6648dc4d678c341b16eb65695f579285c573b46a
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 TYPE_CODE (ntype) = refcode;
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 TYPE_NFIELDS (fn) = nparams;
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
1046 entries. */
1047 int i;
1048
1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
1056 }
1057
1058 /* Set unsigned indicator if warranted. */
1059 if (*lowp >= 0)
1060 {
1061 TYPE_UNSIGNED (type) = 1;
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
1083 /* fall through */
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095 }
1096
1097 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
1101 Return 1 if the operation was successful. Return zero otherwise,
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111 int
1112 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113 {
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139 }
1140
1141 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153 */
1154
1155 int
1156 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157 {
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178 }
1179
1180 /* Create an array type using either a blank type supplied in
1181 RESULT_TYPE, or creating a new type, inheriting the objfile from
1182 RANGE_TYPE.
1183
1184 Elements will be of type ELEMENT_TYPE, the indices will be of type
1185 RANGE_TYPE.
1186
1187 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1188 This byte stride property is added to the resulting array type
1189 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1190 argument can only be used to create types that are objfile-owned
1191 (see add_dyn_prop), meaning that either this function must be called
1192 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1193
1194 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1195 If BIT_STRIDE is not zero, build a packed array type whose element
1196 size is BIT_STRIDE. Otherwise, ignore this parameter.
1197
1198 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1199 sure it is TYPE_CODE_UNDEF before we bash it into an array
1200 type? */
1201
1202 struct type *
1203 create_array_type_with_stride (struct type *result_type,
1204 struct type *element_type,
1205 struct type *range_type,
1206 struct dynamic_prop *byte_stride_prop,
1207 unsigned int bit_stride)
1208 {
1209 if (byte_stride_prop != NULL
1210 && byte_stride_prop->kind == PROP_CONST)
1211 {
1212 /* The byte stride is actually not dynamic. Pretend we were
1213 called with bit_stride set instead of byte_stride_prop.
1214 This will give us the same result type, while avoiding
1215 the need to handle this as a special case. */
1216 bit_stride = byte_stride_prop->data.const_val * 8;
1217 byte_stride_prop = NULL;
1218 }
1219
1220 if (result_type == NULL)
1221 result_type = alloc_type_copy (range_type);
1222
1223 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1224 TYPE_TARGET_TYPE (result_type) = element_type;
1225 if (byte_stride_prop == NULL
1226 && has_static_range (TYPE_RANGE_DATA (range_type))
1227 && (!type_not_associated (result_type)
1228 && !type_not_allocated (result_type)))
1229 {
1230 LONGEST low_bound, high_bound;
1231 int stride;
1232
1233 /* If the array itself doesn't provide a stride value then take
1234 whatever stride the range provides. Don't update BIT_STRIDE as
1235 we don't want to place the stride value from the range into this
1236 arrays bit size field. */
1237 stride = bit_stride;
1238 if (stride == 0)
1239 stride = TYPE_BIT_STRIDE (range_type);
1240
1241 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1242 low_bound = high_bound = 0;
1243 element_type = check_typedef (element_type);
1244 /* Be careful when setting the array length. Ada arrays can be
1245 empty arrays with the high_bound being smaller than the low_bound.
1246 In such cases, the array length should be zero. */
1247 if (high_bound < low_bound)
1248 TYPE_LENGTH (result_type) = 0;
1249 else if (stride != 0)
1250 {
1251 /* Ensure that the type length is always positive, even in the
1252 case where (for example in Fortran) we have a negative
1253 stride. It is possible to have a single element array with a
1254 negative stride in Fortran (this doesn't mean anything
1255 special, it's still just a single element array) so do
1256 consider that case when touching this code. */
1257 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1258 TYPE_LENGTH (result_type)
1259 = ((std::abs (stride) * element_count) + 7) / 8;
1260 }
1261 else
1262 TYPE_LENGTH (result_type) =
1263 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1264 }
1265 else
1266 {
1267 /* This type is dynamic and its length needs to be computed
1268 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1269 undefined by setting it to zero. Although we are not expected
1270 to trust TYPE_LENGTH in this case, setting the size to zero
1271 allows us to avoid allocating objects of random sizes in case
1272 we accidently do. */
1273 TYPE_LENGTH (result_type) = 0;
1274 }
1275
1276 TYPE_NFIELDS (result_type) = 1;
1277 TYPE_FIELDS (result_type) =
1278 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1279 TYPE_INDEX_TYPE (result_type) = range_type;
1280 if (byte_stride_prop != NULL)
1281 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1282 else if (bit_stride > 0)
1283 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1284
1285 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1286 if (TYPE_LENGTH (result_type) == 0)
1287 TYPE_TARGET_STUB (result_type) = 1;
1288
1289 return result_type;
1290 }
1291
1292 /* Same as create_array_type_with_stride but with no bit_stride
1293 (BIT_STRIDE = 0), thus building an unpacked array. */
1294
1295 struct type *
1296 create_array_type (struct type *result_type,
1297 struct type *element_type,
1298 struct type *range_type)
1299 {
1300 return create_array_type_with_stride (result_type, element_type,
1301 range_type, NULL, 0);
1302 }
1303
1304 struct type *
1305 lookup_array_range_type (struct type *element_type,
1306 LONGEST low_bound, LONGEST high_bound)
1307 {
1308 struct type *index_type;
1309 struct type *range_type;
1310
1311 if (TYPE_OBJFILE_OWNED (element_type))
1312 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1313 else
1314 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1315 range_type = create_static_range_type (NULL, index_type,
1316 low_bound, high_bound);
1317
1318 return create_array_type (NULL, element_type, range_type);
1319 }
1320
1321 /* Create a string type using either a blank type supplied in
1322 RESULT_TYPE, or creating a new type. String types are similar
1323 enough to array of char types that we can use create_array_type to
1324 build the basic type and then bash it into a string type.
1325
1326 For fixed length strings, the range type contains 0 as the lower
1327 bound and the length of the string minus one as the upper bound.
1328
1329 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1330 sure it is TYPE_CODE_UNDEF before we bash it into a string
1331 type? */
1332
1333 struct type *
1334 create_string_type (struct type *result_type,
1335 struct type *string_char_type,
1336 struct type *range_type)
1337 {
1338 result_type = create_array_type (result_type,
1339 string_char_type,
1340 range_type);
1341 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1342 return result_type;
1343 }
1344
1345 struct type *
1346 lookup_string_range_type (struct type *string_char_type,
1347 LONGEST low_bound, LONGEST high_bound)
1348 {
1349 struct type *result_type;
1350
1351 result_type = lookup_array_range_type (string_char_type,
1352 low_bound, high_bound);
1353 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1354 return result_type;
1355 }
1356
1357 struct type *
1358 create_set_type (struct type *result_type, struct type *domain_type)
1359 {
1360 if (result_type == NULL)
1361 result_type = alloc_type_copy (domain_type);
1362
1363 TYPE_CODE (result_type) = TYPE_CODE_SET;
1364 TYPE_NFIELDS (result_type) = 1;
1365 TYPE_FIELDS (result_type)
1366 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1367
1368 if (!TYPE_STUB (domain_type))
1369 {
1370 LONGEST low_bound, high_bound, bit_length;
1371
1372 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1373 low_bound = high_bound = 0;
1374 bit_length = high_bound - low_bound + 1;
1375 TYPE_LENGTH (result_type)
1376 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1377 if (low_bound >= 0)
1378 TYPE_UNSIGNED (result_type) = 1;
1379 }
1380 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1381
1382 return result_type;
1383 }
1384
1385 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1386 and any array types nested inside it. */
1387
1388 void
1389 make_vector_type (struct type *array_type)
1390 {
1391 struct type *inner_array, *elt_type;
1392 int flags;
1393
1394 /* Find the innermost array type, in case the array is
1395 multi-dimensional. */
1396 inner_array = array_type;
1397 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1398 inner_array = TYPE_TARGET_TYPE (inner_array);
1399
1400 elt_type = TYPE_TARGET_TYPE (inner_array);
1401 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1402 {
1403 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1404 elt_type = make_qualified_type (elt_type, flags, NULL);
1405 TYPE_TARGET_TYPE (inner_array) = elt_type;
1406 }
1407
1408 TYPE_VECTOR (array_type) = 1;
1409 }
1410
1411 struct type *
1412 init_vector_type (struct type *elt_type, int n)
1413 {
1414 struct type *array_type;
1415
1416 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1417 make_vector_type (array_type);
1418 return array_type;
1419 }
1420
1421 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1422 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1423 confusing. "self" is a common enough replacement for "this".
1424 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1425 TYPE_CODE_METHOD. */
1426
1427 struct type *
1428 internal_type_self_type (struct type *type)
1429 {
1430 switch (TYPE_CODE (type))
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 case TYPE_CODE_MEMBERPTR:
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1437 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1438 case TYPE_CODE_METHOD:
1439 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1440 return NULL;
1441 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1442 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1443 default:
1444 gdb_assert_not_reached ("bad type");
1445 }
1446 }
1447
1448 /* Set the type of the class that TYPE belongs to.
1449 In c++ this is the class of "this".
1450 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1451 TYPE_CODE_METHOD. */
1452
1453 void
1454 set_type_self_type (struct type *type, struct type *self_type)
1455 {
1456 switch (TYPE_CODE (type))
1457 {
1458 case TYPE_CODE_METHODPTR:
1459 case TYPE_CODE_MEMBERPTR:
1460 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1461 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1462 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1463 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1464 break;
1465 case TYPE_CODE_METHOD:
1466 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1467 INIT_FUNC_SPECIFIC (type);
1468 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1469 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1470 break;
1471 default:
1472 gdb_assert_not_reached ("bad type");
1473 }
1474 }
1475
1476 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1477 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1478 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1479 TYPE doesn't include the offset (that's the value of the MEMBER
1480 itself), but does include the structure type into which it points
1481 (for some reason).
1482
1483 When "smashing" the type, we preserve the objfile that the old type
1484 pointed to, since we aren't changing where the type is actually
1485 allocated. */
1486
1487 void
1488 smash_to_memberptr_type (struct type *type, struct type *self_type,
1489 struct type *to_type)
1490 {
1491 smash_type (type);
1492 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1493 TYPE_TARGET_TYPE (type) = to_type;
1494 set_type_self_type (type, self_type);
1495 /* Assume that a data member pointer is the same size as a normal
1496 pointer. */
1497 TYPE_LENGTH (type)
1498 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1499 }
1500
1501 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1502
1503 When "smashing" the type, we preserve the objfile that the old type
1504 pointed to, since we aren't changing where the type is actually
1505 allocated. */
1506
1507 void
1508 smash_to_methodptr_type (struct type *type, struct type *to_type)
1509 {
1510 smash_type (type);
1511 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1512 TYPE_TARGET_TYPE (type) = to_type;
1513 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1514 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1515 }
1516
1517 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1518 METHOD just means `function that gets an extra "this" argument'.
1519
1520 When "smashing" the type, we preserve the objfile that the old type
1521 pointed to, since we aren't changing where the type is actually
1522 allocated. */
1523
1524 void
1525 smash_to_method_type (struct type *type, struct type *self_type,
1526 struct type *to_type, struct field *args,
1527 int nargs, int varargs)
1528 {
1529 smash_type (type);
1530 TYPE_CODE (type) = TYPE_CODE_METHOD;
1531 TYPE_TARGET_TYPE (type) = to_type;
1532 set_type_self_type (type, self_type);
1533 TYPE_FIELDS (type) = args;
1534 TYPE_NFIELDS (type) = nargs;
1535 if (varargs)
1536 TYPE_VARARGS (type) = 1;
1537 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1538 }
1539
1540 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1541 Since GCC PR debug/47510 DWARF provides associated information to detect the
1542 anonymous class linkage name from its typedef.
1543
1544 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1545 apply it itself. */
1546
1547 const char *
1548 type_name_or_error (struct type *type)
1549 {
1550 struct type *saved_type = type;
1551 const char *name;
1552 struct objfile *objfile;
1553
1554 type = check_typedef (type);
1555
1556 name = TYPE_NAME (type);
1557 if (name != NULL)
1558 return name;
1559
1560 name = TYPE_NAME (saved_type);
1561 objfile = TYPE_OBJFILE (saved_type);
1562 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1563 name ? name : "<anonymous>",
1564 objfile ? objfile_name (objfile) : "<arch>");
1565 }
1566
1567 /* Lookup a typedef or primitive type named NAME, visible in lexical
1568 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1569 suitably defined. */
1570
1571 struct type *
1572 lookup_typename (const struct language_defn *language,
1573 const char *name,
1574 const struct block *block, int noerr)
1575 {
1576 struct symbol *sym;
1577
1578 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1579 language->la_language, NULL).symbol;
1580 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1581 return SYMBOL_TYPE (sym);
1582
1583 if (noerr)
1584 return NULL;
1585 error (_("No type named %s."), name);
1586 }
1587
1588 struct type *
1589 lookup_unsigned_typename (const struct language_defn *language,
1590 const char *name)
1591 {
1592 char *uns = (char *) alloca (strlen (name) + 10);
1593
1594 strcpy (uns, "unsigned ");
1595 strcpy (uns + 9, name);
1596 return lookup_typename (language, uns, NULL, 0);
1597 }
1598
1599 struct type *
1600 lookup_signed_typename (const struct language_defn *language, const char *name)
1601 {
1602 struct type *t;
1603 char *uns = (char *) alloca (strlen (name) + 8);
1604
1605 strcpy (uns, "signed ");
1606 strcpy (uns + 7, name);
1607 t = lookup_typename (language, uns, NULL, 1);
1608 /* If we don't find "signed FOO" just try again with plain "FOO". */
1609 if (t != NULL)
1610 return t;
1611 return lookup_typename (language, name, NULL, 0);
1612 }
1613
1614 /* Lookup a structure type named "struct NAME",
1615 visible in lexical block BLOCK. */
1616
1617 struct type *
1618 lookup_struct (const char *name, const struct block *block)
1619 {
1620 struct symbol *sym;
1621
1622 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1623
1624 if (sym == NULL)
1625 {
1626 error (_("No struct type named %s."), name);
1627 }
1628 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1629 {
1630 error (_("This context has class, union or enum %s, not a struct."),
1631 name);
1632 }
1633 return (SYMBOL_TYPE (sym));
1634 }
1635
1636 /* Lookup a union type named "union NAME",
1637 visible in lexical block BLOCK. */
1638
1639 struct type *
1640 lookup_union (const char *name, const struct block *block)
1641 {
1642 struct symbol *sym;
1643 struct type *t;
1644
1645 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1646
1647 if (sym == NULL)
1648 error (_("No union type named %s."), name);
1649
1650 t = SYMBOL_TYPE (sym);
1651
1652 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1653 return t;
1654
1655 /* If we get here, it's not a union. */
1656 error (_("This context has class, struct or enum %s, not a union."),
1657 name);
1658 }
1659
1660 /* Lookup an enum type named "enum NAME",
1661 visible in lexical block BLOCK. */
1662
1663 struct type *
1664 lookup_enum (const char *name, const struct block *block)
1665 {
1666 struct symbol *sym;
1667
1668 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1669 if (sym == NULL)
1670 {
1671 error (_("No enum type named %s."), name);
1672 }
1673 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1674 {
1675 error (_("This context has class, struct or union %s, not an enum."),
1676 name);
1677 }
1678 return (SYMBOL_TYPE (sym));
1679 }
1680
1681 /* Lookup a template type named "template NAME<TYPE>",
1682 visible in lexical block BLOCK. */
1683
1684 struct type *
1685 lookup_template_type (const char *name, struct type *type,
1686 const struct block *block)
1687 {
1688 struct symbol *sym;
1689 char *nam = (char *)
1690 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1691
1692 strcpy (nam, name);
1693 strcat (nam, "<");
1694 strcat (nam, TYPE_NAME (type));
1695 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1696
1697 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1698
1699 if (sym == NULL)
1700 {
1701 error (_("No template type named %s."), name);
1702 }
1703 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1704 {
1705 error (_("This context has class, union or enum %s, not a struct."),
1706 name);
1707 }
1708 return (SYMBOL_TYPE (sym));
1709 }
1710
1711 /* See gdbtypes.h. */
1712
1713 struct_elt
1714 lookup_struct_elt (struct type *type, const char *name, int noerr)
1715 {
1716 int i;
1717
1718 for (;;)
1719 {
1720 type = check_typedef (type);
1721 if (TYPE_CODE (type) != TYPE_CODE_PTR
1722 && TYPE_CODE (type) != TYPE_CODE_REF)
1723 break;
1724 type = TYPE_TARGET_TYPE (type);
1725 }
1726
1727 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1728 && TYPE_CODE (type) != TYPE_CODE_UNION)
1729 {
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s is not a structure or union type."),
1732 type_name.c_str ());
1733 }
1734
1735 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1736 {
1737 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1738
1739 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1740 {
1741 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1742 }
1743 else if (!t_field_name || *t_field_name == '\0')
1744 {
1745 struct_elt elt
1746 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1747 if (elt.field != NULL)
1748 {
1749 elt.offset += TYPE_FIELD_BITPOS (type, i);
1750 return elt;
1751 }
1752 }
1753 }
1754
1755 /* OK, it's not in this class. Recursively check the baseclasses. */
1756 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1757 {
1758 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1759 if (elt.field != NULL)
1760 return elt;
1761 }
1762
1763 if (noerr)
1764 return {nullptr, 0};
1765
1766 std::string type_name = type_to_string (type);
1767 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1768 }
1769
1770 /* See gdbtypes.h. */
1771
1772 struct type *
1773 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1774 {
1775 struct_elt elt = lookup_struct_elt (type, name, noerr);
1776 if (elt.field != NULL)
1777 return FIELD_TYPE (*elt.field);
1778 else
1779 return NULL;
1780 }
1781
1782 /* Store in *MAX the largest number representable by unsigned integer type
1783 TYPE. */
1784
1785 void
1786 get_unsigned_type_max (struct type *type, ULONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1793
1794 /* Written this way to avoid overflow. */
1795 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1796 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1797 }
1798
1799 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1800 signed integer type TYPE. */
1801
1802 void
1803 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1804 {
1805 unsigned int n;
1806
1807 type = check_typedef (type);
1808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1809 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1810
1811 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1812 *min = -((ULONGEST) 1 << (n - 1));
1813 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1814 }
1815
1816 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1817 cplus_stuff.vptr_fieldno.
1818
1819 cplus_stuff is initialized to cplus_struct_default which does not
1820 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1821 designated initializers). We cope with that here. */
1822
1823 int
1824 internal_type_vptr_fieldno (struct type *type)
1825 {
1826 type = check_typedef (type);
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1828 || TYPE_CODE (type) == TYPE_CODE_UNION);
1829 if (!HAVE_CPLUS_STRUCT (type))
1830 return -1;
1831 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1832 }
1833
1834 /* Set the value of cplus_stuff.vptr_fieldno. */
1835
1836 void
1837 set_type_vptr_fieldno (struct type *type, int fieldno)
1838 {
1839 type = check_typedef (type);
1840 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (type) == TYPE_CODE_UNION);
1842 if (!HAVE_CPLUS_STRUCT (type))
1843 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1844 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1845 }
1846
1847 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1848 cplus_stuff.vptr_basetype. */
1849
1850 struct type *
1851 internal_type_vptr_basetype (struct type *type)
1852 {
1853 type = check_typedef (type);
1854 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1855 || TYPE_CODE (type) == TYPE_CODE_UNION);
1856 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1857 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1858 }
1859
1860 /* Set the value of cplus_stuff.vptr_basetype. */
1861
1862 void
1863 set_type_vptr_basetype (struct type *type, struct type *basetype)
1864 {
1865 type = check_typedef (type);
1866 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1867 || TYPE_CODE (type) == TYPE_CODE_UNION);
1868 if (!HAVE_CPLUS_STRUCT (type))
1869 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1870 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1871 }
1872
1873 /* Lookup the vptr basetype/fieldno values for TYPE.
1874 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1875 vptr_fieldno. Also, if found and basetype is from the same objfile,
1876 cache the results.
1877 If not found, return -1 and ignore BASETYPEP.
1878 Callers should be aware that in some cases (for example,
1879 the type or one of its baseclasses is a stub type and we are
1880 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1881 this function will not be able to find the
1882 virtual function table pointer, and vptr_fieldno will remain -1 and
1883 vptr_basetype will remain NULL or incomplete. */
1884
1885 int
1886 get_vptr_fieldno (struct type *type, struct type **basetypep)
1887 {
1888 type = check_typedef (type);
1889
1890 if (TYPE_VPTR_FIELDNO (type) < 0)
1891 {
1892 int i;
1893
1894 /* We must start at zero in case the first (and only) baseclass
1895 is virtual (and hence we cannot share the table pointer). */
1896 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1897 {
1898 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1899 int fieldno;
1900 struct type *basetype;
1901
1902 fieldno = get_vptr_fieldno (baseclass, &basetype);
1903 if (fieldno >= 0)
1904 {
1905 /* If the type comes from a different objfile we can't cache
1906 it, it may have a different lifetime. PR 2384 */
1907 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1908 {
1909 set_type_vptr_fieldno (type, fieldno);
1910 set_type_vptr_basetype (type, basetype);
1911 }
1912 if (basetypep)
1913 *basetypep = basetype;
1914 return fieldno;
1915 }
1916 }
1917
1918 /* Not found. */
1919 return -1;
1920 }
1921 else
1922 {
1923 if (basetypep)
1924 *basetypep = TYPE_VPTR_BASETYPE (type);
1925 return TYPE_VPTR_FIELDNO (type);
1926 }
1927 }
1928
1929 static void
1930 stub_noname_complaint (void)
1931 {
1932 complaint (_("stub type has NULL name"));
1933 }
1934
1935 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1936 attached to it, and that property has a non-constant value. */
1937
1938 static int
1939 array_type_has_dynamic_stride (struct type *type)
1940 {
1941 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1942
1943 return (prop != NULL && prop->kind != PROP_CONST);
1944 }
1945
1946 /* Worker for is_dynamic_type. */
1947
1948 static int
1949 is_dynamic_type_internal (struct type *type, int top_level)
1950 {
1951 type = check_typedef (type);
1952
1953 /* We only want to recognize references at the outermost level. */
1954 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1955 type = check_typedef (TYPE_TARGET_TYPE (type));
1956
1957 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1958 dynamic, even if the type itself is statically defined.
1959 From a user's point of view, this may appear counter-intuitive;
1960 but it makes sense in this context, because the point is to determine
1961 whether any part of the type needs to be resolved before it can
1962 be exploited. */
1963 if (TYPE_DATA_LOCATION (type) != NULL
1964 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1965 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1966 return 1;
1967
1968 if (TYPE_ASSOCIATED_PROP (type))
1969 return 1;
1970
1971 if (TYPE_ALLOCATED_PROP (type))
1972 return 1;
1973
1974 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS, type);
1975 if (prop != nullptr && prop->kind != PROP_TYPE)
1976 return 1;
1977
1978 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1979 return 1;
1980
1981 switch (TYPE_CODE (type))
1982 {
1983 case TYPE_CODE_RANGE:
1984 {
1985 /* A range type is obviously dynamic if it has at least one
1986 dynamic bound. But also consider the range type to be
1987 dynamic when its subtype is dynamic, even if the bounds
1988 of the range type are static. It allows us to assume that
1989 the subtype of a static range type is also static. */
1990 return (!has_static_range (TYPE_RANGE_DATA (type))
1991 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1992 }
1993
1994 case TYPE_CODE_STRING:
1995 /* Strings are very much like an array of characters, and can be
1996 treated as one here. */
1997 case TYPE_CODE_ARRAY:
1998 {
1999 gdb_assert (TYPE_NFIELDS (type) == 1);
2000
2001 /* The array is dynamic if either the bounds are dynamic... */
2002 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
2003 return 1;
2004 /* ... or the elements it contains have a dynamic contents... */
2005 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2006 return 1;
2007 /* ... or if it has a dynamic stride... */
2008 if (array_type_has_dynamic_stride (type))
2009 return 1;
2010 return 0;
2011 }
2012
2013 case TYPE_CODE_STRUCT:
2014 case TYPE_CODE_UNION:
2015 {
2016 int i;
2017
2018 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2019
2020 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2021 {
2022 /* Static fields can be ignored here. */
2023 if (field_is_static (&TYPE_FIELD (type, i)))
2024 continue;
2025 /* If the field has dynamic type, then so does TYPE. */
2026 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2027 return 1;
2028 /* If the field is at a fixed offset, then it is not
2029 dynamic. */
2030 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2031 continue;
2032 /* Do not consider C++ virtual base types to be dynamic
2033 due to the field's offset being dynamic; these are
2034 handled via other means. */
2035 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2036 continue;
2037 return 1;
2038 }
2039 }
2040 break;
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* See gdbtypes.h. */
2047
2048 int
2049 is_dynamic_type (struct type *type)
2050 {
2051 return is_dynamic_type_internal (type, 1);
2052 }
2053
2054 static struct type *resolve_dynamic_type_internal
2055 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2056
2057 /* Given a dynamic range type (dyn_range_type) and a stack of
2058 struct property_addr_info elements, return a static version
2059 of that type. */
2060
2061 static struct type *
2062 resolve_dynamic_range (struct type *dyn_range_type,
2063 struct property_addr_info *addr_stack)
2064 {
2065 CORE_ADDR value;
2066 struct type *static_range_type, *static_target_type;
2067 const struct dynamic_prop *prop;
2068 struct dynamic_prop low_bound, high_bound, stride;
2069
2070 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2071
2072 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 low_bound.kind = PROP_CONST;
2076 low_bound.data.const_val = value;
2077 }
2078 else
2079 {
2080 low_bound.kind = PROP_UNDEFINED;
2081 low_bound.data.const_val = 0;
2082 }
2083
2084 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2085 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2086 {
2087 high_bound.kind = PROP_CONST;
2088 high_bound.data.const_val = value;
2089
2090 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2091 high_bound.data.const_val
2092 = low_bound.data.const_val + high_bound.data.const_val - 1;
2093 }
2094 else
2095 {
2096 high_bound.kind = PROP_UNDEFINED;
2097 high_bound.data.const_val = 0;
2098 }
2099
2100 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2101 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2102 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2103 {
2104 stride.kind = PROP_CONST;
2105 stride.data.const_val = value;
2106
2107 /* If we have a bit stride that is not an exact number of bytes then
2108 I really don't think this is going to work with current GDB, the
2109 array indexing code in GDB seems to be pretty heavily tied to byte
2110 offsets right now. Assuming 8 bits in a byte. */
2111 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2112 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2113 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2114 error (_("bit strides that are not a multiple of the byte size "
2115 "are currently not supported"));
2116 }
2117 else
2118 {
2119 stride.kind = PROP_UNDEFINED;
2120 stride.data.const_val = 0;
2121 byte_stride_p = true;
2122 }
2123
2124 static_target_type
2125 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2126 addr_stack, 0);
2127 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2128 static_range_type = create_range_type_with_stride
2129 (copy_type (dyn_range_type), static_target_type,
2130 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2131 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2132 return static_range_type;
2133 }
2134
2135 /* Resolves dynamic bound values of an array or string type TYPE to static
2136 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2137 needed during the dynamic resolution. */
2138
2139 static struct type *
2140 resolve_dynamic_array_or_string (struct type *type,
2141 struct property_addr_info *addr_stack)
2142 {
2143 CORE_ADDR value;
2144 struct type *elt_type;
2145 struct type *range_type;
2146 struct type *ary_dim;
2147 struct dynamic_prop *prop;
2148 unsigned int bit_stride = 0;
2149
2150 /* For dynamic type resolution strings can be treated like arrays of
2151 characters. */
2152 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2153 || TYPE_CODE (type) == TYPE_CODE_STRING);
2154
2155 type = copy_type (type);
2156
2157 elt_type = type;
2158 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2159 range_type = resolve_dynamic_range (range_type, addr_stack);
2160
2161 /* Resolve allocated/associated here before creating a new array type, which
2162 will update the length of the array accordingly. */
2163 prop = TYPE_ALLOCATED_PROP (type);
2164 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2165 {
2166 TYPE_DYN_PROP_ADDR (prop) = value;
2167 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2168 }
2169 prop = TYPE_ASSOCIATED_PROP (type);
2170 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2171 {
2172 TYPE_DYN_PROP_ADDR (prop) = value;
2173 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2174 }
2175
2176 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2177
2178 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2179 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2180 else
2181 elt_type = TYPE_TARGET_TYPE (type);
2182
2183 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2184 if (prop != NULL)
2185 {
2186 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2187 {
2188 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2189 bit_stride = (unsigned int) (value * 8);
2190 }
2191 else
2192 {
2193 /* Could be a bug in our code, but it could also happen
2194 if the DWARF info is not correct. Issue a warning,
2195 and assume no byte/bit stride (leave bit_stride = 0). */
2196 warning (_("cannot determine array stride for type %s"),
2197 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2198 }
2199 }
2200 else
2201 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2202
2203 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2204 bit_stride);
2205 }
2206
2207 /* Resolve dynamic bounds of members of the union TYPE to static
2208 bounds. ADDR_STACK is a stack of struct property_addr_info
2209 to be used if needed during the dynamic resolution. */
2210
2211 static struct type *
2212 resolve_dynamic_union (struct type *type,
2213 struct property_addr_info *addr_stack)
2214 {
2215 struct type *resolved_type;
2216 int i;
2217 unsigned int max_len = 0;
2218
2219 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2220
2221 resolved_type = copy_type (type);
2222 TYPE_FIELDS (resolved_type)
2223 = (struct field *) TYPE_ALLOC (resolved_type,
2224 TYPE_NFIELDS (resolved_type)
2225 * sizeof (struct field));
2226 memcpy (TYPE_FIELDS (resolved_type),
2227 TYPE_FIELDS (type),
2228 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2229 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2230 {
2231 struct type *t;
2232
2233 if (field_is_static (&TYPE_FIELD (type, i)))
2234 continue;
2235
2236 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2237 addr_stack, 0);
2238 TYPE_FIELD_TYPE (resolved_type, i) = t;
2239 if (TYPE_LENGTH (t) > max_len)
2240 max_len = TYPE_LENGTH (t);
2241 }
2242
2243 TYPE_LENGTH (resolved_type) = max_len;
2244 return resolved_type;
2245 }
2246
2247 /* See gdbtypes.h. */
2248
2249 bool
2250 variant::matches (ULONGEST value, bool is_unsigned) const
2251 {
2252 for (const discriminant_range &range : discriminants)
2253 if (range.contains (value, is_unsigned))
2254 return true;
2255 return false;
2256 }
2257
2258 static void
2259 compute_variant_fields_inner (struct type *type,
2260 struct property_addr_info *addr_stack,
2261 const variant_part &part,
2262 std::vector<bool> &flags);
2263
2264 /* A helper function to determine which variant fields will be active.
2265 This handles both the variant's direct fields, and any variant
2266 parts embedded in this variant. TYPE is the type we're examining.
2267 ADDR_STACK holds information about the concrete object. VARIANT is
2268 the current variant to be handled. FLAGS is where the results are
2269 stored -- this function sets the Nth element in FLAGS if the
2270 corresponding field is enabled. ENABLED is whether this variant is
2271 enabled or not. */
2272
2273 static void
2274 compute_variant_fields_recurse (struct type *type,
2275 struct property_addr_info *addr_stack,
2276 const variant &variant,
2277 std::vector<bool> &flags,
2278 bool enabled)
2279 {
2280 for (int field = variant.first_field; field < variant.last_field; ++field)
2281 flags[field] = enabled;
2282
2283 for (const variant_part &new_part : variant.parts)
2284 {
2285 if (enabled)
2286 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2287 else
2288 {
2289 for (const auto &sub_variant : new_part.variants)
2290 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2291 flags, enabled);
2292 }
2293 }
2294 }
2295
2296 /* A helper function to determine which variant fields will be active.
2297 This evaluates the discriminant, decides which variant (if any) is
2298 active, and then updates FLAGS to reflect which fields should be
2299 available. TYPE is the type we're examining. ADDR_STACK holds
2300 information about the concrete object. VARIANT is the current
2301 variant to be handled. FLAGS is where the results are stored --
2302 this function sets the Nth element in FLAGS if the corresponding
2303 field is enabled. */
2304
2305 static void
2306 compute_variant_fields_inner (struct type *type,
2307 struct property_addr_info *addr_stack,
2308 const variant_part &part,
2309 std::vector<bool> &flags)
2310 {
2311 /* Evaluate the discriminant. */
2312 gdb::optional<ULONGEST> discr_value;
2313 if (part.discriminant_index != -1)
2314 {
2315 int idx = part.discriminant_index;
2316
2317 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2318 error (_("Cannot determine struct field location"
2319 " (invalid location kind)"));
2320
2321 if (addr_stack->valaddr.data () != NULL)
2322 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2323 idx);
2324 else
2325 {
2326 CORE_ADDR addr = (addr_stack->addr
2327 + (TYPE_FIELD_BITPOS (type, idx)
2328 / TARGET_CHAR_BIT));
2329
2330 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2331 LONGEST size = bitsize / 8;
2332 if (size == 0)
2333 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2334
2335 gdb_byte bits[sizeof (ULONGEST)];
2336 read_memory (addr, bits, size);
2337
2338 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2339 % TARGET_CHAR_BIT);
2340
2341 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2342 bits, bitpos, bitsize);
2343 }
2344 }
2345
2346 /* Go through each variant and see which applies. */
2347 const variant *default_variant = nullptr;
2348 const variant *applied_variant = nullptr;
2349 for (const auto &variant : part.variants)
2350 {
2351 if (variant.is_default ())
2352 default_variant = &variant;
2353 else if (discr_value.has_value ()
2354 && variant.matches (*discr_value, part.is_unsigned))
2355 {
2356 applied_variant = &variant;
2357 break;
2358 }
2359 }
2360 if (applied_variant == nullptr)
2361 applied_variant = default_variant;
2362
2363 for (const auto &variant : part.variants)
2364 compute_variant_fields_recurse (type, addr_stack, variant,
2365 flags, applied_variant == &variant);
2366 }
2367
2368 /* Determine which variant fields are available in TYPE. The enabled
2369 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2370 about the concrete object. PARTS describes the top-level variant
2371 parts for this type. */
2372
2373 static void
2374 compute_variant_fields (struct type *type,
2375 struct type *resolved_type,
2376 struct property_addr_info *addr_stack,
2377 const gdb::array_view<variant_part> &parts)
2378 {
2379 /* Assume all fields are included by default. */
2380 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2381
2382 /* Now disable fields based on the variants that control them. */
2383 for (const auto &part : parts)
2384 compute_variant_fields_inner (type, addr_stack, part, flags);
2385
2386 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2387 true);
2388 TYPE_FIELDS (resolved_type)
2389 = (struct field *) TYPE_ALLOC (resolved_type,
2390 TYPE_NFIELDS (resolved_type)
2391 * sizeof (struct field));
2392 int out = 0;
2393 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2394 {
2395 if (!flags[i])
2396 continue;
2397
2398 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2399 ++out;
2400 }
2401 }
2402
2403 /* Resolve dynamic bounds of members of the struct TYPE to static
2404 bounds. ADDR_STACK is a stack of struct property_addr_info to
2405 be used if needed during the dynamic resolution. */
2406
2407 static struct type *
2408 resolve_dynamic_struct (struct type *type,
2409 struct property_addr_info *addr_stack)
2410 {
2411 struct type *resolved_type;
2412 int i;
2413 unsigned resolved_type_bit_length = 0;
2414
2415 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2416 gdb_assert (TYPE_NFIELDS (type) > 0);
2417
2418 resolved_type = copy_type (type);
2419
2420 struct dynamic_prop *variant_prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS,
2421 resolved_type);
2422 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2423 {
2424 compute_variant_fields (type, resolved_type, addr_stack,
2425 *variant_prop->data.variant_parts);
2426 /* We want to leave the property attached, so that the Rust code
2427 can tell whether the type was originally an enum. */
2428 variant_prop->kind = PROP_TYPE;
2429 variant_prop->data.original_type = type;
2430 }
2431 else
2432 {
2433 TYPE_FIELDS (resolved_type)
2434 = (struct field *) TYPE_ALLOC (resolved_type,
2435 TYPE_NFIELDS (resolved_type)
2436 * sizeof (struct field));
2437 memcpy (TYPE_FIELDS (resolved_type),
2438 TYPE_FIELDS (type),
2439 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2440 }
2441
2442 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2443 {
2444 unsigned new_bit_length;
2445 struct property_addr_info pinfo;
2446
2447 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
2448 continue;
2449
2450 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2451 {
2452 struct dwarf2_property_baton baton;
2453 baton.property_type
2454 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2455 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2456
2457 struct dynamic_prop prop;
2458 prop.kind = PROP_LOCEXPR;
2459 prop.data.baton = &baton;
2460
2461 CORE_ADDR addr;
2462 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2463 true))
2464 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2465 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2466 }
2467
2468 /* As we know this field is not a static field, the field's
2469 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2470 this is the case, but only trigger a simple error rather
2471 than an internal error if that fails. While failing
2472 that verification indicates a bug in our code, the error
2473 is not severe enough to suggest to the user he stops
2474 his debugging session because of it. */
2475 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2476 error (_("Cannot determine struct field location"
2477 " (invalid location kind)"));
2478
2479 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
2480 pinfo.valaddr = addr_stack->valaddr;
2481 pinfo.addr
2482 = (addr_stack->addr
2483 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2484 pinfo.next = addr_stack;
2485
2486 TYPE_FIELD_TYPE (resolved_type, i)
2487 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2488 &pinfo, 0);
2489 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2490 == FIELD_LOC_KIND_BITPOS);
2491
2492 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2493 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2494 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2495 else
2496 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2497 * TARGET_CHAR_BIT);
2498
2499 /* Normally, we would use the position and size of the last field
2500 to determine the size of the enclosing structure. But GCC seems
2501 to be encoding the position of some fields incorrectly when
2502 the struct contains a dynamic field that is not placed last.
2503 So we compute the struct size based on the field that has
2504 the highest position + size - probably the best we can do. */
2505 if (new_bit_length > resolved_type_bit_length)
2506 resolved_type_bit_length = new_bit_length;
2507 }
2508
2509 /* The length of a type won't change for fortran, but it does for C and Ada.
2510 For fortran the size of dynamic fields might change over time but not the
2511 type length of the structure. If we adapt it, we run into problems
2512 when calculating the element offset for arrays of structs. */
2513 if (current_language->la_language != language_fortran)
2514 TYPE_LENGTH (resolved_type)
2515 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2516
2517 /* The Ada language uses this field as a cache for static fixed types: reset
2518 it as RESOLVED_TYPE must have its own static fixed type. */
2519 TYPE_TARGET_TYPE (resolved_type) = NULL;
2520
2521 return resolved_type;
2522 }
2523
2524 /* Worker for resolved_dynamic_type. */
2525
2526 static struct type *
2527 resolve_dynamic_type_internal (struct type *type,
2528 struct property_addr_info *addr_stack,
2529 int top_level)
2530 {
2531 struct type *real_type = check_typedef (type);
2532 struct type *resolved_type = nullptr;
2533 struct dynamic_prop *prop;
2534 CORE_ADDR value;
2535
2536 if (!is_dynamic_type_internal (real_type, top_level))
2537 return type;
2538
2539 gdb::optional<CORE_ADDR> type_length;
2540 prop = TYPE_DYNAMIC_LENGTH (type);
2541 if (prop != NULL
2542 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2543 type_length = value;
2544
2545 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2546 {
2547 resolved_type = copy_type (type);
2548 TYPE_TARGET_TYPE (resolved_type)
2549 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2550 top_level);
2551 }
2552 else
2553 {
2554 /* Before trying to resolve TYPE, make sure it is not a stub. */
2555 type = real_type;
2556
2557 switch (TYPE_CODE (type))
2558 {
2559 case TYPE_CODE_REF:
2560 {
2561 struct property_addr_info pinfo;
2562
2563 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2564 pinfo.valaddr = {};
2565 if (addr_stack->valaddr.data () != NULL)
2566 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2567 type);
2568 else
2569 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2570 pinfo.next = addr_stack;
2571
2572 resolved_type = copy_type (type);
2573 TYPE_TARGET_TYPE (resolved_type)
2574 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2575 &pinfo, top_level);
2576 break;
2577 }
2578
2579 case TYPE_CODE_STRING:
2580 /* Strings are very much like an array of characters, and can be
2581 treated as one here. */
2582 case TYPE_CODE_ARRAY:
2583 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2584 break;
2585
2586 case TYPE_CODE_RANGE:
2587 resolved_type = resolve_dynamic_range (type, addr_stack);
2588 break;
2589
2590 case TYPE_CODE_UNION:
2591 resolved_type = resolve_dynamic_union (type, addr_stack);
2592 break;
2593
2594 case TYPE_CODE_STRUCT:
2595 resolved_type = resolve_dynamic_struct (type, addr_stack);
2596 break;
2597 }
2598 }
2599
2600 if (resolved_type == nullptr)
2601 return type;
2602
2603 if (type_length.has_value ())
2604 {
2605 TYPE_LENGTH (resolved_type) = *type_length;
2606 remove_dyn_prop (DYN_PROP_BYTE_SIZE, resolved_type);
2607 }
2608
2609 /* Resolve data_location attribute. */
2610 prop = TYPE_DATA_LOCATION (resolved_type);
2611 if (prop != NULL
2612 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2613 {
2614 TYPE_DYN_PROP_ADDR (prop) = value;
2615 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2616 }
2617
2618 return resolved_type;
2619 }
2620
2621 /* See gdbtypes.h */
2622
2623 struct type *
2624 resolve_dynamic_type (struct type *type,
2625 gdb::array_view<const gdb_byte> valaddr,
2626 CORE_ADDR addr)
2627 {
2628 struct property_addr_info pinfo
2629 = {check_typedef (type), valaddr, addr, NULL};
2630
2631 return resolve_dynamic_type_internal (type, &pinfo, 1);
2632 }
2633
2634 /* See gdbtypes.h */
2635
2636 struct dynamic_prop *
2637 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2638 {
2639 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2640
2641 while (node != NULL)
2642 {
2643 if (node->prop_kind == prop_kind)
2644 return &node->prop;
2645 node = node->next;
2646 }
2647 return NULL;
2648 }
2649
2650 /* See gdbtypes.h */
2651
2652 void
2653 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2654 struct type *type)
2655 {
2656 struct dynamic_prop_list *temp;
2657
2658 gdb_assert (TYPE_OBJFILE_OWNED (type));
2659
2660 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2661 struct dynamic_prop_list);
2662 temp->prop_kind = prop_kind;
2663 temp->prop = prop;
2664 temp->next = TYPE_DYN_PROP_LIST (type);
2665
2666 TYPE_DYN_PROP_LIST (type) = temp;
2667 }
2668
2669 /* Remove dynamic property from TYPE in case it exists. */
2670
2671 void
2672 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2673 struct type *type)
2674 {
2675 struct dynamic_prop_list *prev_node, *curr_node;
2676
2677 curr_node = TYPE_DYN_PROP_LIST (type);
2678 prev_node = NULL;
2679
2680 while (NULL != curr_node)
2681 {
2682 if (curr_node->prop_kind == prop_kind)
2683 {
2684 /* Update the linked list but don't free anything.
2685 The property was allocated on objstack and it is not known
2686 if we are on top of it. Nevertheless, everything is released
2687 when the complete objstack is freed. */
2688 if (NULL == prev_node)
2689 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2690 else
2691 prev_node->next = curr_node->next;
2692
2693 return;
2694 }
2695
2696 prev_node = curr_node;
2697 curr_node = curr_node->next;
2698 }
2699 }
2700
2701 /* Find the real type of TYPE. This function returns the real type,
2702 after removing all layers of typedefs, and completing opaque or stub
2703 types. Completion changes the TYPE argument, but stripping of
2704 typedefs does not.
2705
2706 Instance flags (e.g. const/volatile) are preserved as typedefs are
2707 stripped. If necessary a new qualified form of the underlying type
2708 is created.
2709
2710 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2711 not been computed and we're either in the middle of reading symbols, or
2712 there was no name for the typedef in the debug info.
2713
2714 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2715 QUITs in the symbol reading code can also throw.
2716 Thus this function can throw an exception.
2717
2718 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2719 the target type.
2720
2721 If this is a stubbed struct (i.e. declared as struct foo *), see if
2722 we can find a full definition in some other file. If so, copy this
2723 definition, so we can use it in future. There used to be a comment
2724 (but not any code) that if we don't find a full definition, we'd
2725 set a flag so we don't spend time in the future checking the same
2726 type. That would be a mistake, though--we might load in more
2727 symbols which contain a full definition for the type. */
2728
2729 struct type *
2730 check_typedef (struct type *type)
2731 {
2732 struct type *orig_type = type;
2733 /* While we're removing typedefs, we don't want to lose qualifiers.
2734 E.g., const/volatile. */
2735 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2736
2737 gdb_assert (type);
2738
2739 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2740 {
2741 if (!TYPE_TARGET_TYPE (type))
2742 {
2743 const char *name;
2744 struct symbol *sym;
2745
2746 /* It is dangerous to call lookup_symbol if we are currently
2747 reading a symtab. Infinite recursion is one danger. */
2748 if (currently_reading_symtab)
2749 return make_qualified_type (type, instance_flags, NULL);
2750
2751 name = TYPE_NAME (type);
2752 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2753 VAR_DOMAIN as appropriate? */
2754 if (name == NULL)
2755 {
2756 stub_noname_complaint ();
2757 return make_qualified_type (type, instance_flags, NULL);
2758 }
2759 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2760 if (sym)
2761 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2762 else /* TYPE_CODE_UNDEF */
2763 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2764 }
2765 type = TYPE_TARGET_TYPE (type);
2766
2767 /* Preserve the instance flags as we traverse down the typedef chain.
2768
2769 Handling address spaces/classes is nasty, what do we do if there's a
2770 conflict?
2771 E.g., what if an outer typedef marks the type as class_1 and an inner
2772 typedef marks the type as class_2?
2773 This is the wrong place to do such error checking. We leave it to
2774 the code that created the typedef in the first place to flag the
2775 error. We just pick the outer address space (akin to letting the
2776 outer cast in a chain of casting win), instead of assuming
2777 "it can't happen". */
2778 {
2779 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2780 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2781 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2782 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2783
2784 /* Treat code vs data spaces and address classes separately. */
2785 if ((instance_flags & ALL_SPACES) != 0)
2786 new_instance_flags &= ~ALL_SPACES;
2787 if ((instance_flags & ALL_CLASSES) != 0)
2788 new_instance_flags &= ~ALL_CLASSES;
2789
2790 instance_flags |= new_instance_flags;
2791 }
2792 }
2793
2794 /* If this is a struct/class/union with no fields, then check
2795 whether a full definition exists somewhere else. This is for
2796 systems where a type definition with no fields is issued for such
2797 types, instead of identifying them as stub types in the first
2798 place. */
2799
2800 if (TYPE_IS_OPAQUE (type)
2801 && opaque_type_resolution
2802 && !currently_reading_symtab)
2803 {
2804 const char *name = TYPE_NAME (type);
2805 struct type *newtype;
2806
2807 if (name == NULL)
2808 {
2809 stub_noname_complaint ();
2810 return make_qualified_type (type, instance_flags, NULL);
2811 }
2812 newtype = lookup_transparent_type (name);
2813
2814 if (newtype)
2815 {
2816 /* If the resolved type and the stub are in the same
2817 objfile, then replace the stub type with the real deal.
2818 But if they're in separate objfiles, leave the stub
2819 alone; we'll just look up the transparent type every time
2820 we call check_typedef. We can't create pointers between
2821 types allocated to different objfiles, since they may
2822 have different lifetimes. Trying to copy NEWTYPE over to
2823 TYPE's objfile is pointless, too, since you'll have to
2824 move over any other types NEWTYPE refers to, which could
2825 be an unbounded amount of stuff. */
2826 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2827 type = make_qualified_type (newtype,
2828 TYPE_INSTANCE_FLAGS (type),
2829 type);
2830 else
2831 type = newtype;
2832 }
2833 }
2834 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2835 types. */
2836 else if (TYPE_STUB (type) && !currently_reading_symtab)
2837 {
2838 const char *name = TYPE_NAME (type);
2839 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2840 as appropriate? */
2841 struct symbol *sym;
2842
2843 if (name == NULL)
2844 {
2845 stub_noname_complaint ();
2846 return make_qualified_type (type, instance_flags, NULL);
2847 }
2848 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2849 if (sym)
2850 {
2851 /* Same as above for opaque types, we can replace the stub
2852 with the complete type only if they are in the same
2853 objfile. */
2854 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2855 type = make_qualified_type (SYMBOL_TYPE (sym),
2856 TYPE_INSTANCE_FLAGS (type),
2857 type);
2858 else
2859 type = SYMBOL_TYPE (sym);
2860 }
2861 }
2862
2863 if (TYPE_TARGET_STUB (type))
2864 {
2865 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2866
2867 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2868 {
2869 /* Nothing we can do. */
2870 }
2871 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2872 {
2873 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2874 TYPE_TARGET_STUB (type) = 0;
2875 }
2876 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
2877 {
2878 struct type *range_type = check_typedef (TYPE_INDEX_TYPE (type));
2879 if (has_static_range (TYPE_RANGE_DATA (range_type)))
2880 {
2881 ULONGEST len = 0;
2882 LONGEST low_bound = TYPE_LOW_BOUND (range_type);
2883 LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
2884 if (high_bound >= low_bound)
2885 len = (high_bound - low_bound + 1) * TYPE_LENGTH (target_type);
2886 TYPE_LENGTH (type) = len;
2887 TYPE_TARGET_STUB (type) = 0;
2888 }
2889 }
2890 }
2891
2892 type = make_qualified_type (type, instance_flags, NULL);
2893
2894 /* Cache TYPE_LENGTH for future use. */
2895 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2896
2897 return type;
2898 }
2899
2900 /* Parse a type expression in the string [P..P+LENGTH). If an error
2901 occurs, silently return a void type. */
2902
2903 static struct type *
2904 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2905 {
2906 struct ui_file *saved_gdb_stderr;
2907 struct type *type = NULL; /* Initialize to keep gcc happy. */
2908
2909 /* Suppress error messages. */
2910 saved_gdb_stderr = gdb_stderr;
2911 gdb_stderr = &null_stream;
2912
2913 /* Call parse_and_eval_type() without fear of longjmp()s. */
2914 try
2915 {
2916 type = parse_and_eval_type (p, length);
2917 }
2918 catch (const gdb_exception_error &except)
2919 {
2920 type = builtin_type (gdbarch)->builtin_void;
2921 }
2922
2923 /* Stop suppressing error messages. */
2924 gdb_stderr = saved_gdb_stderr;
2925
2926 return type;
2927 }
2928
2929 /* Ugly hack to convert method stubs into method types.
2930
2931 He ain't kiddin'. This demangles the name of the method into a
2932 string including argument types, parses out each argument type,
2933 generates a string casting a zero to that type, evaluates the
2934 string, and stuffs the resulting type into an argtype vector!!!
2935 Then it knows the type of the whole function (including argument
2936 types for overloading), which info used to be in the stab's but was
2937 removed to hack back the space required for them. */
2938
2939 static void
2940 check_stub_method (struct type *type, int method_id, int signature_id)
2941 {
2942 struct gdbarch *gdbarch = get_type_arch (type);
2943 struct fn_field *f;
2944 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2945 char *demangled_name = gdb_demangle (mangled_name,
2946 DMGL_PARAMS | DMGL_ANSI);
2947 char *argtypetext, *p;
2948 int depth = 0, argcount = 1;
2949 struct field *argtypes;
2950 struct type *mtype;
2951
2952 /* Make sure we got back a function string that we can use. */
2953 if (demangled_name)
2954 p = strchr (demangled_name, '(');
2955 else
2956 p = NULL;
2957
2958 if (demangled_name == NULL || p == NULL)
2959 error (_("Internal: Cannot demangle mangled name `%s'."),
2960 mangled_name);
2961
2962 /* Now, read in the parameters that define this type. */
2963 p += 1;
2964 argtypetext = p;
2965 while (*p)
2966 {
2967 if (*p == '(' || *p == '<')
2968 {
2969 depth += 1;
2970 }
2971 else if (*p == ')' || *p == '>')
2972 {
2973 depth -= 1;
2974 }
2975 else if (*p == ',' && depth == 0)
2976 {
2977 argcount += 1;
2978 }
2979
2980 p += 1;
2981 }
2982
2983 /* If we read one argument and it was ``void'', don't count it. */
2984 if (startswith (argtypetext, "(void)"))
2985 argcount -= 1;
2986
2987 /* We need one extra slot, for the THIS pointer. */
2988
2989 argtypes = (struct field *)
2990 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2991 p = argtypetext;
2992
2993 /* Add THIS pointer for non-static methods. */
2994 f = TYPE_FN_FIELDLIST1 (type, method_id);
2995 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2996 argcount = 0;
2997 else
2998 {
2999 argtypes[0].type = lookup_pointer_type (type);
3000 argcount = 1;
3001 }
3002
3003 if (*p != ')') /* () means no args, skip while. */
3004 {
3005 depth = 0;
3006 while (*p)
3007 {
3008 if (depth <= 0 && (*p == ',' || *p == ')'))
3009 {
3010 /* Avoid parsing of ellipsis, they will be handled below.
3011 Also avoid ``void'' as above. */
3012 if (strncmp (argtypetext, "...", p - argtypetext) != 0
3013 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3014 {
3015 argtypes[argcount].type =
3016 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
3017 argcount += 1;
3018 }
3019 argtypetext = p + 1;
3020 }
3021
3022 if (*p == '(' || *p == '<')
3023 {
3024 depth += 1;
3025 }
3026 else if (*p == ')' || *p == '>')
3027 {
3028 depth -= 1;
3029 }
3030
3031 p += 1;
3032 }
3033 }
3034
3035 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3036
3037 /* Now update the old "stub" type into a real type. */
3038 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3039 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3040 We want a method (TYPE_CODE_METHOD). */
3041 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3042 argtypes, argcount, p[-2] == '.');
3043 TYPE_STUB (mtype) = 0;
3044 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3045
3046 xfree (demangled_name);
3047 }
3048
3049 /* This is the external interface to check_stub_method, above. This
3050 function unstubs all of the signatures for TYPE's METHOD_ID method
3051 name. After calling this function TYPE_FN_FIELD_STUB will be
3052 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3053 correct.
3054
3055 This function unfortunately can not die until stabs do. */
3056
3057 void
3058 check_stub_method_group (struct type *type, int method_id)
3059 {
3060 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3061 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3062
3063 for (int j = 0; j < len; j++)
3064 {
3065 if (TYPE_FN_FIELD_STUB (f, j))
3066 check_stub_method (type, method_id, j);
3067 }
3068 }
3069
3070 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3071 const struct cplus_struct_type cplus_struct_default = { };
3072
3073 void
3074 allocate_cplus_struct_type (struct type *type)
3075 {
3076 if (HAVE_CPLUS_STRUCT (type))
3077 /* Structure was already allocated. Nothing more to do. */
3078 return;
3079
3080 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3081 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3082 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3083 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3084 set_type_vptr_fieldno (type, -1);
3085 }
3086
3087 const struct gnat_aux_type gnat_aux_default =
3088 { NULL };
3089
3090 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3091 and allocate the associated gnat-specific data. The gnat-specific
3092 data is also initialized to gnat_aux_default. */
3093
3094 void
3095 allocate_gnat_aux_type (struct type *type)
3096 {
3097 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3098 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3099 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3100 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3101 }
3102
3103 /* Helper function to initialize a newly allocated type. Set type code
3104 to CODE and initialize the type-specific fields accordingly. */
3105
3106 static void
3107 set_type_code (struct type *type, enum type_code code)
3108 {
3109 TYPE_CODE (type) = code;
3110
3111 switch (code)
3112 {
3113 case TYPE_CODE_STRUCT:
3114 case TYPE_CODE_UNION:
3115 case TYPE_CODE_NAMESPACE:
3116 INIT_CPLUS_SPECIFIC (type);
3117 break;
3118 case TYPE_CODE_FLT:
3119 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3120 break;
3121 case TYPE_CODE_FUNC:
3122 INIT_FUNC_SPECIFIC (type);
3123 break;
3124 }
3125 }
3126
3127 /* Helper function to verify floating-point format and size.
3128 BIT is the type size in bits; if BIT equals -1, the size is
3129 determined by the floatformat. Returns size to be used. */
3130
3131 static int
3132 verify_floatformat (int bit, const struct floatformat *floatformat)
3133 {
3134 gdb_assert (floatformat != NULL);
3135
3136 if (bit == -1)
3137 bit = floatformat->totalsize;
3138
3139 gdb_assert (bit >= 0);
3140 gdb_assert (bit >= floatformat->totalsize);
3141
3142 return bit;
3143 }
3144
3145 /* Return the floating-point format for a floating-point variable of
3146 type TYPE. */
3147
3148 const struct floatformat *
3149 floatformat_from_type (const struct type *type)
3150 {
3151 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3152 gdb_assert (TYPE_FLOATFORMAT (type));
3153 return TYPE_FLOATFORMAT (type);
3154 }
3155
3156 /* Helper function to initialize the standard scalar types.
3157
3158 If NAME is non-NULL, then it is used to initialize the type name.
3159 Note that NAME is not copied; it is required to have a lifetime at
3160 least as long as OBJFILE. */
3161
3162 struct type *
3163 init_type (struct objfile *objfile, enum type_code code, int bit,
3164 const char *name)
3165 {
3166 struct type *type;
3167
3168 type = alloc_type (objfile);
3169 set_type_code (type, code);
3170 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3171 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3172 TYPE_NAME (type) = name;
3173
3174 return type;
3175 }
3176
3177 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3178 to use with variables that have no debug info. NAME is the type
3179 name. */
3180
3181 static struct type *
3182 init_nodebug_var_type (struct objfile *objfile, const char *name)
3183 {
3184 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3185 }
3186
3187 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3188 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3189 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3190
3191 struct type *
3192 init_integer_type (struct objfile *objfile,
3193 int bit, int unsigned_p, const char *name)
3194 {
3195 struct type *t;
3196
3197 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3198 if (unsigned_p)
3199 TYPE_UNSIGNED (t) = 1;
3200
3201 return t;
3202 }
3203
3204 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3205 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3206 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3207
3208 struct type *
3209 init_character_type (struct objfile *objfile,
3210 int bit, int unsigned_p, const char *name)
3211 {
3212 struct type *t;
3213
3214 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3215 if (unsigned_p)
3216 TYPE_UNSIGNED (t) = 1;
3217
3218 return t;
3219 }
3220
3221 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3222 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3223 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3224
3225 struct type *
3226 init_boolean_type (struct objfile *objfile,
3227 int bit, int unsigned_p, const char *name)
3228 {
3229 struct type *t;
3230
3231 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3232 if (unsigned_p)
3233 TYPE_UNSIGNED (t) = 1;
3234
3235 return t;
3236 }
3237
3238 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3239 BIT is the type size in bits; if BIT equals -1, the size is
3240 determined by the floatformat. NAME is the type name. Set the
3241 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3242 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3243 order of the objfile's architecture is used. */
3244
3245 struct type *
3246 init_float_type (struct objfile *objfile,
3247 int bit, const char *name,
3248 const struct floatformat **floatformats,
3249 enum bfd_endian byte_order)
3250 {
3251 if (byte_order == BFD_ENDIAN_UNKNOWN)
3252 {
3253 struct gdbarch *gdbarch = objfile->arch ();
3254 byte_order = gdbarch_byte_order (gdbarch);
3255 }
3256 const struct floatformat *fmt = floatformats[byte_order];
3257 struct type *t;
3258
3259 bit = verify_floatformat (bit, fmt);
3260 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3261 TYPE_FLOATFORMAT (t) = fmt;
3262
3263 return t;
3264 }
3265
3266 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3267 BIT is the type size in bits. NAME is the type name. */
3268
3269 struct type *
3270 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3271 {
3272 struct type *t;
3273
3274 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3275 return t;
3276 }
3277
3278 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3279 name. TARGET_TYPE is the component type. */
3280
3281 struct type *
3282 init_complex_type (const char *name, struct type *target_type)
3283 {
3284 struct type *t;
3285
3286 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3287 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3288
3289 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3290 {
3291 if (name == nullptr)
3292 {
3293 char *new_name
3294 = (char *) TYPE_ALLOC (target_type,
3295 strlen (TYPE_NAME (target_type))
3296 + strlen ("_Complex ") + 1);
3297 strcpy (new_name, "_Complex ");
3298 strcat (new_name, TYPE_NAME (target_type));
3299 name = new_name;
3300 }
3301
3302 t = alloc_type_copy (target_type);
3303 set_type_code (t, TYPE_CODE_COMPLEX);
3304 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3305 TYPE_NAME (t) = name;
3306
3307 TYPE_TARGET_TYPE (t) = target_type;
3308 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3309 }
3310
3311 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3312 }
3313
3314 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3315 BIT is the pointer type size in bits. NAME is the type name.
3316 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3317 TYPE_UNSIGNED flag. */
3318
3319 struct type *
3320 init_pointer_type (struct objfile *objfile,
3321 int bit, const char *name, struct type *target_type)
3322 {
3323 struct type *t;
3324
3325 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3326 TYPE_TARGET_TYPE (t) = target_type;
3327 TYPE_UNSIGNED (t) = 1;
3328 return t;
3329 }
3330
3331 /* See gdbtypes.h. */
3332
3333 unsigned
3334 type_raw_align (struct type *type)
3335 {
3336 if (type->align_log2 != 0)
3337 return 1 << (type->align_log2 - 1);
3338 return 0;
3339 }
3340
3341 /* See gdbtypes.h. */
3342
3343 unsigned
3344 type_align (struct type *type)
3345 {
3346 /* Check alignment provided in the debug information. */
3347 unsigned raw_align = type_raw_align (type);
3348 if (raw_align != 0)
3349 return raw_align;
3350
3351 /* Allow the architecture to provide an alignment. */
3352 struct gdbarch *arch = get_type_arch (type);
3353 ULONGEST align = gdbarch_type_align (arch, type);
3354 if (align != 0)
3355 return align;
3356
3357 switch (TYPE_CODE (type))
3358 {
3359 case TYPE_CODE_PTR:
3360 case TYPE_CODE_FUNC:
3361 case TYPE_CODE_FLAGS:
3362 case TYPE_CODE_INT:
3363 case TYPE_CODE_RANGE:
3364 case TYPE_CODE_FLT:
3365 case TYPE_CODE_ENUM:
3366 case TYPE_CODE_REF:
3367 case TYPE_CODE_RVALUE_REF:
3368 case TYPE_CODE_CHAR:
3369 case TYPE_CODE_BOOL:
3370 case TYPE_CODE_DECFLOAT:
3371 case TYPE_CODE_METHODPTR:
3372 case TYPE_CODE_MEMBERPTR:
3373 align = type_length_units (check_typedef (type));
3374 break;
3375
3376 case TYPE_CODE_ARRAY:
3377 case TYPE_CODE_COMPLEX:
3378 case TYPE_CODE_TYPEDEF:
3379 align = type_align (TYPE_TARGET_TYPE (type));
3380 break;
3381
3382 case TYPE_CODE_STRUCT:
3383 case TYPE_CODE_UNION:
3384 {
3385 int number_of_non_static_fields = 0;
3386 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3387 {
3388 if (!field_is_static (&TYPE_FIELD (type, i)))
3389 {
3390 number_of_non_static_fields++;
3391 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3392 if (f_align == 0)
3393 {
3394 /* Don't pretend we know something we don't. */
3395 align = 0;
3396 break;
3397 }
3398 if (f_align > align)
3399 align = f_align;
3400 }
3401 }
3402 /* A struct with no fields, or with only static fields has an
3403 alignment of 1. */
3404 if (number_of_non_static_fields == 0)
3405 align = 1;
3406 }
3407 break;
3408
3409 case TYPE_CODE_SET:
3410 case TYPE_CODE_STRING:
3411 /* Not sure what to do here, and these can't appear in C or C++
3412 anyway. */
3413 break;
3414
3415 case TYPE_CODE_VOID:
3416 align = 1;
3417 break;
3418
3419 case TYPE_CODE_ERROR:
3420 case TYPE_CODE_METHOD:
3421 default:
3422 break;
3423 }
3424
3425 if ((align & (align - 1)) != 0)
3426 {
3427 /* Not a power of 2, so pass. */
3428 align = 0;
3429 }
3430
3431 return align;
3432 }
3433
3434 /* See gdbtypes.h. */
3435
3436 bool
3437 set_type_align (struct type *type, ULONGEST align)
3438 {
3439 /* Must be a power of 2. Zero is ok. */
3440 gdb_assert ((align & (align - 1)) == 0);
3441
3442 unsigned result = 0;
3443 while (align != 0)
3444 {
3445 ++result;
3446 align >>= 1;
3447 }
3448
3449 if (result >= (1 << TYPE_ALIGN_BITS))
3450 return false;
3451
3452 type->align_log2 = result;
3453 return true;
3454 }
3455
3456 \f
3457 /* Queries on types. */
3458
3459 int
3460 can_dereference (struct type *t)
3461 {
3462 /* FIXME: Should we return true for references as well as
3463 pointers? */
3464 t = check_typedef (t);
3465 return
3466 (t != NULL
3467 && TYPE_CODE (t) == TYPE_CODE_PTR
3468 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3469 }
3470
3471 int
3472 is_integral_type (struct type *t)
3473 {
3474 t = check_typedef (t);
3475 return
3476 ((t != NULL)
3477 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3478 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3479 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3480 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3481 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3482 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3483 }
3484
3485 int
3486 is_floating_type (struct type *t)
3487 {
3488 t = check_typedef (t);
3489 return
3490 ((t != NULL)
3491 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3492 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3493 }
3494
3495 /* Return true if TYPE is scalar. */
3496
3497 int
3498 is_scalar_type (struct type *type)
3499 {
3500 type = check_typedef (type);
3501
3502 switch (TYPE_CODE (type))
3503 {
3504 case TYPE_CODE_ARRAY:
3505 case TYPE_CODE_STRUCT:
3506 case TYPE_CODE_UNION:
3507 case TYPE_CODE_SET:
3508 case TYPE_CODE_STRING:
3509 return 0;
3510 default:
3511 return 1;
3512 }
3513 }
3514
3515 /* Return true if T is scalar, or a composite type which in practice has
3516 the memory layout of a scalar type. E.g., an array or struct with only
3517 one scalar element inside it, or a union with only scalar elements. */
3518
3519 int
3520 is_scalar_type_recursive (struct type *t)
3521 {
3522 t = check_typedef (t);
3523
3524 if (is_scalar_type (t))
3525 return 1;
3526 /* Are we dealing with an array or string of known dimensions? */
3527 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3528 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3529 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3530 {
3531 LONGEST low_bound, high_bound;
3532 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3533
3534 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3535
3536 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3537 }
3538 /* Are we dealing with a struct with one element? */
3539 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3540 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3541 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3542 {
3543 int i, n = TYPE_NFIELDS (t);
3544
3545 /* If all elements of the union are scalar, then the union is scalar. */
3546 for (i = 0; i < n; i++)
3547 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3548 return 0;
3549
3550 return 1;
3551 }
3552
3553 return 0;
3554 }
3555
3556 /* Return true is T is a class or a union. False otherwise. */
3557
3558 int
3559 class_or_union_p (const struct type *t)
3560 {
3561 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3562 || TYPE_CODE (t) == TYPE_CODE_UNION);
3563 }
3564
3565 /* A helper function which returns true if types A and B represent the
3566 "same" class type. This is true if the types have the same main
3567 type, or the same name. */
3568
3569 int
3570 class_types_same_p (const struct type *a, const struct type *b)
3571 {
3572 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3573 || (TYPE_NAME (a) && TYPE_NAME (b)
3574 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3575 }
3576
3577 /* If BASE is an ancestor of DCLASS return the distance between them.
3578 otherwise return -1;
3579 eg:
3580
3581 class A {};
3582 class B: public A {};
3583 class C: public B {};
3584 class D: C {};
3585
3586 distance_to_ancestor (A, A, 0) = 0
3587 distance_to_ancestor (A, B, 0) = 1
3588 distance_to_ancestor (A, C, 0) = 2
3589 distance_to_ancestor (A, D, 0) = 3
3590
3591 If PUBLIC is 1 then only public ancestors are considered,
3592 and the function returns the distance only if BASE is a public ancestor
3593 of DCLASS.
3594 Eg:
3595
3596 distance_to_ancestor (A, D, 1) = -1. */
3597
3598 static int
3599 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3600 {
3601 int i;
3602 int d;
3603
3604 base = check_typedef (base);
3605 dclass = check_typedef (dclass);
3606
3607 if (class_types_same_p (base, dclass))
3608 return 0;
3609
3610 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3611 {
3612 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3613 continue;
3614
3615 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3616 if (d >= 0)
3617 return 1 + d;
3618 }
3619
3620 return -1;
3621 }
3622
3623 /* Check whether BASE is an ancestor or base class or DCLASS
3624 Return 1 if so, and 0 if not.
3625 Note: If BASE and DCLASS are of the same type, this function
3626 will return 1. So for some class A, is_ancestor (A, A) will
3627 return 1. */
3628
3629 int
3630 is_ancestor (struct type *base, struct type *dclass)
3631 {
3632 return distance_to_ancestor (base, dclass, 0) >= 0;
3633 }
3634
3635 /* Like is_ancestor, but only returns true when BASE is a public
3636 ancestor of DCLASS. */
3637
3638 int
3639 is_public_ancestor (struct type *base, struct type *dclass)
3640 {
3641 return distance_to_ancestor (base, dclass, 1) >= 0;
3642 }
3643
3644 /* A helper function for is_unique_ancestor. */
3645
3646 static int
3647 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3648 int *offset,
3649 const gdb_byte *valaddr, int embedded_offset,
3650 CORE_ADDR address, struct value *val)
3651 {
3652 int i, count = 0;
3653
3654 base = check_typedef (base);
3655 dclass = check_typedef (dclass);
3656
3657 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3658 {
3659 struct type *iter;
3660 int this_offset;
3661
3662 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3663
3664 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3665 address, val);
3666
3667 if (class_types_same_p (base, iter))
3668 {
3669 /* If this is the first subclass, set *OFFSET and set count
3670 to 1. Otherwise, if this is at the same offset as
3671 previous instances, do nothing. Otherwise, increment
3672 count. */
3673 if (*offset == -1)
3674 {
3675 *offset = this_offset;
3676 count = 1;
3677 }
3678 else if (this_offset == *offset)
3679 {
3680 /* Nothing. */
3681 }
3682 else
3683 ++count;
3684 }
3685 else
3686 count += is_unique_ancestor_worker (base, iter, offset,
3687 valaddr,
3688 embedded_offset + this_offset,
3689 address, val);
3690 }
3691
3692 return count;
3693 }
3694
3695 /* Like is_ancestor, but only returns true if BASE is a unique base
3696 class of the type of VAL. */
3697
3698 int
3699 is_unique_ancestor (struct type *base, struct value *val)
3700 {
3701 int offset = -1;
3702
3703 return is_unique_ancestor_worker (base, value_type (val), &offset,
3704 value_contents_for_printing (val),
3705 value_embedded_offset (val),
3706 value_address (val), val) == 1;
3707 }
3708
3709 /* See gdbtypes.h. */
3710
3711 enum bfd_endian
3712 type_byte_order (const struct type *type)
3713 {
3714 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3715 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3716 {
3717 if (byteorder == BFD_ENDIAN_BIG)
3718 return BFD_ENDIAN_LITTLE;
3719 else
3720 {
3721 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3722 return BFD_ENDIAN_BIG;
3723 }
3724 }
3725
3726 return byteorder;
3727 }
3728
3729 \f
3730 /* Overload resolution. */
3731
3732 /* Return the sum of the rank of A with the rank of B. */
3733
3734 struct rank
3735 sum_ranks (struct rank a, struct rank b)
3736 {
3737 struct rank c;
3738 c.rank = a.rank + b.rank;
3739 c.subrank = a.subrank + b.subrank;
3740 return c;
3741 }
3742
3743 /* Compare rank A and B and return:
3744 0 if a = b
3745 1 if a is better than b
3746 -1 if b is better than a. */
3747
3748 int
3749 compare_ranks (struct rank a, struct rank b)
3750 {
3751 if (a.rank == b.rank)
3752 {
3753 if (a.subrank == b.subrank)
3754 return 0;
3755 if (a.subrank < b.subrank)
3756 return 1;
3757 if (a.subrank > b.subrank)
3758 return -1;
3759 }
3760
3761 if (a.rank < b.rank)
3762 return 1;
3763
3764 /* a.rank > b.rank */
3765 return -1;
3766 }
3767
3768 /* Functions for overload resolution begin here. */
3769
3770 /* Compare two badness vectors A and B and return the result.
3771 0 => A and B are identical
3772 1 => A and B are incomparable
3773 2 => A is better than B
3774 3 => A is worse than B */
3775
3776 int
3777 compare_badness (const badness_vector &a, const badness_vector &b)
3778 {
3779 int i;
3780 int tmp;
3781 short found_pos = 0; /* any positives in c? */
3782 short found_neg = 0; /* any negatives in c? */
3783
3784 /* differing sizes => incomparable */
3785 if (a.size () != b.size ())
3786 return 1;
3787
3788 /* Subtract b from a */
3789 for (i = 0; i < a.size (); i++)
3790 {
3791 tmp = compare_ranks (b[i], a[i]);
3792 if (tmp > 0)
3793 found_pos = 1;
3794 else if (tmp < 0)
3795 found_neg = 1;
3796 }
3797
3798 if (found_pos)
3799 {
3800 if (found_neg)
3801 return 1; /* incomparable */
3802 else
3803 return 3; /* A > B */
3804 }
3805 else
3806 /* no positives */
3807 {
3808 if (found_neg)
3809 return 2; /* A < B */
3810 else
3811 return 0; /* A == B */
3812 }
3813 }
3814
3815 /* Rank a function by comparing its parameter types (PARMS), to the
3816 types of an argument list (ARGS). Return the badness vector. This
3817 has ARGS.size() + 1 entries. */
3818
3819 badness_vector
3820 rank_function (gdb::array_view<type *> parms,
3821 gdb::array_view<value *> args)
3822 {
3823 /* add 1 for the length-match rank. */
3824 badness_vector bv;
3825 bv.reserve (1 + args.size ());
3826
3827 /* First compare the lengths of the supplied lists.
3828 If there is a mismatch, set it to a high value. */
3829
3830 /* pai/1997-06-03 FIXME: when we have debug info about default
3831 arguments and ellipsis parameter lists, we should consider those
3832 and rank the length-match more finely. */
3833
3834 bv.push_back ((args.size () != parms.size ())
3835 ? LENGTH_MISMATCH_BADNESS
3836 : EXACT_MATCH_BADNESS);
3837
3838 /* Now rank all the parameters of the candidate function. */
3839 size_t min_len = std::min (parms.size (), args.size ());
3840
3841 for (size_t i = 0; i < min_len; i++)
3842 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3843 args[i]));
3844
3845 /* If more arguments than parameters, add dummy entries. */
3846 for (size_t i = min_len; i < args.size (); i++)
3847 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3848
3849 return bv;
3850 }
3851
3852 /* Compare the names of two integer types, assuming that any sign
3853 qualifiers have been checked already. We do it this way because
3854 there may be an "int" in the name of one of the types. */
3855
3856 static int
3857 integer_types_same_name_p (const char *first, const char *second)
3858 {
3859 int first_p, second_p;
3860
3861 /* If both are shorts, return 1; if neither is a short, keep
3862 checking. */
3863 first_p = (strstr (first, "short") != NULL);
3864 second_p = (strstr (second, "short") != NULL);
3865 if (first_p && second_p)
3866 return 1;
3867 if (first_p || second_p)
3868 return 0;
3869
3870 /* Likewise for long. */
3871 first_p = (strstr (first, "long") != NULL);
3872 second_p = (strstr (second, "long") != NULL);
3873 if (first_p && second_p)
3874 return 1;
3875 if (first_p || second_p)
3876 return 0;
3877
3878 /* Likewise for char. */
3879 first_p = (strstr (first, "char") != NULL);
3880 second_p = (strstr (second, "char") != NULL);
3881 if (first_p && second_p)
3882 return 1;
3883 if (first_p || second_p)
3884 return 0;
3885
3886 /* They must both be ints. */
3887 return 1;
3888 }
3889
3890 /* Compares type A to type B. Returns true if they represent the same
3891 type, false otherwise. */
3892
3893 bool
3894 types_equal (struct type *a, struct type *b)
3895 {
3896 /* Identical type pointers. */
3897 /* However, this still doesn't catch all cases of same type for b
3898 and a. The reason is that builtin types are different from
3899 the same ones constructed from the object. */
3900 if (a == b)
3901 return true;
3902
3903 /* Resolve typedefs */
3904 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3905 a = check_typedef (a);
3906 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3907 b = check_typedef (b);
3908
3909 /* If after resolving typedefs a and b are not of the same type
3910 code then they are not equal. */
3911 if (TYPE_CODE (a) != TYPE_CODE (b))
3912 return false;
3913
3914 /* If a and b are both pointers types or both reference types then
3915 they are equal of the same type iff the objects they refer to are
3916 of the same type. */
3917 if (TYPE_CODE (a) == TYPE_CODE_PTR
3918 || TYPE_CODE (a) == TYPE_CODE_REF)
3919 return types_equal (TYPE_TARGET_TYPE (a),
3920 TYPE_TARGET_TYPE (b));
3921
3922 /* Well, damnit, if the names are exactly the same, I'll say they
3923 are exactly the same. This happens when we generate method
3924 stubs. The types won't point to the same address, but they
3925 really are the same. */
3926
3927 if (TYPE_NAME (a) && TYPE_NAME (b)
3928 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3929 return true;
3930
3931 /* Check if identical after resolving typedefs. */
3932 if (a == b)
3933 return true;
3934
3935 /* Two function types are equal if their argument and return types
3936 are equal. */
3937 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3938 {
3939 int i;
3940
3941 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3942 return false;
3943
3944 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3945 return false;
3946
3947 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3948 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3949 return false;
3950
3951 return true;
3952 }
3953
3954 return false;
3955 }
3956 \f
3957 /* Deep comparison of types. */
3958
3959 /* An entry in the type-equality bcache. */
3960
3961 struct type_equality_entry
3962 {
3963 type_equality_entry (struct type *t1, struct type *t2)
3964 : type1 (t1),
3965 type2 (t2)
3966 {
3967 }
3968
3969 struct type *type1, *type2;
3970 };
3971
3972 /* A helper function to compare two strings. Returns true if they are
3973 the same, false otherwise. Handles NULLs properly. */
3974
3975 static bool
3976 compare_maybe_null_strings (const char *s, const char *t)
3977 {
3978 if (s == NULL || t == NULL)
3979 return s == t;
3980 return strcmp (s, t) == 0;
3981 }
3982
3983 /* A helper function for check_types_worklist that checks two types for
3984 "deep" equality. Returns true if the types are considered the
3985 same, false otherwise. */
3986
3987 static bool
3988 check_types_equal (struct type *type1, struct type *type2,
3989 std::vector<type_equality_entry> *worklist)
3990 {
3991 type1 = check_typedef (type1);
3992 type2 = check_typedef (type2);
3993
3994 if (type1 == type2)
3995 return true;
3996
3997 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3998 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3999 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
4000 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
4001 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
4002 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
4003 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
4004 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
4005 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
4006 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
4007 return false;
4008
4009 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
4010 return false;
4011 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
4012 return false;
4013
4014 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
4015 {
4016 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
4017 return false;
4018 }
4019 else
4020 {
4021 int i;
4022
4023 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4024 {
4025 const struct field *field1 = &TYPE_FIELD (type1, i);
4026 const struct field *field2 = &TYPE_FIELD (type2, i);
4027
4028 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4029 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4030 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4031 return false;
4032 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4033 FIELD_NAME (*field2)))
4034 return false;
4035 switch (FIELD_LOC_KIND (*field1))
4036 {
4037 case FIELD_LOC_KIND_BITPOS:
4038 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4039 return false;
4040 break;
4041 case FIELD_LOC_KIND_ENUMVAL:
4042 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4043 return false;
4044 break;
4045 case FIELD_LOC_KIND_PHYSADDR:
4046 if (FIELD_STATIC_PHYSADDR (*field1)
4047 != FIELD_STATIC_PHYSADDR (*field2))
4048 return false;
4049 break;
4050 case FIELD_LOC_KIND_PHYSNAME:
4051 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4052 FIELD_STATIC_PHYSNAME (*field2)))
4053 return false;
4054 break;
4055 case FIELD_LOC_KIND_DWARF_BLOCK:
4056 {
4057 struct dwarf2_locexpr_baton *block1, *block2;
4058
4059 block1 = FIELD_DWARF_BLOCK (*field1);
4060 block2 = FIELD_DWARF_BLOCK (*field2);
4061 if (block1->per_cu != block2->per_cu
4062 || block1->size != block2->size
4063 || memcmp (block1->data, block2->data, block1->size) != 0)
4064 return false;
4065 }
4066 break;
4067 default:
4068 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4069 "%d by check_types_equal"),
4070 FIELD_LOC_KIND (*field1));
4071 }
4072
4073 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
4074 }
4075 }
4076
4077 if (TYPE_TARGET_TYPE (type1) != NULL)
4078 {
4079 if (TYPE_TARGET_TYPE (type2) == NULL)
4080 return false;
4081
4082 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4083 TYPE_TARGET_TYPE (type2));
4084 }
4085 else if (TYPE_TARGET_TYPE (type2) != NULL)
4086 return false;
4087
4088 return true;
4089 }
4090
4091 /* Check types on a worklist for equality. Returns false if any pair
4092 is not equal, true if they are all considered equal. */
4093
4094 static bool
4095 check_types_worklist (std::vector<type_equality_entry> *worklist,
4096 gdb::bcache *cache)
4097 {
4098 while (!worklist->empty ())
4099 {
4100 int added;
4101
4102 struct type_equality_entry entry = std::move (worklist->back ());
4103 worklist->pop_back ();
4104
4105 /* If the type pair has already been visited, we know it is
4106 ok. */
4107 cache->insert (&entry, sizeof (entry), &added);
4108 if (!added)
4109 continue;
4110
4111 if (!check_types_equal (entry.type1, entry.type2, worklist))
4112 return false;
4113 }
4114
4115 return true;
4116 }
4117
4118 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4119 "deep comparison". Otherwise return false. */
4120
4121 bool
4122 types_deeply_equal (struct type *type1, struct type *type2)
4123 {
4124 std::vector<type_equality_entry> worklist;
4125
4126 gdb_assert (type1 != NULL && type2 != NULL);
4127
4128 /* Early exit for the simple case. */
4129 if (type1 == type2)
4130 return true;
4131
4132 gdb::bcache cache (nullptr, nullptr);
4133 worklist.emplace_back (type1, type2);
4134 return check_types_worklist (&worklist, &cache);
4135 }
4136
4137 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4138 Otherwise return one. */
4139
4140 int
4141 type_not_allocated (const struct type *type)
4142 {
4143 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4144
4145 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4146 && !TYPE_DYN_PROP_ADDR (prop));
4147 }
4148
4149 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4150 Otherwise return one. */
4151
4152 int
4153 type_not_associated (const struct type *type)
4154 {
4155 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4156
4157 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4158 && !TYPE_DYN_PROP_ADDR (prop));
4159 }
4160
4161 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4162
4163 static struct rank
4164 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4165 {
4166 struct rank rank = {0,0};
4167
4168 switch (TYPE_CODE (arg))
4169 {
4170 case TYPE_CODE_PTR:
4171
4172 /* Allowed pointer conversions are:
4173 (a) pointer to void-pointer conversion. */
4174 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4175 return VOID_PTR_CONVERSION_BADNESS;
4176
4177 /* (b) pointer to ancestor-pointer conversion. */
4178 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4179 TYPE_TARGET_TYPE (arg),
4180 0);
4181 if (rank.subrank >= 0)
4182 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4183
4184 return INCOMPATIBLE_TYPE_BADNESS;
4185 case TYPE_CODE_ARRAY:
4186 {
4187 struct type *t1 = TYPE_TARGET_TYPE (parm);
4188 struct type *t2 = TYPE_TARGET_TYPE (arg);
4189
4190 if (types_equal (t1, t2))
4191 {
4192 /* Make sure they are CV equal. */
4193 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4194 rank.subrank |= CV_CONVERSION_CONST;
4195 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4196 rank.subrank |= CV_CONVERSION_VOLATILE;
4197 if (rank.subrank != 0)
4198 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4199 return EXACT_MATCH_BADNESS;
4200 }
4201 return INCOMPATIBLE_TYPE_BADNESS;
4202 }
4203 case TYPE_CODE_FUNC:
4204 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4205 case TYPE_CODE_INT:
4206 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4207 {
4208 if (value_as_long (value) == 0)
4209 {
4210 /* Null pointer conversion: allow it to be cast to a pointer.
4211 [4.10.1 of C++ standard draft n3290] */
4212 return NULL_POINTER_CONVERSION_BADNESS;
4213 }
4214 else
4215 {
4216 /* If type checking is disabled, allow the conversion. */
4217 if (!strict_type_checking)
4218 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4219 }
4220 }
4221 /* fall through */
4222 case TYPE_CODE_ENUM:
4223 case TYPE_CODE_FLAGS:
4224 case TYPE_CODE_CHAR:
4225 case TYPE_CODE_RANGE:
4226 case TYPE_CODE_BOOL:
4227 default:
4228 return INCOMPATIBLE_TYPE_BADNESS;
4229 }
4230 }
4231
4232 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4233
4234 static struct rank
4235 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4236 {
4237 switch (TYPE_CODE (arg))
4238 {
4239 case TYPE_CODE_PTR:
4240 case TYPE_CODE_ARRAY:
4241 return rank_one_type (TYPE_TARGET_TYPE (parm),
4242 TYPE_TARGET_TYPE (arg), NULL);
4243 default:
4244 return INCOMPATIBLE_TYPE_BADNESS;
4245 }
4246 }
4247
4248 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4249
4250 static struct rank
4251 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4252 {
4253 switch (TYPE_CODE (arg))
4254 {
4255 case TYPE_CODE_PTR: /* funcptr -> func */
4256 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4257 default:
4258 return INCOMPATIBLE_TYPE_BADNESS;
4259 }
4260 }
4261
4262 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4263
4264 static struct rank
4265 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4266 {
4267 switch (TYPE_CODE (arg))
4268 {
4269 case TYPE_CODE_INT:
4270 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4271 {
4272 /* Deal with signed, unsigned, and plain chars and
4273 signed and unsigned ints. */
4274 if (TYPE_NOSIGN (parm))
4275 {
4276 /* This case only for character types. */
4277 if (TYPE_NOSIGN (arg))
4278 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4279 else /* signed/unsigned char -> plain char */
4280 return INTEGER_CONVERSION_BADNESS;
4281 }
4282 else if (TYPE_UNSIGNED (parm))
4283 {
4284 if (TYPE_UNSIGNED (arg))
4285 {
4286 /* unsigned int -> unsigned int, or
4287 unsigned long -> unsigned long */
4288 if (integer_types_same_name_p (TYPE_NAME (parm),
4289 TYPE_NAME (arg)))
4290 return EXACT_MATCH_BADNESS;
4291 else if (integer_types_same_name_p (TYPE_NAME (arg),
4292 "int")
4293 && integer_types_same_name_p (TYPE_NAME (parm),
4294 "long"))
4295 /* unsigned int -> unsigned long */
4296 return INTEGER_PROMOTION_BADNESS;
4297 else
4298 /* unsigned long -> unsigned int */
4299 return INTEGER_CONVERSION_BADNESS;
4300 }
4301 else
4302 {
4303 if (integer_types_same_name_p (TYPE_NAME (arg),
4304 "long")
4305 && integer_types_same_name_p (TYPE_NAME (parm),
4306 "int"))
4307 /* signed long -> unsigned int */
4308 return INTEGER_CONVERSION_BADNESS;
4309 else
4310 /* signed int/long -> unsigned int/long */
4311 return INTEGER_CONVERSION_BADNESS;
4312 }
4313 }
4314 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4315 {
4316 if (integer_types_same_name_p (TYPE_NAME (parm),
4317 TYPE_NAME (arg)))
4318 return EXACT_MATCH_BADNESS;
4319 else if (integer_types_same_name_p (TYPE_NAME (arg),
4320 "int")
4321 && integer_types_same_name_p (TYPE_NAME (parm),
4322 "long"))
4323 return INTEGER_PROMOTION_BADNESS;
4324 else
4325 return INTEGER_CONVERSION_BADNESS;
4326 }
4327 else
4328 return INTEGER_CONVERSION_BADNESS;
4329 }
4330 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4331 return INTEGER_PROMOTION_BADNESS;
4332 else
4333 return INTEGER_CONVERSION_BADNESS;
4334 case TYPE_CODE_ENUM:
4335 case TYPE_CODE_FLAGS:
4336 case TYPE_CODE_CHAR:
4337 case TYPE_CODE_RANGE:
4338 case TYPE_CODE_BOOL:
4339 if (TYPE_DECLARED_CLASS (arg))
4340 return INCOMPATIBLE_TYPE_BADNESS;
4341 return INTEGER_PROMOTION_BADNESS;
4342 case TYPE_CODE_FLT:
4343 return INT_FLOAT_CONVERSION_BADNESS;
4344 case TYPE_CODE_PTR:
4345 return NS_POINTER_CONVERSION_BADNESS;
4346 default:
4347 return INCOMPATIBLE_TYPE_BADNESS;
4348 }
4349 }
4350
4351 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4352
4353 static struct rank
4354 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4355 {
4356 switch (TYPE_CODE (arg))
4357 {
4358 case TYPE_CODE_INT:
4359 case TYPE_CODE_CHAR:
4360 case TYPE_CODE_RANGE:
4361 case TYPE_CODE_BOOL:
4362 case TYPE_CODE_ENUM:
4363 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4364 return INCOMPATIBLE_TYPE_BADNESS;
4365 return INTEGER_CONVERSION_BADNESS;
4366 case TYPE_CODE_FLT:
4367 return INT_FLOAT_CONVERSION_BADNESS;
4368 default:
4369 return INCOMPATIBLE_TYPE_BADNESS;
4370 }
4371 }
4372
4373 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4374
4375 static struct rank
4376 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4377 {
4378 switch (TYPE_CODE (arg))
4379 {
4380 case TYPE_CODE_RANGE:
4381 case TYPE_CODE_BOOL:
4382 case TYPE_CODE_ENUM:
4383 if (TYPE_DECLARED_CLASS (arg))
4384 return INCOMPATIBLE_TYPE_BADNESS;
4385 return INTEGER_CONVERSION_BADNESS;
4386 case TYPE_CODE_FLT:
4387 return INT_FLOAT_CONVERSION_BADNESS;
4388 case TYPE_CODE_INT:
4389 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4390 return INTEGER_CONVERSION_BADNESS;
4391 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4392 return INTEGER_PROMOTION_BADNESS;
4393 /* fall through */
4394 case TYPE_CODE_CHAR:
4395 /* Deal with signed, unsigned, and plain chars for C++ and
4396 with int cases falling through from previous case. */
4397 if (TYPE_NOSIGN (parm))
4398 {
4399 if (TYPE_NOSIGN (arg))
4400 return EXACT_MATCH_BADNESS;
4401 else
4402 return INTEGER_CONVERSION_BADNESS;
4403 }
4404 else if (TYPE_UNSIGNED (parm))
4405 {
4406 if (TYPE_UNSIGNED (arg))
4407 return EXACT_MATCH_BADNESS;
4408 else
4409 return INTEGER_PROMOTION_BADNESS;
4410 }
4411 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4412 return EXACT_MATCH_BADNESS;
4413 else
4414 return INTEGER_CONVERSION_BADNESS;
4415 default:
4416 return INCOMPATIBLE_TYPE_BADNESS;
4417 }
4418 }
4419
4420 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4421
4422 static struct rank
4423 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4424 {
4425 switch (TYPE_CODE (arg))
4426 {
4427 case TYPE_CODE_INT:
4428 case TYPE_CODE_CHAR:
4429 case TYPE_CODE_RANGE:
4430 case TYPE_CODE_BOOL:
4431 case TYPE_CODE_ENUM:
4432 return INTEGER_CONVERSION_BADNESS;
4433 case TYPE_CODE_FLT:
4434 return INT_FLOAT_CONVERSION_BADNESS;
4435 default:
4436 return INCOMPATIBLE_TYPE_BADNESS;
4437 }
4438 }
4439
4440 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4441
4442 static struct rank
4443 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4444 {
4445 switch (TYPE_CODE (arg))
4446 {
4447 /* n3290 draft, section 4.12.1 (conv.bool):
4448
4449 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4450 pointer to member type can be converted to a prvalue of type
4451 bool. A zero value, null pointer value, or null member pointer
4452 value is converted to false; any other value is converted to
4453 true. A prvalue of type std::nullptr_t can be converted to a
4454 prvalue of type bool; the resulting value is false." */
4455 case TYPE_CODE_INT:
4456 case TYPE_CODE_CHAR:
4457 case TYPE_CODE_ENUM:
4458 case TYPE_CODE_FLT:
4459 case TYPE_CODE_MEMBERPTR:
4460 case TYPE_CODE_PTR:
4461 return BOOL_CONVERSION_BADNESS;
4462 case TYPE_CODE_RANGE:
4463 return INCOMPATIBLE_TYPE_BADNESS;
4464 case TYPE_CODE_BOOL:
4465 return EXACT_MATCH_BADNESS;
4466 default:
4467 return INCOMPATIBLE_TYPE_BADNESS;
4468 }
4469 }
4470
4471 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4472
4473 static struct rank
4474 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4475 {
4476 switch (TYPE_CODE (arg))
4477 {
4478 case TYPE_CODE_FLT:
4479 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4480 return FLOAT_PROMOTION_BADNESS;
4481 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4482 return EXACT_MATCH_BADNESS;
4483 else
4484 return FLOAT_CONVERSION_BADNESS;
4485 case TYPE_CODE_INT:
4486 case TYPE_CODE_BOOL:
4487 case TYPE_CODE_ENUM:
4488 case TYPE_CODE_RANGE:
4489 case TYPE_CODE_CHAR:
4490 return INT_FLOAT_CONVERSION_BADNESS;
4491 default:
4492 return INCOMPATIBLE_TYPE_BADNESS;
4493 }
4494 }
4495
4496 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4497
4498 static struct rank
4499 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4500 {
4501 switch (TYPE_CODE (arg))
4502 { /* Strictly not needed for C++, but... */
4503 case TYPE_CODE_FLT:
4504 return FLOAT_PROMOTION_BADNESS;
4505 case TYPE_CODE_COMPLEX:
4506 return EXACT_MATCH_BADNESS;
4507 default:
4508 return INCOMPATIBLE_TYPE_BADNESS;
4509 }
4510 }
4511
4512 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4513
4514 static struct rank
4515 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4516 {
4517 struct rank rank = {0, 0};
4518
4519 switch (TYPE_CODE (arg))
4520 {
4521 case TYPE_CODE_STRUCT:
4522 /* Check for derivation */
4523 rank.subrank = distance_to_ancestor (parm, arg, 0);
4524 if (rank.subrank >= 0)
4525 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4526 /* fall through */
4527 default:
4528 return INCOMPATIBLE_TYPE_BADNESS;
4529 }
4530 }
4531
4532 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4533
4534 static struct rank
4535 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4536 {
4537 switch (TYPE_CODE (arg))
4538 {
4539 /* Not in C++ */
4540 case TYPE_CODE_SET:
4541 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4542 TYPE_FIELD_TYPE (arg, 0), NULL);
4543 default:
4544 return INCOMPATIBLE_TYPE_BADNESS;
4545 }
4546 }
4547
4548 /* Compare one type (PARM) for compatibility with another (ARG).
4549 * PARM is intended to be the parameter type of a function; and
4550 * ARG is the supplied argument's type. This function tests if
4551 * the latter can be converted to the former.
4552 * VALUE is the argument's value or NULL if none (or called recursively)
4553 *
4554 * Return 0 if they are identical types;
4555 * Otherwise, return an integer which corresponds to how compatible
4556 * PARM is to ARG. The higher the return value, the worse the match.
4557 * Generally the "bad" conversions are all uniformly assigned a 100. */
4558
4559 struct rank
4560 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4561 {
4562 struct rank rank = {0,0};
4563
4564 /* Resolve typedefs */
4565 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4566 parm = check_typedef (parm);
4567 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4568 arg = check_typedef (arg);
4569
4570 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4571 {
4572 if (VALUE_LVAL (value) == not_lval)
4573 {
4574 /* Rvalues should preferably bind to rvalue references or const
4575 lvalue references. */
4576 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4577 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4578 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4579 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4580 else
4581 return INCOMPATIBLE_TYPE_BADNESS;
4582 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4583 }
4584 else
4585 {
4586 /* It's illegal to pass an lvalue as an rvalue. */
4587 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4588 return INCOMPATIBLE_TYPE_BADNESS;
4589 }
4590 }
4591
4592 if (types_equal (parm, arg))
4593 {
4594 struct type *t1 = parm;
4595 struct type *t2 = arg;
4596
4597 /* For pointers and references, compare target type. */
4598 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4599 {
4600 t1 = TYPE_TARGET_TYPE (parm);
4601 t2 = TYPE_TARGET_TYPE (arg);
4602 }
4603
4604 /* Make sure they are CV equal, too. */
4605 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4606 rank.subrank |= CV_CONVERSION_CONST;
4607 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4608 rank.subrank |= CV_CONVERSION_VOLATILE;
4609 if (rank.subrank != 0)
4610 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4611 return EXACT_MATCH_BADNESS;
4612 }
4613
4614 /* See through references, since we can almost make non-references
4615 references. */
4616
4617 if (TYPE_IS_REFERENCE (arg))
4618 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4619 REFERENCE_SEE_THROUGH_BADNESS));
4620 if (TYPE_IS_REFERENCE (parm))
4621 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4622 REFERENCE_SEE_THROUGH_BADNESS));
4623 if (overload_debug)
4624 /* Debugging only. */
4625 fprintf_filtered (gdb_stderr,
4626 "------ Arg is %s [%d], parm is %s [%d]\n",
4627 TYPE_NAME (arg), TYPE_CODE (arg),
4628 TYPE_NAME (parm), TYPE_CODE (parm));
4629
4630 /* x -> y means arg of type x being supplied for parameter of type y. */
4631
4632 switch (TYPE_CODE (parm))
4633 {
4634 case TYPE_CODE_PTR:
4635 return rank_one_type_parm_ptr (parm, arg, value);
4636 case TYPE_CODE_ARRAY:
4637 return rank_one_type_parm_array (parm, arg, value);
4638 case TYPE_CODE_FUNC:
4639 return rank_one_type_parm_func (parm, arg, value);
4640 case TYPE_CODE_INT:
4641 return rank_one_type_parm_int (parm, arg, value);
4642 case TYPE_CODE_ENUM:
4643 return rank_one_type_parm_enum (parm, arg, value);
4644 case TYPE_CODE_CHAR:
4645 return rank_one_type_parm_char (parm, arg, value);
4646 case TYPE_CODE_RANGE:
4647 return rank_one_type_parm_range (parm, arg, value);
4648 case TYPE_CODE_BOOL:
4649 return rank_one_type_parm_bool (parm, arg, value);
4650 case TYPE_CODE_FLT:
4651 return rank_one_type_parm_float (parm, arg, value);
4652 case TYPE_CODE_COMPLEX:
4653 return rank_one_type_parm_complex (parm, arg, value);
4654 case TYPE_CODE_STRUCT:
4655 return rank_one_type_parm_struct (parm, arg, value);
4656 case TYPE_CODE_SET:
4657 return rank_one_type_parm_set (parm, arg, value);
4658 default:
4659 return INCOMPATIBLE_TYPE_BADNESS;
4660 } /* switch (TYPE_CODE (arg)) */
4661 }
4662
4663 /* End of functions for overload resolution. */
4664 \f
4665 /* Routines to pretty-print types. */
4666
4667 static void
4668 print_bit_vector (B_TYPE *bits, int nbits)
4669 {
4670 int bitno;
4671
4672 for (bitno = 0; bitno < nbits; bitno++)
4673 {
4674 if ((bitno % 8) == 0)
4675 {
4676 puts_filtered (" ");
4677 }
4678 if (B_TST (bits, bitno))
4679 printf_filtered (("1"));
4680 else
4681 printf_filtered (("0"));
4682 }
4683 }
4684
4685 /* Note the first arg should be the "this" pointer, we may not want to
4686 include it since we may get into a infinitely recursive
4687 situation. */
4688
4689 static void
4690 print_args (struct field *args, int nargs, int spaces)
4691 {
4692 if (args != NULL)
4693 {
4694 int i;
4695
4696 for (i = 0; i < nargs; i++)
4697 {
4698 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4699 args[i].name != NULL ? args[i].name : "<NULL>");
4700 recursive_dump_type (args[i].type, spaces + 2);
4701 }
4702 }
4703 }
4704
4705 int
4706 field_is_static (struct field *f)
4707 {
4708 /* "static" fields are the fields whose location is not relative
4709 to the address of the enclosing struct. It would be nice to
4710 have a dedicated flag that would be set for static fields when
4711 the type is being created. But in practice, checking the field
4712 loc_kind should give us an accurate answer. */
4713 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4714 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4715 }
4716
4717 static void
4718 dump_fn_fieldlists (struct type *type, int spaces)
4719 {
4720 int method_idx;
4721 int overload_idx;
4722 struct fn_field *f;
4723
4724 printfi_filtered (spaces, "fn_fieldlists ");
4725 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4726 printf_filtered ("\n");
4727 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4728 {
4729 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4730 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4731 method_idx,
4732 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4733 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4734 gdb_stdout);
4735 printf_filtered (_(") length %d\n"),
4736 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4737 for (overload_idx = 0;
4738 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4739 overload_idx++)
4740 {
4741 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4742 overload_idx,
4743 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4744 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4745 gdb_stdout);
4746 printf_filtered (")\n");
4747 printfi_filtered (spaces + 8, "type ");
4748 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4749 gdb_stdout);
4750 printf_filtered ("\n");
4751
4752 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4753 spaces + 8 + 2);
4754
4755 printfi_filtered (spaces + 8, "args ");
4756 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4757 gdb_stdout);
4758 printf_filtered ("\n");
4759 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4760 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4761 spaces + 8 + 2);
4762 printfi_filtered (spaces + 8, "fcontext ");
4763 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4764 gdb_stdout);
4765 printf_filtered ("\n");
4766
4767 printfi_filtered (spaces + 8, "is_const %d\n",
4768 TYPE_FN_FIELD_CONST (f, overload_idx));
4769 printfi_filtered (spaces + 8, "is_volatile %d\n",
4770 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4771 printfi_filtered (spaces + 8, "is_private %d\n",
4772 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4773 printfi_filtered (spaces + 8, "is_protected %d\n",
4774 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4775 printfi_filtered (spaces + 8, "is_stub %d\n",
4776 TYPE_FN_FIELD_STUB (f, overload_idx));
4777 printfi_filtered (spaces + 8, "defaulted %d\n",
4778 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4779 printfi_filtered (spaces + 8, "is_deleted %d\n",
4780 TYPE_FN_FIELD_DELETED (f, overload_idx));
4781 printfi_filtered (spaces + 8, "voffset %u\n",
4782 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4783 }
4784 }
4785 }
4786
4787 static void
4788 print_cplus_stuff (struct type *type, int spaces)
4789 {
4790 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4791 printfi_filtered (spaces, "vptr_basetype ");
4792 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4793 puts_filtered ("\n");
4794 if (TYPE_VPTR_BASETYPE (type) != NULL)
4795 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4796
4797 printfi_filtered (spaces, "n_baseclasses %d\n",
4798 TYPE_N_BASECLASSES (type));
4799 printfi_filtered (spaces, "nfn_fields %d\n",
4800 TYPE_NFN_FIELDS (type));
4801 if (TYPE_N_BASECLASSES (type) > 0)
4802 {
4803 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4804 TYPE_N_BASECLASSES (type));
4805 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4806 gdb_stdout);
4807 printf_filtered (")");
4808
4809 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4810 TYPE_N_BASECLASSES (type));
4811 puts_filtered ("\n");
4812 }
4813 if (TYPE_NFIELDS (type) > 0)
4814 {
4815 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4816 {
4817 printfi_filtered (spaces,
4818 "private_field_bits (%d bits at *",
4819 TYPE_NFIELDS (type));
4820 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4821 gdb_stdout);
4822 printf_filtered (")");
4823 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4824 TYPE_NFIELDS (type));
4825 puts_filtered ("\n");
4826 }
4827 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4828 {
4829 printfi_filtered (spaces,
4830 "protected_field_bits (%d bits at *",
4831 TYPE_NFIELDS (type));
4832 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4833 gdb_stdout);
4834 printf_filtered (")");
4835 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4836 TYPE_NFIELDS (type));
4837 puts_filtered ("\n");
4838 }
4839 }
4840 if (TYPE_NFN_FIELDS (type) > 0)
4841 {
4842 dump_fn_fieldlists (type, spaces);
4843 }
4844
4845 printfi_filtered (spaces, "calling_convention %d\n",
4846 TYPE_CPLUS_CALLING_CONVENTION (type));
4847 }
4848
4849 /* Print the contents of the TYPE's type_specific union, assuming that
4850 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4851
4852 static void
4853 print_gnat_stuff (struct type *type, int spaces)
4854 {
4855 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4856
4857 if (descriptive_type == NULL)
4858 printfi_filtered (spaces + 2, "no descriptive type\n");
4859 else
4860 {
4861 printfi_filtered (spaces + 2, "descriptive type\n");
4862 recursive_dump_type (descriptive_type, spaces + 4);
4863 }
4864 }
4865
4866 static struct obstack dont_print_type_obstack;
4867
4868 void
4869 recursive_dump_type (struct type *type, int spaces)
4870 {
4871 int idx;
4872
4873 if (spaces == 0)
4874 obstack_begin (&dont_print_type_obstack, 0);
4875
4876 if (TYPE_NFIELDS (type) > 0
4877 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4878 {
4879 struct type **first_dont_print
4880 = (struct type **) obstack_base (&dont_print_type_obstack);
4881
4882 int i = (struct type **)
4883 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4884
4885 while (--i >= 0)
4886 {
4887 if (type == first_dont_print[i])
4888 {
4889 printfi_filtered (spaces, "type node ");
4890 gdb_print_host_address (type, gdb_stdout);
4891 printf_filtered (_(" <same as already seen type>\n"));
4892 return;
4893 }
4894 }
4895
4896 obstack_ptr_grow (&dont_print_type_obstack, type);
4897 }
4898
4899 printfi_filtered (spaces, "type node ");
4900 gdb_print_host_address (type, gdb_stdout);
4901 printf_filtered ("\n");
4902 printfi_filtered (spaces, "name '%s' (",
4903 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4904 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4905 printf_filtered (")\n");
4906 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4907 switch (TYPE_CODE (type))
4908 {
4909 case TYPE_CODE_UNDEF:
4910 printf_filtered ("(TYPE_CODE_UNDEF)");
4911 break;
4912 case TYPE_CODE_PTR:
4913 printf_filtered ("(TYPE_CODE_PTR)");
4914 break;
4915 case TYPE_CODE_ARRAY:
4916 printf_filtered ("(TYPE_CODE_ARRAY)");
4917 break;
4918 case TYPE_CODE_STRUCT:
4919 printf_filtered ("(TYPE_CODE_STRUCT)");
4920 break;
4921 case TYPE_CODE_UNION:
4922 printf_filtered ("(TYPE_CODE_UNION)");
4923 break;
4924 case TYPE_CODE_ENUM:
4925 printf_filtered ("(TYPE_CODE_ENUM)");
4926 break;
4927 case TYPE_CODE_FLAGS:
4928 printf_filtered ("(TYPE_CODE_FLAGS)");
4929 break;
4930 case TYPE_CODE_FUNC:
4931 printf_filtered ("(TYPE_CODE_FUNC)");
4932 break;
4933 case TYPE_CODE_INT:
4934 printf_filtered ("(TYPE_CODE_INT)");
4935 break;
4936 case TYPE_CODE_FLT:
4937 printf_filtered ("(TYPE_CODE_FLT)");
4938 break;
4939 case TYPE_CODE_VOID:
4940 printf_filtered ("(TYPE_CODE_VOID)");
4941 break;
4942 case TYPE_CODE_SET:
4943 printf_filtered ("(TYPE_CODE_SET)");
4944 break;
4945 case TYPE_CODE_RANGE:
4946 printf_filtered ("(TYPE_CODE_RANGE)");
4947 break;
4948 case TYPE_CODE_STRING:
4949 printf_filtered ("(TYPE_CODE_STRING)");
4950 break;
4951 case TYPE_CODE_ERROR:
4952 printf_filtered ("(TYPE_CODE_ERROR)");
4953 break;
4954 case TYPE_CODE_MEMBERPTR:
4955 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4956 break;
4957 case TYPE_CODE_METHODPTR:
4958 printf_filtered ("(TYPE_CODE_METHODPTR)");
4959 break;
4960 case TYPE_CODE_METHOD:
4961 printf_filtered ("(TYPE_CODE_METHOD)");
4962 break;
4963 case TYPE_CODE_REF:
4964 printf_filtered ("(TYPE_CODE_REF)");
4965 break;
4966 case TYPE_CODE_CHAR:
4967 printf_filtered ("(TYPE_CODE_CHAR)");
4968 break;
4969 case TYPE_CODE_BOOL:
4970 printf_filtered ("(TYPE_CODE_BOOL)");
4971 break;
4972 case TYPE_CODE_COMPLEX:
4973 printf_filtered ("(TYPE_CODE_COMPLEX)");
4974 break;
4975 case TYPE_CODE_TYPEDEF:
4976 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4977 break;
4978 case TYPE_CODE_NAMESPACE:
4979 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4980 break;
4981 default:
4982 printf_filtered ("(UNKNOWN TYPE CODE)");
4983 break;
4984 }
4985 puts_filtered ("\n");
4986 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4987 if (TYPE_OBJFILE_OWNED (type))
4988 {
4989 printfi_filtered (spaces, "objfile ");
4990 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4991 }
4992 else
4993 {
4994 printfi_filtered (spaces, "gdbarch ");
4995 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4996 }
4997 printf_filtered ("\n");
4998 printfi_filtered (spaces, "target_type ");
4999 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
5000 printf_filtered ("\n");
5001 if (TYPE_TARGET_TYPE (type) != NULL)
5002 {
5003 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
5004 }
5005 printfi_filtered (spaces, "pointer_type ");
5006 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
5007 printf_filtered ("\n");
5008 printfi_filtered (spaces, "reference_type ");
5009 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
5010 printf_filtered ("\n");
5011 printfi_filtered (spaces, "type_chain ");
5012 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
5013 printf_filtered ("\n");
5014 printfi_filtered (spaces, "instance_flags 0x%x",
5015 TYPE_INSTANCE_FLAGS (type));
5016 if (TYPE_CONST (type))
5017 {
5018 puts_filtered (" TYPE_CONST");
5019 }
5020 if (TYPE_VOLATILE (type))
5021 {
5022 puts_filtered (" TYPE_VOLATILE");
5023 }
5024 if (TYPE_CODE_SPACE (type))
5025 {
5026 puts_filtered (" TYPE_CODE_SPACE");
5027 }
5028 if (TYPE_DATA_SPACE (type))
5029 {
5030 puts_filtered (" TYPE_DATA_SPACE");
5031 }
5032 if (TYPE_ADDRESS_CLASS_1 (type))
5033 {
5034 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5035 }
5036 if (TYPE_ADDRESS_CLASS_2 (type))
5037 {
5038 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5039 }
5040 if (TYPE_RESTRICT (type))
5041 {
5042 puts_filtered (" TYPE_RESTRICT");
5043 }
5044 if (TYPE_ATOMIC (type))
5045 {
5046 puts_filtered (" TYPE_ATOMIC");
5047 }
5048 puts_filtered ("\n");
5049
5050 printfi_filtered (spaces, "flags");
5051 if (TYPE_UNSIGNED (type))
5052 {
5053 puts_filtered (" TYPE_UNSIGNED");
5054 }
5055 if (TYPE_NOSIGN (type))
5056 {
5057 puts_filtered (" TYPE_NOSIGN");
5058 }
5059 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5060 {
5061 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5062 }
5063 if (TYPE_STUB (type))
5064 {
5065 puts_filtered (" TYPE_STUB");
5066 }
5067 if (TYPE_TARGET_STUB (type))
5068 {
5069 puts_filtered (" TYPE_TARGET_STUB");
5070 }
5071 if (TYPE_PROTOTYPED (type))
5072 {
5073 puts_filtered (" TYPE_PROTOTYPED");
5074 }
5075 if (TYPE_INCOMPLETE (type))
5076 {
5077 puts_filtered (" TYPE_INCOMPLETE");
5078 }
5079 if (TYPE_VARARGS (type))
5080 {
5081 puts_filtered (" TYPE_VARARGS");
5082 }
5083 /* This is used for things like AltiVec registers on ppc. Gcc emits
5084 an attribute for the array type, which tells whether or not we
5085 have a vector, instead of a regular array. */
5086 if (TYPE_VECTOR (type))
5087 {
5088 puts_filtered (" TYPE_VECTOR");
5089 }
5090 if (TYPE_FIXED_INSTANCE (type))
5091 {
5092 puts_filtered (" TYPE_FIXED_INSTANCE");
5093 }
5094 if (TYPE_STUB_SUPPORTED (type))
5095 {
5096 puts_filtered (" TYPE_STUB_SUPPORTED");
5097 }
5098 if (TYPE_NOTTEXT (type))
5099 {
5100 puts_filtered (" TYPE_NOTTEXT");
5101 }
5102 puts_filtered ("\n");
5103 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
5104 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
5105 puts_filtered ("\n");
5106 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5107 {
5108 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5109 printfi_filtered (spaces + 2,
5110 "[%d] enumval %s type ",
5111 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5112 else
5113 printfi_filtered (spaces + 2,
5114 "[%d] bitpos %s bitsize %d type ",
5115 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5116 TYPE_FIELD_BITSIZE (type, idx));
5117 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
5118 printf_filtered (" name '%s' (",
5119 TYPE_FIELD_NAME (type, idx) != NULL
5120 ? TYPE_FIELD_NAME (type, idx)
5121 : "<NULL>");
5122 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5123 printf_filtered (")\n");
5124 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5125 {
5126 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5127 }
5128 }
5129 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5130 {
5131 printfi_filtered (spaces, "low %s%s high %s%s\n",
5132 plongest (TYPE_LOW_BOUND (type)),
5133 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5134 plongest (TYPE_HIGH_BOUND (type)),
5135 TYPE_HIGH_BOUND_UNDEFINED (type)
5136 ? " (undefined)" : "");
5137 }
5138
5139 switch (TYPE_SPECIFIC_FIELD (type))
5140 {
5141 case TYPE_SPECIFIC_CPLUS_STUFF:
5142 printfi_filtered (spaces, "cplus_stuff ");
5143 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5144 gdb_stdout);
5145 puts_filtered ("\n");
5146 print_cplus_stuff (type, spaces);
5147 break;
5148
5149 case TYPE_SPECIFIC_GNAT_STUFF:
5150 printfi_filtered (spaces, "gnat_stuff ");
5151 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5152 puts_filtered ("\n");
5153 print_gnat_stuff (type, spaces);
5154 break;
5155
5156 case TYPE_SPECIFIC_FLOATFORMAT:
5157 printfi_filtered (spaces, "floatformat ");
5158 if (TYPE_FLOATFORMAT (type) == NULL
5159 || TYPE_FLOATFORMAT (type)->name == NULL)
5160 puts_filtered ("(null)");
5161 else
5162 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5163 puts_filtered ("\n");
5164 break;
5165
5166 case TYPE_SPECIFIC_FUNC:
5167 printfi_filtered (spaces, "calling_convention %d\n",
5168 TYPE_CALLING_CONVENTION (type));
5169 /* tail_call_list is not printed. */
5170 break;
5171
5172 case TYPE_SPECIFIC_SELF_TYPE:
5173 printfi_filtered (spaces, "self_type ");
5174 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5175 puts_filtered ("\n");
5176 break;
5177 }
5178
5179 if (spaces == 0)
5180 obstack_free (&dont_print_type_obstack, NULL);
5181 }
5182 \f
5183 /* Trivial helpers for the libiberty hash table, for mapping one
5184 type to another. */
5185
5186 struct type_pair : public allocate_on_obstack
5187 {
5188 type_pair (struct type *old_, struct type *newobj_)
5189 : old (old_), newobj (newobj_)
5190 {}
5191
5192 struct type * const old, * const newobj;
5193 };
5194
5195 static hashval_t
5196 type_pair_hash (const void *item)
5197 {
5198 const struct type_pair *pair = (const struct type_pair *) item;
5199
5200 return htab_hash_pointer (pair->old);
5201 }
5202
5203 static int
5204 type_pair_eq (const void *item_lhs, const void *item_rhs)
5205 {
5206 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5207 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5208
5209 return lhs->old == rhs->old;
5210 }
5211
5212 /* Allocate the hash table used by copy_type_recursive to walk
5213 types without duplicates. We use OBJFILE's obstack, because
5214 OBJFILE is about to be deleted. */
5215
5216 htab_t
5217 create_copied_types_hash (struct objfile *objfile)
5218 {
5219 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5220 NULL, &objfile->objfile_obstack,
5221 hashtab_obstack_allocate,
5222 dummy_obstack_deallocate);
5223 }
5224
5225 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5226
5227 static struct dynamic_prop_list *
5228 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5229 struct dynamic_prop_list *list)
5230 {
5231 struct dynamic_prop_list *copy = list;
5232 struct dynamic_prop_list **node_ptr = &copy;
5233
5234 while (*node_ptr != NULL)
5235 {
5236 struct dynamic_prop_list *node_copy;
5237
5238 node_copy = ((struct dynamic_prop_list *)
5239 obstack_copy (objfile_obstack, *node_ptr,
5240 sizeof (struct dynamic_prop_list)));
5241 node_copy->prop = (*node_ptr)->prop;
5242 *node_ptr = node_copy;
5243
5244 node_ptr = &node_copy->next;
5245 }
5246
5247 return copy;
5248 }
5249
5250 /* Recursively copy (deep copy) TYPE, if it is associated with
5251 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5252 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5253 it is not associated with OBJFILE. */
5254
5255 struct type *
5256 copy_type_recursive (struct objfile *objfile,
5257 struct type *type,
5258 htab_t copied_types)
5259 {
5260 void **slot;
5261 struct type *new_type;
5262
5263 if (! TYPE_OBJFILE_OWNED (type))
5264 return type;
5265
5266 /* This type shouldn't be pointing to any types in other objfiles;
5267 if it did, the type might disappear unexpectedly. */
5268 gdb_assert (TYPE_OBJFILE (type) == objfile);
5269
5270 struct type_pair pair (type, nullptr);
5271
5272 slot = htab_find_slot (copied_types, &pair, INSERT);
5273 if (*slot != NULL)
5274 return ((struct type_pair *) *slot)->newobj;
5275
5276 new_type = alloc_type_arch (get_type_arch (type));
5277
5278 /* We must add the new type to the hash table immediately, in case
5279 we encounter this type again during a recursive call below. */
5280 struct type_pair *stored
5281 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5282
5283 *slot = stored;
5284
5285 /* Copy the common fields of types. For the main type, we simply
5286 copy the entire thing and then update specific fields as needed. */
5287 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5288 TYPE_OBJFILE_OWNED (new_type) = 0;
5289 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5290
5291 if (TYPE_NAME (type))
5292 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5293
5294 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5295 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5296
5297 /* Copy the fields. */
5298 if (TYPE_NFIELDS (type))
5299 {
5300 int i, nfields;
5301
5302 nfields = TYPE_NFIELDS (type);
5303 TYPE_FIELDS (new_type) = (struct field *)
5304 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5305 for (i = 0; i < nfields; i++)
5306 {
5307 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5308 TYPE_FIELD_ARTIFICIAL (type, i);
5309 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5310 if (TYPE_FIELD_TYPE (type, i))
5311 TYPE_FIELD_TYPE (new_type, i)
5312 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5313 copied_types);
5314 if (TYPE_FIELD_NAME (type, i))
5315 TYPE_FIELD_NAME (new_type, i) =
5316 xstrdup (TYPE_FIELD_NAME (type, i));
5317 switch (TYPE_FIELD_LOC_KIND (type, i))
5318 {
5319 case FIELD_LOC_KIND_BITPOS:
5320 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5321 TYPE_FIELD_BITPOS (type, i));
5322 break;
5323 case FIELD_LOC_KIND_ENUMVAL:
5324 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5325 TYPE_FIELD_ENUMVAL (type, i));
5326 break;
5327 case FIELD_LOC_KIND_PHYSADDR:
5328 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5329 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5330 break;
5331 case FIELD_LOC_KIND_PHYSNAME:
5332 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5333 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5334 i)));
5335 break;
5336 default:
5337 internal_error (__FILE__, __LINE__,
5338 _("Unexpected type field location kind: %d"),
5339 TYPE_FIELD_LOC_KIND (type, i));
5340 }
5341 }
5342 }
5343
5344 /* For range types, copy the bounds information. */
5345 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5346 {
5347 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5348 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5349 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5350 }
5351
5352 if (TYPE_DYN_PROP_LIST (type) != NULL)
5353 TYPE_DYN_PROP_LIST (new_type)
5354 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5355 TYPE_DYN_PROP_LIST (type));
5356
5357
5358 /* Copy pointers to other types. */
5359 if (TYPE_TARGET_TYPE (type))
5360 TYPE_TARGET_TYPE (new_type) =
5361 copy_type_recursive (objfile,
5362 TYPE_TARGET_TYPE (type),
5363 copied_types);
5364
5365 /* Maybe copy the type_specific bits.
5366
5367 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5368 base classes and methods. There's no fundamental reason why we
5369 can't, but at the moment it is not needed. */
5370
5371 switch (TYPE_SPECIFIC_FIELD (type))
5372 {
5373 case TYPE_SPECIFIC_NONE:
5374 break;
5375 case TYPE_SPECIFIC_FUNC:
5376 INIT_FUNC_SPECIFIC (new_type);
5377 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5378 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5379 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5380 break;
5381 case TYPE_SPECIFIC_FLOATFORMAT:
5382 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5383 break;
5384 case TYPE_SPECIFIC_CPLUS_STUFF:
5385 INIT_CPLUS_SPECIFIC (new_type);
5386 break;
5387 case TYPE_SPECIFIC_GNAT_STUFF:
5388 INIT_GNAT_SPECIFIC (new_type);
5389 break;
5390 case TYPE_SPECIFIC_SELF_TYPE:
5391 set_type_self_type (new_type,
5392 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5393 copied_types));
5394 break;
5395 default:
5396 gdb_assert_not_reached ("bad type_specific_kind");
5397 }
5398
5399 return new_type;
5400 }
5401
5402 /* Make a copy of the given TYPE, except that the pointer & reference
5403 types are not preserved.
5404
5405 This function assumes that the given type has an associated objfile.
5406 This objfile is used to allocate the new type. */
5407
5408 struct type *
5409 copy_type (const struct type *type)
5410 {
5411 struct type *new_type;
5412
5413 gdb_assert (TYPE_OBJFILE_OWNED (type));
5414
5415 new_type = alloc_type_copy (type);
5416 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5417 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5418 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5419 sizeof (struct main_type));
5420 if (TYPE_DYN_PROP_LIST (type) != NULL)
5421 TYPE_DYN_PROP_LIST (new_type)
5422 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5423 TYPE_DYN_PROP_LIST (type));
5424
5425 return new_type;
5426 }
5427 \f
5428 /* Helper functions to initialize architecture-specific types. */
5429
5430 /* Allocate a type structure associated with GDBARCH and set its
5431 CODE, LENGTH, and NAME fields. */
5432
5433 struct type *
5434 arch_type (struct gdbarch *gdbarch,
5435 enum type_code code, int bit, const char *name)
5436 {
5437 struct type *type;
5438
5439 type = alloc_type_arch (gdbarch);
5440 set_type_code (type, code);
5441 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5442 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5443
5444 if (name)
5445 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5446
5447 return type;
5448 }
5449
5450 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5451 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5452 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5453
5454 struct type *
5455 arch_integer_type (struct gdbarch *gdbarch,
5456 int bit, int unsigned_p, const char *name)
5457 {
5458 struct type *t;
5459
5460 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5461 if (unsigned_p)
5462 TYPE_UNSIGNED (t) = 1;
5463
5464 return t;
5465 }
5466
5467 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5468 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5469 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5470
5471 struct type *
5472 arch_character_type (struct gdbarch *gdbarch,
5473 int bit, int unsigned_p, const char *name)
5474 {
5475 struct type *t;
5476
5477 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5478 if (unsigned_p)
5479 TYPE_UNSIGNED (t) = 1;
5480
5481 return t;
5482 }
5483
5484 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5485 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5486 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5487
5488 struct type *
5489 arch_boolean_type (struct gdbarch *gdbarch,
5490 int bit, int unsigned_p, const char *name)
5491 {
5492 struct type *t;
5493
5494 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5495 if (unsigned_p)
5496 TYPE_UNSIGNED (t) = 1;
5497
5498 return t;
5499 }
5500
5501 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5502 BIT is the type size in bits; if BIT equals -1, the size is
5503 determined by the floatformat. NAME is the type name. Set the
5504 TYPE_FLOATFORMAT from FLOATFORMATS. */
5505
5506 struct type *
5507 arch_float_type (struct gdbarch *gdbarch,
5508 int bit, const char *name,
5509 const struct floatformat **floatformats)
5510 {
5511 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5512 struct type *t;
5513
5514 bit = verify_floatformat (bit, fmt);
5515 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5516 TYPE_FLOATFORMAT (t) = fmt;
5517
5518 return t;
5519 }
5520
5521 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5522 BIT is the type size in bits. NAME is the type name. */
5523
5524 struct type *
5525 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5526 {
5527 struct type *t;
5528
5529 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5530 return t;
5531 }
5532
5533 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5534 BIT is the pointer type size in bits. NAME is the type name.
5535 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5536 TYPE_UNSIGNED flag. */
5537
5538 struct type *
5539 arch_pointer_type (struct gdbarch *gdbarch,
5540 int bit, const char *name, struct type *target_type)
5541 {
5542 struct type *t;
5543
5544 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5545 TYPE_TARGET_TYPE (t) = target_type;
5546 TYPE_UNSIGNED (t) = 1;
5547 return t;
5548 }
5549
5550 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5551 NAME is the type name. BIT is the size of the flag word in bits. */
5552
5553 struct type *
5554 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5555 {
5556 struct type *type;
5557
5558 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5559 TYPE_UNSIGNED (type) = 1;
5560 TYPE_NFIELDS (type) = 0;
5561 /* Pre-allocate enough space assuming every field is one bit. */
5562 TYPE_FIELDS (type)
5563 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5564
5565 return type;
5566 }
5567
5568 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5569 position BITPOS is called NAME. Pass NAME as "" for fields that
5570 should not be printed. */
5571
5572 void
5573 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5574 struct type *field_type, const char *name)
5575 {
5576 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5577 int field_nr = TYPE_NFIELDS (type);
5578
5579 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5580 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5581 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5582 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5583 gdb_assert (name != NULL);
5584
5585 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5586 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5587 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5588 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5589 ++TYPE_NFIELDS (type);
5590 }
5591
5592 /* Special version of append_flags_type_field to add a flag field.
5593 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5594 position BITPOS is called NAME. */
5595
5596 void
5597 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5598 {
5599 struct gdbarch *gdbarch = get_type_arch (type);
5600
5601 append_flags_type_field (type, bitpos, 1,
5602 builtin_type (gdbarch)->builtin_bool,
5603 name);
5604 }
5605
5606 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5607 specified by CODE) associated with GDBARCH. NAME is the type name. */
5608
5609 struct type *
5610 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5611 enum type_code code)
5612 {
5613 struct type *t;
5614
5615 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5616 t = arch_type (gdbarch, code, 0, NULL);
5617 TYPE_NAME (t) = name;
5618 INIT_CPLUS_SPECIFIC (t);
5619 return t;
5620 }
5621
5622 /* Add new field with name NAME and type FIELD to composite type T.
5623 Do not set the field's position or adjust the type's length;
5624 the caller should do so. Return the new field. */
5625
5626 struct field *
5627 append_composite_type_field_raw (struct type *t, const char *name,
5628 struct type *field)
5629 {
5630 struct field *f;
5631
5632 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5633 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5634 TYPE_NFIELDS (t));
5635 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5636 memset (f, 0, sizeof f[0]);
5637 FIELD_TYPE (f[0]) = field;
5638 FIELD_NAME (f[0]) = name;
5639 return f;
5640 }
5641
5642 /* Add new field with name NAME and type FIELD to composite type T.
5643 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5644
5645 void
5646 append_composite_type_field_aligned (struct type *t, const char *name,
5647 struct type *field, int alignment)
5648 {
5649 struct field *f = append_composite_type_field_raw (t, name, field);
5650
5651 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5652 {
5653 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5654 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5655 }
5656 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5657 {
5658 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5659 if (TYPE_NFIELDS (t) > 1)
5660 {
5661 SET_FIELD_BITPOS (f[0],
5662 (FIELD_BITPOS (f[-1])
5663 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5664 * TARGET_CHAR_BIT)));
5665
5666 if (alignment)
5667 {
5668 int left;
5669
5670 alignment *= TARGET_CHAR_BIT;
5671 left = FIELD_BITPOS (f[0]) % alignment;
5672
5673 if (left)
5674 {
5675 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5676 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5677 }
5678 }
5679 }
5680 }
5681 }
5682
5683 /* Add new field with name NAME and type FIELD to composite type T. */
5684
5685 void
5686 append_composite_type_field (struct type *t, const char *name,
5687 struct type *field)
5688 {
5689 append_composite_type_field_aligned (t, name, field, 0);
5690 }
5691
5692 static struct gdbarch_data *gdbtypes_data;
5693
5694 const struct builtin_type *
5695 builtin_type (struct gdbarch *gdbarch)
5696 {
5697 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5698 }
5699
5700 static void *
5701 gdbtypes_post_init (struct gdbarch *gdbarch)
5702 {
5703 struct builtin_type *builtin_type
5704 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5705
5706 /* Basic types. */
5707 builtin_type->builtin_void
5708 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5709 builtin_type->builtin_char
5710 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5711 !gdbarch_char_signed (gdbarch), "char");
5712 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5713 builtin_type->builtin_signed_char
5714 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5715 0, "signed char");
5716 builtin_type->builtin_unsigned_char
5717 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5718 1, "unsigned char");
5719 builtin_type->builtin_short
5720 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5721 0, "short");
5722 builtin_type->builtin_unsigned_short
5723 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5724 1, "unsigned short");
5725 builtin_type->builtin_int
5726 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5727 0, "int");
5728 builtin_type->builtin_unsigned_int
5729 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5730 1, "unsigned int");
5731 builtin_type->builtin_long
5732 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5733 0, "long");
5734 builtin_type->builtin_unsigned_long
5735 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5736 1, "unsigned long");
5737 builtin_type->builtin_long_long
5738 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5739 0, "long long");
5740 builtin_type->builtin_unsigned_long_long
5741 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5742 1, "unsigned long long");
5743 builtin_type->builtin_half
5744 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5745 "half", gdbarch_half_format (gdbarch));
5746 builtin_type->builtin_float
5747 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5748 "float", gdbarch_float_format (gdbarch));
5749 builtin_type->builtin_double
5750 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5751 "double", gdbarch_double_format (gdbarch));
5752 builtin_type->builtin_long_double
5753 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5754 "long double", gdbarch_long_double_format (gdbarch));
5755 builtin_type->builtin_complex
5756 = init_complex_type ("complex", builtin_type->builtin_float);
5757 builtin_type->builtin_double_complex
5758 = init_complex_type ("double complex", builtin_type->builtin_double);
5759 builtin_type->builtin_string
5760 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5761 builtin_type->builtin_bool
5762 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5763
5764 /* The following three are about decimal floating point types, which
5765 are 32-bits, 64-bits and 128-bits respectively. */
5766 builtin_type->builtin_decfloat
5767 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5768 builtin_type->builtin_decdouble
5769 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5770 builtin_type->builtin_declong
5771 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5772
5773 /* "True" character types. */
5774 builtin_type->builtin_true_char
5775 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5776 builtin_type->builtin_true_unsigned_char
5777 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5778
5779 /* Fixed-size integer types. */
5780 builtin_type->builtin_int0
5781 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5782 builtin_type->builtin_int8
5783 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5784 builtin_type->builtin_uint8
5785 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5786 builtin_type->builtin_int16
5787 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5788 builtin_type->builtin_uint16
5789 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5790 builtin_type->builtin_int24
5791 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5792 builtin_type->builtin_uint24
5793 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5794 builtin_type->builtin_int32
5795 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5796 builtin_type->builtin_uint32
5797 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5798 builtin_type->builtin_int64
5799 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5800 builtin_type->builtin_uint64
5801 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5802 builtin_type->builtin_int128
5803 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5804 builtin_type->builtin_uint128
5805 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5806 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5807 TYPE_INSTANCE_FLAG_NOTTEXT;
5808 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5809 TYPE_INSTANCE_FLAG_NOTTEXT;
5810
5811 /* Wide character types. */
5812 builtin_type->builtin_char16
5813 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5814 builtin_type->builtin_char32
5815 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5816 builtin_type->builtin_wchar
5817 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5818 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5819
5820 /* Default data/code pointer types. */
5821 builtin_type->builtin_data_ptr
5822 = lookup_pointer_type (builtin_type->builtin_void);
5823 builtin_type->builtin_func_ptr
5824 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5825 builtin_type->builtin_func_func
5826 = lookup_function_type (builtin_type->builtin_func_ptr);
5827
5828 /* This type represents a GDB internal function. */
5829 builtin_type->internal_fn
5830 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5831 "<internal function>");
5832
5833 /* This type represents an xmethod. */
5834 builtin_type->xmethod
5835 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5836
5837 return builtin_type;
5838 }
5839
5840 /* This set of objfile-based types is intended to be used by symbol
5841 readers as basic types. */
5842
5843 static const struct objfile_key<struct objfile_type,
5844 gdb::noop_deleter<struct objfile_type>>
5845 objfile_type_data;
5846
5847 const struct objfile_type *
5848 objfile_type (struct objfile *objfile)
5849 {
5850 struct gdbarch *gdbarch;
5851 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5852
5853 if (objfile_type)
5854 return objfile_type;
5855
5856 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5857 1, struct objfile_type);
5858
5859 /* Use the objfile architecture to determine basic type properties. */
5860 gdbarch = objfile->arch ();
5861
5862 /* Basic types. */
5863 objfile_type->builtin_void
5864 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5865 objfile_type->builtin_char
5866 = init_integer_type (objfile, TARGET_CHAR_BIT,
5867 !gdbarch_char_signed (gdbarch), "char");
5868 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5869 objfile_type->builtin_signed_char
5870 = init_integer_type (objfile, TARGET_CHAR_BIT,
5871 0, "signed char");
5872 objfile_type->builtin_unsigned_char
5873 = init_integer_type (objfile, TARGET_CHAR_BIT,
5874 1, "unsigned char");
5875 objfile_type->builtin_short
5876 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5877 0, "short");
5878 objfile_type->builtin_unsigned_short
5879 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5880 1, "unsigned short");
5881 objfile_type->builtin_int
5882 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5883 0, "int");
5884 objfile_type->builtin_unsigned_int
5885 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5886 1, "unsigned int");
5887 objfile_type->builtin_long
5888 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5889 0, "long");
5890 objfile_type->builtin_unsigned_long
5891 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5892 1, "unsigned long");
5893 objfile_type->builtin_long_long
5894 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5895 0, "long long");
5896 objfile_type->builtin_unsigned_long_long
5897 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5898 1, "unsigned long long");
5899 objfile_type->builtin_float
5900 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5901 "float", gdbarch_float_format (gdbarch));
5902 objfile_type->builtin_double
5903 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5904 "double", gdbarch_double_format (gdbarch));
5905 objfile_type->builtin_long_double
5906 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5907 "long double", gdbarch_long_double_format (gdbarch));
5908
5909 /* This type represents a type that was unrecognized in symbol read-in. */
5910 objfile_type->builtin_error
5911 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5912
5913 /* The following set of types is used for symbols with no
5914 debug information. */
5915 objfile_type->nodebug_text_symbol
5916 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5917 "<text variable, no debug info>");
5918 objfile_type->nodebug_text_gnu_ifunc_symbol
5919 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5920 "<text gnu-indirect-function variable, no debug info>");
5921 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5922 objfile_type->nodebug_got_plt_symbol
5923 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5924 "<text from jump slot in .got.plt, no debug info>",
5925 objfile_type->nodebug_text_symbol);
5926 objfile_type->nodebug_data_symbol
5927 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5928 objfile_type->nodebug_unknown_symbol
5929 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5930 objfile_type->nodebug_tls_symbol
5931 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5932
5933 /* NOTE: on some targets, addresses and pointers are not necessarily
5934 the same.
5935
5936 The upshot is:
5937 - gdb's `struct type' always describes the target's
5938 representation.
5939 - gdb's `struct value' objects should always hold values in
5940 target form.
5941 - gdb's CORE_ADDR values are addresses in the unified virtual
5942 address space that the assembler and linker work with. Thus,
5943 since target_read_memory takes a CORE_ADDR as an argument, it
5944 can access any memory on the target, even if the processor has
5945 separate code and data address spaces.
5946
5947 In this context, objfile_type->builtin_core_addr is a bit odd:
5948 it's a target type for a value the target will never see. It's
5949 only used to hold the values of (typeless) linker symbols, which
5950 are indeed in the unified virtual address space. */
5951
5952 objfile_type->builtin_core_addr
5953 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5954 "__CORE_ADDR");
5955
5956 objfile_type_data.set (objfile, objfile_type);
5957 return objfile_type;
5958 }
5959
5960 void _initialize_gdbtypes ();
5961 void
5962 _initialize_gdbtypes ()
5963 {
5964 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5965
5966 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5967 _("Set debugging of C++ overloading."),
5968 _("Show debugging of C++ overloading."),
5969 _("When enabled, ranking of the "
5970 "functions is displayed."),
5971 NULL,
5972 show_overload_debug,
5973 &setdebuglist, &showdebuglist);
5974
5975 /* Add user knob for controlling resolution of opaque types. */
5976 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5977 &opaque_type_resolution,
5978 _("Set resolution of opaque struct/class/union"
5979 " types (if set before loading symbols)."),
5980 _("Show resolution of opaque struct/class/union"
5981 " types (if set before loading symbols)."),
5982 NULL, NULL,
5983 show_opaque_type_resolution,
5984 &setlist, &showlist);
5985
5986 /* Add an option to permit non-strict type checking. */
5987 add_setshow_boolean_cmd ("type", class_support,
5988 &strict_type_checking,
5989 _("Set strict type checking."),
5990 _("Show strict type checking."),
5991 NULL, NULL,
5992 show_strict_type_checking,
5993 &setchecklist, &showchecklist);
5994 }
This page took 0.175469 seconds and 3 git commands to generate.