Fetch all registers before writing the core register notes.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 CHECK_TYPEDEF (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Create an array type using either a blank type supplied in
1008 RESULT_TYPE, or creating a new type, inheriting the objfile from
1009 RANGE_TYPE.
1010
1011 Elements will be of type ELEMENT_TYPE, the indices will be of type
1012 RANGE_TYPE.
1013
1014 If BIT_STRIDE is not zero, build a packed array type whose element
1015 size is BIT_STRIDE. Otherwise, ignore this parameter.
1016
1017 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1018 sure it is TYPE_CODE_UNDEF before we bash it into an array
1019 type? */
1020
1021 struct type *
1022 create_array_type_with_stride (struct type *result_type,
1023 struct type *element_type,
1024 struct type *range_type,
1025 unsigned int bit_stride)
1026 {
1027 if (result_type == NULL)
1028 result_type = alloc_type_copy (range_type);
1029
1030 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1031 TYPE_TARGET_TYPE (result_type) = element_type;
1032 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1033 {
1034 LONGEST low_bound, high_bound;
1035
1036 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1037 low_bound = high_bound = 0;
1038 CHECK_TYPEDEF (element_type);
1039 /* Be careful when setting the array length. Ada arrays can be
1040 empty arrays with the high_bound being smaller than the low_bound.
1041 In such cases, the array length should be zero. */
1042 if (high_bound < low_bound)
1043 TYPE_LENGTH (result_type) = 0;
1044 else if (bit_stride > 0)
1045 TYPE_LENGTH (result_type) =
1046 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1047 else
1048 TYPE_LENGTH (result_type) =
1049 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1050 }
1051 else
1052 {
1053 /* This type is dynamic and its length needs to be computed
1054 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1055 undefined by setting it to zero. Although we are not expected
1056 to trust TYPE_LENGTH in this case, setting the size to zero
1057 allows us to avoid allocating objects of random sizes in case
1058 we accidently do. */
1059 TYPE_LENGTH (result_type) = 0;
1060 }
1061
1062 TYPE_NFIELDS (result_type) = 1;
1063 TYPE_FIELDS (result_type) =
1064 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1065 TYPE_INDEX_TYPE (result_type) = range_type;
1066 if (bit_stride > 0)
1067 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1068
1069 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1070 if (TYPE_LENGTH (result_type) == 0)
1071 TYPE_TARGET_STUB (result_type) = 1;
1072
1073 return result_type;
1074 }
1075
1076 /* Same as create_array_type_with_stride but with no bit_stride
1077 (BIT_STRIDE = 0), thus building an unpacked array. */
1078
1079 struct type *
1080 create_array_type (struct type *result_type,
1081 struct type *element_type,
1082 struct type *range_type)
1083 {
1084 return create_array_type_with_stride (result_type, element_type,
1085 range_type, 0);
1086 }
1087
1088 struct type *
1089 lookup_array_range_type (struct type *element_type,
1090 LONGEST low_bound, LONGEST high_bound)
1091 {
1092 struct gdbarch *gdbarch = get_type_arch (element_type);
1093 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1094 struct type *range_type
1095 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1096
1097 return create_array_type (NULL, element_type, range_type);
1098 }
1099
1100 /* Create a string type using either a blank type supplied in
1101 RESULT_TYPE, or creating a new type. String types are similar
1102 enough to array of char types that we can use create_array_type to
1103 build the basic type and then bash it into a string type.
1104
1105 For fixed length strings, the range type contains 0 as the lower
1106 bound and the length of the string minus one as the upper bound.
1107
1108 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1109 sure it is TYPE_CODE_UNDEF before we bash it into a string
1110 type? */
1111
1112 struct type *
1113 create_string_type (struct type *result_type,
1114 struct type *string_char_type,
1115 struct type *range_type)
1116 {
1117 result_type = create_array_type (result_type,
1118 string_char_type,
1119 range_type);
1120 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1121 return result_type;
1122 }
1123
1124 struct type *
1125 lookup_string_range_type (struct type *string_char_type,
1126 LONGEST low_bound, LONGEST high_bound)
1127 {
1128 struct type *result_type;
1129
1130 result_type = lookup_array_range_type (string_char_type,
1131 low_bound, high_bound);
1132 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1133 return result_type;
1134 }
1135
1136 struct type *
1137 create_set_type (struct type *result_type, struct type *domain_type)
1138 {
1139 if (result_type == NULL)
1140 result_type = alloc_type_copy (domain_type);
1141
1142 TYPE_CODE (result_type) = TYPE_CODE_SET;
1143 TYPE_NFIELDS (result_type) = 1;
1144 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1145
1146 if (!TYPE_STUB (domain_type))
1147 {
1148 LONGEST low_bound, high_bound, bit_length;
1149
1150 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1151 low_bound = high_bound = 0;
1152 bit_length = high_bound - low_bound + 1;
1153 TYPE_LENGTH (result_type)
1154 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1155 if (low_bound >= 0)
1156 TYPE_UNSIGNED (result_type) = 1;
1157 }
1158 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1159
1160 return result_type;
1161 }
1162
1163 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1164 and any array types nested inside it. */
1165
1166 void
1167 make_vector_type (struct type *array_type)
1168 {
1169 struct type *inner_array, *elt_type;
1170 int flags;
1171
1172 /* Find the innermost array type, in case the array is
1173 multi-dimensional. */
1174 inner_array = array_type;
1175 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1176 inner_array = TYPE_TARGET_TYPE (inner_array);
1177
1178 elt_type = TYPE_TARGET_TYPE (inner_array);
1179 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1180 {
1181 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1182 elt_type = make_qualified_type (elt_type, flags, NULL);
1183 TYPE_TARGET_TYPE (inner_array) = elt_type;
1184 }
1185
1186 TYPE_VECTOR (array_type) = 1;
1187 }
1188
1189 struct type *
1190 init_vector_type (struct type *elt_type, int n)
1191 {
1192 struct type *array_type;
1193
1194 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1195 make_vector_type (array_type);
1196 return array_type;
1197 }
1198
1199 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1200 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1201 confusing. "self" is a common enough replacement for "this".
1202 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1203 TYPE_CODE_METHOD. */
1204
1205 struct type *
1206 internal_type_self_type (struct type *type)
1207 {
1208 switch (TYPE_CODE (type))
1209 {
1210 case TYPE_CODE_METHODPTR:
1211 case TYPE_CODE_MEMBERPTR:
1212 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1213 return NULL;
1214 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1215 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1216 case TYPE_CODE_METHOD:
1217 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1218 return NULL;
1219 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1220 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1221 default:
1222 gdb_assert_not_reached ("bad type");
1223 }
1224 }
1225
1226 /* Set the type of the class that TYPE belongs to.
1227 In c++ this is the class of "this".
1228 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1229 TYPE_CODE_METHOD. */
1230
1231 void
1232 set_type_self_type (struct type *type, struct type *self_type)
1233 {
1234 switch (TYPE_CODE (type))
1235 {
1236 case TYPE_CODE_METHODPTR:
1237 case TYPE_CODE_MEMBERPTR:
1238 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1239 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1240 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1241 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1242 break;
1243 case TYPE_CODE_METHOD:
1244 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1245 INIT_FUNC_SPECIFIC (type);
1246 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1247 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1248 break;
1249 default:
1250 gdb_assert_not_reached ("bad type");
1251 }
1252 }
1253
1254 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1255 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1256 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1257 TYPE doesn't include the offset (that's the value of the MEMBER
1258 itself), but does include the structure type into which it points
1259 (for some reason).
1260
1261 When "smashing" the type, we preserve the objfile that the old type
1262 pointed to, since we aren't changing where the type is actually
1263 allocated. */
1264
1265 void
1266 smash_to_memberptr_type (struct type *type, struct type *self_type,
1267 struct type *to_type)
1268 {
1269 smash_type (type);
1270 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1271 TYPE_TARGET_TYPE (type) = to_type;
1272 set_type_self_type (type, self_type);
1273 /* Assume that a data member pointer is the same size as a normal
1274 pointer. */
1275 TYPE_LENGTH (type)
1276 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1277 }
1278
1279 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1280
1281 When "smashing" the type, we preserve the objfile that the old type
1282 pointed to, since we aren't changing where the type is actually
1283 allocated. */
1284
1285 void
1286 smash_to_methodptr_type (struct type *type, struct type *to_type)
1287 {
1288 smash_type (type);
1289 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1290 TYPE_TARGET_TYPE (type) = to_type;
1291 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1292 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1293 }
1294
1295 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1296 METHOD just means `function that gets an extra "this" argument'.
1297
1298 When "smashing" the type, we preserve the objfile that the old type
1299 pointed to, since we aren't changing where the type is actually
1300 allocated. */
1301
1302 void
1303 smash_to_method_type (struct type *type, struct type *self_type,
1304 struct type *to_type, struct field *args,
1305 int nargs, int varargs)
1306 {
1307 smash_type (type);
1308 TYPE_CODE (type) = TYPE_CODE_METHOD;
1309 TYPE_TARGET_TYPE (type) = to_type;
1310 set_type_self_type (type, self_type);
1311 TYPE_FIELDS (type) = args;
1312 TYPE_NFIELDS (type) = nargs;
1313 if (varargs)
1314 TYPE_VARARGS (type) = 1;
1315 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1316 }
1317
1318 /* Return a typename for a struct/union/enum type without "struct ",
1319 "union ", or "enum ". If the type has a NULL name, return NULL. */
1320
1321 const char *
1322 type_name_no_tag (const struct type *type)
1323 {
1324 if (TYPE_TAG_NAME (type) != NULL)
1325 return TYPE_TAG_NAME (type);
1326
1327 /* Is there code which expects this to return the name if there is
1328 no tag name? My guess is that this is mainly used for C++ in
1329 cases where the two will always be the same. */
1330 return TYPE_NAME (type);
1331 }
1332
1333 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1334 Since GCC PR debug/47510 DWARF provides associated information to detect the
1335 anonymous class linkage name from its typedef.
1336
1337 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1338 apply it itself. */
1339
1340 const char *
1341 type_name_no_tag_or_error (struct type *type)
1342 {
1343 struct type *saved_type = type;
1344 const char *name;
1345 struct objfile *objfile;
1346
1347 CHECK_TYPEDEF (type);
1348
1349 name = type_name_no_tag (type);
1350 if (name != NULL)
1351 return name;
1352
1353 name = type_name_no_tag (saved_type);
1354 objfile = TYPE_OBJFILE (saved_type);
1355 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1356 name ? name : "<anonymous>",
1357 objfile ? objfile_name (objfile) : "<arch>");
1358 }
1359
1360 /* Lookup a typedef or primitive type named NAME, visible in lexical
1361 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1362 suitably defined. */
1363
1364 struct type *
1365 lookup_typename (const struct language_defn *language,
1366 struct gdbarch *gdbarch, const char *name,
1367 const struct block *block, int noerr)
1368 {
1369 struct symbol *sym;
1370 struct type *type;
1371
1372 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1373 language->la_language, NULL);
1374 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1375 return SYMBOL_TYPE (sym);
1376
1377 if (noerr)
1378 return NULL;
1379 error (_("No type named %s."), name);
1380 }
1381
1382 struct type *
1383 lookup_unsigned_typename (const struct language_defn *language,
1384 struct gdbarch *gdbarch, const char *name)
1385 {
1386 char *uns = alloca (strlen (name) + 10);
1387
1388 strcpy (uns, "unsigned ");
1389 strcpy (uns + 9, name);
1390 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1391 }
1392
1393 struct type *
1394 lookup_signed_typename (const struct language_defn *language,
1395 struct gdbarch *gdbarch, const char *name)
1396 {
1397 struct type *t;
1398 char *uns = alloca (strlen (name) + 8);
1399
1400 strcpy (uns, "signed ");
1401 strcpy (uns + 7, name);
1402 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1403 /* If we don't find "signed FOO" just try again with plain "FOO". */
1404 if (t != NULL)
1405 return t;
1406 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1407 }
1408
1409 /* Lookup a structure type named "struct NAME",
1410 visible in lexical block BLOCK. */
1411
1412 struct type *
1413 lookup_struct (const char *name, const struct block *block)
1414 {
1415 struct symbol *sym;
1416
1417 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1418
1419 if (sym == NULL)
1420 {
1421 error (_("No struct type named %s."), name);
1422 }
1423 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1424 {
1425 error (_("This context has class, union or enum %s, not a struct."),
1426 name);
1427 }
1428 return (SYMBOL_TYPE (sym));
1429 }
1430
1431 /* Lookup a union type named "union NAME",
1432 visible in lexical block BLOCK. */
1433
1434 struct type *
1435 lookup_union (const char *name, const struct block *block)
1436 {
1437 struct symbol *sym;
1438 struct type *t;
1439
1440 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1441
1442 if (sym == NULL)
1443 error (_("No union type named %s."), name);
1444
1445 t = SYMBOL_TYPE (sym);
1446
1447 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1448 return t;
1449
1450 /* If we get here, it's not a union. */
1451 error (_("This context has class, struct or enum %s, not a union."),
1452 name);
1453 }
1454
1455 /* Lookup an enum type named "enum NAME",
1456 visible in lexical block BLOCK. */
1457
1458 struct type *
1459 lookup_enum (const char *name, const struct block *block)
1460 {
1461 struct symbol *sym;
1462
1463 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1464 if (sym == NULL)
1465 {
1466 error (_("No enum type named %s."), name);
1467 }
1468 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1469 {
1470 error (_("This context has class, struct or union %s, not an enum."),
1471 name);
1472 }
1473 return (SYMBOL_TYPE (sym));
1474 }
1475
1476 /* Lookup a template type named "template NAME<TYPE>",
1477 visible in lexical block BLOCK. */
1478
1479 struct type *
1480 lookup_template_type (char *name, struct type *type,
1481 const struct block *block)
1482 {
1483 struct symbol *sym;
1484 char *nam = (char *)
1485 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1486
1487 strcpy (nam, name);
1488 strcat (nam, "<");
1489 strcat (nam, TYPE_NAME (type));
1490 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1491
1492 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1493
1494 if (sym == NULL)
1495 {
1496 error (_("No template type named %s."), name);
1497 }
1498 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1499 {
1500 error (_("This context has class, union or enum %s, not a struct."),
1501 name);
1502 }
1503 return (SYMBOL_TYPE (sym));
1504 }
1505
1506 /* Given a type TYPE, lookup the type of the component of type named
1507 NAME.
1508
1509 TYPE can be either a struct or union, or a pointer or reference to
1510 a struct or union. If it is a pointer or reference, its target
1511 type is automatically used. Thus '.' and '->' are interchangable,
1512 as specified for the definitions of the expression element types
1513 STRUCTOP_STRUCT and STRUCTOP_PTR.
1514
1515 If NOERR is nonzero, return zero if NAME is not suitably defined.
1516 If NAME is the name of a baseclass type, return that type. */
1517
1518 struct type *
1519 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1520 {
1521 int i;
1522 char *type_name;
1523
1524 for (;;)
1525 {
1526 CHECK_TYPEDEF (type);
1527 if (TYPE_CODE (type) != TYPE_CODE_PTR
1528 && TYPE_CODE (type) != TYPE_CODE_REF)
1529 break;
1530 type = TYPE_TARGET_TYPE (type);
1531 }
1532
1533 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1534 && TYPE_CODE (type) != TYPE_CODE_UNION)
1535 {
1536 type_name = type_to_string (type);
1537 make_cleanup (xfree, type_name);
1538 error (_("Type %s is not a structure or union type."), type_name);
1539 }
1540
1541 #if 0
1542 /* FIXME: This change put in by Michael seems incorrect for the case
1543 where the structure tag name is the same as the member name.
1544 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1545 foo; } bell;" Disabled by fnf. */
1546 {
1547 char *type_name;
1548
1549 type_name = type_name_no_tag (type);
1550 if (type_name != NULL && strcmp (type_name, name) == 0)
1551 return type;
1552 }
1553 #endif
1554
1555 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1556 {
1557 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1558
1559 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1560 {
1561 return TYPE_FIELD_TYPE (type, i);
1562 }
1563 else if (!t_field_name || *t_field_name == '\0')
1564 {
1565 struct type *subtype
1566 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1567
1568 if (subtype != NULL)
1569 return subtype;
1570 }
1571 }
1572
1573 /* OK, it's not in this class. Recursively check the baseclasses. */
1574 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1575 {
1576 struct type *t;
1577
1578 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1579 if (t != NULL)
1580 {
1581 return t;
1582 }
1583 }
1584
1585 if (noerr)
1586 {
1587 return NULL;
1588 }
1589
1590 type_name = type_to_string (type);
1591 make_cleanup (xfree, type_name);
1592 error (_("Type %s has no component named %s."), type_name, name);
1593 }
1594
1595 /* Store in *MAX the largest number representable by unsigned integer type
1596 TYPE. */
1597
1598 void
1599 get_unsigned_type_max (struct type *type, ULONGEST *max)
1600 {
1601 unsigned int n;
1602
1603 CHECK_TYPEDEF (type);
1604 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1605 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1606
1607 /* Written this way to avoid overflow. */
1608 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1609 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1610 }
1611
1612 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1613 signed integer type TYPE. */
1614
1615 void
1616 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1617 {
1618 unsigned int n;
1619
1620 CHECK_TYPEDEF (type);
1621 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1622 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1623
1624 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1625 *min = -((ULONGEST) 1 << (n - 1));
1626 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1627 }
1628
1629 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1630 cplus_stuff.vptr_fieldno.
1631
1632 cplus_stuff is initialized to cplus_struct_default which does not
1633 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1634 designated initializers). We cope with that here. */
1635
1636 int
1637 internal_type_vptr_fieldno (struct type *type)
1638 {
1639 CHECK_TYPEDEF (type);
1640 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1641 || TYPE_CODE (type) == TYPE_CODE_UNION);
1642 if (!HAVE_CPLUS_STRUCT (type))
1643 return -1;
1644 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1645 }
1646
1647 /* Set the value of cplus_stuff.vptr_fieldno. */
1648
1649 void
1650 set_type_vptr_fieldno (struct type *type, int fieldno)
1651 {
1652 CHECK_TYPEDEF (type);
1653 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1654 || TYPE_CODE (type) == TYPE_CODE_UNION);
1655 if (!HAVE_CPLUS_STRUCT (type))
1656 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1657 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1658 }
1659
1660 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1661 cplus_stuff.vptr_basetype. */
1662
1663 struct type *
1664 internal_type_vptr_basetype (struct type *type)
1665 {
1666 CHECK_TYPEDEF (type);
1667 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1668 || TYPE_CODE (type) == TYPE_CODE_UNION);
1669 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1670 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1671 }
1672
1673 /* Set the value of cplus_stuff.vptr_basetype. */
1674
1675 void
1676 set_type_vptr_basetype (struct type *type, struct type *basetype)
1677 {
1678 CHECK_TYPEDEF (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1683 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1684 }
1685
1686 /* Lookup the vptr basetype/fieldno values for TYPE.
1687 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1688 vptr_fieldno. Also, if found and basetype is from the same objfile,
1689 cache the results.
1690 If not found, return -1 and ignore BASETYPEP.
1691 Callers should be aware that in some cases (for example,
1692 the type or one of its baseclasses is a stub type and we are
1693 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1694 this function will not be able to find the
1695 virtual function table pointer, and vptr_fieldno will remain -1 and
1696 vptr_basetype will remain NULL or incomplete. */
1697
1698 int
1699 get_vptr_fieldno (struct type *type, struct type **basetypep)
1700 {
1701 CHECK_TYPEDEF (type);
1702
1703 if (TYPE_VPTR_FIELDNO (type) < 0)
1704 {
1705 int i;
1706
1707 /* We must start at zero in case the first (and only) baseclass
1708 is virtual (and hence we cannot share the table pointer). */
1709 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1710 {
1711 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1712 int fieldno;
1713 struct type *basetype;
1714
1715 fieldno = get_vptr_fieldno (baseclass, &basetype);
1716 if (fieldno >= 0)
1717 {
1718 /* If the type comes from a different objfile we can't cache
1719 it, it may have a different lifetime. PR 2384 */
1720 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1721 {
1722 set_type_vptr_fieldno (type, fieldno);
1723 set_type_vptr_basetype (type, basetype);
1724 }
1725 if (basetypep)
1726 *basetypep = basetype;
1727 return fieldno;
1728 }
1729 }
1730
1731 /* Not found. */
1732 return -1;
1733 }
1734 else
1735 {
1736 if (basetypep)
1737 *basetypep = TYPE_VPTR_BASETYPE (type);
1738 return TYPE_VPTR_FIELDNO (type);
1739 }
1740 }
1741
1742 static void
1743 stub_noname_complaint (void)
1744 {
1745 complaint (&symfile_complaints, _("stub type has NULL name"));
1746 }
1747
1748 /* Worker for is_dynamic_type. */
1749
1750 static int
1751 is_dynamic_type_internal (struct type *type, int top_level)
1752 {
1753 type = check_typedef (type);
1754
1755 /* We only want to recognize references at the outermost level. */
1756 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1757 type = check_typedef (TYPE_TARGET_TYPE (type));
1758
1759 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1760 dynamic, even if the type itself is statically defined.
1761 From a user's point of view, this may appear counter-intuitive;
1762 but it makes sense in this context, because the point is to determine
1763 whether any part of the type needs to be resolved before it can
1764 be exploited. */
1765 if (TYPE_DATA_LOCATION (type) != NULL
1766 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1767 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1768 return 1;
1769
1770 switch (TYPE_CODE (type))
1771 {
1772 case TYPE_CODE_RANGE:
1773 {
1774 /* A range type is obviously dynamic if it has at least one
1775 dynamic bound. But also consider the range type to be
1776 dynamic when its subtype is dynamic, even if the bounds
1777 of the range type are static. It allows us to assume that
1778 the subtype of a static range type is also static. */
1779 return (!has_static_range (TYPE_RANGE_DATA (type))
1780 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1781 }
1782
1783 case TYPE_CODE_ARRAY:
1784 {
1785 gdb_assert (TYPE_NFIELDS (type) == 1);
1786
1787 /* The array is dynamic if either the bounds are dynamic,
1788 or the elements it contains have a dynamic contents. */
1789 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1790 return 1;
1791 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1792 }
1793
1794 case TYPE_CODE_STRUCT:
1795 case TYPE_CODE_UNION:
1796 {
1797 int i;
1798
1799 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1800 if (!field_is_static (&TYPE_FIELD (type, i))
1801 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1802 return 1;
1803 }
1804 break;
1805 }
1806
1807 return 0;
1808 }
1809
1810 /* See gdbtypes.h. */
1811
1812 int
1813 is_dynamic_type (struct type *type)
1814 {
1815 return is_dynamic_type_internal (type, 1);
1816 }
1817
1818 static struct type *resolve_dynamic_type_internal
1819 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1820
1821 /* Given a dynamic range type (dyn_range_type) and a stack of
1822 struct property_addr_info elements, return a static version
1823 of that type. */
1824
1825 static struct type *
1826 resolve_dynamic_range (struct type *dyn_range_type,
1827 struct property_addr_info *addr_stack)
1828 {
1829 CORE_ADDR value;
1830 struct type *static_range_type, *static_target_type;
1831 const struct dynamic_prop *prop;
1832 const struct dwarf2_locexpr_baton *baton;
1833 struct dynamic_prop low_bound, high_bound;
1834
1835 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1836
1837 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1838 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1839 {
1840 low_bound.kind = PROP_CONST;
1841 low_bound.data.const_val = value;
1842 }
1843 else
1844 {
1845 low_bound.kind = PROP_UNDEFINED;
1846 low_bound.data.const_val = 0;
1847 }
1848
1849 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1850 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1851 {
1852 high_bound.kind = PROP_CONST;
1853 high_bound.data.const_val = value;
1854
1855 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1856 high_bound.data.const_val
1857 = low_bound.data.const_val + high_bound.data.const_val - 1;
1858 }
1859 else
1860 {
1861 high_bound.kind = PROP_UNDEFINED;
1862 high_bound.data.const_val = 0;
1863 }
1864
1865 static_target_type
1866 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1867 addr_stack, 0);
1868 static_range_type = create_range_type (copy_type (dyn_range_type),
1869 static_target_type,
1870 &low_bound, &high_bound);
1871 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1872 return static_range_type;
1873 }
1874
1875 /* Resolves dynamic bound values of an array type TYPE to static ones.
1876 ADDR_STACK is a stack of struct property_addr_info to be used
1877 if needed during the dynamic resolution. */
1878
1879 static struct type *
1880 resolve_dynamic_array (struct type *type,
1881 struct property_addr_info *addr_stack)
1882 {
1883 CORE_ADDR value;
1884 struct type *elt_type;
1885 struct type *range_type;
1886 struct type *ary_dim;
1887
1888 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1889
1890 elt_type = type;
1891 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1892 range_type = resolve_dynamic_range (range_type, addr_stack);
1893
1894 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1895
1896 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1897 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1898 else
1899 elt_type = TYPE_TARGET_TYPE (type);
1900
1901 return create_array_type (copy_type (type),
1902 elt_type,
1903 range_type);
1904 }
1905
1906 /* Resolve dynamic bounds of members of the union TYPE to static
1907 bounds. ADDR_STACK is a stack of struct property_addr_info
1908 to be used if needed during the dynamic resolution. */
1909
1910 static struct type *
1911 resolve_dynamic_union (struct type *type,
1912 struct property_addr_info *addr_stack)
1913 {
1914 struct type *resolved_type;
1915 int i;
1916 unsigned int max_len = 0;
1917
1918 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1919
1920 resolved_type = copy_type (type);
1921 TYPE_FIELDS (resolved_type)
1922 = TYPE_ALLOC (resolved_type,
1923 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1924 memcpy (TYPE_FIELDS (resolved_type),
1925 TYPE_FIELDS (type),
1926 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1927 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1928 {
1929 struct type *t;
1930
1931 if (field_is_static (&TYPE_FIELD (type, i)))
1932 continue;
1933
1934 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1935 addr_stack, 0);
1936 TYPE_FIELD_TYPE (resolved_type, i) = t;
1937 if (TYPE_LENGTH (t) > max_len)
1938 max_len = TYPE_LENGTH (t);
1939 }
1940
1941 TYPE_LENGTH (resolved_type) = max_len;
1942 return resolved_type;
1943 }
1944
1945 /* Resolve dynamic bounds of members of the struct TYPE to static
1946 bounds. ADDR_STACK is a stack of struct property_addr_info to
1947 be used if needed during the dynamic resolution. */
1948
1949 static struct type *
1950 resolve_dynamic_struct (struct type *type,
1951 struct property_addr_info *addr_stack)
1952 {
1953 struct type *resolved_type;
1954 int i;
1955 unsigned resolved_type_bit_length = 0;
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1958 gdb_assert (TYPE_NFIELDS (type) > 0);
1959
1960 resolved_type = copy_type (type);
1961 TYPE_FIELDS (resolved_type)
1962 = TYPE_ALLOC (resolved_type,
1963 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1964 memcpy (TYPE_FIELDS (resolved_type),
1965 TYPE_FIELDS (type),
1966 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1967 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1968 {
1969 unsigned new_bit_length;
1970 struct property_addr_info pinfo;
1971
1972 if (field_is_static (&TYPE_FIELD (type, i)))
1973 continue;
1974
1975 /* As we know this field is not a static field, the field's
1976 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1977 this is the case, but only trigger a simple error rather
1978 than an internal error if that fails. While failing
1979 that verification indicates a bug in our code, the error
1980 is not severe enough to suggest to the user he stops
1981 his debugging session because of it. */
1982 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
1983 error (_("Cannot determine struct field location"
1984 " (invalid location kind)"));
1985
1986 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
1987 pinfo.addr = addr_stack->addr;
1988 pinfo.next = addr_stack;
1989
1990 TYPE_FIELD_TYPE (resolved_type, i)
1991 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1992 &pinfo, 0);
1993 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
1994 == FIELD_LOC_KIND_BITPOS);
1995
1996 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1997 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1998 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1999 else
2000 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2001 * TARGET_CHAR_BIT);
2002
2003 /* Normally, we would use the position and size of the last field
2004 to determine the size of the enclosing structure. But GCC seems
2005 to be encoding the position of some fields incorrectly when
2006 the struct contains a dynamic field that is not placed last.
2007 So we compute the struct size based on the field that has
2008 the highest position + size - probably the best we can do. */
2009 if (new_bit_length > resolved_type_bit_length)
2010 resolved_type_bit_length = new_bit_length;
2011 }
2012
2013 TYPE_LENGTH (resolved_type)
2014 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2015
2016 return resolved_type;
2017 }
2018
2019 /* Worker for resolved_dynamic_type. */
2020
2021 static struct type *
2022 resolve_dynamic_type_internal (struct type *type,
2023 struct property_addr_info *addr_stack,
2024 int top_level)
2025 {
2026 struct type *real_type = check_typedef (type);
2027 struct type *resolved_type = type;
2028 const struct dynamic_prop *prop;
2029 CORE_ADDR value;
2030
2031 if (!is_dynamic_type_internal (real_type, top_level))
2032 return type;
2033
2034 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2035 {
2036 resolved_type = copy_type (type);
2037 TYPE_TARGET_TYPE (resolved_type)
2038 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2039 top_level);
2040 }
2041 else
2042 {
2043 /* Before trying to resolve TYPE, make sure it is not a stub. */
2044 type = real_type;
2045
2046 switch (TYPE_CODE (type))
2047 {
2048 case TYPE_CODE_REF:
2049 {
2050 struct property_addr_info pinfo;
2051
2052 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2053 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2054 pinfo.next = addr_stack;
2055
2056 resolved_type = copy_type (type);
2057 TYPE_TARGET_TYPE (resolved_type)
2058 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2059 &pinfo, top_level);
2060 break;
2061 }
2062
2063 case TYPE_CODE_ARRAY:
2064 resolved_type = resolve_dynamic_array (type, addr_stack);
2065 break;
2066
2067 case TYPE_CODE_RANGE:
2068 resolved_type = resolve_dynamic_range (type, addr_stack);
2069 break;
2070
2071 case TYPE_CODE_UNION:
2072 resolved_type = resolve_dynamic_union (type, addr_stack);
2073 break;
2074
2075 case TYPE_CODE_STRUCT:
2076 resolved_type = resolve_dynamic_struct (type, addr_stack);
2077 break;
2078 }
2079 }
2080
2081 /* Resolve data_location attribute. */
2082 prop = TYPE_DATA_LOCATION (resolved_type);
2083 if (dwarf2_evaluate_property (prop, addr_stack, &value))
2084 {
2085 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
2086 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
2087 }
2088 else
2089 TYPE_DATA_LOCATION (resolved_type) = NULL;
2090
2091 return resolved_type;
2092 }
2093
2094 /* See gdbtypes.h */
2095
2096 struct type *
2097 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
2098 {
2099 struct property_addr_info pinfo = {check_typedef (type), addr, NULL};
2100
2101 return resolve_dynamic_type_internal (type, &pinfo, 1);
2102 }
2103
2104 /* Find the real type of TYPE. This function returns the real type,
2105 after removing all layers of typedefs, and completing opaque or stub
2106 types. Completion changes the TYPE argument, but stripping of
2107 typedefs does not.
2108
2109 Instance flags (e.g. const/volatile) are preserved as typedefs are
2110 stripped. If necessary a new qualified form of the underlying type
2111 is created.
2112
2113 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2114 not been computed and we're either in the middle of reading symbols, or
2115 there was no name for the typedef in the debug info.
2116
2117 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2118 QUITs in the symbol reading code can also throw.
2119 Thus this function can throw an exception.
2120
2121 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2122 the target type.
2123
2124 If this is a stubbed struct (i.e. declared as struct foo *), see if
2125 we can find a full definition in some other file. If so, copy this
2126 definition, so we can use it in future. There used to be a comment
2127 (but not any code) that if we don't find a full definition, we'd
2128 set a flag so we don't spend time in the future checking the same
2129 type. That would be a mistake, though--we might load in more
2130 symbols which contain a full definition for the type. */
2131
2132 struct type *
2133 check_typedef (struct type *type)
2134 {
2135 struct type *orig_type = type;
2136 /* While we're removing typedefs, we don't want to lose qualifiers.
2137 E.g., const/volatile. */
2138 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2139
2140 gdb_assert (type);
2141
2142 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2143 {
2144 if (!TYPE_TARGET_TYPE (type))
2145 {
2146 const char *name;
2147 struct symbol *sym;
2148
2149 /* It is dangerous to call lookup_symbol if we are currently
2150 reading a symtab. Infinite recursion is one danger. */
2151 if (currently_reading_symtab)
2152 return make_qualified_type (type, instance_flags, NULL);
2153
2154 name = type_name_no_tag (type);
2155 /* FIXME: shouldn't we separately check the TYPE_NAME and
2156 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2157 VAR_DOMAIN as appropriate? (this code was written before
2158 TYPE_NAME and TYPE_TAG_NAME were separate). */
2159 if (name == NULL)
2160 {
2161 stub_noname_complaint ();
2162 return make_qualified_type (type, instance_flags, NULL);
2163 }
2164 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2165 if (sym)
2166 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2167 else /* TYPE_CODE_UNDEF */
2168 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2169 }
2170 type = TYPE_TARGET_TYPE (type);
2171
2172 /* Preserve the instance flags as we traverse down the typedef chain.
2173
2174 Handling address spaces/classes is nasty, what do we do if there's a
2175 conflict?
2176 E.g., what if an outer typedef marks the type as class_1 and an inner
2177 typedef marks the type as class_2?
2178 This is the wrong place to do such error checking. We leave it to
2179 the code that created the typedef in the first place to flag the
2180 error. We just pick the outer address space (akin to letting the
2181 outer cast in a chain of casting win), instead of assuming
2182 "it can't happen". */
2183 {
2184 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2185 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2186 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2187 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2188
2189 /* Treat code vs data spaces and address classes separately. */
2190 if ((instance_flags & ALL_SPACES) != 0)
2191 new_instance_flags &= ~ALL_SPACES;
2192 if ((instance_flags & ALL_CLASSES) != 0)
2193 new_instance_flags &= ~ALL_CLASSES;
2194
2195 instance_flags |= new_instance_flags;
2196 }
2197 }
2198
2199 /* If this is a struct/class/union with no fields, then check
2200 whether a full definition exists somewhere else. This is for
2201 systems where a type definition with no fields is issued for such
2202 types, instead of identifying them as stub types in the first
2203 place. */
2204
2205 if (TYPE_IS_OPAQUE (type)
2206 && opaque_type_resolution
2207 && !currently_reading_symtab)
2208 {
2209 const char *name = type_name_no_tag (type);
2210 struct type *newtype;
2211
2212 if (name == NULL)
2213 {
2214 stub_noname_complaint ();
2215 return make_qualified_type (type, instance_flags, NULL);
2216 }
2217 newtype = lookup_transparent_type (name);
2218
2219 if (newtype)
2220 {
2221 /* If the resolved type and the stub are in the same
2222 objfile, then replace the stub type with the real deal.
2223 But if they're in separate objfiles, leave the stub
2224 alone; we'll just look up the transparent type every time
2225 we call check_typedef. We can't create pointers between
2226 types allocated to different objfiles, since they may
2227 have different lifetimes. Trying to copy NEWTYPE over to
2228 TYPE's objfile is pointless, too, since you'll have to
2229 move over any other types NEWTYPE refers to, which could
2230 be an unbounded amount of stuff. */
2231 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2232 type = make_qualified_type (newtype,
2233 TYPE_INSTANCE_FLAGS (type),
2234 type);
2235 else
2236 type = newtype;
2237 }
2238 }
2239 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2240 types. */
2241 else if (TYPE_STUB (type) && !currently_reading_symtab)
2242 {
2243 const char *name = type_name_no_tag (type);
2244 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2245 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2246 as appropriate? (this code was written before TYPE_NAME and
2247 TYPE_TAG_NAME were separate). */
2248 struct symbol *sym;
2249
2250 if (name == NULL)
2251 {
2252 stub_noname_complaint ();
2253 return make_qualified_type (type, instance_flags, NULL);
2254 }
2255 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2256 if (sym)
2257 {
2258 /* Same as above for opaque types, we can replace the stub
2259 with the complete type only if they are in the same
2260 objfile. */
2261 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2262 type = make_qualified_type (SYMBOL_TYPE (sym),
2263 TYPE_INSTANCE_FLAGS (type),
2264 type);
2265 else
2266 type = SYMBOL_TYPE (sym);
2267 }
2268 }
2269
2270 if (TYPE_TARGET_STUB (type))
2271 {
2272 struct type *range_type;
2273 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2274
2275 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2276 {
2277 /* Nothing we can do. */
2278 }
2279 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2280 {
2281 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2282 TYPE_TARGET_STUB (type) = 0;
2283 }
2284 }
2285
2286 type = make_qualified_type (type, instance_flags, NULL);
2287
2288 /* Cache TYPE_LENGTH for future use. */
2289 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2290
2291 return type;
2292 }
2293
2294 /* Parse a type expression in the string [P..P+LENGTH). If an error
2295 occurs, silently return a void type. */
2296
2297 static struct type *
2298 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2299 {
2300 struct ui_file *saved_gdb_stderr;
2301 struct type *type = NULL; /* Initialize to keep gcc happy. */
2302
2303 /* Suppress error messages. */
2304 saved_gdb_stderr = gdb_stderr;
2305 gdb_stderr = ui_file_new ();
2306
2307 /* Call parse_and_eval_type() without fear of longjmp()s. */
2308 TRY
2309 {
2310 type = parse_and_eval_type (p, length);
2311 }
2312 CATCH (except, RETURN_MASK_ERROR)
2313 {
2314 type = builtin_type (gdbarch)->builtin_void;
2315 }
2316 END_CATCH
2317
2318 /* Stop suppressing error messages. */
2319 ui_file_delete (gdb_stderr);
2320 gdb_stderr = saved_gdb_stderr;
2321
2322 return type;
2323 }
2324
2325 /* Ugly hack to convert method stubs into method types.
2326
2327 He ain't kiddin'. This demangles the name of the method into a
2328 string including argument types, parses out each argument type,
2329 generates a string casting a zero to that type, evaluates the
2330 string, and stuffs the resulting type into an argtype vector!!!
2331 Then it knows the type of the whole function (including argument
2332 types for overloading), which info used to be in the stab's but was
2333 removed to hack back the space required for them. */
2334
2335 static void
2336 check_stub_method (struct type *type, int method_id, int signature_id)
2337 {
2338 struct gdbarch *gdbarch = get_type_arch (type);
2339 struct fn_field *f;
2340 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2341 char *demangled_name = gdb_demangle (mangled_name,
2342 DMGL_PARAMS | DMGL_ANSI);
2343 char *argtypetext, *p;
2344 int depth = 0, argcount = 1;
2345 struct field *argtypes;
2346 struct type *mtype;
2347
2348 /* Make sure we got back a function string that we can use. */
2349 if (demangled_name)
2350 p = strchr (demangled_name, '(');
2351 else
2352 p = NULL;
2353
2354 if (demangled_name == NULL || p == NULL)
2355 error (_("Internal: Cannot demangle mangled name `%s'."),
2356 mangled_name);
2357
2358 /* Now, read in the parameters that define this type. */
2359 p += 1;
2360 argtypetext = p;
2361 while (*p)
2362 {
2363 if (*p == '(' || *p == '<')
2364 {
2365 depth += 1;
2366 }
2367 else if (*p == ')' || *p == '>')
2368 {
2369 depth -= 1;
2370 }
2371 else if (*p == ',' && depth == 0)
2372 {
2373 argcount += 1;
2374 }
2375
2376 p += 1;
2377 }
2378
2379 /* If we read one argument and it was ``void'', don't count it. */
2380 if (startswith (argtypetext, "(void)"))
2381 argcount -= 1;
2382
2383 /* We need one extra slot, for the THIS pointer. */
2384
2385 argtypes = (struct field *)
2386 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2387 p = argtypetext;
2388
2389 /* Add THIS pointer for non-static methods. */
2390 f = TYPE_FN_FIELDLIST1 (type, method_id);
2391 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2392 argcount = 0;
2393 else
2394 {
2395 argtypes[0].type = lookup_pointer_type (type);
2396 argcount = 1;
2397 }
2398
2399 if (*p != ')') /* () means no args, skip while. */
2400 {
2401 depth = 0;
2402 while (*p)
2403 {
2404 if (depth <= 0 && (*p == ',' || *p == ')'))
2405 {
2406 /* Avoid parsing of ellipsis, they will be handled below.
2407 Also avoid ``void'' as above. */
2408 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2409 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2410 {
2411 argtypes[argcount].type =
2412 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2413 argcount += 1;
2414 }
2415 argtypetext = p + 1;
2416 }
2417
2418 if (*p == '(' || *p == '<')
2419 {
2420 depth += 1;
2421 }
2422 else if (*p == ')' || *p == '>')
2423 {
2424 depth -= 1;
2425 }
2426
2427 p += 1;
2428 }
2429 }
2430
2431 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2432
2433 /* Now update the old "stub" type into a real type. */
2434 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2435 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2436 We want a method (TYPE_CODE_METHOD). */
2437 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2438 argtypes, argcount, p[-2] == '.');
2439 TYPE_STUB (mtype) = 0;
2440 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2441
2442 xfree (demangled_name);
2443 }
2444
2445 /* This is the external interface to check_stub_method, above. This
2446 function unstubs all of the signatures for TYPE's METHOD_ID method
2447 name. After calling this function TYPE_FN_FIELD_STUB will be
2448 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2449 correct.
2450
2451 This function unfortunately can not die until stabs do. */
2452
2453 void
2454 check_stub_method_group (struct type *type, int method_id)
2455 {
2456 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2457 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2458 int j, found_stub = 0;
2459
2460 for (j = 0; j < len; j++)
2461 if (TYPE_FN_FIELD_STUB (f, j))
2462 {
2463 found_stub = 1;
2464 check_stub_method (type, method_id, j);
2465 }
2466
2467 /* GNU v3 methods with incorrect names were corrected when we read
2468 in type information, because it was cheaper to do it then. The
2469 only GNU v2 methods with incorrect method names are operators and
2470 destructors; destructors were also corrected when we read in type
2471 information.
2472
2473 Therefore the only thing we need to handle here are v2 operator
2474 names. */
2475 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2476 {
2477 int ret;
2478 char dem_opname[256];
2479
2480 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2481 method_id),
2482 dem_opname, DMGL_ANSI);
2483 if (!ret)
2484 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2485 method_id),
2486 dem_opname, 0);
2487 if (ret)
2488 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2489 }
2490 }
2491
2492 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2493 const struct cplus_struct_type cplus_struct_default = { };
2494
2495 void
2496 allocate_cplus_struct_type (struct type *type)
2497 {
2498 if (HAVE_CPLUS_STRUCT (type))
2499 /* Structure was already allocated. Nothing more to do. */
2500 return;
2501
2502 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2503 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2504 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2505 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2506 set_type_vptr_fieldno (type, -1);
2507 }
2508
2509 const struct gnat_aux_type gnat_aux_default =
2510 { NULL };
2511
2512 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2513 and allocate the associated gnat-specific data. The gnat-specific
2514 data is also initialized to gnat_aux_default. */
2515
2516 void
2517 allocate_gnat_aux_type (struct type *type)
2518 {
2519 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2520 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2521 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2522 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2523 }
2524
2525 /* Helper function to initialize the standard scalar types.
2526
2527 If NAME is non-NULL, then it is used to initialize the type name.
2528 Note that NAME is not copied; it is required to have a lifetime at
2529 least as long as OBJFILE. */
2530
2531 struct type *
2532 init_type (enum type_code code, int length, int flags,
2533 const char *name, struct objfile *objfile)
2534 {
2535 struct type *type;
2536
2537 type = alloc_type (objfile);
2538 TYPE_CODE (type) = code;
2539 TYPE_LENGTH (type) = length;
2540
2541 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2542 if (flags & TYPE_FLAG_UNSIGNED)
2543 TYPE_UNSIGNED (type) = 1;
2544 if (flags & TYPE_FLAG_NOSIGN)
2545 TYPE_NOSIGN (type) = 1;
2546 if (flags & TYPE_FLAG_STUB)
2547 TYPE_STUB (type) = 1;
2548 if (flags & TYPE_FLAG_TARGET_STUB)
2549 TYPE_TARGET_STUB (type) = 1;
2550 if (flags & TYPE_FLAG_STATIC)
2551 TYPE_STATIC (type) = 1;
2552 if (flags & TYPE_FLAG_PROTOTYPED)
2553 TYPE_PROTOTYPED (type) = 1;
2554 if (flags & TYPE_FLAG_INCOMPLETE)
2555 TYPE_INCOMPLETE (type) = 1;
2556 if (flags & TYPE_FLAG_VARARGS)
2557 TYPE_VARARGS (type) = 1;
2558 if (flags & TYPE_FLAG_VECTOR)
2559 TYPE_VECTOR (type) = 1;
2560 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2561 TYPE_STUB_SUPPORTED (type) = 1;
2562 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2563 TYPE_FIXED_INSTANCE (type) = 1;
2564 if (flags & TYPE_FLAG_GNU_IFUNC)
2565 TYPE_GNU_IFUNC (type) = 1;
2566
2567 TYPE_NAME (type) = name;
2568
2569 /* C++ fancies. */
2570
2571 if (name && strcmp (name, "char") == 0)
2572 TYPE_NOSIGN (type) = 1;
2573
2574 switch (code)
2575 {
2576 case TYPE_CODE_STRUCT:
2577 case TYPE_CODE_UNION:
2578 case TYPE_CODE_NAMESPACE:
2579 INIT_CPLUS_SPECIFIC (type);
2580 break;
2581 case TYPE_CODE_FLT:
2582 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2583 break;
2584 case TYPE_CODE_FUNC:
2585 INIT_FUNC_SPECIFIC (type);
2586 break;
2587 }
2588 return type;
2589 }
2590 \f
2591 /* Queries on types. */
2592
2593 int
2594 can_dereference (struct type *t)
2595 {
2596 /* FIXME: Should we return true for references as well as
2597 pointers? */
2598 CHECK_TYPEDEF (t);
2599 return
2600 (t != NULL
2601 && TYPE_CODE (t) == TYPE_CODE_PTR
2602 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2603 }
2604
2605 int
2606 is_integral_type (struct type *t)
2607 {
2608 CHECK_TYPEDEF (t);
2609 return
2610 ((t != NULL)
2611 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2612 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2613 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2614 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2615 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2616 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2617 }
2618
2619 /* Return true if TYPE is scalar. */
2620
2621 static int
2622 is_scalar_type (struct type *type)
2623 {
2624 CHECK_TYPEDEF (type);
2625
2626 switch (TYPE_CODE (type))
2627 {
2628 case TYPE_CODE_ARRAY:
2629 case TYPE_CODE_STRUCT:
2630 case TYPE_CODE_UNION:
2631 case TYPE_CODE_SET:
2632 case TYPE_CODE_STRING:
2633 return 0;
2634 default:
2635 return 1;
2636 }
2637 }
2638
2639 /* Return true if T is scalar, or a composite type which in practice has
2640 the memory layout of a scalar type. E.g., an array or struct with only
2641 one scalar element inside it, or a union with only scalar elements. */
2642
2643 int
2644 is_scalar_type_recursive (struct type *t)
2645 {
2646 CHECK_TYPEDEF (t);
2647
2648 if (is_scalar_type (t))
2649 return 1;
2650 /* Are we dealing with an array or string of known dimensions? */
2651 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2652 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2653 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2654 {
2655 LONGEST low_bound, high_bound;
2656 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2657
2658 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2659
2660 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2661 }
2662 /* Are we dealing with a struct with one element? */
2663 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2664 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2665 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2666 {
2667 int i, n = TYPE_NFIELDS (t);
2668
2669 /* If all elements of the union are scalar, then the union is scalar. */
2670 for (i = 0; i < n; i++)
2671 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2672 return 0;
2673
2674 return 1;
2675 }
2676
2677 return 0;
2678 }
2679
2680 /* Return true is T is a class or a union. False otherwise. */
2681
2682 int
2683 class_or_union_p (const struct type *t)
2684 {
2685 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2686 || TYPE_CODE (t) == TYPE_CODE_UNION);
2687 }
2688
2689 /* A helper function which returns true if types A and B represent the
2690 "same" class type. This is true if the types have the same main
2691 type, or the same name. */
2692
2693 int
2694 class_types_same_p (const struct type *a, const struct type *b)
2695 {
2696 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2697 || (TYPE_NAME (a) && TYPE_NAME (b)
2698 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2699 }
2700
2701 /* If BASE is an ancestor of DCLASS return the distance between them.
2702 otherwise return -1;
2703 eg:
2704
2705 class A {};
2706 class B: public A {};
2707 class C: public B {};
2708 class D: C {};
2709
2710 distance_to_ancestor (A, A, 0) = 0
2711 distance_to_ancestor (A, B, 0) = 1
2712 distance_to_ancestor (A, C, 0) = 2
2713 distance_to_ancestor (A, D, 0) = 3
2714
2715 If PUBLIC is 1 then only public ancestors are considered,
2716 and the function returns the distance only if BASE is a public ancestor
2717 of DCLASS.
2718 Eg:
2719
2720 distance_to_ancestor (A, D, 1) = -1. */
2721
2722 static int
2723 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2724 {
2725 int i;
2726 int d;
2727
2728 CHECK_TYPEDEF (base);
2729 CHECK_TYPEDEF (dclass);
2730
2731 if (class_types_same_p (base, dclass))
2732 return 0;
2733
2734 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2735 {
2736 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2737 continue;
2738
2739 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2740 if (d >= 0)
2741 return 1 + d;
2742 }
2743
2744 return -1;
2745 }
2746
2747 /* Check whether BASE is an ancestor or base class or DCLASS
2748 Return 1 if so, and 0 if not.
2749 Note: If BASE and DCLASS are of the same type, this function
2750 will return 1. So for some class A, is_ancestor (A, A) will
2751 return 1. */
2752
2753 int
2754 is_ancestor (struct type *base, struct type *dclass)
2755 {
2756 return distance_to_ancestor (base, dclass, 0) >= 0;
2757 }
2758
2759 /* Like is_ancestor, but only returns true when BASE is a public
2760 ancestor of DCLASS. */
2761
2762 int
2763 is_public_ancestor (struct type *base, struct type *dclass)
2764 {
2765 return distance_to_ancestor (base, dclass, 1) >= 0;
2766 }
2767
2768 /* A helper function for is_unique_ancestor. */
2769
2770 static int
2771 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2772 int *offset,
2773 const gdb_byte *valaddr, int embedded_offset,
2774 CORE_ADDR address, struct value *val)
2775 {
2776 int i, count = 0;
2777
2778 CHECK_TYPEDEF (base);
2779 CHECK_TYPEDEF (dclass);
2780
2781 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2782 {
2783 struct type *iter;
2784 int this_offset;
2785
2786 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2787
2788 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2789 address, val);
2790
2791 if (class_types_same_p (base, iter))
2792 {
2793 /* If this is the first subclass, set *OFFSET and set count
2794 to 1. Otherwise, if this is at the same offset as
2795 previous instances, do nothing. Otherwise, increment
2796 count. */
2797 if (*offset == -1)
2798 {
2799 *offset = this_offset;
2800 count = 1;
2801 }
2802 else if (this_offset == *offset)
2803 {
2804 /* Nothing. */
2805 }
2806 else
2807 ++count;
2808 }
2809 else
2810 count += is_unique_ancestor_worker (base, iter, offset,
2811 valaddr,
2812 embedded_offset + this_offset,
2813 address, val);
2814 }
2815
2816 return count;
2817 }
2818
2819 /* Like is_ancestor, but only returns true if BASE is a unique base
2820 class of the type of VAL. */
2821
2822 int
2823 is_unique_ancestor (struct type *base, struct value *val)
2824 {
2825 int offset = -1;
2826
2827 return is_unique_ancestor_worker (base, value_type (val), &offset,
2828 value_contents_for_printing (val),
2829 value_embedded_offset (val),
2830 value_address (val), val) == 1;
2831 }
2832
2833 \f
2834 /* Overload resolution. */
2835
2836 /* Return the sum of the rank of A with the rank of B. */
2837
2838 struct rank
2839 sum_ranks (struct rank a, struct rank b)
2840 {
2841 struct rank c;
2842 c.rank = a.rank + b.rank;
2843 c.subrank = a.subrank + b.subrank;
2844 return c;
2845 }
2846
2847 /* Compare rank A and B and return:
2848 0 if a = b
2849 1 if a is better than b
2850 -1 if b is better than a. */
2851
2852 int
2853 compare_ranks (struct rank a, struct rank b)
2854 {
2855 if (a.rank == b.rank)
2856 {
2857 if (a.subrank == b.subrank)
2858 return 0;
2859 if (a.subrank < b.subrank)
2860 return 1;
2861 if (a.subrank > b.subrank)
2862 return -1;
2863 }
2864
2865 if (a.rank < b.rank)
2866 return 1;
2867
2868 /* a.rank > b.rank */
2869 return -1;
2870 }
2871
2872 /* Functions for overload resolution begin here. */
2873
2874 /* Compare two badness vectors A and B and return the result.
2875 0 => A and B are identical
2876 1 => A and B are incomparable
2877 2 => A is better than B
2878 3 => A is worse than B */
2879
2880 int
2881 compare_badness (struct badness_vector *a, struct badness_vector *b)
2882 {
2883 int i;
2884 int tmp;
2885 short found_pos = 0; /* any positives in c? */
2886 short found_neg = 0; /* any negatives in c? */
2887
2888 /* differing lengths => incomparable */
2889 if (a->length != b->length)
2890 return 1;
2891
2892 /* Subtract b from a */
2893 for (i = 0; i < a->length; i++)
2894 {
2895 tmp = compare_ranks (b->rank[i], a->rank[i]);
2896 if (tmp > 0)
2897 found_pos = 1;
2898 else if (tmp < 0)
2899 found_neg = 1;
2900 }
2901
2902 if (found_pos)
2903 {
2904 if (found_neg)
2905 return 1; /* incomparable */
2906 else
2907 return 3; /* A > B */
2908 }
2909 else
2910 /* no positives */
2911 {
2912 if (found_neg)
2913 return 2; /* A < B */
2914 else
2915 return 0; /* A == B */
2916 }
2917 }
2918
2919 /* Rank a function by comparing its parameter types (PARMS, length
2920 NPARMS), to the types of an argument list (ARGS, length NARGS).
2921 Return a pointer to a badness vector. This has NARGS + 1
2922 entries. */
2923
2924 struct badness_vector *
2925 rank_function (struct type **parms, int nparms,
2926 struct value **args, int nargs)
2927 {
2928 int i;
2929 struct badness_vector *bv;
2930 int min_len = nparms < nargs ? nparms : nargs;
2931
2932 bv = xmalloc (sizeof (struct badness_vector));
2933 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2934 bv->rank = XNEWVEC (struct rank, nargs + 1);
2935
2936 /* First compare the lengths of the supplied lists.
2937 If there is a mismatch, set it to a high value. */
2938
2939 /* pai/1997-06-03 FIXME: when we have debug info about default
2940 arguments and ellipsis parameter lists, we should consider those
2941 and rank the length-match more finely. */
2942
2943 LENGTH_MATCH (bv) = (nargs != nparms)
2944 ? LENGTH_MISMATCH_BADNESS
2945 : EXACT_MATCH_BADNESS;
2946
2947 /* Now rank all the parameters of the candidate function. */
2948 for (i = 1; i <= min_len; i++)
2949 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2950 args[i - 1]);
2951
2952 /* If more arguments than parameters, add dummy entries. */
2953 for (i = min_len + 1; i <= nargs; i++)
2954 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2955
2956 return bv;
2957 }
2958
2959 /* Compare the names of two integer types, assuming that any sign
2960 qualifiers have been checked already. We do it this way because
2961 there may be an "int" in the name of one of the types. */
2962
2963 static int
2964 integer_types_same_name_p (const char *first, const char *second)
2965 {
2966 int first_p, second_p;
2967
2968 /* If both are shorts, return 1; if neither is a short, keep
2969 checking. */
2970 first_p = (strstr (first, "short") != NULL);
2971 second_p = (strstr (second, "short") != NULL);
2972 if (first_p && second_p)
2973 return 1;
2974 if (first_p || second_p)
2975 return 0;
2976
2977 /* Likewise for long. */
2978 first_p = (strstr (first, "long") != NULL);
2979 second_p = (strstr (second, "long") != NULL);
2980 if (first_p && second_p)
2981 return 1;
2982 if (first_p || second_p)
2983 return 0;
2984
2985 /* Likewise for char. */
2986 first_p = (strstr (first, "char") != NULL);
2987 second_p = (strstr (second, "char") != NULL);
2988 if (first_p && second_p)
2989 return 1;
2990 if (first_p || second_p)
2991 return 0;
2992
2993 /* They must both be ints. */
2994 return 1;
2995 }
2996
2997 /* Compares type A to type B returns 1 if the represent the same type
2998 0 otherwise. */
2999
3000 int
3001 types_equal (struct type *a, struct type *b)
3002 {
3003 /* Identical type pointers. */
3004 /* However, this still doesn't catch all cases of same type for b
3005 and a. The reason is that builtin types are different from
3006 the same ones constructed from the object. */
3007 if (a == b)
3008 return 1;
3009
3010 /* Resolve typedefs */
3011 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3012 a = check_typedef (a);
3013 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3014 b = check_typedef (b);
3015
3016 /* If after resolving typedefs a and b are not of the same type
3017 code then they are not equal. */
3018 if (TYPE_CODE (a) != TYPE_CODE (b))
3019 return 0;
3020
3021 /* If a and b are both pointers types or both reference types then
3022 they are equal of the same type iff the objects they refer to are
3023 of the same type. */
3024 if (TYPE_CODE (a) == TYPE_CODE_PTR
3025 || TYPE_CODE (a) == TYPE_CODE_REF)
3026 return types_equal (TYPE_TARGET_TYPE (a),
3027 TYPE_TARGET_TYPE (b));
3028
3029 /* Well, damnit, if the names are exactly the same, I'll say they
3030 are exactly the same. This happens when we generate method
3031 stubs. The types won't point to the same address, but they
3032 really are the same. */
3033
3034 if (TYPE_NAME (a) && TYPE_NAME (b)
3035 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3036 return 1;
3037
3038 /* Check if identical after resolving typedefs. */
3039 if (a == b)
3040 return 1;
3041
3042 /* Two function types are equal if their argument and return types
3043 are equal. */
3044 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3045 {
3046 int i;
3047
3048 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3049 return 0;
3050
3051 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3052 return 0;
3053
3054 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3055 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3056 return 0;
3057
3058 return 1;
3059 }
3060
3061 return 0;
3062 }
3063 \f
3064 /* Deep comparison of types. */
3065
3066 /* An entry in the type-equality bcache. */
3067
3068 typedef struct type_equality_entry
3069 {
3070 struct type *type1, *type2;
3071 } type_equality_entry_d;
3072
3073 DEF_VEC_O (type_equality_entry_d);
3074
3075 /* A helper function to compare two strings. Returns 1 if they are
3076 the same, 0 otherwise. Handles NULLs properly. */
3077
3078 static int
3079 compare_maybe_null_strings (const char *s, const char *t)
3080 {
3081 if (s == NULL && t != NULL)
3082 return 0;
3083 else if (s != NULL && t == NULL)
3084 return 0;
3085 else if (s == NULL && t== NULL)
3086 return 1;
3087 return strcmp (s, t) == 0;
3088 }
3089
3090 /* A helper function for check_types_worklist that checks two types for
3091 "deep" equality. Returns non-zero if the types are considered the
3092 same, zero otherwise. */
3093
3094 static int
3095 check_types_equal (struct type *type1, struct type *type2,
3096 VEC (type_equality_entry_d) **worklist)
3097 {
3098 CHECK_TYPEDEF (type1);
3099 CHECK_TYPEDEF (type2);
3100
3101 if (type1 == type2)
3102 return 1;
3103
3104 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3105 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3106 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3107 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3108 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3109 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3110 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3111 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3112 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3113 return 0;
3114
3115 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3116 TYPE_TAG_NAME (type2)))
3117 return 0;
3118 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3119 return 0;
3120
3121 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3122 {
3123 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3124 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3125 return 0;
3126 }
3127 else
3128 {
3129 int i;
3130
3131 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3132 {
3133 const struct field *field1 = &TYPE_FIELD (type1, i);
3134 const struct field *field2 = &TYPE_FIELD (type2, i);
3135 struct type_equality_entry entry;
3136
3137 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3138 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3139 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3140 return 0;
3141 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3142 FIELD_NAME (*field2)))
3143 return 0;
3144 switch (FIELD_LOC_KIND (*field1))
3145 {
3146 case FIELD_LOC_KIND_BITPOS:
3147 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3148 return 0;
3149 break;
3150 case FIELD_LOC_KIND_ENUMVAL:
3151 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3152 return 0;
3153 break;
3154 case FIELD_LOC_KIND_PHYSADDR:
3155 if (FIELD_STATIC_PHYSADDR (*field1)
3156 != FIELD_STATIC_PHYSADDR (*field2))
3157 return 0;
3158 break;
3159 case FIELD_LOC_KIND_PHYSNAME:
3160 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3161 FIELD_STATIC_PHYSNAME (*field2)))
3162 return 0;
3163 break;
3164 case FIELD_LOC_KIND_DWARF_BLOCK:
3165 {
3166 struct dwarf2_locexpr_baton *block1, *block2;
3167
3168 block1 = FIELD_DWARF_BLOCK (*field1);
3169 block2 = FIELD_DWARF_BLOCK (*field2);
3170 if (block1->per_cu != block2->per_cu
3171 || block1->size != block2->size
3172 || memcmp (block1->data, block2->data, block1->size) != 0)
3173 return 0;
3174 }
3175 break;
3176 default:
3177 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3178 "%d by check_types_equal"),
3179 FIELD_LOC_KIND (*field1));
3180 }
3181
3182 entry.type1 = FIELD_TYPE (*field1);
3183 entry.type2 = FIELD_TYPE (*field2);
3184 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3185 }
3186 }
3187
3188 if (TYPE_TARGET_TYPE (type1) != NULL)
3189 {
3190 struct type_equality_entry entry;
3191
3192 if (TYPE_TARGET_TYPE (type2) == NULL)
3193 return 0;
3194
3195 entry.type1 = TYPE_TARGET_TYPE (type1);
3196 entry.type2 = TYPE_TARGET_TYPE (type2);
3197 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3198 }
3199 else if (TYPE_TARGET_TYPE (type2) != NULL)
3200 return 0;
3201
3202 return 1;
3203 }
3204
3205 /* Check types on a worklist for equality. Returns zero if any pair
3206 is not equal, non-zero if they are all considered equal. */
3207
3208 static int
3209 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3210 struct bcache *cache)
3211 {
3212 while (!VEC_empty (type_equality_entry_d, *worklist))
3213 {
3214 struct type_equality_entry entry;
3215 int added;
3216
3217 entry = *VEC_last (type_equality_entry_d, *worklist);
3218 VEC_pop (type_equality_entry_d, *worklist);
3219
3220 /* If the type pair has already been visited, we know it is
3221 ok. */
3222 bcache_full (&entry, sizeof (entry), cache, &added);
3223 if (!added)
3224 continue;
3225
3226 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3227 return 0;
3228 }
3229
3230 return 1;
3231 }
3232
3233 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3234 "deep comparison". Otherwise return zero. */
3235
3236 int
3237 types_deeply_equal (struct type *type1, struct type *type2)
3238 {
3239 struct gdb_exception except = exception_none;
3240 int result = 0;
3241 struct bcache *cache;
3242 VEC (type_equality_entry_d) *worklist = NULL;
3243 struct type_equality_entry entry;
3244
3245 gdb_assert (type1 != NULL && type2 != NULL);
3246
3247 /* Early exit for the simple case. */
3248 if (type1 == type2)
3249 return 1;
3250
3251 cache = bcache_xmalloc (NULL, NULL);
3252
3253 entry.type1 = type1;
3254 entry.type2 = type2;
3255 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3256
3257 /* check_types_worklist calls several nested helper functions, some
3258 of which can raise a GDB exception, so we just check and rethrow
3259 here. If there is a GDB exception, a comparison is not capable
3260 (or trusted), so exit. */
3261 TRY
3262 {
3263 result = check_types_worklist (&worklist, cache);
3264 }
3265 CATCH (ex, RETURN_MASK_ALL)
3266 {
3267 except = ex;
3268 }
3269 END_CATCH
3270
3271 bcache_xfree (cache);
3272 VEC_free (type_equality_entry_d, worklist);
3273
3274 /* Rethrow if there was a problem. */
3275 if (except.reason < 0)
3276 throw_exception (except);
3277
3278 return result;
3279 }
3280 \f
3281 /* Compare one type (PARM) for compatibility with another (ARG).
3282 * PARM is intended to be the parameter type of a function; and
3283 * ARG is the supplied argument's type. This function tests if
3284 * the latter can be converted to the former.
3285 * VALUE is the argument's value or NULL if none (or called recursively)
3286 *
3287 * Return 0 if they are identical types;
3288 * Otherwise, return an integer which corresponds to how compatible
3289 * PARM is to ARG. The higher the return value, the worse the match.
3290 * Generally the "bad" conversions are all uniformly assigned a 100. */
3291
3292 struct rank
3293 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3294 {
3295 struct rank rank = {0,0};
3296
3297 if (types_equal (parm, arg))
3298 return EXACT_MATCH_BADNESS;
3299
3300 /* Resolve typedefs */
3301 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3302 parm = check_typedef (parm);
3303 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3304 arg = check_typedef (arg);
3305
3306 /* See through references, since we can almost make non-references
3307 references. */
3308 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3309 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3310 REFERENCE_CONVERSION_BADNESS));
3311 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3312 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3313 REFERENCE_CONVERSION_BADNESS));
3314 if (overload_debug)
3315 /* Debugging only. */
3316 fprintf_filtered (gdb_stderr,
3317 "------ Arg is %s [%d], parm is %s [%d]\n",
3318 TYPE_NAME (arg), TYPE_CODE (arg),
3319 TYPE_NAME (parm), TYPE_CODE (parm));
3320
3321 /* x -> y means arg of type x being supplied for parameter of type y. */
3322
3323 switch (TYPE_CODE (parm))
3324 {
3325 case TYPE_CODE_PTR:
3326 switch (TYPE_CODE (arg))
3327 {
3328 case TYPE_CODE_PTR:
3329
3330 /* Allowed pointer conversions are:
3331 (a) pointer to void-pointer conversion. */
3332 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3333 return VOID_PTR_CONVERSION_BADNESS;
3334
3335 /* (b) pointer to ancestor-pointer conversion. */
3336 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3337 TYPE_TARGET_TYPE (arg),
3338 0);
3339 if (rank.subrank >= 0)
3340 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3341
3342 return INCOMPATIBLE_TYPE_BADNESS;
3343 case TYPE_CODE_ARRAY:
3344 if (types_equal (TYPE_TARGET_TYPE (parm),
3345 TYPE_TARGET_TYPE (arg)))
3346 return EXACT_MATCH_BADNESS;
3347 return INCOMPATIBLE_TYPE_BADNESS;
3348 case TYPE_CODE_FUNC:
3349 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3350 case TYPE_CODE_INT:
3351 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3352 {
3353 if (value_as_long (value) == 0)
3354 {
3355 /* Null pointer conversion: allow it to be cast to a pointer.
3356 [4.10.1 of C++ standard draft n3290] */
3357 return NULL_POINTER_CONVERSION_BADNESS;
3358 }
3359 else
3360 {
3361 /* If type checking is disabled, allow the conversion. */
3362 if (!strict_type_checking)
3363 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3364 }
3365 }
3366 /* fall through */
3367 case TYPE_CODE_ENUM:
3368 case TYPE_CODE_FLAGS:
3369 case TYPE_CODE_CHAR:
3370 case TYPE_CODE_RANGE:
3371 case TYPE_CODE_BOOL:
3372 default:
3373 return INCOMPATIBLE_TYPE_BADNESS;
3374 }
3375 case TYPE_CODE_ARRAY:
3376 switch (TYPE_CODE (arg))
3377 {
3378 case TYPE_CODE_PTR:
3379 case TYPE_CODE_ARRAY:
3380 return rank_one_type (TYPE_TARGET_TYPE (parm),
3381 TYPE_TARGET_TYPE (arg), NULL);
3382 default:
3383 return INCOMPATIBLE_TYPE_BADNESS;
3384 }
3385 case TYPE_CODE_FUNC:
3386 switch (TYPE_CODE (arg))
3387 {
3388 case TYPE_CODE_PTR: /* funcptr -> func */
3389 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3390 default:
3391 return INCOMPATIBLE_TYPE_BADNESS;
3392 }
3393 case TYPE_CODE_INT:
3394 switch (TYPE_CODE (arg))
3395 {
3396 case TYPE_CODE_INT:
3397 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3398 {
3399 /* Deal with signed, unsigned, and plain chars and
3400 signed and unsigned ints. */
3401 if (TYPE_NOSIGN (parm))
3402 {
3403 /* This case only for character types. */
3404 if (TYPE_NOSIGN (arg))
3405 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3406 else /* signed/unsigned char -> plain char */
3407 return INTEGER_CONVERSION_BADNESS;
3408 }
3409 else if (TYPE_UNSIGNED (parm))
3410 {
3411 if (TYPE_UNSIGNED (arg))
3412 {
3413 /* unsigned int -> unsigned int, or
3414 unsigned long -> unsigned long */
3415 if (integer_types_same_name_p (TYPE_NAME (parm),
3416 TYPE_NAME (arg)))
3417 return EXACT_MATCH_BADNESS;
3418 else if (integer_types_same_name_p (TYPE_NAME (arg),
3419 "int")
3420 && integer_types_same_name_p (TYPE_NAME (parm),
3421 "long"))
3422 /* unsigned int -> unsigned long */
3423 return INTEGER_PROMOTION_BADNESS;
3424 else
3425 /* unsigned long -> unsigned int */
3426 return INTEGER_CONVERSION_BADNESS;
3427 }
3428 else
3429 {
3430 if (integer_types_same_name_p (TYPE_NAME (arg),
3431 "long")
3432 && integer_types_same_name_p (TYPE_NAME (parm),
3433 "int"))
3434 /* signed long -> unsigned int */
3435 return INTEGER_CONVERSION_BADNESS;
3436 else
3437 /* signed int/long -> unsigned int/long */
3438 return INTEGER_CONVERSION_BADNESS;
3439 }
3440 }
3441 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3442 {
3443 if (integer_types_same_name_p (TYPE_NAME (parm),
3444 TYPE_NAME (arg)))
3445 return EXACT_MATCH_BADNESS;
3446 else if (integer_types_same_name_p (TYPE_NAME (arg),
3447 "int")
3448 && integer_types_same_name_p (TYPE_NAME (parm),
3449 "long"))
3450 return INTEGER_PROMOTION_BADNESS;
3451 else
3452 return INTEGER_CONVERSION_BADNESS;
3453 }
3454 else
3455 return INTEGER_CONVERSION_BADNESS;
3456 }
3457 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3458 return INTEGER_PROMOTION_BADNESS;
3459 else
3460 return INTEGER_CONVERSION_BADNESS;
3461 case TYPE_CODE_ENUM:
3462 case TYPE_CODE_FLAGS:
3463 case TYPE_CODE_CHAR:
3464 case TYPE_CODE_RANGE:
3465 case TYPE_CODE_BOOL:
3466 if (TYPE_DECLARED_CLASS (arg))
3467 return INCOMPATIBLE_TYPE_BADNESS;
3468 return INTEGER_PROMOTION_BADNESS;
3469 case TYPE_CODE_FLT:
3470 return INT_FLOAT_CONVERSION_BADNESS;
3471 case TYPE_CODE_PTR:
3472 return NS_POINTER_CONVERSION_BADNESS;
3473 default:
3474 return INCOMPATIBLE_TYPE_BADNESS;
3475 }
3476 break;
3477 case TYPE_CODE_ENUM:
3478 switch (TYPE_CODE (arg))
3479 {
3480 case TYPE_CODE_INT:
3481 case TYPE_CODE_CHAR:
3482 case TYPE_CODE_RANGE:
3483 case TYPE_CODE_BOOL:
3484 case TYPE_CODE_ENUM:
3485 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3486 return INCOMPATIBLE_TYPE_BADNESS;
3487 return INTEGER_CONVERSION_BADNESS;
3488 case TYPE_CODE_FLT:
3489 return INT_FLOAT_CONVERSION_BADNESS;
3490 default:
3491 return INCOMPATIBLE_TYPE_BADNESS;
3492 }
3493 break;
3494 case TYPE_CODE_CHAR:
3495 switch (TYPE_CODE (arg))
3496 {
3497 case TYPE_CODE_RANGE:
3498 case TYPE_CODE_BOOL:
3499 case TYPE_CODE_ENUM:
3500 if (TYPE_DECLARED_CLASS (arg))
3501 return INCOMPATIBLE_TYPE_BADNESS;
3502 return INTEGER_CONVERSION_BADNESS;
3503 case TYPE_CODE_FLT:
3504 return INT_FLOAT_CONVERSION_BADNESS;
3505 case TYPE_CODE_INT:
3506 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3507 return INTEGER_CONVERSION_BADNESS;
3508 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3509 return INTEGER_PROMOTION_BADNESS;
3510 /* >>> !! else fall through !! <<< */
3511 case TYPE_CODE_CHAR:
3512 /* Deal with signed, unsigned, and plain chars for C++ and
3513 with int cases falling through from previous case. */
3514 if (TYPE_NOSIGN (parm))
3515 {
3516 if (TYPE_NOSIGN (arg))
3517 return EXACT_MATCH_BADNESS;
3518 else
3519 return INTEGER_CONVERSION_BADNESS;
3520 }
3521 else if (TYPE_UNSIGNED (parm))
3522 {
3523 if (TYPE_UNSIGNED (arg))
3524 return EXACT_MATCH_BADNESS;
3525 else
3526 return INTEGER_PROMOTION_BADNESS;
3527 }
3528 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3529 return EXACT_MATCH_BADNESS;
3530 else
3531 return INTEGER_CONVERSION_BADNESS;
3532 default:
3533 return INCOMPATIBLE_TYPE_BADNESS;
3534 }
3535 break;
3536 case TYPE_CODE_RANGE:
3537 switch (TYPE_CODE (arg))
3538 {
3539 case TYPE_CODE_INT:
3540 case TYPE_CODE_CHAR:
3541 case TYPE_CODE_RANGE:
3542 case TYPE_CODE_BOOL:
3543 case TYPE_CODE_ENUM:
3544 return INTEGER_CONVERSION_BADNESS;
3545 case TYPE_CODE_FLT:
3546 return INT_FLOAT_CONVERSION_BADNESS;
3547 default:
3548 return INCOMPATIBLE_TYPE_BADNESS;
3549 }
3550 break;
3551 case TYPE_CODE_BOOL:
3552 switch (TYPE_CODE (arg))
3553 {
3554 /* n3290 draft, section 4.12.1 (conv.bool):
3555
3556 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3557 pointer to member type can be converted to a prvalue of type
3558 bool. A zero value, null pointer value, or null member pointer
3559 value is converted to false; any other value is converted to
3560 true. A prvalue of type std::nullptr_t can be converted to a
3561 prvalue of type bool; the resulting value is false." */
3562 case TYPE_CODE_INT:
3563 case TYPE_CODE_CHAR:
3564 case TYPE_CODE_ENUM:
3565 case TYPE_CODE_FLT:
3566 case TYPE_CODE_MEMBERPTR:
3567 case TYPE_CODE_PTR:
3568 return BOOL_CONVERSION_BADNESS;
3569 case TYPE_CODE_RANGE:
3570 return INCOMPATIBLE_TYPE_BADNESS;
3571 case TYPE_CODE_BOOL:
3572 return EXACT_MATCH_BADNESS;
3573 default:
3574 return INCOMPATIBLE_TYPE_BADNESS;
3575 }
3576 break;
3577 case TYPE_CODE_FLT:
3578 switch (TYPE_CODE (arg))
3579 {
3580 case TYPE_CODE_FLT:
3581 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3582 return FLOAT_PROMOTION_BADNESS;
3583 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3584 return EXACT_MATCH_BADNESS;
3585 else
3586 return FLOAT_CONVERSION_BADNESS;
3587 case TYPE_CODE_INT:
3588 case TYPE_CODE_BOOL:
3589 case TYPE_CODE_ENUM:
3590 case TYPE_CODE_RANGE:
3591 case TYPE_CODE_CHAR:
3592 return INT_FLOAT_CONVERSION_BADNESS;
3593 default:
3594 return INCOMPATIBLE_TYPE_BADNESS;
3595 }
3596 break;
3597 case TYPE_CODE_COMPLEX:
3598 switch (TYPE_CODE (arg))
3599 { /* Strictly not needed for C++, but... */
3600 case TYPE_CODE_FLT:
3601 return FLOAT_PROMOTION_BADNESS;
3602 case TYPE_CODE_COMPLEX:
3603 return EXACT_MATCH_BADNESS;
3604 default:
3605 return INCOMPATIBLE_TYPE_BADNESS;
3606 }
3607 break;
3608 case TYPE_CODE_STRUCT:
3609 switch (TYPE_CODE (arg))
3610 {
3611 case TYPE_CODE_STRUCT:
3612 /* Check for derivation */
3613 rank.subrank = distance_to_ancestor (parm, arg, 0);
3614 if (rank.subrank >= 0)
3615 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3616 /* else fall through */
3617 default:
3618 return INCOMPATIBLE_TYPE_BADNESS;
3619 }
3620 break;
3621 case TYPE_CODE_UNION:
3622 switch (TYPE_CODE (arg))
3623 {
3624 case TYPE_CODE_UNION:
3625 default:
3626 return INCOMPATIBLE_TYPE_BADNESS;
3627 }
3628 break;
3629 case TYPE_CODE_MEMBERPTR:
3630 switch (TYPE_CODE (arg))
3631 {
3632 default:
3633 return INCOMPATIBLE_TYPE_BADNESS;
3634 }
3635 break;
3636 case TYPE_CODE_METHOD:
3637 switch (TYPE_CODE (arg))
3638 {
3639
3640 default:
3641 return INCOMPATIBLE_TYPE_BADNESS;
3642 }
3643 break;
3644 case TYPE_CODE_REF:
3645 switch (TYPE_CODE (arg))
3646 {
3647
3648 default:
3649 return INCOMPATIBLE_TYPE_BADNESS;
3650 }
3651
3652 break;
3653 case TYPE_CODE_SET:
3654 switch (TYPE_CODE (arg))
3655 {
3656 /* Not in C++ */
3657 case TYPE_CODE_SET:
3658 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3659 TYPE_FIELD_TYPE (arg, 0), NULL);
3660 default:
3661 return INCOMPATIBLE_TYPE_BADNESS;
3662 }
3663 break;
3664 case TYPE_CODE_VOID:
3665 default:
3666 return INCOMPATIBLE_TYPE_BADNESS;
3667 } /* switch (TYPE_CODE (arg)) */
3668 }
3669
3670 /* End of functions for overload resolution. */
3671 \f
3672 /* Routines to pretty-print types. */
3673
3674 static void
3675 print_bit_vector (B_TYPE *bits, int nbits)
3676 {
3677 int bitno;
3678
3679 for (bitno = 0; bitno < nbits; bitno++)
3680 {
3681 if ((bitno % 8) == 0)
3682 {
3683 puts_filtered (" ");
3684 }
3685 if (B_TST (bits, bitno))
3686 printf_filtered (("1"));
3687 else
3688 printf_filtered (("0"));
3689 }
3690 }
3691
3692 /* Note the first arg should be the "this" pointer, we may not want to
3693 include it since we may get into a infinitely recursive
3694 situation. */
3695
3696 static void
3697 print_args (struct field *args, int nargs, int spaces)
3698 {
3699 if (args != NULL)
3700 {
3701 int i;
3702
3703 for (i = 0; i < nargs; i++)
3704 {
3705 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3706 args[i].name != NULL ? args[i].name : "<NULL>");
3707 recursive_dump_type (args[i].type, spaces + 2);
3708 }
3709 }
3710 }
3711
3712 int
3713 field_is_static (struct field *f)
3714 {
3715 /* "static" fields are the fields whose location is not relative
3716 to the address of the enclosing struct. It would be nice to
3717 have a dedicated flag that would be set for static fields when
3718 the type is being created. But in practice, checking the field
3719 loc_kind should give us an accurate answer. */
3720 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3721 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3722 }
3723
3724 static void
3725 dump_fn_fieldlists (struct type *type, int spaces)
3726 {
3727 int method_idx;
3728 int overload_idx;
3729 struct fn_field *f;
3730
3731 printfi_filtered (spaces, "fn_fieldlists ");
3732 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3733 printf_filtered ("\n");
3734 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3735 {
3736 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3737 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3738 method_idx,
3739 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3740 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3741 gdb_stdout);
3742 printf_filtered (_(") length %d\n"),
3743 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3744 for (overload_idx = 0;
3745 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3746 overload_idx++)
3747 {
3748 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3749 overload_idx,
3750 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3751 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3752 gdb_stdout);
3753 printf_filtered (")\n");
3754 printfi_filtered (spaces + 8, "type ");
3755 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3756 gdb_stdout);
3757 printf_filtered ("\n");
3758
3759 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3760 spaces + 8 + 2);
3761
3762 printfi_filtered (spaces + 8, "args ");
3763 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3764 gdb_stdout);
3765 printf_filtered ("\n");
3766 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3767 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3768 spaces + 8 + 2);
3769 printfi_filtered (spaces + 8, "fcontext ");
3770 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3771 gdb_stdout);
3772 printf_filtered ("\n");
3773
3774 printfi_filtered (spaces + 8, "is_const %d\n",
3775 TYPE_FN_FIELD_CONST (f, overload_idx));
3776 printfi_filtered (spaces + 8, "is_volatile %d\n",
3777 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3778 printfi_filtered (spaces + 8, "is_private %d\n",
3779 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3780 printfi_filtered (spaces + 8, "is_protected %d\n",
3781 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3782 printfi_filtered (spaces + 8, "is_stub %d\n",
3783 TYPE_FN_FIELD_STUB (f, overload_idx));
3784 printfi_filtered (spaces + 8, "voffset %u\n",
3785 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3786 }
3787 }
3788 }
3789
3790 static void
3791 print_cplus_stuff (struct type *type, int spaces)
3792 {
3793 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3794 printfi_filtered (spaces, "vptr_basetype ");
3795 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3796 puts_filtered ("\n");
3797 if (TYPE_VPTR_BASETYPE (type) != NULL)
3798 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3799
3800 printfi_filtered (spaces, "n_baseclasses %d\n",
3801 TYPE_N_BASECLASSES (type));
3802 printfi_filtered (spaces, "nfn_fields %d\n",
3803 TYPE_NFN_FIELDS (type));
3804 if (TYPE_N_BASECLASSES (type) > 0)
3805 {
3806 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3807 TYPE_N_BASECLASSES (type));
3808 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3809 gdb_stdout);
3810 printf_filtered (")");
3811
3812 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3813 TYPE_N_BASECLASSES (type));
3814 puts_filtered ("\n");
3815 }
3816 if (TYPE_NFIELDS (type) > 0)
3817 {
3818 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3819 {
3820 printfi_filtered (spaces,
3821 "private_field_bits (%d bits at *",
3822 TYPE_NFIELDS (type));
3823 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3824 gdb_stdout);
3825 printf_filtered (")");
3826 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3827 TYPE_NFIELDS (type));
3828 puts_filtered ("\n");
3829 }
3830 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3831 {
3832 printfi_filtered (spaces,
3833 "protected_field_bits (%d bits at *",
3834 TYPE_NFIELDS (type));
3835 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3836 gdb_stdout);
3837 printf_filtered (")");
3838 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3839 TYPE_NFIELDS (type));
3840 puts_filtered ("\n");
3841 }
3842 }
3843 if (TYPE_NFN_FIELDS (type) > 0)
3844 {
3845 dump_fn_fieldlists (type, spaces);
3846 }
3847 }
3848
3849 /* Print the contents of the TYPE's type_specific union, assuming that
3850 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3851
3852 static void
3853 print_gnat_stuff (struct type *type, int spaces)
3854 {
3855 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3856
3857 recursive_dump_type (descriptive_type, spaces + 2);
3858 }
3859
3860 static struct obstack dont_print_type_obstack;
3861
3862 void
3863 recursive_dump_type (struct type *type, int spaces)
3864 {
3865 int idx;
3866
3867 if (spaces == 0)
3868 obstack_begin (&dont_print_type_obstack, 0);
3869
3870 if (TYPE_NFIELDS (type) > 0
3871 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3872 {
3873 struct type **first_dont_print
3874 = (struct type **) obstack_base (&dont_print_type_obstack);
3875
3876 int i = (struct type **)
3877 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3878
3879 while (--i >= 0)
3880 {
3881 if (type == first_dont_print[i])
3882 {
3883 printfi_filtered (spaces, "type node ");
3884 gdb_print_host_address (type, gdb_stdout);
3885 printf_filtered (_(" <same as already seen type>\n"));
3886 return;
3887 }
3888 }
3889
3890 obstack_ptr_grow (&dont_print_type_obstack, type);
3891 }
3892
3893 printfi_filtered (spaces, "type node ");
3894 gdb_print_host_address (type, gdb_stdout);
3895 printf_filtered ("\n");
3896 printfi_filtered (spaces, "name '%s' (",
3897 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3898 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3899 printf_filtered (")\n");
3900 printfi_filtered (spaces, "tagname '%s' (",
3901 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3902 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3903 printf_filtered (")\n");
3904 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3905 switch (TYPE_CODE (type))
3906 {
3907 case TYPE_CODE_UNDEF:
3908 printf_filtered ("(TYPE_CODE_UNDEF)");
3909 break;
3910 case TYPE_CODE_PTR:
3911 printf_filtered ("(TYPE_CODE_PTR)");
3912 break;
3913 case TYPE_CODE_ARRAY:
3914 printf_filtered ("(TYPE_CODE_ARRAY)");
3915 break;
3916 case TYPE_CODE_STRUCT:
3917 printf_filtered ("(TYPE_CODE_STRUCT)");
3918 break;
3919 case TYPE_CODE_UNION:
3920 printf_filtered ("(TYPE_CODE_UNION)");
3921 break;
3922 case TYPE_CODE_ENUM:
3923 printf_filtered ("(TYPE_CODE_ENUM)");
3924 break;
3925 case TYPE_CODE_FLAGS:
3926 printf_filtered ("(TYPE_CODE_FLAGS)");
3927 break;
3928 case TYPE_CODE_FUNC:
3929 printf_filtered ("(TYPE_CODE_FUNC)");
3930 break;
3931 case TYPE_CODE_INT:
3932 printf_filtered ("(TYPE_CODE_INT)");
3933 break;
3934 case TYPE_CODE_FLT:
3935 printf_filtered ("(TYPE_CODE_FLT)");
3936 break;
3937 case TYPE_CODE_VOID:
3938 printf_filtered ("(TYPE_CODE_VOID)");
3939 break;
3940 case TYPE_CODE_SET:
3941 printf_filtered ("(TYPE_CODE_SET)");
3942 break;
3943 case TYPE_CODE_RANGE:
3944 printf_filtered ("(TYPE_CODE_RANGE)");
3945 break;
3946 case TYPE_CODE_STRING:
3947 printf_filtered ("(TYPE_CODE_STRING)");
3948 break;
3949 case TYPE_CODE_ERROR:
3950 printf_filtered ("(TYPE_CODE_ERROR)");
3951 break;
3952 case TYPE_CODE_MEMBERPTR:
3953 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3954 break;
3955 case TYPE_CODE_METHODPTR:
3956 printf_filtered ("(TYPE_CODE_METHODPTR)");
3957 break;
3958 case TYPE_CODE_METHOD:
3959 printf_filtered ("(TYPE_CODE_METHOD)");
3960 break;
3961 case TYPE_CODE_REF:
3962 printf_filtered ("(TYPE_CODE_REF)");
3963 break;
3964 case TYPE_CODE_CHAR:
3965 printf_filtered ("(TYPE_CODE_CHAR)");
3966 break;
3967 case TYPE_CODE_BOOL:
3968 printf_filtered ("(TYPE_CODE_BOOL)");
3969 break;
3970 case TYPE_CODE_COMPLEX:
3971 printf_filtered ("(TYPE_CODE_COMPLEX)");
3972 break;
3973 case TYPE_CODE_TYPEDEF:
3974 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3975 break;
3976 case TYPE_CODE_NAMESPACE:
3977 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3978 break;
3979 default:
3980 printf_filtered ("(UNKNOWN TYPE CODE)");
3981 break;
3982 }
3983 puts_filtered ("\n");
3984 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3985 if (TYPE_OBJFILE_OWNED (type))
3986 {
3987 printfi_filtered (spaces, "objfile ");
3988 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3989 }
3990 else
3991 {
3992 printfi_filtered (spaces, "gdbarch ");
3993 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3994 }
3995 printf_filtered ("\n");
3996 printfi_filtered (spaces, "target_type ");
3997 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3998 printf_filtered ("\n");
3999 if (TYPE_TARGET_TYPE (type) != NULL)
4000 {
4001 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4002 }
4003 printfi_filtered (spaces, "pointer_type ");
4004 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4005 printf_filtered ("\n");
4006 printfi_filtered (spaces, "reference_type ");
4007 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4008 printf_filtered ("\n");
4009 printfi_filtered (spaces, "type_chain ");
4010 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4011 printf_filtered ("\n");
4012 printfi_filtered (spaces, "instance_flags 0x%x",
4013 TYPE_INSTANCE_FLAGS (type));
4014 if (TYPE_CONST (type))
4015 {
4016 puts_filtered (" TYPE_FLAG_CONST");
4017 }
4018 if (TYPE_VOLATILE (type))
4019 {
4020 puts_filtered (" TYPE_FLAG_VOLATILE");
4021 }
4022 if (TYPE_CODE_SPACE (type))
4023 {
4024 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4025 }
4026 if (TYPE_DATA_SPACE (type))
4027 {
4028 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4029 }
4030 if (TYPE_ADDRESS_CLASS_1 (type))
4031 {
4032 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4033 }
4034 if (TYPE_ADDRESS_CLASS_2 (type))
4035 {
4036 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4037 }
4038 if (TYPE_RESTRICT (type))
4039 {
4040 puts_filtered (" TYPE_FLAG_RESTRICT");
4041 }
4042 if (TYPE_ATOMIC (type))
4043 {
4044 puts_filtered (" TYPE_FLAG_ATOMIC");
4045 }
4046 puts_filtered ("\n");
4047
4048 printfi_filtered (spaces, "flags");
4049 if (TYPE_UNSIGNED (type))
4050 {
4051 puts_filtered (" TYPE_FLAG_UNSIGNED");
4052 }
4053 if (TYPE_NOSIGN (type))
4054 {
4055 puts_filtered (" TYPE_FLAG_NOSIGN");
4056 }
4057 if (TYPE_STUB (type))
4058 {
4059 puts_filtered (" TYPE_FLAG_STUB");
4060 }
4061 if (TYPE_TARGET_STUB (type))
4062 {
4063 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4064 }
4065 if (TYPE_STATIC (type))
4066 {
4067 puts_filtered (" TYPE_FLAG_STATIC");
4068 }
4069 if (TYPE_PROTOTYPED (type))
4070 {
4071 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4072 }
4073 if (TYPE_INCOMPLETE (type))
4074 {
4075 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4076 }
4077 if (TYPE_VARARGS (type))
4078 {
4079 puts_filtered (" TYPE_FLAG_VARARGS");
4080 }
4081 /* This is used for things like AltiVec registers on ppc. Gcc emits
4082 an attribute for the array type, which tells whether or not we
4083 have a vector, instead of a regular array. */
4084 if (TYPE_VECTOR (type))
4085 {
4086 puts_filtered (" TYPE_FLAG_VECTOR");
4087 }
4088 if (TYPE_FIXED_INSTANCE (type))
4089 {
4090 puts_filtered (" TYPE_FIXED_INSTANCE");
4091 }
4092 if (TYPE_STUB_SUPPORTED (type))
4093 {
4094 puts_filtered (" TYPE_STUB_SUPPORTED");
4095 }
4096 if (TYPE_NOTTEXT (type))
4097 {
4098 puts_filtered (" TYPE_NOTTEXT");
4099 }
4100 puts_filtered ("\n");
4101 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4102 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4103 puts_filtered ("\n");
4104 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4105 {
4106 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4107 printfi_filtered (spaces + 2,
4108 "[%d] enumval %s type ",
4109 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4110 else
4111 printfi_filtered (spaces + 2,
4112 "[%d] bitpos %d bitsize %d type ",
4113 idx, TYPE_FIELD_BITPOS (type, idx),
4114 TYPE_FIELD_BITSIZE (type, idx));
4115 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4116 printf_filtered (" name '%s' (",
4117 TYPE_FIELD_NAME (type, idx) != NULL
4118 ? TYPE_FIELD_NAME (type, idx)
4119 : "<NULL>");
4120 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4121 printf_filtered (")\n");
4122 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4123 {
4124 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4125 }
4126 }
4127 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4128 {
4129 printfi_filtered (spaces, "low %s%s high %s%s\n",
4130 plongest (TYPE_LOW_BOUND (type)),
4131 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4132 plongest (TYPE_HIGH_BOUND (type)),
4133 TYPE_HIGH_BOUND_UNDEFINED (type)
4134 ? " (undefined)" : "");
4135 }
4136
4137 switch (TYPE_SPECIFIC_FIELD (type))
4138 {
4139 case TYPE_SPECIFIC_CPLUS_STUFF:
4140 printfi_filtered (spaces, "cplus_stuff ");
4141 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4142 gdb_stdout);
4143 puts_filtered ("\n");
4144 print_cplus_stuff (type, spaces);
4145 break;
4146
4147 case TYPE_SPECIFIC_GNAT_STUFF:
4148 printfi_filtered (spaces, "gnat_stuff ");
4149 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4150 puts_filtered ("\n");
4151 print_gnat_stuff (type, spaces);
4152 break;
4153
4154 case TYPE_SPECIFIC_FLOATFORMAT:
4155 printfi_filtered (spaces, "floatformat ");
4156 if (TYPE_FLOATFORMAT (type) == NULL)
4157 puts_filtered ("(null)");
4158 else
4159 {
4160 puts_filtered ("{ ");
4161 if (TYPE_FLOATFORMAT (type)[0] == NULL
4162 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4163 puts_filtered ("(null)");
4164 else
4165 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4166
4167 puts_filtered (", ");
4168 if (TYPE_FLOATFORMAT (type)[1] == NULL
4169 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4170 puts_filtered ("(null)");
4171 else
4172 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4173
4174 puts_filtered (" }");
4175 }
4176 puts_filtered ("\n");
4177 break;
4178
4179 case TYPE_SPECIFIC_FUNC:
4180 printfi_filtered (spaces, "calling_convention %d\n",
4181 TYPE_CALLING_CONVENTION (type));
4182 /* tail_call_list is not printed. */
4183 break;
4184
4185 case TYPE_SPECIFIC_SELF_TYPE:
4186 printfi_filtered (spaces, "self_type ");
4187 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4188 puts_filtered ("\n");
4189 break;
4190 }
4191
4192 if (spaces == 0)
4193 obstack_free (&dont_print_type_obstack, NULL);
4194 }
4195 \f
4196 /* Trivial helpers for the libiberty hash table, for mapping one
4197 type to another. */
4198
4199 struct type_pair
4200 {
4201 struct type *old, *newobj;
4202 };
4203
4204 static hashval_t
4205 type_pair_hash (const void *item)
4206 {
4207 const struct type_pair *pair = item;
4208
4209 return htab_hash_pointer (pair->old);
4210 }
4211
4212 static int
4213 type_pair_eq (const void *item_lhs, const void *item_rhs)
4214 {
4215 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4216
4217 return lhs->old == rhs->old;
4218 }
4219
4220 /* Allocate the hash table used by copy_type_recursive to walk
4221 types without duplicates. We use OBJFILE's obstack, because
4222 OBJFILE is about to be deleted. */
4223
4224 htab_t
4225 create_copied_types_hash (struct objfile *objfile)
4226 {
4227 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4228 NULL, &objfile->objfile_obstack,
4229 hashtab_obstack_allocate,
4230 dummy_obstack_deallocate);
4231 }
4232
4233 /* Recursively copy (deep copy) TYPE, if it is associated with
4234 OBJFILE. Return a new type allocated using malloc, a saved type if
4235 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4236 not associated with OBJFILE. */
4237
4238 struct type *
4239 copy_type_recursive (struct objfile *objfile,
4240 struct type *type,
4241 htab_t copied_types)
4242 {
4243 struct type_pair *stored, pair;
4244 void **slot;
4245 struct type *new_type;
4246
4247 if (! TYPE_OBJFILE_OWNED (type))
4248 return type;
4249
4250 /* This type shouldn't be pointing to any types in other objfiles;
4251 if it did, the type might disappear unexpectedly. */
4252 gdb_assert (TYPE_OBJFILE (type) == objfile);
4253
4254 pair.old = type;
4255 slot = htab_find_slot (copied_types, &pair, INSERT);
4256 if (*slot != NULL)
4257 return ((struct type_pair *) *slot)->newobj;
4258
4259 new_type = alloc_type_arch (get_type_arch (type));
4260
4261 /* We must add the new type to the hash table immediately, in case
4262 we encounter this type again during a recursive call below. */
4263 stored
4264 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4265 stored->old = type;
4266 stored->newobj = new_type;
4267 *slot = stored;
4268
4269 /* Copy the common fields of types. For the main type, we simply
4270 copy the entire thing and then update specific fields as needed. */
4271 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4272 TYPE_OBJFILE_OWNED (new_type) = 0;
4273 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4274
4275 if (TYPE_NAME (type))
4276 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4277 if (TYPE_TAG_NAME (type))
4278 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4279
4280 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4281 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4282
4283 /* Copy the fields. */
4284 if (TYPE_NFIELDS (type))
4285 {
4286 int i, nfields;
4287
4288 nfields = TYPE_NFIELDS (type);
4289 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4290 for (i = 0; i < nfields; i++)
4291 {
4292 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4293 TYPE_FIELD_ARTIFICIAL (type, i);
4294 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4295 if (TYPE_FIELD_TYPE (type, i))
4296 TYPE_FIELD_TYPE (new_type, i)
4297 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4298 copied_types);
4299 if (TYPE_FIELD_NAME (type, i))
4300 TYPE_FIELD_NAME (new_type, i) =
4301 xstrdup (TYPE_FIELD_NAME (type, i));
4302 switch (TYPE_FIELD_LOC_KIND (type, i))
4303 {
4304 case FIELD_LOC_KIND_BITPOS:
4305 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4306 TYPE_FIELD_BITPOS (type, i));
4307 break;
4308 case FIELD_LOC_KIND_ENUMVAL:
4309 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4310 TYPE_FIELD_ENUMVAL (type, i));
4311 break;
4312 case FIELD_LOC_KIND_PHYSADDR:
4313 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4314 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4315 break;
4316 case FIELD_LOC_KIND_PHYSNAME:
4317 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4318 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4319 i)));
4320 break;
4321 default:
4322 internal_error (__FILE__, __LINE__,
4323 _("Unexpected type field location kind: %d"),
4324 TYPE_FIELD_LOC_KIND (type, i));
4325 }
4326 }
4327 }
4328
4329 /* For range types, copy the bounds information. */
4330 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4331 {
4332 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4333 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4334 }
4335
4336 /* Copy the data location information. */
4337 if (TYPE_DATA_LOCATION (type) != NULL)
4338 {
4339 TYPE_DATA_LOCATION (new_type)
4340 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4341 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4342 sizeof (struct dynamic_prop));
4343 }
4344
4345 /* Copy pointers to other types. */
4346 if (TYPE_TARGET_TYPE (type))
4347 TYPE_TARGET_TYPE (new_type) =
4348 copy_type_recursive (objfile,
4349 TYPE_TARGET_TYPE (type),
4350 copied_types);
4351
4352 /* Maybe copy the type_specific bits.
4353
4354 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4355 base classes and methods. There's no fundamental reason why we
4356 can't, but at the moment it is not needed. */
4357
4358 switch (TYPE_SPECIFIC_FIELD (type))
4359 {
4360 case TYPE_SPECIFIC_NONE:
4361 break;
4362 case TYPE_SPECIFIC_FUNC:
4363 INIT_FUNC_SPECIFIC (new_type);
4364 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4365 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4366 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4367 break;
4368 case TYPE_SPECIFIC_FLOATFORMAT:
4369 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4370 break;
4371 case TYPE_SPECIFIC_CPLUS_STUFF:
4372 INIT_CPLUS_SPECIFIC (new_type);
4373 break;
4374 case TYPE_SPECIFIC_GNAT_STUFF:
4375 INIT_GNAT_SPECIFIC (new_type);
4376 break;
4377 case TYPE_SPECIFIC_SELF_TYPE:
4378 set_type_self_type (new_type,
4379 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4380 copied_types));
4381 break;
4382 default:
4383 gdb_assert_not_reached ("bad type_specific_kind");
4384 }
4385
4386 return new_type;
4387 }
4388
4389 /* Make a copy of the given TYPE, except that the pointer & reference
4390 types are not preserved.
4391
4392 This function assumes that the given type has an associated objfile.
4393 This objfile is used to allocate the new type. */
4394
4395 struct type *
4396 copy_type (const struct type *type)
4397 {
4398 struct type *new_type;
4399
4400 gdb_assert (TYPE_OBJFILE_OWNED (type));
4401
4402 new_type = alloc_type_copy (type);
4403 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4404 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4405 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4406 sizeof (struct main_type));
4407 if (TYPE_DATA_LOCATION (type) != NULL)
4408 {
4409 TYPE_DATA_LOCATION (new_type)
4410 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4411 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4412 sizeof (struct dynamic_prop));
4413 }
4414
4415 return new_type;
4416 }
4417 \f
4418 /* Helper functions to initialize architecture-specific types. */
4419
4420 /* Allocate a type structure associated with GDBARCH and set its
4421 CODE, LENGTH, and NAME fields. */
4422
4423 struct type *
4424 arch_type (struct gdbarch *gdbarch,
4425 enum type_code code, int length, char *name)
4426 {
4427 struct type *type;
4428
4429 type = alloc_type_arch (gdbarch);
4430 TYPE_CODE (type) = code;
4431 TYPE_LENGTH (type) = length;
4432
4433 if (name)
4434 TYPE_NAME (type) = xstrdup (name);
4435
4436 return type;
4437 }
4438
4439 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4440 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4441 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4442
4443 struct type *
4444 arch_integer_type (struct gdbarch *gdbarch,
4445 int bit, int unsigned_p, char *name)
4446 {
4447 struct type *t;
4448
4449 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4450 if (unsigned_p)
4451 TYPE_UNSIGNED (t) = 1;
4452 if (name && strcmp (name, "char") == 0)
4453 TYPE_NOSIGN (t) = 1;
4454
4455 return t;
4456 }
4457
4458 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4459 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4460 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4461
4462 struct type *
4463 arch_character_type (struct gdbarch *gdbarch,
4464 int bit, int unsigned_p, char *name)
4465 {
4466 struct type *t;
4467
4468 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4469 if (unsigned_p)
4470 TYPE_UNSIGNED (t) = 1;
4471
4472 return t;
4473 }
4474
4475 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4476 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4477 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4478
4479 struct type *
4480 arch_boolean_type (struct gdbarch *gdbarch,
4481 int bit, int unsigned_p, char *name)
4482 {
4483 struct type *t;
4484
4485 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4486 if (unsigned_p)
4487 TYPE_UNSIGNED (t) = 1;
4488
4489 return t;
4490 }
4491
4492 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4493 BIT is the type size in bits; if BIT equals -1, the size is
4494 determined by the floatformat. NAME is the type name. Set the
4495 TYPE_FLOATFORMAT from FLOATFORMATS. */
4496
4497 struct type *
4498 arch_float_type (struct gdbarch *gdbarch,
4499 int bit, char *name, const struct floatformat **floatformats)
4500 {
4501 struct type *t;
4502
4503 if (bit == -1)
4504 {
4505 gdb_assert (floatformats != NULL);
4506 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4507 bit = floatformats[0]->totalsize;
4508 }
4509 gdb_assert (bit >= 0);
4510
4511 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4512 TYPE_FLOATFORMAT (t) = floatformats;
4513 return t;
4514 }
4515
4516 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4517 NAME is the type name. TARGET_TYPE is the component float type. */
4518
4519 struct type *
4520 arch_complex_type (struct gdbarch *gdbarch,
4521 char *name, struct type *target_type)
4522 {
4523 struct type *t;
4524
4525 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4526 2 * TYPE_LENGTH (target_type), name);
4527 TYPE_TARGET_TYPE (t) = target_type;
4528 return t;
4529 }
4530
4531 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4532 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4533
4534 struct type *
4535 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4536 {
4537 int nfields = length * TARGET_CHAR_BIT;
4538 struct type *type;
4539
4540 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4541 TYPE_UNSIGNED (type) = 1;
4542 TYPE_NFIELDS (type) = nfields;
4543 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4544
4545 return type;
4546 }
4547
4548 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4549 position BITPOS is called NAME. */
4550
4551 void
4552 append_flags_type_flag (struct type *type, int bitpos, char *name)
4553 {
4554 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4555 gdb_assert (bitpos < TYPE_NFIELDS (type));
4556 gdb_assert (bitpos >= 0);
4557
4558 if (name)
4559 {
4560 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4561 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4562 }
4563 else
4564 {
4565 /* Don't show this field to the user. */
4566 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4567 }
4568 }
4569
4570 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4571 specified by CODE) associated with GDBARCH. NAME is the type name. */
4572
4573 struct type *
4574 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4575 {
4576 struct type *t;
4577
4578 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4579 t = arch_type (gdbarch, code, 0, NULL);
4580 TYPE_TAG_NAME (t) = name;
4581 INIT_CPLUS_SPECIFIC (t);
4582 return t;
4583 }
4584
4585 /* Add new field with name NAME and type FIELD to composite type T.
4586 Do not set the field's position or adjust the type's length;
4587 the caller should do so. Return the new field. */
4588
4589 struct field *
4590 append_composite_type_field_raw (struct type *t, char *name,
4591 struct type *field)
4592 {
4593 struct field *f;
4594
4595 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4596 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4597 sizeof (struct field) * TYPE_NFIELDS (t));
4598 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4599 memset (f, 0, sizeof f[0]);
4600 FIELD_TYPE (f[0]) = field;
4601 FIELD_NAME (f[0]) = name;
4602 return f;
4603 }
4604
4605 /* Add new field with name NAME and type FIELD to composite type T.
4606 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4607
4608 void
4609 append_composite_type_field_aligned (struct type *t, char *name,
4610 struct type *field, int alignment)
4611 {
4612 struct field *f = append_composite_type_field_raw (t, name, field);
4613
4614 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4615 {
4616 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4617 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4618 }
4619 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4620 {
4621 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4622 if (TYPE_NFIELDS (t) > 1)
4623 {
4624 SET_FIELD_BITPOS (f[0],
4625 (FIELD_BITPOS (f[-1])
4626 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4627 * TARGET_CHAR_BIT)));
4628
4629 if (alignment)
4630 {
4631 int left;
4632
4633 alignment *= TARGET_CHAR_BIT;
4634 left = FIELD_BITPOS (f[0]) % alignment;
4635
4636 if (left)
4637 {
4638 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4639 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4640 }
4641 }
4642 }
4643 }
4644 }
4645
4646 /* Add new field with name NAME and type FIELD to composite type T. */
4647
4648 void
4649 append_composite_type_field (struct type *t, char *name,
4650 struct type *field)
4651 {
4652 append_composite_type_field_aligned (t, name, field, 0);
4653 }
4654
4655 static struct gdbarch_data *gdbtypes_data;
4656
4657 const struct builtin_type *
4658 builtin_type (struct gdbarch *gdbarch)
4659 {
4660 return gdbarch_data (gdbarch, gdbtypes_data);
4661 }
4662
4663 static void *
4664 gdbtypes_post_init (struct gdbarch *gdbarch)
4665 {
4666 struct builtin_type *builtin_type
4667 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4668
4669 /* Basic types. */
4670 builtin_type->builtin_void
4671 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4672 builtin_type->builtin_char
4673 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4674 !gdbarch_char_signed (gdbarch), "char");
4675 builtin_type->builtin_signed_char
4676 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4677 0, "signed char");
4678 builtin_type->builtin_unsigned_char
4679 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4680 1, "unsigned char");
4681 builtin_type->builtin_short
4682 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4683 0, "short");
4684 builtin_type->builtin_unsigned_short
4685 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4686 1, "unsigned short");
4687 builtin_type->builtin_int
4688 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4689 0, "int");
4690 builtin_type->builtin_unsigned_int
4691 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4692 1, "unsigned int");
4693 builtin_type->builtin_long
4694 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4695 0, "long");
4696 builtin_type->builtin_unsigned_long
4697 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4698 1, "unsigned long");
4699 builtin_type->builtin_long_long
4700 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4701 0, "long long");
4702 builtin_type->builtin_unsigned_long_long
4703 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4704 1, "unsigned long long");
4705 builtin_type->builtin_float
4706 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4707 "float", gdbarch_float_format (gdbarch));
4708 builtin_type->builtin_double
4709 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4710 "double", gdbarch_double_format (gdbarch));
4711 builtin_type->builtin_long_double
4712 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4713 "long double", gdbarch_long_double_format (gdbarch));
4714 builtin_type->builtin_complex
4715 = arch_complex_type (gdbarch, "complex",
4716 builtin_type->builtin_float);
4717 builtin_type->builtin_double_complex
4718 = arch_complex_type (gdbarch, "double complex",
4719 builtin_type->builtin_double);
4720 builtin_type->builtin_string
4721 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4722 builtin_type->builtin_bool
4723 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4724
4725 /* The following three are about decimal floating point types, which
4726 are 32-bits, 64-bits and 128-bits respectively. */
4727 builtin_type->builtin_decfloat
4728 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4729 builtin_type->builtin_decdouble
4730 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4731 builtin_type->builtin_declong
4732 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4733
4734 /* "True" character types. */
4735 builtin_type->builtin_true_char
4736 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4737 builtin_type->builtin_true_unsigned_char
4738 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4739
4740 /* Fixed-size integer types. */
4741 builtin_type->builtin_int0
4742 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4743 builtin_type->builtin_int8
4744 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4745 builtin_type->builtin_uint8
4746 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4747 builtin_type->builtin_int16
4748 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4749 builtin_type->builtin_uint16
4750 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4751 builtin_type->builtin_int32
4752 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4753 builtin_type->builtin_uint32
4754 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4755 builtin_type->builtin_int64
4756 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4757 builtin_type->builtin_uint64
4758 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4759 builtin_type->builtin_int128
4760 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4761 builtin_type->builtin_uint128
4762 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4763 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4764 TYPE_INSTANCE_FLAG_NOTTEXT;
4765 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4766 TYPE_INSTANCE_FLAG_NOTTEXT;
4767
4768 /* Wide character types. */
4769 builtin_type->builtin_char16
4770 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4771 builtin_type->builtin_char32
4772 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4773
4774
4775 /* Default data/code pointer types. */
4776 builtin_type->builtin_data_ptr
4777 = lookup_pointer_type (builtin_type->builtin_void);
4778 builtin_type->builtin_func_ptr
4779 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4780 builtin_type->builtin_func_func
4781 = lookup_function_type (builtin_type->builtin_func_ptr);
4782
4783 /* This type represents a GDB internal function. */
4784 builtin_type->internal_fn
4785 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4786 "<internal function>");
4787
4788 /* This type represents an xmethod. */
4789 builtin_type->xmethod
4790 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4791
4792 return builtin_type;
4793 }
4794
4795 /* This set of objfile-based types is intended to be used by symbol
4796 readers as basic types. */
4797
4798 static const struct objfile_data *objfile_type_data;
4799
4800 const struct objfile_type *
4801 objfile_type (struct objfile *objfile)
4802 {
4803 struct gdbarch *gdbarch;
4804 struct objfile_type *objfile_type
4805 = objfile_data (objfile, objfile_type_data);
4806
4807 if (objfile_type)
4808 return objfile_type;
4809
4810 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4811 1, struct objfile_type);
4812
4813 /* Use the objfile architecture to determine basic type properties. */
4814 gdbarch = get_objfile_arch (objfile);
4815
4816 /* Basic types. */
4817 objfile_type->builtin_void
4818 = init_type (TYPE_CODE_VOID, 1,
4819 0,
4820 "void", objfile);
4821
4822 objfile_type->builtin_char
4823 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4824 (TYPE_FLAG_NOSIGN
4825 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4826 "char", objfile);
4827 objfile_type->builtin_signed_char
4828 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4829 0,
4830 "signed char", objfile);
4831 objfile_type->builtin_unsigned_char
4832 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4833 TYPE_FLAG_UNSIGNED,
4834 "unsigned char", objfile);
4835 objfile_type->builtin_short
4836 = init_type (TYPE_CODE_INT,
4837 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4838 0, "short", objfile);
4839 objfile_type->builtin_unsigned_short
4840 = init_type (TYPE_CODE_INT,
4841 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4842 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4843 objfile_type->builtin_int
4844 = init_type (TYPE_CODE_INT,
4845 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4846 0, "int", objfile);
4847 objfile_type->builtin_unsigned_int
4848 = init_type (TYPE_CODE_INT,
4849 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4850 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4851 objfile_type->builtin_long
4852 = init_type (TYPE_CODE_INT,
4853 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4854 0, "long", objfile);
4855 objfile_type->builtin_unsigned_long
4856 = init_type (TYPE_CODE_INT,
4857 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4858 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4859 objfile_type->builtin_long_long
4860 = init_type (TYPE_CODE_INT,
4861 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4862 0, "long long", objfile);
4863 objfile_type->builtin_unsigned_long_long
4864 = init_type (TYPE_CODE_INT,
4865 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4866 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4867
4868 objfile_type->builtin_float
4869 = init_type (TYPE_CODE_FLT,
4870 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4871 0, "float", objfile);
4872 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4873 = gdbarch_float_format (gdbarch);
4874 objfile_type->builtin_double
4875 = init_type (TYPE_CODE_FLT,
4876 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4877 0, "double", objfile);
4878 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4879 = gdbarch_double_format (gdbarch);
4880 objfile_type->builtin_long_double
4881 = init_type (TYPE_CODE_FLT,
4882 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4883 0, "long double", objfile);
4884 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4885 = gdbarch_long_double_format (gdbarch);
4886
4887 /* This type represents a type that was unrecognized in symbol read-in. */
4888 objfile_type->builtin_error
4889 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4890
4891 /* The following set of types is used for symbols with no
4892 debug information. */
4893 objfile_type->nodebug_text_symbol
4894 = init_type (TYPE_CODE_FUNC, 1, 0,
4895 "<text variable, no debug info>", objfile);
4896 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4897 = objfile_type->builtin_int;
4898 objfile_type->nodebug_text_gnu_ifunc_symbol
4899 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4900 "<text gnu-indirect-function variable, no debug info>",
4901 objfile);
4902 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4903 = objfile_type->nodebug_text_symbol;
4904 objfile_type->nodebug_got_plt_symbol
4905 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4906 "<text from jump slot in .got.plt, no debug info>",
4907 objfile);
4908 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4909 = objfile_type->nodebug_text_symbol;
4910 objfile_type->nodebug_data_symbol
4911 = init_type (TYPE_CODE_INT,
4912 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4913 "<data variable, no debug info>", objfile);
4914 objfile_type->nodebug_unknown_symbol
4915 = init_type (TYPE_CODE_INT, 1, 0,
4916 "<variable (not text or data), no debug info>", objfile);
4917 objfile_type->nodebug_tls_symbol
4918 = init_type (TYPE_CODE_INT,
4919 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4920 "<thread local variable, no debug info>", objfile);
4921
4922 /* NOTE: on some targets, addresses and pointers are not necessarily
4923 the same.
4924
4925 The upshot is:
4926 - gdb's `struct type' always describes the target's
4927 representation.
4928 - gdb's `struct value' objects should always hold values in
4929 target form.
4930 - gdb's CORE_ADDR values are addresses in the unified virtual
4931 address space that the assembler and linker work with. Thus,
4932 since target_read_memory takes a CORE_ADDR as an argument, it
4933 can access any memory on the target, even if the processor has
4934 separate code and data address spaces.
4935
4936 In this context, objfile_type->builtin_core_addr is a bit odd:
4937 it's a target type for a value the target will never see. It's
4938 only used to hold the values of (typeless) linker symbols, which
4939 are indeed in the unified virtual address space. */
4940
4941 objfile_type->builtin_core_addr
4942 = init_type (TYPE_CODE_INT,
4943 gdbarch_addr_bit (gdbarch) / 8,
4944 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4945
4946 set_objfile_data (objfile, objfile_type_data, objfile_type);
4947 return objfile_type;
4948 }
4949
4950 extern initialize_file_ftype _initialize_gdbtypes;
4951
4952 void
4953 _initialize_gdbtypes (void)
4954 {
4955 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4956 objfile_type_data = register_objfile_data ();
4957
4958 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4959 _("Set debugging of C++ overloading."),
4960 _("Show debugging of C++ overloading."),
4961 _("When enabled, ranking of the "
4962 "functions is displayed."),
4963 NULL,
4964 show_overload_debug,
4965 &setdebuglist, &showdebuglist);
4966
4967 /* Add user knob for controlling resolution of opaque types. */
4968 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4969 &opaque_type_resolution,
4970 _("Set resolution of opaque struct/class/union"
4971 " types (if set before loading symbols)."),
4972 _("Show resolution of opaque struct/class/union"
4973 " types (if set before loading symbols)."),
4974 NULL, NULL,
4975 show_opaque_type_resolution,
4976 &setlist, &showlist);
4977
4978 /* Add an option to permit non-strict type checking. */
4979 add_setshow_boolean_cmd ("type", class_support,
4980 &strict_type_checking,
4981 _("Set strict type checking."),
4982 _("Show strict type checking."),
4983 NULL, NULL,
4984 show_strict_type_checking,
4985 &setchecklist, &showchecklist);
4986 }
This page took 0.1439 seconds and 4 git commands to generate.