73984357338db7e16a55336ae599b718182e082b
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42 #include <algorithm>
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank CV_CONVERSION_BADNESS = {1, 0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
65 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
66 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
67 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
68
69 /* Floatformat pairs. */
70 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_half_big,
72 &floatformat_ieee_half_little
73 };
74 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_single_big,
76 &floatformat_ieee_single_little
77 };
78 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_little
81 };
82 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ieee_double_big,
84 &floatformat_ieee_double_littlebyte_bigword
85 };
86 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_i387_ext,
88 &floatformat_i387_ext
89 };
90 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_m68881_ext,
92 &floatformat_m68881_ext
93 };
94 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_arm_ext_big,
96 &floatformat_arm_ext_littlebyte_bigword
97 };
98 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_spill_big,
100 &floatformat_ia64_spill_little
101 };
102 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_ia64_quad_big,
104 &floatformat_ia64_quad_little
105 };
106 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_f,
108 &floatformat_vax_f
109 };
110 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_vax_d,
112 &floatformat_vax_d
113 };
114 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
115 &floatformat_ibm_long_double_big,
116 &floatformat_ibm_long_double_little
117 };
118
119 /* Should opaque types be resolved? */
120
121 static bool opaque_type_resolution = true;
122
123 /* See gdbtypes.h. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static bool strict_type_checking = true;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the obstack associated with GDBARCH. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
205 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_CHAIN (type) = type; /* Chain back to itself. */
214
215 return type;
216 }
217
218 /* If TYPE is objfile-associated, allocate a new type structure
219 associated with the same objfile. If TYPE is gdbarch-associated,
220 allocate a new type structure associated with the same gdbarch. */
221
222 struct type *
223 alloc_type_copy (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return alloc_type (TYPE_OWNER (type).objfile);
227 else
228 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
229 }
230
231 /* If TYPE is gdbarch-associated, return that architecture.
232 If TYPE is objfile-associated, return that objfile's architecture. */
233
234 struct gdbarch *
235 get_type_arch (const struct type *type)
236 {
237 struct gdbarch *arch;
238
239 if (TYPE_OBJFILE_OWNED (type))
240 arch = TYPE_OWNER (type).objfile->arch ();
241 else
242 arch = TYPE_OWNER (type).gdbarch;
243
244 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
245 a gdbarch, however, this is very rare, and even then, in most cases
246 that get_type_arch is called, we assume that a non-NULL value is
247 returned. */
248 gdb_assert (arch != NULL);
249 return arch;
250 }
251
252 /* See gdbtypes.h. */
253
254 struct type *
255 get_target_type (struct type *type)
256 {
257 if (type != NULL)
258 {
259 type = TYPE_TARGET_TYPE (type);
260 if (type != NULL)
261 type = check_typedef (type);
262 }
263
264 return type;
265 }
266
267 /* See gdbtypes.h. */
268
269 unsigned int
270 type_length_units (struct type *type)
271 {
272 struct gdbarch *arch = get_type_arch (type);
273 int unit_size = gdbarch_addressable_memory_unit_size (arch);
274
275 return TYPE_LENGTH (type) / unit_size;
276 }
277
278 /* Alloc a new type instance structure, fill it with some defaults,
279 and point it at OLDTYPE. Allocate the new type instance from the
280 same place as OLDTYPE. */
281
282 static struct type *
283 alloc_type_instance (struct type *oldtype)
284 {
285 struct type *type;
286
287 /* Allocate the structure. */
288
289 if (! TYPE_OBJFILE_OWNED (oldtype))
290 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
291 else
292 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
293 struct type);
294
295 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
296
297 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
298
299 return type;
300 }
301
302 /* Clear all remnants of the previous type at TYPE, in preparation for
303 replacing it with something else. Preserve owner information. */
304
305 static void
306 smash_type (struct type *type)
307 {
308 int objfile_owned = TYPE_OBJFILE_OWNED (type);
309 union type_owner owner = TYPE_OWNER (type);
310
311 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
312
313 /* Restore owner information. */
314 TYPE_OBJFILE_OWNED (type) = objfile_owned;
315 TYPE_OWNER (type) = owner;
316
317 /* For now, delete the rings. */
318 TYPE_CHAIN (type) = type;
319
320 /* For now, leave the pointer/reference types alone. */
321 }
322
323 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
324 to a pointer to memory where the pointer type should be stored.
325 If *TYPEPTR is zero, update it to point to the pointer type we return.
326 We allocate new memory if needed. */
327
328 struct type *
329 make_pointer_type (struct type *type, struct type **typeptr)
330 {
331 struct type *ntype; /* New type */
332 struct type *chain;
333
334 ntype = TYPE_POINTER_TYPE (type);
335
336 if (ntype)
337 {
338 if (typeptr == 0)
339 return ntype; /* Don't care about alloc,
340 and have new type. */
341 else if (*typeptr == 0)
342 {
343 *typeptr = ntype; /* Tracking alloc, and have new type. */
344 return ntype;
345 }
346 }
347
348 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
349 {
350 ntype = alloc_type_copy (type);
351 if (typeptr)
352 *typeptr = ntype;
353 }
354 else /* We have storage, but need to reset it. */
355 {
356 ntype = *typeptr;
357 chain = TYPE_CHAIN (ntype);
358 smash_type (ntype);
359 TYPE_CHAIN (ntype) = chain;
360 }
361
362 TYPE_TARGET_TYPE (ntype) = type;
363 TYPE_POINTER_TYPE (type) = ntype;
364
365 /* FIXME! Assumes the machine has only one representation for pointers! */
366
367 TYPE_LENGTH (ntype)
368 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
369 TYPE_CODE (ntype) = TYPE_CODE_PTR;
370
371 /* Mark pointers as unsigned. The target converts between pointers
372 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
373 gdbarch_address_to_pointer. */
374 TYPE_UNSIGNED (ntype) = 1;
375
376 /* Update the length of all the other variants of this type. */
377 chain = TYPE_CHAIN (ntype);
378 while (chain != ntype)
379 {
380 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
381 chain = TYPE_CHAIN (chain);
382 }
383
384 return ntype;
385 }
386
387 /* Given a type TYPE, return a type of pointers to that type.
388 May need to construct such a type if this is the first use. */
389
390 struct type *
391 lookup_pointer_type (struct type *type)
392 {
393 return make_pointer_type (type, (struct type **) 0);
394 }
395
396 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
397 points to a pointer to memory where the reference type should be
398 stored. If *TYPEPTR is zero, update it to point to the reference
399 type we return. We allocate new memory if needed. REFCODE denotes
400 the kind of reference type to lookup (lvalue or rvalue reference). */
401
402 struct type *
403 make_reference_type (struct type *type, struct type **typeptr,
404 enum type_code refcode)
405 {
406 struct type *ntype; /* New type */
407 struct type **reftype;
408 struct type *chain;
409
410 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
411
412 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
413 : TYPE_RVALUE_REFERENCE_TYPE (type));
414
415 if (ntype)
416 {
417 if (typeptr == 0)
418 return ntype; /* Don't care about alloc,
419 and have new type. */
420 else if (*typeptr == 0)
421 {
422 *typeptr = ntype; /* Tracking alloc, and have new type. */
423 return ntype;
424 }
425 }
426
427 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
428 {
429 ntype = alloc_type_copy (type);
430 if (typeptr)
431 *typeptr = ntype;
432 }
433 else /* We have storage, but need to reset it. */
434 {
435 ntype = *typeptr;
436 chain = TYPE_CHAIN (ntype);
437 smash_type (ntype);
438 TYPE_CHAIN (ntype) = chain;
439 }
440
441 TYPE_TARGET_TYPE (ntype) = type;
442 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
443 : &TYPE_RVALUE_REFERENCE_TYPE (type));
444
445 *reftype = ntype;
446
447 /* FIXME! Assume the machine has only one representation for
448 references, and that it matches the (only) representation for
449 pointers! */
450
451 TYPE_LENGTH (ntype) =
452 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
453 TYPE_CODE (ntype) = refcode;
454
455 *reftype = ntype;
456
457 /* Update the length of all the other variants of this type. */
458 chain = TYPE_CHAIN (ntype);
459 while (chain != ntype)
460 {
461 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
462 chain = TYPE_CHAIN (chain);
463 }
464
465 return ntype;
466 }
467
468 /* Same as above, but caller doesn't care about memory allocation
469 details. */
470
471 struct type *
472 lookup_reference_type (struct type *type, enum type_code refcode)
473 {
474 return make_reference_type (type, (struct type **) 0, refcode);
475 }
476
477 /* Lookup the lvalue reference type for the type TYPE. */
478
479 struct type *
480 lookup_lvalue_reference_type (struct type *type)
481 {
482 return lookup_reference_type (type, TYPE_CODE_REF);
483 }
484
485 /* Lookup the rvalue reference type for the type TYPE. */
486
487 struct type *
488 lookup_rvalue_reference_type (struct type *type)
489 {
490 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
491 }
492
493 /* Lookup a function type that returns type TYPE. TYPEPTR, if
494 nonzero, points to a pointer to memory where the function type
495 should be stored. If *TYPEPTR is zero, update it to point to the
496 function type we return. We allocate new memory if needed. */
497
498 struct type *
499 make_function_type (struct type *type, struct type **typeptr)
500 {
501 struct type *ntype; /* New type */
502
503 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
504 {
505 ntype = alloc_type_copy (type);
506 if (typeptr)
507 *typeptr = ntype;
508 }
509 else /* We have storage, but need to reset it. */
510 {
511 ntype = *typeptr;
512 smash_type (ntype);
513 }
514
515 TYPE_TARGET_TYPE (ntype) = type;
516
517 TYPE_LENGTH (ntype) = 1;
518 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
519
520 INIT_FUNC_SPECIFIC (ntype);
521
522 return ntype;
523 }
524
525 /* Given a type TYPE, return a type of functions that return that type.
526 May need to construct such a type if this is the first use. */
527
528 struct type *
529 lookup_function_type (struct type *type)
530 {
531 return make_function_type (type, (struct type **) 0);
532 }
533
534 /* Given a type TYPE and argument types, return the appropriate
535 function type. If the final type in PARAM_TYPES is NULL, make a
536 varargs function. */
537
538 struct type *
539 lookup_function_type_with_arguments (struct type *type,
540 int nparams,
541 struct type **param_types)
542 {
543 struct type *fn = make_function_type (type, (struct type **) 0);
544 int i;
545
546 if (nparams > 0)
547 {
548 if (param_types[nparams - 1] == NULL)
549 {
550 --nparams;
551 TYPE_VARARGS (fn) = 1;
552 }
553 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
554 == TYPE_CODE_VOID)
555 {
556 --nparams;
557 /* Caller should have ensured this. */
558 gdb_assert (nparams == 0);
559 TYPE_PROTOTYPED (fn) = 1;
560 }
561 else
562 TYPE_PROTOTYPED (fn) = 1;
563 }
564
565 TYPE_NFIELDS (fn) = nparams;
566 TYPE_FIELDS (fn)
567 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
568 for (i = 0; i < nparams; ++i)
569 TYPE_FIELD_TYPE (fn, i) = param_types[i];
570
571 return fn;
572 }
573
574 /* Identify address space identifier by name --
575 return the integer flag defined in gdbtypes.h. */
576
577 int
578 address_space_name_to_int (struct gdbarch *gdbarch,
579 const char *space_identifier)
580 {
581 int type_flags;
582
583 /* Check for known address space delimiters. */
584 if (!strcmp (space_identifier, "code"))
585 return TYPE_INSTANCE_FLAG_CODE_SPACE;
586 else if (!strcmp (space_identifier, "data"))
587 return TYPE_INSTANCE_FLAG_DATA_SPACE;
588 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
589 && gdbarch_address_class_name_to_type_flags (gdbarch,
590 space_identifier,
591 &type_flags))
592 return type_flags;
593 else
594 error (_("Unknown address space specifier: \"%s\""), space_identifier);
595 }
596
597 /* Identify address space identifier by integer flag as defined in
598 gdbtypes.h -- return the string version of the adress space name. */
599
600 const char *
601 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
602 {
603 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
604 return "code";
605 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
606 return "data";
607 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
608 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
609 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
610 else
611 return NULL;
612 }
613
614 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
615
616 If STORAGE is non-NULL, create the new type instance there.
617 STORAGE must be in the same obstack as TYPE. */
618
619 static struct type *
620 make_qualified_type (struct type *type, int new_flags,
621 struct type *storage)
622 {
623 struct type *ntype;
624
625 ntype = type;
626 do
627 {
628 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
629 return ntype;
630 ntype = TYPE_CHAIN (ntype);
631 }
632 while (ntype != type);
633
634 /* Create a new type instance. */
635 if (storage == NULL)
636 ntype = alloc_type_instance (type);
637 else
638 {
639 /* If STORAGE was provided, it had better be in the same objfile
640 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
641 if one objfile is freed and the other kept, we'd have
642 dangling pointers. */
643 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
644
645 ntype = storage;
646 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
647 TYPE_CHAIN (ntype) = ntype;
648 }
649
650 /* Pointers or references to the original type are not relevant to
651 the new type. */
652 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
653 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
654
655 /* Chain the new qualified type to the old type. */
656 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
657 TYPE_CHAIN (type) = ntype;
658
659 /* Now set the instance flags and return the new type. */
660 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
661
662 /* Set length of new type to that of the original type. */
663 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
664
665 return ntype;
666 }
667
668 /* Make an address-space-delimited variant of a type -- a type that
669 is identical to the one supplied except that it has an address
670 space attribute attached to it (such as "code" or "data").
671
672 The space attributes "code" and "data" are for Harvard
673 architectures. The address space attributes are for architectures
674 which have alternately sized pointers or pointers with alternate
675 representations. */
676
677 struct type *
678 make_type_with_address_space (struct type *type, int space_flag)
679 {
680 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
681 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
682 | TYPE_INSTANCE_FLAG_DATA_SPACE
683 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
684 | space_flag);
685
686 return make_qualified_type (type, new_flags, NULL);
687 }
688
689 /* Make a "c-v" variant of a type -- a type that is identical to the
690 one supplied except that it may have const or volatile attributes
691 CNST is a flag for setting the const attribute
692 VOLTL is a flag for setting the volatile attribute
693 TYPE is the base type whose variant we are creating.
694
695 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
696 storage to hold the new qualified type; *TYPEPTR and TYPE must be
697 in the same objfile. Otherwise, allocate fresh memory for the new
698 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
699 new type we construct. */
700
701 struct type *
702 make_cv_type (int cnst, int voltl,
703 struct type *type,
704 struct type **typeptr)
705 {
706 struct type *ntype; /* New type */
707
708 int new_flags = (TYPE_INSTANCE_FLAGS (type)
709 & ~(TYPE_INSTANCE_FLAG_CONST
710 | TYPE_INSTANCE_FLAG_VOLATILE));
711
712 if (cnst)
713 new_flags |= TYPE_INSTANCE_FLAG_CONST;
714
715 if (voltl)
716 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
717
718 if (typeptr && *typeptr != NULL)
719 {
720 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
721 a C-V variant chain that threads across objfiles: if one
722 objfile gets freed, then the other has a broken C-V chain.
723
724 This code used to try to copy over the main type from TYPE to
725 *TYPEPTR if they were in different objfiles, but that's
726 wrong, too: TYPE may have a field list or member function
727 lists, which refer to types of their own, etc. etc. The
728 whole shebang would need to be copied over recursively; you
729 can't have inter-objfile pointers. The only thing to do is
730 to leave stub types as stub types, and look them up afresh by
731 name each time you encounter them. */
732 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
733 }
734
735 ntype = make_qualified_type (type, new_flags,
736 typeptr ? *typeptr : NULL);
737
738 if (typeptr != NULL)
739 *typeptr = ntype;
740
741 return ntype;
742 }
743
744 /* Make a 'restrict'-qualified version of TYPE. */
745
746 struct type *
747 make_restrict_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 | TYPE_INSTANCE_FLAG_RESTRICT),
752 NULL);
753 }
754
755 /* Make a type without const, volatile, or restrict. */
756
757 struct type *
758 make_unqualified_type (struct type *type)
759 {
760 return make_qualified_type (type,
761 (TYPE_INSTANCE_FLAGS (type)
762 & ~(TYPE_INSTANCE_FLAG_CONST
763 | TYPE_INSTANCE_FLAG_VOLATILE
764 | TYPE_INSTANCE_FLAG_RESTRICT)),
765 NULL);
766 }
767
768 /* Make a '_Atomic'-qualified version of TYPE. */
769
770 struct type *
771 make_atomic_type (struct type *type)
772 {
773 return make_qualified_type (type,
774 (TYPE_INSTANCE_FLAGS (type)
775 | TYPE_INSTANCE_FLAG_ATOMIC),
776 NULL);
777 }
778
779 /* Replace the contents of ntype with the type *type. This changes the
780 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
781 the changes are propogated to all types in the TYPE_CHAIN.
782
783 In order to build recursive types, it's inevitable that we'll need
784 to update types in place --- but this sort of indiscriminate
785 smashing is ugly, and needs to be replaced with something more
786 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
787 clear if more steps are needed. */
788
789 void
790 replace_type (struct type *ntype, struct type *type)
791 {
792 struct type *chain;
793
794 /* These two types had better be in the same objfile. Otherwise,
795 the assignment of one type's main type structure to the other
796 will produce a type with references to objects (names; field
797 lists; etc.) allocated on an objfile other than its own. */
798 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
799
800 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
801
802 /* The type length is not a part of the main type. Update it for
803 each type on the variant chain. */
804 chain = ntype;
805 do
806 {
807 /* Assert that this element of the chain has no address-class bits
808 set in its flags. Such type variants might have type lengths
809 which are supposed to be different from the non-address-class
810 variants. This assertion shouldn't ever be triggered because
811 symbol readers which do construct address-class variants don't
812 call replace_type(). */
813 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
814
815 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
816 chain = TYPE_CHAIN (chain);
817 }
818 while (ntype != chain);
819
820 /* Assert that the two types have equivalent instance qualifiers.
821 This should be true for at least all of our debug readers. */
822 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
823 }
824
825 /* Implement direct support for MEMBER_TYPE in GNU C++.
826 May need to construct such a type if this is the first use.
827 The TYPE is the type of the member. The DOMAIN is the type
828 of the aggregate that the member belongs to. */
829
830 struct type *
831 lookup_memberptr_type (struct type *type, struct type *domain)
832 {
833 struct type *mtype;
834
835 mtype = alloc_type_copy (type);
836 smash_to_memberptr_type (mtype, domain, type);
837 return mtype;
838 }
839
840 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
841
842 struct type *
843 lookup_methodptr_type (struct type *to_type)
844 {
845 struct type *mtype;
846
847 mtype = alloc_type_copy (to_type);
848 smash_to_methodptr_type (mtype, to_type);
849 return mtype;
850 }
851
852 /* Allocate a stub method whose return type is TYPE. This apparently
853 happens for speed of symbol reading, since parsing out the
854 arguments to the method is cpu-intensive, the way we are doing it.
855 So, we will fill in arguments later. This always returns a fresh
856 type. */
857
858 struct type *
859 allocate_stub_method (struct type *type)
860 {
861 struct type *mtype;
862
863 mtype = alloc_type_copy (type);
864 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
865 TYPE_LENGTH (mtype) = 1;
866 TYPE_STUB (mtype) = 1;
867 TYPE_TARGET_TYPE (mtype) = type;
868 /* TYPE_SELF_TYPE (mtype) = unknown yet */
869 return mtype;
870 }
871
872 /* See gdbtypes.h. */
873
874 bool
875 operator== (const dynamic_prop &l, const dynamic_prop &r)
876 {
877 if (l.kind != r.kind)
878 return false;
879
880 switch (l.kind)
881 {
882 case PROP_UNDEFINED:
883 return true;
884 case PROP_CONST:
885 return l.data.const_val == r.data.const_val;
886 case PROP_ADDR_OFFSET:
887 case PROP_LOCEXPR:
888 case PROP_LOCLIST:
889 return l.data.baton == r.data.baton;
890 case PROP_VARIANT_PARTS:
891 return l.data.variant_parts == r.data.variant_parts;
892 case PROP_TYPE:
893 return l.data.original_type == r.data.original_type;
894 }
895
896 gdb_assert_not_reached ("unhandled dynamic_prop kind");
897 }
898
899 /* See gdbtypes.h. */
900
901 bool
902 operator== (const range_bounds &l, const range_bounds &r)
903 {
904 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
905
906 return (FIELD_EQ (low)
907 && FIELD_EQ (high)
908 && FIELD_EQ (flag_upper_bound_is_count)
909 && FIELD_EQ (flag_bound_evaluated)
910 && FIELD_EQ (bias));
911
912 #undef FIELD_EQ
913 }
914
915 /* Create a range type with a dynamic range from LOW_BOUND to
916 HIGH_BOUND, inclusive. See create_range_type for further details. */
917
918 struct type *
919 create_range_type (struct type *result_type, struct type *index_type,
920 const struct dynamic_prop *low_bound,
921 const struct dynamic_prop *high_bound,
922 LONGEST bias)
923 {
924 /* The INDEX_TYPE should be a type capable of holding the upper and lower
925 bounds, as such a zero sized, or void type makes no sense. */
926 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
927 gdb_assert (TYPE_LENGTH (index_type) > 0);
928
929 if (result_type == NULL)
930 result_type = alloc_type_copy (index_type);
931 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
932 TYPE_TARGET_TYPE (result_type) = index_type;
933 if (TYPE_STUB (index_type))
934 TYPE_TARGET_STUB (result_type) = 1;
935 else
936 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
937
938 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
939 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
940 TYPE_RANGE_DATA (result_type)->low = *low_bound;
941 TYPE_RANGE_DATA (result_type)->high = *high_bound;
942 TYPE_RANGE_DATA (result_type)->bias = bias;
943
944 /* Initialize the stride to be a constant, the value will already be zero
945 thanks to the use of TYPE_ZALLOC above. */
946 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
947
948 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
949 TYPE_UNSIGNED (result_type) = 1;
950
951 /* Ada allows the declaration of range types whose upper bound is
952 less than the lower bound, so checking the lower bound is not
953 enough. Make sure we do not mark a range type whose upper bound
954 is negative as unsigned. */
955 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
956 TYPE_UNSIGNED (result_type) = 0;
957
958 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
959 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
960
961 return result_type;
962 }
963
964 /* See gdbtypes.h. */
965
966 struct type *
967 create_range_type_with_stride (struct type *result_type,
968 struct type *index_type,
969 const struct dynamic_prop *low_bound,
970 const struct dynamic_prop *high_bound,
971 LONGEST bias,
972 const struct dynamic_prop *stride,
973 bool byte_stride_p)
974 {
975 result_type = create_range_type (result_type, index_type, low_bound,
976 high_bound, bias);
977
978 gdb_assert (stride != nullptr);
979 TYPE_RANGE_DATA (result_type)->stride = *stride;
980 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
981
982 return result_type;
983 }
984
985
986
987 /* Create a range type using either a blank type supplied in
988 RESULT_TYPE, or creating a new type, inheriting the objfile from
989 INDEX_TYPE.
990
991 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
992 to HIGH_BOUND, inclusive.
993
994 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
995 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
996
997 struct type *
998 create_static_range_type (struct type *result_type, struct type *index_type,
999 LONGEST low_bound, LONGEST high_bound)
1000 {
1001 struct dynamic_prop low, high;
1002
1003 low.kind = PROP_CONST;
1004 low.data.const_val = low_bound;
1005
1006 high.kind = PROP_CONST;
1007 high.data.const_val = high_bound;
1008
1009 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1010
1011 return result_type;
1012 }
1013
1014 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1015 are static, otherwise returns 0. */
1016
1017 static bool
1018 has_static_range (const struct range_bounds *bounds)
1019 {
1020 /* If the range doesn't have a defined stride then its stride field will
1021 be initialized to the constant 0. */
1022 return (bounds->low.kind == PROP_CONST
1023 && bounds->high.kind == PROP_CONST
1024 && bounds->stride.kind == PROP_CONST);
1025 }
1026
1027
1028 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1029 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1030 bounds will fit in LONGEST), or -1 otherwise. */
1031
1032 int
1033 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1034 {
1035 type = check_typedef (type);
1036 switch (TYPE_CODE (type))
1037 {
1038 case TYPE_CODE_RANGE:
1039 *lowp = TYPE_LOW_BOUND (type);
1040 *highp = TYPE_HIGH_BOUND (type);
1041 return 1;
1042 case TYPE_CODE_ENUM:
1043 if (TYPE_NFIELDS (type) > 0)
1044 {
1045 /* The enums may not be sorted by value, so search all
1046 entries. */
1047 int i;
1048
1049 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1050 for (i = 0; i < TYPE_NFIELDS (type); i++)
1051 {
1052 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1053 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1054 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1055 *highp = TYPE_FIELD_ENUMVAL (type, i);
1056 }
1057
1058 /* Set unsigned indicator if warranted. */
1059 if (*lowp >= 0)
1060 {
1061 TYPE_UNSIGNED (type) = 1;
1062 }
1063 }
1064 else
1065 {
1066 *lowp = 0;
1067 *highp = -1;
1068 }
1069 return 0;
1070 case TYPE_CODE_BOOL:
1071 *lowp = 0;
1072 *highp = 1;
1073 return 0;
1074 case TYPE_CODE_INT:
1075 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1076 return -1;
1077 if (!TYPE_UNSIGNED (type))
1078 {
1079 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1080 *highp = -*lowp - 1;
1081 return 0;
1082 }
1083 /* fall through */
1084 case TYPE_CODE_CHAR:
1085 *lowp = 0;
1086 /* This round-about calculation is to avoid shifting by
1087 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1088 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1089 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1090 *highp = (*highp - 1) | *highp;
1091 return 0;
1092 default:
1093 return -1;
1094 }
1095 }
1096
1097 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1098 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1099 Save the high bound into HIGH_BOUND if not NULL.
1100
1101 Return 1 if the operation was successful. Return zero otherwise,
1102 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1103
1104 We now simply use get_discrete_bounds call to get the values
1105 of the low and high bounds.
1106 get_discrete_bounds can return three values:
1107 1, meaning that index is a range,
1108 0, meaning that index is a discrete type,
1109 or -1 for failure. */
1110
1111 int
1112 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1113 {
1114 struct type *index = TYPE_INDEX_TYPE (type);
1115 LONGEST low = 0;
1116 LONGEST high = 0;
1117 int res;
1118
1119 if (index == NULL)
1120 return 0;
1121
1122 res = get_discrete_bounds (index, &low, &high);
1123 if (res == -1)
1124 return 0;
1125
1126 /* Check if the array bounds are undefined. */
1127 if (res == 1
1128 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1129 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1130 return 0;
1131
1132 if (low_bound)
1133 *low_bound = low;
1134
1135 if (high_bound)
1136 *high_bound = high;
1137
1138 return 1;
1139 }
1140
1141 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1142 representation of a value of this type, save the corresponding
1143 position number in POS.
1144
1145 Its differs from VAL only in the case of enumeration types. In
1146 this case, the position number of the value of the first listed
1147 enumeration literal is zero; the position number of the value of
1148 each subsequent enumeration literal is one more than that of its
1149 predecessor in the list.
1150
1151 Return 1 if the operation was successful. Return zero otherwise,
1152 in which case the value of POS is unmodified.
1153 */
1154
1155 int
1156 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1157 {
1158 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1159 {
1160 int i;
1161
1162 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1163 {
1164 if (val == TYPE_FIELD_ENUMVAL (type, i))
1165 {
1166 *pos = i;
1167 return 1;
1168 }
1169 }
1170 /* Invalid enumeration value. */
1171 return 0;
1172 }
1173 else
1174 {
1175 *pos = val;
1176 return 1;
1177 }
1178 }
1179
1180 /* Create an array type using either a blank type supplied in
1181 RESULT_TYPE, or creating a new type, inheriting the objfile from
1182 RANGE_TYPE.
1183
1184 Elements will be of type ELEMENT_TYPE, the indices will be of type
1185 RANGE_TYPE.
1186
1187 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1188 This byte stride property is added to the resulting array type
1189 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1190 argument can only be used to create types that are objfile-owned
1191 (see add_dyn_prop), meaning that either this function must be called
1192 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1193
1194 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1195 If BIT_STRIDE is not zero, build a packed array type whose element
1196 size is BIT_STRIDE. Otherwise, ignore this parameter.
1197
1198 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1199 sure it is TYPE_CODE_UNDEF before we bash it into an array
1200 type? */
1201
1202 struct type *
1203 create_array_type_with_stride (struct type *result_type,
1204 struct type *element_type,
1205 struct type *range_type,
1206 struct dynamic_prop *byte_stride_prop,
1207 unsigned int bit_stride)
1208 {
1209 if (byte_stride_prop != NULL
1210 && byte_stride_prop->kind == PROP_CONST)
1211 {
1212 /* The byte stride is actually not dynamic. Pretend we were
1213 called with bit_stride set instead of byte_stride_prop.
1214 This will give us the same result type, while avoiding
1215 the need to handle this as a special case. */
1216 bit_stride = byte_stride_prop->data.const_val * 8;
1217 byte_stride_prop = NULL;
1218 }
1219
1220 if (result_type == NULL)
1221 result_type = alloc_type_copy (range_type);
1222
1223 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1224 TYPE_TARGET_TYPE (result_type) = element_type;
1225 if (byte_stride_prop == NULL
1226 && has_static_range (TYPE_RANGE_DATA (range_type))
1227 && (!type_not_associated (result_type)
1228 && !type_not_allocated (result_type)))
1229 {
1230 LONGEST low_bound, high_bound;
1231 int stride;
1232
1233 /* If the array itself doesn't provide a stride value then take
1234 whatever stride the range provides. Don't update BIT_STRIDE as
1235 we don't want to place the stride value from the range into this
1236 arrays bit size field. */
1237 stride = bit_stride;
1238 if (stride == 0)
1239 stride = TYPE_BIT_STRIDE (range_type);
1240
1241 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1242 low_bound = high_bound = 0;
1243 element_type = check_typedef (element_type);
1244 /* Be careful when setting the array length. Ada arrays can be
1245 empty arrays with the high_bound being smaller than the low_bound.
1246 In such cases, the array length should be zero. */
1247 if (high_bound < low_bound)
1248 TYPE_LENGTH (result_type) = 0;
1249 else if (stride != 0)
1250 {
1251 /* Ensure that the type length is always positive, even in the
1252 case where (for example in Fortran) we have a negative
1253 stride. It is possible to have a single element array with a
1254 negative stride in Fortran (this doesn't mean anything
1255 special, it's still just a single element array) so do
1256 consider that case when touching this code. */
1257 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1258 TYPE_LENGTH (result_type)
1259 = ((std::abs (stride) * element_count) + 7) / 8;
1260 }
1261 else
1262 TYPE_LENGTH (result_type) =
1263 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1264 }
1265 else
1266 {
1267 /* This type is dynamic and its length needs to be computed
1268 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1269 undefined by setting it to zero. Although we are not expected
1270 to trust TYPE_LENGTH in this case, setting the size to zero
1271 allows us to avoid allocating objects of random sizes in case
1272 we accidently do. */
1273 TYPE_LENGTH (result_type) = 0;
1274 }
1275
1276 TYPE_NFIELDS (result_type) = 1;
1277 TYPE_FIELDS (result_type) =
1278 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1279 TYPE_INDEX_TYPE (result_type) = range_type;
1280 if (byte_stride_prop != NULL)
1281 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1282 else if (bit_stride > 0)
1283 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1284
1285 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1286 if (TYPE_LENGTH (result_type) == 0)
1287 TYPE_TARGET_STUB (result_type) = 1;
1288
1289 return result_type;
1290 }
1291
1292 /* Same as create_array_type_with_stride but with no bit_stride
1293 (BIT_STRIDE = 0), thus building an unpacked array. */
1294
1295 struct type *
1296 create_array_type (struct type *result_type,
1297 struct type *element_type,
1298 struct type *range_type)
1299 {
1300 return create_array_type_with_stride (result_type, element_type,
1301 range_type, NULL, 0);
1302 }
1303
1304 struct type *
1305 lookup_array_range_type (struct type *element_type,
1306 LONGEST low_bound, LONGEST high_bound)
1307 {
1308 struct type *index_type;
1309 struct type *range_type;
1310
1311 if (TYPE_OBJFILE_OWNED (element_type))
1312 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1313 else
1314 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1315 range_type = create_static_range_type (NULL, index_type,
1316 low_bound, high_bound);
1317
1318 return create_array_type (NULL, element_type, range_type);
1319 }
1320
1321 /* Create a string type using either a blank type supplied in
1322 RESULT_TYPE, or creating a new type. String types are similar
1323 enough to array of char types that we can use create_array_type to
1324 build the basic type and then bash it into a string type.
1325
1326 For fixed length strings, the range type contains 0 as the lower
1327 bound and the length of the string minus one as the upper bound.
1328
1329 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1330 sure it is TYPE_CODE_UNDEF before we bash it into a string
1331 type? */
1332
1333 struct type *
1334 create_string_type (struct type *result_type,
1335 struct type *string_char_type,
1336 struct type *range_type)
1337 {
1338 result_type = create_array_type (result_type,
1339 string_char_type,
1340 range_type);
1341 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1342 return result_type;
1343 }
1344
1345 struct type *
1346 lookup_string_range_type (struct type *string_char_type,
1347 LONGEST low_bound, LONGEST high_bound)
1348 {
1349 struct type *result_type;
1350
1351 result_type = lookup_array_range_type (string_char_type,
1352 low_bound, high_bound);
1353 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1354 return result_type;
1355 }
1356
1357 struct type *
1358 create_set_type (struct type *result_type, struct type *domain_type)
1359 {
1360 if (result_type == NULL)
1361 result_type = alloc_type_copy (domain_type);
1362
1363 TYPE_CODE (result_type) = TYPE_CODE_SET;
1364 TYPE_NFIELDS (result_type) = 1;
1365 TYPE_FIELDS (result_type)
1366 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1367
1368 if (!TYPE_STUB (domain_type))
1369 {
1370 LONGEST low_bound, high_bound, bit_length;
1371
1372 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1373 low_bound = high_bound = 0;
1374 bit_length = high_bound - low_bound + 1;
1375 TYPE_LENGTH (result_type)
1376 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1377 if (low_bound >= 0)
1378 TYPE_UNSIGNED (result_type) = 1;
1379 }
1380 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1381
1382 return result_type;
1383 }
1384
1385 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1386 and any array types nested inside it. */
1387
1388 void
1389 make_vector_type (struct type *array_type)
1390 {
1391 struct type *inner_array, *elt_type;
1392 int flags;
1393
1394 /* Find the innermost array type, in case the array is
1395 multi-dimensional. */
1396 inner_array = array_type;
1397 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1398 inner_array = TYPE_TARGET_TYPE (inner_array);
1399
1400 elt_type = TYPE_TARGET_TYPE (inner_array);
1401 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1402 {
1403 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1404 elt_type = make_qualified_type (elt_type, flags, NULL);
1405 TYPE_TARGET_TYPE (inner_array) = elt_type;
1406 }
1407
1408 TYPE_VECTOR (array_type) = 1;
1409 }
1410
1411 struct type *
1412 init_vector_type (struct type *elt_type, int n)
1413 {
1414 struct type *array_type;
1415
1416 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1417 make_vector_type (array_type);
1418 return array_type;
1419 }
1420
1421 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1422 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1423 confusing. "self" is a common enough replacement for "this".
1424 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1425 TYPE_CODE_METHOD. */
1426
1427 struct type *
1428 internal_type_self_type (struct type *type)
1429 {
1430 switch (TYPE_CODE (type))
1431 {
1432 case TYPE_CODE_METHODPTR:
1433 case TYPE_CODE_MEMBERPTR:
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1437 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1438 case TYPE_CODE_METHOD:
1439 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1440 return NULL;
1441 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1442 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1443 default:
1444 gdb_assert_not_reached ("bad type");
1445 }
1446 }
1447
1448 /* Set the type of the class that TYPE belongs to.
1449 In c++ this is the class of "this".
1450 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1451 TYPE_CODE_METHOD. */
1452
1453 void
1454 set_type_self_type (struct type *type, struct type *self_type)
1455 {
1456 switch (TYPE_CODE (type))
1457 {
1458 case TYPE_CODE_METHODPTR:
1459 case TYPE_CODE_MEMBERPTR:
1460 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1461 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1462 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1463 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1464 break;
1465 case TYPE_CODE_METHOD:
1466 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1467 INIT_FUNC_SPECIFIC (type);
1468 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1469 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1470 break;
1471 default:
1472 gdb_assert_not_reached ("bad type");
1473 }
1474 }
1475
1476 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1477 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1478 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1479 TYPE doesn't include the offset (that's the value of the MEMBER
1480 itself), but does include the structure type into which it points
1481 (for some reason).
1482
1483 When "smashing" the type, we preserve the objfile that the old type
1484 pointed to, since we aren't changing where the type is actually
1485 allocated. */
1486
1487 void
1488 smash_to_memberptr_type (struct type *type, struct type *self_type,
1489 struct type *to_type)
1490 {
1491 smash_type (type);
1492 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1493 TYPE_TARGET_TYPE (type) = to_type;
1494 set_type_self_type (type, self_type);
1495 /* Assume that a data member pointer is the same size as a normal
1496 pointer. */
1497 TYPE_LENGTH (type)
1498 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1499 }
1500
1501 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1502
1503 When "smashing" the type, we preserve the objfile that the old type
1504 pointed to, since we aren't changing where the type is actually
1505 allocated. */
1506
1507 void
1508 smash_to_methodptr_type (struct type *type, struct type *to_type)
1509 {
1510 smash_type (type);
1511 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1512 TYPE_TARGET_TYPE (type) = to_type;
1513 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1514 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1515 }
1516
1517 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1518 METHOD just means `function that gets an extra "this" argument'.
1519
1520 When "smashing" the type, we preserve the objfile that the old type
1521 pointed to, since we aren't changing where the type is actually
1522 allocated. */
1523
1524 void
1525 smash_to_method_type (struct type *type, struct type *self_type,
1526 struct type *to_type, struct field *args,
1527 int nargs, int varargs)
1528 {
1529 smash_type (type);
1530 TYPE_CODE (type) = TYPE_CODE_METHOD;
1531 TYPE_TARGET_TYPE (type) = to_type;
1532 set_type_self_type (type, self_type);
1533 TYPE_FIELDS (type) = args;
1534 TYPE_NFIELDS (type) = nargs;
1535 if (varargs)
1536 TYPE_VARARGS (type) = 1;
1537 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1538 }
1539
1540 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1541 Since GCC PR debug/47510 DWARF provides associated information to detect the
1542 anonymous class linkage name from its typedef.
1543
1544 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1545 apply it itself. */
1546
1547 const char *
1548 type_name_or_error (struct type *type)
1549 {
1550 struct type *saved_type = type;
1551 const char *name;
1552 struct objfile *objfile;
1553
1554 type = check_typedef (type);
1555
1556 name = TYPE_NAME (type);
1557 if (name != NULL)
1558 return name;
1559
1560 name = TYPE_NAME (saved_type);
1561 objfile = TYPE_OBJFILE (saved_type);
1562 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1563 name ? name : "<anonymous>",
1564 objfile ? objfile_name (objfile) : "<arch>");
1565 }
1566
1567 /* Lookup a typedef or primitive type named NAME, visible in lexical
1568 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1569 suitably defined. */
1570
1571 struct type *
1572 lookup_typename (const struct language_defn *language,
1573 const char *name,
1574 const struct block *block, int noerr)
1575 {
1576 struct symbol *sym;
1577
1578 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1579 language->la_language, NULL).symbol;
1580 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1581 return SYMBOL_TYPE (sym);
1582
1583 if (noerr)
1584 return NULL;
1585 error (_("No type named %s."), name);
1586 }
1587
1588 struct type *
1589 lookup_unsigned_typename (const struct language_defn *language,
1590 const char *name)
1591 {
1592 char *uns = (char *) alloca (strlen (name) + 10);
1593
1594 strcpy (uns, "unsigned ");
1595 strcpy (uns + 9, name);
1596 return lookup_typename (language, uns, NULL, 0);
1597 }
1598
1599 struct type *
1600 lookup_signed_typename (const struct language_defn *language, const char *name)
1601 {
1602 struct type *t;
1603 char *uns = (char *) alloca (strlen (name) + 8);
1604
1605 strcpy (uns, "signed ");
1606 strcpy (uns + 7, name);
1607 t = lookup_typename (language, uns, NULL, 1);
1608 /* If we don't find "signed FOO" just try again with plain "FOO". */
1609 if (t != NULL)
1610 return t;
1611 return lookup_typename (language, name, NULL, 0);
1612 }
1613
1614 /* Lookup a structure type named "struct NAME",
1615 visible in lexical block BLOCK. */
1616
1617 struct type *
1618 lookup_struct (const char *name, const struct block *block)
1619 {
1620 struct symbol *sym;
1621
1622 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1623
1624 if (sym == NULL)
1625 {
1626 error (_("No struct type named %s."), name);
1627 }
1628 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1629 {
1630 error (_("This context has class, union or enum %s, not a struct."),
1631 name);
1632 }
1633 return (SYMBOL_TYPE (sym));
1634 }
1635
1636 /* Lookup a union type named "union NAME",
1637 visible in lexical block BLOCK. */
1638
1639 struct type *
1640 lookup_union (const char *name, const struct block *block)
1641 {
1642 struct symbol *sym;
1643 struct type *t;
1644
1645 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1646
1647 if (sym == NULL)
1648 error (_("No union type named %s."), name);
1649
1650 t = SYMBOL_TYPE (sym);
1651
1652 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1653 return t;
1654
1655 /* If we get here, it's not a union. */
1656 error (_("This context has class, struct or enum %s, not a union."),
1657 name);
1658 }
1659
1660 /* Lookup an enum type named "enum NAME",
1661 visible in lexical block BLOCK. */
1662
1663 struct type *
1664 lookup_enum (const char *name, const struct block *block)
1665 {
1666 struct symbol *sym;
1667
1668 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1669 if (sym == NULL)
1670 {
1671 error (_("No enum type named %s."), name);
1672 }
1673 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1674 {
1675 error (_("This context has class, struct or union %s, not an enum."),
1676 name);
1677 }
1678 return (SYMBOL_TYPE (sym));
1679 }
1680
1681 /* Lookup a template type named "template NAME<TYPE>",
1682 visible in lexical block BLOCK. */
1683
1684 struct type *
1685 lookup_template_type (const char *name, struct type *type,
1686 const struct block *block)
1687 {
1688 struct symbol *sym;
1689 char *nam = (char *)
1690 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1691
1692 strcpy (nam, name);
1693 strcat (nam, "<");
1694 strcat (nam, TYPE_NAME (type));
1695 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1696
1697 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1698
1699 if (sym == NULL)
1700 {
1701 error (_("No template type named %s."), name);
1702 }
1703 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1704 {
1705 error (_("This context has class, union or enum %s, not a struct."),
1706 name);
1707 }
1708 return (SYMBOL_TYPE (sym));
1709 }
1710
1711 /* See gdbtypes.h. */
1712
1713 struct_elt
1714 lookup_struct_elt (struct type *type, const char *name, int noerr)
1715 {
1716 int i;
1717
1718 for (;;)
1719 {
1720 type = check_typedef (type);
1721 if (TYPE_CODE (type) != TYPE_CODE_PTR
1722 && TYPE_CODE (type) != TYPE_CODE_REF)
1723 break;
1724 type = TYPE_TARGET_TYPE (type);
1725 }
1726
1727 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1728 && TYPE_CODE (type) != TYPE_CODE_UNION)
1729 {
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s is not a structure or union type."),
1732 type_name.c_str ());
1733 }
1734
1735 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1736 {
1737 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1738
1739 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1740 {
1741 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1742 }
1743 else if (!t_field_name || *t_field_name == '\0')
1744 {
1745 struct_elt elt
1746 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1747 if (elt.field != NULL)
1748 {
1749 elt.offset += TYPE_FIELD_BITPOS (type, i);
1750 return elt;
1751 }
1752 }
1753 }
1754
1755 /* OK, it's not in this class. Recursively check the baseclasses. */
1756 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1757 {
1758 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1759 if (elt.field != NULL)
1760 return elt;
1761 }
1762
1763 if (noerr)
1764 return {nullptr, 0};
1765
1766 std::string type_name = type_to_string (type);
1767 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1768 }
1769
1770 /* See gdbtypes.h. */
1771
1772 struct type *
1773 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1774 {
1775 struct_elt elt = lookup_struct_elt (type, name, noerr);
1776 if (elt.field != NULL)
1777 return FIELD_TYPE (*elt.field);
1778 else
1779 return NULL;
1780 }
1781
1782 /* Store in *MAX the largest number representable by unsigned integer type
1783 TYPE. */
1784
1785 void
1786 get_unsigned_type_max (struct type *type, ULONGEST *max)
1787 {
1788 unsigned int n;
1789
1790 type = check_typedef (type);
1791 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1792 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1793
1794 /* Written this way to avoid overflow. */
1795 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1796 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1797 }
1798
1799 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1800 signed integer type TYPE. */
1801
1802 void
1803 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1804 {
1805 unsigned int n;
1806
1807 type = check_typedef (type);
1808 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1809 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1810
1811 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1812 *min = -((ULONGEST) 1 << (n - 1));
1813 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1814 }
1815
1816 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1817 cplus_stuff.vptr_fieldno.
1818
1819 cplus_stuff is initialized to cplus_struct_default which does not
1820 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1821 designated initializers). We cope with that here. */
1822
1823 int
1824 internal_type_vptr_fieldno (struct type *type)
1825 {
1826 type = check_typedef (type);
1827 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1828 || TYPE_CODE (type) == TYPE_CODE_UNION);
1829 if (!HAVE_CPLUS_STRUCT (type))
1830 return -1;
1831 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1832 }
1833
1834 /* Set the value of cplus_stuff.vptr_fieldno. */
1835
1836 void
1837 set_type_vptr_fieldno (struct type *type, int fieldno)
1838 {
1839 type = check_typedef (type);
1840 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1841 || TYPE_CODE (type) == TYPE_CODE_UNION);
1842 if (!HAVE_CPLUS_STRUCT (type))
1843 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1844 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1845 }
1846
1847 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1848 cplus_stuff.vptr_basetype. */
1849
1850 struct type *
1851 internal_type_vptr_basetype (struct type *type)
1852 {
1853 type = check_typedef (type);
1854 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1855 || TYPE_CODE (type) == TYPE_CODE_UNION);
1856 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1857 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1858 }
1859
1860 /* Set the value of cplus_stuff.vptr_basetype. */
1861
1862 void
1863 set_type_vptr_basetype (struct type *type, struct type *basetype)
1864 {
1865 type = check_typedef (type);
1866 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1867 || TYPE_CODE (type) == TYPE_CODE_UNION);
1868 if (!HAVE_CPLUS_STRUCT (type))
1869 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1870 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1871 }
1872
1873 /* Lookup the vptr basetype/fieldno values for TYPE.
1874 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1875 vptr_fieldno. Also, if found and basetype is from the same objfile,
1876 cache the results.
1877 If not found, return -1 and ignore BASETYPEP.
1878 Callers should be aware that in some cases (for example,
1879 the type or one of its baseclasses is a stub type and we are
1880 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1881 this function will not be able to find the
1882 virtual function table pointer, and vptr_fieldno will remain -1 and
1883 vptr_basetype will remain NULL or incomplete. */
1884
1885 int
1886 get_vptr_fieldno (struct type *type, struct type **basetypep)
1887 {
1888 type = check_typedef (type);
1889
1890 if (TYPE_VPTR_FIELDNO (type) < 0)
1891 {
1892 int i;
1893
1894 /* We must start at zero in case the first (and only) baseclass
1895 is virtual (and hence we cannot share the table pointer). */
1896 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1897 {
1898 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1899 int fieldno;
1900 struct type *basetype;
1901
1902 fieldno = get_vptr_fieldno (baseclass, &basetype);
1903 if (fieldno >= 0)
1904 {
1905 /* If the type comes from a different objfile we can't cache
1906 it, it may have a different lifetime. PR 2384 */
1907 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1908 {
1909 set_type_vptr_fieldno (type, fieldno);
1910 set_type_vptr_basetype (type, basetype);
1911 }
1912 if (basetypep)
1913 *basetypep = basetype;
1914 return fieldno;
1915 }
1916 }
1917
1918 /* Not found. */
1919 return -1;
1920 }
1921 else
1922 {
1923 if (basetypep)
1924 *basetypep = TYPE_VPTR_BASETYPE (type);
1925 return TYPE_VPTR_FIELDNO (type);
1926 }
1927 }
1928
1929 static void
1930 stub_noname_complaint (void)
1931 {
1932 complaint (_("stub type has NULL name"));
1933 }
1934
1935 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1936 attached to it, and that property has a non-constant value. */
1937
1938 static int
1939 array_type_has_dynamic_stride (struct type *type)
1940 {
1941 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1942
1943 return (prop != NULL && prop->kind != PROP_CONST);
1944 }
1945
1946 /* Worker for is_dynamic_type. */
1947
1948 static int
1949 is_dynamic_type_internal (struct type *type, int top_level)
1950 {
1951 type = check_typedef (type);
1952
1953 /* We only want to recognize references at the outermost level. */
1954 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1955 type = check_typedef (TYPE_TARGET_TYPE (type));
1956
1957 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1958 dynamic, even if the type itself is statically defined.
1959 From a user's point of view, this may appear counter-intuitive;
1960 but it makes sense in this context, because the point is to determine
1961 whether any part of the type needs to be resolved before it can
1962 be exploited. */
1963 if (TYPE_DATA_LOCATION (type) != NULL
1964 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1965 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1966 return 1;
1967
1968 if (TYPE_ASSOCIATED_PROP (type))
1969 return 1;
1970
1971 if (TYPE_ALLOCATED_PROP (type))
1972 return 1;
1973
1974 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS, type);
1975 if (prop != nullptr && prop->kind != PROP_TYPE)
1976 return 1;
1977
1978 if (TYPE_HAS_DYNAMIC_LENGTH (type))
1979 return 1;
1980
1981 switch (TYPE_CODE (type))
1982 {
1983 case TYPE_CODE_RANGE:
1984 {
1985 /* A range type is obviously dynamic if it has at least one
1986 dynamic bound. But also consider the range type to be
1987 dynamic when its subtype is dynamic, even if the bounds
1988 of the range type are static. It allows us to assume that
1989 the subtype of a static range type is also static. */
1990 return (!has_static_range (TYPE_RANGE_DATA (type))
1991 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1992 }
1993
1994 case TYPE_CODE_STRING:
1995 /* Strings are very much like an array of characters, and can be
1996 treated as one here. */
1997 case TYPE_CODE_ARRAY:
1998 {
1999 gdb_assert (TYPE_NFIELDS (type) == 1);
2000
2001 /* The array is dynamic if either the bounds are dynamic... */
2002 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
2003 return 1;
2004 /* ... or the elements it contains have a dynamic contents... */
2005 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
2006 return 1;
2007 /* ... or if it has a dynamic stride... */
2008 if (array_type_has_dynamic_stride (type))
2009 return 1;
2010 return 0;
2011 }
2012
2013 case TYPE_CODE_STRUCT:
2014 case TYPE_CODE_UNION:
2015 {
2016 int i;
2017
2018 bool is_cplus = HAVE_CPLUS_STRUCT (type);
2019
2020 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2021 {
2022 /* Static fields can be ignored here. */
2023 if (field_is_static (&TYPE_FIELD (type, i)))
2024 continue;
2025 /* If the field has dynamic type, then so does TYPE. */
2026 if (is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2027 return 1;
2028 /* If the field is at a fixed offset, then it is not
2029 dynamic. */
2030 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_DWARF_BLOCK)
2031 continue;
2032 /* Do not consider C++ virtual base types to be dynamic
2033 due to the field's offset being dynamic; these are
2034 handled via other means. */
2035 if (is_cplus && BASETYPE_VIA_VIRTUAL (type, i))
2036 continue;
2037 return 1;
2038 }
2039 }
2040 break;
2041 }
2042
2043 return 0;
2044 }
2045
2046 /* See gdbtypes.h. */
2047
2048 int
2049 is_dynamic_type (struct type *type)
2050 {
2051 return is_dynamic_type_internal (type, 1);
2052 }
2053
2054 static struct type *resolve_dynamic_type_internal
2055 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2056
2057 /* Given a dynamic range type (dyn_range_type) and a stack of
2058 struct property_addr_info elements, return a static version
2059 of that type. */
2060
2061 static struct type *
2062 resolve_dynamic_range (struct type *dyn_range_type,
2063 struct property_addr_info *addr_stack)
2064 {
2065 CORE_ADDR value;
2066 struct type *static_range_type, *static_target_type;
2067 const struct dynamic_prop *prop;
2068 struct dynamic_prop low_bound, high_bound, stride;
2069
2070 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2071
2072 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 low_bound.kind = PROP_CONST;
2076 low_bound.data.const_val = value;
2077 }
2078 else
2079 {
2080 low_bound.kind = PROP_UNDEFINED;
2081 low_bound.data.const_val = 0;
2082 }
2083
2084 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2085 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2086 {
2087 high_bound.kind = PROP_CONST;
2088 high_bound.data.const_val = value;
2089
2090 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2091 high_bound.data.const_val
2092 = low_bound.data.const_val + high_bound.data.const_val - 1;
2093 }
2094 else
2095 {
2096 high_bound.kind = PROP_UNDEFINED;
2097 high_bound.data.const_val = 0;
2098 }
2099
2100 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2101 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2102 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2103 {
2104 stride.kind = PROP_CONST;
2105 stride.data.const_val = value;
2106
2107 /* If we have a bit stride that is not an exact number of bytes then
2108 I really don't think this is going to work with current GDB, the
2109 array indexing code in GDB seems to be pretty heavily tied to byte
2110 offsets right now. Assuming 8 bits in a byte. */
2111 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2112 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2113 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2114 error (_("bit strides that are not a multiple of the byte size "
2115 "are currently not supported"));
2116 }
2117 else
2118 {
2119 stride.kind = PROP_UNDEFINED;
2120 stride.data.const_val = 0;
2121 byte_stride_p = true;
2122 }
2123
2124 static_target_type
2125 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2126 addr_stack, 0);
2127 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2128 static_range_type = create_range_type_with_stride
2129 (copy_type (dyn_range_type), static_target_type,
2130 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2131 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2132 return static_range_type;
2133 }
2134
2135 /* Resolves dynamic bound values of an array or string type TYPE to static
2136 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2137 needed during the dynamic resolution. */
2138
2139 static struct type *
2140 resolve_dynamic_array_or_string (struct type *type,
2141 struct property_addr_info *addr_stack)
2142 {
2143 CORE_ADDR value;
2144 struct type *elt_type;
2145 struct type *range_type;
2146 struct type *ary_dim;
2147 struct dynamic_prop *prop;
2148 unsigned int bit_stride = 0;
2149
2150 /* For dynamic type resolution strings can be treated like arrays of
2151 characters. */
2152 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2153 || TYPE_CODE (type) == TYPE_CODE_STRING);
2154
2155 type = copy_type (type);
2156
2157 elt_type = type;
2158 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2159 range_type = resolve_dynamic_range (range_type, addr_stack);
2160
2161 /* Resolve allocated/associated here before creating a new array type, which
2162 will update the length of the array accordingly. */
2163 prop = TYPE_ALLOCATED_PROP (type);
2164 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2165 {
2166 TYPE_DYN_PROP_ADDR (prop) = value;
2167 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2168 }
2169 prop = TYPE_ASSOCIATED_PROP (type);
2170 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2171 {
2172 TYPE_DYN_PROP_ADDR (prop) = value;
2173 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2174 }
2175
2176 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2177
2178 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2179 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2180 else
2181 elt_type = TYPE_TARGET_TYPE (type);
2182
2183 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2184 if (prop != NULL)
2185 {
2186 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2187 {
2188 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2189 bit_stride = (unsigned int) (value * 8);
2190 }
2191 else
2192 {
2193 /* Could be a bug in our code, but it could also happen
2194 if the DWARF info is not correct. Issue a warning,
2195 and assume no byte/bit stride (leave bit_stride = 0). */
2196 warning (_("cannot determine array stride for type %s"),
2197 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2198 }
2199 }
2200 else
2201 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2202
2203 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2204 bit_stride);
2205 }
2206
2207 /* Resolve dynamic bounds of members of the union TYPE to static
2208 bounds. ADDR_STACK is a stack of struct property_addr_info
2209 to be used if needed during the dynamic resolution. */
2210
2211 static struct type *
2212 resolve_dynamic_union (struct type *type,
2213 struct property_addr_info *addr_stack)
2214 {
2215 struct type *resolved_type;
2216 int i;
2217 unsigned int max_len = 0;
2218
2219 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2220
2221 resolved_type = copy_type (type);
2222 TYPE_FIELDS (resolved_type)
2223 = (struct field *) TYPE_ALLOC (resolved_type,
2224 TYPE_NFIELDS (resolved_type)
2225 * sizeof (struct field));
2226 memcpy (TYPE_FIELDS (resolved_type),
2227 TYPE_FIELDS (type),
2228 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2229 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2230 {
2231 struct type *t;
2232
2233 if (field_is_static (&TYPE_FIELD (type, i)))
2234 continue;
2235
2236 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2237 addr_stack, 0);
2238 TYPE_FIELD_TYPE (resolved_type, i) = t;
2239 if (TYPE_LENGTH (t) > max_len)
2240 max_len = TYPE_LENGTH (t);
2241 }
2242
2243 TYPE_LENGTH (resolved_type) = max_len;
2244 return resolved_type;
2245 }
2246
2247 /* See gdbtypes.h. */
2248
2249 bool
2250 variant::matches (ULONGEST value, bool is_unsigned) const
2251 {
2252 for (const discriminant_range &range : discriminants)
2253 if (range.contains (value, is_unsigned))
2254 return true;
2255 return false;
2256 }
2257
2258 static void
2259 compute_variant_fields_inner (struct type *type,
2260 struct property_addr_info *addr_stack,
2261 const variant_part &part,
2262 std::vector<bool> &flags);
2263
2264 /* A helper function to determine which variant fields will be active.
2265 This handles both the variant's direct fields, and any variant
2266 parts embedded in this variant. TYPE is the type we're examining.
2267 ADDR_STACK holds information about the concrete object. VARIANT is
2268 the current variant to be handled. FLAGS is where the results are
2269 stored -- this function sets the Nth element in FLAGS if the
2270 corresponding field is enabled. ENABLED is whether this variant is
2271 enabled or not. */
2272
2273 static void
2274 compute_variant_fields_recurse (struct type *type,
2275 struct property_addr_info *addr_stack,
2276 const variant &variant,
2277 std::vector<bool> &flags,
2278 bool enabled)
2279 {
2280 for (int field = variant.first_field; field < variant.last_field; ++field)
2281 flags[field] = enabled;
2282
2283 for (const variant_part &new_part : variant.parts)
2284 {
2285 if (enabled)
2286 compute_variant_fields_inner (type, addr_stack, new_part, flags);
2287 else
2288 {
2289 for (const auto &sub_variant : new_part.variants)
2290 compute_variant_fields_recurse (type, addr_stack, sub_variant,
2291 flags, enabled);
2292 }
2293 }
2294 }
2295
2296 /* A helper function to determine which variant fields will be active.
2297 This evaluates the discriminant, decides which variant (if any) is
2298 active, and then updates FLAGS to reflect which fields should be
2299 available. TYPE is the type we're examining. ADDR_STACK holds
2300 information about the concrete object. VARIANT is the current
2301 variant to be handled. FLAGS is where the results are stored --
2302 this function sets the Nth element in FLAGS if the corresponding
2303 field is enabled. */
2304
2305 static void
2306 compute_variant_fields_inner (struct type *type,
2307 struct property_addr_info *addr_stack,
2308 const variant_part &part,
2309 std::vector<bool> &flags)
2310 {
2311 /* Evaluate the discriminant. */
2312 gdb::optional<ULONGEST> discr_value;
2313 if (part.discriminant_index != -1)
2314 {
2315 int idx = part.discriminant_index;
2316
2317 if (TYPE_FIELD_LOC_KIND (type, idx) != FIELD_LOC_KIND_BITPOS)
2318 error (_("Cannot determine struct field location"
2319 " (invalid location kind)"));
2320
2321 if (addr_stack->valaddr.data () != NULL)
2322 discr_value = unpack_field_as_long (type, addr_stack->valaddr.data (),
2323 idx);
2324 else
2325 {
2326 CORE_ADDR addr = (addr_stack->addr
2327 + (TYPE_FIELD_BITPOS (type, idx)
2328 / TARGET_CHAR_BIT));
2329
2330 LONGEST bitsize = TYPE_FIELD_BITSIZE (type, idx);
2331 LONGEST size = bitsize / 8;
2332 if (size == 0)
2333 size = TYPE_LENGTH (TYPE_FIELD_TYPE (type, idx));
2334
2335 gdb_byte bits[sizeof (ULONGEST)];
2336 read_memory (addr, bits, size);
2337
2338 LONGEST bitpos = (TYPE_FIELD_BITPOS (type, idx)
2339 % TARGET_CHAR_BIT);
2340
2341 discr_value = unpack_bits_as_long (TYPE_FIELD_TYPE (type, idx),
2342 bits, bitpos, bitsize);
2343 }
2344 }
2345
2346 /* Go through each variant and see which applies. */
2347 const variant *default_variant = nullptr;
2348 const variant *applied_variant = nullptr;
2349 for (const auto &variant : part.variants)
2350 {
2351 if (variant.is_default ())
2352 default_variant = &variant;
2353 else if (discr_value.has_value ()
2354 && variant.matches (*discr_value, part.is_unsigned))
2355 {
2356 applied_variant = &variant;
2357 break;
2358 }
2359 }
2360 if (applied_variant == nullptr)
2361 applied_variant = default_variant;
2362
2363 for (const auto &variant : part.variants)
2364 compute_variant_fields_recurse (type, addr_stack, variant,
2365 flags, applied_variant == &variant);
2366 }
2367
2368 /* Determine which variant fields are available in TYPE. The enabled
2369 fields are stored in RESOLVED_TYPE. ADDR_STACK holds information
2370 about the concrete object. PARTS describes the top-level variant
2371 parts for this type. */
2372
2373 static void
2374 compute_variant_fields (struct type *type,
2375 struct type *resolved_type,
2376 struct property_addr_info *addr_stack,
2377 const gdb::array_view<variant_part> &parts)
2378 {
2379 /* Assume all fields are included by default. */
2380 std::vector<bool> flags (TYPE_NFIELDS (resolved_type), true);
2381
2382 /* Now disable fields based on the variants that control them. */
2383 for (const auto &part : parts)
2384 compute_variant_fields_inner (type, addr_stack, part, flags);
2385
2386 TYPE_NFIELDS (resolved_type) = std::count (flags.begin (), flags.end (),
2387 true);
2388 TYPE_FIELDS (resolved_type)
2389 = (struct field *) TYPE_ALLOC (resolved_type,
2390 TYPE_NFIELDS (resolved_type)
2391 * sizeof (struct field));
2392 int out = 0;
2393 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
2394 {
2395 if (!flags[i])
2396 continue;
2397
2398 TYPE_FIELD (resolved_type, out) = TYPE_FIELD (type, i);
2399 ++out;
2400 }
2401 }
2402
2403 /* Resolve dynamic bounds of members of the struct TYPE to static
2404 bounds. ADDR_STACK is a stack of struct property_addr_info to
2405 be used if needed during the dynamic resolution. */
2406
2407 static struct type *
2408 resolve_dynamic_struct (struct type *type,
2409 struct property_addr_info *addr_stack)
2410 {
2411 struct type *resolved_type;
2412 int i;
2413 unsigned resolved_type_bit_length = 0;
2414
2415 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2416 gdb_assert (TYPE_NFIELDS (type) > 0);
2417
2418 resolved_type = copy_type (type);
2419
2420 struct dynamic_prop *variant_prop = get_dyn_prop (DYN_PROP_VARIANT_PARTS,
2421 resolved_type);
2422 if (variant_prop != nullptr && variant_prop->kind == PROP_VARIANT_PARTS)
2423 {
2424 compute_variant_fields (type, resolved_type, addr_stack,
2425 *variant_prop->data.variant_parts);
2426 /* We want to leave the property attached, so that the Rust code
2427 can tell whether the type was originally an enum. */
2428 variant_prop->kind = PROP_TYPE;
2429 variant_prop->data.original_type = type;
2430 }
2431 else
2432 {
2433 TYPE_FIELDS (resolved_type)
2434 = (struct field *) TYPE_ALLOC (resolved_type,
2435 TYPE_NFIELDS (resolved_type)
2436 * sizeof (struct field));
2437 memcpy (TYPE_FIELDS (resolved_type),
2438 TYPE_FIELDS (type),
2439 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2440 }
2441
2442 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2443 {
2444 unsigned new_bit_length;
2445 struct property_addr_info pinfo;
2446
2447 if (field_is_static (&TYPE_FIELD (resolved_type, i)))
2448 continue;
2449
2450 if (TYPE_FIELD_LOC_KIND (resolved_type, i) == FIELD_LOC_KIND_DWARF_BLOCK)
2451 {
2452 struct dwarf2_property_baton baton;
2453 baton.property_type
2454 = lookup_pointer_type (TYPE_FIELD_TYPE (resolved_type, i));
2455 baton.locexpr = *TYPE_FIELD_DWARF_BLOCK (resolved_type, i);
2456
2457 struct dynamic_prop prop;
2458 prop.kind = PROP_LOCEXPR;
2459 prop.data.baton = &baton;
2460
2461 CORE_ADDR addr;
2462 if (dwarf2_evaluate_property (&prop, nullptr, addr_stack, &addr,
2463 true))
2464 SET_FIELD_BITPOS (TYPE_FIELD (resolved_type, i),
2465 TARGET_CHAR_BIT * (addr - addr_stack->addr));
2466 }
2467
2468 /* As we know this field is not a static field, the field's
2469 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2470 this is the case, but only trigger a simple error rather
2471 than an internal error if that fails. While failing
2472 that verification indicates a bug in our code, the error
2473 is not severe enough to suggest to the user he stops
2474 his debugging session because of it. */
2475 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
2476 error (_("Cannot determine struct field location"
2477 " (invalid location kind)"));
2478
2479 pinfo.type = check_typedef (TYPE_FIELD_TYPE (resolved_type, i));
2480 pinfo.valaddr = addr_stack->valaddr;
2481 pinfo.addr
2482 = (addr_stack->addr
2483 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2484 pinfo.next = addr_stack;
2485
2486 TYPE_FIELD_TYPE (resolved_type, i)
2487 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2488 &pinfo, 0);
2489 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2490 == FIELD_LOC_KIND_BITPOS);
2491
2492 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2493 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2494 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2495 else
2496 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2497 * TARGET_CHAR_BIT);
2498
2499 /* Normally, we would use the position and size of the last field
2500 to determine the size of the enclosing structure. But GCC seems
2501 to be encoding the position of some fields incorrectly when
2502 the struct contains a dynamic field that is not placed last.
2503 So we compute the struct size based on the field that has
2504 the highest position + size - probably the best we can do. */
2505 if (new_bit_length > resolved_type_bit_length)
2506 resolved_type_bit_length = new_bit_length;
2507 }
2508
2509 /* The length of a type won't change for fortran, but it does for C and Ada.
2510 For fortran the size of dynamic fields might change over time but not the
2511 type length of the structure. If we adapt it, we run into problems
2512 when calculating the element offset for arrays of structs. */
2513 if (current_language->la_language != language_fortran)
2514 TYPE_LENGTH (resolved_type)
2515 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2516
2517 /* The Ada language uses this field as a cache for static fixed types: reset
2518 it as RESOLVED_TYPE must have its own static fixed type. */
2519 TYPE_TARGET_TYPE (resolved_type) = NULL;
2520
2521 return resolved_type;
2522 }
2523
2524 /* Worker for resolved_dynamic_type. */
2525
2526 static struct type *
2527 resolve_dynamic_type_internal (struct type *type,
2528 struct property_addr_info *addr_stack,
2529 int top_level)
2530 {
2531 struct type *real_type = check_typedef (type);
2532 struct type *resolved_type = nullptr;
2533 struct dynamic_prop *prop;
2534 CORE_ADDR value;
2535
2536 if (!is_dynamic_type_internal (real_type, top_level))
2537 return type;
2538
2539 gdb::optional<CORE_ADDR> type_length;
2540 prop = TYPE_DYNAMIC_LENGTH (type);
2541 if (prop != NULL
2542 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2543 type_length = value;
2544
2545 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2546 {
2547 resolved_type = copy_type (type);
2548 TYPE_TARGET_TYPE (resolved_type)
2549 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2550 top_level);
2551 }
2552 else
2553 {
2554 /* Before trying to resolve TYPE, make sure it is not a stub. */
2555 type = real_type;
2556
2557 switch (TYPE_CODE (type))
2558 {
2559 case TYPE_CODE_REF:
2560 {
2561 struct property_addr_info pinfo;
2562
2563 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2564 pinfo.valaddr = {};
2565 if (addr_stack->valaddr.data () != NULL)
2566 pinfo.addr = extract_typed_address (addr_stack->valaddr.data (),
2567 type);
2568 else
2569 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2570 pinfo.next = addr_stack;
2571
2572 resolved_type = copy_type (type);
2573 TYPE_TARGET_TYPE (resolved_type)
2574 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2575 &pinfo, top_level);
2576 break;
2577 }
2578
2579 case TYPE_CODE_STRING:
2580 /* Strings are very much like an array of characters, and can be
2581 treated as one here. */
2582 case TYPE_CODE_ARRAY:
2583 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2584 break;
2585
2586 case TYPE_CODE_RANGE:
2587 resolved_type = resolve_dynamic_range (type, addr_stack);
2588 break;
2589
2590 case TYPE_CODE_UNION:
2591 resolved_type = resolve_dynamic_union (type, addr_stack);
2592 break;
2593
2594 case TYPE_CODE_STRUCT:
2595 resolved_type = resolve_dynamic_struct (type, addr_stack);
2596 break;
2597 }
2598 }
2599
2600 if (resolved_type == nullptr)
2601 return type;
2602
2603 if (type_length.has_value ())
2604 {
2605 TYPE_LENGTH (resolved_type) = *type_length;
2606 remove_dyn_prop (DYN_PROP_BYTE_SIZE, resolved_type);
2607 }
2608
2609 /* Resolve data_location attribute. */
2610 prop = TYPE_DATA_LOCATION (resolved_type);
2611 if (prop != NULL
2612 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2613 {
2614 TYPE_DYN_PROP_ADDR (prop) = value;
2615 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2616 }
2617
2618 return resolved_type;
2619 }
2620
2621 /* See gdbtypes.h */
2622
2623 struct type *
2624 resolve_dynamic_type (struct type *type,
2625 gdb::array_view<const gdb_byte> valaddr,
2626 CORE_ADDR addr)
2627 {
2628 struct property_addr_info pinfo
2629 = {check_typedef (type), valaddr, addr, NULL};
2630
2631 return resolve_dynamic_type_internal (type, &pinfo, 1);
2632 }
2633
2634 /* See gdbtypes.h */
2635
2636 struct dynamic_prop *
2637 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2638 {
2639 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2640
2641 while (node != NULL)
2642 {
2643 if (node->prop_kind == prop_kind)
2644 return &node->prop;
2645 node = node->next;
2646 }
2647 return NULL;
2648 }
2649
2650 /* See gdbtypes.h */
2651
2652 void
2653 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2654 struct type *type)
2655 {
2656 struct dynamic_prop_list *temp;
2657
2658 gdb_assert (TYPE_OBJFILE_OWNED (type));
2659
2660 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2661 struct dynamic_prop_list);
2662 temp->prop_kind = prop_kind;
2663 temp->prop = prop;
2664 temp->next = TYPE_DYN_PROP_LIST (type);
2665
2666 TYPE_DYN_PROP_LIST (type) = temp;
2667 }
2668
2669 /* Remove dynamic property from TYPE in case it exists. */
2670
2671 void
2672 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2673 struct type *type)
2674 {
2675 struct dynamic_prop_list *prev_node, *curr_node;
2676
2677 curr_node = TYPE_DYN_PROP_LIST (type);
2678 prev_node = NULL;
2679
2680 while (NULL != curr_node)
2681 {
2682 if (curr_node->prop_kind == prop_kind)
2683 {
2684 /* Update the linked list but don't free anything.
2685 The property was allocated on objstack and it is not known
2686 if we are on top of it. Nevertheless, everything is released
2687 when the complete objstack is freed. */
2688 if (NULL == prev_node)
2689 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2690 else
2691 prev_node->next = curr_node->next;
2692
2693 return;
2694 }
2695
2696 prev_node = curr_node;
2697 curr_node = curr_node->next;
2698 }
2699 }
2700
2701 /* Find the real type of TYPE. This function returns the real type,
2702 after removing all layers of typedefs, and completing opaque or stub
2703 types. Completion changes the TYPE argument, but stripping of
2704 typedefs does not.
2705
2706 Instance flags (e.g. const/volatile) are preserved as typedefs are
2707 stripped. If necessary a new qualified form of the underlying type
2708 is created.
2709
2710 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2711 not been computed and we're either in the middle of reading symbols, or
2712 there was no name for the typedef in the debug info.
2713
2714 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2715 QUITs in the symbol reading code can also throw.
2716 Thus this function can throw an exception.
2717
2718 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2719 the target type.
2720
2721 If this is a stubbed struct (i.e. declared as struct foo *), see if
2722 we can find a full definition in some other file. If so, copy this
2723 definition, so we can use it in future. There used to be a comment
2724 (but not any code) that if we don't find a full definition, we'd
2725 set a flag so we don't spend time in the future checking the same
2726 type. That would be a mistake, though--we might load in more
2727 symbols which contain a full definition for the type. */
2728
2729 struct type *
2730 check_typedef (struct type *type)
2731 {
2732 struct type *orig_type = type;
2733 /* While we're removing typedefs, we don't want to lose qualifiers.
2734 E.g., const/volatile. */
2735 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2736
2737 gdb_assert (type);
2738
2739 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2740 {
2741 if (!TYPE_TARGET_TYPE (type))
2742 {
2743 const char *name;
2744 struct symbol *sym;
2745
2746 /* It is dangerous to call lookup_symbol if we are currently
2747 reading a symtab. Infinite recursion is one danger. */
2748 if (currently_reading_symtab)
2749 return make_qualified_type (type, instance_flags, NULL);
2750
2751 name = TYPE_NAME (type);
2752 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2753 VAR_DOMAIN as appropriate? */
2754 if (name == NULL)
2755 {
2756 stub_noname_complaint ();
2757 return make_qualified_type (type, instance_flags, NULL);
2758 }
2759 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2760 if (sym)
2761 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2762 else /* TYPE_CODE_UNDEF */
2763 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2764 }
2765 type = TYPE_TARGET_TYPE (type);
2766
2767 /* Preserve the instance flags as we traverse down the typedef chain.
2768
2769 Handling address spaces/classes is nasty, what do we do if there's a
2770 conflict?
2771 E.g., what if an outer typedef marks the type as class_1 and an inner
2772 typedef marks the type as class_2?
2773 This is the wrong place to do such error checking. We leave it to
2774 the code that created the typedef in the first place to flag the
2775 error. We just pick the outer address space (akin to letting the
2776 outer cast in a chain of casting win), instead of assuming
2777 "it can't happen". */
2778 {
2779 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2780 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2781 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2782 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2783
2784 /* Treat code vs data spaces and address classes separately. */
2785 if ((instance_flags & ALL_SPACES) != 0)
2786 new_instance_flags &= ~ALL_SPACES;
2787 if ((instance_flags & ALL_CLASSES) != 0)
2788 new_instance_flags &= ~ALL_CLASSES;
2789
2790 instance_flags |= new_instance_flags;
2791 }
2792 }
2793
2794 /* If this is a struct/class/union with no fields, then check
2795 whether a full definition exists somewhere else. This is for
2796 systems where a type definition with no fields is issued for such
2797 types, instead of identifying them as stub types in the first
2798 place. */
2799
2800 if (TYPE_IS_OPAQUE (type)
2801 && opaque_type_resolution
2802 && !currently_reading_symtab)
2803 {
2804 const char *name = TYPE_NAME (type);
2805 struct type *newtype;
2806
2807 if (name == NULL)
2808 {
2809 stub_noname_complaint ();
2810 return make_qualified_type (type, instance_flags, NULL);
2811 }
2812 newtype = lookup_transparent_type (name);
2813
2814 if (newtype)
2815 {
2816 /* If the resolved type and the stub are in the same
2817 objfile, then replace the stub type with the real deal.
2818 But if they're in separate objfiles, leave the stub
2819 alone; we'll just look up the transparent type every time
2820 we call check_typedef. We can't create pointers between
2821 types allocated to different objfiles, since they may
2822 have different lifetimes. Trying to copy NEWTYPE over to
2823 TYPE's objfile is pointless, too, since you'll have to
2824 move over any other types NEWTYPE refers to, which could
2825 be an unbounded amount of stuff. */
2826 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2827 type = make_qualified_type (newtype,
2828 TYPE_INSTANCE_FLAGS (type),
2829 type);
2830 else
2831 type = newtype;
2832 }
2833 }
2834 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2835 types. */
2836 else if (TYPE_STUB (type) && !currently_reading_symtab)
2837 {
2838 const char *name = TYPE_NAME (type);
2839 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2840 as appropriate? */
2841 struct symbol *sym;
2842
2843 if (name == NULL)
2844 {
2845 stub_noname_complaint ();
2846 return make_qualified_type (type, instance_flags, NULL);
2847 }
2848 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2849 if (sym)
2850 {
2851 /* Same as above for opaque types, we can replace the stub
2852 with the complete type only if they are in the same
2853 objfile. */
2854 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2855 type = make_qualified_type (SYMBOL_TYPE (sym),
2856 TYPE_INSTANCE_FLAGS (type),
2857 type);
2858 else
2859 type = SYMBOL_TYPE (sym);
2860 }
2861 }
2862
2863 if (TYPE_TARGET_STUB (type))
2864 {
2865 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2866
2867 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2868 {
2869 /* Nothing we can do. */
2870 }
2871 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2872 {
2873 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2874 TYPE_TARGET_STUB (type) = 0;
2875 }
2876 }
2877
2878 type = make_qualified_type (type, instance_flags, NULL);
2879
2880 /* Cache TYPE_LENGTH for future use. */
2881 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2882
2883 return type;
2884 }
2885
2886 /* Parse a type expression in the string [P..P+LENGTH). If an error
2887 occurs, silently return a void type. */
2888
2889 static struct type *
2890 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2891 {
2892 struct ui_file *saved_gdb_stderr;
2893 struct type *type = NULL; /* Initialize to keep gcc happy. */
2894
2895 /* Suppress error messages. */
2896 saved_gdb_stderr = gdb_stderr;
2897 gdb_stderr = &null_stream;
2898
2899 /* Call parse_and_eval_type() without fear of longjmp()s. */
2900 try
2901 {
2902 type = parse_and_eval_type (p, length);
2903 }
2904 catch (const gdb_exception_error &except)
2905 {
2906 type = builtin_type (gdbarch)->builtin_void;
2907 }
2908
2909 /* Stop suppressing error messages. */
2910 gdb_stderr = saved_gdb_stderr;
2911
2912 return type;
2913 }
2914
2915 /* Ugly hack to convert method stubs into method types.
2916
2917 He ain't kiddin'. This demangles the name of the method into a
2918 string including argument types, parses out each argument type,
2919 generates a string casting a zero to that type, evaluates the
2920 string, and stuffs the resulting type into an argtype vector!!!
2921 Then it knows the type of the whole function (including argument
2922 types for overloading), which info used to be in the stab's but was
2923 removed to hack back the space required for them. */
2924
2925 static void
2926 check_stub_method (struct type *type, int method_id, int signature_id)
2927 {
2928 struct gdbarch *gdbarch = get_type_arch (type);
2929 struct fn_field *f;
2930 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2931 char *demangled_name = gdb_demangle (mangled_name,
2932 DMGL_PARAMS | DMGL_ANSI);
2933 char *argtypetext, *p;
2934 int depth = 0, argcount = 1;
2935 struct field *argtypes;
2936 struct type *mtype;
2937
2938 /* Make sure we got back a function string that we can use. */
2939 if (demangled_name)
2940 p = strchr (demangled_name, '(');
2941 else
2942 p = NULL;
2943
2944 if (demangled_name == NULL || p == NULL)
2945 error (_("Internal: Cannot demangle mangled name `%s'."),
2946 mangled_name);
2947
2948 /* Now, read in the parameters that define this type. */
2949 p += 1;
2950 argtypetext = p;
2951 while (*p)
2952 {
2953 if (*p == '(' || *p == '<')
2954 {
2955 depth += 1;
2956 }
2957 else if (*p == ')' || *p == '>')
2958 {
2959 depth -= 1;
2960 }
2961 else if (*p == ',' && depth == 0)
2962 {
2963 argcount += 1;
2964 }
2965
2966 p += 1;
2967 }
2968
2969 /* If we read one argument and it was ``void'', don't count it. */
2970 if (startswith (argtypetext, "(void)"))
2971 argcount -= 1;
2972
2973 /* We need one extra slot, for the THIS pointer. */
2974
2975 argtypes = (struct field *)
2976 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2977 p = argtypetext;
2978
2979 /* Add THIS pointer for non-static methods. */
2980 f = TYPE_FN_FIELDLIST1 (type, method_id);
2981 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2982 argcount = 0;
2983 else
2984 {
2985 argtypes[0].type = lookup_pointer_type (type);
2986 argcount = 1;
2987 }
2988
2989 if (*p != ')') /* () means no args, skip while. */
2990 {
2991 depth = 0;
2992 while (*p)
2993 {
2994 if (depth <= 0 && (*p == ',' || *p == ')'))
2995 {
2996 /* Avoid parsing of ellipsis, they will be handled below.
2997 Also avoid ``void'' as above. */
2998 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2999 && strncmp (argtypetext, "void", p - argtypetext) != 0)
3000 {
3001 argtypes[argcount].type =
3002 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
3003 argcount += 1;
3004 }
3005 argtypetext = p + 1;
3006 }
3007
3008 if (*p == '(' || *p == '<')
3009 {
3010 depth += 1;
3011 }
3012 else if (*p == ')' || *p == '>')
3013 {
3014 depth -= 1;
3015 }
3016
3017 p += 1;
3018 }
3019 }
3020
3021 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
3022
3023 /* Now update the old "stub" type into a real type. */
3024 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
3025 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
3026 We want a method (TYPE_CODE_METHOD). */
3027 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
3028 argtypes, argcount, p[-2] == '.');
3029 TYPE_STUB (mtype) = 0;
3030 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
3031
3032 xfree (demangled_name);
3033 }
3034
3035 /* This is the external interface to check_stub_method, above. This
3036 function unstubs all of the signatures for TYPE's METHOD_ID method
3037 name. After calling this function TYPE_FN_FIELD_STUB will be
3038 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
3039 correct.
3040
3041 This function unfortunately can not die until stabs do. */
3042
3043 void
3044 check_stub_method_group (struct type *type, int method_id)
3045 {
3046 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
3047 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
3048
3049 for (int j = 0; j < len; j++)
3050 {
3051 if (TYPE_FN_FIELD_STUB (f, j))
3052 check_stub_method (type, method_id, j);
3053 }
3054 }
3055
3056 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
3057 const struct cplus_struct_type cplus_struct_default = { };
3058
3059 void
3060 allocate_cplus_struct_type (struct type *type)
3061 {
3062 if (HAVE_CPLUS_STRUCT (type))
3063 /* Structure was already allocated. Nothing more to do. */
3064 return;
3065
3066 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
3067 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
3068 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
3069 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
3070 set_type_vptr_fieldno (type, -1);
3071 }
3072
3073 const struct gnat_aux_type gnat_aux_default =
3074 { NULL };
3075
3076 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
3077 and allocate the associated gnat-specific data. The gnat-specific
3078 data is also initialized to gnat_aux_default. */
3079
3080 void
3081 allocate_gnat_aux_type (struct type *type)
3082 {
3083 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
3084 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
3085 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
3086 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
3087 }
3088
3089 /* Helper function to initialize a newly allocated type. Set type code
3090 to CODE and initialize the type-specific fields accordingly. */
3091
3092 static void
3093 set_type_code (struct type *type, enum type_code code)
3094 {
3095 TYPE_CODE (type) = code;
3096
3097 switch (code)
3098 {
3099 case TYPE_CODE_STRUCT:
3100 case TYPE_CODE_UNION:
3101 case TYPE_CODE_NAMESPACE:
3102 INIT_CPLUS_SPECIFIC (type);
3103 break;
3104 case TYPE_CODE_FLT:
3105 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
3106 break;
3107 case TYPE_CODE_FUNC:
3108 INIT_FUNC_SPECIFIC (type);
3109 break;
3110 }
3111 }
3112
3113 /* Helper function to verify floating-point format and size.
3114 BIT is the type size in bits; if BIT equals -1, the size is
3115 determined by the floatformat. Returns size to be used. */
3116
3117 static int
3118 verify_floatformat (int bit, const struct floatformat *floatformat)
3119 {
3120 gdb_assert (floatformat != NULL);
3121
3122 if (bit == -1)
3123 bit = floatformat->totalsize;
3124
3125 gdb_assert (bit >= 0);
3126 gdb_assert (bit >= floatformat->totalsize);
3127
3128 return bit;
3129 }
3130
3131 /* Return the floating-point format for a floating-point variable of
3132 type TYPE. */
3133
3134 const struct floatformat *
3135 floatformat_from_type (const struct type *type)
3136 {
3137 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
3138 gdb_assert (TYPE_FLOATFORMAT (type));
3139 return TYPE_FLOATFORMAT (type);
3140 }
3141
3142 /* Helper function to initialize the standard scalar types.
3143
3144 If NAME is non-NULL, then it is used to initialize the type name.
3145 Note that NAME is not copied; it is required to have a lifetime at
3146 least as long as OBJFILE. */
3147
3148 struct type *
3149 init_type (struct objfile *objfile, enum type_code code, int bit,
3150 const char *name)
3151 {
3152 struct type *type;
3153
3154 type = alloc_type (objfile);
3155 set_type_code (type, code);
3156 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
3157 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
3158 TYPE_NAME (type) = name;
3159
3160 return type;
3161 }
3162
3163 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
3164 to use with variables that have no debug info. NAME is the type
3165 name. */
3166
3167 static struct type *
3168 init_nodebug_var_type (struct objfile *objfile, const char *name)
3169 {
3170 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
3171 }
3172
3173 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
3174 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3175 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3176
3177 struct type *
3178 init_integer_type (struct objfile *objfile,
3179 int bit, int unsigned_p, const char *name)
3180 {
3181 struct type *t;
3182
3183 t = init_type (objfile, TYPE_CODE_INT, bit, name);
3184 if (unsigned_p)
3185 TYPE_UNSIGNED (t) = 1;
3186
3187 return t;
3188 }
3189
3190 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
3191 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3192 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3193
3194 struct type *
3195 init_character_type (struct objfile *objfile,
3196 int bit, int unsigned_p, const char *name)
3197 {
3198 struct type *t;
3199
3200 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
3201 if (unsigned_p)
3202 TYPE_UNSIGNED (t) = 1;
3203
3204 return t;
3205 }
3206
3207 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
3208 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3209 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3210
3211 struct type *
3212 init_boolean_type (struct objfile *objfile,
3213 int bit, int unsigned_p, const char *name)
3214 {
3215 struct type *t;
3216
3217 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
3218 if (unsigned_p)
3219 TYPE_UNSIGNED (t) = 1;
3220
3221 return t;
3222 }
3223
3224 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
3225 BIT is the type size in bits; if BIT equals -1, the size is
3226 determined by the floatformat. NAME is the type name. Set the
3227 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
3228 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
3229 order of the objfile's architecture is used. */
3230
3231 struct type *
3232 init_float_type (struct objfile *objfile,
3233 int bit, const char *name,
3234 const struct floatformat **floatformats,
3235 enum bfd_endian byte_order)
3236 {
3237 if (byte_order == BFD_ENDIAN_UNKNOWN)
3238 {
3239 struct gdbarch *gdbarch = objfile->arch ();
3240 byte_order = gdbarch_byte_order (gdbarch);
3241 }
3242 const struct floatformat *fmt = floatformats[byte_order];
3243 struct type *t;
3244
3245 bit = verify_floatformat (bit, fmt);
3246 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3247 TYPE_FLOATFORMAT (t) = fmt;
3248
3249 return t;
3250 }
3251
3252 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3253 BIT is the type size in bits. NAME is the type name. */
3254
3255 struct type *
3256 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3257 {
3258 struct type *t;
3259
3260 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3261 return t;
3262 }
3263
3264 /* Allocate a TYPE_CODE_COMPLEX type structure. NAME is the type
3265 name. TARGET_TYPE is the component type. */
3266
3267 struct type *
3268 init_complex_type (const char *name, struct type *target_type)
3269 {
3270 struct type *t;
3271
3272 gdb_assert (TYPE_CODE (target_type) == TYPE_CODE_INT
3273 || TYPE_CODE (target_type) == TYPE_CODE_FLT);
3274
3275 if (TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type == nullptr)
3276 {
3277 if (name == nullptr)
3278 {
3279 char *new_name
3280 = (char *) TYPE_ALLOC (target_type,
3281 strlen (TYPE_NAME (target_type))
3282 + strlen ("_Complex ") + 1);
3283 strcpy (new_name, "_Complex ");
3284 strcat (new_name, TYPE_NAME (target_type));
3285 name = new_name;
3286 }
3287
3288 t = alloc_type_copy (target_type);
3289 set_type_code (t, TYPE_CODE_COMPLEX);
3290 TYPE_LENGTH (t) = 2 * TYPE_LENGTH (target_type);
3291 TYPE_NAME (t) = name;
3292
3293 TYPE_TARGET_TYPE (t) = target_type;
3294 TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type = t;
3295 }
3296
3297 return TYPE_MAIN_TYPE (target_type)->flds_bnds.complex_type;
3298 }
3299
3300 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3301 BIT is the pointer type size in bits. NAME is the type name.
3302 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3303 TYPE_UNSIGNED flag. */
3304
3305 struct type *
3306 init_pointer_type (struct objfile *objfile,
3307 int bit, const char *name, struct type *target_type)
3308 {
3309 struct type *t;
3310
3311 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3312 TYPE_TARGET_TYPE (t) = target_type;
3313 TYPE_UNSIGNED (t) = 1;
3314 return t;
3315 }
3316
3317 /* See gdbtypes.h. */
3318
3319 unsigned
3320 type_raw_align (struct type *type)
3321 {
3322 if (type->align_log2 != 0)
3323 return 1 << (type->align_log2 - 1);
3324 return 0;
3325 }
3326
3327 /* See gdbtypes.h. */
3328
3329 unsigned
3330 type_align (struct type *type)
3331 {
3332 /* Check alignment provided in the debug information. */
3333 unsigned raw_align = type_raw_align (type);
3334 if (raw_align != 0)
3335 return raw_align;
3336
3337 /* Allow the architecture to provide an alignment. */
3338 struct gdbarch *arch = get_type_arch (type);
3339 ULONGEST align = gdbarch_type_align (arch, type);
3340 if (align != 0)
3341 return align;
3342
3343 switch (TYPE_CODE (type))
3344 {
3345 case TYPE_CODE_PTR:
3346 case TYPE_CODE_FUNC:
3347 case TYPE_CODE_FLAGS:
3348 case TYPE_CODE_INT:
3349 case TYPE_CODE_RANGE:
3350 case TYPE_CODE_FLT:
3351 case TYPE_CODE_ENUM:
3352 case TYPE_CODE_REF:
3353 case TYPE_CODE_RVALUE_REF:
3354 case TYPE_CODE_CHAR:
3355 case TYPE_CODE_BOOL:
3356 case TYPE_CODE_DECFLOAT:
3357 case TYPE_CODE_METHODPTR:
3358 case TYPE_CODE_MEMBERPTR:
3359 align = type_length_units (check_typedef (type));
3360 break;
3361
3362 case TYPE_CODE_ARRAY:
3363 case TYPE_CODE_COMPLEX:
3364 case TYPE_CODE_TYPEDEF:
3365 align = type_align (TYPE_TARGET_TYPE (type));
3366 break;
3367
3368 case TYPE_CODE_STRUCT:
3369 case TYPE_CODE_UNION:
3370 {
3371 int number_of_non_static_fields = 0;
3372 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3373 {
3374 if (!field_is_static (&TYPE_FIELD (type, i)))
3375 {
3376 number_of_non_static_fields++;
3377 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3378 if (f_align == 0)
3379 {
3380 /* Don't pretend we know something we don't. */
3381 align = 0;
3382 break;
3383 }
3384 if (f_align > align)
3385 align = f_align;
3386 }
3387 }
3388 /* A struct with no fields, or with only static fields has an
3389 alignment of 1. */
3390 if (number_of_non_static_fields == 0)
3391 align = 1;
3392 }
3393 break;
3394
3395 case TYPE_CODE_SET:
3396 case TYPE_CODE_STRING:
3397 /* Not sure what to do here, and these can't appear in C or C++
3398 anyway. */
3399 break;
3400
3401 case TYPE_CODE_VOID:
3402 align = 1;
3403 break;
3404
3405 case TYPE_CODE_ERROR:
3406 case TYPE_CODE_METHOD:
3407 default:
3408 break;
3409 }
3410
3411 if ((align & (align - 1)) != 0)
3412 {
3413 /* Not a power of 2, so pass. */
3414 align = 0;
3415 }
3416
3417 return align;
3418 }
3419
3420 /* See gdbtypes.h. */
3421
3422 bool
3423 set_type_align (struct type *type, ULONGEST align)
3424 {
3425 /* Must be a power of 2. Zero is ok. */
3426 gdb_assert ((align & (align - 1)) == 0);
3427
3428 unsigned result = 0;
3429 while (align != 0)
3430 {
3431 ++result;
3432 align >>= 1;
3433 }
3434
3435 if (result >= (1 << TYPE_ALIGN_BITS))
3436 return false;
3437
3438 type->align_log2 = result;
3439 return true;
3440 }
3441
3442 \f
3443 /* Queries on types. */
3444
3445 int
3446 can_dereference (struct type *t)
3447 {
3448 /* FIXME: Should we return true for references as well as
3449 pointers? */
3450 t = check_typedef (t);
3451 return
3452 (t != NULL
3453 && TYPE_CODE (t) == TYPE_CODE_PTR
3454 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3455 }
3456
3457 int
3458 is_integral_type (struct type *t)
3459 {
3460 t = check_typedef (t);
3461 return
3462 ((t != NULL)
3463 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3464 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3465 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3466 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3467 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3468 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3469 }
3470
3471 int
3472 is_floating_type (struct type *t)
3473 {
3474 t = check_typedef (t);
3475 return
3476 ((t != NULL)
3477 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3478 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3479 }
3480
3481 /* Return true if TYPE is scalar. */
3482
3483 int
3484 is_scalar_type (struct type *type)
3485 {
3486 type = check_typedef (type);
3487
3488 switch (TYPE_CODE (type))
3489 {
3490 case TYPE_CODE_ARRAY:
3491 case TYPE_CODE_STRUCT:
3492 case TYPE_CODE_UNION:
3493 case TYPE_CODE_SET:
3494 case TYPE_CODE_STRING:
3495 return 0;
3496 default:
3497 return 1;
3498 }
3499 }
3500
3501 /* Return true if T is scalar, or a composite type which in practice has
3502 the memory layout of a scalar type. E.g., an array or struct with only
3503 one scalar element inside it, or a union with only scalar elements. */
3504
3505 int
3506 is_scalar_type_recursive (struct type *t)
3507 {
3508 t = check_typedef (t);
3509
3510 if (is_scalar_type (t))
3511 return 1;
3512 /* Are we dealing with an array or string of known dimensions? */
3513 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3514 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3515 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3516 {
3517 LONGEST low_bound, high_bound;
3518 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3519
3520 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3521
3522 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3523 }
3524 /* Are we dealing with a struct with one element? */
3525 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3526 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3527 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3528 {
3529 int i, n = TYPE_NFIELDS (t);
3530
3531 /* If all elements of the union are scalar, then the union is scalar. */
3532 for (i = 0; i < n; i++)
3533 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3534 return 0;
3535
3536 return 1;
3537 }
3538
3539 return 0;
3540 }
3541
3542 /* Return true is T is a class or a union. False otherwise. */
3543
3544 int
3545 class_or_union_p (const struct type *t)
3546 {
3547 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3548 || TYPE_CODE (t) == TYPE_CODE_UNION);
3549 }
3550
3551 /* A helper function which returns true if types A and B represent the
3552 "same" class type. This is true if the types have the same main
3553 type, or the same name. */
3554
3555 int
3556 class_types_same_p (const struct type *a, const struct type *b)
3557 {
3558 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3559 || (TYPE_NAME (a) && TYPE_NAME (b)
3560 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3561 }
3562
3563 /* If BASE is an ancestor of DCLASS return the distance between them.
3564 otherwise return -1;
3565 eg:
3566
3567 class A {};
3568 class B: public A {};
3569 class C: public B {};
3570 class D: C {};
3571
3572 distance_to_ancestor (A, A, 0) = 0
3573 distance_to_ancestor (A, B, 0) = 1
3574 distance_to_ancestor (A, C, 0) = 2
3575 distance_to_ancestor (A, D, 0) = 3
3576
3577 If PUBLIC is 1 then only public ancestors are considered,
3578 and the function returns the distance only if BASE is a public ancestor
3579 of DCLASS.
3580 Eg:
3581
3582 distance_to_ancestor (A, D, 1) = -1. */
3583
3584 static int
3585 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3586 {
3587 int i;
3588 int d;
3589
3590 base = check_typedef (base);
3591 dclass = check_typedef (dclass);
3592
3593 if (class_types_same_p (base, dclass))
3594 return 0;
3595
3596 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3597 {
3598 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3599 continue;
3600
3601 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3602 if (d >= 0)
3603 return 1 + d;
3604 }
3605
3606 return -1;
3607 }
3608
3609 /* Check whether BASE is an ancestor or base class or DCLASS
3610 Return 1 if so, and 0 if not.
3611 Note: If BASE and DCLASS are of the same type, this function
3612 will return 1. So for some class A, is_ancestor (A, A) will
3613 return 1. */
3614
3615 int
3616 is_ancestor (struct type *base, struct type *dclass)
3617 {
3618 return distance_to_ancestor (base, dclass, 0) >= 0;
3619 }
3620
3621 /* Like is_ancestor, but only returns true when BASE is a public
3622 ancestor of DCLASS. */
3623
3624 int
3625 is_public_ancestor (struct type *base, struct type *dclass)
3626 {
3627 return distance_to_ancestor (base, dclass, 1) >= 0;
3628 }
3629
3630 /* A helper function for is_unique_ancestor. */
3631
3632 static int
3633 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3634 int *offset,
3635 const gdb_byte *valaddr, int embedded_offset,
3636 CORE_ADDR address, struct value *val)
3637 {
3638 int i, count = 0;
3639
3640 base = check_typedef (base);
3641 dclass = check_typedef (dclass);
3642
3643 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3644 {
3645 struct type *iter;
3646 int this_offset;
3647
3648 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3649
3650 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3651 address, val);
3652
3653 if (class_types_same_p (base, iter))
3654 {
3655 /* If this is the first subclass, set *OFFSET and set count
3656 to 1. Otherwise, if this is at the same offset as
3657 previous instances, do nothing. Otherwise, increment
3658 count. */
3659 if (*offset == -1)
3660 {
3661 *offset = this_offset;
3662 count = 1;
3663 }
3664 else if (this_offset == *offset)
3665 {
3666 /* Nothing. */
3667 }
3668 else
3669 ++count;
3670 }
3671 else
3672 count += is_unique_ancestor_worker (base, iter, offset,
3673 valaddr,
3674 embedded_offset + this_offset,
3675 address, val);
3676 }
3677
3678 return count;
3679 }
3680
3681 /* Like is_ancestor, but only returns true if BASE is a unique base
3682 class of the type of VAL. */
3683
3684 int
3685 is_unique_ancestor (struct type *base, struct value *val)
3686 {
3687 int offset = -1;
3688
3689 return is_unique_ancestor_worker (base, value_type (val), &offset,
3690 value_contents_for_printing (val),
3691 value_embedded_offset (val),
3692 value_address (val), val) == 1;
3693 }
3694
3695 /* See gdbtypes.h. */
3696
3697 enum bfd_endian
3698 type_byte_order (const struct type *type)
3699 {
3700 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3701 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3702 {
3703 if (byteorder == BFD_ENDIAN_BIG)
3704 return BFD_ENDIAN_LITTLE;
3705 else
3706 {
3707 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3708 return BFD_ENDIAN_BIG;
3709 }
3710 }
3711
3712 return byteorder;
3713 }
3714
3715 \f
3716 /* Overload resolution. */
3717
3718 /* Return the sum of the rank of A with the rank of B. */
3719
3720 struct rank
3721 sum_ranks (struct rank a, struct rank b)
3722 {
3723 struct rank c;
3724 c.rank = a.rank + b.rank;
3725 c.subrank = a.subrank + b.subrank;
3726 return c;
3727 }
3728
3729 /* Compare rank A and B and return:
3730 0 if a = b
3731 1 if a is better than b
3732 -1 if b is better than a. */
3733
3734 int
3735 compare_ranks (struct rank a, struct rank b)
3736 {
3737 if (a.rank == b.rank)
3738 {
3739 if (a.subrank == b.subrank)
3740 return 0;
3741 if (a.subrank < b.subrank)
3742 return 1;
3743 if (a.subrank > b.subrank)
3744 return -1;
3745 }
3746
3747 if (a.rank < b.rank)
3748 return 1;
3749
3750 /* a.rank > b.rank */
3751 return -1;
3752 }
3753
3754 /* Functions for overload resolution begin here. */
3755
3756 /* Compare two badness vectors A and B and return the result.
3757 0 => A and B are identical
3758 1 => A and B are incomparable
3759 2 => A is better than B
3760 3 => A is worse than B */
3761
3762 int
3763 compare_badness (const badness_vector &a, const badness_vector &b)
3764 {
3765 int i;
3766 int tmp;
3767 short found_pos = 0; /* any positives in c? */
3768 short found_neg = 0; /* any negatives in c? */
3769
3770 /* differing sizes => incomparable */
3771 if (a.size () != b.size ())
3772 return 1;
3773
3774 /* Subtract b from a */
3775 for (i = 0; i < a.size (); i++)
3776 {
3777 tmp = compare_ranks (b[i], a[i]);
3778 if (tmp > 0)
3779 found_pos = 1;
3780 else if (tmp < 0)
3781 found_neg = 1;
3782 }
3783
3784 if (found_pos)
3785 {
3786 if (found_neg)
3787 return 1; /* incomparable */
3788 else
3789 return 3; /* A > B */
3790 }
3791 else
3792 /* no positives */
3793 {
3794 if (found_neg)
3795 return 2; /* A < B */
3796 else
3797 return 0; /* A == B */
3798 }
3799 }
3800
3801 /* Rank a function by comparing its parameter types (PARMS), to the
3802 types of an argument list (ARGS). Return the badness vector. This
3803 has ARGS.size() + 1 entries. */
3804
3805 badness_vector
3806 rank_function (gdb::array_view<type *> parms,
3807 gdb::array_view<value *> args)
3808 {
3809 /* add 1 for the length-match rank. */
3810 badness_vector bv;
3811 bv.reserve (1 + args.size ());
3812
3813 /* First compare the lengths of the supplied lists.
3814 If there is a mismatch, set it to a high value. */
3815
3816 /* pai/1997-06-03 FIXME: when we have debug info about default
3817 arguments and ellipsis parameter lists, we should consider those
3818 and rank the length-match more finely. */
3819
3820 bv.push_back ((args.size () != parms.size ())
3821 ? LENGTH_MISMATCH_BADNESS
3822 : EXACT_MATCH_BADNESS);
3823
3824 /* Now rank all the parameters of the candidate function. */
3825 size_t min_len = std::min (parms.size (), args.size ());
3826
3827 for (size_t i = 0; i < min_len; i++)
3828 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3829 args[i]));
3830
3831 /* If more arguments than parameters, add dummy entries. */
3832 for (size_t i = min_len; i < args.size (); i++)
3833 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3834
3835 return bv;
3836 }
3837
3838 /* Compare the names of two integer types, assuming that any sign
3839 qualifiers have been checked already. We do it this way because
3840 there may be an "int" in the name of one of the types. */
3841
3842 static int
3843 integer_types_same_name_p (const char *first, const char *second)
3844 {
3845 int first_p, second_p;
3846
3847 /* If both are shorts, return 1; if neither is a short, keep
3848 checking. */
3849 first_p = (strstr (first, "short") != NULL);
3850 second_p = (strstr (second, "short") != NULL);
3851 if (first_p && second_p)
3852 return 1;
3853 if (first_p || second_p)
3854 return 0;
3855
3856 /* Likewise for long. */
3857 first_p = (strstr (first, "long") != NULL);
3858 second_p = (strstr (second, "long") != NULL);
3859 if (first_p && second_p)
3860 return 1;
3861 if (first_p || second_p)
3862 return 0;
3863
3864 /* Likewise for char. */
3865 first_p = (strstr (first, "char") != NULL);
3866 second_p = (strstr (second, "char") != NULL);
3867 if (first_p && second_p)
3868 return 1;
3869 if (first_p || second_p)
3870 return 0;
3871
3872 /* They must both be ints. */
3873 return 1;
3874 }
3875
3876 /* Compares type A to type B. Returns true if they represent the same
3877 type, false otherwise. */
3878
3879 bool
3880 types_equal (struct type *a, struct type *b)
3881 {
3882 /* Identical type pointers. */
3883 /* However, this still doesn't catch all cases of same type for b
3884 and a. The reason is that builtin types are different from
3885 the same ones constructed from the object. */
3886 if (a == b)
3887 return true;
3888
3889 /* Resolve typedefs */
3890 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3891 a = check_typedef (a);
3892 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3893 b = check_typedef (b);
3894
3895 /* If after resolving typedefs a and b are not of the same type
3896 code then they are not equal. */
3897 if (TYPE_CODE (a) != TYPE_CODE (b))
3898 return false;
3899
3900 /* If a and b are both pointers types or both reference types then
3901 they are equal of the same type iff the objects they refer to are
3902 of the same type. */
3903 if (TYPE_CODE (a) == TYPE_CODE_PTR
3904 || TYPE_CODE (a) == TYPE_CODE_REF)
3905 return types_equal (TYPE_TARGET_TYPE (a),
3906 TYPE_TARGET_TYPE (b));
3907
3908 /* Well, damnit, if the names are exactly the same, I'll say they
3909 are exactly the same. This happens when we generate method
3910 stubs. The types won't point to the same address, but they
3911 really are the same. */
3912
3913 if (TYPE_NAME (a) && TYPE_NAME (b)
3914 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3915 return true;
3916
3917 /* Check if identical after resolving typedefs. */
3918 if (a == b)
3919 return true;
3920
3921 /* Two function types are equal if their argument and return types
3922 are equal. */
3923 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3924 {
3925 int i;
3926
3927 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3928 return false;
3929
3930 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3931 return false;
3932
3933 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3934 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3935 return false;
3936
3937 return true;
3938 }
3939
3940 return false;
3941 }
3942 \f
3943 /* Deep comparison of types. */
3944
3945 /* An entry in the type-equality bcache. */
3946
3947 struct type_equality_entry
3948 {
3949 type_equality_entry (struct type *t1, struct type *t2)
3950 : type1 (t1),
3951 type2 (t2)
3952 {
3953 }
3954
3955 struct type *type1, *type2;
3956 };
3957
3958 /* A helper function to compare two strings. Returns true if they are
3959 the same, false otherwise. Handles NULLs properly. */
3960
3961 static bool
3962 compare_maybe_null_strings (const char *s, const char *t)
3963 {
3964 if (s == NULL || t == NULL)
3965 return s == t;
3966 return strcmp (s, t) == 0;
3967 }
3968
3969 /* A helper function for check_types_worklist that checks two types for
3970 "deep" equality. Returns true if the types are considered the
3971 same, false otherwise. */
3972
3973 static bool
3974 check_types_equal (struct type *type1, struct type *type2,
3975 std::vector<type_equality_entry> *worklist)
3976 {
3977 type1 = check_typedef (type1);
3978 type2 = check_typedef (type2);
3979
3980 if (type1 == type2)
3981 return true;
3982
3983 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3984 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3985 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3986 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3987 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3988 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3989 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3990 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3991 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3992 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3993 return false;
3994
3995 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3996 return false;
3997 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3998 return false;
3999
4000 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
4001 {
4002 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
4003 return false;
4004 }
4005 else
4006 {
4007 int i;
4008
4009 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
4010 {
4011 const struct field *field1 = &TYPE_FIELD (type1, i);
4012 const struct field *field2 = &TYPE_FIELD (type2, i);
4013
4014 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
4015 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
4016 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
4017 return false;
4018 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
4019 FIELD_NAME (*field2)))
4020 return false;
4021 switch (FIELD_LOC_KIND (*field1))
4022 {
4023 case FIELD_LOC_KIND_BITPOS:
4024 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
4025 return false;
4026 break;
4027 case FIELD_LOC_KIND_ENUMVAL:
4028 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
4029 return false;
4030 break;
4031 case FIELD_LOC_KIND_PHYSADDR:
4032 if (FIELD_STATIC_PHYSADDR (*field1)
4033 != FIELD_STATIC_PHYSADDR (*field2))
4034 return false;
4035 break;
4036 case FIELD_LOC_KIND_PHYSNAME:
4037 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
4038 FIELD_STATIC_PHYSNAME (*field2)))
4039 return false;
4040 break;
4041 case FIELD_LOC_KIND_DWARF_BLOCK:
4042 {
4043 struct dwarf2_locexpr_baton *block1, *block2;
4044
4045 block1 = FIELD_DWARF_BLOCK (*field1);
4046 block2 = FIELD_DWARF_BLOCK (*field2);
4047 if (block1->per_cu != block2->per_cu
4048 || block1->size != block2->size
4049 || memcmp (block1->data, block2->data, block1->size) != 0)
4050 return false;
4051 }
4052 break;
4053 default:
4054 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
4055 "%d by check_types_equal"),
4056 FIELD_LOC_KIND (*field1));
4057 }
4058
4059 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
4060 }
4061 }
4062
4063 if (TYPE_TARGET_TYPE (type1) != NULL)
4064 {
4065 if (TYPE_TARGET_TYPE (type2) == NULL)
4066 return false;
4067
4068 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
4069 TYPE_TARGET_TYPE (type2));
4070 }
4071 else if (TYPE_TARGET_TYPE (type2) != NULL)
4072 return false;
4073
4074 return true;
4075 }
4076
4077 /* Check types on a worklist for equality. Returns false if any pair
4078 is not equal, true if they are all considered equal. */
4079
4080 static bool
4081 check_types_worklist (std::vector<type_equality_entry> *worklist,
4082 gdb::bcache *cache)
4083 {
4084 while (!worklist->empty ())
4085 {
4086 int added;
4087
4088 struct type_equality_entry entry = std::move (worklist->back ());
4089 worklist->pop_back ();
4090
4091 /* If the type pair has already been visited, we know it is
4092 ok. */
4093 cache->insert (&entry, sizeof (entry), &added);
4094 if (!added)
4095 continue;
4096
4097 if (!check_types_equal (entry.type1, entry.type2, worklist))
4098 return false;
4099 }
4100
4101 return true;
4102 }
4103
4104 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
4105 "deep comparison". Otherwise return false. */
4106
4107 bool
4108 types_deeply_equal (struct type *type1, struct type *type2)
4109 {
4110 std::vector<type_equality_entry> worklist;
4111
4112 gdb_assert (type1 != NULL && type2 != NULL);
4113
4114 /* Early exit for the simple case. */
4115 if (type1 == type2)
4116 return true;
4117
4118 gdb::bcache cache (nullptr, nullptr);
4119 worklist.emplace_back (type1, type2);
4120 return check_types_worklist (&worklist, &cache);
4121 }
4122
4123 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
4124 Otherwise return one. */
4125
4126 int
4127 type_not_allocated (const struct type *type)
4128 {
4129 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
4130
4131 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4132 && !TYPE_DYN_PROP_ADDR (prop));
4133 }
4134
4135 /* Associated status of type TYPE. Return zero if type TYPE is associated.
4136 Otherwise return one. */
4137
4138 int
4139 type_not_associated (const struct type *type)
4140 {
4141 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
4142
4143 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
4144 && !TYPE_DYN_PROP_ADDR (prop));
4145 }
4146
4147 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
4148
4149 static struct rank
4150 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
4151 {
4152 struct rank rank = {0,0};
4153
4154 switch (TYPE_CODE (arg))
4155 {
4156 case TYPE_CODE_PTR:
4157
4158 /* Allowed pointer conversions are:
4159 (a) pointer to void-pointer conversion. */
4160 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
4161 return VOID_PTR_CONVERSION_BADNESS;
4162
4163 /* (b) pointer to ancestor-pointer conversion. */
4164 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
4165 TYPE_TARGET_TYPE (arg),
4166 0);
4167 if (rank.subrank >= 0)
4168 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
4169
4170 return INCOMPATIBLE_TYPE_BADNESS;
4171 case TYPE_CODE_ARRAY:
4172 {
4173 struct type *t1 = TYPE_TARGET_TYPE (parm);
4174 struct type *t2 = TYPE_TARGET_TYPE (arg);
4175
4176 if (types_equal (t1, t2))
4177 {
4178 /* Make sure they are CV equal. */
4179 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4180 rank.subrank |= CV_CONVERSION_CONST;
4181 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4182 rank.subrank |= CV_CONVERSION_VOLATILE;
4183 if (rank.subrank != 0)
4184 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4185 return EXACT_MATCH_BADNESS;
4186 }
4187 return INCOMPATIBLE_TYPE_BADNESS;
4188 }
4189 case TYPE_CODE_FUNC:
4190 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
4191 case TYPE_CODE_INT:
4192 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
4193 {
4194 if (value_as_long (value) == 0)
4195 {
4196 /* Null pointer conversion: allow it to be cast to a pointer.
4197 [4.10.1 of C++ standard draft n3290] */
4198 return NULL_POINTER_CONVERSION_BADNESS;
4199 }
4200 else
4201 {
4202 /* If type checking is disabled, allow the conversion. */
4203 if (!strict_type_checking)
4204 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
4205 }
4206 }
4207 /* fall through */
4208 case TYPE_CODE_ENUM:
4209 case TYPE_CODE_FLAGS:
4210 case TYPE_CODE_CHAR:
4211 case TYPE_CODE_RANGE:
4212 case TYPE_CODE_BOOL:
4213 default:
4214 return INCOMPATIBLE_TYPE_BADNESS;
4215 }
4216 }
4217
4218 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
4219
4220 static struct rank
4221 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
4222 {
4223 switch (TYPE_CODE (arg))
4224 {
4225 case TYPE_CODE_PTR:
4226 case TYPE_CODE_ARRAY:
4227 return rank_one_type (TYPE_TARGET_TYPE (parm),
4228 TYPE_TARGET_TYPE (arg), NULL);
4229 default:
4230 return INCOMPATIBLE_TYPE_BADNESS;
4231 }
4232 }
4233
4234 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
4235
4236 static struct rank
4237 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
4238 {
4239 switch (TYPE_CODE (arg))
4240 {
4241 case TYPE_CODE_PTR: /* funcptr -> func */
4242 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
4243 default:
4244 return INCOMPATIBLE_TYPE_BADNESS;
4245 }
4246 }
4247
4248 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
4249
4250 static struct rank
4251 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
4252 {
4253 switch (TYPE_CODE (arg))
4254 {
4255 case TYPE_CODE_INT:
4256 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4257 {
4258 /* Deal with signed, unsigned, and plain chars and
4259 signed and unsigned ints. */
4260 if (TYPE_NOSIGN (parm))
4261 {
4262 /* This case only for character types. */
4263 if (TYPE_NOSIGN (arg))
4264 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4265 else /* signed/unsigned char -> plain char */
4266 return INTEGER_CONVERSION_BADNESS;
4267 }
4268 else if (TYPE_UNSIGNED (parm))
4269 {
4270 if (TYPE_UNSIGNED (arg))
4271 {
4272 /* unsigned int -> unsigned int, or
4273 unsigned long -> unsigned long */
4274 if (integer_types_same_name_p (TYPE_NAME (parm),
4275 TYPE_NAME (arg)))
4276 return EXACT_MATCH_BADNESS;
4277 else if (integer_types_same_name_p (TYPE_NAME (arg),
4278 "int")
4279 && integer_types_same_name_p (TYPE_NAME (parm),
4280 "long"))
4281 /* unsigned int -> unsigned long */
4282 return INTEGER_PROMOTION_BADNESS;
4283 else
4284 /* unsigned long -> unsigned int */
4285 return INTEGER_CONVERSION_BADNESS;
4286 }
4287 else
4288 {
4289 if (integer_types_same_name_p (TYPE_NAME (arg),
4290 "long")
4291 && integer_types_same_name_p (TYPE_NAME (parm),
4292 "int"))
4293 /* signed long -> unsigned int */
4294 return INTEGER_CONVERSION_BADNESS;
4295 else
4296 /* signed int/long -> unsigned int/long */
4297 return INTEGER_CONVERSION_BADNESS;
4298 }
4299 }
4300 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4301 {
4302 if (integer_types_same_name_p (TYPE_NAME (parm),
4303 TYPE_NAME (arg)))
4304 return EXACT_MATCH_BADNESS;
4305 else if (integer_types_same_name_p (TYPE_NAME (arg),
4306 "int")
4307 && integer_types_same_name_p (TYPE_NAME (parm),
4308 "long"))
4309 return INTEGER_PROMOTION_BADNESS;
4310 else
4311 return INTEGER_CONVERSION_BADNESS;
4312 }
4313 else
4314 return INTEGER_CONVERSION_BADNESS;
4315 }
4316 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4317 return INTEGER_PROMOTION_BADNESS;
4318 else
4319 return INTEGER_CONVERSION_BADNESS;
4320 case TYPE_CODE_ENUM:
4321 case TYPE_CODE_FLAGS:
4322 case TYPE_CODE_CHAR:
4323 case TYPE_CODE_RANGE:
4324 case TYPE_CODE_BOOL:
4325 if (TYPE_DECLARED_CLASS (arg))
4326 return INCOMPATIBLE_TYPE_BADNESS;
4327 return INTEGER_PROMOTION_BADNESS;
4328 case TYPE_CODE_FLT:
4329 return INT_FLOAT_CONVERSION_BADNESS;
4330 case TYPE_CODE_PTR:
4331 return NS_POINTER_CONVERSION_BADNESS;
4332 default:
4333 return INCOMPATIBLE_TYPE_BADNESS;
4334 }
4335 }
4336
4337 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4338
4339 static struct rank
4340 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4341 {
4342 switch (TYPE_CODE (arg))
4343 {
4344 case TYPE_CODE_INT:
4345 case TYPE_CODE_CHAR:
4346 case TYPE_CODE_RANGE:
4347 case TYPE_CODE_BOOL:
4348 case TYPE_CODE_ENUM:
4349 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4350 return INCOMPATIBLE_TYPE_BADNESS;
4351 return INTEGER_CONVERSION_BADNESS;
4352 case TYPE_CODE_FLT:
4353 return INT_FLOAT_CONVERSION_BADNESS;
4354 default:
4355 return INCOMPATIBLE_TYPE_BADNESS;
4356 }
4357 }
4358
4359 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4360
4361 static struct rank
4362 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4363 {
4364 switch (TYPE_CODE (arg))
4365 {
4366 case TYPE_CODE_RANGE:
4367 case TYPE_CODE_BOOL:
4368 case TYPE_CODE_ENUM:
4369 if (TYPE_DECLARED_CLASS (arg))
4370 return INCOMPATIBLE_TYPE_BADNESS;
4371 return INTEGER_CONVERSION_BADNESS;
4372 case TYPE_CODE_FLT:
4373 return INT_FLOAT_CONVERSION_BADNESS;
4374 case TYPE_CODE_INT:
4375 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4376 return INTEGER_CONVERSION_BADNESS;
4377 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4378 return INTEGER_PROMOTION_BADNESS;
4379 /* fall through */
4380 case TYPE_CODE_CHAR:
4381 /* Deal with signed, unsigned, and plain chars for C++ and
4382 with int cases falling through from previous case. */
4383 if (TYPE_NOSIGN (parm))
4384 {
4385 if (TYPE_NOSIGN (arg))
4386 return EXACT_MATCH_BADNESS;
4387 else
4388 return INTEGER_CONVERSION_BADNESS;
4389 }
4390 else if (TYPE_UNSIGNED (parm))
4391 {
4392 if (TYPE_UNSIGNED (arg))
4393 return EXACT_MATCH_BADNESS;
4394 else
4395 return INTEGER_PROMOTION_BADNESS;
4396 }
4397 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4398 return EXACT_MATCH_BADNESS;
4399 else
4400 return INTEGER_CONVERSION_BADNESS;
4401 default:
4402 return INCOMPATIBLE_TYPE_BADNESS;
4403 }
4404 }
4405
4406 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4407
4408 static struct rank
4409 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4410 {
4411 switch (TYPE_CODE (arg))
4412 {
4413 case TYPE_CODE_INT:
4414 case TYPE_CODE_CHAR:
4415 case TYPE_CODE_RANGE:
4416 case TYPE_CODE_BOOL:
4417 case TYPE_CODE_ENUM:
4418 return INTEGER_CONVERSION_BADNESS;
4419 case TYPE_CODE_FLT:
4420 return INT_FLOAT_CONVERSION_BADNESS;
4421 default:
4422 return INCOMPATIBLE_TYPE_BADNESS;
4423 }
4424 }
4425
4426 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4427
4428 static struct rank
4429 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4430 {
4431 switch (TYPE_CODE (arg))
4432 {
4433 /* n3290 draft, section 4.12.1 (conv.bool):
4434
4435 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4436 pointer to member type can be converted to a prvalue of type
4437 bool. A zero value, null pointer value, or null member pointer
4438 value is converted to false; any other value is converted to
4439 true. A prvalue of type std::nullptr_t can be converted to a
4440 prvalue of type bool; the resulting value is false." */
4441 case TYPE_CODE_INT:
4442 case TYPE_CODE_CHAR:
4443 case TYPE_CODE_ENUM:
4444 case TYPE_CODE_FLT:
4445 case TYPE_CODE_MEMBERPTR:
4446 case TYPE_CODE_PTR:
4447 return BOOL_CONVERSION_BADNESS;
4448 case TYPE_CODE_RANGE:
4449 return INCOMPATIBLE_TYPE_BADNESS;
4450 case TYPE_CODE_BOOL:
4451 return EXACT_MATCH_BADNESS;
4452 default:
4453 return INCOMPATIBLE_TYPE_BADNESS;
4454 }
4455 }
4456
4457 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4458
4459 static struct rank
4460 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4461 {
4462 switch (TYPE_CODE (arg))
4463 {
4464 case TYPE_CODE_FLT:
4465 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4466 return FLOAT_PROMOTION_BADNESS;
4467 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4468 return EXACT_MATCH_BADNESS;
4469 else
4470 return FLOAT_CONVERSION_BADNESS;
4471 case TYPE_CODE_INT:
4472 case TYPE_CODE_BOOL:
4473 case TYPE_CODE_ENUM:
4474 case TYPE_CODE_RANGE:
4475 case TYPE_CODE_CHAR:
4476 return INT_FLOAT_CONVERSION_BADNESS;
4477 default:
4478 return INCOMPATIBLE_TYPE_BADNESS;
4479 }
4480 }
4481
4482 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4483
4484 static struct rank
4485 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4486 {
4487 switch (TYPE_CODE (arg))
4488 { /* Strictly not needed for C++, but... */
4489 case TYPE_CODE_FLT:
4490 return FLOAT_PROMOTION_BADNESS;
4491 case TYPE_CODE_COMPLEX:
4492 return EXACT_MATCH_BADNESS;
4493 default:
4494 return INCOMPATIBLE_TYPE_BADNESS;
4495 }
4496 }
4497
4498 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4499
4500 static struct rank
4501 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4502 {
4503 struct rank rank = {0, 0};
4504
4505 switch (TYPE_CODE (arg))
4506 {
4507 case TYPE_CODE_STRUCT:
4508 /* Check for derivation */
4509 rank.subrank = distance_to_ancestor (parm, arg, 0);
4510 if (rank.subrank >= 0)
4511 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4512 /* fall through */
4513 default:
4514 return INCOMPATIBLE_TYPE_BADNESS;
4515 }
4516 }
4517
4518 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4519
4520 static struct rank
4521 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4522 {
4523 switch (TYPE_CODE (arg))
4524 {
4525 /* Not in C++ */
4526 case TYPE_CODE_SET:
4527 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4528 TYPE_FIELD_TYPE (arg, 0), NULL);
4529 default:
4530 return INCOMPATIBLE_TYPE_BADNESS;
4531 }
4532 }
4533
4534 /* Compare one type (PARM) for compatibility with another (ARG).
4535 * PARM is intended to be the parameter type of a function; and
4536 * ARG is the supplied argument's type. This function tests if
4537 * the latter can be converted to the former.
4538 * VALUE is the argument's value or NULL if none (or called recursively)
4539 *
4540 * Return 0 if they are identical types;
4541 * Otherwise, return an integer which corresponds to how compatible
4542 * PARM is to ARG. The higher the return value, the worse the match.
4543 * Generally the "bad" conversions are all uniformly assigned a 100. */
4544
4545 struct rank
4546 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4547 {
4548 struct rank rank = {0,0};
4549
4550 /* Resolve typedefs */
4551 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4552 parm = check_typedef (parm);
4553 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4554 arg = check_typedef (arg);
4555
4556 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4557 {
4558 if (VALUE_LVAL (value) == not_lval)
4559 {
4560 /* Rvalues should preferably bind to rvalue references or const
4561 lvalue references. */
4562 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4563 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4564 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4565 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4566 else
4567 return INCOMPATIBLE_TYPE_BADNESS;
4568 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4569 }
4570 else
4571 {
4572 /* It's illegal to pass an lvalue as an rvalue. */
4573 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4574 return INCOMPATIBLE_TYPE_BADNESS;
4575 }
4576 }
4577
4578 if (types_equal (parm, arg))
4579 {
4580 struct type *t1 = parm;
4581 struct type *t2 = arg;
4582
4583 /* For pointers and references, compare target type. */
4584 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4585 {
4586 t1 = TYPE_TARGET_TYPE (parm);
4587 t2 = TYPE_TARGET_TYPE (arg);
4588 }
4589
4590 /* Make sure they are CV equal, too. */
4591 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4592 rank.subrank |= CV_CONVERSION_CONST;
4593 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4594 rank.subrank |= CV_CONVERSION_VOLATILE;
4595 if (rank.subrank != 0)
4596 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4597 return EXACT_MATCH_BADNESS;
4598 }
4599
4600 /* See through references, since we can almost make non-references
4601 references. */
4602
4603 if (TYPE_IS_REFERENCE (arg))
4604 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4605 REFERENCE_SEE_THROUGH_BADNESS));
4606 if (TYPE_IS_REFERENCE (parm))
4607 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4608 REFERENCE_SEE_THROUGH_BADNESS));
4609 if (overload_debug)
4610 /* Debugging only. */
4611 fprintf_filtered (gdb_stderr,
4612 "------ Arg is %s [%d], parm is %s [%d]\n",
4613 TYPE_NAME (arg), TYPE_CODE (arg),
4614 TYPE_NAME (parm), TYPE_CODE (parm));
4615
4616 /* x -> y means arg of type x being supplied for parameter of type y. */
4617
4618 switch (TYPE_CODE (parm))
4619 {
4620 case TYPE_CODE_PTR:
4621 return rank_one_type_parm_ptr (parm, arg, value);
4622 case TYPE_CODE_ARRAY:
4623 return rank_one_type_parm_array (parm, arg, value);
4624 case TYPE_CODE_FUNC:
4625 return rank_one_type_parm_func (parm, arg, value);
4626 case TYPE_CODE_INT:
4627 return rank_one_type_parm_int (parm, arg, value);
4628 case TYPE_CODE_ENUM:
4629 return rank_one_type_parm_enum (parm, arg, value);
4630 case TYPE_CODE_CHAR:
4631 return rank_one_type_parm_char (parm, arg, value);
4632 case TYPE_CODE_RANGE:
4633 return rank_one_type_parm_range (parm, arg, value);
4634 case TYPE_CODE_BOOL:
4635 return rank_one_type_parm_bool (parm, arg, value);
4636 case TYPE_CODE_FLT:
4637 return rank_one_type_parm_float (parm, arg, value);
4638 case TYPE_CODE_COMPLEX:
4639 return rank_one_type_parm_complex (parm, arg, value);
4640 case TYPE_CODE_STRUCT:
4641 return rank_one_type_parm_struct (parm, arg, value);
4642 case TYPE_CODE_SET:
4643 return rank_one_type_parm_set (parm, arg, value);
4644 default:
4645 return INCOMPATIBLE_TYPE_BADNESS;
4646 } /* switch (TYPE_CODE (arg)) */
4647 }
4648
4649 /* End of functions for overload resolution. */
4650 \f
4651 /* Routines to pretty-print types. */
4652
4653 static void
4654 print_bit_vector (B_TYPE *bits, int nbits)
4655 {
4656 int bitno;
4657
4658 for (bitno = 0; bitno < nbits; bitno++)
4659 {
4660 if ((bitno % 8) == 0)
4661 {
4662 puts_filtered (" ");
4663 }
4664 if (B_TST (bits, bitno))
4665 printf_filtered (("1"));
4666 else
4667 printf_filtered (("0"));
4668 }
4669 }
4670
4671 /* Note the first arg should be the "this" pointer, we may not want to
4672 include it since we may get into a infinitely recursive
4673 situation. */
4674
4675 static void
4676 print_args (struct field *args, int nargs, int spaces)
4677 {
4678 if (args != NULL)
4679 {
4680 int i;
4681
4682 for (i = 0; i < nargs; i++)
4683 {
4684 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4685 args[i].name != NULL ? args[i].name : "<NULL>");
4686 recursive_dump_type (args[i].type, spaces + 2);
4687 }
4688 }
4689 }
4690
4691 int
4692 field_is_static (struct field *f)
4693 {
4694 /* "static" fields are the fields whose location is not relative
4695 to the address of the enclosing struct. It would be nice to
4696 have a dedicated flag that would be set for static fields when
4697 the type is being created. But in practice, checking the field
4698 loc_kind should give us an accurate answer. */
4699 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4700 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4701 }
4702
4703 static void
4704 dump_fn_fieldlists (struct type *type, int spaces)
4705 {
4706 int method_idx;
4707 int overload_idx;
4708 struct fn_field *f;
4709
4710 printfi_filtered (spaces, "fn_fieldlists ");
4711 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4712 printf_filtered ("\n");
4713 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4714 {
4715 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4716 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4717 method_idx,
4718 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4719 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4720 gdb_stdout);
4721 printf_filtered (_(") length %d\n"),
4722 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4723 for (overload_idx = 0;
4724 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4725 overload_idx++)
4726 {
4727 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4728 overload_idx,
4729 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4730 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4731 gdb_stdout);
4732 printf_filtered (")\n");
4733 printfi_filtered (spaces + 8, "type ");
4734 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4735 gdb_stdout);
4736 printf_filtered ("\n");
4737
4738 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4739 spaces + 8 + 2);
4740
4741 printfi_filtered (spaces + 8, "args ");
4742 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4743 gdb_stdout);
4744 printf_filtered ("\n");
4745 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4746 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4747 spaces + 8 + 2);
4748 printfi_filtered (spaces + 8, "fcontext ");
4749 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4750 gdb_stdout);
4751 printf_filtered ("\n");
4752
4753 printfi_filtered (spaces + 8, "is_const %d\n",
4754 TYPE_FN_FIELD_CONST (f, overload_idx));
4755 printfi_filtered (spaces + 8, "is_volatile %d\n",
4756 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4757 printfi_filtered (spaces + 8, "is_private %d\n",
4758 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4759 printfi_filtered (spaces + 8, "is_protected %d\n",
4760 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4761 printfi_filtered (spaces + 8, "is_stub %d\n",
4762 TYPE_FN_FIELD_STUB (f, overload_idx));
4763 printfi_filtered (spaces + 8, "defaulted %d\n",
4764 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4765 printfi_filtered (spaces + 8, "is_deleted %d\n",
4766 TYPE_FN_FIELD_DELETED (f, overload_idx));
4767 printfi_filtered (spaces + 8, "voffset %u\n",
4768 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4769 }
4770 }
4771 }
4772
4773 static void
4774 print_cplus_stuff (struct type *type, int spaces)
4775 {
4776 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4777 printfi_filtered (spaces, "vptr_basetype ");
4778 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4779 puts_filtered ("\n");
4780 if (TYPE_VPTR_BASETYPE (type) != NULL)
4781 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4782
4783 printfi_filtered (spaces, "n_baseclasses %d\n",
4784 TYPE_N_BASECLASSES (type));
4785 printfi_filtered (spaces, "nfn_fields %d\n",
4786 TYPE_NFN_FIELDS (type));
4787 if (TYPE_N_BASECLASSES (type) > 0)
4788 {
4789 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4790 TYPE_N_BASECLASSES (type));
4791 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4792 gdb_stdout);
4793 printf_filtered (")");
4794
4795 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4796 TYPE_N_BASECLASSES (type));
4797 puts_filtered ("\n");
4798 }
4799 if (TYPE_NFIELDS (type) > 0)
4800 {
4801 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4802 {
4803 printfi_filtered (spaces,
4804 "private_field_bits (%d bits at *",
4805 TYPE_NFIELDS (type));
4806 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4807 gdb_stdout);
4808 printf_filtered (")");
4809 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4810 TYPE_NFIELDS (type));
4811 puts_filtered ("\n");
4812 }
4813 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4814 {
4815 printfi_filtered (spaces,
4816 "protected_field_bits (%d bits at *",
4817 TYPE_NFIELDS (type));
4818 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4819 gdb_stdout);
4820 printf_filtered (")");
4821 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4822 TYPE_NFIELDS (type));
4823 puts_filtered ("\n");
4824 }
4825 }
4826 if (TYPE_NFN_FIELDS (type) > 0)
4827 {
4828 dump_fn_fieldlists (type, spaces);
4829 }
4830
4831 printfi_filtered (spaces, "calling_convention %d\n",
4832 TYPE_CPLUS_CALLING_CONVENTION (type));
4833 }
4834
4835 /* Print the contents of the TYPE's type_specific union, assuming that
4836 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4837
4838 static void
4839 print_gnat_stuff (struct type *type, int spaces)
4840 {
4841 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4842
4843 if (descriptive_type == NULL)
4844 printfi_filtered (spaces + 2, "no descriptive type\n");
4845 else
4846 {
4847 printfi_filtered (spaces + 2, "descriptive type\n");
4848 recursive_dump_type (descriptive_type, spaces + 4);
4849 }
4850 }
4851
4852 static struct obstack dont_print_type_obstack;
4853
4854 void
4855 recursive_dump_type (struct type *type, int spaces)
4856 {
4857 int idx;
4858
4859 if (spaces == 0)
4860 obstack_begin (&dont_print_type_obstack, 0);
4861
4862 if (TYPE_NFIELDS (type) > 0
4863 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4864 {
4865 struct type **first_dont_print
4866 = (struct type **) obstack_base (&dont_print_type_obstack);
4867
4868 int i = (struct type **)
4869 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4870
4871 while (--i >= 0)
4872 {
4873 if (type == first_dont_print[i])
4874 {
4875 printfi_filtered (spaces, "type node ");
4876 gdb_print_host_address (type, gdb_stdout);
4877 printf_filtered (_(" <same as already seen type>\n"));
4878 return;
4879 }
4880 }
4881
4882 obstack_ptr_grow (&dont_print_type_obstack, type);
4883 }
4884
4885 printfi_filtered (spaces, "type node ");
4886 gdb_print_host_address (type, gdb_stdout);
4887 printf_filtered ("\n");
4888 printfi_filtered (spaces, "name '%s' (",
4889 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4890 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4891 printf_filtered (")\n");
4892 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4893 switch (TYPE_CODE (type))
4894 {
4895 case TYPE_CODE_UNDEF:
4896 printf_filtered ("(TYPE_CODE_UNDEF)");
4897 break;
4898 case TYPE_CODE_PTR:
4899 printf_filtered ("(TYPE_CODE_PTR)");
4900 break;
4901 case TYPE_CODE_ARRAY:
4902 printf_filtered ("(TYPE_CODE_ARRAY)");
4903 break;
4904 case TYPE_CODE_STRUCT:
4905 printf_filtered ("(TYPE_CODE_STRUCT)");
4906 break;
4907 case TYPE_CODE_UNION:
4908 printf_filtered ("(TYPE_CODE_UNION)");
4909 break;
4910 case TYPE_CODE_ENUM:
4911 printf_filtered ("(TYPE_CODE_ENUM)");
4912 break;
4913 case TYPE_CODE_FLAGS:
4914 printf_filtered ("(TYPE_CODE_FLAGS)");
4915 break;
4916 case TYPE_CODE_FUNC:
4917 printf_filtered ("(TYPE_CODE_FUNC)");
4918 break;
4919 case TYPE_CODE_INT:
4920 printf_filtered ("(TYPE_CODE_INT)");
4921 break;
4922 case TYPE_CODE_FLT:
4923 printf_filtered ("(TYPE_CODE_FLT)");
4924 break;
4925 case TYPE_CODE_VOID:
4926 printf_filtered ("(TYPE_CODE_VOID)");
4927 break;
4928 case TYPE_CODE_SET:
4929 printf_filtered ("(TYPE_CODE_SET)");
4930 break;
4931 case TYPE_CODE_RANGE:
4932 printf_filtered ("(TYPE_CODE_RANGE)");
4933 break;
4934 case TYPE_CODE_STRING:
4935 printf_filtered ("(TYPE_CODE_STRING)");
4936 break;
4937 case TYPE_CODE_ERROR:
4938 printf_filtered ("(TYPE_CODE_ERROR)");
4939 break;
4940 case TYPE_CODE_MEMBERPTR:
4941 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4942 break;
4943 case TYPE_CODE_METHODPTR:
4944 printf_filtered ("(TYPE_CODE_METHODPTR)");
4945 break;
4946 case TYPE_CODE_METHOD:
4947 printf_filtered ("(TYPE_CODE_METHOD)");
4948 break;
4949 case TYPE_CODE_REF:
4950 printf_filtered ("(TYPE_CODE_REF)");
4951 break;
4952 case TYPE_CODE_CHAR:
4953 printf_filtered ("(TYPE_CODE_CHAR)");
4954 break;
4955 case TYPE_CODE_BOOL:
4956 printf_filtered ("(TYPE_CODE_BOOL)");
4957 break;
4958 case TYPE_CODE_COMPLEX:
4959 printf_filtered ("(TYPE_CODE_COMPLEX)");
4960 break;
4961 case TYPE_CODE_TYPEDEF:
4962 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4963 break;
4964 case TYPE_CODE_NAMESPACE:
4965 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4966 break;
4967 default:
4968 printf_filtered ("(UNKNOWN TYPE CODE)");
4969 break;
4970 }
4971 puts_filtered ("\n");
4972 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4973 if (TYPE_OBJFILE_OWNED (type))
4974 {
4975 printfi_filtered (spaces, "objfile ");
4976 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4977 }
4978 else
4979 {
4980 printfi_filtered (spaces, "gdbarch ");
4981 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4982 }
4983 printf_filtered ("\n");
4984 printfi_filtered (spaces, "target_type ");
4985 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4986 printf_filtered ("\n");
4987 if (TYPE_TARGET_TYPE (type) != NULL)
4988 {
4989 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4990 }
4991 printfi_filtered (spaces, "pointer_type ");
4992 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4993 printf_filtered ("\n");
4994 printfi_filtered (spaces, "reference_type ");
4995 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4996 printf_filtered ("\n");
4997 printfi_filtered (spaces, "type_chain ");
4998 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4999 printf_filtered ("\n");
5000 printfi_filtered (spaces, "instance_flags 0x%x",
5001 TYPE_INSTANCE_FLAGS (type));
5002 if (TYPE_CONST (type))
5003 {
5004 puts_filtered (" TYPE_CONST");
5005 }
5006 if (TYPE_VOLATILE (type))
5007 {
5008 puts_filtered (" TYPE_VOLATILE");
5009 }
5010 if (TYPE_CODE_SPACE (type))
5011 {
5012 puts_filtered (" TYPE_CODE_SPACE");
5013 }
5014 if (TYPE_DATA_SPACE (type))
5015 {
5016 puts_filtered (" TYPE_DATA_SPACE");
5017 }
5018 if (TYPE_ADDRESS_CLASS_1 (type))
5019 {
5020 puts_filtered (" TYPE_ADDRESS_CLASS_1");
5021 }
5022 if (TYPE_ADDRESS_CLASS_2 (type))
5023 {
5024 puts_filtered (" TYPE_ADDRESS_CLASS_2");
5025 }
5026 if (TYPE_RESTRICT (type))
5027 {
5028 puts_filtered (" TYPE_RESTRICT");
5029 }
5030 if (TYPE_ATOMIC (type))
5031 {
5032 puts_filtered (" TYPE_ATOMIC");
5033 }
5034 puts_filtered ("\n");
5035
5036 printfi_filtered (spaces, "flags");
5037 if (TYPE_UNSIGNED (type))
5038 {
5039 puts_filtered (" TYPE_UNSIGNED");
5040 }
5041 if (TYPE_NOSIGN (type))
5042 {
5043 puts_filtered (" TYPE_NOSIGN");
5044 }
5045 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
5046 {
5047 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
5048 }
5049 if (TYPE_STUB (type))
5050 {
5051 puts_filtered (" TYPE_STUB");
5052 }
5053 if (TYPE_TARGET_STUB (type))
5054 {
5055 puts_filtered (" TYPE_TARGET_STUB");
5056 }
5057 if (TYPE_PROTOTYPED (type))
5058 {
5059 puts_filtered (" TYPE_PROTOTYPED");
5060 }
5061 if (TYPE_INCOMPLETE (type))
5062 {
5063 puts_filtered (" TYPE_INCOMPLETE");
5064 }
5065 if (TYPE_VARARGS (type))
5066 {
5067 puts_filtered (" TYPE_VARARGS");
5068 }
5069 /* This is used for things like AltiVec registers on ppc. Gcc emits
5070 an attribute for the array type, which tells whether or not we
5071 have a vector, instead of a regular array. */
5072 if (TYPE_VECTOR (type))
5073 {
5074 puts_filtered (" TYPE_VECTOR");
5075 }
5076 if (TYPE_FIXED_INSTANCE (type))
5077 {
5078 puts_filtered (" TYPE_FIXED_INSTANCE");
5079 }
5080 if (TYPE_STUB_SUPPORTED (type))
5081 {
5082 puts_filtered (" TYPE_STUB_SUPPORTED");
5083 }
5084 if (TYPE_NOTTEXT (type))
5085 {
5086 puts_filtered (" TYPE_NOTTEXT");
5087 }
5088 puts_filtered ("\n");
5089 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
5090 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
5091 puts_filtered ("\n");
5092 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
5093 {
5094 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
5095 printfi_filtered (spaces + 2,
5096 "[%d] enumval %s type ",
5097 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
5098 else
5099 printfi_filtered (spaces + 2,
5100 "[%d] bitpos %s bitsize %d type ",
5101 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
5102 TYPE_FIELD_BITSIZE (type, idx));
5103 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
5104 printf_filtered (" name '%s' (",
5105 TYPE_FIELD_NAME (type, idx) != NULL
5106 ? TYPE_FIELD_NAME (type, idx)
5107 : "<NULL>");
5108 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
5109 printf_filtered (")\n");
5110 if (TYPE_FIELD_TYPE (type, idx) != NULL)
5111 {
5112 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
5113 }
5114 }
5115 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5116 {
5117 printfi_filtered (spaces, "low %s%s high %s%s\n",
5118 plongest (TYPE_LOW_BOUND (type)),
5119 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
5120 plongest (TYPE_HIGH_BOUND (type)),
5121 TYPE_HIGH_BOUND_UNDEFINED (type)
5122 ? " (undefined)" : "");
5123 }
5124
5125 switch (TYPE_SPECIFIC_FIELD (type))
5126 {
5127 case TYPE_SPECIFIC_CPLUS_STUFF:
5128 printfi_filtered (spaces, "cplus_stuff ");
5129 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
5130 gdb_stdout);
5131 puts_filtered ("\n");
5132 print_cplus_stuff (type, spaces);
5133 break;
5134
5135 case TYPE_SPECIFIC_GNAT_STUFF:
5136 printfi_filtered (spaces, "gnat_stuff ");
5137 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
5138 puts_filtered ("\n");
5139 print_gnat_stuff (type, spaces);
5140 break;
5141
5142 case TYPE_SPECIFIC_FLOATFORMAT:
5143 printfi_filtered (spaces, "floatformat ");
5144 if (TYPE_FLOATFORMAT (type) == NULL
5145 || TYPE_FLOATFORMAT (type)->name == NULL)
5146 puts_filtered ("(null)");
5147 else
5148 puts_filtered (TYPE_FLOATFORMAT (type)->name);
5149 puts_filtered ("\n");
5150 break;
5151
5152 case TYPE_SPECIFIC_FUNC:
5153 printfi_filtered (spaces, "calling_convention %d\n",
5154 TYPE_CALLING_CONVENTION (type));
5155 /* tail_call_list is not printed. */
5156 break;
5157
5158 case TYPE_SPECIFIC_SELF_TYPE:
5159 printfi_filtered (spaces, "self_type ");
5160 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
5161 puts_filtered ("\n");
5162 break;
5163 }
5164
5165 if (spaces == 0)
5166 obstack_free (&dont_print_type_obstack, NULL);
5167 }
5168 \f
5169 /* Trivial helpers for the libiberty hash table, for mapping one
5170 type to another. */
5171
5172 struct type_pair : public allocate_on_obstack
5173 {
5174 type_pair (struct type *old_, struct type *newobj_)
5175 : old (old_), newobj (newobj_)
5176 {}
5177
5178 struct type * const old, * const newobj;
5179 };
5180
5181 static hashval_t
5182 type_pair_hash (const void *item)
5183 {
5184 const struct type_pair *pair = (const struct type_pair *) item;
5185
5186 return htab_hash_pointer (pair->old);
5187 }
5188
5189 static int
5190 type_pair_eq (const void *item_lhs, const void *item_rhs)
5191 {
5192 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
5193 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
5194
5195 return lhs->old == rhs->old;
5196 }
5197
5198 /* Allocate the hash table used by copy_type_recursive to walk
5199 types without duplicates. We use OBJFILE's obstack, because
5200 OBJFILE is about to be deleted. */
5201
5202 htab_t
5203 create_copied_types_hash (struct objfile *objfile)
5204 {
5205 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
5206 NULL, &objfile->objfile_obstack,
5207 hashtab_obstack_allocate,
5208 dummy_obstack_deallocate);
5209 }
5210
5211 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
5212
5213 static struct dynamic_prop_list *
5214 copy_dynamic_prop_list (struct obstack *objfile_obstack,
5215 struct dynamic_prop_list *list)
5216 {
5217 struct dynamic_prop_list *copy = list;
5218 struct dynamic_prop_list **node_ptr = &copy;
5219
5220 while (*node_ptr != NULL)
5221 {
5222 struct dynamic_prop_list *node_copy;
5223
5224 node_copy = ((struct dynamic_prop_list *)
5225 obstack_copy (objfile_obstack, *node_ptr,
5226 sizeof (struct dynamic_prop_list)));
5227 node_copy->prop = (*node_ptr)->prop;
5228 *node_ptr = node_copy;
5229
5230 node_ptr = &node_copy->next;
5231 }
5232
5233 return copy;
5234 }
5235
5236 /* Recursively copy (deep copy) TYPE, if it is associated with
5237 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
5238 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
5239 it is not associated with OBJFILE. */
5240
5241 struct type *
5242 copy_type_recursive (struct objfile *objfile,
5243 struct type *type,
5244 htab_t copied_types)
5245 {
5246 void **slot;
5247 struct type *new_type;
5248
5249 if (! TYPE_OBJFILE_OWNED (type))
5250 return type;
5251
5252 /* This type shouldn't be pointing to any types in other objfiles;
5253 if it did, the type might disappear unexpectedly. */
5254 gdb_assert (TYPE_OBJFILE (type) == objfile);
5255
5256 struct type_pair pair (type, nullptr);
5257
5258 slot = htab_find_slot (copied_types, &pair, INSERT);
5259 if (*slot != NULL)
5260 return ((struct type_pair *) *slot)->newobj;
5261
5262 new_type = alloc_type_arch (get_type_arch (type));
5263
5264 /* We must add the new type to the hash table immediately, in case
5265 we encounter this type again during a recursive call below. */
5266 struct type_pair *stored
5267 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5268
5269 *slot = stored;
5270
5271 /* Copy the common fields of types. For the main type, we simply
5272 copy the entire thing and then update specific fields as needed. */
5273 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5274 TYPE_OBJFILE_OWNED (new_type) = 0;
5275 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5276
5277 if (TYPE_NAME (type))
5278 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5279
5280 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5281 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5282
5283 /* Copy the fields. */
5284 if (TYPE_NFIELDS (type))
5285 {
5286 int i, nfields;
5287
5288 nfields = TYPE_NFIELDS (type);
5289 TYPE_FIELDS (new_type) = (struct field *)
5290 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5291 for (i = 0; i < nfields; i++)
5292 {
5293 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5294 TYPE_FIELD_ARTIFICIAL (type, i);
5295 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5296 if (TYPE_FIELD_TYPE (type, i))
5297 TYPE_FIELD_TYPE (new_type, i)
5298 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5299 copied_types);
5300 if (TYPE_FIELD_NAME (type, i))
5301 TYPE_FIELD_NAME (new_type, i) =
5302 xstrdup (TYPE_FIELD_NAME (type, i));
5303 switch (TYPE_FIELD_LOC_KIND (type, i))
5304 {
5305 case FIELD_LOC_KIND_BITPOS:
5306 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5307 TYPE_FIELD_BITPOS (type, i));
5308 break;
5309 case FIELD_LOC_KIND_ENUMVAL:
5310 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5311 TYPE_FIELD_ENUMVAL (type, i));
5312 break;
5313 case FIELD_LOC_KIND_PHYSADDR:
5314 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5315 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5316 break;
5317 case FIELD_LOC_KIND_PHYSNAME:
5318 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5319 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5320 i)));
5321 break;
5322 default:
5323 internal_error (__FILE__, __LINE__,
5324 _("Unexpected type field location kind: %d"),
5325 TYPE_FIELD_LOC_KIND (type, i));
5326 }
5327 }
5328 }
5329
5330 /* For range types, copy the bounds information. */
5331 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5332 {
5333 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5334 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5335 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5336 }
5337
5338 if (TYPE_DYN_PROP_LIST (type) != NULL)
5339 TYPE_DYN_PROP_LIST (new_type)
5340 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5341 TYPE_DYN_PROP_LIST (type));
5342
5343
5344 /* Copy pointers to other types. */
5345 if (TYPE_TARGET_TYPE (type))
5346 TYPE_TARGET_TYPE (new_type) =
5347 copy_type_recursive (objfile,
5348 TYPE_TARGET_TYPE (type),
5349 copied_types);
5350
5351 /* Maybe copy the type_specific bits.
5352
5353 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5354 base classes and methods. There's no fundamental reason why we
5355 can't, but at the moment it is not needed. */
5356
5357 switch (TYPE_SPECIFIC_FIELD (type))
5358 {
5359 case TYPE_SPECIFIC_NONE:
5360 break;
5361 case TYPE_SPECIFIC_FUNC:
5362 INIT_FUNC_SPECIFIC (new_type);
5363 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5364 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5365 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5366 break;
5367 case TYPE_SPECIFIC_FLOATFORMAT:
5368 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5369 break;
5370 case TYPE_SPECIFIC_CPLUS_STUFF:
5371 INIT_CPLUS_SPECIFIC (new_type);
5372 break;
5373 case TYPE_SPECIFIC_GNAT_STUFF:
5374 INIT_GNAT_SPECIFIC (new_type);
5375 break;
5376 case TYPE_SPECIFIC_SELF_TYPE:
5377 set_type_self_type (new_type,
5378 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5379 copied_types));
5380 break;
5381 default:
5382 gdb_assert_not_reached ("bad type_specific_kind");
5383 }
5384
5385 return new_type;
5386 }
5387
5388 /* Make a copy of the given TYPE, except that the pointer & reference
5389 types are not preserved.
5390
5391 This function assumes that the given type has an associated objfile.
5392 This objfile is used to allocate the new type. */
5393
5394 struct type *
5395 copy_type (const struct type *type)
5396 {
5397 struct type *new_type;
5398
5399 gdb_assert (TYPE_OBJFILE_OWNED (type));
5400
5401 new_type = alloc_type_copy (type);
5402 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5403 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5404 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5405 sizeof (struct main_type));
5406 if (TYPE_DYN_PROP_LIST (type) != NULL)
5407 TYPE_DYN_PROP_LIST (new_type)
5408 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5409 TYPE_DYN_PROP_LIST (type));
5410
5411 return new_type;
5412 }
5413 \f
5414 /* Helper functions to initialize architecture-specific types. */
5415
5416 /* Allocate a type structure associated with GDBARCH and set its
5417 CODE, LENGTH, and NAME fields. */
5418
5419 struct type *
5420 arch_type (struct gdbarch *gdbarch,
5421 enum type_code code, int bit, const char *name)
5422 {
5423 struct type *type;
5424
5425 type = alloc_type_arch (gdbarch);
5426 set_type_code (type, code);
5427 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5428 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5429
5430 if (name)
5431 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5432
5433 return type;
5434 }
5435
5436 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5437 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5438 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5439
5440 struct type *
5441 arch_integer_type (struct gdbarch *gdbarch,
5442 int bit, int unsigned_p, const char *name)
5443 {
5444 struct type *t;
5445
5446 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5447 if (unsigned_p)
5448 TYPE_UNSIGNED (t) = 1;
5449
5450 return t;
5451 }
5452
5453 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5454 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5455 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5456
5457 struct type *
5458 arch_character_type (struct gdbarch *gdbarch,
5459 int bit, int unsigned_p, const char *name)
5460 {
5461 struct type *t;
5462
5463 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5464 if (unsigned_p)
5465 TYPE_UNSIGNED (t) = 1;
5466
5467 return t;
5468 }
5469
5470 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5471 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5472 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5473
5474 struct type *
5475 arch_boolean_type (struct gdbarch *gdbarch,
5476 int bit, int unsigned_p, const char *name)
5477 {
5478 struct type *t;
5479
5480 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5481 if (unsigned_p)
5482 TYPE_UNSIGNED (t) = 1;
5483
5484 return t;
5485 }
5486
5487 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5488 BIT is the type size in bits; if BIT equals -1, the size is
5489 determined by the floatformat. NAME is the type name. Set the
5490 TYPE_FLOATFORMAT from FLOATFORMATS. */
5491
5492 struct type *
5493 arch_float_type (struct gdbarch *gdbarch,
5494 int bit, const char *name,
5495 const struct floatformat **floatformats)
5496 {
5497 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5498 struct type *t;
5499
5500 bit = verify_floatformat (bit, fmt);
5501 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5502 TYPE_FLOATFORMAT (t) = fmt;
5503
5504 return t;
5505 }
5506
5507 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5508 BIT is the type size in bits. NAME is the type name. */
5509
5510 struct type *
5511 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5512 {
5513 struct type *t;
5514
5515 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5516 return t;
5517 }
5518
5519 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5520 BIT is the pointer type size in bits. NAME is the type name.
5521 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5522 TYPE_UNSIGNED flag. */
5523
5524 struct type *
5525 arch_pointer_type (struct gdbarch *gdbarch,
5526 int bit, const char *name, struct type *target_type)
5527 {
5528 struct type *t;
5529
5530 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5531 TYPE_TARGET_TYPE (t) = target_type;
5532 TYPE_UNSIGNED (t) = 1;
5533 return t;
5534 }
5535
5536 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5537 NAME is the type name. BIT is the size of the flag word in bits. */
5538
5539 struct type *
5540 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5541 {
5542 struct type *type;
5543
5544 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5545 TYPE_UNSIGNED (type) = 1;
5546 TYPE_NFIELDS (type) = 0;
5547 /* Pre-allocate enough space assuming every field is one bit. */
5548 TYPE_FIELDS (type)
5549 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5550
5551 return type;
5552 }
5553
5554 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5555 position BITPOS is called NAME. Pass NAME as "" for fields that
5556 should not be printed. */
5557
5558 void
5559 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5560 struct type *field_type, const char *name)
5561 {
5562 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5563 int field_nr = TYPE_NFIELDS (type);
5564
5565 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5566 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5567 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5568 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5569 gdb_assert (name != NULL);
5570
5571 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5572 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5573 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5574 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5575 ++TYPE_NFIELDS (type);
5576 }
5577
5578 /* Special version of append_flags_type_field to add a flag field.
5579 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5580 position BITPOS is called NAME. */
5581
5582 void
5583 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5584 {
5585 struct gdbarch *gdbarch = get_type_arch (type);
5586
5587 append_flags_type_field (type, bitpos, 1,
5588 builtin_type (gdbarch)->builtin_bool,
5589 name);
5590 }
5591
5592 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5593 specified by CODE) associated with GDBARCH. NAME is the type name. */
5594
5595 struct type *
5596 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5597 enum type_code code)
5598 {
5599 struct type *t;
5600
5601 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5602 t = arch_type (gdbarch, code, 0, NULL);
5603 TYPE_NAME (t) = name;
5604 INIT_CPLUS_SPECIFIC (t);
5605 return t;
5606 }
5607
5608 /* Add new field with name NAME and type FIELD to composite type T.
5609 Do not set the field's position or adjust the type's length;
5610 the caller should do so. Return the new field. */
5611
5612 struct field *
5613 append_composite_type_field_raw (struct type *t, const char *name,
5614 struct type *field)
5615 {
5616 struct field *f;
5617
5618 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5619 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5620 TYPE_NFIELDS (t));
5621 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5622 memset (f, 0, sizeof f[0]);
5623 FIELD_TYPE (f[0]) = field;
5624 FIELD_NAME (f[0]) = name;
5625 return f;
5626 }
5627
5628 /* Add new field with name NAME and type FIELD to composite type T.
5629 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5630
5631 void
5632 append_composite_type_field_aligned (struct type *t, const char *name,
5633 struct type *field, int alignment)
5634 {
5635 struct field *f = append_composite_type_field_raw (t, name, field);
5636
5637 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5638 {
5639 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5640 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5641 }
5642 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5643 {
5644 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5645 if (TYPE_NFIELDS (t) > 1)
5646 {
5647 SET_FIELD_BITPOS (f[0],
5648 (FIELD_BITPOS (f[-1])
5649 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5650 * TARGET_CHAR_BIT)));
5651
5652 if (alignment)
5653 {
5654 int left;
5655
5656 alignment *= TARGET_CHAR_BIT;
5657 left = FIELD_BITPOS (f[0]) % alignment;
5658
5659 if (left)
5660 {
5661 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5662 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5663 }
5664 }
5665 }
5666 }
5667 }
5668
5669 /* Add new field with name NAME and type FIELD to composite type T. */
5670
5671 void
5672 append_composite_type_field (struct type *t, const char *name,
5673 struct type *field)
5674 {
5675 append_composite_type_field_aligned (t, name, field, 0);
5676 }
5677
5678 static struct gdbarch_data *gdbtypes_data;
5679
5680 const struct builtin_type *
5681 builtin_type (struct gdbarch *gdbarch)
5682 {
5683 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5684 }
5685
5686 static void *
5687 gdbtypes_post_init (struct gdbarch *gdbarch)
5688 {
5689 struct builtin_type *builtin_type
5690 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5691
5692 /* Basic types. */
5693 builtin_type->builtin_void
5694 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5695 builtin_type->builtin_char
5696 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5697 !gdbarch_char_signed (gdbarch), "char");
5698 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5699 builtin_type->builtin_signed_char
5700 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5701 0, "signed char");
5702 builtin_type->builtin_unsigned_char
5703 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5704 1, "unsigned char");
5705 builtin_type->builtin_short
5706 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5707 0, "short");
5708 builtin_type->builtin_unsigned_short
5709 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5710 1, "unsigned short");
5711 builtin_type->builtin_int
5712 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5713 0, "int");
5714 builtin_type->builtin_unsigned_int
5715 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5716 1, "unsigned int");
5717 builtin_type->builtin_long
5718 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5719 0, "long");
5720 builtin_type->builtin_unsigned_long
5721 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5722 1, "unsigned long");
5723 builtin_type->builtin_long_long
5724 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5725 0, "long long");
5726 builtin_type->builtin_unsigned_long_long
5727 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5728 1, "unsigned long long");
5729 builtin_type->builtin_half
5730 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5731 "half", gdbarch_half_format (gdbarch));
5732 builtin_type->builtin_float
5733 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5734 "float", gdbarch_float_format (gdbarch));
5735 builtin_type->builtin_double
5736 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5737 "double", gdbarch_double_format (gdbarch));
5738 builtin_type->builtin_long_double
5739 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5740 "long double", gdbarch_long_double_format (gdbarch));
5741 builtin_type->builtin_complex
5742 = init_complex_type ("complex", builtin_type->builtin_float);
5743 builtin_type->builtin_double_complex
5744 = init_complex_type ("double complex", builtin_type->builtin_double);
5745 builtin_type->builtin_string
5746 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5747 builtin_type->builtin_bool
5748 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5749
5750 /* The following three are about decimal floating point types, which
5751 are 32-bits, 64-bits and 128-bits respectively. */
5752 builtin_type->builtin_decfloat
5753 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5754 builtin_type->builtin_decdouble
5755 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5756 builtin_type->builtin_declong
5757 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5758
5759 /* "True" character types. */
5760 builtin_type->builtin_true_char
5761 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5762 builtin_type->builtin_true_unsigned_char
5763 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5764
5765 /* Fixed-size integer types. */
5766 builtin_type->builtin_int0
5767 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5768 builtin_type->builtin_int8
5769 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5770 builtin_type->builtin_uint8
5771 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5772 builtin_type->builtin_int16
5773 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5774 builtin_type->builtin_uint16
5775 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5776 builtin_type->builtin_int24
5777 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5778 builtin_type->builtin_uint24
5779 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5780 builtin_type->builtin_int32
5781 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5782 builtin_type->builtin_uint32
5783 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5784 builtin_type->builtin_int64
5785 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5786 builtin_type->builtin_uint64
5787 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5788 builtin_type->builtin_int128
5789 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5790 builtin_type->builtin_uint128
5791 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5792 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5793 TYPE_INSTANCE_FLAG_NOTTEXT;
5794 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5795 TYPE_INSTANCE_FLAG_NOTTEXT;
5796
5797 /* Wide character types. */
5798 builtin_type->builtin_char16
5799 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5800 builtin_type->builtin_char32
5801 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5802 builtin_type->builtin_wchar
5803 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5804 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5805
5806 /* Default data/code pointer types. */
5807 builtin_type->builtin_data_ptr
5808 = lookup_pointer_type (builtin_type->builtin_void);
5809 builtin_type->builtin_func_ptr
5810 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5811 builtin_type->builtin_func_func
5812 = lookup_function_type (builtin_type->builtin_func_ptr);
5813
5814 /* This type represents a GDB internal function. */
5815 builtin_type->internal_fn
5816 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5817 "<internal function>");
5818
5819 /* This type represents an xmethod. */
5820 builtin_type->xmethod
5821 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5822
5823 return builtin_type;
5824 }
5825
5826 /* This set of objfile-based types is intended to be used by symbol
5827 readers as basic types. */
5828
5829 static const struct objfile_key<struct objfile_type,
5830 gdb::noop_deleter<struct objfile_type>>
5831 objfile_type_data;
5832
5833 const struct objfile_type *
5834 objfile_type (struct objfile *objfile)
5835 {
5836 struct gdbarch *gdbarch;
5837 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5838
5839 if (objfile_type)
5840 return objfile_type;
5841
5842 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5843 1, struct objfile_type);
5844
5845 /* Use the objfile architecture to determine basic type properties. */
5846 gdbarch = objfile->arch ();
5847
5848 /* Basic types. */
5849 objfile_type->builtin_void
5850 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5851 objfile_type->builtin_char
5852 = init_integer_type (objfile, TARGET_CHAR_BIT,
5853 !gdbarch_char_signed (gdbarch), "char");
5854 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5855 objfile_type->builtin_signed_char
5856 = init_integer_type (objfile, TARGET_CHAR_BIT,
5857 0, "signed char");
5858 objfile_type->builtin_unsigned_char
5859 = init_integer_type (objfile, TARGET_CHAR_BIT,
5860 1, "unsigned char");
5861 objfile_type->builtin_short
5862 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5863 0, "short");
5864 objfile_type->builtin_unsigned_short
5865 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5866 1, "unsigned short");
5867 objfile_type->builtin_int
5868 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5869 0, "int");
5870 objfile_type->builtin_unsigned_int
5871 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5872 1, "unsigned int");
5873 objfile_type->builtin_long
5874 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5875 0, "long");
5876 objfile_type->builtin_unsigned_long
5877 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5878 1, "unsigned long");
5879 objfile_type->builtin_long_long
5880 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5881 0, "long long");
5882 objfile_type->builtin_unsigned_long_long
5883 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5884 1, "unsigned long long");
5885 objfile_type->builtin_float
5886 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5887 "float", gdbarch_float_format (gdbarch));
5888 objfile_type->builtin_double
5889 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5890 "double", gdbarch_double_format (gdbarch));
5891 objfile_type->builtin_long_double
5892 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5893 "long double", gdbarch_long_double_format (gdbarch));
5894
5895 /* This type represents a type that was unrecognized in symbol read-in. */
5896 objfile_type->builtin_error
5897 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5898
5899 /* The following set of types is used for symbols with no
5900 debug information. */
5901 objfile_type->nodebug_text_symbol
5902 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5903 "<text variable, no debug info>");
5904 objfile_type->nodebug_text_gnu_ifunc_symbol
5905 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5906 "<text gnu-indirect-function variable, no debug info>");
5907 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5908 objfile_type->nodebug_got_plt_symbol
5909 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5910 "<text from jump slot in .got.plt, no debug info>",
5911 objfile_type->nodebug_text_symbol);
5912 objfile_type->nodebug_data_symbol
5913 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5914 objfile_type->nodebug_unknown_symbol
5915 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5916 objfile_type->nodebug_tls_symbol
5917 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5918
5919 /* NOTE: on some targets, addresses and pointers are not necessarily
5920 the same.
5921
5922 The upshot is:
5923 - gdb's `struct type' always describes the target's
5924 representation.
5925 - gdb's `struct value' objects should always hold values in
5926 target form.
5927 - gdb's CORE_ADDR values are addresses in the unified virtual
5928 address space that the assembler and linker work with. Thus,
5929 since target_read_memory takes a CORE_ADDR as an argument, it
5930 can access any memory on the target, even if the processor has
5931 separate code and data address spaces.
5932
5933 In this context, objfile_type->builtin_core_addr is a bit odd:
5934 it's a target type for a value the target will never see. It's
5935 only used to hold the values of (typeless) linker symbols, which
5936 are indeed in the unified virtual address space. */
5937
5938 objfile_type->builtin_core_addr
5939 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5940 "__CORE_ADDR");
5941
5942 objfile_type_data.set (objfile, objfile_type);
5943 return objfile_type;
5944 }
5945
5946 void _initialize_gdbtypes ();
5947 void
5948 _initialize_gdbtypes ()
5949 {
5950 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5951
5952 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5953 _("Set debugging of C++ overloading."),
5954 _("Show debugging of C++ overloading."),
5955 _("When enabled, ranking of the "
5956 "functions is displayed."),
5957 NULL,
5958 show_overload_debug,
5959 &setdebuglist, &showdebuglist);
5960
5961 /* Add user knob for controlling resolution of opaque types. */
5962 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5963 &opaque_type_resolution,
5964 _("Set resolution of opaque struct/class/union"
5965 " types (if set before loading symbols)."),
5966 _("Show resolution of opaque struct/class/union"
5967 " types (if set before loading symbols)."),
5968 NULL, NULL,
5969 show_opaque_type_resolution,
5970 &setlist, &showlist);
5971
5972 /* Add an option to permit non-strict type checking. */
5973 add_setshow_boolean_cmd ("type", class_support,
5974 &strict_type_checking,
5975 _("Set strict type checking."),
5976 _("Show strict type checking."),
5977 NULL, NULL,
5978 show_strict_type_checking,
5979 &setchecklist, &showchecklist);
5980 }
This page took 0.154026 seconds and 4 git commands to generate.