1234 {
1235 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1236 elt_type = make_qualified_type (elt_type, flags, NULL);
1237 TYPE_TARGET_TYPE (inner_array) = elt_type;
1238 }
1239
1240 TYPE_VECTOR (array_type) = 1;
1241 }
1242
1243 struct type *
1244 init_vector_type (struct type *elt_type, int n)
1245 {
1246 struct type *array_type;
1247
1248 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1249 make_vector_type (array_type);
1250 return array_type;
1251 }
1252
1253 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1254 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1255 confusing. "self" is a common enough replacement for "this".
1256 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1257 TYPE_CODE_METHOD. */
1258
1259 struct type *
1260 internal_type_self_type (struct type *type)
1261 {
1262 switch (TYPE_CODE (type))
1263 {
1264 case TYPE_CODE_METHODPTR:
1265 case TYPE_CODE_MEMBERPTR:
1266 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1267 return NULL;
1268 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1269 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1270 case TYPE_CODE_METHOD:
1271 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1272 return NULL;
1273 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1274 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1275 default:
1276 gdb_assert_not_reached ("bad type");
1277 }
1278 }
1279
1280 /* Set the type of the class that TYPE belongs to.
1281 In c++ this is the class of "this".
1282 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1283 TYPE_CODE_METHOD. */
1284
1285 void
1286 set_type_self_type (struct type *type, struct type *self_type)
1287 {
1288 switch (TYPE_CODE (type))
1289 {
1290 case TYPE_CODE_METHODPTR:
1291 case TYPE_CODE_MEMBERPTR:
1292 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1293 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1294 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1295 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1296 break;
1297 case TYPE_CODE_METHOD:
1298 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1299 INIT_FUNC_SPECIFIC (type);
1300 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1301 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1302 break;
1303 default:
1304 gdb_assert_not_reached ("bad type");
1305 }
1306 }
1307
1308 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1309 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1310 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1311 TYPE doesn't include the offset (that's the value of the MEMBER
1312 itself), but does include the structure type into which it points
1313 (for some reason).
1314
1315 When "smashing" the type, we preserve the objfile that the old type
1316 pointed to, since we aren't changing where the type is actually
1317 allocated. */
1318
1319 void
1320 smash_to_memberptr_type (struct type *type, struct type *self_type,
1321 struct type *to_type)
1322 {
1323 smash_type (type);
1324 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1325 TYPE_TARGET_TYPE (type) = to_type;
1326 set_type_self_type (type, self_type);
1327 /* Assume that a data member pointer is the same size as a normal
1328 pointer. */
1329 TYPE_LENGTH (type)
1330 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1331 }
1332
1333 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1334
1335 When "smashing" the type, we preserve the objfile that the old type
1336 pointed to, since we aren't changing where the type is actually
1337 allocated. */
1338
1339 void
1340 smash_to_methodptr_type (struct type *type, struct type *to_type)
1341 {
1342 smash_type (type);
1343 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1344 TYPE_TARGET_TYPE (type) = to_type;
1345 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1346 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1347 }
1348
1349 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1350 METHOD just means `function that gets an extra "this" argument'.
1351
1352 When "smashing" the type, we preserve the objfile that the old type
1353 pointed to, since we aren't changing where the type is actually
1354 allocated. */
1355
1356 void
1357 smash_to_method_type (struct type *type, struct type *self_type,
1358 struct type *to_type, struct field *args,
1359 int nargs, int varargs)
1360 {
1361 smash_type (type);
1362 TYPE_CODE (type) = TYPE_CODE_METHOD;
1363 TYPE_TARGET_TYPE (type) = to_type;
1364 set_type_self_type (type, self_type);
1365 TYPE_FIELDS (type) = args;
1366 TYPE_NFIELDS (type) = nargs;
1367 if (varargs)
1368 TYPE_VARARGS (type) = 1;
1369 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1370 }
1371
1372 /* Return a typename for a struct/union/enum type without "struct ",
1373 "union ", or "enum ". If the type has a NULL name, return NULL. */
1374
1375 const char *
1376 type_name_no_tag (const struct type *type)
1377 {
1378 if (TYPE_TAG_NAME (type) != NULL)
1379 return TYPE_TAG_NAME (type);
1380
1381 /* Is there code which expects this to return the name if there is
1382 no tag name? My guess is that this is mainly used for C++ in
1383 cases where the two will always be the same. */
1384 return TYPE_NAME (type);
1385 }
1386
1387 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1388 Since GCC PR debug/47510 DWARF provides associated information to detect the
1389 anonymous class linkage name from its typedef.
1390
1391 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1392 apply it itself. */
1393
1394 const char *
1395 type_name_no_tag_or_error (struct type *type)
1396 {
1397 struct type *saved_type = type;
1398 const char *name;
1399 struct objfile *objfile;
1400
1401 type = check_typedef (type);
1402
1403 name = type_name_no_tag (type);
1404 if (name != NULL)
1405 return name;
1406
1407 name = type_name_no_tag (saved_type);
1408 objfile = TYPE_OBJFILE (saved_type);
1409 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1410 name ? name : "<anonymous>",
1411 objfile ? objfile_name (objfile) : "<arch>");
1412 }
1413
1414 /* Lookup a typedef or primitive type named NAME, visible in lexical
1415 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1416 suitably defined. */
1417
1418 struct type *
1419 lookup_typename (const struct language_defn *language,
1420 struct gdbarch *gdbarch, const char *name,
1421 const struct block *block, int noerr)
1422 {
1423 struct symbol *sym;
1424
1425 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1426 language->la_language, NULL).symbol;
1427 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1428 return SYMBOL_TYPE (sym);
1429
1430 if (noerr)
1431 return NULL;
1432 error (_("No type named %s."), name);
1433 }
1434
1435 struct type *
1436 lookup_unsigned_typename (const struct language_defn *language,
1437 struct gdbarch *gdbarch, const char *name)
1438 {
1439 char *uns = (char *) alloca (strlen (name) + 10);
1440
1441 strcpy (uns, "unsigned ");
1442 strcpy (uns + 9, name);
1443 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1444 }
1445
1446 struct type *
1447 lookup_signed_typename (const struct language_defn *language,
1448 struct gdbarch *gdbarch, const char *name)
1449 {
1450 struct type *t;
1451 char *uns = (char *) alloca (strlen (name) + 8);
1452
1453 strcpy (uns, "signed ");
1454 strcpy (uns + 7, name);
1455 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1456 /* If we don't find "signed FOO" just try again with plain "FOO". */
1457 if (t != NULL)
1458 return t;
1459 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1460 }
1461
1462 /* Lookup a structure type named "struct NAME",
1463 visible in lexical block BLOCK. */
1464
1465 struct type *
1466 lookup_struct (const char *name, const struct block *block)
1467 {
1468 struct symbol *sym;
1469
1470 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1471
1472 if (sym == NULL)
1473 {
1474 error (_("No struct type named %s."), name);
1475 }
1476 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1477 {
1478 error (_("This context has class, union or enum %s, not a struct."),
1479 name);
1480 }
1481 return (SYMBOL_TYPE (sym));
1482 }
1483
1484 /* Lookup a union type named "union NAME",
1485 visible in lexical block BLOCK. */
1486
1487 struct type *
1488 lookup_union (const char *name, const struct block *block)
1489 {
1490 struct symbol *sym;
1491 struct type *t;
1492
1493 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1494
1495 if (sym == NULL)
1496 error (_("No union type named %s."), name);
1497
1498 t = SYMBOL_TYPE (sym);
1499
1500 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1501 return t;
1502
1503 /* If we get here, it's not a union. */
1504 error (_("This context has class, struct or enum %s, not a union."),
1505 name);
1506 }
1507
1508 /* Lookup an enum type named "enum NAME",
1509 visible in lexical block BLOCK. */
1510
1511 struct type *
1512 lookup_enum (const char *name, const struct block *block)
1513 {
1514 struct symbol *sym;
1515
1516 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1517 if (sym == NULL)
1518 {
1519 error (_("No enum type named %s."), name);
1520 }
1521 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1522 {
1523 error (_("This context has class, struct or union %s, not an enum."),
1524 name);
1525 }
1526 return (SYMBOL_TYPE (sym));
1527 }
1528
1529 /* Lookup a template type named "template NAME<TYPE>",
1530 visible in lexical block BLOCK. */
1531
1532 struct type *
1533 lookup_template_type (char *name, struct type *type,
1534 const struct block *block)
1535 {
1536 struct symbol *sym;
1537 char *nam = (char *)
1538 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1539
1540 strcpy (nam, name);
1541 strcat (nam, "<");
1542 strcat (nam, TYPE_NAME (type));
1543 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1544
1545 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1546
1547 if (sym == NULL)
1548 {
1549 error (_("No template type named %s."), name);
1550 }
1551 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1552 {
1553 error (_("This context has class, union or enum %s, not a struct."),
1554 name);
1555 }
1556 return (SYMBOL_TYPE (sym));
1557 }
1558
1559 /* Given a type TYPE, lookup the type of the component of type named
1560 NAME.
1561
1562 TYPE can be either a struct or union, or a pointer or reference to
1563 a struct or union. If it is a pointer or reference, its target
1564 type is automatically used. Thus '.' and '->' are interchangable,
1565 as specified for the definitions of the expression element types
1566 STRUCTOP_STRUCT and STRUCTOP_PTR.
1567
1568 If NOERR is nonzero, return zero if NAME is not suitably defined.
1569 If NAME is the name of a baseclass type, return that type. */
1570
1571 struct type *
1572 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1573 {
1574 int i;
1575 char *type_name;
1576
1577 for (;;)
1578 {
1579 type = check_typedef (type);
1580 if (TYPE_CODE (type) != TYPE_CODE_PTR
1581 && TYPE_CODE (type) != TYPE_CODE_REF)
1582 break;
1583 type = TYPE_TARGET_TYPE (type);
1584 }
1585
1586 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1587 && TYPE_CODE (type) != TYPE_CODE_UNION)
1588 {
1589 type_name = type_to_string (type);
1590 make_cleanup (xfree, type_name);
1591 error (_("Type %s is not a structure or union type."), type_name);
1592 }
1593
1594 #if 0
1595 /* FIXME: This change put in by Michael seems incorrect for the case
1596 where the structure tag name is the same as the member name.
1597 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1598 foo; } bell;" Disabled by fnf. */
1599 {
1600 char *type_name;
1601
1602 type_name = type_name_no_tag (type);
1603 if (type_name != NULL && strcmp (type_name, name) == 0)
1604 return type;
1605 }
1606 #endif
1607
1608 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1609 {
1610 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1611
1612 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1613 {
1614 return TYPE_FIELD_TYPE (type, i);
1615 }
1616 else if (!t_field_name || *t_field_name == '\0')
1617 {
1618 struct type *subtype
1619 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1620
1621 if (subtype != NULL)
1622 return subtype;
1623 }
1624 }
1625
1626 /* OK, it's not in this class. Recursively check the baseclasses. */
1627 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1628 {
1629 struct type *t;
1630
1631 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1632 if (t != NULL)
1633 {
1634 return t;
1635 }
1636 }
1637
1638 if (noerr)
1639 {
1640 return NULL;
1641 }
1642
1643 type_name = type_to_string (type);
1644 make_cleanup (xfree, type_name);
1645 error (_("Type %s has no component named %s."), type_name, name);
1646 }
1647
1648 /* Store in *MAX the largest number representable by unsigned integer type
1649 TYPE. */
1650
1651 void
1652 get_unsigned_type_max (struct type *type, ULONGEST *max)
1653 {
1654 unsigned int n;
1655
1656 type = check_typedef (type);
1657 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1658 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1659
1660 /* Written this way to avoid overflow. */
1661 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1662 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1663 }
1664
1665 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1666 signed integer type TYPE. */
1667
1668 void
1669 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1670 {
1671 unsigned int n;
1672
1673 type = check_typedef (type);
1674 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1675 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1676
1677 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1678 *min = -((ULONGEST) 1 << (n - 1));
1679 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1680 }
1681
1682 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1683 cplus_stuff.vptr_fieldno.
1684
1685 cplus_stuff is initialized to cplus_struct_default which does not
1686 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1687 designated initializers). We cope with that here. */
1688
1689 int
1690 internal_type_vptr_fieldno (struct type *type)
1691 {
1692 type = check_typedef (type);
1693 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1694 || TYPE_CODE (type) == TYPE_CODE_UNION);
1695 if (!HAVE_CPLUS_STRUCT (type))
1696 return -1;
1697 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1698 }
1699
1700 /* Set the value of cplus_stuff.vptr_fieldno. */
1701
1702 void
1703 set_type_vptr_fieldno (struct type *type, int fieldno)
1704 {
1705 type = check_typedef (type);
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1707 || TYPE_CODE (type) == TYPE_CODE_UNION);
1708 if (!HAVE_CPLUS_STRUCT (type))
1709 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1710 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1711 }
1712
1713 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1714 cplus_stuff.vptr_basetype. */
1715
1716 struct type *
1717 internal_type_vptr_basetype (struct type *type)
1718 {
1719 type = check_typedef (type);
1720 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1721 || TYPE_CODE (type) == TYPE_CODE_UNION);
1722 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1723 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1724 }
1725
1726 /* Set the value of cplus_stuff.vptr_basetype. */
1727
1728 void
1729 set_type_vptr_basetype (struct type *type, struct type *basetype)
1730 {
1731 type = check_typedef (type);
1732 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1733 || TYPE_CODE (type) == TYPE_CODE_UNION);
1734 if (!HAVE_CPLUS_STRUCT (type))
1735 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1736 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1737 }
1738
1739 /* Lookup the vptr basetype/fieldno values for TYPE.
1740 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1741 vptr_fieldno. Also, if found and basetype is from the same objfile,
1742 cache the results.
1743 If not found, return -1 and ignore BASETYPEP.
1744 Callers should be aware that in some cases (for example,
1745 the type or one of its baseclasses is a stub type and we are
1746 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1747 this function will not be able to find the
1748 virtual function table pointer, and vptr_fieldno will remain -1 and
1749 vptr_basetype will remain NULL or incomplete. */
1750
1751 int
1752 get_vptr_fieldno (struct type *type, struct type **basetypep)
1753 {
1754 type = check_typedef (type);
1755
1756 if (TYPE_VPTR_FIELDNO (type) < 0)
1757 {
1758 int i;
1759
1760 /* We must start at zero in case the first (and only) baseclass
1761 is virtual (and hence we cannot share the table pointer). */
1762 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1763 {
1764 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1765 int fieldno;
1766 struct type *basetype;
1767
1768 fieldno = get_vptr_fieldno (baseclass, &basetype);
1769 if (fieldno >= 0)
1770 {
1771 /* If the type comes from a different objfile we can't cache
1772 it, it may have a different lifetime. PR 2384 */
1773 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1774 {
1775 set_type_vptr_fieldno (type, fieldno);
1776 set_type_vptr_basetype (type, basetype);
1777 }
1778 if (basetypep)
1779 *basetypep = basetype;
1780 return fieldno;
1781 }
1782 }
1783
1784 /* Not found. */
1785 return -1;
1786 }
1787 else
1788 {
1789 if (basetypep)
1790 *basetypep = TYPE_VPTR_BASETYPE (type);
1791 return TYPE_VPTR_FIELDNO (type);
1792 }
1793 }
1794
1795 static void
1796 stub_noname_complaint (void)
1797 {
1798 complaint (&symfile_complaints, _("stub type has NULL name"));
1799 }
1800
1801 /* Worker for is_dynamic_type. */
1802
1803 static int
1804 is_dynamic_type_internal (struct type *type, int top_level)
1805 {
1806 type = check_typedef (type);
1807
1808 /* We only want to recognize references at the outermost level. */
1809 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1810 type = check_typedef (TYPE_TARGET_TYPE (type));
1811
1812 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1813 dynamic, even if the type itself is statically defined.
1814 From a user's point of view, this may appear counter-intuitive;
1815 but it makes sense in this context, because the point is to determine
1816 whether any part of the type needs to be resolved before it can
1817 be exploited. */
1818 if (TYPE_DATA_LOCATION (type) != NULL
1819 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1820 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1821 return 1;
1822
1823 if (TYPE_ASSOCIATED_PROP (type))
1824 return 1;
1825
1826 if (TYPE_ALLOCATED_PROP (type))
1827 return 1;
1828
1829 switch (TYPE_CODE (type))
1830 {
1831 case TYPE_CODE_RANGE:
1832 {
1833 /* A range type is obviously dynamic if it has at least one
1834 dynamic bound. But also consider the range type to be
1835 dynamic when its subtype is dynamic, even if the bounds
1836 of the range type are static. It allows us to assume that
1837 the subtype of a static range type is also static. */
1838 return (!has_static_range (TYPE_RANGE_DATA (type))
1839 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1840 }
1841
1842 case TYPE_CODE_ARRAY:
1843 {
1844 gdb_assert (TYPE_NFIELDS (type) == 1);
1845
1846 /* The array is dynamic if either the bounds are dynamic,
1847 or the elements it contains have a dynamic contents. */
1848 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1849 return 1;
1850 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1851 }
1852
1853 case TYPE_CODE_STRUCT:
1854 case TYPE_CODE_UNION:
1855 {
1856 int i;
1857
1858 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1859 if (!field_is_static (&TYPE_FIELD (type, i))
1860 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1861 return 1;
1862 }
1863 break;
1864 }
1865
1866 return 0;
1867 }
1868
1869 /* See gdbtypes.h. */
1870
1871 int
1872 is_dynamic_type (struct type *type)
1873 {
1874 return is_dynamic_type_internal (type, 1);
1875 }
1876
1877 static struct type *resolve_dynamic_type_internal
1878 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1879
1880 /* Given a dynamic range type (dyn_range_type) and a stack of
1881 struct property_addr_info elements, return a static version
1882 of that type. */
1883
1884 static struct type *
1885 resolve_dynamic_range (struct type *dyn_range_type,
1886 struct property_addr_info *addr_stack)
1887 {
1888 CORE_ADDR value;
1889 struct type *static_range_type, *static_target_type;
1890 const struct dynamic_prop *prop;
1891 struct dynamic_prop low_bound, high_bound;
1892
1893 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1894
1895 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1896 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1897 {
1898 low_bound.kind = PROP_CONST;
1899 low_bound.data.const_val = value;
1900 }
1901 else
1902 {
1903 low_bound.kind = PROP_UNDEFINED;
1904 low_bound.data.const_val = 0;
1905 }
1906
1907 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1908 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1909 {
1910 high_bound.kind = PROP_CONST;
1911 high_bound.data.const_val = value;
1912
1913 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1914 high_bound.data.const_val
1915 = low_bound.data.const_val + high_bound.data.const_val - 1;
1916 }
1917 else
1918 {
1919 high_bound.kind = PROP_UNDEFINED;
1920 high_bound.data.const_val = 0;
1921 }
1922
1923 static_target_type
1924 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1925 addr_stack, 0);
1926 static_range_type = create_range_type (copy_type (dyn_range_type),
1927 static_target_type,
1928 &low_bound, &high_bound);
1929 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1930 return static_range_type;
1931 }
1932
1933 /* Resolves dynamic bound values of an array type TYPE to static ones.
1934 ADDR_STACK is a stack of struct property_addr_info to be used
1935 if needed during the dynamic resolution. */
1936
1937 static struct type *
1938 resolve_dynamic_array (struct type *type,
1939 struct property_addr_info *addr_stack)
1940 {
1941 CORE_ADDR value;
1942 struct type *elt_type;
1943 struct type *range_type;
1944 struct type *ary_dim;
1945 struct dynamic_prop *prop;
1946
1947 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1948
1949 type = copy_type (type);
1950
1951 elt_type = type;
1952 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1953 range_type = resolve_dynamic_range (range_type, addr_stack);
1954
1955 /* Resolve allocated/associated here before creating a new array type, which
1956 will update the length of the array accordingly. */
1957 prop = TYPE_ALLOCATED_PROP (type);
1958 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1959 {
1960 TYPE_DYN_PROP_ADDR (prop) = value;
1961 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1962 }
1963 prop = TYPE_ASSOCIATED_PROP (type);
1964 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1965 {
1966 TYPE_DYN_PROP_ADDR (prop) = value;
1967 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
1968 }
1969
1970 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1971
1972 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1973 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
1974 else
1975 elt_type = TYPE_TARGET_TYPE (type);
1976
1977 return create_array_type_with_stride (type, elt_type, range_type,
1978 TYPE_FIELD_BITSIZE (type, 0));
1979 }
1980
1981 /* Resolve dynamic bounds of members of the union TYPE to static
1982 bounds. ADDR_STACK is a stack of struct property_addr_info
1983 to be used if needed during the dynamic resolution. */
1984
1985 static struct type *
1986 resolve_dynamic_union (struct type *type,
1987 struct property_addr_info *addr_stack)
1988 {
1989 struct type *resolved_type;
1990 int i;
1991 unsigned int max_len = 0;
1992
1993 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1994
1995 resolved_type = copy_type (type);
1996 TYPE_FIELDS (resolved_type)
1997 = (struct field *) TYPE_ALLOC (resolved_type,
1998 TYPE_NFIELDS (resolved_type)
1999 * sizeof (struct field));
2000 memcpy (TYPE_FIELDS (resolved_type),
2001 TYPE_FIELDS (type),
2002 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2003 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2004 {
2005 struct type *t;
2006
2007 if (field_is_static (&TYPE_FIELD (type, i)))
2008 continue;
2009
2010 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2011 addr_stack, 0);
2012 TYPE_FIELD_TYPE (resolved_type, i) = t;
2013 if (TYPE_LENGTH (t) > max_len)
2014 max_len = TYPE_LENGTH (t);
2015 }
2016
2017 TYPE_LENGTH (resolved_type) = max_len;
2018 return resolved_type;
2019 }
2020
2021 /* Resolve dynamic bounds of members of the struct TYPE to static
2022 bounds. ADDR_STACK is a stack of struct property_addr_info to
2023 be used if needed during the dynamic resolution. */
2024
2025 static struct type *
2026 resolve_dynamic_struct (struct type *type,
2027 struct property_addr_info *addr_stack)
2028 {
2029 struct type *resolved_type;
2030 int i;
2031 unsigned resolved_type_bit_length = 0;
2032
2033 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2034 gdb_assert (TYPE_NFIELDS (type) > 0);
2035
2036 resolved_type = copy_type (type);
2037 TYPE_FIELDS (resolved_type)
2038 = (struct field *) TYPE_ALLOC (resolved_type,
2039 TYPE_NFIELDS (resolved_type)
2040 * sizeof (struct field));
2041 memcpy (TYPE_FIELDS (resolved_type),
2042 TYPE_FIELDS (type),
2043 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2044 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2045 {
2046 unsigned new_bit_length;
2047 struct property_addr_info pinfo;
2048
2049 if (field_is_static (&TYPE_FIELD (type, i)))
2050 continue;
2051
2052 /* As we know this field is not a static field, the field's
2053 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2054 this is the case, but only trigger a simple error rather
2055 than an internal error if that fails. While failing
2056 that verification indicates a bug in our code, the error
2057 is not severe enough to suggest to the user he stops
2058 his debugging session because of it. */
2059 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2060 error (_("Cannot determine struct field location"
2061 " (invalid location kind)"));
2062
2063 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2064 pinfo.valaddr = addr_stack->valaddr;
2065 pinfo.addr
2066 = (addr_stack->addr
2067 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2068 pinfo.next = addr_stack;
2069
2070 TYPE_FIELD_TYPE (resolved_type, i)
2071 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2072 &pinfo, 0);
2073 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2074 == FIELD_LOC_KIND_BITPOS);
2075
2076 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2077 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2078 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2079 else
2080 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2081 * TARGET_CHAR_BIT);
2082
2083 /* Normally, we would use the position and size of the last field
2084 to determine the size of the enclosing structure. But GCC seems
2085 to be encoding the position of some fields incorrectly when
2086 the struct contains a dynamic field that is not placed last.
2087 So we compute the struct size based on the field that has
2088 the highest position + size - probably the best we can do. */
2089 if (new_bit_length > resolved_type_bit_length)
2090 resolved_type_bit_length = new_bit_length;
2091 }
2092
2093 /* The length of a type won't change for fortran, but it does for C and Ada.
2094 For fortran the size of dynamic fields might change over time but not the
2095 type length of the structure. If we adapt it, we run into problems
2096 when calculating the element offset for arrays of structs. */
2097 if (current_language->la_language != language_fortran)
2098 TYPE_LENGTH (resolved_type)
2099 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2100
2101 /* The Ada language uses this field as a cache for static fixed types: reset
2102 it as RESOLVED_TYPE must have its own static fixed type. */
2103 TYPE_TARGET_TYPE (resolved_type) = NULL;
2104
2105 return resolved_type;
2106 }
2107
2108 /* Worker for resolved_dynamic_type. */
2109
2110 static struct type *
2111 resolve_dynamic_type_internal (struct type *type,
2112 struct property_addr_info *addr_stack,
2113 int top_level)
2114 {
2115 struct type *real_type = check_typedef (type);
2116 struct type *resolved_type = type;
2117 struct dynamic_prop *prop;
2118 CORE_ADDR value;
2119
2120 if (!is_dynamic_type_internal (real_type, top_level))
2121 return type;
2122
2123 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2124 {
2125 resolved_type = copy_type (type);
2126 TYPE_TARGET_TYPE (resolved_type)
2127 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2128 top_level);
2129 }
2130 else
2131 {
2132 /* Before trying to resolve TYPE, make sure it is not a stub. */
2133 type = real_type;
2134
2135 switch (TYPE_CODE (type))
2136 {
2137 case TYPE_CODE_REF:
2138 {
2139 struct property_addr_info pinfo;
2140
2141 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2142 pinfo.valaddr = NULL;
2143 if (addr_stack->valaddr != NULL)
2144 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2145 else
2146 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2147 pinfo.next = addr_stack;
2148
2149 resolved_type = copy_type (type);
2150 TYPE_TARGET_TYPE (resolved_type)
2151 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2152 &pinfo, top_level);
2153 break;
2154 }
2155
2156 case TYPE_CODE_ARRAY:
2157 resolved_type = resolve_dynamic_array (type, addr_stack);
2158 break;
2159
2160 case TYPE_CODE_RANGE:
2161 resolved_type = resolve_dynamic_range (type, addr_stack);
2162 break;
2163
2164 case TYPE_CODE_UNION:
2165 resolved_type = resolve_dynamic_union (type, addr_stack);
2166 break;
2167
2168 case TYPE_CODE_STRUCT:
2169 resolved_type = resolve_dynamic_struct (type, addr_stack);
2170 break;
2171 }
2172 }
2173
2174 /* Resolve data_location attribute. */
2175 prop = TYPE_DATA_LOCATION (resolved_type);
2176 if (prop != NULL
2177 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2178 {
2179 TYPE_DYN_PROP_ADDR (prop) = value;
2180 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2181 }
2182
2183 return resolved_type;
2184 }
2185
2186 /* See gdbtypes.h */
2187
2188 struct type *
2189 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2190 CORE_ADDR addr)
2191 {
2192 struct property_addr_info pinfo
2193 = {check_typedef (type), valaddr, addr, NULL};
2194
2195 return resolve_dynamic_type_internal (type, &pinfo, 1);
2196 }
2197
2198 /* See gdbtypes.h */
2199
2200 struct dynamic_prop *
2201 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2202 {
2203 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2204
2205 while (node != NULL)
2206 {
2207 if (node->prop_kind == prop_kind)
2208 return &node->prop;
2209 node = node->next;
2210 }
2211 return NULL;
2212 }
2213
2214 /* See gdbtypes.h */
2215
2216 void
2217 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2218 struct type *type, struct objfile *objfile)
2219 {
2220 struct dynamic_prop_list *temp;
2221
2222 gdb_assert (TYPE_OBJFILE_OWNED (type));
2223
2224 temp = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop_list);
2225 temp->prop_kind = prop_kind;
2226 temp->prop = prop;
2227 temp->next = TYPE_DYN_PROP_LIST (type);
2228
2229 TYPE_DYN_PROP_LIST (type) = temp;
2230 }
2231
2232 /* Remove dynamic property from TYPE in case it exists. */
2233
2234 void
2235 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2236 struct type *type)
2237 {
2238 struct dynamic_prop_list *prev_node, *curr_node;
2239
2240 curr_node = TYPE_DYN_PROP_LIST (type);
2241 prev_node = NULL;
2242
2243 while (NULL != curr_node)
2244 {
2245 if (curr_node->prop_kind == prop_kind)
2246 {
2247 /* Update the linked list but don't free anything.
2248 The property was allocated on objstack and it is not known
2249 if we are on top of it. Nevertheless, everything is released
2250 when the complete objstack is freed. */
2251 if (NULL == prev_node)
2252 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2253 else
2254 prev_node->next = curr_node->next;
2255
2256 return;
2257 }
2258
2259 prev_node = curr_node;
2260 curr_node = curr_node->next;
2261 }
2262 }
2263
2264 /* Find the real type of TYPE. This function returns the real type,
2265 after removing all layers of typedefs, and completing opaque or stub
2266 types. Completion changes the TYPE argument, but stripping of
2267 typedefs does not.
2268
2269 Instance flags (e.g. const/volatile) are preserved as typedefs are
2270 stripped. If necessary a new qualified form of the underlying type
2271 is created.
2272
2273 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2274 not been computed and we're either in the middle of reading symbols, or
2275 there was no name for the typedef in the debug info.
2276
2277 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2278 QUITs in the symbol reading code can also throw.
2279 Thus this function can throw an exception.
2280
2281 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2282 the target type.
2283
2284 If this is a stubbed struct (i.e. declared as struct foo *), see if
2285 we can find a full definition in some other file. If so, copy this
2286 definition, so we can use it in future. There used to be a comment
2287 (but not any code) that if we don't find a full definition, we'd
2288 set a flag so we don't spend time in the future checking the same
2289 type. That would be a mistake, though--we might load in more
2290 symbols which contain a full definition for the type. */
2291
2292 struct type *
2293 check_typedef (struct type *type)
2294 {
2295 struct type *orig_type = type;
2296 /* While we're removing typedefs, we don't want to lose qualifiers.
2297 E.g., const/volatile. */
2298 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2299
2300 gdb_assert (type);
2301
2302 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2303 {
2304 if (!TYPE_TARGET_TYPE (type))
2305 {
2306 const char *name;
2307 struct symbol *sym;
2308
2309 /* It is dangerous to call lookup_symbol if we are currently
2310 reading a symtab. Infinite recursion is one danger. */
2311 if (currently_reading_symtab)
2312 return make_qualified_type (type, instance_flags, NULL);
2313
2314 name = type_name_no_tag (type);
2315 /* FIXME: shouldn't we separately check the TYPE_NAME and
2316 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2317 VAR_DOMAIN as appropriate? (this code was written before
2318 TYPE_NAME and TYPE_TAG_NAME were separate). */
2319 if (name == NULL)
2320 {
2321 stub_noname_complaint ();
2322 return make_qualified_type (type, instance_flags, NULL);
2323 }
2324 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2325 if (sym)
2326 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2327 else /* TYPE_CODE_UNDEF */
2328 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2329 }
2330 type = TYPE_TARGET_TYPE (type);
2331
2332 /* Preserve the instance flags as we traverse down the typedef chain.
2333
2334 Handling address spaces/classes is nasty, what do we do if there's a
2335 conflict?
2336 E.g., what if an outer typedef marks the type as class_1 and an inner
2337 typedef marks the type as class_2?
2338 This is the wrong place to do such error checking. We leave it to
2339 the code that created the typedef in the first place to flag the
2340 error. We just pick the outer address space (akin to letting the
2341 outer cast in a chain of casting win), instead of assuming
2342 "it can't happen". */
2343 {
2344 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2345 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2346 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2347 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2348
2349 /* Treat code vs data spaces and address classes separately. */
2350 if ((instance_flags & ALL_SPACES) != 0)
2351 new_instance_flags &= ~ALL_SPACES;
2352 if ((instance_flags & ALL_CLASSES) != 0)
2353 new_instance_flags &= ~ALL_CLASSES;
2354
2355 instance_flags |= new_instance_flags;
2356 }
2357 }
2358
2359 /* If this is a struct/class/union with no fields, then check
2360 whether a full definition exists somewhere else. This is for
2361 systems where a type definition with no fields is issued for such
2362 types, instead of identifying them as stub types in the first
2363 place. */
2364
2365 if (TYPE_IS_OPAQUE (type)
2366 && opaque_type_resolution
2367 && !currently_reading_symtab)
2368 {
2369 const char *name = type_name_no_tag (type);
2370 struct type *newtype;
2371
2372 if (name == NULL)
2373 {
2374 stub_noname_complaint ();
2375 return make_qualified_type (type, instance_flags, NULL);
2376 }
2377 newtype = lookup_transparent_type (name);
2378
2379 if (newtype)
2380 {
2381 /* If the resolved type and the stub are in the same
2382 objfile, then replace the stub type with the real deal.
2383 But if they're in separate objfiles, leave the stub
2384 alone; we'll just look up the transparent type every time
2385 we call check_typedef. We can't create pointers between
2386 types allocated to different objfiles, since they may
2387 have different lifetimes. Trying to copy NEWTYPE over to
2388 TYPE's objfile is pointless, too, since you'll have to
2389 move over any other types NEWTYPE refers to, which could
2390 be an unbounded amount of stuff. */
2391 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2392 type = make_qualified_type (newtype,
2393 TYPE_INSTANCE_FLAGS (type),
2394 type);
2395 else
2396 type = newtype;
2397 }
2398 }
2399 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2400 types. */
2401 else if (TYPE_STUB (type) && !currently_reading_symtab)
2402 {
2403 const char *name = type_name_no_tag (type);
2404 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2405 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2406 as appropriate? (this code was written before TYPE_NAME and
2407 TYPE_TAG_NAME were separate). */
2408 struct symbol *sym;
2409
2410 if (name == NULL)
2411 {
2412 stub_noname_complaint ();
2413 return make_qualified_type (type, instance_flags, NULL);
2414 }
2415 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2416 if (sym)
2417 {
2418 /* Same as above for opaque types, we can replace the stub
2419 with the complete type only if they are in the same
2420 objfile. */
2421 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2422 type = make_qualified_type (SYMBOL_TYPE (sym),
2423 TYPE_INSTANCE_FLAGS (type),
2424 type);
2425 else
2426 type = SYMBOL_TYPE (sym);
2427 }
2428 }
2429
2430 if (TYPE_TARGET_STUB (type))
2431 {
2432 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2433
2434 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2435 {
2436 /* Nothing we can do. */
2437 }
2438 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2439 {
2440 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2441 TYPE_TARGET_STUB (type) = 0;
2442 }
2443 }
2444
2445 type = make_qualified_type (type, instance_flags, NULL);
2446
2447 /* Cache TYPE_LENGTH for future use. */
2448 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2449
2450 return type;
2451 }
2452
2453 /* Parse a type expression in the string [P..P+LENGTH). If an error
2454 occurs, silently return a void type. */
2455
2456 static struct type *
2457 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2458 {
2459 struct ui_file *saved_gdb_stderr;
2460 struct type *type = NULL; /* Initialize to keep gcc happy. */
2461
2462 /* Suppress error messages. */
2463 saved_gdb_stderr = gdb_stderr;
2464 gdb_stderr = ui_file_new ();
2465
2466 /* Call parse_and_eval_type() without fear of longjmp()s. */
2467 TRY
2468 {
2469 type = parse_and_eval_type (p, length);
2470 }
2471 CATCH (except, RETURN_MASK_ERROR)
2472 {
2473 type = builtin_type (gdbarch)->builtin_void;
2474 }
2475 END_CATCH
2476
2477 /* Stop suppressing error messages. */
2478 ui_file_delete (gdb_stderr);
2479 gdb_stderr = saved_gdb_stderr;
2480
2481 return type;
2482 }
2483
2484 /* Ugly hack to convert method stubs into method types.
2485
2486 He ain't kiddin'. This demangles the name of the method into a
2487 string including argument types, parses out each argument type,
2488 generates a string casting a zero to that type, evaluates the
2489 string, and stuffs the resulting type into an argtype vector!!!
2490 Then it knows the type of the whole function (including argument
2491 types for overloading), which info used to be in the stab's but was
2492 removed to hack back the space required for them. */
2493
2494 static void
2495 check_stub_method (struct type *type, int method_id, int signature_id)
2496 {
2497 struct gdbarch *gdbarch = get_type_arch (type);
2498 struct fn_field *f;
2499 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2500 char *demangled_name = gdb_demangle (mangled_name,
2501 DMGL_PARAMS | DMGL_ANSI);
2502 char *argtypetext, *p;
2503 int depth = 0, argcount = 1;
2504 struct field *argtypes;
2505 struct type *mtype;
2506
2507 /* Make sure we got back a function string that we can use. */
2508 if (demangled_name)
2509 p = strchr (demangled_name, '(');
2510 else
2511 p = NULL;
2512
2513 if (demangled_name == NULL || p == NULL)
2514 error (_("Internal: Cannot demangle mangled name `%s'."),
2515 mangled_name);
2516
2517 /* Now, read in the parameters that define this type. */
2518 p += 1;
2519 argtypetext = p;
2520 while (*p)
2521 {
2522 if (*p == '(' || *p == '<')
2523 {
2524 depth += 1;
2525 }
2526 else if (*p == ')' || *p == '>')
2527 {
2528 depth -= 1;
2529 }
2530 else if (*p == ',' && depth == 0)
2531 {
2532 argcount += 1;
2533 }
2534
2535 p += 1;
2536 }
2537
2538 /* If we read one argument and it was ``void'', don't count it. */
2539 if (startswith (argtypetext, "(void)"))
2540 argcount -= 1;
2541
2542 /* We need one extra slot, for the THIS pointer. */
2543
2544 argtypes = (struct field *)
2545 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2546 p = argtypetext;
2547
2548 /* Add THIS pointer for non-static methods. */
2549 f = TYPE_FN_FIELDLIST1 (type, method_id);
2550 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2551 argcount = 0;
2552 else
2553 {
2554 argtypes[0].type = lookup_pointer_type (type);
2555 argcount = 1;
2556 }
2557
2558 if (*p != ')') /* () means no args, skip while. */
2559 {
2560 depth = 0;
2561 while (*p)
2562 {
2563 if (depth <= 0 && (*p == ',' || *p == ')'))
2564 {
2565 /* Avoid parsing of ellipsis, they will be handled below.
2566 Also avoid ``void'' as above. */
2567 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2568 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2569 {
2570 argtypes[argcount].type =
2571 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2572 argcount += 1;
2573 }
2574 argtypetext = p + 1;
2575 }
2576
2577 if (*p == '(' || *p == '<')
2578 {
2579 depth += 1;
2580 }
2581 else if (*p == ')' || *p == '>')
2582 {
2583 depth -= 1;
2584 }
2585
2586 p += 1;
2587 }
2588 }
2589
2590 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2591
2592 /* Now update the old "stub" type into a real type. */
2593 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2594 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2595 We want a method (TYPE_CODE_METHOD). */
2596 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2597 argtypes, argcount, p[-2] == '.');
2598 TYPE_STUB (mtype) = 0;
2599 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2600
2601 xfree (demangled_name);
2602 }
2603
2604 /* This is the external interface to check_stub_method, above. This
2605 function unstubs all of the signatures for TYPE's METHOD_ID method
2606 name. After calling this function TYPE_FN_FIELD_STUB will be
2607 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2608 correct.
2609
2610 This function unfortunately can not die until stabs do. */
2611
2612 void
2613 check_stub_method_group (struct type *type, int method_id)
2614 {
2615 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2616 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2617 int j, found_stub = 0;
2618
2619 for (j = 0; j < len; j++)
2620 if (TYPE_FN_FIELD_STUB (f, j))
2621 {
2622 found_stub = 1;
2623 check_stub_method (type, method_id, j);
2624 }
2625
2626 /* GNU v3 methods with incorrect names were corrected when we read
2627 in type information, because it was cheaper to do it then. The
2628 only GNU v2 methods with incorrect method names are operators and
2629 destructors; destructors were also corrected when we read in type
2630 information.
2631
2632 Therefore the only thing we need to handle here are v2 operator
2633 names. */
2634 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2635 {
2636 int ret;
2637 char dem_opname[256];
2638
2639 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2640 method_id),
2641 dem_opname, DMGL_ANSI);
2642 if (!ret)
2643 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2644 method_id),
2645 dem_opname, 0);
2646 if (ret)
2647 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2648 }
2649 }
2650
2651 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2652 const struct cplus_struct_type cplus_struct_default = { };
2653
2654 void
2655 allocate_cplus_struct_type (struct type *type)
2656 {
2657 if (HAVE_CPLUS_STRUCT (type))
2658 /* Structure was already allocated. Nothing more to do. */
2659 return;
2660
2661 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2662 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2663 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2664 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2665 set_type_vptr_fieldno (type, -1);
2666 }
2667
2668 const struct gnat_aux_type gnat_aux_default =
2669 { NULL };
2670
2671 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2672 and allocate the associated gnat-specific data. The gnat-specific
2673 data is also initialized to gnat_aux_default. */
2674
2675 void
2676 allocate_gnat_aux_type (struct type *type)
2677 {
2678 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2679 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2680 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2681 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2682 }
2683
2684 /* Helper function to initialize a newly allocated type. Set type code
2685 to CODE and initialize the type-specific fields accordingly. */
2686
2687 static void
2688 set_type_code (struct type *type, enum type_code code)
2689 {
2690 TYPE_CODE (type) = code;
2691
2692 switch (code)
2693 {
2694 case TYPE_CODE_STRUCT:
2695 case TYPE_CODE_UNION:
2696 case TYPE_CODE_NAMESPACE:
2697 INIT_CPLUS_SPECIFIC (type);
2698 break;
2699 case TYPE_CODE_FLT:
2700 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2701 break;
2702 case TYPE_CODE_FUNC:
2703 INIT_FUNC_SPECIFIC (type);
2704 break;
2705 }
2706 }
2707
2708 /* Helper function to initialize the standard scalar types.
2709
2710 If NAME is non-NULL, then it is used to initialize the type name.
2711 Note that NAME is not copied; it is required to have a lifetime at
2712 least as long as OBJFILE. */
2713
2714 struct type *
2715 init_type (enum type_code code, int length, int flags,
2716 const char *name, struct objfile *objfile)
2717 {
2718 struct type *type;
2719
2720 type = alloc_type (objfile);
2721 set_type_code (type, code);
2722 TYPE_LENGTH (type) = length;
2723
2724 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2725 if (flags & TYPE_FLAG_UNSIGNED)
2726 TYPE_UNSIGNED (type) = 1;
2727 if (flags & TYPE_FLAG_NOSIGN)
2728 TYPE_NOSIGN (type) = 1;
2729 if (flags & TYPE_FLAG_STUB)
2730 TYPE_STUB (type) = 1;
2731 if (flags & TYPE_FLAG_TARGET_STUB)
2732 TYPE_TARGET_STUB (type) = 1;
2733 if (flags & TYPE_FLAG_STATIC)
2734 TYPE_STATIC (type) = 1;
2735 if (flags & TYPE_FLAG_PROTOTYPED)
2736 TYPE_PROTOTYPED (type) = 1;
2737 if (flags & TYPE_FLAG_INCOMPLETE)
2738 TYPE_INCOMPLETE (type) = 1;
2739 if (flags & TYPE_FLAG_VARARGS)
2740 TYPE_VARARGS (type) = 1;
2741 if (flags & TYPE_FLAG_VECTOR)
2742 TYPE_VECTOR (type) = 1;
2743 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2744 TYPE_STUB_SUPPORTED (type) = 1;
2745 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2746 TYPE_FIXED_INSTANCE (type) = 1;
2747 if (flags & TYPE_FLAG_GNU_IFUNC)
2748 TYPE_GNU_IFUNC (type) = 1;
2749
2750 TYPE_NAME (type) = name;
2751
2752 /* C++ fancies. */
2753
2754 if (name && strcmp (name, "char") == 0)
2755 TYPE_NOSIGN (type) = 1;
2756
2757 return type;
2758 }
2759 \f
2760 /* Queries on types. */
2761
2762 int
2763 can_dereference (struct type *t)
2764 {
2765 /* FIXME: Should we return true for references as well as
2766 pointers? */
2767 t = check_typedef (t);
2768 return
2769 (t != NULL
2770 && TYPE_CODE (t) == TYPE_CODE_PTR
2771 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2772 }
2773
2774 int
2775 is_integral_type (struct type *t)
2776 {
2777 t = check_typedef (t);
2778 return
2779 ((t != NULL)
2780 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2781 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2782 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2783 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2784 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2785 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2786 }
2787
2788 /* Return true if TYPE is scalar. */
2789
2790 int
2791 is_scalar_type (struct type *type)
2792 {
2793 type = check_typedef (type);
2794
2795 switch (TYPE_CODE (type))
2796 {
2797 case TYPE_CODE_ARRAY:
2798 case TYPE_CODE_STRUCT:
2799 case TYPE_CODE_UNION:
2800 case TYPE_CODE_SET:
2801 case TYPE_CODE_STRING:
2802 return 0;
2803 default:
2804 return 1;
2805 }
2806 }
2807
2808 /* Return true if T is scalar, or a composite type which in practice has
2809 the memory layout of a scalar type. E.g., an array or struct with only
2810 one scalar element inside it, or a union with only scalar elements. */
2811
2812 int
2813 is_scalar_type_recursive (struct type *t)
2814 {
2815 t = check_typedef (t);
2816
2817 if (is_scalar_type (t))
2818 return 1;
2819 /* Are we dealing with an array or string of known dimensions? */
2820 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2821 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2822 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2823 {
2824 LONGEST low_bound, high_bound;
2825 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2826
2827 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2828
2829 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2830 }
2831 /* Are we dealing with a struct with one element? */
2832 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2833 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2834 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2835 {
2836 int i, n = TYPE_NFIELDS (t);
2837
2838 /* If all elements of the union are scalar, then the union is scalar. */
2839 for (i = 0; i < n; i++)
2840 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2841 return 0;
2842
2843 return 1;
2844 }
2845
2846 return 0;
2847 }
2848
2849 /* Return true is T is a class or a union. False otherwise. */
2850
2851 int
2852 class_or_union_p (const struct type *t)
2853 {
2854 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2855 || TYPE_CODE (t) == TYPE_CODE_UNION);
2856 }
2857
2858 /* A helper function which returns true if types A and B represent the
2859 "same" class type. This is true if the types have the same main
2860 type, or the same name. */
2861
2862 int
2863 class_types_same_p (const struct type *a, const struct type *b)
2864 {
2865 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2866 || (TYPE_NAME (a) && TYPE_NAME (b)
2867 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2868 }
2869
2870 /* If BASE is an ancestor of DCLASS return the distance between them.
2871 otherwise return -1;
2872 eg:
2873
2874 class A {};
2875 class B: public A {};
2876 class C: public B {};
2877 class D: C {};
2878
2879 distance_to_ancestor (A, A, 0) = 0
2880 distance_to_ancestor (A, B, 0) = 1
2881 distance_to_ancestor (A, C, 0) = 2
2882 distance_to_ancestor (A, D, 0) = 3
2883
2884 If PUBLIC is 1 then only public ancestors are considered,
2885 and the function returns the distance only if BASE is a public ancestor
2886 of DCLASS.
2887 Eg:
2888
2889 distance_to_ancestor (A, D, 1) = -1. */
2890
2891 static int
2892 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2893 {
2894 int i;
2895 int d;
2896
2897 base = check_typedef (base);
2898 dclass = check_typedef (dclass);
2899
2900 if (class_types_same_p (base, dclass))
2901 return 0;
2902
2903 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2904 {
2905 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2906 continue;
2907
2908 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2909 if (d >= 0)
2910 return 1 + d;
2911 }
2912
2913 return -1;
2914 }
2915
2916 /* Check whether BASE is an ancestor or base class or DCLASS
2917 Return 1 if so, and 0 if not.
2918 Note: If BASE and DCLASS are of the same type, this function
2919 will return 1. So for some class A, is_ancestor (A, A) will
2920 return 1. */
2921
2922 int
2923 is_ancestor (struct type *base, struct type *dclass)
2924 {
2925 return distance_to_ancestor (base, dclass, 0) >= 0;
2926 }
2927
2928 /* Like is_ancestor, but only returns true when BASE is a public
2929 ancestor of DCLASS. */
2930
2931 int
2932 is_public_ancestor (struct type *base, struct type *dclass)
2933 {
2934 return distance_to_ancestor (base, dclass, 1) >= 0;
2935 }
2936
2937 /* A helper function for is_unique_ancestor. */
2938
2939 static int
2940 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2941 int *offset,
2942 const gdb_byte *valaddr, int embedded_offset,
2943 CORE_ADDR address, struct value *val)
2944 {
2945 int i, count = 0;
2946
2947 base = check_typedef (base);
2948 dclass = check_typedef (dclass);
2949
2950 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2951 {
2952 struct type *iter;
2953 int this_offset;
2954
2955 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2956
2957 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2958 address, val);
2959
2960 if (class_types_same_p (base, iter))
2961 {
2962 /* If this is the first subclass, set *OFFSET and set count
2963 to 1. Otherwise, if this is at the same offset as
2964 previous instances, do nothing. Otherwise, increment
2965 count. */
2966 if (*offset == -1)
2967 {
2968 *offset = this_offset;
2969 count = 1;
2970 }
2971 else if (this_offset == *offset)
2972 {
2973 /* Nothing. */
2974 }
2975 else
2976 ++count;
2977 }
2978 else
2979 count += is_unique_ancestor_worker (base, iter, offset,
2980 valaddr,
2981 embedded_offset + this_offset,
2982 address, val);
2983 }
2984
2985 return count;
2986 }
2987
2988 /* Like is_ancestor, but only returns true if BASE is a unique base
2989 class of the type of VAL. */
2990
2991 int
2992 is_unique_ancestor (struct type *base, struct value *val)
2993 {
2994 int offset = -1;
2995
2996 return is_unique_ancestor_worker (base, value_type (val), &offset,
2997 value_contents_for_printing (val),
2998 value_embedded_offset (val),
2999 value_address (val), val) == 1;
3000 }
3001
3002 \f
3003 /* Overload resolution. */
3004
3005 /* Return the sum of the rank of A with the rank of B. */
3006
3007 struct rank
3008 sum_ranks (struct rank a, struct rank b)
3009 {
3010 struct rank c;
3011 c.rank = a.rank + b.rank;
3012 c.subrank = a.subrank + b.subrank;
3013 return c;
3014 }
3015
3016 /* Compare rank A and B and return:
3017 0 if a = b
3018 1 if a is better than b
3019 -1 if b is better than a. */
3020
3021 int
3022 compare_ranks (struct rank a, struct rank b)
3023 {
3024 if (a.rank == b.rank)
3025 {
3026 if (a.subrank == b.subrank)
3027 return 0;
3028 if (a.subrank < b.subrank)
3029 return 1;
3030 if (a.subrank > b.subrank)
3031 return -1;
3032 }
3033
3034 if (a.rank < b.rank)
3035 return 1;
3036
3037 /* a.rank > b.rank */
3038 return -1;
3039 }
3040
3041 /* Functions for overload resolution begin here. */
3042
3043 /* Compare two badness vectors A and B and return the result.
3044 0 => A and B are identical
3045 1 => A and B are incomparable
3046 2 => A is better than B
3047 3 => A is worse than B */
3048
3049 int
3050 compare_badness (struct badness_vector *a, struct badness_vector *b)
3051 {
3052 int i;
3053 int tmp;
3054 short found_pos = 0; /* any positives in c? */
3055 short found_neg = 0; /* any negatives in c? */
3056
3057 /* differing lengths => incomparable */
3058 if (a->length != b->length)
3059 return 1;
3060
3061 /* Subtract b from a */
3062 for (i = 0; i < a->length; i++)
3063 {
3064 tmp = compare_ranks (b->rank[i], a->rank[i]);
3065 if (tmp > 0)
3066 found_pos = 1;
3067 else if (tmp < 0)
3068 found_neg = 1;
3069 }
3070
3071 if (found_pos)
3072 {
3073 if (found_neg)
3074 return 1; /* incomparable */
3075 else
3076 return 3; /* A > B */
3077 }
3078 else
3079 /* no positives */
3080 {
3081 if (found_neg)
3082 return 2; /* A < B */
3083 else
3084 return 0; /* A == B */
3085 }
3086 }
3087
3088 /* Rank a function by comparing its parameter types (PARMS, length
3089 NPARMS), to the types of an argument list (ARGS, length NARGS).
3090 Return a pointer to a badness vector. This has NARGS + 1
3091 entries. */
3092
3093 struct badness_vector *
3094 rank_function (struct type **parms, int nparms,
3095 struct value **args, int nargs)
3096 {
3097 int i;
3098 struct badness_vector *bv = XNEW (struct badness_vector);
3099 int min_len = nparms < nargs ? nparms : nargs;
3100
3101 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3102 bv->rank = XNEWVEC (struct rank, nargs + 1);
3103
3104 /* First compare the lengths of the supplied lists.
3105 If there is a mismatch, set it to a high value. */
3106
3107 /* pai/1997-06-03 FIXME: when we have debug info about default
3108 arguments and ellipsis parameter lists, we should consider those
3109 and rank the length-match more finely. */
3110
3111 LENGTH_MATCH (bv) = (nargs != nparms)
3112 ? LENGTH_MISMATCH_BADNESS
3113 : EXACT_MATCH_BADNESS;
3114
3115 /* Now rank all the parameters of the candidate function. */
3116 for (i = 1; i <= min_len; i++)
3117 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3118 args[i - 1]);
3119
3120 /* If more arguments than parameters, add dummy entries. */
3121 for (i = min_len + 1; i <= nargs; i++)
3122 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3123
3124 return bv;
3125 }
3126
3127 /* Compare the names of two integer types, assuming that any sign
3128 qualifiers have been checked already. We do it this way because
3129 there may be an "int" in the name of one of the types. */
3130
3131 static int
3132 integer_types_same_name_p (const char *first, const char *second)
3133 {
3134 int first_p, second_p;
3135
3136 /* If both are shorts, return 1; if neither is a short, keep
3137 checking. */
3138 first_p = (strstr (first, "short") != NULL);
3139 second_p = (strstr (second, "short") != NULL);
3140 if (first_p && second_p)
3141 return 1;
3142 if (first_p || second_p)
3143 return 0;
3144
3145 /* Likewise for long. */
3146 first_p = (strstr (first, "long") != NULL);
3147 second_p = (strstr (second, "long") != NULL);
3148 if (first_p && second_p)
3149 return 1;
3150 if (first_p || second_p)
3151 return 0;
3152
3153 /* Likewise for char. */
3154 first_p = (strstr (first, "char") != NULL);
3155 second_p = (strstr (second, "char") != NULL);
3156 if (first_p && second_p)
3157 return 1;
3158 if (first_p || second_p)
3159 return 0;
3160
3161 /* They must both be ints. */
3162 return 1;
3163 }
3164
3165 /* Compares type A to type B returns 1 if the represent the same type
3166 0 otherwise. */
3167
3168 int
3169 types_equal (struct type *a, struct type *b)
3170 {
3171 /* Identical type pointers. */
3172 /* However, this still doesn't catch all cases of same type for b
3173 and a. The reason is that builtin types are different from
3174 the same ones constructed from the object. */
3175 if (a == b)
3176 return 1;
3177
3178 /* Resolve typedefs */
3179 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3180 a = check_typedef (a);
3181 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3182 b = check_typedef (b);
3183
3184 /* If after resolving typedefs a and b are not of the same type
3185 code then they are not equal. */
3186 if (TYPE_CODE (a) != TYPE_CODE (b))
3187 return 0;
3188
3189 /* If a and b are both pointers types or both reference types then
3190 they are equal of the same type iff the objects they refer to are
3191 of the same type. */
3192 if (TYPE_CODE (a) == TYPE_CODE_PTR
3193 || TYPE_CODE (a) == TYPE_CODE_REF)
3194 return types_equal (TYPE_TARGET_TYPE (a),
3195 TYPE_TARGET_TYPE (b));
3196
3197 /* Well, damnit, if the names are exactly the same, I'll say they
3198 are exactly the same. This happens when we generate method
3199 stubs. The types won't point to the same address, but they
3200 really are the same. */
3201
3202 if (TYPE_NAME (a) && TYPE_NAME (b)
3203 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3204 return 1;
3205
3206 /* Check if identical after resolving typedefs. */
3207 if (a == b)
3208 return 1;
3209
3210 /* Two function types are equal if their argument and return types
3211 are equal. */
3212 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3213 {
3214 int i;
3215
3216 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3217 return 0;
3218
3219 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3220 return 0;
3221
3222 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3223 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3224 return 0;
3225
3226 return 1;
3227 }
3228
3229 return 0;
3230 }
3231 \f
3232 /* Deep comparison of types. */
3233
3234 /* An entry in the type-equality bcache. */
3235
3236 typedef struct type_equality_entry
3237 {
3238 struct type *type1, *type2;
3239 } type_equality_entry_d;
3240
3241 DEF_VEC_O (type_equality_entry_d);
3242
3243 /* A helper function to compare two strings. Returns 1 if they are
3244 the same, 0 otherwise. Handles NULLs properly. */
3245
3246 static int
3247 compare_maybe_null_strings (const char *s, const char *t)
3248 {
3249 if (s == NULL && t != NULL)
3250 return 0;
3251 else if (s != NULL && t == NULL)
3252 return 0;
3253 else if (s == NULL && t== NULL)
3254 return 1;
3255 return strcmp (s, t) == 0;
3256 }
3257
3258 /* A helper function for check_types_worklist that checks two types for
3259 "deep" equality. Returns non-zero if the types are considered the
3260 same, zero otherwise. */
3261
3262 static int
3263 check_types_equal (struct type *type1, struct type *type2,
3264 VEC (type_equality_entry_d) **worklist)
3265 {
3266 type1 = check_typedef (type1);
3267 type2 = check_typedef (type2);
3268
3269 if (type1 == type2)
3270 return 1;
3271
3272 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3273 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3274 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3275 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3276 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3277 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3278 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3279 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3280 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3281 return 0;
3282
3283 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3284 TYPE_TAG_NAME (type2)))
3285 return 0;
3286 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3287 return 0;
3288
3289 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3290 {
3291 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3292 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3293 return 0;
3294 }
3295 else
3296 {
3297 int i;
3298
3299 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3300 {
3301 const struct field *field1 = &TYPE_FIELD (type1, i);
3302 const struct field *field2 = &TYPE_FIELD (type2, i);
3303 struct type_equality_entry entry;
3304
3305 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3306 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3307 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3308 return 0;
3309 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3310 FIELD_NAME (*field2)))
3311 return 0;
3312 switch (FIELD_LOC_KIND (*field1))
3313 {
3314 case FIELD_LOC_KIND_BITPOS:
3315 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3316 return 0;
3317 break;
3318 case FIELD_LOC_KIND_ENUMVAL:
3319 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3320 return 0;
3321 break;
3322 case FIELD_LOC_KIND_PHYSADDR:
3323 if (FIELD_STATIC_PHYSADDR (*field1)
3324 != FIELD_STATIC_PHYSADDR (*field2))
3325 return 0;
3326 break;
3327 case FIELD_LOC_KIND_PHYSNAME:
3328 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3329 FIELD_STATIC_PHYSNAME (*field2)))
3330 return 0;
3331 break;
3332 case FIELD_LOC_KIND_DWARF_BLOCK:
3333 {
3334 struct dwarf2_locexpr_baton *block1, *block2;
3335
3336 block1 = FIELD_DWARF_BLOCK (*field1);
3337 block2 = FIELD_DWARF_BLOCK (*field2);
3338 if (block1->per_cu != block2->per_cu
3339 || block1->size != block2->size
3340 || memcmp (block1->data, block2->data, block1->size) != 0)
3341 return 0;
3342 }
3343 break;
3344 default:
3345 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3346 "%d by check_types_equal"),
3347 FIELD_LOC_KIND (*field1));
3348 }
3349
3350 entry.type1 = FIELD_TYPE (*field1);
3351 entry.type2 = FIELD_TYPE (*field2);
3352 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3353 }
3354 }
3355
3356 if (TYPE_TARGET_TYPE (type1) != NULL)
3357 {
3358 struct type_equality_entry entry;
3359
3360 if (TYPE_TARGET_TYPE (type2) == NULL)
3361 return 0;
3362
3363 entry.type1 = TYPE_TARGET_TYPE (type1);
3364 entry.type2 = TYPE_TARGET_TYPE (type2);
3365 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3366 }
3367 else if (TYPE_TARGET_TYPE (type2) != NULL)
3368 return 0;
3369
3370 return 1;
3371 }
3372
3373 /* Check types on a worklist for equality. Returns zero if any pair
3374 is not equal, non-zero if they are all considered equal. */
3375
3376 static int
3377 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3378 struct bcache *cache)
3379 {
3380 while (!VEC_empty (type_equality_entry_d, *worklist))
3381 {
3382 struct type_equality_entry entry;
3383 int added;
3384
3385 entry = *VEC_last (type_equality_entry_d, *worklist);
3386 VEC_pop (type_equality_entry_d, *worklist);
3387
3388 /* If the type pair has already been visited, we know it is
3389 ok. */
3390 bcache_full (&entry, sizeof (entry), cache, &added);
3391 if (!added)
3392 continue;
3393
3394 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3395 return 0;
3396 }
3397
3398 return 1;
3399 }
3400
3401 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3402 "deep comparison". Otherwise return zero. */
3403
3404 int
3405 types_deeply_equal (struct type *type1, struct type *type2)
3406 {
3407 struct gdb_exception except = exception_none;
3408 int result = 0;
3409 struct bcache *cache;
3410 VEC (type_equality_entry_d) *worklist = NULL;
3411 struct type_equality_entry entry;
3412
3413 gdb_assert (type1 != NULL && type2 != NULL);
3414
3415 /* Early exit for the simple case. */
3416 if (type1 == type2)
3417 return 1;
3418
3419 cache = bcache_xmalloc (NULL, NULL);
3420
3421 entry.type1 = type1;
3422 entry.type2 = type2;
3423 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3424
3425 /* check_types_worklist calls several nested helper functions, some
3426 of which can raise a GDB exception, so we just check and rethrow
3427 here. If there is a GDB exception, a comparison is not capable
3428 (or trusted), so exit. */
3429 TRY
3430 {
3431 result = check_types_worklist (&worklist, cache);
3432 }
3433 CATCH (ex, RETURN_MASK_ALL)
3434 {
3435 except = ex;
3436 }
3437 END_CATCH
3438
3439 bcache_xfree (cache);
3440 VEC_free (type_equality_entry_d, worklist);
3441
3442 /* Rethrow if there was a problem. */
3443 if (except.reason < 0)
3444 throw_exception (except);
3445
3446 return result;
3447 }
3448
3449 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3450 Otherwise return one. */
3451
3452 int
3453 type_not_allocated (const struct type *type)
3454 {
3455 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3456
3457 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3458 && !TYPE_DYN_PROP_ADDR (prop));
3459 }
3460
3461 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3462 Otherwise return one. */
3463
3464 int
3465 type_not_associated (const struct type *type)
3466 {
3467 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3468
3469 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3470 && !TYPE_DYN_PROP_ADDR (prop));
3471 }
3472 \f
3473 /* Compare one type (PARM) for compatibility with another (ARG).
3474 * PARM is intended to be the parameter type of a function; and
3475 * ARG is the supplied argument's type. This function tests if
3476 * the latter can be converted to the former.
3477 * VALUE is the argument's value or NULL if none (or called recursively)
3478 *
3479 * Return 0 if they are identical types;
3480 * Otherwise, return an integer which corresponds to how compatible
3481 * PARM is to ARG. The higher the return value, the worse the match.
3482 * Generally the "bad" conversions are all uniformly assigned a 100. */
3483
3484 struct rank
3485 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3486 {
3487 struct rank rank = {0,0};
3488
3489 if (types_equal (parm, arg))
3490 return EXACT_MATCH_BADNESS;
3491
3492 /* Resolve typedefs */
3493 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3494 parm = check_typedef (parm);
3495 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3496 arg = check_typedef (arg);
3497
3498 /* See through references, since we can almost make non-references
3499 references. */
3500 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3501 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3502 REFERENCE_CONVERSION_BADNESS));
3503 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3504 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3505 REFERENCE_CONVERSION_BADNESS));
3506 if (overload_debug)
3507 /* Debugging only. */
3508 fprintf_filtered (gdb_stderr,
3509 "------ Arg is %s [%d], parm is %s [%d]\n",
3510 TYPE_NAME (arg), TYPE_CODE (arg),
3511 TYPE_NAME (parm), TYPE_CODE (parm));
3512
3513 /* x -> y means arg of type x being supplied for parameter of type y. */
3514
3515 switch (TYPE_CODE (parm))
3516 {
3517 case TYPE_CODE_PTR:
3518 switch (TYPE_CODE (arg))
3519 {
3520 case TYPE_CODE_PTR:
3521
3522 /* Allowed pointer conversions are:
3523 (a) pointer to void-pointer conversion. */
3524 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3525 return VOID_PTR_CONVERSION_BADNESS;
3526
3527 /* (b) pointer to ancestor-pointer conversion. */
3528 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3529 TYPE_TARGET_TYPE (arg),
3530 0);
3531 if (rank.subrank >= 0)
3532 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3533
3534 return INCOMPATIBLE_TYPE_BADNESS;
3535 case TYPE_CODE_ARRAY:
3536 if (types_equal (TYPE_TARGET_TYPE (parm),
3537 TYPE_TARGET_TYPE (arg)))
3538 return EXACT_MATCH_BADNESS;
3539 return INCOMPATIBLE_TYPE_BADNESS;
3540 case TYPE_CODE_FUNC:
3541 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3542 case TYPE_CODE_INT:
3543 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3544 {
3545 if (value_as_long (value) == 0)
3546 {
3547 /* Null pointer conversion: allow it to be cast to a pointer.
3548 [4.10.1 of C++ standard draft n3290] */
3549 return NULL_POINTER_CONVERSION_BADNESS;
3550 }
3551 else
3552 {
3553 /* If type checking is disabled, allow the conversion. */
3554 if (!strict_type_checking)
3555 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3556 }
3557 }
3558 /* fall through */
3559 case TYPE_CODE_ENUM:
3560 case TYPE_CODE_FLAGS:
3561 case TYPE_CODE_CHAR:
3562 case TYPE_CODE_RANGE:
3563 case TYPE_CODE_BOOL:
3564 default:
3565 return INCOMPATIBLE_TYPE_BADNESS;
3566 }
3567 case TYPE_CODE_ARRAY:
3568 switch (TYPE_CODE (arg))
3569 {
3570 case TYPE_CODE_PTR:
3571 case TYPE_CODE_ARRAY:
3572 return rank_one_type (TYPE_TARGET_TYPE (parm),
3573 TYPE_TARGET_TYPE (arg), NULL);
3574 default:
3575 return INCOMPATIBLE_TYPE_BADNESS;
3576 }
3577 case TYPE_CODE_FUNC:
3578 switch (TYPE_CODE (arg))
3579 {
3580 case TYPE_CODE_PTR: /* funcptr -> func */
3581 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3582 default:
3583 return INCOMPATIBLE_TYPE_BADNESS;
3584 }
3585 case TYPE_CODE_INT:
3586 switch (TYPE_CODE (arg))
3587 {
3588 case TYPE_CODE_INT:
3589 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3590 {
3591 /* Deal with signed, unsigned, and plain chars and
3592 signed and unsigned ints. */
3593 if (TYPE_NOSIGN (parm))
3594 {
3595 /* This case only for character types. */
3596 if (TYPE_NOSIGN (arg))
3597 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3598 else /* signed/unsigned char -> plain char */
3599 return INTEGER_CONVERSION_BADNESS;
3600 }
3601 else if (TYPE_UNSIGNED (parm))
3602 {
3603 if (TYPE_UNSIGNED (arg))
3604 {
3605 /* unsigned int -> unsigned int, or
3606 unsigned long -> unsigned long */
3607 if (integer_types_same_name_p (TYPE_NAME (parm),
3608 TYPE_NAME (arg)))
3609 return EXACT_MATCH_BADNESS;
3610 else if (integer_types_same_name_p (TYPE_NAME (arg),
3611 "int")
3612 && integer_types_same_name_p (TYPE_NAME (parm),
3613 "long"))
3614 /* unsigned int -> unsigned long */
3615 return INTEGER_PROMOTION_BADNESS;
3616 else
3617 /* unsigned long -> unsigned int */
3618 return INTEGER_CONVERSION_BADNESS;
3619 }
3620 else
3621 {
3622 if (integer_types_same_name_p (TYPE_NAME (arg),
3623 "long")
3624 && integer_types_same_name_p (TYPE_NAME (parm),
3625 "int"))
3626 /* signed long -> unsigned int */
3627 return INTEGER_CONVERSION_BADNESS;
3628 else
3629 /* signed int/long -> unsigned int/long */
3630 return INTEGER_CONVERSION_BADNESS;
3631 }
3632 }
3633 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3634 {
3635 if (integer_types_same_name_p (TYPE_NAME (parm),
3636 TYPE_NAME (arg)))
3637 return EXACT_MATCH_BADNESS;
3638 else if (integer_types_same_name_p (TYPE_NAME (arg),
3639 "int")
3640 && integer_types_same_name_p (TYPE_NAME (parm),
3641 "long"))
3642 return INTEGER_PROMOTION_BADNESS;
3643 else
3644 return INTEGER_CONVERSION_BADNESS;
3645 }
3646 else
3647 return INTEGER_CONVERSION_BADNESS;
3648 }
3649 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3650 return INTEGER_PROMOTION_BADNESS;
3651 else
3652 return INTEGER_CONVERSION_BADNESS;
3653 case TYPE_CODE_ENUM:
3654 case TYPE_CODE_FLAGS:
3655 case TYPE_CODE_CHAR:
3656 case TYPE_CODE_RANGE:
3657 case TYPE_CODE_BOOL:
3658 if (TYPE_DECLARED_CLASS (arg))
3659 return INCOMPATIBLE_TYPE_BADNESS;
3660 return INTEGER_PROMOTION_BADNESS;
3661 case TYPE_CODE_FLT:
3662 return INT_FLOAT_CONVERSION_BADNESS;
3663 case TYPE_CODE_PTR:
3664 return NS_POINTER_CONVERSION_BADNESS;
3665 default:
3666 return INCOMPATIBLE_TYPE_BADNESS;
3667 }
3668 break;
3669 case TYPE_CODE_ENUM:
3670 switch (TYPE_CODE (arg))
3671 {
3672 case TYPE_CODE_INT:
3673 case TYPE_CODE_CHAR:
3674 case TYPE_CODE_RANGE:
3675 case TYPE_CODE_BOOL:
3676 case TYPE_CODE_ENUM:
3677 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3678 return INCOMPATIBLE_TYPE_BADNESS;
3679 return INTEGER_CONVERSION_BADNESS;
3680 case TYPE_CODE_FLT:
3681 return INT_FLOAT_CONVERSION_BADNESS;
3682 default:
3683 return INCOMPATIBLE_TYPE_BADNESS;
3684 }
3685 break;
3686 case TYPE_CODE_CHAR:
3687 switch (TYPE_CODE (arg))
3688 {
3689 case TYPE_CODE_RANGE:
3690 case TYPE_CODE_BOOL:
3691 case TYPE_CODE_ENUM:
3692 if (TYPE_DECLARED_CLASS (arg))
3693 return INCOMPATIBLE_TYPE_BADNESS;
3694 return INTEGER_CONVERSION_BADNESS;
3695 case TYPE_CODE_FLT:
3696 return INT_FLOAT_CONVERSION_BADNESS;
3697 case TYPE_CODE_INT:
3698 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3699 return INTEGER_CONVERSION_BADNESS;
3700 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3701 return INTEGER_PROMOTION_BADNESS;
3702 /* >>> !! else fall through !! <<< */
3703 case TYPE_CODE_CHAR:
3704 /* Deal with signed, unsigned, and plain chars for C++ and
3705 with int cases falling through from previous case. */
3706 if (TYPE_NOSIGN (parm))
3707 {
3708 if (TYPE_NOSIGN (arg))
3709 return EXACT_MATCH_BADNESS;
3710 else
3711 return INTEGER_CONVERSION_BADNESS;
3712 }
3713 else if (TYPE_UNSIGNED (parm))
3714 {
3715 if (TYPE_UNSIGNED (arg))
3716 return EXACT_MATCH_BADNESS;
3717 else
3718 return INTEGER_PROMOTION_BADNESS;
3719 }
3720 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3721 return EXACT_MATCH_BADNESS;
3722 else
3723 return INTEGER_CONVERSION_BADNESS;
3724 default:
3725 return INCOMPATIBLE_TYPE_BADNESS;
3726 }
3727 break;
3728 case TYPE_CODE_RANGE:
3729 switch (TYPE_CODE (arg))
3730 {
3731 case TYPE_CODE_INT:
3732 case TYPE_CODE_CHAR:
3733 case TYPE_CODE_RANGE:
3734 case TYPE_CODE_BOOL:
3735 case TYPE_CODE_ENUM:
3736 return INTEGER_CONVERSION_BADNESS;
3737 case TYPE_CODE_FLT:
3738 return INT_FLOAT_CONVERSION_BADNESS;
3739 default:
3740 return INCOMPATIBLE_TYPE_BADNESS;
3741 }
3742 break;
3743 case TYPE_CODE_BOOL:
3744 switch (TYPE_CODE (arg))
3745 {
3746 /* n3290 draft, section 4.12.1 (conv.bool):
3747
3748 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3749 pointer to member type can be converted to a prvalue of type
3750 bool. A zero value, null pointer value, or null member pointer
3751 value is converted to false; any other value is converted to
3752 true. A prvalue of type std::nullptr_t can be converted to a
3753 prvalue of type bool; the resulting value is false." */
3754 case TYPE_CODE_INT:
3755 case TYPE_CODE_CHAR:
3756 case TYPE_CODE_ENUM:
3757 case TYPE_CODE_FLT:
3758 case TYPE_CODE_MEMBERPTR:
3759 case TYPE_CODE_PTR:
3760 return BOOL_CONVERSION_BADNESS;
3761 case TYPE_CODE_RANGE:
3762 return INCOMPATIBLE_TYPE_BADNESS;
3763 case TYPE_CODE_BOOL:
3764 return EXACT_MATCH_BADNESS;
3765 default:
3766 return INCOMPATIBLE_TYPE_BADNESS;
3767 }
3768 break;
3769 case TYPE_CODE_FLT:
3770 switch (TYPE_CODE (arg))
3771 {
3772 case TYPE_CODE_FLT:
3773 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3774 return FLOAT_PROMOTION_BADNESS;
3775 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3776 return EXACT_MATCH_BADNESS;
3777 else
3778 return FLOAT_CONVERSION_BADNESS;
3779 case TYPE_CODE_INT:
3780 case TYPE_CODE_BOOL:
3781 case TYPE_CODE_ENUM:
3782 case TYPE_CODE_RANGE:
3783 case TYPE_CODE_CHAR:
3784 return INT_FLOAT_CONVERSION_BADNESS;
3785 default:
3786 return INCOMPATIBLE_TYPE_BADNESS;
3787 }
3788 break;
3789 case TYPE_CODE_COMPLEX:
3790 switch (TYPE_CODE (arg))
3791 { /* Strictly not needed for C++, but... */
3792 case TYPE_CODE_FLT:
3793 return FLOAT_PROMOTION_BADNESS;
3794 case TYPE_CODE_COMPLEX:
3795 return EXACT_MATCH_BADNESS;
3796 default:
3797 return INCOMPATIBLE_TYPE_BADNESS;
3798 }
3799 break;
3800 case TYPE_CODE_STRUCT:
3801 switch (TYPE_CODE (arg))
3802 {
3803 case TYPE_CODE_STRUCT:
3804 /* Check for derivation */
3805 rank.subrank = distance_to_ancestor (parm, arg, 0);
3806 if (rank.subrank >= 0)
3807 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3808 /* else fall through */
3809 default:
3810 return INCOMPATIBLE_TYPE_BADNESS;
3811 }
3812 break;
3813 case TYPE_CODE_UNION:
3814 switch (TYPE_CODE (arg))
3815 {
3816 case TYPE_CODE_UNION:
3817 default:
3818 return INCOMPATIBLE_TYPE_BADNESS;
3819 }
3820 break;
3821 case TYPE_CODE_MEMBERPTR:
3822 switch (TYPE_CODE (arg))
3823 {
3824 default:
3825 return INCOMPATIBLE_TYPE_BADNESS;
3826 }
3827 break;
3828 case TYPE_CODE_METHOD:
3829 switch (TYPE_CODE (arg))
3830 {
3831
3832 default:
3833 return INCOMPATIBLE_TYPE_BADNESS;
3834 }
3835 break;
3836 case TYPE_CODE_REF:
3837 switch (TYPE_CODE (arg))
3838 {
3839
3840 default:
3841 return INCOMPATIBLE_TYPE_BADNESS;
3842 }
3843
3844 break;
3845 case TYPE_CODE_SET:
3846 switch (TYPE_CODE (arg))
3847 {
3848 /* Not in C++ */
3849 case TYPE_CODE_SET:
3850 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3851 TYPE_FIELD_TYPE (arg, 0), NULL);
3852 default:
3853 return INCOMPATIBLE_TYPE_BADNESS;
3854 }
3855 break;
3856 case TYPE_CODE_VOID:
3857 default:
3858 return INCOMPATIBLE_TYPE_BADNESS;
3859 } /* switch (TYPE_CODE (arg)) */
3860 }
3861
3862 /* End of functions for overload resolution. */
3863 \f
3864 /* Routines to pretty-print types. */
3865
3866 static void
3867 print_bit_vector (B_TYPE *bits, int nbits)
3868 {
3869 int bitno;
3870
3871 for (bitno = 0; bitno < nbits; bitno++)
3872 {
3873 if ((bitno % 8) == 0)
3874 {
3875 puts_filtered (" ");
3876 }
3877 if (B_TST (bits, bitno))
3878 printf_filtered (("1"));
3879 else
3880 printf_filtered (("0"));
3881 }
3882 }
3883
3884 /* Note the first arg should be the "this" pointer, we may not want to
3885 include it since we may get into a infinitely recursive
3886 situation. */
3887
3888 static void
3889 print_args (struct field *args, int nargs, int spaces)
3890 {
3891 if (args != NULL)
3892 {
3893 int i;
3894
3895 for (i = 0; i < nargs; i++)
3896 {
3897 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3898 args[i].name != NULL ? args[i].name : "<NULL>");
3899 recursive_dump_type (args[i].type, spaces + 2);
3900 }
3901 }
3902 }
3903
3904 int
3905 field_is_static (struct field *f)
3906 {
3907 /* "static" fields are the fields whose location is not relative
3908 to the address of the enclosing struct. It would be nice to
3909 have a dedicated flag that would be set for static fields when
3910 the type is being created. But in practice, checking the field
3911 loc_kind should give us an accurate answer. */
3912 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3913 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3914 }
3915
3916 static void
3917 dump_fn_fieldlists (struct type *type, int spaces)
3918 {
3919 int method_idx;
3920 int overload_idx;
3921 struct fn_field *f;
3922
3923 printfi_filtered (spaces, "fn_fieldlists ");
3924 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3925 printf_filtered ("\n");
3926 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3927 {
3928 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3929 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3930 method_idx,
3931 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3932 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3933 gdb_stdout);
3934 printf_filtered (_(") length %d\n"),
3935 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3936 for (overload_idx = 0;
3937 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3938 overload_idx++)
3939 {
3940 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3941 overload_idx,
3942 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3943 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3944 gdb_stdout);
3945 printf_filtered (")\n");
3946 printfi_filtered (spaces + 8, "type ");
3947 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3948 gdb_stdout);
3949 printf_filtered ("\n");
3950
3951 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3952 spaces + 8 + 2);
3953
3954 printfi_filtered (spaces + 8, "args ");
3955 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3956 gdb_stdout);
3957 printf_filtered ("\n");
3958 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3959 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3960 spaces + 8 + 2);
3961 printfi_filtered (spaces + 8, "fcontext ");
3962 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3963 gdb_stdout);
3964 printf_filtered ("\n");
3965
3966 printfi_filtered (spaces + 8, "is_const %d\n",
3967 TYPE_FN_FIELD_CONST (f, overload_idx));
3968 printfi_filtered (spaces + 8, "is_volatile %d\n",
3969 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3970 printfi_filtered (spaces + 8, "is_private %d\n",
3971 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3972 printfi_filtered (spaces + 8, "is_protected %d\n",
3973 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3974 printfi_filtered (spaces + 8, "is_stub %d\n",
3975 TYPE_FN_FIELD_STUB (f, overload_idx));
3976 printfi_filtered (spaces + 8, "voffset %u\n",
3977 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3978 }
3979 }
3980 }
3981
3982 static void
3983 print_cplus_stuff (struct type *type, int spaces)
3984 {
3985 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3986 printfi_filtered (spaces, "vptr_basetype ");
3987 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3988 puts_filtered ("\n");
3989 if (TYPE_VPTR_BASETYPE (type) != NULL)
3990 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3991
3992 printfi_filtered (spaces, "n_baseclasses %d\n",
3993 TYPE_N_BASECLASSES (type));
3994 printfi_filtered (spaces, "nfn_fields %d\n",
3995 TYPE_NFN_FIELDS (type));
3996 if (TYPE_N_BASECLASSES (type) > 0)
3997 {
3998 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3999 TYPE_N_BASECLASSES (type));
4000 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4001 gdb_stdout);
4002 printf_filtered (")");
4003
4004 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4005 TYPE_N_BASECLASSES (type));
4006 puts_filtered ("\n");
4007 }
4008 if (TYPE_NFIELDS (type) > 0)
4009 {
4010 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4011 {
4012 printfi_filtered (spaces,
4013 "private_field_bits (%d bits at *",
4014 TYPE_NFIELDS (type));
4015 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4016 gdb_stdout);
4017 printf_filtered (")");
4018 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4019 TYPE_NFIELDS (type));
4020 puts_filtered ("\n");
4021 }
4022 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4023 {
4024 printfi_filtered (spaces,
4025 "protected_field_bits (%d bits at *",
4026 TYPE_NFIELDS (type));
4027 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4028 gdb_stdout);
4029 printf_filtered (")");
4030 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4031 TYPE_NFIELDS (type));
4032 puts_filtered ("\n");
4033 }
4034 }
4035 if (TYPE_NFN_FIELDS (type) > 0)
4036 {
4037 dump_fn_fieldlists (type, spaces);
4038 }
4039 }
4040
4041 /* Print the contents of the TYPE's type_specific union, assuming that
4042 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4043
4044 static void
4045 print_gnat_stuff (struct type *type, int spaces)
4046 {
4047 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4048
4049 if (descriptive_type == NULL)
4050 printfi_filtered (spaces + 2, "no descriptive type\n");
4051 else
4052 {
4053 printfi_filtered (spaces + 2, "descriptive type\n");
4054 recursive_dump_type (descriptive_type, spaces + 4);
4055 }
4056 }
4057
4058 static struct obstack dont_print_type_obstack;
4059
4060 void
4061 recursive_dump_type (struct type *type, int spaces)
4062 {
4063 int idx;
4064
4065 if (spaces == 0)
4066 obstack_begin (&dont_print_type_obstack, 0);
4067
4068 if (TYPE_NFIELDS (type) > 0
4069 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4070 {
4071 struct type **first_dont_print
4072 = (struct type **) obstack_base (&dont_print_type_obstack);
4073
4074 int i = (struct type **)
4075 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4076
4077 while (--i >= 0)
4078 {
4079 if (type == first_dont_print[i])
4080 {
4081 printfi_filtered (spaces, "type node ");
4082 gdb_print_host_address (type, gdb_stdout);
4083 printf_filtered (_(" <same as already seen type>\n"));
4084 return;
4085 }
4086 }
4087
4088 obstack_ptr_grow (&dont_print_type_obstack, type);
4089 }
4090
4091 printfi_filtered (spaces, "type node ");
4092 gdb_print_host_address (type, gdb_stdout);
4093 printf_filtered ("\n");
4094 printfi_filtered (spaces, "name '%s' (",
4095 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4096 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4097 printf_filtered (")\n");
4098 printfi_filtered (spaces, "tagname '%s' (",
4099 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4100 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4101 printf_filtered (")\n");
4102 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4103 switch (TYPE_CODE (type))
4104 {
4105 case TYPE_CODE_UNDEF:
4106 printf_filtered ("(TYPE_CODE_UNDEF)");
4107 break;
4108 case TYPE_CODE_PTR:
4109 printf_filtered ("(TYPE_CODE_PTR)");
4110 break;
4111 case TYPE_CODE_ARRAY:
4112 printf_filtered ("(TYPE_CODE_ARRAY)");
4113 break;
4114 case TYPE_CODE_STRUCT:
4115 printf_filtered ("(TYPE_CODE_STRUCT)");
4116 break;
4117 case TYPE_CODE_UNION:
4118 printf_filtered ("(TYPE_CODE_UNION)");
4119 break;
4120 case TYPE_CODE_ENUM:
4121 printf_filtered ("(TYPE_CODE_ENUM)");
4122 break;
4123 case TYPE_CODE_FLAGS:
4124 printf_filtered ("(TYPE_CODE_FLAGS)");
4125 break;
4126 case TYPE_CODE_FUNC:
4127 printf_filtered ("(TYPE_CODE_FUNC)");
4128 break;
4129 case TYPE_CODE_INT:
4130 printf_filtered ("(TYPE_CODE_INT)");
4131 break;
4132 case TYPE_CODE_FLT:
4133 printf_filtered ("(TYPE_CODE_FLT)");
4134 break;
4135 case TYPE_CODE_VOID:
4136 printf_filtered ("(TYPE_CODE_VOID)");
4137 break;
4138 case TYPE_CODE_SET:
4139 printf_filtered ("(TYPE_CODE_SET)");
4140 break;
4141 case TYPE_CODE_RANGE:
4142 printf_filtered ("(TYPE_CODE_RANGE)");
4143 break;
4144 case TYPE_CODE_STRING:
4145 printf_filtered ("(TYPE_CODE_STRING)");
4146 break;
4147 case TYPE_CODE_ERROR:
4148 printf_filtered ("(TYPE_CODE_ERROR)");
4149 break;
4150 case TYPE_CODE_MEMBERPTR:
4151 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4152 break;
4153 case TYPE_CODE_METHODPTR:
4154 printf_filtered ("(TYPE_CODE_METHODPTR)");
4155 break;
4156 case TYPE_CODE_METHOD:
4157 printf_filtered ("(TYPE_CODE_METHOD)");
4158 break;
4159 case TYPE_CODE_REF:
4160 printf_filtered ("(TYPE_CODE_REF)");
4161 break;
4162 case TYPE_CODE_CHAR:
4163 printf_filtered ("(TYPE_CODE_CHAR)");
4164 break;
4165 case TYPE_CODE_BOOL:
4166 printf_filtered ("(TYPE_CODE_BOOL)");
4167 break;
4168 case TYPE_CODE_COMPLEX:
4169 printf_filtered ("(TYPE_CODE_COMPLEX)");
4170 break;
4171 case TYPE_CODE_TYPEDEF:
4172 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4173 break;
4174 case TYPE_CODE_NAMESPACE:
4175 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4176 break;
4177 default:
4178 printf_filtered ("(UNKNOWN TYPE CODE)");
4179 break;
4180 }
4181 puts_filtered ("\n");
4182 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4183 if (TYPE_OBJFILE_OWNED (type))
4184 {
4185 printfi_filtered (spaces, "objfile ");
4186 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4187 }
4188 else
4189 {
4190 printfi_filtered (spaces, "gdbarch ");
4191 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4192 }
4193 printf_filtered ("\n");
4194 printfi_filtered (spaces, "target_type ");
4195 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4196 printf_filtered ("\n");
4197 if (TYPE_TARGET_TYPE (type) != NULL)
4198 {
4199 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4200 }
4201 printfi_filtered (spaces, "pointer_type ");
4202 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4203 printf_filtered ("\n");
4204 printfi_filtered (spaces, "reference_type ");
4205 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4206 printf_filtered ("\n");
4207 printfi_filtered (spaces, "type_chain ");
4208 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4209 printf_filtered ("\n");
4210 printfi_filtered (spaces, "instance_flags 0x%x",
4211 TYPE_INSTANCE_FLAGS (type));
4212 if (TYPE_CONST (type))
4213 {
4214 puts_filtered (" TYPE_FLAG_CONST");
4215 }
4216 if (TYPE_VOLATILE (type))
4217 {
4218 puts_filtered (" TYPE_FLAG_VOLATILE");
4219 }
4220 if (TYPE_CODE_SPACE (type))
4221 {
4222 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4223 }
4224 if (TYPE_DATA_SPACE (type))
4225 {
4226 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4227 }
4228 if (TYPE_ADDRESS_CLASS_1 (type))
4229 {
4230 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4231 }
4232 if (TYPE_ADDRESS_CLASS_2 (type))
4233 {
4234 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4235 }
4236 if (TYPE_RESTRICT (type))
4237 {
4238 puts_filtered (" TYPE_FLAG_RESTRICT");
4239 }
4240 if (TYPE_ATOMIC (type))
4241 {
4242 puts_filtered (" TYPE_FLAG_ATOMIC");
4243 }
4244 puts_filtered ("\n");
4245
4246 printfi_filtered (spaces, "flags");
4247 if (TYPE_UNSIGNED (type))
4248 {
4249 puts_filtered (" TYPE_FLAG_UNSIGNED");
4250 }
4251 if (TYPE_NOSIGN (type))
4252 {
4253 puts_filtered (" TYPE_FLAG_NOSIGN");
4254 }
4255 if (TYPE_STUB (type))
4256 {
4257 puts_filtered (" TYPE_FLAG_STUB");
4258 }
4259 if (TYPE_TARGET_STUB (type))
4260 {
4261 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4262 }
4263 if (TYPE_STATIC (type))
4264 {
4265 puts_filtered (" TYPE_FLAG_STATIC");
4266 }
4267 if (TYPE_PROTOTYPED (type))
4268 {
4269 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4270 }
4271 if (TYPE_INCOMPLETE (type))
4272 {
4273 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4274 }
4275 if (TYPE_VARARGS (type))
4276 {
4277 puts_filtered (" TYPE_FLAG_VARARGS");
4278 }
4279 /* This is used for things like AltiVec registers on ppc. Gcc emits
4280 an attribute for the array type, which tells whether or not we
4281 have a vector, instead of a regular array. */
4282 if (TYPE_VECTOR (type))
4283 {
4284 puts_filtered (" TYPE_FLAG_VECTOR");
4285 }
4286 if (TYPE_FIXED_INSTANCE (type))
4287 {
4288 puts_filtered (" TYPE_FIXED_INSTANCE");
4289 }
4290 if (TYPE_STUB_SUPPORTED (type))
4291 {
4292 puts_filtered (" TYPE_STUB_SUPPORTED");
4293 }
4294 if (TYPE_NOTTEXT (type))
4295 {
4296 puts_filtered (" TYPE_NOTTEXT");
4297 }
4298 puts_filtered ("\n");
4299 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4300 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4301 puts_filtered ("\n");
4302 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4303 {
4304 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4305 printfi_filtered (spaces + 2,
4306 "[%d] enumval %s type ",
4307 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4308 else
4309 printfi_filtered (spaces + 2,
4310 "[%d] bitpos %s bitsize %d type ",
4311 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4312 TYPE_FIELD_BITSIZE (type, idx));
4313 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4314 printf_filtered (" name '%s' (",
4315 TYPE_FIELD_NAME (type, idx) != NULL
4316 ? TYPE_FIELD_NAME (type, idx)
4317 : "<NULL>");
4318 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4319 printf_filtered (")\n");
4320 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4321 {
4322 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4323 }
4324 }
4325 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4326 {
4327 printfi_filtered (spaces, "low %s%s high %s%s\n",
4328 plongest (TYPE_LOW_BOUND (type)),
4329 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4330 plongest (TYPE_HIGH_BOUND (type)),
4331 TYPE_HIGH_BOUND_UNDEFINED (type)
4332 ? " (undefined)" : "");
4333 }
4334
4335 switch (TYPE_SPECIFIC_FIELD (type))
4336 {
4337 case TYPE_SPECIFIC_CPLUS_STUFF:
4338 printfi_filtered (spaces, "cplus_stuff ");
4339 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4340 gdb_stdout);
4341 puts_filtered ("\n");
4342 print_cplus_stuff (type, spaces);
4343 break;
4344
4345 case TYPE_SPECIFIC_GNAT_STUFF:
4346 printfi_filtered (spaces, "gnat_stuff ");
4347 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4348 puts_filtered ("\n");
4349 print_gnat_stuff (type, spaces);
4350 break;
4351
4352 case TYPE_SPECIFIC_FLOATFORMAT:
4353 printfi_filtered (spaces, "floatformat ");
4354 if (TYPE_FLOATFORMAT (type) == NULL)
4355 puts_filtered ("(null)");
4356 else
4357 {
4358 puts_filtered ("{ ");
4359 if (TYPE_FLOATFORMAT (type)[0] == NULL
4360 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4361 puts_filtered ("(null)");
4362 else
4363 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4364
4365 puts_filtered (", ");
4366 if (TYPE_FLOATFORMAT (type)[1] == NULL
4367 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4368 puts_filtered ("(null)");
4369 else
4370 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4371
4372 puts_filtered (" }");
4373 }
4374 puts_filtered ("\n");
4375 break;
4376
4377 case TYPE_SPECIFIC_FUNC:
4378 printfi_filtered (spaces, "calling_convention %d\n",
4379 TYPE_CALLING_CONVENTION (type));
4380 /* tail_call_list is not printed. */
4381 break;
4382
4383 case TYPE_SPECIFIC_SELF_TYPE:
4384 printfi_filtered (spaces, "self_type ");
4385 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4386 puts_filtered ("\n");
4387 break;
4388 }
4389
4390 if (spaces == 0)
4391 obstack_free (&dont_print_type_obstack, NULL);
4392 }
4393 \f
4394 /* Trivial helpers for the libiberty hash table, for mapping one
4395 type to another. */
4396
4397 struct type_pair
4398 {
4399 struct type *old, *newobj;
4400 };
4401
4402 static hashval_t
4403 type_pair_hash (const void *item)
4404 {
4405 const struct type_pair *pair = (const struct type_pair *) item;
4406
4407 return htab_hash_pointer (pair->old);
4408 }
4409
4410 static int
4411 type_pair_eq (const void *item_lhs, const void *item_rhs)
4412 {
4413 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4414 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4415
4416 return lhs->old == rhs->old;
4417 }
4418
4419 /* Allocate the hash table used by copy_type_recursive to walk
4420 types without duplicates. We use OBJFILE's obstack, because
4421 OBJFILE is about to be deleted. */
4422
4423 htab_t
4424 create_copied_types_hash (struct objfile *objfile)
4425 {
4426 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4427 NULL, &objfile->objfile_obstack,
4428 hashtab_obstack_allocate,
4429 dummy_obstack_deallocate);
4430 }
4431
4432 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4433
4434 static struct dynamic_prop_list *
4435 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4436 struct dynamic_prop_list *list)
4437 {
4438 struct dynamic_prop_list *copy = list;
4439 struct dynamic_prop_list **node_ptr = &copy;
4440
4441 while (*node_ptr != NULL)
4442 {
4443 struct dynamic_prop_list *node_copy;
4444
4445 node_copy = ((struct dynamic_prop_list *)
4446 obstack_copy (objfile_obstack, *node_ptr,
4447 sizeof (struct dynamic_prop_list)));
4448 node_copy->prop = (*node_ptr)->prop;
4449 *node_ptr = node_copy;
4450
4451 node_ptr = &node_copy->next;
4452 }
4453
4454 return copy;
4455 }
4456
4457 /* Recursively copy (deep copy) TYPE, if it is associated with
4458 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4459 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4460 it is not associated with OBJFILE. */
4461
4462 struct type *
4463 copy_type_recursive (struct objfile *objfile,
4464 struct type *type,
4465 htab_t copied_types)
4466 {
4467 struct type_pair *stored, pair;
4468 void **slot;
4469 struct type *new_type;
4470
4471 if (! TYPE_OBJFILE_OWNED (type))
4472 return type;
4473
4474 /* This type shouldn't be pointing to any types in other objfiles;
4475 if it did, the type might disappear unexpectedly. */
4476 gdb_assert (TYPE_OBJFILE (type) == objfile);
4477
4478 pair.old = type;
4479 slot = htab_find_slot (copied_types, &pair, INSERT);
4480 if (*slot != NULL)
4481 return ((struct type_pair *) *slot)->newobj;
4482
4483 new_type = alloc_type_arch (get_type_arch (type));
4484
4485 /* We must add the new type to the hash table immediately, in case
4486 we encounter this type again during a recursive call below. */
4487 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4488 stored->old = type;
4489 stored->newobj = new_type;
4490 *slot = stored;
4491
4492 /* Copy the common fields of types. For the main type, we simply
4493 copy the entire thing and then update specific fields as needed. */
4494 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4495 TYPE_OBJFILE_OWNED (new_type) = 0;
4496 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4497
4498 if (TYPE_NAME (type))
4499 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4500 if (TYPE_TAG_NAME (type))
4501 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4502
4503 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4504 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4505
4506 /* Copy the fields. */
4507 if (TYPE_NFIELDS (type))
4508 {
4509 int i, nfields;
4510
4511 nfields = TYPE_NFIELDS (type);
4512 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4513 for (i = 0; i < nfields; i++)
4514 {
4515 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4516 TYPE_FIELD_ARTIFICIAL (type, i);
4517 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4518 if (TYPE_FIELD_TYPE (type, i))
4519 TYPE_FIELD_TYPE (new_type, i)
4520 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4521 copied_types);
4522 if (TYPE_FIELD_NAME (type, i))
4523 TYPE_FIELD_NAME (new_type, i) =
4524 xstrdup (TYPE_FIELD_NAME (type, i));
4525 switch (TYPE_FIELD_LOC_KIND (type, i))
4526 {
4527 case FIELD_LOC_KIND_BITPOS:
4528 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4529 TYPE_FIELD_BITPOS (type, i));
4530 break;
4531 case FIELD_LOC_KIND_ENUMVAL:
4532 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4533 TYPE_FIELD_ENUMVAL (type, i));
4534 break;
4535 case FIELD_LOC_KIND_PHYSADDR:
4536 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4537 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4538 break;
4539 case FIELD_LOC_KIND_PHYSNAME:
4540 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4541 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4542 i)));
4543 break;
4544 default:
4545 internal_error (__FILE__, __LINE__,
4546 _("Unexpected type field location kind: %d"),
4547 TYPE_FIELD_LOC_KIND (type, i));
4548 }
4549 }
4550 }
4551
4552 /* For range types, copy the bounds information. */
4553 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4554 {
4555 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4556 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4557 }
4558
4559 if (TYPE_DYN_PROP_LIST (type) != NULL)
4560 TYPE_DYN_PROP_LIST (new_type)
4561 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4562 TYPE_DYN_PROP_LIST (type));
4563
4564
4565 /* Copy pointers to other types. */
4566 if (TYPE_TARGET_TYPE (type))
4567 TYPE_TARGET_TYPE (new_type) =
4568 copy_type_recursive (objfile,
4569 TYPE_TARGET_TYPE (type),
4570 copied_types);
4571
4572 /* Maybe copy the type_specific bits.
4573
4574 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4575 base classes and methods. There's no fundamental reason why we
4576 can't, but at the moment it is not needed. */
4577
4578 switch (TYPE_SPECIFIC_FIELD (type))
4579 {
4580 case TYPE_SPECIFIC_NONE:
4581 break;
4582 case TYPE_SPECIFIC_FUNC:
4583 INIT_FUNC_SPECIFIC (new_type);
4584 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4585 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4586 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4587 break;
4588 case TYPE_SPECIFIC_FLOATFORMAT:
4589 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4590 break;
4591 case TYPE_SPECIFIC_CPLUS_STUFF:
4592 INIT_CPLUS_SPECIFIC (new_type);
4593 break;
4594 case TYPE_SPECIFIC_GNAT_STUFF:
4595 INIT_GNAT_SPECIFIC (new_type);
4596 break;
4597 case TYPE_SPECIFIC_SELF_TYPE:
4598 set_type_self_type (new_type,
4599 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4600 copied_types));
4601 break;
4602 default:
4603 gdb_assert_not_reached ("bad type_specific_kind");
4604 }
4605
4606 return new_type;
4607 }
4608
4609 /* Make a copy of the given TYPE, except that the pointer & reference
4610 types are not preserved.
4611
4612 This function assumes that the given type has an associated objfile.
4613 This objfile is used to allocate the new type. */
4614
4615 struct type *
4616 copy_type (const struct type *type)
4617 {
4618 struct type *new_type;
4619
4620 gdb_assert (TYPE_OBJFILE_OWNED (type));
4621
4622 new_type = alloc_type_copy (type);
4623 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4624 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4625 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4626 sizeof (struct main_type));
4627 if (TYPE_DYN_PROP_LIST (type) != NULL)
4628 TYPE_DYN_PROP_LIST (new_type)
4629 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4630 TYPE_DYN_PROP_LIST (type));
4631
4632 return new_type;
4633 }
4634 \f
4635 /* Helper functions to initialize architecture-specific types. */
4636
4637 /* Allocate a type structure associated with GDBARCH and set its
4638 CODE, LENGTH, and NAME fields. */
4639
4640 struct type *
4641 arch_type (struct gdbarch *gdbarch,
4642 enum type_code code, int length, const char *name)
4643 {
4644 struct type *type;
4645
4646 type = alloc_type_arch (gdbarch);
4647 set_type_code (type, code);
4648 TYPE_LENGTH (type) = length;
4649
4650 if (name)
4651 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4652
4653 return type;
4654 }
4655
4656 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4657 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4658 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4659
4660 struct type *
4661 arch_integer_type (struct gdbarch *gdbarch,
4662 int bit, int unsigned_p, const char *name)
4663 {
4664 struct type *t;
4665
4666 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4667 if (unsigned_p)
4668 TYPE_UNSIGNED (t) = 1;
4669 if (name && strcmp (name, "char") == 0)
4670 TYPE_NOSIGN (t) = 1;
4671
4672 return t;
4673 }
4674
4675 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4676 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4677 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4678
4679 struct type *
4680 arch_character_type (struct gdbarch *gdbarch,
4681 int bit, int unsigned_p, const char *name)
4682 {
4683 struct type *t;
4684
4685 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4686 if (unsigned_p)
4687 TYPE_UNSIGNED (t) = 1;
4688
4689 return t;
4690 }
4691
4692 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4693 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4694 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4695
4696 struct type *
4697 arch_boolean_type (struct gdbarch *gdbarch,
4698 int bit, int unsigned_p, const char *name)
4699 {
4700 struct type *t;
4701
4702 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4703 if (unsigned_p)
4704 TYPE_UNSIGNED (t) = 1;
4705
4706 return t;
4707 }
4708
4709 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4710 BIT is the type size in bits; if BIT equals -1, the size is
4711 determined by the floatformat. NAME is the type name. Set the
4712 TYPE_FLOATFORMAT from FLOATFORMATS. */
4713
4714 struct type *
4715 arch_float_type (struct gdbarch *gdbarch,
4716 int bit, const char *name,
4717 const struct floatformat **floatformats)
4718 {
4719 struct type *t;
4720
4721 if (bit == -1)
4722 {
4723 gdb_assert (floatformats != NULL);
4724 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4725 bit = floatformats[0]->totalsize;
4726 }
4727 gdb_assert (bit >= 0);
4728
4729 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4730 TYPE_FLOATFORMAT (t) = floatformats;
4731
4732 if (floatformats != NULL)
4733 {
4734 size_t len = TYPE_LENGTH (t);
4735
4736 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[0]));
4737 gdb_assert (len >= floatformat_totalsize_bytes (floatformats[1]));
4738 }
4739
4740 return t;
4741 }
4742
4743 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
4744 BIT is the type size in bits. NAME is the type name. */
4745
4746 struct type *
4747 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
4748 {
4749 struct type *t;
4750
4751 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit / TARGET_CHAR_BIT, name);
4752 return t;
4753 }
4754
4755 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4756 NAME is the type name. TARGET_TYPE is the component float type. */
4757
4758 struct type *
4759 arch_complex_type (struct gdbarch *gdbarch,
4760 const char *name, struct type *target_type)
4761 {
4762 struct type *t;
4763
4764 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4765 2 * TYPE_LENGTH (target_type), name);
4766 TYPE_TARGET_TYPE (t) = target_type;
4767 return t;
4768 }
4769
4770 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
4771 BIT is the pointer type size in bits. NAME is the type name.
4772 TARGET_TYPE is the pointer target type. Always sets the pointer type's
4773 TYPE_UNSIGNED flag. */
4774
4775 struct type *
4776 arch_pointer_type (struct gdbarch *gdbarch,
4777 int bit, const char *name, struct type *target_type)
4778 {
4779 struct type *t;
4780
4781 t = arch_type (gdbarch, TYPE_CODE_PTR, bit / TARGET_CHAR_BIT, name);
4782 TYPE_TARGET_TYPE (t) = target_type;
4783 TYPE_UNSIGNED (t) = 1;
4784 return t;
4785 }
4786
4787 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4788 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4789
4790 struct type *
4791 arch_flags_type (struct gdbarch *gdbarch, const char *name, int length)
4792 {
4793 int max_nfields = length * TARGET_CHAR_BIT;
4794 struct type *type;
4795
4796 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4797 TYPE_UNSIGNED (type) = 1;
4798 TYPE_NFIELDS (type) = 0;
4799 /* Pre-allocate enough space assuming every field is one bit. */
4800 TYPE_FIELDS (type)
4801 = (struct field *) TYPE_ZALLOC (type, max_nfields * sizeof (struct field));
4802
4803 return type;
4804 }
4805
4806 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4807 position BITPOS is called NAME. Pass NAME as "" for fields that
4808 should not be printed. */
4809
4810 void
4811 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
4812 struct type *field_type, const char *name)
4813 {
4814 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
4815 int field_nr = TYPE_NFIELDS (type);
4816
4817 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4818 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
4819 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
4820 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
4821 gdb_assert (name != NULL);
4822
4823 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
4824 TYPE_FIELD_TYPE (type, field_nr) = field_type;
4825 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
4826 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
4827 ++TYPE_NFIELDS (type);
4828 }
4829
4830 /* Special version of append_flags_type_field to add a flag field.
4831 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4832 position BITPOS is called NAME. */
4833
4834 void
4835 append_flags_type_flag (struct type *type, int bitpos, const char *name)
4836 {
4837 struct gdbarch *gdbarch = get_type_arch (type);
4838
4839 append_flags_type_field (type, bitpos, 1,
4840 builtin_type (gdbarch)->builtin_bool,
4841 name);
4842 }
4843
4844 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4845 specified by CODE) associated with GDBARCH. NAME is the type name. */
4846
4847 struct type *
4848 arch_composite_type (struct gdbarch *gdbarch, const char *name,
4849 enum type_code code)
4850 {
4851 struct type *t;
4852
4853 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4854 t = arch_type (gdbarch, code, 0, NULL);
4855 TYPE_TAG_NAME (t) = name;
4856 INIT_CPLUS_SPECIFIC (t);
4857 return t;
4858 }
4859
4860 /* Add new field with name NAME and type FIELD to composite type T.
4861 Do not set the field's position or adjust the type's length;
4862 the caller should do so. Return the new field. */
4863
4864 struct field *
4865 append_composite_type_field_raw (struct type *t, const char *name,
4866 struct type *field)
4867 {
4868 struct field *f;
4869
4870 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4871 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
4872 TYPE_NFIELDS (t));
4873 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4874 memset (f, 0, sizeof f[0]);
4875 FIELD_TYPE (f[0]) = field;
4876 FIELD_NAME (f[0]) = name;
4877 return f;
4878 }
4879
4880 /* Add new field with name NAME and type FIELD to composite type T.
4881 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4882
4883 void
4884 append_composite_type_field_aligned (struct type *t, const char *name,
4885 struct type *field, int alignment)
4886 {
4887 struct field *f = append_composite_type_field_raw (t, name, field);
4888
4889 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4890 {
4891 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4892 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4893 }
4894 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4895 {
4896 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4897 if (TYPE_NFIELDS (t) > 1)
4898 {
4899 SET_FIELD_BITPOS (f[0],
4900 (FIELD_BITPOS (f[-1])
4901 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4902 * TARGET_CHAR_BIT)));
4903
4904 if (alignment)
4905 {
4906 int left;
4907
4908 alignment *= TARGET_CHAR_BIT;
4909 left = FIELD_BITPOS (f[0]) % alignment;
4910
4911 if (left)
4912 {
4913 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4914 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4915 }
4916 }
4917 }
4918 }
4919 }
4920
4921 /* Add new field with name NAME and type FIELD to composite type T. */
4922
4923 void
4924 append_composite_type_field (struct type *t, const char *name,
4925 struct type *field)
4926 {
4927 append_composite_type_field_aligned (t, name, field, 0);
4928 }
4929
4930 static struct gdbarch_data *gdbtypes_data;
4931
4932 const struct builtin_type *
4933 builtin_type (struct gdbarch *gdbarch)
4934 {
4935 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
4936 }
4937
4938 static void *
4939 gdbtypes_post_init (struct gdbarch *gdbarch)
4940 {
4941 struct builtin_type *builtin_type
4942 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4943
4944 /* Basic types. */
4945 builtin_type->builtin_void
4946 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4947 builtin_type->builtin_char
4948 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4949 !gdbarch_char_signed (gdbarch), "char");
4950 builtin_type->builtin_signed_char
4951 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4952 0, "signed char");
4953 builtin_type->builtin_unsigned_char
4954 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4955 1, "unsigned char");
4956 builtin_type->builtin_short
4957 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4958 0, "short");
4959 builtin_type->builtin_unsigned_short
4960 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4961 1, "unsigned short");
4962 builtin_type->builtin_int
4963 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4964 0, "int");
4965 builtin_type->builtin_unsigned_int
4966 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4967 1, "unsigned int");
4968 builtin_type->builtin_long
4969 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4970 0, "long");
4971 builtin_type->builtin_unsigned_long
4972 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4973 1, "unsigned long");
4974 builtin_type->builtin_long_long
4975 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4976 0, "long long");
4977 builtin_type->builtin_unsigned_long_long
4978 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4979 1, "unsigned long long");
4980 builtin_type->builtin_float
4981 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4982 "float", gdbarch_float_format (gdbarch));
4983 builtin_type->builtin_double
4984 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4985 "double", gdbarch_double_format (gdbarch));
4986 builtin_type->builtin_long_double
4987 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4988 "long double", gdbarch_long_double_format (gdbarch));
4989 builtin_type->builtin_complex
4990 = arch_complex_type (gdbarch, "complex",
4991 builtin_type->builtin_float);
4992 builtin_type->builtin_double_complex
4993 = arch_complex_type (gdbarch, "double complex",
4994 builtin_type->builtin_double);
4995 builtin_type->builtin_string
4996 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4997 builtin_type->builtin_bool
4998 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4999
5000 /* The following three are about decimal floating point types, which
5001 are 32-bits, 64-bits and 128-bits respectively. */
5002 builtin_type->builtin_decfloat
5003 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5004 builtin_type->builtin_decdouble
5005 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5006 builtin_type->builtin_declong
5007 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5008
5009 /* "True" character types. */
5010 builtin_type->builtin_true_char
5011 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5012 builtin_type->builtin_true_unsigned_char
5013 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5014
5015 /* Fixed-size integer types. */
5016 builtin_type->builtin_int0
5017 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5018 builtin_type->builtin_int8
5019 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5020 builtin_type->builtin_uint8
5021 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5022 builtin_type->builtin_int16
5023 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5024 builtin_type->builtin_uint16
5025 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5026 builtin_type->builtin_int32
5027 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5028 builtin_type->builtin_uint32
5029 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5030 builtin_type->builtin_int64
5031 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5032 builtin_type->builtin_uint64
5033 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5034 builtin_type->builtin_int128
5035 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5036 builtin_type->builtin_uint128
5037 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5038 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5039 TYPE_INSTANCE_FLAG_NOTTEXT;
5040 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5041 TYPE_INSTANCE_FLAG_NOTTEXT;
5042
5043 /* Wide character types. */
5044 builtin_type->builtin_char16
5045 = arch_integer_type (gdbarch, 16, 0, "char16_t");
5046 builtin_type->builtin_char32
5047 = arch_integer_type (gdbarch, 32, 0, "char32_t");
5048
5049
5050 /* Default data/code pointer types. */
5051 builtin_type->builtin_data_ptr
5052 = lookup_pointer_type (builtin_type->builtin_void);
5053 builtin_type->builtin_func_ptr
5054 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5055 builtin_type->builtin_func_func
5056 = lookup_function_type (builtin_type->builtin_func_ptr);
5057
5058 /* This type represents a GDB internal function. */
5059 builtin_type->internal_fn
5060 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5061 "<internal function>");
5062
5063 /* This type represents an xmethod. */
5064 builtin_type->xmethod
5065 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5066
5067 return builtin_type;
5068 }
5069
5070 /* This set of objfile-based types is intended to be used by symbol
5071 readers as basic types. */
5072
5073 static const struct objfile_data *objfile_type_data;
5074
5075 const struct objfile_type *
5076 objfile_type (struct objfile *objfile)
5077 {
5078 struct gdbarch *gdbarch;
5079 struct objfile_type *objfile_type
5080 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5081
5082 if (objfile_type)
5083 return objfile_type;
5084
5085 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5086 1, struct objfile_type);
5087
5088 /* Use the objfile architecture to determine basic type properties. */
5089 gdbarch = get_objfile_arch (objfile);
5090
5091 /* Basic types. */
5092 objfile_type->builtin_void
5093 = init_type (TYPE_CODE_VOID, 1,
5094 0,
5095 "void", objfile);
5096
5097 objfile_type->builtin_char
5098 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5099 (TYPE_FLAG_NOSIGN
5100 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
5101 "char", objfile);
5102 objfile_type->builtin_signed_char
5103 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5104 0,
5105 "signed char", objfile);
5106 objfile_type->builtin_unsigned_char
5107 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
5108 TYPE_FLAG_UNSIGNED,
5109 "unsigned char", objfile);
5110 objfile_type->builtin_short
5111 = init_type (TYPE_CODE_INT,
5112 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5113 0, "short", objfile);
5114 objfile_type->builtin_unsigned_short
5115 = init_type (TYPE_CODE_INT,
5116 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
5117 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
5118 objfile_type->builtin_int
5119 = init_type (TYPE_CODE_INT,
5120 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5121 0, "int", objfile);
5122 objfile_type->builtin_unsigned_int
5123 = init_type (TYPE_CODE_INT,
5124 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
5125 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
5126 objfile_type->builtin_long
5127 = init_type (TYPE_CODE_INT,
5128 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5129 0, "long", objfile);
5130 objfile_type->builtin_unsigned_long
5131 = init_type (TYPE_CODE_INT,
5132 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
5133 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
5134 objfile_type->builtin_long_long
5135 = init_type (TYPE_CODE_INT,
5136 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5137 0, "long long", objfile);
5138 objfile_type->builtin_unsigned_long_long
5139 = init_type (TYPE_CODE_INT,
5140 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
5141 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
5142
5143 objfile_type->builtin_float
5144 = init_type (TYPE_CODE_FLT,
5145 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
5146 0, "float", objfile);
5147 TYPE_FLOATFORMAT (objfile_type->builtin_float)
5148 = gdbarch_float_format (gdbarch);
5149 objfile_type->builtin_double
5150 = init_type (TYPE_CODE_FLT,
5151 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
5152 0, "double", objfile);
5153 TYPE_FLOATFORMAT (objfile_type->builtin_double)
5154 = gdbarch_double_format (gdbarch);
5155 objfile_type->builtin_long_double
5156 = init_type (TYPE_CODE_FLT,
5157 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
5158 0, "long double", objfile);
5159 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
5160 = gdbarch_long_double_format (gdbarch);
5161
5162 /* This type represents a type that was unrecognized in symbol read-in. */
5163 objfile_type->builtin_error
5164 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
5165
5166 /* The following set of types is used for symbols with no
5167 debug information. */
5168 objfile_type->nodebug_text_symbol
5169 = init_type (TYPE_CODE_FUNC, 1, 0,
5170 "<text variable, no debug info>", objfile);
5171 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5172 = objfile_type->builtin_int;
5173 objfile_type->nodebug_text_gnu_ifunc_symbol
5174 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5175 "<text gnu-indirect-function variable, no debug info>",
5176 objfile);
5177 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5178 = objfile_type->nodebug_text_symbol;
5179 objfile_type->nodebug_got_plt_symbol
5180 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5181 "<text from jump slot in .got.plt, no debug info>",
5182 objfile);
5183 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5184 = objfile_type->nodebug_text_symbol;
5185 objfile_type->nodebug_data_symbol
5186 = init_type (TYPE_CODE_INT,
5187 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5188 "<data variable, no debug info>", objfile);
5189 objfile_type->nodebug_unknown_symbol
5190 = init_type (TYPE_CODE_INT, 1, 0,
5191 "<variable (not text or data), no debug info>", objfile);
5192 objfile_type->nodebug_tls_symbol
5193 = init_type (TYPE_CODE_INT,
5194 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5195 "<thread local variable, no debug info>", objfile);
5196
5197 /* NOTE: on some targets, addresses and pointers are not necessarily
5198 the same.
5199
5200 The upshot is:
5201 - gdb's `struct type' always describes the target's
5202 representation.
5203 - gdb's `struct value' objects should always hold values in
5204 target form.
5205 - gdb's CORE_ADDR values are addresses in the unified virtual
5206 address space that the assembler and linker work with. Thus,
5207 since target_read_memory takes a CORE_ADDR as an argument, it
5208 can access any memory on the target, even if the processor has
5209 separate code and data address spaces.
5210
5211 In this context, objfile_type->builtin_core_addr is a bit odd:
5212 it's a target type for a value the target will never see. It's
5213 only used to hold the values of (typeless) linker symbols, which
5214 are indeed in the unified virtual address space. */
5215
5216 objfile_type->builtin_core_addr
5217 = init_type (TYPE_CODE_INT,
5218 gdbarch_addr_bit (gdbarch) / 8,
5219 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5220
5221 set_objfile_data (objfile, objfile_type_data, objfile_type);
5222 return objfile_type;
5223 }
5224
5225 extern initialize_file_ftype _initialize_gdbtypes;
5226
5227 void
5228 _initialize_gdbtypes (void)
5229 {
5230 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5231 objfile_type_data = register_objfile_data ();
5232
5233 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5234 _("Set debugging of C++ overloading."),
5235 _("Show debugging of C++ overloading."),
5236 _("When enabled, ranking of the "
5237 "functions is displayed."),
5238 NULL,
5239 show_overload_debug,
5240 &setdebuglist, &showdebuglist);
5241
5242 /* Add user knob for controlling resolution of opaque types. */
5243 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5244 &opaque_type_resolution,
5245 _("Set resolution of opaque struct/class/union"
5246 " types (if set before loading symbols)."),
5247 _("Show resolution of opaque struct/class/union"
5248 " types (if set before loading symbols)."),
5249 NULL, NULL,
5250 show_opaque_type_resolution,
5251 &setlist, &showlist);
5252
5253 /* Add an option to permit non-strict type checking. */
5254 add_setshow_boolean_cmd ("type", class_support,
5255 &strict_type_checking,
5256 _("Set strict type checking."),
5257 _("Show strict type checking."),
5258 NULL, NULL,
5259 show_strict_type_checking,
5260 &setchecklist, &showchecklist);
5261 }
This page took 0.137966 seconds and 4 git commands to generate.