Add target_ops argument to to_read_btrace
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_VPTR_FIELDNO (type) = -1;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the heap. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = XCNEW (struct type);
205 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_VPTR_FIELDNO (type) = -1;
214 TYPE_CHAIN (type) = type; /* Chain back to itself. */
215
216 return type;
217 }
218
219 /* If TYPE is objfile-associated, allocate a new type structure
220 associated with the same objfile. If TYPE is gdbarch-associated,
221 allocate a new type structure associated with the same gdbarch. */
222
223 struct type *
224 alloc_type_copy (const struct type *type)
225 {
226 if (TYPE_OBJFILE_OWNED (type))
227 return alloc_type (TYPE_OWNER (type).objfile);
228 else
229 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 }
231
232 /* If TYPE is gdbarch-associated, return that architecture.
233 If TYPE is objfile-associated, return that objfile's architecture. */
234
235 struct gdbarch *
236 get_type_arch (const struct type *type)
237 {
238 if (TYPE_OBJFILE_OWNED (type))
239 return get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 return TYPE_OWNER (type).gdbarch;
242 }
243
244 /* See gdbtypes.h. */
245
246 struct type *
247 get_target_type (struct type *type)
248 {
249 if (type != NULL)
250 {
251 type = TYPE_TARGET_TYPE (type);
252 if (type != NULL)
253 type = check_typedef (type);
254 }
255
256 return type;
257 }
258
259 /* Alloc a new type instance structure, fill it with some defaults,
260 and point it at OLDTYPE. Allocate the new type instance from the
261 same place as OLDTYPE. */
262
263 static struct type *
264 alloc_type_instance (struct type *oldtype)
265 {
266 struct type *type;
267
268 /* Allocate the structure. */
269
270 if (! TYPE_OBJFILE_OWNED (oldtype))
271 type = XCNEW (struct type);
272 else
273 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
274 struct type);
275
276 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
277
278 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
279
280 return type;
281 }
282
283 /* Clear all remnants of the previous type at TYPE, in preparation for
284 replacing it with something else. Preserve owner information. */
285
286 static void
287 smash_type (struct type *type)
288 {
289 int objfile_owned = TYPE_OBJFILE_OWNED (type);
290 union type_owner owner = TYPE_OWNER (type);
291
292 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
293
294 /* Restore owner information. */
295 TYPE_OBJFILE_OWNED (type) = objfile_owned;
296 TYPE_OWNER (type) = owner;
297
298 /* For now, delete the rings. */
299 TYPE_CHAIN (type) = type;
300
301 /* For now, leave the pointer/reference types alone. */
302 }
303
304 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
305 to a pointer to memory where the pointer type should be stored.
306 If *TYPEPTR is zero, update it to point to the pointer type we return.
307 We allocate new memory if needed. */
308
309 struct type *
310 make_pointer_type (struct type *type, struct type **typeptr)
311 {
312 struct type *ntype; /* New type */
313 struct type *chain;
314
315 ntype = TYPE_POINTER_TYPE (type);
316
317 if (ntype)
318 {
319 if (typeptr == 0)
320 return ntype; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type_copy (type);
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else /* We have storage, but need to reset it. */
336 {
337 ntype = *typeptr;
338 chain = TYPE_CHAIN (ntype);
339 smash_type (ntype);
340 TYPE_CHAIN (ntype) = chain;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_POINTER_TYPE (type) = ntype;
345
346 /* FIXME! Assumes the machine has only one representation for pointers! */
347
348 TYPE_LENGTH (ntype)
349 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
350 TYPE_CODE (ntype) = TYPE_CODE_PTR;
351
352 /* Mark pointers as unsigned. The target converts between pointers
353 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
354 gdbarch_address_to_pointer. */
355 TYPE_UNSIGNED (ntype) = 1;
356
357 /* Update the length of all the other variants of this type. */
358 chain = TYPE_CHAIN (ntype);
359 while (chain != ntype)
360 {
361 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
362 chain = TYPE_CHAIN (chain);
363 }
364
365 return ntype;
366 }
367
368 /* Given a type TYPE, return a type of pointers to that type.
369 May need to construct such a type if this is the first use. */
370
371 struct type *
372 lookup_pointer_type (struct type *type)
373 {
374 return make_pointer_type (type, (struct type **) 0);
375 }
376
377 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
378 points to a pointer to memory where the reference type should be
379 stored. If *TYPEPTR is zero, update it to point to the reference
380 type we return. We allocate new memory if needed. */
381
382 struct type *
383 make_reference_type (struct type *type, struct type **typeptr)
384 {
385 struct type *ntype; /* New type */
386 struct type *chain;
387
388 ntype = TYPE_REFERENCE_TYPE (type);
389
390 if (ntype)
391 {
392 if (typeptr == 0)
393 return ntype; /* Don't care about alloc,
394 and have new type. */
395 else if (*typeptr == 0)
396 {
397 *typeptr = ntype; /* Tracking alloc, and have new type. */
398 return ntype;
399 }
400 }
401
402 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
403 {
404 ntype = alloc_type_copy (type);
405 if (typeptr)
406 *typeptr = ntype;
407 }
408 else /* We have storage, but need to reset it. */
409 {
410 ntype = *typeptr;
411 chain = TYPE_CHAIN (ntype);
412 smash_type (ntype);
413 TYPE_CHAIN (ntype) = chain;
414 }
415
416 TYPE_TARGET_TYPE (ntype) = type;
417 TYPE_REFERENCE_TYPE (type) = ntype;
418
419 /* FIXME! Assume the machine has only one representation for
420 references, and that it matches the (only) representation for
421 pointers! */
422
423 TYPE_LENGTH (ntype) =
424 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
425 TYPE_CODE (ntype) = TYPE_CODE_REF;
426
427 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
428 TYPE_REFERENCE_TYPE (type) = ntype;
429
430 /* Update the length of all the other variants of this type. */
431 chain = TYPE_CHAIN (ntype);
432 while (chain != ntype)
433 {
434 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
435 chain = TYPE_CHAIN (chain);
436 }
437
438 return ntype;
439 }
440
441 /* Same as above, but caller doesn't care about memory allocation
442 details. */
443
444 struct type *
445 lookup_reference_type (struct type *type)
446 {
447 return make_reference_type (type, (struct type **) 0);
448 }
449
450 /* Lookup a function type that returns type TYPE. TYPEPTR, if
451 nonzero, points to a pointer to memory where the function type
452 should be stored. If *TYPEPTR is zero, update it to point to the
453 function type we return. We allocate new memory if needed. */
454
455 struct type *
456 make_function_type (struct type *type, struct type **typeptr)
457 {
458 struct type *ntype; /* New type */
459
460 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
461 {
462 ntype = alloc_type_copy (type);
463 if (typeptr)
464 *typeptr = ntype;
465 }
466 else /* We have storage, but need to reset it. */
467 {
468 ntype = *typeptr;
469 smash_type (ntype);
470 }
471
472 TYPE_TARGET_TYPE (ntype) = type;
473
474 TYPE_LENGTH (ntype) = 1;
475 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
476
477 INIT_FUNC_SPECIFIC (ntype);
478
479 return ntype;
480 }
481
482 /* Given a type TYPE, return a type of functions that return that type.
483 May need to construct such a type if this is the first use. */
484
485 struct type *
486 lookup_function_type (struct type *type)
487 {
488 return make_function_type (type, (struct type **) 0);
489 }
490
491 /* Given a type TYPE and argument types, return the appropriate
492 function type. If the final type in PARAM_TYPES is NULL, make a
493 varargs function. */
494
495 struct type *
496 lookup_function_type_with_arguments (struct type *type,
497 int nparams,
498 struct type **param_types)
499 {
500 struct type *fn = make_function_type (type, (struct type **) 0);
501 int i;
502
503 if (nparams > 0)
504 {
505 if (param_types[nparams - 1] == NULL)
506 {
507 --nparams;
508 TYPE_VARARGS (fn) = 1;
509 }
510 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
511 == TYPE_CODE_VOID)
512 {
513 --nparams;
514 /* Caller should have ensured this. */
515 gdb_assert (nparams == 0);
516 TYPE_PROTOTYPED (fn) = 1;
517 }
518 }
519
520 TYPE_NFIELDS (fn) = nparams;
521 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
522 for (i = 0; i < nparams; ++i)
523 TYPE_FIELD_TYPE (fn, i) = param_types[i];
524
525 return fn;
526 }
527
528 /* Identify address space identifier by name --
529 return the integer flag defined in gdbtypes.h. */
530
531 int
532 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
533 {
534 int type_flags;
535
536 /* Check for known address space delimiters. */
537 if (!strcmp (space_identifier, "code"))
538 return TYPE_INSTANCE_FLAG_CODE_SPACE;
539 else if (!strcmp (space_identifier, "data"))
540 return TYPE_INSTANCE_FLAG_DATA_SPACE;
541 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
542 && gdbarch_address_class_name_to_type_flags (gdbarch,
543 space_identifier,
544 &type_flags))
545 return type_flags;
546 else
547 error (_("Unknown address space specifier: \"%s\""), space_identifier);
548 }
549
550 /* Identify address space identifier by integer flag as defined in
551 gdbtypes.h -- return the string version of the adress space name. */
552
553 const char *
554 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
555 {
556 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
557 return "code";
558 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
559 return "data";
560 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
561 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
562 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
563 else
564 return NULL;
565 }
566
567 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
568
569 If STORAGE is non-NULL, create the new type instance there.
570 STORAGE must be in the same obstack as TYPE. */
571
572 static struct type *
573 make_qualified_type (struct type *type, int new_flags,
574 struct type *storage)
575 {
576 struct type *ntype;
577
578 ntype = type;
579 do
580 {
581 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
582 return ntype;
583 ntype = TYPE_CHAIN (ntype);
584 }
585 while (ntype != type);
586
587 /* Create a new type instance. */
588 if (storage == NULL)
589 ntype = alloc_type_instance (type);
590 else
591 {
592 /* If STORAGE was provided, it had better be in the same objfile
593 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
594 if one objfile is freed and the other kept, we'd have
595 dangling pointers. */
596 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
597
598 ntype = storage;
599 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
600 TYPE_CHAIN (ntype) = ntype;
601 }
602
603 /* Pointers or references to the original type are not relevant to
604 the new type. */
605 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
606 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
607
608 /* Chain the new qualified type to the old type. */
609 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
610 TYPE_CHAIN (type) = ntype;
611
612 /* Now set the instance flags and return the new type. */
613 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
614
615 /* Set length of new type to that of the original type. */
616 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
617
618 return ntype;
619 }
620
621 /* Make an address-space-delimited variant of a type -- a type that
622 is identical to the one supplied except that it has an address
623 space attribute attached to it (such as "code" or "data").
624
625 The space attributes "code" and "data" are for Harvard
626 architectures. The address space attributes are for architectures
627 which have alternately sized pointers or pointers with alternate
628 representations. */
629
630 struct type *
631 make_type_with_address_space (struct type *type, int space_flag)
632 {
633 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
634 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
635 | TYPE_INSTANCE_FLAG_DATA_SPACE
636 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
637 | space_flag);
638
639 return make_qualified_type (type, new_flags, NULL);
640 }
641
642 /* Make a "c-v" variant of a type -- a type that is identical to the
643 one supplied except that it may have const or volatile attributes
644 CNST is a flag for setting the const attribute
645 VOLTL is a flag for setting the volatile attribute
646 TYPE is the base type whose variant we are creating.
647
648 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
649 storage to hold the new qualified type; *TYPEPTR and TYPE must be
650 in the same objfile. Otherwise, allocate fresh memory for the new
651 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
652 new type we construct. */
653
654 struct type *
655 make_cv_type (int cnst, int voltl,
656 struct type *type,
657 struct type **typeptr)
658 {
659 struct type *ntype; /* New type */
660
661 int new_flags = (TYPE_INSTANCE_FLAGS (type)
662 & ~(TYPE_INSTANCE_FLAG_CONST
663 | TYPE_INSTANCE_FLAG_VOLATILE));
664
665 if (cnst)
666 new_flags |= TYPE_INSTANCE_FLAG_CONST;
667
668 if (voltl)
669 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
670
671 if (typeptr && *typeptr != NULL)
672 {
673 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
674 a C-V variant chain that threads across objfiles: if one
675 objfile gets freed, then the other has a broken C-V chain.
676
677 This code used to try to copy over the main type from TYPE to
678 *TYPEPTR if they were in different objfiles, but that's
679 wrong, too: TYPE may have a field list or member function
680 lists, which refer to types of their own, etc. etc. The
681 whole shebang would need to be copied over recursively; you
682 can't have inter-objfile pointers. The only thing to do is
683 to leave stub types as stub types, and look them up afresh by
684 name each time you encounter them. */
685 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
686 }
687
688 ntype = make_qualified_type (type, new_flags,
689 typeptr ? *typeptr : NULL);
690
691 if (typeptr != NULL)
692 *typeptr = ntype;
693
694 return ntype;
695 }
696
697 /* Make a 'restrict'-qualified version of TYPE. */
698
699 struct type *
700 make_restrict_type (struct type *type)
701 {
702 return make_qualified_type (type,
703 (TYPE_INSTANCE_FLAGS (type)
704 | TYPE_INSTANCE_FLAG_RESTRICT),
705 NULL);
706 }
707
708 /* Replace the contents of ntype with the type *type. This changes the
709 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
710 the changes are propogated to all types in the TYPE_CHAIN.
711
712 In order to build recursive types, it's inevitable that we'll need
713 to update types in place --- but this sort of indiscriminate
714 smashing is ugly, and needs to be replaced with something more
715 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
716 clear if more steps are needed. */
717
718 void
719 replace_type (struct type *ntype, struct type *type)
720 {
721 struct type *chain;
722
723 /* These two types had better be in the same objfile. Otherwise,
724 the assignment of one type's main type structure to the other
725 will produce a type with references to objects (names; field
726 lists; etc.) allocated on an objfile other than its own. */
727 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
728
729 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
730
731 /* The type length is not a part of the main type. Update it for
732 each type on the variant chain. */
733 chain = ntype;
734 do
735 {
736 /* Assert that this element of the chain has no address-class bits
737 set in its flags. Such type variants might have type lengths
738 which are supposed to be different from the non-address-class
739 variants. This assertion shouldn't ever be triggered because
740 symbol readers which do construct address-class variants don't
741 call replace_type(). */
742 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
743
744 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
745 chain = TYPE_CHAIN (chain);
746 }
747 while (ntype != chain);
748
749 /* Assert that the two types have equivalent instance qualifiers.
750 This should be true for at least all of our debug readers. */
751 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
752 }
753
754 /* Implement direct support for MEMBER_TYPE in GNU C++.
755 May need to construct such a type if this is the first use.
756 The TYPE is the type of the member. The DOMAIN is the type
757 of the aggregate that the member belongs to. */
758
759 struct type *
760 lookup_memberptr_type (struct type *type, struct type *domain)
761 {
762 struct type *mtype;
763
764 mtype = alloc_type_copy (type);
765 smash_to_memberptr_type (mtype, domain, type);
766 return mtype;
767 }
768
769 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
770
771 struct type *
772 lookup_methodptr_type (struct type *to_type)
773 {
774 struct type *mtype;
775
776 mtype = alloc_type_copy (to_type);
777 smash_to_methodptr_type (mtype, to_type);
778 return mtype;
779 }
780
781 /* Allocate a stub method whose return type is TYPE. This apparently
782 happens for speed of symbol reading, since parsing out the
783 arguments to the method is cpu-intensive, the way we are doing it.
784 So, we will fill in arguments later. This always returns a fresh
785 type. */
786
787 struct type *
788 allocate_stub_method (struct type *type)
789 {
790 struct type *mtype;
791
792 mtype = alloc_type_copy (type);
793 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
794 TYPE_LENGTH (mtype) = 1;
795 TYPE_STUB (mtype) = 1;
796 TYPE_TARGET_TYPE (mtype) = type;
797 /* _DOMAIN_TYPE (mtype) = unknown yet */
798 return mtype;
799 }
800
801 /* Create a range type using either a blank type supplied in
802 RESULT_TYPE, or creating a new type, inheriting the objfile from
803 INDEX_TYPE.
804
805 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
806 to HIGH_BOUND, inclusive.
807
808 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
809 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
810
811 struct type *
812 create_range_type (struct type *result_type, struct type *index_type,
813 LONGEST low_bound, LONGEST high_bound)
814 {
815 if (result_type == NULL)
816 result_type = alloc_type_copy (index_type);
817 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
818 TYPE_TARGET_TYPE (result_type) = index_type;
819 if (TYPE_STUB (index_type))
820 TYPE_TARGET_STUB (result_type) = 1;
821 else
822 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
823 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
824 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
825 TYPE_LOW_BOUND (result_type) = low_bound;
826 TYPE_HIGH_BOUND (result_type) = high_bound;
827
828 if (low_bound >= 0)
829 TYPE_UNSIGNED (result_type) = 1;
830
831 return result_type;
832 }
833
834 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
835 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
836 bounds will fit in LONGEST), or -1 otherwise. */
837
838 int
839 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
840 {
841 CHECK_TYPEDEF (type);
842 switch (TYPE_CODE (type))
843 {
844 case TYPE_CODE_RANGE:
845 *lowp = TYPE_LOW_BOUND (type);
846 *highp = TYPE_HIGH_BOUND (type);
847 return 1;
848 case TYPE_CODE_ENUM:
849 if (TYPE_NFIELDS (type) > 0)
850 {
851 /* The enums may not be sorted by value, so search all
852 entries. */
853 int i;
854
855 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
856 for (i = 0; i < TYPE_NFIELDS (type); i++)
857 {
858 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
859 *lowp = TYPE_FIELD_ENUMVAL (type, i);
860 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
861 *highp = TYPE_FIELD_ENUMVAL (type, i);
862 }
863
864 /* Set unsigned indicator if warranted. */
865 if (*lowp >= 0)
866 {
867 TYPE_UNSIGNED (type) = 1;
868 }
869 }
870 else
871 {
872 *lowp = 0;
873 *highp = -1;
874 }
875 return 0;
876 case TYPE_CODE_BOOL:
877 *lowp = 0;
878 *highp = 1;
879 return 0;
880 case TYPE_CODE_INT:
881 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
882 return -1;
883 if (!TYPE_UNSIGNED (type))
884 {
885 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
886 *highp = -*lowp - 1;
887 return 0;
888 }
889 /* ... fall through for unsigned ints ... */
890 case TYPE_CODE_CHAR:
891 *lowp = 0;
892 /* This round-about calculation is to avoid shifting by
893 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
894 if TYPE_LENGTH (type) == sizeof (LONGEST). */
895 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
896 *highp = (*highp - 1) | *highp;
897 return 0;
898 default:
899 return -1;
900 }
901 }
902
903 /* Assuming TYPE is a simple, non-empty array type, compute its upper
904 and lower bound. Save the low bound into LOW_BOUND if not NULL.
905 Save the high bound into HIGH_BOUND if not NULL.
906
907 Return 1 if the operation was successful. Return zero otherwise,
908 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
909
910 We now simply use get_discrete_bounds call to get the values
911 of the low and high bounds.
912 get_discrete_bounds can return three values:
913 1, meaning that index is a range,
914 0, meaning that index is a discrete type,
915 or -1 for failure. */
916
917 int
918 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
919 {
920 struct type *index = TYPE_INDEX_TYPE (type);
921 LONGEST low = 0;
922 LONGEST high = 0;
923 int res;
924
925 if (index == NULL)
926 return 0;
927
928 res = get_discrete_bounds (index, &low, &high);
929 if (res == -1)
930 return 0;
931
932 /* Check if the array bounds are undefined. */
933 if (res == 1
934 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
935 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
936 return 0;
937
938 if (low_bound)
939 *low_bound = low;
940
941 if (high_bound)
942 *high_bound = high;
943
944 return 1;
945 }
946
947 /* Create an array type using either a blank type supplied in
948 RESULT_TYPE, or creating a new type, inheriting the objfile from
949 RANGE_TYPE.
950
951 Elements will be of type ELEMENT_TYPE, the indices will be of type
952 RANGE_TYPE.
953
954 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
955 sure it is TYPE_CODE_UNDEF before we bash it into an array
956 type? */
957
958 struct type *
959 create_array_type (struct type *result_type,
960 struct type *element_type,
961 struct type *range_type)
962 {
963 LONGEST low_bound, high_bound;
964
965 if (result_type == NULL)
966 result_type = alloc_type_copy (range_type);
967
968 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
969 TYPE_TARGET_TYPE (result_type) = element_type;
970 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
971 low_bound = high_bound = 0;
972 CHECK_TYPEDEF (element_type);
973 /* Be careful when setting the array length. Ada arrays can be
974 empty arrays with the high_bound being smaller than the low_bound.
975 In such cases, the array length should be zero. */
976 if (high_bound < low_bound)
977 TYPE_LENGTH (result_type) = 0;
978 else
979 TYPE_LENGTH (result_type) =
980 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
981 TYPE_NFIELDS (result_type) = 1;
982 TYPE_FIELDS (result_type) =
983 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
984 TYPE_INDEX_TYPE (result_type) = range_type;
985 TYPE_VPTR_FIELDNO (result_type) = -1;
986
987 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
988 if (TYPE_LENGTH (result_type) == 0)
989 TYPE_TARGET_STUB (result_type) = 1;
990
991 return result_type;
992 }
993
994 struct type *
995 lookup_array_range_type (struct type *element_type,
996 LONGEST low_bound, LONGEST high_bound)
997 {
998 struct gdbarch *gdbarch = get_type_arch (element_type);
999 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1000 struct type *range_type
1001 = create_range_type (NULL, index_type, low_bound, high_bound);
1002
1003 return create_array_type (NULL, element_type, range_type);
1004 }
1005
1006 /* Create a string type using either a blank type supplied in
1007 RESULT_TYPE, or creating a new type. String types are similar
1008 enough to array of char types that we can use create_array_type to
1009 build the basic type and then bash it into a string type.
1010
1011 For fixed length strings, the range type contains 0 as the lower
1012 bound and the length of the string minus one as the upper bound.
1013
1014 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1015 sure it is TYPE_CODE_UNDEF before we bash it into a string
1016 type? */
1017
1018 struct type *
1019 create_string_type (struct type *result_type,
1020 struct type *string_char_type,
1021 struct type *range_type)
1022 {
1023 result_type = create_array_type (result_type,
1024 string_char_type,
1025 range_type);
1026 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1027 return result_type;
1028 }
1029
1030 struct type *
1031 lookup_string_range_type (struct type *string_char_type,
1032 LONGEST low_bound, LONGEST high_bound)
1033 {
1034 struct type *result_type;
1035
1036 result_type = lookup_array_range_type (string_char_type,
1037 low_bound, high_bound);
1038 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1039 return result_type;
1040 }
1041
1042 struct type *
1043 create_set_type (struct type *result_type, struct type *domain_type)
1044 {
1045 if (result_type == NULL)
1046 result_type = alloc_type_copy (domain_type);
1047
1048 TYPE_CODE (result_type) = TYPE_CODE_SET;
1049 TYPE_NFIELDS (result_type) = 1;
1050 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1051
1052 if (!TYPE_STUB (domain_type))
1053 {
1054 LONGEST low_bound, high_bound, bit_length;
1055
1056 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1057 low_bound = high_bound = 0;
1058 bit_length = high_bound - low_bound + 1;
1059 TYPE_LENGTH (result_type)
1060 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1061 if (low_bound >= 0)
1062 TYPE_UNSIGNED (result_type) = 1;
1063 }
1064 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1065
1066 return result_type;
1067 }
1068
1069 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1070 and any array types nested inside it. */
1071
1072 void
1073 make_vector_type (struct type *array_type)
1074 {
1075 struct type *inner_array, *elt_type;
1076 int flags;
1077
1078 /* Find the innermost array type, in case the array is
1079 multi-dimensional. */
1080 inner_array = array_type;
1081 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1082 inner_array = TYPE_TARGET_TYPE (inner_array);
1083
1084 elt_type = TYPE_TARGET_TYPE (inner_array);
1085 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1086 {
1087 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1088 elt_type = make_qualified_type (elt_type, flags, NULL);
1089 TYPE_TARGET_TYPE (inner_array) = elt_type;
1090 }
1091
1092 TYPE_VECTOR (array_type) = 1;
1093 }
1094
1095 struct type *
1096 init_vector_type (struct type *elt_type, int n)
1097 {
1098 struct type *array_type;
1099
1100 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1101 make_vector_type (array_type);
1102 return array_type;
1103 }
1104
1105 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1106 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1107 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1108 TYPE doesn't include the offset (that's the value of the MEMBER
1109 itself), but does include the structure type into which it points
1110 (for some reason).
1111
1112 When "smashing" the type, we preserve the objfile that the old type
1113 pointed to, since we aren't changing where the type is actually
1114 allocated. */
1115
1116 void
1117 smash_to_memberptr_type (struct type *type, struct type *domain,
1118 struct type *to_type)
1119 {
1120 smash_type (type);
1121 TYPE_TARGET_TYPE (type) = to_type;
1122 TYPE_DOMAIN_TYPE (type) = domain;
1123 /* Assume that a data member pointer is the same size as a normal
1124 pointer. */
1125 TYPE_LENGTH (type)
1126 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1127 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1128 }
1129
1130 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1131
1132 When "smashing" the type, we preserve the objfile that the old type
1133 pointed to, since we aren't changing where the type is actually
1134 allocated. */
1135
1136 void
1137 smash_to_methodptr_type (struct type *type, struct type *to_type)
1138 {
1139 smash_type (type);
1140 TYPE_TARGET_TYPE (type) = to_type;
1141 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1142 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1143 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1144 }
1145
1146 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1147 METHOD just means `function that gets an extra "this" argument'.
1148
1149 When "smashing" the type, we preserve the objfile that the old type
1150 pointed to, since we aren't changing where the type is actually
1151 allocated. */
1152
1153 void
1154 smash_to_method_type (struct type *type, struct type *domain,
1155 struct type *to_type, struct field *args,
1156 int nargs, int varargs)
1157 {
1158 smash_type (type);
1159 TYPE_TARGET_TYPE (type) = to_type;
1160 TYPE_DOMAIN_TYPE (type) = domain;
1161 TYPE_FIELDS (type) = args;
1162 TYPE_NFIELDS (type) = nargs;
1163 if (varargs)
1164 TYPE_VARARGS (type) = 1;
1165 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1166 TYPE_CODE (type) = TYPE_CODE_METHOD;
1167 }
1168
1169 /* Return a typename for a struct/union/enum type without "struct ",
1170 "union ", or "enum ". If the type has a NULL name, return NULL. */
1171
1172 const char *
1173 type_name_no_tag (const struct type *type)
1174 {
1175 if (TYPE_TAG_NAME (type) != NULL)
1176 return TYPE_TAG_NAME (type);
1177
1178 /* Is there code which expects this to return the name if there is
1179 no tag name? My guess is that this is mainly used for C++ in
1180 cases where the two will always be the same. */
1181 return TYPE_NAME (type);
1182 }
1183
1184 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1185 Since GCC PR debug/47510 DWARF provides associated information to detect the
1186 anonymous class linkage name from its typedef.
1187
1188 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1189 apply it itself. */
1190
1191 const char *
1192 type_name_no_tag_or_error (struct type *type)
1193 {
1194 struct type *saved_type = type;
1195 const char *name;
1196 struct objfile *objfile;
1197
1198 CHECK_TYPEDEF (type);
1199
1200 name = type_name_no_tag (type);
1201 if (name != NULL)
1202 return name;
1203
1204 name = type_name_no_tag (saved_type);
1205 objfile = TYPE_OBJFILE (saved_type);
1206 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1207 name ? name : "<anonymous>",
1208 objfile ? objfile_name (objfile) : "<arch>");
1209 }
1210
1211 /* Lookup a typedef or primitive type named NAME, visible in lexical
1212 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1213 suitably defined. */
1214
1215 struct type *
1216 lookup_typename (const struct language_defn *language,
1217 struct gdbarch *gdbarch, const char *name,
1218 const struct block *block, int noerr)
1219 {
1220 struct symbol *sym;
1221 struct type *type;
1222
1223 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1224 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1225 return SYMBOL_TYPE (sym);
1226
1227 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1228 if (type)
1229 return type;
1230
1231 if (noerr)
1232 return NULL;
1233 error (_("No type named %s."), name);
1234 }
1235
1236 struct type *
1237 lookup_unsigned_typename (const struct language_defn *language,
1238 struct gdbarch *gdbarch, const char *name)
1239 {
1240 char *uns = alloca (strlen (name) + 10);
1241
1242 strcpy (uns, "unsigned ");
1243 strcpy (uns + 9, name);
1244 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1245 }
1246
1247 struct type *
1248 lookup_signed_typename (const struct language_defn *language,
1249 struct gdbarch *gdbarch, const char *name)
1250 {
1251 struct type *t;
1252 char *uns = alloca (strlen (name) + 8);
1253
1254 strcpy (uns, "signed ");
1255 strcpy (uns + 7, name);
1256 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1257 /* If we don't find "signed FOO" just try again with plain "FOO". */
1258 if (t != NULL)
1259 return t;
1260 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1261 }
1262
1263 /* Lookup a structure type named "struct NAME",
1264 visible in lexical block BLOCK. */
1265
1266 struct type *
1267 lookup_struct (const char *name, const struct block *block)
1268 {
1269 struct symbol *sym;
1270
1271 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1272
1273 if (sym == NULL)
1274 {
1275 error (_("No struct type named %s."), name);
1276 }
1277 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1278 {
1279 error (_("This context has class, union or enum %s, not a struct."),
1280 name);
1281 }
1282 return (SYMBOL_TYPE (sym));
1283 }
1284
1285 /* Lookup a union type named "union NAME",
1286 visible in lexical block BLOCK. */
1287
1288 struct type *
1289 lookup_union (const char *name, const struct block *block)
1290 {
1291 struct symbol *sym;
1292 struct type *t;
1293
1294 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1295
1296 if (sym == NULL)
1297 error (_("No union type named %s."), name);
1298
1299 t = SYMBOL_TYPE (sym);
1300
1301 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1302 return t;
1303
1304 /* If we get here, it's not a union. */
1305 error (_("This context has class, struct or enum %s, not a union."),
1306 name);
1307 }
1308
1309 /* Lookup an enum type named "enum NAME",
1310 visible in lexical block BLOCK. */
1311
1312 struct type *
1313 lookup_enum (const char *name, const struct block *block)
1314 {
1315 struct symbol *sym;
1316
1317 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1318 if (sym == NULL)
1319 {
1320 error (_("No enum type named %s."), name);
1321 }
1322 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1323 {
1324 error (_("This context has class, struct or union %s, not an enum."),
1325 name);
1326 }
1327 return (SYMBOL_TYPE (sym));
1328 }
1329
1330 /* Lookup a template type named "template NAME<TYPE>",
1331 visible in lexical block BLOCK. */
1332
1333 struct type *
1334 lookup_template_type (char *name, struct type *type,
1335 const struct block *block)
1336 {
1337 struct symbol *sym;
1338 char *nam = (char *)
1339 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1340
1341 strcpy (nam, name);
1342 strcat (nam, "<");
1343 strcat (nam, TYPE_NAME (type));
1344 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1345
1346 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1347
1348 if (sym == NULL)
1349 {
1350 error (_("No template type named %s."), name);
1351 }
1352 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1353 {
1354 error (_("This context has class, union or enum %s, not a struct."),
1355 name);
1356 }
1357 return (SYMBOL_TYPE (sym));
1358 }
1359
1360 /* Given a type TYPE, lookup the type of the component of type named
1361 NAME.
1362
1363 TYPE can be either a struct or union, or a pointer or reference to
1364 a struct or union. If it is a pointer or reference, its target
1365 type is automatically used. Thus '.' and '->' are interchangable,
1366 as specified for the definitions of the expression element types
1367 STRUCTOP_STRUCT and STRUCTOP_PTR.
1368
1369 If NOERR is nonzero, return zero if NAME is not suitably defined.
1370 If NAME is the name of a baseclass type, return that type. */
1371
1372 struct type *
1373 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1374 {
1375 int i;
1376 char *typename;
1377
1378 for (;;)
1379 {
1380 CHECK_TYPEDEF (type);
1381 if (TYPE_CODE (type) != TYPE_CODE_PTR
1382 && TYPE_CODE (type) != TYPE_CODE_REF)
1383 break;
1384 type = TYPE_TARGET_TYPE (type);
1385 }
1386
1387 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1388 && TYPE_CODE (type) != TYPE_CODE_UNION)
1389 {
1390 typename = type_to_string (type);
1391 make_cleanup (xfree, typename);
1392 error (_("Type %s is not a structure or union type."), typename);
1393 }
1394
1395 #if 0
1396 /* FIXME: This change put in by Michael seems incorrect for the case
1397 where the structure tag name is the same as the member name.
1398 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1399 foo; } bell;" Disabled by fnf. */
1400 {
1401 char *typename;
1402
1403 typename = type_name_no_tag (type);
1404 if (typename != NULL && strcmp (typename, name) == 0)
1405 return type;
1406 }
1407 #endif
1408
1409 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1410 {
1411 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1412
1413 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1414 {
1415 return TYPE_FIELD_TYPE (type, i);
1416 }
1417 else if (!t_field_name || *t_field_name == '\0')
1418 {
1419 struct type *subtype
1420 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1421
1422 if (subtype != NULL)
1423 return subtype;
1424 }
1425 }
1426
1427 /* OK, it's not in this class. Recursively check the baseclasses. */
1428 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1429 {
1430 struct type *t;
1431
1432 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1433 if (t != NULL)
1434 {
1435 return t;
1436 }
1437 }
1438
1439 if (noerr)
1440 {
1441 return NULL;
1442 }
1443
1444 typename = type_to_string (type);
1445 make_cleanup (xfree, typename);
1446 error (_("Type %s has no component named %s."), typename, name);
1447 }
1448
1449 /* Store in *MAX the largest number representable by unsigned integer type
1450 TYPE. */
1451
1452 void
1453 get_unsigned_type_max (struct type *type, ULONGEST *max)
1454 {
1455 unsigned int n;
1456
1457 CHECK_TYPEDEF (type);
1458 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1459 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1460
1461 /* Written this way to avoid overflow. */
1462 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1463 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1464 }
1465
1466 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1467 signed integer type TYPE. */
1468
1469 void
1470 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1471 {
1472 unsigned int n;
1473
1474 CHECK_TYPEDEF (type);
1475 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1476 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1477
1478 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1479 *min = -((ULONGEST) 1 << (n - 1));
1480 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1481 }
1482
1483 /* Lookup the vptr basetype/fieldno values for TYPE.
1484 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1485 vptr_fieldno. Also, if found and basetype is from the same objfile,
1486 cache the results.
1487 If not found, return -1 and ignore BASETYPEP.
1488 Callers should be aware that in some cases (for example,
1489 the type or one of its baseclasses is a stub type and we are
1490 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1491 this function will not be able to find the
1492 virtual function table pointer, and vptr_fieldno will remain -1 and
1493 vptr_basetype will remain NULL or incomplete. */
1494
1495 int
1496 get_vptr_fieldno (struct type *type, struct type **basetypep)
1497 {
1498 CHECK_TYPEDEF (type);
1499
1500 if (TYPE_VPTR_FIELDNO (type) < 0)
1501 {
1502 int i;
1503
1504 /* We must start at zero in case the first (and only) baseclass
1505 is virtual (and hence we cannot share the table pointer). */
1506 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1507 {
1508 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1509 int fieldno;
1510 struct type *basetype;
1511
1512 fieldno = get_vptr_fieldno (baseclass, &basetype);
1513 if (fieldno >= 0)
1514 {
1515 /* If the type comes from a different objfile we can't cache
1516 it, it may have a different lifetime. PR 2384 */
1517 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1518 {
1519 TYPE_VPTR_FIELDNO (type) = fieldno;
1520 TYPE_VPTR_BASETYPE (type) = basetype;
1521 }
1522 if (basetypep)
1523 *basetypep = basetype;
1524 return fieldno;
1525 }
1526 }
1527
1528 /* Not found. */
1529 return -1;
1530 }
1531 else
1532 {
1533 if (basetypep)
1534 *basetypep = TYPE_VPTR_BASETYPE (type);
1535 return TYPE_VPTR_FIELDNO (type);
1536 }
1537 }
1538
1539 static void
1540 stub_noname_complaint (void)
1541 {
1542 complaint (&symfile_complaints, _("stub type has NULL name"));
1543 }
1544
1545 /* Find the real type of TYPE. This function returns the real type,
1546 after removing all layers of typedefs, and completing opaque or stub
1547 types. Completion changes the TYPE argument, but stripping of
1548 typedefs does not.
1549
1550 Instance flags (e.g. const/volatile) are preserved as typedefs are
1551 stripped. If necessary a new qualified form of the underlying type
1552 is created.
1553
1554 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1555 not been computed and we're either in the middle of reading symbols, or
1556 there was no name for the typedef in the debug info.
1557
1558 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1559 QUITs in the symbol reading code can also throw.
1560 Thus this function can throw an exception.
1561
1562 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1563 the target type.
1564
1565 If this is a stubbed struct (i.e. declared as struct foo *), see if
1566 we can find a full definition in some other file. If so, copy this
1567 definition, so we can use it in future. There used to be a comment
1568 (but not any code) that if we don't find a full definition, we'd
1569 set a flag so we don't spend time in the future checking the same
1570 type. That would be a mistake, though--we might load in more
1571 symbols which contain a full definition for the type. */
1572
1573 struct type *
1574 check_typedef (struct type *type)
1575 {
1576 struct type *orig_type = type;
1577 /* While we're removing typedefs, we don't want to lose qualifiers.
1578 E.g., const/volatile. */
1579 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1580
1581 gdb_assert (type);
1582
1583 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1584 {
1585 if (!TYPE_TARGET_TYPE (type))
1586 {
1587 const char *name;
1588 struct symbol *sym;
1589
1590 /* It is dangerous to call lookup_symbol if we are currently
1591 reading a symtab. Infinite recursion is one danger. */
1592 if (currently_reading_symtab)
1593 return make_qualified_type (type, instance_flags, NULL);
1594
1595 name = type_name_no_tag (type);
1596 /* FIXME: shouldn't we separately check the TYPE_NAME and
1597 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1598 VAR_DOMAIN as appropriate? (this code was written before
1599 TYPE_NAME and TYPE_TAG_NAME were separate). */
1600 if (name == NULL)
1601 {
1602 stub_noname_complaint ();
1603 return make_qualified_type (type, instance_flags, NULL);
1604 }
1605 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1606 if (sym)
1607 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1608 else /* TYPE_CODE_UNDEF */
1609 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1610 }
1611 type = TYPE_TARGET_TYPE (type);
1612
1613 /* Preserve the instance flags as we traverse down the typedef chain.
1614
1615 Handling address spaces/classes is nasty, what do we do if there's a
1616 conflict?
1617 E.g., what if an outer typedef marks the type as class_1 and an inner
1618 typedef marks the type as class_2?
1619 This is the wrong place to do such error checking. We leave it to
1620 the code that created the typedef in the first place to flag the
1621 error. We just pick the outer address space (akin to letting the
1622 outer cast in a chain of casting win), instead of assuming
1623 "it can't happen". */
1624 {
1625 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1626 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1627 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1628 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1629
1630 /* Treat code vs data spaces and address classes separately. */
1631 if ((instance_flags & ALL_SPACES) != 0)
1632 new_instance_flags &= ~ALL_SPACES;
1633 if ((instance_flags & ALL_CLASSES) != 0)
1634 new_instance_flags &= ~ALL_CLASSES;
1635
1636 instance_flags |= new_instance_flags;
1637 }
1638 }
1639
1640 /* If this is a struct/class/union with no fields, then check
1641 whether a full definition exists somewhere else. This is for
1642 systems where a type definition with no fields is issued for such
1643 types, instead of identifying them as stub types in the first
1644 place. */
1645
1646 if (TYPE_IS_OPAQUE (type)
1647 && opaque_type_resolution
1648 && !currently_reading_symtab)
1649 {
1650 const char *name = type_name_no_tag (type);
1651 struct type *newtype;
1652
1653 if (name == NULL)
1654 {
1655 stub_noname_complaint ();
1656 return make_qualified_type (type, instance_flags, NULL);
1657 }
1658 newtype = lookup_transparent_type (name);
1659
1660 if (newtype)
1661 {
1662 /* If the resolved type and the stub are in the same
1663 objfile, then replace the stub type with the real deal.
1664 But if they're in separate objfiles, leave the stub
1665 alone; we'll just look up the transparent type every time
1666 we call check_typedef. We can't create pointers between
1667 types allocated to different objfiles, since they may
1668 have different lifetimes. Trying to copy NEWTYPE over to
1669 TYPE's objfile is pointless, too, since you'll have to
1670 move over any other types NEWTYPE refers to, which could
1671 be an unbounded amount of stuff. */
1672 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1673 type = make_qualified_type (newtype,
1674 TYPE_INSTANCE_FLAGS (type),
1675 type);
1676 else
1677 type = newtype;
1678 }
1679 }
1680 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1681 types. */
1682 else if (TYPE_STUB (type) && !currently_reading_symtab)
1683 {
1684 const char *name = type_name_no_tag (type);
1685 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1686 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1687 as appropriate? (this code was written before TYPE_NAME and
1688 TYPE_TAG_NAME were separate). */
1689 struct symbol *sym;
1690
1691 if (name == NULL)
1692 {
1693 stub_noname_complaint ();
1694 return make_qualified_type (type, instance_flags, NULL);
1695 }
1696 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1697 if (sym)
1698 {
1699 /* Same as above for opaque types, we can replace the stub
1700 with the complete type only if they are in the same
1701 objfile. */
1702 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1703 type = make_qualified_type (SYMBOL_TYPE (sym),
1704 TYPE_INSTANCE_FLAGS (type),
1705 type);
1706 else
1707 type = SYMBOL_TYPE (sym);
1708 }
1709 }
1710
1711 if (TYPE_TARGET_STUB (type))
1712 {
1713 struct type *range_type;
1714 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1715
1716 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1717 {
1718 /* Nothing we can do. */
1719 }
1720 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1721 && TYPE_NFIELDS (type) == 1
1722 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1723 == TYPE_CODE_RANGE))
1724 {
1725 /* Now recompute the length of the array type, based on its
1726 number of elements and the target type's length.
1727 Watch out for Ada null Ada arrays where the high bound
1728 is smaller than the low bound. */
1729 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1730 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1731 ULONGEST len;
1732
1733 if (high_bound < low_bound)
1734 len = 0;
1735 else
1736 {
1737 /* For now, we conservatively take the array length to be 0
1738 if its length exceeds UINT_MAX. The code below assumes
1739 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1740 which is technically not guaranteed by C, but is usually true
1741 (because it would be true if x were unsigned with its
1742 high-order bit on). It uses the fact that
1743 high_bound-low_bound is always representable in
1744 ULONGEST and that if high_bound-low_bound+1 overflows,
1745 it overflows to 0. We must change these tests if we
1746 decide to increase the representation of TYPE_LENGTH
1747 from unsigned int to ULONGEST. */
1748 ULONGEST ulow = low_bound, uhigh = high_bound;
1749 ULONGEST tlen = TYPE_LENGTH (target_type);
1750
1751 len = tlen * (uhigh - ulow + 1);
1752 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1753 || len > UINT_MAX)
1754 len = 0;
1755 }
1756 TYPE_LENGTH (type) = len;
1757 TYPE_TARGET_STUB (type) = 0;
1758 }
1759 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1760 {
1761 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1762 TYPE_TARGET_STUB (type) = 0;
1763 }
1764 }
1765
1766 type = make_qualified_type (type, instance_flags, NULL);
1767
1768 /* Cache TYPE_LENGTH for future use. */
1769 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1770
1771 return type;
1772 }
1773
1774 /* Parse a type expression in the string [P..P+LENGTH). If an error
1775 occurs, silently return a void type. */
1776
1777 static struct type *
1778 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1779 {
1780 struct ui_file *saved_gdb_stderr;
1781 struct type *type = NULL; /* Initialize to keep gcc happy. */
1782 volatile struct gdb_exception except;
1783
1784 /* Suppress error messages. */
1785 saved_gdb_stderr = gdb_stderr;
1786 gdb_stderr = ui_file_new ();
1787
1788 /* Call parse_and_eval_type() without fear of longjmp()s. */
1789 TRY_CATCH (except, RETURN_MASK_ERROR)
1790 {
1791 type = parse_and_eval_type (p, length);
1792 }
1793
1794 if (except.reason < 0)
1795 type = builtin_type (gdbarch)->builtin_void;
1796
1797 /* Stop suppressing error messages. */
1798 ui_file_delete (gdb_stderr);
1799 gdb_stderr = saved_gdb_stderr;
1800
1801 return type;
1802 }
1803
1804 /* Ugly hack to convert method stubs into method types.
1805
1806 He ain't kiddin'. This demangles the name of the method into a
1807 string including argument types, parses out each argument type,
1808 generates a string casting a zero to that type, evaluates the
1809 string, and stuffs the resulting type into an argtype vector!!!
1810 Then it knows the type of the whole function (including argument
1811 types for overloading), which info used to be in the stab's but was
1812 removed to hack back the space required for them. */
1813
1814 static void
1815 check_stub_method (struct type *type, int method_id, int signature_id)
1816 {
1817 struct gdbarch *gdbarch = get_type_arch (type);
1818 struct fn_field *f;
1819 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1820 char *demangled_name = gdb_demangle (mangled_name,
1821 DMGL_PARAMS | DMGL_ANSI);
1822 char *argtypetext, *p;
1823 int depth = 0, argcount = 1;
1824 struct field *argtypes;
1825 struct type *mtype;
1826
1827 /* Make sure we got back a function string that we can use. */
1828 if (demangled_name)
1829 p = strchr (demangled_name, '(');
1830 else
1831 p = NULL;
1832
1833 if (demangled_name == NULL || p == NULL)
1834 error (_("Internal: Cannot demangle mangled name `%s'."),
1835 mangled_name);
1836
1837 /* Now, read in the parameters that define this type. */
1838 p += 1;
1839 argtypetext = p;
1840 while (*p)
1841 {
1842 if (*p == '(' || *p == '<')
1843 {
1844 depth += 1;
1845 }
1846 else if (*p == ')' || *p == '>')
1847 {
1848 depth -= 1;
1849 }
1850 else if (*p == ',' && depth == 0)
1851 {
1852 argcount += 1;
1853 }
1854
1855 p += 1;
1856 }
1857
1858 /* If we read one argument and it was ``void'', don't count it. */
1859 if (strncmp (argtypetext, "(void)", 6) == 0)
1860 argcount -= 1;
1861
1862 /* We need one extra slot, for the THIS pointer. */
1863
1864 argtypes = (struct field *)
1865 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1866 p = argtypetext;
1867
1868 /* Add THIS pointer for non-static methods. */
1869 f = TYPE_FN_FIELDLIST1 (type, method_id);
1870 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1871 argcount = 0;
1872 else
1873 {
1874 argtypes[0].type = lookup_pointer_type (type);
1875 argcount = 1;
1876 }
1877
1878 if (*p != ')') /* () means no args, skip while. */
1879 {
1880 depth = 0;
1881 while (*p)
1882 {
1883 if (depth <= 0 && (*p == ',' || *p == ')'))
1884 {
1885 /* Avoid parsing of ellipsis, they will be handled below.
1886 Also avoid ``void'' as above. */
1887 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1888 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1889 {
1890 argtypes[argcount].type =
1891 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1892 argcount += 1;
1893 }
1894 argtypetext = p + 1;
1895 }
1896
1897 if (*p == '(' || *p == '<')
1898 {
1899 depth += 1;
1900 }
1901 else if (*p == ')' || *p == '>')
1902 {
1903 depth -= 1;
1904 }
1905
1906 p += 1;
1907 }
1908 }
1909
1910 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1911
1912 /* Now update the old "stub" type into a real type. */
1913 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1914 TYPE_DOMAIN_TYPE (mtype) = type;
1915 TYPE_FIELDS (mtype) = argtypes;
1916 TYPE_NFIELDS (mtype) = argcount;
1917 TYPE_STUB (mtype) = 0;
1918 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1919 if (p[-2] == '.')
1920 TYPE_VARARGS (mtype) = 1;
1921
1922 xfree (demangled_name);
1923 }
1924
1925 /* This is the external interface to check_stub_method, above. This
1926 function unstubs all of the signatures for TYPE's METHOD_ID method
1927 name. After calling this function TYPE_FN_FIELD_STUB will be
1928 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1929 correct.
1930
1931 This function unfortunately can not die until stabs do. */
1932
1933 void
1934 check_stub_method_group (struct type *type, int method_id)
1935 {
1936 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1937 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1938 int j, found_stub = 0;
1939
1940 for (j = 0; j < len; j++)
1941 if (TYPE_FN_FIELD_STUB (f, j))
1942 {
1943 found_stub = 1;
1944 check_stub_method (type, method_id, j);
1945 }
1946
1947 /* GNU v3 methods with incorrect names were corrected when we read
1948 in type information, because it was cheaper to do it then. The
1949 only GNU v2 methods with incorrect method names are operators and
1950 destructors; destructors were also corrected when we read in type
1951 information.
1952
1953 Therefore the only thing we need to handle here are v2 operator
1954 names. */
1955 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1956 {
1957 int ret;
1958 char dem_opname[256];
1959
1960 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1961 method_id),
1962 dem_opname, DMGL_ANSI);
1963 if (!ret)
1964 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1965 method_id),
1966 dem_opname, 0);
1967 if (ret)
1968 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1969 }
1970 }
1971
1972 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1973 const struct cplus_struct_type cplus_struct_default = { };
1974
1975 void
1976 allocate_cplus_struct_type (struct type *type)
1977 {
1978 if (HAVE_CPLUS_STRUCT (type))
1979 /* Structure was already allocated. Nothing more to do. */
1980 return;
1981
1982 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1983 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1984 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1985 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1986 }
1987
1988 const struct gnat_aux_type gnat_aux_default =
1989 { NULL };
1990
1991 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1992 and allocate the associated gnat-specific data. The gnat-specific
1993 data is also initialized to gnat_aux_default. */
1994
1995 void
1996 allocate_gnat_aux_type (struct type *type)
1997 {
1998 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1999 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2000 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2001 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2002 }
2003
2004 /* Helper function to initialize the standard scalar types.
2005
2006 If NAME is non-NULL, then it is used to initialize the type name.
2007 Note that NAME is not copied; it is required to have a lifetime at
2008 least as long as OBJFILE. */
2009
2010 struct type *
2011 init_type (enum type_code code, int length, int flags,
2012 const char *name, struct objfile *objfile)
2013 {
2014 struct type *type;
2015
2016 type = alloc_type (objfile);
2017 TYPE_CODE (type) = code;
2018 TYPE_LENGTH (type) = length;
2019
2020 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2021 if (flags & TYPE_FLAG_UNSIGNED)
2022 TYPE_UNSIGNED (type) = 1;
2023 if (flags & TYPE_FLAG_NOSIGN)
2024 TYPE_NOSIGN (type) = 1;
2025 if (flags & TYPE_FLAG_STUB)
2026 TYPE_STUB (type) = 1;
2027 if (flags & TYPE_FLAG_TARGET_STUB)
2028 TYPE_TARGET_STUB (type) = 1;
2029 if (flags & TYPE_FLAG_STATIC)
2030 TYPE_STATIC (type) = 1;
2031 if (flags & TYPE_FLAG_PROTOTYPED)
2032 TYPE_PROTOTYPED (type) = 1;
2033 if (flags & TYPE_FLAG_INCOMPLETE)
2034 TYPE_INCOMPLETE (type) = 1;
2035 if (flags & TYPE_FLAG_VARARGS)
2036 TYPE_VARARGS (type) = 1;
2037 if (flags & TYPE_FLAG_VECTOR)
2038 TYPE_VECTOR (type) = 1;
2039 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2040 TYPE_STUB_SUPPORTED (type) = 1;
2041 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2042 TYPE_FIXED_INSTANCE (type) = 1;
2043 if (flags & TYPE_FLAG_GNU_IFUNC)
2044 TYPE_GNU_IFUNC (type) = 1;
2045
2046 TYPE_NAME (type) = name;
2047
2048 /* C++ fancies. */
2049
2050 if (name && strcmp (name, "char") == 0)
2051 TYPE_NOSIGN (type) = 1;
2052
2053 switch (code)
2054 {
2055 case TYPE_CODE_STRUCT:
2056 case TYPE_CODE_UNION:
2057 case TYPE_CODE_NAMESPACE:
2058 INIT_CPLUS_SPECIFIC (type);
2059 break;
2060 case TYPE_CODE_FLT:
2061 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2062 break;
2063 case TYPE_CODE_FUNC:
2064 INIT_FUNC_SPECIFIC (type);
2065 break;
2066 }
2067 return type;
2068 }
2069 \f
2070 /* Queries on types. */
2071
2072 int
2073 can_dereference (struct type *t)
2074 {
2075 /* FIXME: Should we return true for references as well as
2076 pointers? */
2077 CHECK_TYPEDEF (t);
2078 return
2079 (t != NULL
2080 && TYPE_CODE (t) == TYPE_CODE_PTR
2081 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2082 }
2083
2084 int
2085 is_integral_type (struct type *t)
2086 {
2087 CHECK_TYPEDEF (t);
2088 return
2089 ((t != NULL)
2090 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2091 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2092 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2093 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2094 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2095 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2096 }
2097
2098 /* Return true if TYPE is scalar. */
2099
2100 static int
2101 is_scalar_type (struct type *type)
2102 {
2103 CHECK_TYPEDEF (type);
2104
2105 switch (TYPE_CODE (type))
2106 {
2107 case TYPE_CODE_ARRAY:
2108 case TYPE_CODE_STRUCT:
2109 case TYPE_CODE_UNION:
2110 case TYPE_CODE_SET:
2111 case TYPE_CODE_STRING:
2112 return 0;
2113 default:
2114 return 1;
2115 }
2116 }
2117
2118 /* Return true if T is scalar, or a composite type which in practice has
2119 the memory layout of a scalar type. E.g., an array or struct with only
2120 one scalar element inside it, or a union with only scalar elements. */
2121
2122 int
2123 is_scalar_type_recursive (struct type *t)
2124 {
2125 CHECK_TYPEDEF (t);
2126
2127 if (is_scalar_type (t))
2128 return 1;
2129 /* Are we dealing with an array or string of known dimensions? */
2130 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2131 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2132 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2133 {
2134 LONGEST low_bound, high_bound;
2135 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2136
2137 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2138
2139 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2140 }
2141 /* Are we dealing with a struct with one element? */
2142 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2143 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2144 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2145 {
2146 int i, n = TYPE_NFIELDS (t);
2147
2148 /* If all elements of the union are scalar, then the union is scalar. */
2149 for (i = 0; i < n; i++)
2150 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2151 return 0;
2152
2153 return 1;
2154 }
2155
2156 return 0;
2157 }
2158
2159 /* A helper function which returns true if types A and B represent the
2160 "same" class type. This is true if the types have the same main
2161 type, or the same name. */
2162
2163 int
2164 class_types_same_p (const struct type *a, const struct type *b)
2165 {
2166 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2167 || (TYPE_NAME (a) && TYPE_NAME (b)
2168 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2169 }
2170
2171 /* If BASE is an ancestor of DCLASS return the distance between them.
2172 otherwise return -1;
2173 eg:
2174
2175 class A {};
2176 class B: public A {};
2177 class C: public B {};
2178 class D: C {};
2179
2180 distance_to_ancestor (A, A, 0) = 0
2181 distance_to_ancestor (A, B, 0) = 1
2182 distance_to_ancestor (A, C, 0) = 2
2183 distance_to_ancestor (A, D, 0) = 3
2184
2185 If PUBLIC is 1 then only public ancestors are considered,
2186 and the function returns the distance only if BASE is a public ancestor
2187 of DCLASS.
2188 Eg:
2189
2190 distance_to_ancestor (A, D, 1) = -1. */
2191
2192 static int
2193 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2194 {
2195 int i;
2196 int d;
2197
2198 CHECK_TYPEDEF (base);
2199 CHECK_TYPEDEF (dclass);
2200
2201 if (class_types_same_p (base, dclass))
2202 return 0;
2203
2204 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2205 {
2206 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2207 continue;
2208
2209 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2210 if (d >= 0)
2211 return 1 + d;
2212 }
2213
2214 return -1;
2215 }
2216
2217 /* Check whether BASE is an ancestor or base class or DCLASS
2218 Return 1 if so, and 0 if not.
2219 Note: If BASE and DCLASS are of the same type, this function
2220 will return 1. So for some class A, is_ancestor (A, A) will
2221 return 1. */
2222
2223 int
2224 is_ancestor (struct type *base, struct type *dclass)
2225 {
2226 return distance_to_ancestor (base, dclass, 0) >= 0;
2227 }
2228
2229 /* Like is_ancestor, but only returns true when BASE is a public
2230 ancestor of DCLASS. */
2231
2232 int
2233 is_public_ancestor (struct type *base, struct type *dclass)
2234 {
2235 return distance_to_ancestor (base, dclass, 1) >= 0;
2236 }
2237
2238 /* A helper function for is_unique_ancestor. */
2239
2240 static int
2241 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2242 int *offset,
2243 const gdb_byte *valaddr, int embedded_offset,
2244 CORE_ADDR address, struct value *val)
2245 {
2246 int i, count = 0;
2247
2248 CHECK_TYPEDEF (base);
2249 CHECK_TYPEDEF (dclass);
2250
2251 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2252 {
2253 struct type *iter;
2254 int this_offset;
2255
2256 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2257
2258 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2259 address, val);
2260
2261 if (class_types_same_p (base, iter))
2262 {
2263 /* If this is the first subclass, set *OFFSET and set count
2264 to 1. Otherwise, if this is at the same offset as
2265 previous instances, do nothing. Otherwise, increment
2266 count. */
2267 if (*offset == -1)
2268 {
2269 *offset = this_offset;
2270 count = 1;
2271 }
2272 else if (this_offset == *offset)
2273 {
2274 /* Nothing. */
2275 }
2276 else
2277 ++count;
2278 }
2279 else
2280 count += is_unique_ancestor_worker (base, iter, offset,
2281 valaddr,
2282 embedded_offset + this_offset,
2283 address, val);
2284 }
2285
2286 return count;
2287 }
2288
2289 /* Like is_ancestor, but only returns true if BASE is a unique base
2290 class of the type of VAL. */
2291
2292 int
2293 is_unique_ancestor (struct type *base, struct value *val)
2294 {
2295 int offset = -1;
2296
2297 return is_unique_ancestor_worker (base, value_type (val), &offset,
2298 value_contents_for_printing (val),
2299 value_embedded_offset (val),
2300 value_address (val), val) == 1;
2301 }
2302
2303 \f
2304 /* Overload resolution. */
2305
2306 /* Return the sum of the rank of A with the rank of B. */
2307
2308 struct rank
2309 sum_ranks (struct rank a, struct rank b)
2310 {
2311 struct rank c;
2312 c.rank = a.rank + b.rank;
2313 c.subrank = a.subrank + b.subrank;
2314 return c;
2315 }
2316
2317 /* Compare rank A and B and return:
2318 0 if a = b
2319 1 if a is better than b
2320 -1 if b is better than a. */
2321
2322 int
2323 compare_ranks (struct rank a, struct rank b)
2324 {
2325 if (a.rank == b.rank)
2326 {
2327 if (a.subrank == b.subrank)
2328 return 0;
2329 if (a.subrank < b.subrank)
2330 return 1;
2331 if (a.subrank > b.subrank)
2332 return -1;
2333 }
2334
2335 if (a.rank < b.rank)
2336 return 1;
2337
2338 /* a.rank > b.rank */
2339 return -1;
2340 }
2341
2342 /* Functions for overload resolution begin here. */
2343
2344 /* Compare two badness vectors A and B and return the result.
2345 0 => A and B are identical
2346 1 => A and B are incomparable
2347 2 => A is better than B
2348 3 => A is worse than B */
2349
2350 int
2351 compare_badness (struct badness_vector *a, struct badness_vector *b)
2352 {
2353 int i;
2354 int tmp;
2355 short found_pos = 0; /* any positives in c? */
2356 short found_neg = 0; /* any negatives in c? */
2357
2358 /* differing lengths => incomparable */
2359 if (a->length != b->length)
2360 return 1;
2361
2362 /* Subtract b from a */
2363 for (i = 0; i < a->length; i++)
2364 {
2365 tmp = compare_ranks (b->rank[i], a->rank[i]);
2366 if (tmp > 0)
2367 found_pos = 1;
2368 else if (tmp < 0)
2369 found_neg = 1;
2370 }
2371
2372 if (found_pos)
2373 {
2374 if (found_neg)
2375 return 1; /* incomparable */
2376 else
2377 return 3; /* A > B */
2378 }
2379 else
2380 /* no positives */
2381 {
2382 if (found_neg)
2383 return 2; /* A < B */
2384 else
2385 return 0; /* A == B */
2386 }
2387 }
2388
2389 /* Rank a function by comparing its parameter types (PARMS, length
2390 NPARMS), to the types of an argument list (ARGS, length NARGS).
2391 Return a pointer to a badness vector. This has NARGS + 1
2392 entries. */
2393
2394 struct badness_vector *
2395 rank_function (struct type **parms, int nparms,
2396 struct value **args, int nargs)
2397 {
2398 int i;
2399 struct badness_vector *bv;
2400 int min_len = nparms < nargs ? nparms : nargs;
2401
2402 bv = xmalloc (sizeof (struct badness_vector));
2403 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2404 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2405
2406 /* First compare the lengths of the supplied lists.
2407 If there is a mismatch, set it to a high value. */
2408
2409 /* pai/1997-06-03 FIXME: when we have debug info about default
2410 arguments and ellipsis parameter lists, we should consider those
2411 and rank the length-match more finely. */
2412
2413 LENGTH_MATCH (bv) = (nargs != nparms)
2414 ? LENGTH_MISMATCH_BADNESS
2415 : EXACT_MATCH_BADNESS;
2416
2417 /* Now rank all the parameters of the candidate function. */
2418 for (i = 1; i <= min_len; i++)
2419 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2420 args[i - 1]);
2421
2422 /* If more arguments than parameters, add dummy entries. */
2423 for (i = min_len + 1; i <= nargs; i++)
2424 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2425
2426 return bv;
2427 }
2428
2429 /* Compare the names of two integer types, assuming that any sign
2430 qualifiers have been checked already. We do it this way because
2431 there may be an "int" in the name of one of the types. */
2432
2433 static int
2434 integer_types_same_name_p (const char *first, const char *second)
2435 {
2436 int first_p, second_p;
2437
2438 /* If both are shorts, return 1; if neither is a short, keep
2439 checking. */
2440 first_p = (strstr (first, "short") != NULL);
2441 second_p = (strstr (second, "short") != NULL);
2442 if (first_p && second_p)
2443 return 1;
2444 if (first_p || second_p)
2445 return 0;
2446
2447 /* Likewise for long. */
2448 first_p = (strstr (first, "long") != NULL);
2449 second_p = (strstr (second, "long") != NULL);
2450 if (first_p && second_p)
2451 return 1;
2452 if (first_p || second_p)
2453 return 0;
2454
2455 /* Likewise for char. */
2456 first_p = (strstr (first, "char") != NULL);
2457 second_p = (strstr (second, "char") != NULL);
2458 if (first_p && second_p)
2459 return 1;
2460 if (first_p || second_p)
2461 return 0;
2462
2463 /* They must both be ints. */
2464 return 1;
2465 }
2466
2467 /* Compares type A to type B returns 1 if the represent the same type
2468 0 otherwise. */
2469
2470 int
2471 types_equal (struct type *a, struct type *b)
2472 {
2473 /* Identical type pointers. */
2474 /* However, this still doesn't catch all cases of same type for b
2475 and a. The reason is that builtin types are different from
2476 the same ones constructed from the object. */
2477 if (a == b)
2478 return 1;
2479
2480 /* Resolve typedefs */
2481 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2482 a = check_typedef (a);
2483 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2484 b = check_typedef (b);
2485
2486 /* If after resolving typedefs a and b are not of the same type
2487 code then they are not equal. */
2488 if (TYPE_CODE (a) != TYPE_CODE (b))
2489 return 0;
2490
2491 /* If a and b are both pointers types or both reference types then
2492 they are equal of the same type iff the objects they refer to are
2493 of the same type. */
2494 if (TYPE_CODE (a) == TYPE_CODE_PTR
2495 || TYPE_CODE (a) == TYPE_CODE_REF)
2496 return types_equal (TYPE_TARGET_TYPE (a),
2497 TYPE_TARGET_TYPE (b));
2498
2499 /* Well, damnit, if the names are exactly the same, I'll say they
2500 are exactly the same. This happens when we generate method
2501 stubs. The types won't point to the same address, but they
2502 really are the same. */
2503
2504 if (TYPE_NAME (a) && TYPE_NAME (b)
2505 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2506 return 1;
2507
2508 /* Check if identical after resolving typedefs. */
2509 if (a == b)
2510 return 1;
2511
2512 /* Two function types are equal if their argument and return types
2513 are equal. */
2514 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2515 {
2516 int i;
2517
2518 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2519 return 0;
2520
2521 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2522 return 0;
2523
2524 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2525 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2526 return 0;
2527
2528 return 1;
2529 }
2530
2531 return 0;
2532 }
2533 \f
2534 /* Deep comparison of types. */
2535
2536 /* An entry in the type-equality bcache. */
2537
2538 typedef struct type_equality_entry
2539 {
2540 struct type *type1, *type2;
2541 } type_equality_entry_d;
2542
2543 DEF_VEC_O (type_equality_entry_d);
2544
2545 /* A helper function to compare two strings. Returns 1 if they are
2546 the same, 0 otherwise. Handles NULLs properly. */
2547
2548 static int
2549 compare_maybe_null_strings (const char *s, const char *t)
2550 {
2551 if (s == NULL && t != NULL)
2552 return 0;
2553 else if (s != NULL && t == NULL)
2554 return 0;
2555 else if (s == NULL && t== NULL)
2556 return 1;
2557 return strcmp (s, t) == 0;
2558 }
2559
2560 /* A helper function for check_types_worklist that checks two types for
2561 "deep" equality. Returns non-zero if the types are considered the
2562 same, zero otherwise. */
2563
2564 static int
2565 check_types_equal (struct type *type1, struct type *type2,
2566 VEC (type_equality_entry_d) **worklist)
2567 {
2568 CHECK_TYPEDEF (type1);
2569 CHECK_TYPEDEF (type2);
2570
2571 if (type1 == type2)
2572 return 1;
2573
2574 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2575 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2576 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2577 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2578 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2579 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2580 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2581 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2582 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2583 return 0;
2584
2585 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2586 TYPE_TAG_NAME (type2)))
2587 return 0;
2588 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2589 return 0;
2590
2591 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2592 {
2593 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2594 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2595 return 0;
2596 }
2597 else
2598 {
2599 int i;
2600
2601 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2602 {
2603 const struct field *field1 = &TYPE_FIELD (type1, i);
2604 const struct field *field2 = &TYPE_FIELD (type2, i);
2605 struct type_equality_entry entry;
2606
2607 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2608 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2609 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2610 return 0;
2611 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2612 FIELD_NAME (*field2)))
2613 return 0;
2614 switch (FIELD_LOC_KIND (*field1))
2615 {
2616 case FIELD_LOC_KIND_BITPOS:
2617 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2618 return 0;
2619 break;
2620 case FIELD_LOC_KIND_ENUMVAL:
2621 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2622 return 0;
2623 break;
2624 case FIELD_LOC_KIND_PHYSADDR:
2625 if (FIELD_STATIC_PHYSADDR (*field1)
2626 != FIELD_STATIC_PHYSADDR (*field2))
2627 return 0;
2628 break;
2629 case FIELD_LOC_KIND_PHYSNAME:
2630 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2631 FIELD_STATIC_PHYSNAME (*field2)))
2632 return 0;
2633 break;
2634 case FIELD_LOC_KIND_DWARF_BLOCK:
2635 {
2636 struct dwarf2_locexpr_baton *block1, *block2;
2637
2638 block1 = FIELD_DWARF_BLOCK (*field1);
2639 block2 = FIELD_DWARF_BLOCK (*field2);
2640 if (block1->per_cu != block2->per_cu
2641 || block1->size != block2->size
2642 || memcmp (block1->data, block2->data, block1->size) != 0)
2643 return 0;
2644 }
2645 break;
2646 default:
2647 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2648 "%d by check_types_equal"),
2649 FIELD_LOC_KIND (*field1));
2650 }
2651
2652 entry.type1 = FIELD_TYPE (*field1);
2653 entry.type2 = FIELD_TYPE (*field2);
2654 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2655 }
2656 }
2657
2658 if (TYPE_TARGET_TYPE (type1) != NULL)
2659 {
2660 struct type_equality_entry entry;
2661
2662 if (TYPE_TARGET_TYPE (type2) == NULL)
2663 return 0;
2664
2665 entry.type1 = TYPE_TARGET_TYPE (type1);
2666 entry.type2 = TYPE_TARGET_TYPE (type2);
2667 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2668 }
2669 else if (TYPE_TARGET_TYPE (type2) != NULL)
2670 return 0;
2671
2672 return 1;
2673 }
2674
2675 /* Check types on a worklist for equality. Returns zero if any pair
2676 is not equal, non-zero if they are all considered equal. */
2677
2678 static int
2679 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2680 struct bcache *cache)
2681 {
2682 while (!VEC_empty (type_equality_entry_d, *worklist))
2683 {
2684 struct type_equality_entry entry;
2685 int added;
2686
2687 entry = *VEC_last (type_equality_entry_d, *worklist);
2688 VEC_pop (type_equality_entry_d, *worklist);
2689
2690 /* If the type pair has already been visited, we know it is
2691 ok. */
2692 bcache_full (&entry, sizeof (entry), cache, &added);
2693 if (!added)
2694 continue;
2695
2696 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2697 return 0;
2698 }
2699
2700 return 1;
2701 }
2702
2703 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2704 "deep comparison". Otherwise return zero. */
2705
2706 int
2707 types_deeply_equal (struct type *type1, struct type *type2)
2708 {
2709 volatile struct gdb_exception except;
2710 int result = 0;
2711 struct bcache *cache;
2712 VEC (type_equality_entry_d) *worklist = NULL;
2713 struct type_equality_entry entry;
2714
2715 gdb_assert (type1 != NULL && type2 != NULL);
2716
2717 /* Early exit for the simple case. */
2718 if (type1 == type2)
2719 return 1;
2720
2721 cache = bcache_xmalloc (NULL, NULL);
2722
2723 entry.type1 = type1;
2724 entry.type2 = type2;
2725 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2726
2727 TRY_CATCH (except, RETURN_MASK_ALL)
2728 {
2729 result = check_types_worklist (&worklist, cache);
2730 }
2731 /* check_types_worklist calls several nested helper functions,
2732 some of which can raise a GDB Exception, so we just check
2733 and rethrow here. If there is a GDB exception, a comparison
2734 is not capable (or trusted), so exit. */
2735 bcache_xfree (cache);
2736 VEC_free (type_equality_entry_d, worklist);
2737 /* Rethrow if there was a problem. */
2738 if (except.reason < 0)
2739 throw_exception (except);
2740
2741 return result;
2742 }
2743 \f
2744 /* Compare one type (PARM) for compatibility with another (ARG).
2745 * PARM is intended to be the parameter type of a function; and
2746 * ARG is the supplied argument's type. This function tests if
2747 * the latter can be converted to the former.
2748 * VALUE is the argument's value or NULL if none (or called recursively)
2749 *
2750 * Return 0 if they are identical types;
2751 * Otherwise, return an integer which corresponds to how compatible
2752 * PARM is to ARG. The higher the return value, the worse the match.
2753 * Generally the "bad" conversions are all uniformly assigned a 100. */
2754
2755 struct rank
2756 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2757 {
2758 struct rank rank = {0,0};
2759
2760 if (types_equal (parm, arg))
2761 return EXACT_MATCH_BADNESS;
2762
2763 /* Resolve typedefs */
2764 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2765 parm = check_typedef (parm);
2766 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2767 arg = check_typedef (arg);
2768
2769 /* See through references, since we can almost make non-references
2770 references. */
2771 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2772 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2773 REFERENCE_CONVERSION_BADNESS));
2774 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2775 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2776 REFERENCE_CONVERSION_BADNESS));
2777 if (overload_debug)
2778 /* Debugging only. */
2779 fprintf_filtered (gdb_stderr,
2780 "------ Arg is %s [%d], parm is %s [%d]\n",
2781 TYPE_NAME (arg), TYPE_CODE (arg),
2782 TYPE_NAME (parm), TYPE_CODE (parm));
2783
2784 /* x -> y means arg of type x being supplied for parameter of type y. */
2785
2786 switch (TYPE_CODE (parm))
2787 {
2788 case TYPE_CODE_PTR:
2789 switch (TYPE_CODE (arg))
2790 {
2791 case TYPE_CODE_PTR:
2792
2793 /* Allowed pointer conversions are:
2794 (a) pointer to void-pointer conversion. */
2795 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2796 return VOID_PTR_CONVERSION_BADNESS;
2797
2798 /* (b) pointer to ancestor-pointer conversion. */
2799 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2800 TYPE_TARGET_TYPE (arg),
2801 0);
2802 if (rank.subrank >= 0)
2803 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2804
2805 return INCOMPATIBLE_TYPE_BADNESS;
2806 case TYPE_CODE_ARRAY:
2807 if (types_equal (TYPE_TARGET_TYPE (parm),
2808 TYPE_TARGET_TYPE (arg)))
2809 return EXACT_MATCH_BADNESS;
2810 return INCOMPATIBLE_TYPE_BADNESS;
2811 case TYPE_CODE_FUNC:
2812 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2813 case TYPE_CODE_INT:
2814 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2815 {
2816 if (value_as_long (value) == 0)
2817 {
2818 /* Null pointer conversion: allow it to be cast to a pointer.
2819 [4.10.1 of C++ standard draft n3290] */
2820 return NULL_POINTER_CONVERSION_BADNESS;
2821 }
2822 else
2823 {
2824 /* If type checking is disabled, allow the conversion. */
2825 if (!strict_type_checking)
2826 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2827 }
2828 }
2829 /* fall through */
2830 case TYPE_CODE_ENUM:
2831 case TYPE_CODE_FLAGS:
2832 case TYPE_CODE_CHAR:
2833 case TYPE_CODE_RANGE:
2834 case TYPE_CODE_BOOL:
2835 default:
2836 return INCOMPATIBLE_TYPE_BADNESS;
2837 }
2838 case TYPE_CODE_ARRAY:
2839 switch (TYPE_CODE (arg))
2840 {
2841 case TYPE_CODE_PTR:
2842 case TYPE_CODE_ARRAY:
2843 return rank_one_type (TYPE_TARGET_TYPE (parm),
2844 TYPE_TARGET_TYPE (arg), NULL);
2845 default:
2846 return INCOMPATIBLE_TYPE_BADNESS;
2847 }
2848 case TYPE_CODE_FUNC:
2849 switch (TYPE_CODE (arg))
2850 {
2851 case TYPE_CODE_PTR: /* funcptr -> func */
2852 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2853 default:
2854 return INCOMPATIBLE_TYPE_BADNESS;
2855 }
2856 case TYPE_CODE_INT:
2857 switch (TYPE_CODE (arg))
2858 {
2859 case TYPE_CODE_INT:
2860 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2861 {
2862 /* Deal with signed, unsigned, and plain chars and
2863 signed and unsigned ints. */
2864 if (TYPE_NOSIGN (parm))
2865 {
2866 /* This case only for character types. */
2867 if (TYPE_NOSIGN (arg))
2868 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2869 else /* signed/unsigned char -> plain char */
2870 return INTEGER_CONVERSION_BADNESS;
2871 }
2872 else if (TYPE_UNSIGNED (parm))
2873 {
2874 if (TYPE_UNSIGNED (arg))
2875 {
2876 /* unsigned int -> unsigned int, or
2877 unsigned long -> unsigned long */
2878 if (integer_types_same_name_p (TYPE_NAME (parm),
2879 TYPE_NAME (arg)))
2880 return EXACT_MATCH_BADNESS;
2881 else if (integer_types_same_name_p (TYPE_NAME (arg),
2882 "int")
2883 && integer_types_same_name_p (TYPE_NAME (parm),
2884 "long"))
2885 /* unsigned int -> unsigned long */
2886 return INTEGER_PROMOTION_BADNESS;
2887 else
2888 /* unsigned long -> unsigned int */
2889 return INTEGER_CONVERSION_BADNESS;
2890 }
2891 else
2892 {
2893 if (integer_types_same_name_p (TYPE_NAME (arg),
2894 "long")
2895 && integer_types_same_name_p (TYPE_NAME (parm),
2896 "int"))
2897 /* signed long -> unsigned int */
2898 return INTEGER_CONVERSION_BADNESS;
2899 else
2900 /* signed int/long -> unsigned int/long */
2901 return INTEGER_CONVERSION_BADNESS;
2902 }
2903 }
2904 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2905 {
2906 if (integer_types_same_name_p (TYPE_NAME (parm),
2907 TYPE_NAME (arg)))
2908 return EXACT_MATCH_BADNESS;
2909 else if (integer_types_same_name_p (TYPE_NAME (arg),
2910 "int")
2911 && integer_types_same_name_p (TYPE_NAME (parm),
2912 "long"))
2913 return INTEGER_PROMOTION_BADNESS;
2914 else
2915 return INTEGER_CONVERSION_BADNESS;
2916 }
2917 else
2918 return INTEGER_CONVERSION_BADNESS;
2919 }
2920 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2921 return INTEGER_PROMOTION_BADNESS;
2922 else
2923 return INTEGER_CONVERSION_BADNESS;
2924 case TYPE_CODE_ENUM:
2925 case TYPE_CODE_FLAGS:
2926 case TYPE_CODE_CHAR:
2927 case TYPE_CODE_RANGE:
2928 case TYPE_CODE_BOOL:
2929 return INTEGER_PROMOTION_BADNESS;
2930 case TYPE_CODE_FLT:
2931 return INT_FLOAT_CONVERSION_BADNESS;
2932 case TYPE_CODE_PTR:
2933 return NS_POINTER_CONVERSION_BADNESS;
2934 default:
2935 return INCOMPATIBLE_TYPE_BADNESS;
2936 }
2937 break;
2938 case TYPE_CODE_ENUM:
2939 switch (TYPE_CODE (arg))
2940 {
2941 case TYPE_CODE_INT:
2942 case TYPE_CODE_CHAR:
2943 case TYPE_CODE_RANGE:
2944 case TYPE_CODE_BOOL:
2945 case TYPE_CODE_ENUM:
2946 return INTEGER_CONVERSION_BADNESS;
2947 case TYPE_CODE_FLT:
2948 return INT_FLOAT_CONVERSION_BADNESS;
2949 default:
2950 return INCOMPATIBLE_TYPE_BADNESS;
2951 }
2952 break;
2953 case TYPE_CODE_CHAR:
2954 switch (TYPE_CODE (arg))
2955 {
2956 case TYPE_CODE_RANGE:
2957 case TYPE_CODE_BOOL:
2958 case TYPE_CODE_ENUM:
2959 return INTEGER_CONVERSION_BADNESS;
2960 case TYPE_CODE_FLT:
2961 return INT_FLOAT_CONVERSION_BADNESS;
2962 case TYPE_CODE_INT:
2963 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2964 return INTEGER_CONVERSION_BADNESS;
2965 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2966 return INTEGER_PROMOTION_BADNESS;
2967 /* >>> !! else fall through !! <<< */
2968 case TYPE_CODE_CHAR:
2969 /* Deal with signed, unsigned, and plain chars for C++ and
2970 with int cases falling through from previous case. */
2971 if (TYPE_NOSIGN (parm))
2972 {
2973 if (TYPE_NOSIGN (arg))
2974 return EXACT_MATCH_BADNESS;
2975 else
2976 return INTEGER_CONVERSION_BADNESS;
2977 }
2978 else if (TYPE_UNSIGNED (parm))
2979 {
2980 if (TYPE_UNSIGNED (arg))
2981 return EXACT_MATCH_BADNESS;
2982 else
2983 return INTEGER_PROMOTION_BADNESS;
2984 }
2985 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2986 return EXACT_MATCH_BADNESS;
2987 else
2988 return INTEGER_CONVERSION_BADNESS;
2989 default:
2990 return INCOMPATIBLE_TYPE_BADNESS;
2991 }
2992 break;
2993 case TYPE_CODE_RANGE:
2994 switch (TYPE_CODE (arg))
2995 {
2996 case TYPE_CODE_INT:
2997 case TYPE_CODE_CHAR:
2998 case TYPE_CODE_RANGE:
2999 case TYPE_CODE_BOOL:
3000 case TYPE_CODE_ENUM:
3001 return INTEGER_CONVERSION_BADNESS;
3002 case TYPE_CODE_FLT:
3003 return INT_FLOAT_CONVERSION_BADNESS;
3004 default:
3005 return INCOMPATIBLE_TYPE_BADNESS;
3006 }
3007 break;
3008 case TYPE_CODE_BOOL:
3009 switch (TYPE_CODE (arg))
3010 {
3011 /* n3290 draft, section 4.12.1 (conv.bool):
3012
3013 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3014 pointer to member type can be converted to a prvalue of type
3015 bool. A zero value, null pointer value, or null member pointer
3016 value is converted to false; any other value is converted to
3017 true. A prvalue of type std::nullptr_t can be converted to a
3018 prvalue of type bool; the resulting value is false." */
3019 case TYPE_CODE_INT:
3020 case TYPE_CODE_CHAR:
3021 case TYPE_CODE_ENUM:
3022 case TYPE_CODE_FLT:
3023 case TYPE_CODE_MEMBERPTR:
3024 case TYPE_CODE_PTR:
3025 return BOOL_CONVERSION_BADNESS;
3026 case TYPE_CODE_RANGE:
3027 return INCOMPATIBLE_TYPE_BADNESS;
3028 case TYPE_CODE_BOOL:
3029 return EXACT_MATCH_BADNESS;
3030 default:
3031 return INCOMPATIBLE_TYPE_BADNESS;
3032 }
3033 break;
3034 case TYPE_CODE_FLT:
3035 switch (TYPE_CODE (arg))
3036 {
3037 case TYPE_CODE_FLT:
3038 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3039 return FLOAT_PROMOTION_BADNESS;
3040 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3041 return EXACT_MATCH_BADNESS;
3042 else
3043 return FLOAT_CONVERSION_BADNESS;
3044 case TYPE_CODE_INT:
3045 case TYPE_CODE_BOOL:
3046 case TYPE_CODE_ENUM:
3047 case TYPE_CODE_RANGE:
3048 case TYPE_CODE_CHAR:
3049 return INT_FLOAT_CONVERSION_BADNESS;
3050 default:
3051 return INCOMPATIBLE_TYPE_BADNESS;
3052 }
3053 break;
3054 case TYPE_CODE_COMPLEX:
3055 switch (TYPE_CODE (arg))
3056 { /* Strictly not needed for C++, but... */
3057 case TYPE_CODE_FLT:
3058 return FLOAT_PROMOTION_BADNESS;
3059 case TYPE_CODE_COMPLEX:
3060 return EXACT_MATCH_BADNESS;
3061 default:
3062 return INCOMPATIBLE_TYPE_BADNESS;
3063 }
3064 break;
3065 case TYPE_CODE_STRUCT:
3066 /* currently same as TYPE_CODE_CLASS. */
3067 switch (TYPE_CODE (arg))
3068 {
3069 case TYPE_CODE_STRUCT:
3070 /* Check for derivation */
3071 rank.subrank = distance_to_ancestor (parm, arg, 0);
3072 if (rank.subrank >= 0)
3073 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3074 /* else fall through */
3075 default:
3076 return INCOMPATIBLE_TYPE_BADNESS;
3077 }
3078 break;
3079 case TYPE_CODE_UNION:
3080 switch (TYPE_CODE (arg))
3081 {
3082 case TYPE_CODE_UNION:
3083 default:
3084 return INCOMPATIBLE_TYPE_BADNESS;
3085 }
3086 break;
3087 case TYPE_CODE_MEMBERPTR:
3088 switch (TYPE_CODE (arg))
3089 {
3090 default:
3091 return INCOMPATIBLE_TYPE_BADNESS;
3092 }
3093 break;
3094 case TYPE_CODE_METHOD:
3095 switch (TYPE_CODE (arg))
3096 {
3097
3098 default:
3099 return INCOMPATIBLE_TYPE_BADNESS;
3100 }
3101 break;
3102 case TYPE_CODE_REF:
3103 switch (TYPE_CODE (arg))
3104 {
3105
3106 default:
3107 return INCOMPATIBLE_TYPE_BADNESS;
3108 }
3109
3110 break;
3111 case TYPE_CODE_SET:
3112 switch (TYPE_CODE (arg))
3113 {
3114 /* Not in C++ */
3115 case TYPE_CODE_SET:
3116 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3117 TYPE_FIELD_TYPE (arg, 0), NULL);
3118 default:
3119 return INCOMPATIBLE_TYPE_BADNESS;
3120 }
3121 break;
3122 case TYPE_CODE_VOID:
3123 default:
3124 return INCOMPATIBLE_TYPE_BADNESS;
3125 } /* switch (TYPE_CODE (arg)) */
3126 }
3127
3128 /* End of functions for overload resolution. */
3129 \f
3130 /* Routines to pretty-print types. */
3131
3132 static void
3133 print_bit_vector (B_TYPE *bits, int nbits)
3134 {
3135 int bitno;
3136
3137 for (bitno = 0; bitno < nbits; bitno++)
3138 {
3139 if ((bitno % 8) == 0)
3140 {
3141 puts_filtered (" ");
3142 }
3143 if (B_TST (bits, bitno))
3144 printf_filtered (("1"));
3145 else
3146 printf_filtered (("0"));
3147 }
3148 }
3149
3150 /* Note the first arg should be the "this" pointer, we may not want to
3151 include it since we may get into a infinitely recursive
3152 situation. */
3153
3154 static void
3155 print_arg_types (struct field *args, int nargs, int spaces)
3156 {
3157 if (args != NULL)
3158 {
3159 int i;
3160
3161 for (i = 0; i < nargs; i++)
3162 recursive_dump_type (args[i].type, spaces + 2);
3163 }
3164 }
3165
3166 int
3167 field_is_static (struct field *f)
3168 {
3169 /* "static" fields are the fields whose location is not relative
3170 to the address of the enclosing struct. It would be nice to
3171 have a dedicated flag that would be set for static fields when
3172 the type is being created. But in practice, checking the field
3173 loc_kind should give us an accurate answer. */
3174 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3175 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3176 }
3177
3178 static void
3179 dump_fn_fieldlists (struct type *type, int spaces)
3180 {
3181 int method_idx;
3182 int overload_idx;
3183 struct fn_field *f;
3184
3185 printfi_filtered (spaces, "fn_fieldlists ");
3186 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3187 printf_filtered ("\n");
3188 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3189 {
3190 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3191 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3192 method_idx,
3193 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3194 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3195 gdb_stdout);
3196 printf_filtered (_(") length %d\n"),
3197 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3198 for (overload_idx = 0;
3199 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3200 overload_idx++)
3201 {
3202 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3203 overload_idx,
3204 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3205 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3206 gdb_stdout);
3207 printf_filtered (")\n");
3208 printfi_filtered (spaces + 8, "type ");
3209 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3210 gdb_stdout);
3211 printf_filtered ("\n");
3212
3213 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3214 spaces + 8 + 2);
3215
3216 printfi_filtered (spaces + 8, "args ");
3217 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3218 gdb_stdout);
3219 printf_filtered ("\n");
3220
3221 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3222 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3223 overload_idx)),
3224 spaces);
3225 printfi_filtered (spaces + 8, "fcontext ");
3226 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3227 gdb_stdout);
3228 printf_filtered ("\n");
3229
3230 printfi_filtered (spaces + 8, "is_const %d\n",
3231 TYPE_FN_FIELD_CONST (f, overload_idx));
3232 printfi_filtered (spaces + 8, "is_volatile %d\n",
3233 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3234 printfi_filtered (spaces + 8, "is_private %d\n",
3235 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3236 printfi_filtered (spaces + 8, "is_protected %d\n",
3237 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3238 printfi_filtered (spaces + 8, "is_stub %d\n",
3239 TYPE_FN_FIELD_STUB (f, overload_idx));
3240 printfi_filtered (spaces + 8, "voffset %u\n",
3241 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3242 }
3243 }
3244 }
3245
3246 static void
3247 print_cplus_stuff (struct type *type, int spaces)
3248 {
3249 printfi_filtered (spaces, "n_baseclasses %d\n",
3250 TYPE_N_BASECLASSES (type));
3251 printfi_filtered (spaces, "nfn_fields %d\n",
3252 TYPE_NFN_FIELDS (type));
3253 if (TYPE_N_BASECLASSES (type) > 0)
3254 {
3255 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3256 TYPE_N_BASECLASSES (type));
3257 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3258 gdb_stdout);
3259 printf_filtered (")");
3260
3261 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3262 TYPE_N_BASECLASSES (type));
3263 puts_filtered ("\n");
3264 }
3265 if (TYPE_NFIELDS (type) > 0)
3266 {
3267 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3268 {
3269 printfi_filtered (spaces,
3270 "private_field_bits (%d bits at *",
3271 TYPE_NFIELDS (type));
3272 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3273 gdb_stdout);
3274 printf_filtered (")");
3275 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3276 TYPE_NFIELDS (type));
3277 puts_filtered ("\n");
3278 }
3279 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3280 {
3281 printfi_filtered (spaces,
3282 "protected_field_bits (%d bits at *",
3283 TYPE_NFIELDS (type));
3284 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3285 gdb_stdout);
3286 printf_filtered (")");
3287 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3288 TYPE_NFIELDS (type));
3289 puts_filtered ("\n");
3290 }
3291 }
3292 if (TYPE_NFN_FIELDS (type) > 0)
3293 {
3294 dump_fn_fieldlists (type, spaces);
3295 }
3296 }
3297
3298 /* Print the contents of the TYPE's type_specific union, assuming that
3299 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3300
3301 static void
3302 print_gnat_stuff (struct type *type, int spaces)
3303 {
3304 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3305
3306 recursive_dump_type (descriptive_type, spaces + 2);
3307 }
3308
3309 static struct obstack dont_print_type_obstack;
3310
3311 void
3312 recursive_dump_type (struct type *type, int spaces)
3313 {
3314 int idx;
3315
3316 if (spaces == 0)
3317 obstack_begin (&dont_print_type_obstack, 0);
3318
3319 if (TYPE_NFIELDS (type) > 0
3320 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3321 {
3322 struct type **first_dont_print
3323 = (struct type **) obstack_base (&dont_print_type_obstack);
3324
3325 int i = (struct type **)
3326 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3327
3328 while (--i >= 0)
3329 {
3330 if (type == first_dont_print[i])
3331 {
3332 printfi_filtered (spaces, "type node ");
3333 gdb_print_host_address (type, gdb_stdout);
3334 printf_filtered (_(" <same as already seen type>\n"));
3335 return;
3336 }
3337 }
3338
3339 obstack_ptr_grow (&dont_print_type_obstack, type);
3340 }
3341
3342 printfi_filtered (spaces, "type node ");
3343 gdb_print_host_address (type, gdb_stdout);
3344 printf_filtered ("\n");
3345 printfi_filtered (spaces, "name '%s' (",
3346 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3347 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3348 printf_filtered (")\n");
3349 printfi_filtered (spaces, "tagname '%s' (",
3350 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3351 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3352 printf_filtered (")\n");
3353 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3354 switch (TYPE_CODE (type))
3355 {
3356 case TYPE_CODE_UNDEF:
3357 printf_filtered ("(TYPE_CODE_UNDEF)");
3358 break;
3359 case TYPE_CODE_PTR:
3360 printf_filtered ("(TYPE_CODE_PTR)");
3361 break;
3362 case TYPE_CODE_ARRAY:
3363 printf_filtered ("(TYPE_CODE_ARRAY)");
3364 break;
3365 case TYPE_CODE_STRUCT:
3366 printf_filtered ("(TYPE_CODE_STRUCT)");
3367 break;
3368 case TYPE_CODE_UNION:
3369 printf_filtered ("(TYPE_CODE_UNION)");
3370 break;
3371 case TYPE_CODE_ENUM:
3372 printf_filtered ("(TYPE_CODE_ENUM)");
3373 break;
3374 case TYPE_CODE_FLAGS:
3375 printf_filtered ("(TYPE_CODE_FLAGS)");
3376 break;
3377 case TYPE_CODE_FUNC:
3378 printf_filtered ("(TYPE_CODE_FUNC)");
3379 break;
3380 case TYPE_CODE_INT:
3381 printf_filtered ("(TYPE_CODE_INT)");
3382 break;
3383 case TYPE_CODE_FLT:
3384 printf_filtered ("(TYPE_CODE_FLT)");
3385 break;
3386 case TYPE_CODE_VOID:
3387 printf_filtered ("(TYPE_CODE_VOID)");
3388 break;
3389 case TYPE_CODE_SET:
3390 printf_filtered ("(TYPE_CODE_SET)");
3391 break;
3392 case TYPE_CODE_RANGE:
3393 printf_filtered ("(TYPE_CODE_RANGE)");
3394 break;
3395 case TYPE_CODE_STRING:
3396 printf_filtered ("(TYPE_CODE_STRING)");
3397 break;
3398 case TYPE_CODE_ERROR:
3399 printf_filtered ("(TYPE_CODE_ERROR)");
3400 break;
3401 case TYPE_CODE_MEMBERPTR:
3402 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3403 break;
3404 case TYPE_CODE_METHODPTR:
3405 printf_filtered ("(TYPE_CODE_METHODPTR)");
3406 break;
3407 case TYPE_CODE_METHOD:
3408 printf_filtered ("(TYPE_CODE_METHOD)");
3409 break;
3410 case TYPE_CODE_REF:
3411 printf_filtered ("(TYPE_CODE_REF)");
3412 break;
3413 case TYPE_CODE_CHAR:
3414 printf_filtered ("(TYPE_CODE_CHAR)");
3415 break;
3416 case TYPE_CODE_BOOL:
3417 printf_filtered ("(TYPE_CODE_BOOL)");
3418 break;
3419 case TYPE_CODE_COMPLEX:
3420 printf_filtered ("(TYPE_CODE_COMPLEX)");
3421 break;
3422 case TYPE_CODE_TYPEDEF:
3423 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3424 break;
3425 case TYPE_CODE_NAMESPACE:
3426 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3427 break;
3428 default:
3429 printf_filtered ("(UNKNOWN TYPE CODE)");
3430 break;
3431 }
3432 puts_filtered ("\n");
3433 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3434 if (TYPE_OBJFILE_OWNED (type))
3435 {
3436 printfi_filtered (spaces, "objfile ");
3437 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3438 }
3439 else
3440 {
3441 printfi_filtered (spaces, "gdbarch ");
3442 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3443 }
3444 printf_filtered ("\n");
3445 printfi_filtered (spaces, "target_type ");
3446 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3447 printf_filtered ("\n");
3448 if (TYPE_TARGET_TYPE (type) != NULL)
3449 {
3450 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3451 }
3452 printfi_filtered (spaces, "pointer_type ");
3453 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3454 printf_filtered ("\n");
3455 printfi_filtered (spaces, "reference_type ");
3456 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3457 printf_filtered ("\n");
3458 printfi_filtered (spaces, "type_chain ");
3459 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3460 printf_filtered ("\n");
3461 printfi_filtered (spaces, "instance_flags 0x%x",
3462 TYPE_INSTANCE_FLAGS (type));
3463 if (TYPE_CONST (type))
3464 {
3465 puts_filtered (" TYPE_FLAG_CONST");
3466 }
3467 if (TYPE_VOLATILE (type))
3468 {
3469 puts_filtered (" TYPE_FLAG_VOLATILE");
3470 }
3471 if (TYPE_CODE_SPACE (type))
3472 {
3473 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3474 }
3475 if (TYPE_DATA_SPACE (type))
3476 {
3477 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3478 }
3479 if (TYPE_ADDRESS_CLASS_1 (type))
3480 {
3481 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3482 }
3483 if (TYPE_ADDRESS_CLASS_2 (type))
3484 {
3485 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3486 }
3487 if (TYPE_RESTRICT (type))
3488 {
3489 puts_filtered (" TYPE_FLAG_RESTRICT");
3490 }
3491 puts_filtered ("\n");
3492
3493 printfi_filtered (spaces, "flags");
3494 if (TYPE_UNSIGNED (type))
3495 {
3496 puts_filtered (" TYPE_FLAG_UNSIGNED");
3497 }
3498 if (TYPE_NOSIGN (type))
3499 {
3500 puts_filtered (" TYPE_FLAG_NOSIGN");
3501 }
3502 if (TYPE_STUB (type))
3503 {
3504 puts_filtered (" TYPE_FLAG_STUB");
3505 }
3506 if (TYPE_TARGET_STUB (type))
3507 {
3508 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3509 }
3510 if (TYPE_STATIC (type))
3511 {
3512 puts_filtered (" TYPE_FLAG_STATIC");
3513 }
3514 if (TYPE_PROTOTYPED (type))
3515 {
3516 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3517 }
3518 if (TYPE_INCOMPLETE (type))
3519 {
3520 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3521 }
3522 if (TYPE_VARARGS (type))
3523 {
3524 puts_filtered (" TYPE_FLAG_VARARGS");
3525 }
3526 /* This is used for things like AltiVec registers on ppc. Gcc emits
3527 an attribute for the array type, which tells whether or not we
3528 have a vector, instead of a regular array. */
3529 if (TYPE_VECTOR (type))
3530 {
3531 puts_filtered (" TYPE_FLAG_VECTOR");
3532 }
3533 if (TYPE_FIXED_INSTANCE (type))
3534 {
3535 puts_filtered (" TYPE_FIXED_INSTANCE");
3536 }
3537 if (TYPE_STUB_SUPPORTED (type))
3538 {
3539 puts_filtered (" TYPE_STUB_SUPPORTED");
3540 }
3541 if (TYPE_NOTTEXT (type))
3542 {
3543 puts_filtered (" TYPE_NOTTEXT");
3544 }
3545 puts_filtered ("\n");
3546 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3547 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3548 puts_filtered ("\n");
3549 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3550 {
3551 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3552 printfi_filtered (spaces + 2,
3553 "[%d] enumval %s type ",
3554 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3555 else
3556 printfi_filtered (spaces + 2,
3557 "[%d] bitpos %d bitsize %d type ",
3558 idx, TYPE_FIELD_BITPOS (type, idx),
3559 TYPE_FIELD_BITSIZE (type, idx));
3560 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3561 printf_filtered (" name '%s' (",
3562 TYPE_FIELD_NAME (type, idx) != NULL
3563 ? TYPE_FIELD_NAME (type, idx)
3564 : "<NULL>");
3565 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3566 printf_filtered (")\n");
3567 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3568 {
3569 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3570 }
3571 }
3572 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3573 {
3574 printfi_filtered (spaces, "low %s%s high %s%s\n",
3575 plongest (TYPE_LOW_BOUND (type)),
3576 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3577 plongest (TYPE_HIGH_BOUND (type)),
3578 TYPE_HIGH_BOUND_UNDEFINED (type)
3579 ? " (undefined)" : "");
3580 }
3581 printfi_filtered (spaces, "vptr_basetype ");
3582 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3583 puts_filtered ("\n");
3584 if (TYPE_VPTR_BASETYPE (type) != NULL)
3585 {
3586 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3587 }
3588 printfi_filtered (spaces, "vptr_fieldno %d\n",
3589 TYPE_VPTR_FIELDNO (type));
3590
3591 switch (TYPE_SPECIFIC_FIELD (type))
3592 {
3593 case TYPE_SPECIFIC_CPLUS_STUFF:
3594 printfi_filtered (spaces, "cplus_stuff ");
3595 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3596 gdb_stdout);
3597 puts_filtered ("\n");
3598 print_cplus_stuff (type, spaces);
3599 break;
3600
3601 case TYPE_SPECIFIC_GNAT_STUFF:
3602 printfi_filtered (spaces, "gnat_stuff ");
3603 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3604 puts_filtered ("\n");
3605 print_gnat_stuff (type, spaces);
3606 break;
3607
3608 case TYPE_SPECIFIC_FLOATFORMAT:
3609 printfi_filtered (spaces, "floatformat ");
3610 if (TYPE_FLOATFORMAT (type) == NULL)
3611 puts_filtered ("(null)");
3612 else
3613 {
3614 puts_filtered ("{ ");
3615 if (TYPE_FLOATFORMAT (type)[0] == NULL
3616 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3617 puts_filtered ("(null)");
3618 else
3619 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3620
3621 puts_filtered (", ");
3622 if (TYPE_FLOATFORMAT (type)[1] == NULL
3623 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3624 puts_filtered ("(null)");
3625 else
3626 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3627
3628 puts_filtered (" }");
3629 }
3630 puts_filtered ("\n");
3631 break;
3632
3633 case TYPE_SPECIFIC_FUNC:
3634 printfi_filtered (spaces, "calling_convention %d\n",
3635 TYPE_CALLING_CONVENTION (type));
3636 /* tail_call_list is not printed. */
3637 break;
3638 }
3639
3640 if (spaces == 0)
3641 obstack_free (&dont_print_type_obstack, NULL);
3642 }
3643 \f
3644 /* Trivial helpers for the libiberty hash table, for mapping one
3645 type to another. */
3646
3647 struct type_pair
3648 {
3649 struct type *old, *new;
3650 };
3651
3652 static hashval_t
3653 type_pair_hash (const void *item)
3654 {
3655 const struct type_pair *pair = item;
3656
3657 return htab_hash_pointer (pair->old);
3658 }
3659
3660 static int
3661 type_pair_eq (const void *item_lhs, const void *item_rhs)
3662 {
3663 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3664
3665 return lhs->old == rhs->old;
3666 }
3667
3668 /* Allocate the hash table used by copy_type_recursive to walk
3669 types without duplicates. We use OBJFILE's obstack, because
3670 OBJFILE is about to be deleted. */
3671
3672 htab_t
3673 create_copied_types_hash (struct objfile *objfile)
3674 {
3675 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3676 NULL, &objfile->objfile_obstack,
3677 hashtab_obstack_allocate,
3678 dummy_obstack_deallocate);
3679 }
3680
3681 /* Recursively copy (deep copy) TYPE, if it is associated with
3682 OBJFILE. Return a new type allocated using malloc, a saved type if
3683 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3684 not associated with OBJFILE. */
3685
3686 struct type *
3687 copy_type_recursive (struct objfile *objfile,
3688 struct type *type,
3689 htab_t copied_types)
3690 {
3691 struct type_pair *stored, pair;
3692 void **slot;
3693 struct type *new_type;
3694
3695 if (! TYPE_OBJFILE_OWNED (type))
3696 return type;
3697
3698 /* This type shouldn't be pointing to any types in other objfiles;
3699 if it did, the type might disappear unexpectedly. */
3700 gdb_assert (TYPE_OBJFILE (type) == objfile);
3701
3702 pair.old = type;
3703 slot = htab_find_slot (copied_types, &pair, INSERT);
3704 if (*slot != NULL)
3705 return ((struct type_pair *) *slot)->new;
3706
3707 new_type = alloc_type_arch (get_type_arch (type));
3708
3709 /* We must add the new type to the hash table immediately, in case
3710 we encounter this type again during a recursive call below. */
3711 stored
3712 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3713 stored->old = type;
3714 stored->new = new_type;
3715 *slot = stored;
3716
3717 /* Copy the common fields of types. For the main type, we simply
3718 copy the entire thing and then update specific fields as needed. */
3719 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3720 TYPE_OBJFILE_OWNED (new_type) = 0;
3721 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3722
3723 if (TYPE_NAME (type))
3724 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3725 if (TYPE_TAG_NAME (type))
3726 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3727
3728 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3729 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3730
3731 /* Copy the fields. */
3732 if (TYPE_NFIELDS (type))
3733 {
3734 int i, nfields;
3735
3736 nfields = TYPE_NFIELDS (type);
3737 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3738 for (i = 0; i < nfields; i++)
3739 {
3740 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3741 TYPE_FIELD_ARTIFICIAL (type, i);
3742 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3743 if (TYPE_FIELD_TYPE (type, i))
3744 TYPE_FIELD_TYPE (new_type, i)
3745 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3746 copied_types);
3747 if (TYPE_FIELD_NAME (type, i))
3748 TYPE_FIELD_NAME (new_type, i) =
3749 xstrdup (TYPE_FIELD_NAME (type, i));
3750 switch (TYPE_FIELD_LOC_KIND (type, i))
3751 {
3752 case FIELD_LOC_KIND_BITPOS:
3753 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3754 TYPE_FIELD_BITPOS (type, i));
3755 break;
3756 case FIELD_LOC_KIND_ENUMVAL:
3757 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3758 TYPE_FIELD_ENUMVAL (type, i));
3759 break;
3760 case FIELD_LOC_KIND_PHYSADDR:
3761 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3762 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3763 break;
3764 case FIELD_LOC_KIND_PHYSNAME:
3765 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3766 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3767 i)));
3768 break;
3769 default:
3770 internal_error (__FILE__, __LINE__,
3771 _("Unexpected type field location kind: %d"),
3772 TYPE_FIELD_LOC_KIND (type, i));
3773 }
3774 }
3775 }
3776
3777 /* For range types, copy the bounds information. */
3778 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3779 {
3780 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3781 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3782 }
3783
3784 /* Copy pointers to other types. */
3785 if (TYPE_TARGET_TYPE (type))
3786 TYPE_TARGET_TYPE (new_type) =
3787 copy_type_recursive (objfile,
3788 TYPE_TARGET_TYPE (type),
3789 copied_types);
3790 if (TYPE_VPTR_BASETYPE (type))
3791 TYPE_VPTR_BASETYPE (new_type) =
3792 copy_type_recursive (objfile,
3793 TYPE_VPTR_BASETYPE (type),
3794 copied_types);
3795 /* Maybe copy the type_specific bits.
3796
3797 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3798 base classes and methods. There's no fundamental reason why we
3799 can't, but at the moment it is not needed. */
3800
3801 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3802 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3803 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3804 || TYPE_CODE (type) == TYPE_CODE_UNION
3805 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3806 INIT_CPLUS_SPECIFIC (new_type);
3807
3808 return new_type;
3809 }
3810
3811 /* Make a copy of the given TYPE, except that the pointer & reference
3812 types are not preserved.
3813
3814 This function assumes that the given type has an associated objfile.
3815 This objfile is used to allocate the new type. */
3816
3817 struct type *
3818 copy_type (const struct type *type)
3819 {
3820 struct type *new_type;
3821
3822 gdb_assert (TYPE_OBJFILE_OWNED (type));
3823
3824 new_type = alloc_type_copy (type);
3825 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3826 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3827 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3828 sizeof (struct main_type));
3829
3830 return new_type;
3831 }
3832 \f
3833 /* Helper functions to initialize architecture-specific types. */
3834
3835 /* Allocate a type structure associated with GDBARCH and set its
3836 CODE, LENGTH, and NAME fields. */
3837
3838 struct type *
3839 arch_type (struct gdbarch *gdbarch,
3840 enum type_code code, int length, char *name)
3841 {
3842 struct type *type;
3843
3844 type = alloc_type_arch (gdbarch);
3845 TYPE_CODE (type) = code;
3846 TYPE_LENGTH (type) = length;
3847
3848 if (name)
3849 TYPE_NAME (type) = xstrdup (name);
3850
3851 return type;
3852 }
3853
3854 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3855 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3856 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3857
3858 struct type *
3859 arch_integer_type (struct gdbarch *gdbarch,
3860 int bit, int unsigned_p, char *name)
3861 {
3862 struct type *t;
3863
3864 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3865 if (unsigned_p)
3866 TYPE_UNSIGNED (t) = 1;
3867 if (name && strcmp (name, "char") == 0)
3868 TYPE_NOSIGN (t) = 1;
3869
3870 return t;
3871 }
3872
3873 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3874 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3875 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3876
3877 struct type *
3878 arch_character_type (struct gdbarch *gdbarch,
3879 int bit, int unsigned_p, char *name)
3880 {
3881 struct type *t;
3882
3883 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3884 if (unsigned_p)
3885 TYPE_UNSIGNED (t) = 1;
3886
3887 return t;
3888 }
3889
3890 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3891 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3892 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3893
3894 struct type *
3895 arch_boolean_type (struct gdbarch *gdbarch,
3896 int bit, int unsigned_p, char *name)
3897 {
3898 struct type *t;
3899
3900 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3901 if (unsigned_p)
3902 TYPE_UNSIGNED (t) = 1;
3903
3904 return t;
3905 }
3906
3907 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3908 BIT is the type size in bits; if BIT equals -1, the size is
3909 determined by the floatformat. NAME is the type name. Set the
3910 TYPE_FLOATFORMAT from FLOATFORMATS. */
3911
3912 struct type *
3913 arch_float_type (struct gdbarch *gdbarch,
3914 int bit, char *name, const struct floatformat **floatformats)
3915 {
3916 struct type *t;
3917
3918 if (bit == -1)
3919 {
3920 gdb_assert (floatformats != NULL);
3921 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3922 bit = floatformats[0]->totalsize;
3923 }
3924 gdb_assert (bit >= 0);
3925
3926 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3927 TYPE_FLOATFORMAT (t) = floatformats;
3928 return t;
3929 }
3930
3931 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3932 NAME is the type name. TARGET_TYPE is the component float type. */
3933
3934 struct type *
3935 arch_complex_type (struct gdbarch *gdbarch,
3936 char *name, struct type *target_type)
3937 {
3938 struct type *t;
3939
3940 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3941 2 * TYPE_LENGTH (target_type), name);
3942 TYPE_TARGET_TYPE (t) = target_type;
3943 return t;
3944 }
3945
3946 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3947 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3948
3949 struct type *
3950 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3951 {
3952 int nfields = length * TARGET_CHAR_BIT;
3953 struct type *type;
3954
3955 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3956 TYPE_UNSIGNED (type) = 1;
3957 TYPE_NFIELDS (type) = nfields;
3958 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3959
3960 return type;
3961 }
3962
3963 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3964 position BITPOS is called NAME. */
3965
3966 void
3967 append_flags_type_flag (struct type *type, int bitpos, char *name)
3968 {
3969 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3970 gdb_assert (bitpos < TYPE_NFIELDS (type));
3971 gdb_assert (bitpos >= 0);
3972
3973 if (name)
3974 {
3975 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3976 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3977 }
3978 else
3979 {
3980 /* Don't show this field to the user. */
3981 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3982 }
3983 }
3984
3985 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3986 specified by CODE) associated with GDBARCH. NAME is the type name. */
3987
3988 struct type *
3989 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3990 {
3991 struct type *t;
3992
3993 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3994 t = arch_type (gdbarch, code, 0, NULL);
3995 TYPE_TAG_NAME (t) = name;
3996 INIT_CPLUS_SPECIFIC (t);
3997 return t;
3998 }
3999
4000 /* Add new field with name NAME and type FIELD to composite type T.
4001 Do not set the field's position or adjust the type's length;
4002 the caller should do so. Return the new field. */
4003
4004 struct field *
4005 append_composite_type_field_raw (struct type *t, char *name,
4006 struct type *field)
4007 {
4008 struct field *f;
4009
4010 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4011 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4012 sizeof (struct field) * TYPE_NFIELDS (t));
4013 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4014 memset (f, 0, sizeof f[0]);
4015 FIELD_TYPE (f[0]) = field;
4016 FIELD_NAME (f[0]) = name;
4017 return f;
4018 }
4019
4020 /* Add new field with name NAME and type FIELD to composite type T.
4021 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4022
4023 void
4024 append_composite_type_field_aligned (struct type *t, char *name,
4025 struct type *field, int alignment)
4026 {
4027 struct field *f = append_composite_type_field_raw (t, name, field);
4028
4029 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4030 {
4031 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4032 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4033 }
4034 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4035 {
4036 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4037 if (TYPE_NFIELDS (t) > 1)
4038 {
4039 SET_FIELD_BITPOS (f[0],
4040 (FIELD_BITPOS (f[-1])
4041 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4042 * TARGET_CHAR_BIT)));
4043
4044 if (alignment)
4045 {
4046 int left;
4047
4048 alignment *= TARGET_CHAR_BIT;
4049 left = FIELD_BITPOS (f[0]) % alignment;
4050
4051 if (left)
4052 {
4053 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4054 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4055 }
4056 }
4057 }
4058 }
4059 }
4060
4061 /* Add new field with name NAME and type FIELD to composite type T. */
4062
4063 void
4064 append_composite_type_field (struct type *t, char *name,
4065 struct type *field)
4066 {
4067 append_composite_type_field_aligned (t, name, field, 0);
4068 }
4069
4070 static struct gdbarch_data *gdbtypes_data;
4071
4072 const struct builtin_type *
4073 builtin_type (struct gdbarch *gdbarch)
4074 {
4075 return gdbarch_data (gdbarch, gdbtypes_data);
4076 }
4077
4078 static void *
4079 gdbtypes_post_init (struct gdbarch *gdbarch)
4080 {
4081 struct builtin_type *builtin_type
4082 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4083
4084 /* Basic types. */
4085 builtin_type->builtin_void
4086 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4087 builtin_type->builtin_char
4088 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4089 !gdbarch_char_signed (gdbarch), "char");
4090 builtin_type->builtin_signed_char
4091 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4092 0, "signed char");
4093 builtin_type->builtin_unsigned_char
4094 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4095 1, "unsigned char");
4096 builtin_type->builtin_short
4097 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4098 0, "short");
4099 builtin_type->builtin_unsigned_short
4100 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4101 1, "unsigned short");
4102 builtin_type->builtin_int
4103 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4104 0, "int");
4105 builtin_type->builtin_unsigned_int
4106 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4107 1, "unsigned int");
4108 builtin_type->builtin_long
4109 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4110 0, "long");
4111 builtin_type->builtin_unsigned_long
4112 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4113 1, "unsigned long");
4114 builtin_type->builtin_long_long
4115 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4116 0, "long long");
4117 builtin_type->builtin_unsigned_long_long
4118 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4119 1, "unsigned long long");
4120 builtin_type->builtin_float
4121 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4122 "float", gdbarch_float_format (gdbarch));
4123 builtin_type->builtin_double
4124 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4125 "double", gdbarch_double_format (gdbarch));
4126 builtin_type->builtin_long_double
4127 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4128 "long double", gdbarch_long_double_format (gdbarch));
4129 builtin_type->builtin_complex
4130 = arch_complex_type (gdbarch, "complex",
4131 builtin_type->builtin_float);
4132 builtin_type->builtin_double_complex
4133 = arch_complex_type (gdbarch, "double complex",
4134 builtin_type->builtin_double);
4135 builtin_type->builtin_string
4136 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4137 builtin_type->builtin_bool
4138 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4139
4140 /* The following three are about decimal floating point types, which
4141 are 32-bits, 64-bits and 128-bits respectively. */
4142 builtin_type->builtin_decfloat
4143 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4144 builtin_type->builtin_decdouble
4145 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4146 builtin_type->builtin_declong
4147 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4148
4149 /* "True" character types. */
4150 builtin_type->builtin_true_char
4151 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4152 builtin_type->builtin_true_unsigned_char
4153 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4154
4155 /* Fixed-size integer types. */
4156 builtin_type->builtin_int0
4157 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4158 builtin_type->builtin_int8
4159 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4160 builtin_type->builtin_uint8
4161 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4162 builtin_type->builtin_int16
4163 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4164 builtin_type->builtin_uint16
4165 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4166 builtin_type->builtin_int32
4167 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4168 builtin_type->builtin_uint32
4169 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4170 builtin_type->builtin_int64
4171 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4172 builtin_type->builtin_uint64
4173 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4174 builtin_type->builtin_int128
4175 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4176 builtin_type->builtin_uint128
4177 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4178 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4179 TYPE_INSTANCE_FLAG_NOTTEXT;
4180 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4181 TYPE_INSTANCE_FLAG_NOTTEXT;
4182
4183 /* Wide character types. */
4184 builtin_type->builtin_char16
4185 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4186 builtin_type->builtin_char32
4187 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4188
4189
4190 /* Default data/code pointer types. */
4191 builtin_type->builtin_data_ptr
4192 = lookup_pointer_type (builtin_type->builtin_void);
4193 builtin_type->builtin_func_ptr
4194 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4195 builtin_type->builtin_func_func
4196 = lookup_function_type (builtin_type->builtin_func_ptr);
4197
4198 /* This type represents a GDB internal function. */
4199 builtin_type->internal_fn
4200 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4201 "<internal function>");
4202
4203 return builtin_type;
4204 }
4205
4206 /* This set of objfile-based types is intended to be used by symbol
4207 readers as basic types. */
4208
4209 static const struct objfile_data *objfile_type_data;
4210
4211 const struct objfile_type *
4212 objfile_type (struct objfile *objfile)
4213 {
4214 struct gdbarch *gdbarch;
4215 struct objfile_type *objfile_type
4216 = objfile_data (objfile, objfile_type_data);
4217
4218 if (objfile_type)
4219 return objfile_type;
4220
4221 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4222 1, struct objfile_type);
4223
4224 /* Use the objfile architecture to determine basic type properties. */
4225 gdbarch = get_objfile_arch (objfile);
4226
4227 /* Basic types. */
4228 objfile_type->builtin_void
4229 = init_type (TYPE_CODE_VOID, 1,
4230 0,
4231 "void", objfile);
4232
4233 objfile_type->builtin_char
4234 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4235 (TYPE_FLAG_NOSIGN
4236 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4237 "char", objfile);
4238 objfile_type->builtin_signed_char
4239 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4240 0,
4241 "signed char", objfile);
4242 objfile_type->builtin_unsigned_char
4243 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4244 TYPE_FLAG_UNSIGNED,
4245 "unsigned char", objfile);
4246 objfile_type->builtin_short
4247 = init_type (TYPE_CODE_INT,
4248 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4249 0, "short", objfile);
4250 objfile_type->builtin_unsigned_short
4251 = init_type (TYPE_CODE_INT,
4252 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4253 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4254 objfile_type->builtin_int
4255 = init_type (TYPE_CODE_INT,
4256 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4257 0, "int", objfile);
4258 objfile_type->builtin_unsigned_int
4259 = init_type (TYPE_CODE_INT,
4260 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4261 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4262 objfile_type->builtin_long
4263 = init_type (TYPE_CODE_INT,
4264 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4265 0, "long", objfile);
4266 objfile_type->builtin_unsigned_long
4267 = init_type (TYPE_CODE_INT,
4268 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4269 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4270 objfile_type->builtin_long_long
4271 = init_type (TYPE_CODE_INT,
4272 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4273 0, "long long", objfile);
4274 objfile_type->builtin_unsigned_long_long
4275 = init_type (TYPE_CODE_INT,
4276 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4277 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4278
4279 objfile_type->builtin_float
4280 = init_type (TYPE_CODE_FLT,
4281 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4282 0, "float", objfile);
4283 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4284 = gdbarch_float_format (gdbarch);
4285 objfile_type->builtin_double
4286 = init_type (TYPE_CODE_FLT,
4287 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4288 0, "double", objfile);
4289 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4290 = gdbarch_double_format (gdbarch);
4291 objfile_type->builtin_long_double
4292 = init_type (TYPE_CODE_FLT,
4293 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4294 0, "long double", objfile);
4295 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4296 = gdbarch_long_double_format (gdbarch);
4297
4298 /* This type represents a type that was unrecognized in symbol read-in. */
4299 objfile_type->builtin_error
4300 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4301
4302 /* The following set of types is used for symbols with no
4303 debug information. */
4304 objfile_type->nodebug_text_symbol
4305 = init_type (TYPE_CODE_FUNC, 1, 0,
4306 "<text variable, no debug info>", objfile);
4307 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4308 = objfile_type->builtin_int;
4309 objfile_type->nodebug_text_gnu_ifunc_symbol
4310 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4311 "<text gnu-indirect-function variable, no debug info>",
4312 objfile);
4313 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4314 = objfile_type->nodebug_text_symbol;
4315 objfile_type->nodebug_got_plt_symbol
4316 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4317 "<text from jump slot in .got.plt, no debug info>",
4318 objfile);
4319 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4320 = objfile_type->nodebug_text_symbol;
4321 objfile_type->nodebug_data_symbol
4322 = init_type (TYPE_CODE_INT,
4323 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4324 "<data variable, no debug info>", objfile);
4325 objfile_type->nodebug_unknown_symbol
4326 = init_type (TYPE_CODE_INT, 1, 0,
4327 "<variable (not text or data), no debug info>", objfile);
4328 objfile_type->nodebug_tls_symbol
4329 = init_type (TYPE_CODE_INT,
4330 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4331 "<thread local variable, no debug info>", objfile);
4332
4333 /* NOTE: on some targets, addresses and pointers are not necessarily
4334 the same.
4335
4336 The upshot is:
4337 - gdb's `struct type' always describes the target's
4338 representation.
4339 - gdb's `struct value' objects should always hold values in
4340 target form.
4341 - gdb's CORE_ADDR values are addresses in the unified virtual
4342 address space that the assembler and linker work with. Thus,
4343 since target_read_memory takes a CORE_ADDR as an argument, it
4344 can access any memory on the target, even if the processor has
4345 separate code and data address spaces.
4346
4347 In this context, objfile_type->builtin_core_addr is a bit odd:
4348 it's a target type for a value the target will never see. It's
4349 only used to hold the values of (typeless) linker symbols, which
4350 are indeed in the unified virtual address space. */
4351
4352 objfile_type->builtin_core_addr
4353 = init_type (TYPE_CODE_INT,
4354 gdbarch_addr_bit (gdbarch) / 8,
4355 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4356
4357 set_objfile_data (objfile, objfile_type_data, objfile_type);
4358 return objfile_type;
4359 }
4360
4361 extern initialize_file_ftype _initialize_gdbtypes;
4362
4363 void
4364 _initialize_gdbtypes (void)
4365 {
4366 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4367 objfile_type_data = register_objfile_data ();
4368
4369 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4370 _("Set debugging of C++ overloading."),
4371 _("Show debugging of C++ overloading."),
4372 _("When enabled, ranking of the "
4373 "functions is displayed."),
4374 NULL,
4375 show_overload_debug,
4376 &setdebuglist, &showdebuglist);
4377
4378 /* Add user knob for controlling resolution of opaque types. */
4379 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4380 &opaque_type_resolution,
4381 _("Set resolution of opaque struct/class/union"
4382 " types (if set before loading symbols)."),
4383 _("Show resolution of opaque struct/class/union"
4384 " types (if set before loading symbols)."),
4385 NULL, NULL,
4386 show_opaque_type_resolution,
4387 &setlist, &showlist);
4388
4389 /* Add an option to permit non-strict type checking. */
4390 add_setshow_boolean_cmd ("type", class_support,
4391 &strict_type_checking,
4392 _("Set strict type checking."),
4393 _("Show strict type checking."),
4394 NULL, NULL,
4395 show_strict_type_checking,
4396 &setchecklist, &showchecklist);
4397 }
This page took 0.164483 seconds and 4 git commands to generate.