internal-error using '@' (repeat) operator on array of dynamic objects
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* See gdbtypes.h. */
258
259 unsigned int
260 type_length_units (struct type *type)
261 {
262 struct gdbarch *arch = get_type_arch (type);
263 int unit_size = gdbarch_addressable_memory_unit_size (arch);
264
265 return TYPE_LENGTH (type) / unit_size;
266 }
267
268 /* Alloc a new type instance structure, fill it with some defaults,
269 and point it at OLDTYPE. Allocate the new type instance from the
270 same place as OLDTYPE. */
271
272 static struct type *
273 alloc_type_instance (struct type *oldtype)
274 {
275 struct type *type;
276
277 /* Allocate the structure. */
278
279 if (! TYPE_OBJFILE_OWNED (oldtype))
280 type = XCNEW (struct type);
281 else
282 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
283 struct type);
284
285 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
286
287 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
288
289 return type;
290 }
291
292 /* Clear all remnants of the previous type at TYPE, in preparation for
293 replacing it with something else. Preserve owner information. */
294
295 static void
296 smash_type (struct type *type)
297 {
298 int objfile_owned = TYPE_OBJFILE_OWNED (type);
299 union type_owner owner = TYPE_OWNER (type);
300
301 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
302
303 /* Restore owner information. */
304 TYPE_OBJFILE_OWNED (type) = objfile_owned;
305 TYPE_OWNER (type) = owner;
306
307 /* For now, delete the rings. */
308 TYPE_CHAIN (type) = type;
309
310 /* For now, leave the pointer/reference types alone. */
311 }
312
313 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
314 to a pointer to memory where the pointer type should be stored.
315 If *TYPEPTR is zero, update it to point to the pointer type we return.
316 We allocate new memory if needed. */
317
318 struct type *
319 make_pointer_type (struct type *type, struct type **typeptr)
320 {
321 struct type *ntype; /* New type */
322 struct type *chain;
323
324 ntype = TYPE_POINTER_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type_copy (type);
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 chain = TYPE_CHAIN (ntype);
348 smash_type (ntype);
349 TYPE_CHAIN (ntype) = chain;
350 }
351
352 TYPE_TARGET_TYPE (ntype) = type;
353 TYPE_POINTER_TYPE (type) = ntype;
354
355 /* FIXME! Assumes the machine has only one representation for pointers! */
356
357 TYPE_LENGTH (ntype)
358 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
359 TYPE_CODE (ntype) = TYPE_CODE_PTR;
360
361 /* Mark pointers as unsigned. The target converts between pointers
362 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
363 gdbarch_address_to_pointer. */
364 TYPE_UNSIGNED (ntype) = 1;
365
366 /* Update the length of all the other variants of this type. */
367 chain = TYPE_CHAIN (ntype);
368 while (chain != ntype)
369 {
370 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
371 chain = TYPE_CHAIN (chain);
372 }
373
374 return ntype;
375 }
376
377 /* Given a type TYPE, return a type of pointers to that type.
378 May need to construct such a type if this is the first use. */
379
380 struct type *
381 lookup_pointer_type (struct type *type)
382 {
383 return make_pointer_type (type, (struct type **) 0);
384 }
385
386 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
387 points to a pointer to memory where the reference type should be
388 stored. If *TYPEPTR is zero, update it to point to the reference
389 type we return. We allocate new memory if needed. REFCODE denotes
390 the kind of reference type to lookup (lvalue or rvalue reference). */
391
392 struct type *
393 make_reference_type (struct type *type, struct type **typeptr,
394 enum type_code refcode)
395 {
396 struct type *ntype; /* New type */
397 struct type **reftype;
398 struct type *chain;
399
400 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
401
402 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
403 : TYPE_RVALUE_REFERENCE_TYPE (type));
404
405 if (ntype)
406 {
407 if (typeptr == 0)
408 return ntype; /* Don't care about alloc,
409 and have new type. */
410 else if (*typeptr == 0)
411 {
412 *typeptr = ntype; /* Tracking alloc, and have new type. */
413 return ntype;
414 }
415 }
416
417 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
418 {
419 ntype = alloc_type_copy (type);
420 if (typeptr)
421 *typeptr = ntype;
422 }
423 else /* We have storage, but need to reset it. */
424 {
425 ntype = *typeptr;
426 chain = TYPE_CHAIN (ntype);
427 smash_type (ntype);
428 TYPE_CHAIN (ntype) = chain;
429 }
430
431 TYPE_TARGET_TYPE (ntype) = type;
432 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
433 : &TYPE_RVALUE_REFERENCE_TYPE (type));
434
435 *reftype = ntype;
436
437 /* FIXME! Assume the machine has only one representation for
438 references, and that it matches the (only) representation for
439 pointers! */
440
441 TYPE_LENGTH (ntype) =
442 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
443 TYPE_CODE (ntype) = refcode;
444
445 *reftype = ntype;
446
447 /* Update the length of all the other variants of this type. */
448 chain = TYPE_CHAIN (ntype);
449 while (chain != ntype)
450 {
451 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
452 chain = TYPE_CHAIN (chain);
453 }
454
455 return ntype;
456 }
457
458 /* Same as above, but caller doesn't care about memory allocation
459 details. */
460
461 struct type *
462 lookup_reference_type (struct type *type, enum type_code refcode)
463 {
464 return make_reference_type (type, (struct type **) 0, refcode);
465 }
466
467 /* Lookup the lvalue reference type for the type TYPE. */
468
469 struct type *
470 lookup_lvalue_reference_type (struct type *type)
471 {
472 return lookup_reference_type (type, TYPE_CODE_REF);
473 }
474
475 /* Lookup the rvalue reference type for the type TYPE. */
476
477 struct type *
478 lookup_rvalue_reference_type (struct type *type)
479 {
480 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
481 }
482
483 /* Lookup a function type that returns type TYPE. TYPEPTR, if
484 nonzero, points to a pointer to memory where the function type
485 should be stored. If *TYPEPTR is zero, update it to point to the
486 function type we return. We allocate new memory if needed. */
487
488 struct type *
489 make_function_type (struct type *type, struct type **typeptr)
490 {
491 struct type *ntype; /* New type */
492
493 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
494 {
495 ntype = alloc_type_copy (type);
496 if (typeptr)
497 *typeptr = ntype;
498 }
499 else /* We have storage, but need to reset it. */
500 {
501 ntype = *typeptr;
502 smash_type (ntype);
503 }
504
505 TYPE_TARGET_TYPE (ntype) = type;
506
507 TYPE_LENGTH (ntype) = 1;
508 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
509
510 INIT_FUNC_SPECIFIC (ntype);
511
512 return ntype;
513 }
514
515 /* Given a type TYPE, return a type of functions that return that type.
516 May need to construct such a type if this is the first use. */
517
518 struct type *
519 lookup_function_type (struct type *type)
520 {
521 return make_function_type (type, (struct type **) 0);
522 }
523
524 /* Given a type TYPE and argument types, return the appropriate
525 function type. If the final type in PARAM_TYPES is NULL, make a
526 varargs function. */
527
528 struct type *
529 lookup_function_type_with_arguments (struct type *type,
530 int nparams,
531 struct type **param_types)
532 {
533 struct type *fn = make_function_type (type, (struct type **) 0);
534 int i;
535
536 if (nparams > 0)
537 {
538 if (param_types[nparams - 1] == NULL)
539 {
540 --nparams;
541 TYPE_VARARGS (fn) = 1;
542 }
543 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
544 == TYPE_CODE_VOID)
545 {
546 --nparams;
547 /* Caller should have ensured this. */
548 gdb_assert (nparams == 0);
549 TYPE_PROTOTYPED (fn) = 1;
550 }
551 else
552 TYPE_PROTOTYPED (fn) = 1;
553 }
554
555 TYPE_NFIELDS (fn) = nparams;
556 TYPE_FIELDS (fn)
557 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
558 for (i = 0; i < nparams; ++i)
559 TYPE_FIELD_TYPE (fn, i) = param_types[i];
560
561 return fn;
562 }
563
564 /* Identify address space identifier by name --
565 return the integer flag defined in gdbtypes.h. */
566
567 int
568 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
569 {
570 int type_flags;
571
572 /* Check for known address space delimiters. */
573 if (!strcmp (space_identifier, "code"))
574 return TYPE_INSTANCE_FLAG_CODE_SPACE;
575 else if (!strcmp (space_identifier, "data"))
576 return TYPE_INSTANCE_FLAG_DATA_SPACE;
577 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
578 && gdbarch_address_class_name_to_type_flags (gdbarch,
579 space_identifier,
580 &type_flags))
581 return type_flags;
582 else
583 error (_("Unknown address space specifier: \"%s\""), space_identifier);
584 }
585
586 /* Identify address space identifier by integer flag as defined in
587 gdbtypes.h -- return the string version of the adress space name. */
588
589 const char *
590 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
591 {
592 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
593 return "code";
594 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
595 return "data";
596 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
597 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
598 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
599 else
600 return NULL;
601 }
602
603 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
604
605 If STORAGE is non-NULL, create the new type instance there.
606 STORAGE must be in the same obstack as TYPE. */
607
608 static struct type *
609 make_qualified_type (struct type *type, int new_flags,
610 struct type *storage)
611 {
612 struct type *ntype;
613
614 ntype = type;
615 do
616 {
617 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
618 return ntype;
619 ntype = TYPE_CHAIN (ntype);
620 }
621 while (ntype != type);
622
623 /* Create a new type instance. */
624 if (storage == NULL)
625 ntype = alloc_type_instance (type);
626 else
627 {
628 /* If STORAGE was provided, it had better be in the same objfile
629 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
630 if one objfile is freed and the other kept, we'd have
631 dangling pointers. */
632 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
633
634 ntype = storage;
635 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
636 TYPE_CHAIN (ntype) = ntype;
637 }
638
639 /* Pointers or references to the original type are not relevant to
640 the new type. */
641 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
642 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
643
644 /* Chain the new qualified type to the old type. */
645 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
646 TYPE_CHAIN (type) = ntype;
647
648 /* Now set the instance flags and return the new type. */
649 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
650
651 /* Set length of new type to that of the original type. */
652 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
653
654 return ntype;
655 }
656
657 /* Make an address-space-delimited variant of a type -- a type that
658 is identical to the one supplied except that it has an address
659 space attribute attached to it (such as "code" or "data").
660
661 The space attributes "code" and "data" are for Harvard
662 architectures. The address space attributes are for architectures
663 which have alternately sized pointers or pointers with alternate
664 representations. */
665
666 struct type *
667 make_type_with_address_space (struct type *type, int space_flag)
668 {
669 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
670 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
671 | TYPE_INSTANCE_FLAG_DATA_SPACE
672 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
673 | space_flag);
674
675 return make_qualified_type (type, new_flags, NULL);
676 }
677
678 /* Make a "c-v" variant of a type -- a type that is identical to the
679 one supplied except that it may have const or volatile attributes
680 CNST is a flag for setting the const attribute
681 VOLTL is a flag for setting the volatile attribute
682 TYPE is the base type whose variant we are creating.
683
684 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
685 storage to hold the new qualified type; *TYPEPTR and TYPE must be
686 in the same objfile. Otherwise, allocate fresh memory for the new
687 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
688 new type we construct. */
689
690 struct type *
691 make_cv_type (int cnst, int voltl,
692 struct type *type,
693 struct type **typeptr)
694 {
695 struct type *ntype; /* New type */
696
697 int new_flags = (TYPE_INSTANCE_FLAGS (type)
698 & ~(TYPE_INSTANCE_FLAG_CONST
699 | TYPE_INSTANCE_FLAG_VOLATILE));
700
701 if (cnst)
702 new_flags |= TYPE_INSTANCE_FLAG_CONST;
703
704 if (voltl)
705 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
706
707 if (typeptr && *typeptr != NULL)
708 {
709 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
710 a C-V variant chain that threads across objfiles: if one
711 objfile gets freed, then the other has a broken C-V chain.
712
713 This code used to try to copy over the main type from TYPE to
714 *TYPEPTR if they were in different objfiles, but that's
715 wrong, too: TYPE may have a field list or member function
716 lists, which refer to types of their own, etc. etc. The
717 whole shebang would need to be copied over recursively; you
718 can't have inter-objfile pointers. The only thing to do is
719 to leave stub types as stub types, and look them up afresh by
720 name each time you encounter them. */
721 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
722 }
723
724 ntype = make_qualified_type (type, new_flags,
725 typeptr ? *typeptr : NULL);
726
727 if (typeptr != NULL)
728 *typeptr = ntype;
729
730 return ntype;
731 }
732
733 /* Make a 'restrict'-qualified version of TYPE. */
734
735 struct type *
736 make_restrict_type (struct type *type)
737 {
738 return make_qualified_type (type,
739 (TYPE_INSTANCE_FLAGS (type)
740 | TYPE_INSTANCE_FLAG_RESTRICT),
741 NULL);
742 }
743
744 /* Make a type without const, volatile, or restrict. */
745
746 struct type *
747 make_unqualified_type (struct type *type)
748 {
749 return make_qualified_type (type,
750 (TYPE_INSTANCE_FLAGS (type)
751 & ~(TYPE_INSTANCE_FLAG_CONST
752 | TYPE_INSTANCE_FLAG_VOLATILE
753 | TYPE_INSTANCE_FLAG_RESTRICT)),
754 NULL);
755 }
756
757 /* Make a '_Atomic'-qualified version of TYPE. */
758
759 struct type *
760 make_atomic_type (struct type *type)
761 {
762 return make_qualified_type (type,
763 (TYPE_INSTANCE_FLAGS (type)
764 | TYPE_INSTANCE_FLAG_ATOMIC),
765 NULL);
766 }
767
768 /* Replace the contents of ntype with the type *type. This changes the
769 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
770 the changes are propogated to all types in the TYPE_CHAIN.
771
772 In order to build recursive types, it's inevitable that we'll need
773 to update types in place --- but this sort of indiscriminate
774 smashing is ugly, and needs to be replaced with something more
775 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
776 clear if more steps are needed. */
777
778 void
779 replace_type (struct type *ntype, struct type *type)
780 {
781 struct type *chain;
782
783 /* These two types had better be in the same objfile. Otherwise,
784 the assignment of one type's main type structure to the other
785 will produce a type with references to objects (names; field
786 lists; etc.) allocated on an objfile other than its own. */
787 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
788
789 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
790
791 /* The type length is not a part of the main type. Update it for
792 each type on the variant chain. */
793 chain = ntype;
794 do
795 {
796 /* Assert that this element of the chain has no address-class bits
797 set in its flags. Such type variants might have type lengths
798 which are supposed to be different from the non-address-class
799 variants. This assertion shouldn't ever be triggered because
800 symbol readers which do construct address-class variants don't
801 call replace_type(). */
802 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
803
804 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
805 chain = TYPE_CHAIN (chain);
806 }
807 while (ntype != chain);
808
809 /* Assert that the two types have equivalent instance qualifiers.
810 This should be true for at least all of our debug readers. */
811 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
812 }
813
814 /* Implement direct support for MEMBER_TYPE in GNU C++.
815 May need to construct such a type if this is the first use.
816 The TYPE is the type of the member. The DOMAIN is the type
817 of the aggregate that the member belongs to. */
818
819 struct type *
820 lookup_memberptr_type (struct type *type, struct type *domain)
821 {
822 struct type *mtype;
823
824 mtype = alloc_type_copy (type);
825 smash_to_memberptr_type (mtype, domain, type);
826 return mtype;
827 }
828
829 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
830
831 struct type *
832 lookup_methodptr_type (struct type *to_type)
833 {
834 struct type *mtype;
835
836 mtype = alloc_type_copy (to_type);
837 smash_to_methodptr_type (mtype, to_type);
838 return mtype;
839 }
840
841 /* Allocate a stub method whose return type is TYPE. This apparently
842 happens for speed of symbol reading, since parsing out the
843 arguments to the method is cpu-intensive, the way we are doing it.
844 So, we will fill in arguments later. This always returns a fresh
845 type. */
846
847 struct type *
848 allocate_stub_method (struct type *type)
849 {
850 struct type *mtype;
851
852 mtype = alloc_type_copy (type);
853 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
854 TYPE_LENGTH (mtype) = 1;
855 TYPE_STUB (mtype) = 1;
856 TYPE_TARGET_TYPE (mtype) = type;
857 /* TYPE_SELF_TYPE (mtype) = unknown yet */
858 return mtype;
859 }
860
861 /* See gdbtypes.h. */
862
863 bool
864 operator== (const dynamic_prop &l, const dynamic_prop &r)
865 {
866 if (l.kind != r.kind)
867 return false;
868
869 switch (l.kind)
870 {
871 case PROP_UNDEFINED:
872 return true;
873 case PROP_CONST:
874 return l.data.const_val == r.data.const_val;
875 case PROP_ADDR_OFFSET:
876 case PROP_LOCEXPR:
877 case PROP_LOCLIST:
878 return l.data.baton == r.data.baton;
879 }
880
881 gdb_assert_not_reached ("unhandled dynamic_prop kind");
882 }
883
884 /* See gdbtypes.h. */
885
886 bool
887 operator== (const range_bounds &l, const range_bounds &r)
888 {
889 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
890
891 return (FIELD_EQ (low)
892 && FIELD_EQ (high)
893 && FIELD_EQ (flag_upper_bound_is_count)
894 && FIELD_EQ (flag_bound_evaluated));
895
896 #undef FIELD_EQ
897 }
898
899 /* Create a range type with a dynamic range from LOW_BOUND to
900 HIGH_BOUND, inclusive. See create_range_type for further details. */
901
902 struct type *
903 create_range_type (struct type *result_type, struct type *index_type,
904 const struct dynamic_prop *low_bound,
905 const struct dynamic_prop *high_bound)
906 {
907 if (result_type == NULL)
908 result_type = alloc_type_copy (index_type);
909 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
910 TYPE_TARGET_TYPE (result_type) = index_type;
911 if (TYPE_STUB (index_type))
912 TYPE_TARGET_STUB (result_type) = 1;
913 else
914 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
915
916 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
917 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
918 TYPE_RANGE_DATA (result_type)->low = *low_bound;
919 TYPE_RANGE_DATA (result_type)->high = *high_bound;
920
921 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
922 TYPE_UNSIGNED (result_type) = 1;
923
924 /* Ada allows the declaration of range types whose upper bound is
925 less than the lower bound, so checking the lower bound is not
926 enough. Make sure we do not mark a range type whose upper bound
927 is negative as unsigned. */
928 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
929 TYPE_UNSIGNED (result_type) = 0;
930
931 return result_type;
932 }
933
934 /* Create a range type using either a blank type supplied in
935 RESULT_TYPE, or creating a new type, inheriting the objfile from
936 INDEX_TYPE.
937
938 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
939 to HIGH_BOUND, inclusive.
940
941 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
942 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
943
944 struct type *
945 create_static_range_type (struct type *result_type, struct type *index_type,
946 LONGEST low_bound, LONGEST high_bound)
947 {
948 struct dynamic_prop low, high;
949
950 low.kind = PROP_CONST;
951 low.data.const_val = low_bound;
952
953 high.kind = PROP_CONST;
954 high.data.const_val = high_bound;
955
956 result_type = create_range_type (result_type, index_type, &low, &high);
957
958 return result_type;
959 }
960
961 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
962 are static, otherwise returns 0. */
963
964 static int
965 has_static_range (const struct range_bounds *bounds)
966 {
967 return (bounds->low.kind == PROP_CONST
968 && bounds->high.kind == PROP_CONST);
969 }
970
971
972 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
973 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
974 bounds will fit in LONGEST), or -1 otherwise. */
975
976 int
977 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
978 {
979 type = check_typedef (type);
980 switch (TYPE_CODE (type))
981 {
982 case TYPE_CODE_RANGE:
983 *lowp = TYPE_LOW_BOUND (type);
984 *highp = TYPE_HIGH_BOUND (type);
985 return 1;
986 case TYPE_CODE_ENUM:
987 if (TYPE_NFIELDS (type) > 0)
988 {
989 /* The enums may not be sorted by value, so search all
990 entries. */
991 int i;
992
993 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
994 for (i = 0; i < TYPE_NFIELDS (type); i++)
995 {
996 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
997 *lowp = TYPE_FIELD_ENUMVAL (type, i);
998 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
999 *highp = TYPE_FIELD_ENUMVAL (type, i);
1000 }
1001
1002 /* Set unsigned indicator if warranted. */
1003 if (*lowp >= 0)
1004 {
1005 TYPE_UNSIGNED (type) = 1;
1006 }
1007 }
1008 else
1009 {
1010 *lowp = 0;
1011 *highp = -1;
1012 }
1013 return 0;
1014 case TYPE_CODE_BOOL:
1015 *lowp = 0;
1016 *highp = 1;
1017 return 0;
1018 case TYPE_CODE_INT:
1019 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1020 return -1;
1021 if (!TYPE_UNSIGNED (type))
1022 {
1023 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1024 *highp = -*lowp - 1;
1025 return 0;
1026 }
1027 /* ... fall through for unsigned ints ... */
1028 case TYPE_CODE_CHAR:
1029 *lowp = 0;
1030 /* This round-about calculation is to avoid shifting by
1031 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1032 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1033 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1034 *highp = (*highp - 1) | *highp;
1035 return 0;
1036 default:
1037 return -1;
1038 }
1039 }
1040
1041 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1042 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1043 Save the high bound into HIGH_BOUND if not NULL.
1044
1045 Return 1 if the operation was successful. Return zero otherwise,
1046 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1047
1048 We now simply use get_discrete_bounds call to get the values
1049 of the low and high bounds.
1050 get_discrete_bounds can return three values:
1051 1, meaning that index is a range,
1052 0, meaning that index is a discrete type,
1053 or -1 for failure. */
1054
1055 int
1056 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1057 {
1058 struct type *index = TYPE_INDEX_TYPE (type);
1059 LONGEST low = 0;
1060 LONGEST high = 0;
1061 int res;
1062
1063 if (index == NULL)
1064 return 0;
1065
1066 res = get_discrete_bounds (index, &low, &high);
1067 if (res == -1)
1068 return 0;
1069
1070 /* Check if the array bounds are undefined. */
1071 if (res == 1
1072 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1073 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1074 return 0;
1075
1076 if (low_bound)
1077 *low_bound = low;
1078
1079 if (high_bound)
1080 *high_bound = high;
1081
1082 return 1;
1083 }
1084
1085 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1086 representation of a value of this type, save the corresponding
1087 position number in POS.
1088
1089 Its differs from VAL only in the case of enumeration types. In
1090 this case, the position number of the value of the first listed
1091 enumeration literal is zero; the position number of the value of
1092 each subsequent enumeration literal is one more than that of its
1093 predecessor in the list.
1094
1095 Return 1 if the operation was successful. Return zero otherwise,
1096 in which case the value of POS is unmodified.
1097 */
1098
1099 int
1100 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1101 {
1102 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1103 {
1104 int i;
1105
1106 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1107 {
1108 if (val == TYPE_FIELD_ENUMVAL (type, i))
1109 {
1110 *pos = i;
1111 return 1;
1112 }
1113 }
1114 /* Invalid enumeration value. */
1115 return 0;
1116 }
1117 else
1118 {
1119 *pos = val;
1120 return 1;
1121 }
1122 }
1123
1124 /* Create an array type using either a blank type supplied in
1125 RESULT_TYPE, or creating a new type, inheriting the objfile from
1126 RANGE_TYPE.
1127
1128 Elements will be of type ELEMENT_TYPE, the indices will be of type
1129 RANGE_TYPE.
1130
1131 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1132 This byte stride property is added to the resulting array type
1133 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1134 argument can only be used to create types that are objfile-owned
1135 (see add_dyn_prop), meaning that either this function must be called
1136 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1137
1138 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1139 If BIT_STRIDE is not zero, build a packed array type whose element
1140 size is BIT_STRIDE. Otherwise, ignore this parameter.
1141
1142 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1143 sure it is TYPE_CODE_UNDEF before we bash it into an array
1144 type? */
1145
1146 struct type *
1147 create_array_type_with_stride (struct type *result_type,
1148 struct type *element_type,
1149 struct type *range_type,
1150 struct dynamic_prop *byte_stride_prop,
1151 unsigned int bit_stride)
1152 {
1153 if (byte_stride_prop != NULL
1154 && byte_stride_prop->kind == PROP_CONST)
1155 {
1156 /* The byte stride is actually not dynamic. Pretend we were
1157 called with bit_stride set instead of byte_stride_prop.
1158 This will give us the same result type, while avoiding
1159 the need to handle this as a special case. */
1160 bit_stride = byte_stride_prop->data.const_val * 8;
1161 byte_stride_prop = NULL;
1162 }
1163
1164 if (result_type == NULL)
1165 result_type = alloc_type_copy (range_type);
1166
1167 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1168 TYPE_TARGET_TYPE (result_type) = element_type;
1169 if (byte_stride_prop == NULL
1170 && has_static_range (TYPE_RANGE_DATA (range_type))
1171 && (!type_not_associated (result_type)
1172 && !type_not_allocated (result_type)))
1173 {
1174 LONGEST low_bound, high_bound;
1175
1176 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1177 low_bound = high_bound = 0;
1178 element_type = check_typedef (element_type);
1179 /* Be careful when setting the array length. Ada arrays can be
1180 empty arrays with the high_bound being smaller than the low_bound.
1181 In such cases, the array length should be zero. */
1182 if (high_bound < low_bound)
1183 TYPE_LENGTH (result_type) = 0;
1184 else if (bit_stride > 0)
1185 TYPE_LENGTH (result_type) =
1186 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1187 else
1188 TYPE_LENGTH (result_type) =
1189 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1190 }
1191 else
1192 {
1193 /* This type is dynamic and its length needs to be computed
1194 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1195 undefined by setting it to zero. Although we are not expected
1196 to trust TYPE_LENGTH in this case, setting the size to zero
1197 allows us to avoid allocating objects of random sizes in case
1198 we accidently do. */
1199 TYPE_LENGTH (result_type) = 0;
1200 }
1201
1202 TYPE_NFIELDS (result_type) = 1;
1203 TYPE_FIELDS (result_type) =
1204 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1205 TYPE_INDEX_TYPE (result_type) = range_type;
1206 if (byte_stride_prop != NULL)
1207 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1208 else if (bit_stride > 0)
1209 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1210
1211 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1212 if (TYPE_LENGTH (result_type) == 0)
1213 TYPE_TARGET_STUB (result_type) = 1;
1214
1215 return result_type;
1216 }
1217
1218 /* Same as create_array_type_with_stride but with no bit_stride
1219 (BIT_STRIDE = 0), thus building an unpacked array. */
1220
1221 struct type *
1222 create_array_type (struct type *result_type,
1223 struct type *element_type,
1224 struct type *range_type)
1225 {
1226 return create_array_type_with_stride (result_type, element_type,
1227 range_type, NULL, 0);
1228 }
1229
1230 struct type *
1231 lookup_array_range_type (struct type *element_type,
1232 LONGEST low_bound, LONGEST high_bound)
1233 {
1234 struct type *index_type;
1235 struct type *range_type;
1236
1237 if (TYPE_OBJFILE_OWNED (element_type))
1238 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1239 else
1240 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1241 range_type = create_static_range_type (NULL, index_type,
1242 low_bound, high_bound);
1243
1244 return create_array_type (NULL, element_type, range_type);
1245 }
1246
1247 /* Create a string type using either a blank type supplied in
1248 RESULT_TYPE, or creating a new type. String types are similar
1249 enough to array of char types that we can use create_array_type to
1250 build the basic type and then bash it into a string type.
1251
1252 For fixed length strings, the range type contains 0 as the lower
1253 bound and the length of the string minus one as the upper bound.
1254
1255 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1256 sure it is TYPE_CODE_UNDEF before we bash it into a string
1257 type? */
1258
1259 struct type *
1260 create_string_type (struct type *result_type,
1261 struct type *string_char_type,
1262 struct type *range_type)
1263 {
1264 result_type = create_array_type (result_type,
1265 string_char_type,
1266 range_type);
1267 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1268 return result_type;
1269 }
1270
1271 struct type *
1272 lookup_string_range_type (struct type *string_char_type,
1273 LONGEST low_bound, LONGEST high_bound)
1274 {
1275 struct type *result_type;
1276
1277 result_type = lookup_array_range_type (string_char_type,
1278 low_bound, high_bound);
1279 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1280 return result_type;
1281 }
1282
1283 struct type *
1284 create_set_type (struct type *result_type, struct type *domain_type)
1285 {
1286 if (result_type == NULL)
1287 result_type = alloc_type_copy (domain_type);
1288
1289 TYPE_CODE (result_type) = TYPE_CODE_SET;
1290 TYPE_NFIELDS (result_type) = 1;
1291 TYPE_FIELDS (result_type)
1292 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1293
1294 if (!TYPE_STUB (domain_type))
1295 {
1296 LONGEST low_bound, high_bound, bit_length;
1297
1298 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1299 low_bound = high_bound = 0;
1300 bit_length = high_bound - low_bound + 1;
1301 TYPE_LENGTH (result_type)
1302 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1303 if (low_bound >= 0)
1304 TYPE_UNSIGNED (result_type) = 1;
1305 }
1306 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1307
1308 return result_type;
1309 }
1310
1311 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1312 and any array types nested inside it. */
1313
1314 void
1315 make_vector_type (struct type *array_type)
1316 {
1317 struct type *inner_array, *elt_type;
1318 int flags;
1319
1320 /* Find the innermost array type, in case the array is
1321 multi-dimensional. */
1322 inner_array = array_type;
1323 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1324 inner_array = TYPE_TARGET_TYPE (inner_array);
1325
1326 elt_type = TYPE_TARGET_TYPE (inner_array);
1327 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1328 {
1329 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1330 elt_type = make_qualified_type (elt_type, flags, NULL);
1331 TYPE_TARGET_TYPE (inner_array) = elt_type;
1332 }
1333
1334 TYPE_VECTOR (array_type) = 1;
1335 }
1336
1337 struct type *
1338 init_vector_type (struct type *elt_type, int n)
1339 {
1340 struct type *array_type;
1341
1342 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1343 make_vector_type (array_type);
1344 return array_type;
1345 }
1346
1347 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1348 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1349 confusing. "self" is a common enough replacement for "this".
1350 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1351 TYPE_CODE_METHOD. */
1352
1353 struct type *
1354 internal_type_self_type (struct type *type)
1355 {
1356 switch (TYPE_CODE (type))
1357 {
1358 case TYPE_CODE_METHODPTR:
1359 case TYPE_CODE_MEMBERPTR:
1360 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1361 return NULL;
1362 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1363 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1364 case TYPE_CODE_METHOD:
1365 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1366 return NULL;
1367 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1368 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1369 default:
1370 gdb_assert_not_reached ("bad type");
1371 }
1372 }
1373
1374 /* Set the type of the class that TYPE belongs to.
1375 In c++ this is the class of "this".
1376 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1377 TYPE_CODE_METHOD. */
1378
1379 void
1380 set_type_self_type (struct type *type, struct type *self_type)
1381 {
1382 switch (TYPE_CODE (type))
1383 {
1384 case TYPE_CODE_METHODPTR:
1385 case TYPE_CODE_MEMBERPTR:
1386 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1387 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1388 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1389 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1390 break;
1391 case TYPE_CODE_METHOD:
1392 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1393 INIT_FUNC_SPECIFIC (type);
1394 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1395 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1396 break;
1397 default:
1398 gdb_assert_not_reached ("bad type");
1399 }
1400 }
1401
1402 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1403 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1404 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1405 TYPE doesn't include the offset (that's the value of the MEMBER
1406 itself), but does include the structure type into which it points
1407 (for some reason).
1408
1409 When "smashing" the type, we preserve the objfile that the old type
1410 pointed to, since we aren't changing where the type is actually
1411 allocated. */
1412
1413 void
1414 smash_to_memberptr_type (struct type *type, struct type *self_type,
1415 struct type *to_type)
1416 {
1417 smash_type (type);
1418 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1419 TYPE_TARGET_TYPE (type) = to_type;
1420 set_type_self_type (type, self_type);
1421 /* Assume that a data member pointer is the same size as a normal
1422 pointer. */
1423 TYPE_LENGTH (type)
1424 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1425 }
1426
1427 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1428
1429 When "smashing" the type, we preserve the objfile that the old type
1430 pointed to, since we aren't changing where the type is actually
1431 allocated. */
1432
1433 void
1434 smash_to_methodptr_type (struct type *type, struct type *to_type)
1435 {
1436 smash_type (type);
1437 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1438 TYPE_TARGET_TYPE (type) = to_type;
1439 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1440 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1441 }
1442
1443 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1444 METHOD just means `function that gets an extra "this" argument'.
1445
1446 When "smashing" the type, we preserve the objfile that the old type
1447 pointed to, since we aren't changing where the type is actually
1448 allocated. */
1449
1450 void
1451 smash_to_method_type (struct type *type, struct type *self_type,
1452 struct type *to_type, struct field *args,
1453 int nargs, int varargs)
1454 {
1455 smash_type (type);
1456 TYPE_CODE (type) = TYPE_CODE_METHOD;
1457 TYPE_TARGET_TYPE (type) = to_type;
1458 set_type_self_type (type, self_type);
1459 TYPE_FIELDS (type) = args;
1460 TYPE_NFIELDS (type) = nargs;
1461 if (varargs)
1462 TYPE_VARARGS (type) = 1;
1463 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1464 }
1465
1466 /* Return a typename for a struct/union/enum type without "struct ",
1467 "union ", or "enum ". If the type has a NULL name, return NULL. */
1468
1469 const char *
1470 type_name_no_tag (const struct type *type)
1471 {
1472 if (TYPE_TAG_NAME (type) != NULL)
1473 return TYPE_TAG_NAME (type);
1474
1475 /* Is there code which expects this to return the name if there is
1476 no tag name? My guess is that this is mainly used for C++ in
1477 cases where the two will always be the same. */
1478 return TYPE_NAME (type);
1479 }
1480
1481 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1482 Since GCC PR debug/47510 DWARF provides associated information to detect the
1483 anonymous class linkage name from its typedef.
1484
1485 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1486 apply it itself. */
1487
1488 const char *
1489 type_name_no_tag_or_error (struct type *type)
1490 {
1491 struct type *saved_type = type;
1492 const char *name;
1493 struct objfile *objfile;
1494
1495 type = check_typedef (type);
1496
1497 name = type_name_no_tag (type);
1498 if (name != NULL)
1499 return name;
1500
1501 name = type_name_no_tag (saved_type);
1502 objfile = TYPE_OBJFILE (saved_type);
1503 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1504 name ? name : "<anonymous>",
1505 objfile ? objfile_name (objfile) : "<arch>");
1506 }
1507
1508 /* Lookup a typedef or primitive type named NAME, visible in lexical
1509 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1510 suitably defined. */
1511
1512 struct type *
1513 lookup_typename (const struct language_defn *language,
1514 struct gdbarch *gdbarch, const char *name,
1515 const struct block *block, int noerr)
1516 {
1517 struct symbol *sym;
1518
1519 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1520 language->la_language, NULL).symbol;
1521 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1522 return SYMBOL_TYPE (sym);
1523
1524 if (noerr)
1525 return NULL;
1526 error (_("No type named %s."), name);
1527 }
1528
1529 struct type *
1530 lookup_unsigned_typename (const struct language_defn *language,
1531 struct gdbarch *gdbarch, const char *name)
1532 {
1533 char *uns = (char *) alloca (strlen (name) + 10);
1534
1535 strcpy (uns, "unsigned ");
1536 strcpy (uns + 9, name);
1537 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1538 }
1539
1540 struct type *
1541 lookup_signed_typename (const struct language_defn *language,
1542 struct gdbarch *gdbarch, const char *name)
1543 {
1544 struct type *t;
1545 char *uns = (char *) alloca (strlen (name) + 8);
1546
1547 strcpy (uns, "signed ");
1548 strcpy (uns + 7, name);
1549 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1550 /* If we don't find "signed FOO" just try again with plain "FOO". */
1551 if (t != NULL)
1552 return t;
1553 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1554 }
1555
1556 /* Lookup a structure type named "struct NAME",
1557 visible in lexical block BLOCK. */
1558
1559 struct type *
1560 lookup_struct (const char *name, const struct block *block)
1561 {
1562 struct symbol *sym;
1563
1564 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1565
1566 if (sym == NULL)
1567 {
1568 error (_("No struct type named %s."), name);
1569 }
1570 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1571 {
1572 error (_("This context has class, union or enum %s, not a struct."),
1573 name);
1574 }
1575 return (SYMBOL_TYPE (sym));
1576 }
1577
1578 /* Lookup a union type named "union NAME",
1579 visible in lexical block BLOCK. */
1580
1581 struct type *
1582 lookup_union (const char *name, const struct block *block)
1583 {
1584 struct symbol *sym;
1585 struct type *t;
1586
1587 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1588
1589 if (sym == NULL)
1590 error (_("No union type named %s."), name);
1591
1592 t = SYMBOL_TYPE (sym);
1593
1594 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1595 return t;
1596
1597 /* If we get here, it's not a union. */
1598 error (_("This context has class, struct or enum %s, not a union."),
1599 name);
1600 }
1601
1602 /* Lookup an enum type named "enum NAME",
1603 visible in lexical block BLOCK. */
1604
1605 struct type *
1606 lookup_enum (const char *name, const struct block *block)
1607 {
1608 struct symbol *sym;
1609
1610 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1611 if (sym == NULL)
1612 {
1613 error (_("No enum type named %s."), name);
1614 }
1615 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1616 {
1617 error (_("This context has class, struct or union %s, not an enum."),
1618 name);
1619 }
1620 return (SYMBOL_TYPE (sym));
1621 }
1622
1623 /* Lookup a template type named "template NAME<TYPE>",
1624 visible in lexical block BLOCK. */
1625
1626 struct type *
1627 lookup_template_type (char *name, struct type *type,
1628 const struct block *block)
1629 {
1630 struct symbol *sym;
1631 char *nam = (char *)
1632 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1633
1634 strcpy (nam, name);
1635 strcat (nam, "<");
1636 strcat (nam, TYPE_NAME (type));
1637 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1638
1639 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1640
1641 if (sym == NULL)
1642 {
1643 error (_("No template type named %s."), name);
1644 }
1645 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1646 {
1647 error (_("This context has class, union or enum %s, not a struct."),
1648 name);
1649 }
1650 return (SYMBOL_TYPE (sym));
1651 }
1652
1653 /* Given a type TYPE, lookup the type of the component of type named
1654 NAME.
1655
1656 TYPE can be either a struct or union, or a pointer or reference to
1657 a struct or union. If it is a pointer or reference, its target
1658 type is automatically used. Thus '.' and '->' are interchangable,
1659 as specified for the definitions of the expression element types
1660 STRUCTOP_STRUCT and STRUCTOP_PTR.
1661
1662 If NOERR is nonzero, return zero if NAME is not suitably defined.
1663 If NAME is the name of a baseclass type, return that type. */
1664
1665 struct type *
1666 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1667 {
1668 int i;
1669
1670 for (;;)
1671 {
1672 type = check_typedef (type);
1673 if (TYPE_CODE (type) != TYPE_CODE_PTR
1674 && TYPE_CODE (type) != TYPE_CODE_REF)
1675 break;
1676 type = TYPE_TARGET_TYPE (type);
1677 }
1678
1679 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1680 && TYPE_CODE (type) != TYPE_CODE_UNION)
1681 {
1682 std::string type_name = type_to_string (type);
1683 error (_("Type %s is not a structure or union type."),
1684 type_name.c_str ());
1685 }
1686
1687 #if 0
1688 /* FIXME: This change put in by Michael seems incorrect for the case
1689 where the structure tag name is the same as the member name.
1690 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1691 foo; } bell;" Disabled by fnf. */
1692 {
1693 char *type_name;
1694
1695 type_name = type_name_no_tag (type);
1696 if (type_name != NULL && strcmp (type_name, name) == 0)
1697 return type;
1698 }
1699 #endif
1700
1701 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1702 {
1703 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1704
1705 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1706 {
1707 return TYPE_FIELD_TYPE (type, i);
1708 }
1709 else if (!t_field_name || *t_field_name == '\0')
1710 {
1711 struct type *subtype
1712 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1713
1714 if (subtype != NULL)
1715 return subtype;
1716 }
1717 }
1718
1719 /* OK, it's not in this class. Recursively check the baseclasses. */
1720 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1721 {
1722 struct type *t;
1723
1724 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1725 if (t != NULL)
1726 {
1727 return t;
1728 }
1729 }
1730
1731 if (noerr)
1732 {
1733 return NULL;
1734 }
1735
1736 std::string type_name = type_to_string (type);
1737 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1738 }
1739
1740 /* Store in *MAX the largest number representable by unsigned integer type
1741 TYPE. */
1742
1743 void
1744 get_unsigned_type_max (struct type *type, ULONGEST *max)
1745 {
1746 unsigned int n;
1747
1748 type = check_typedef (type);
1749 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1750 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1751
1752 /* Written this way to avoid overflow. */
1753 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1754 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1755 }
1756
1757 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1758 signed integer type TYPE. */
1759
1760 void
1761 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1762 {
1763 unsigned int n;
1764
1765 type = check_typedef (type);
1766 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1767 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1768
1769 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1770 *min = -((ULONGEST) 1 << (n - 1));
1771 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1772 }
1773
1774 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1775 cplus_stuff.vptr_fieldno.
1776
1777 cplus_stuff is initialized to cplus_struct_default which does not
1778 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1779 designated initializers). We cope with that here. */
1780
1781 int
1782 internal_type_vptr_fieldno (struct type *type)
1783 {
1784 type = check_typedef (type);
1785 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1786 || TYPE_CODE (type) == TYPE_CODE_UNION);
1787 if (!HAVE_CPLUS_STRUCT (type))
1788 return -1;
1789 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1790 }
1791
1792 /* Set the value of cplus_stuff.vptr_fieldno. */
1793
1794 void
1795 set_type_vptr_fieldno (struct type *type, int fieldno)
1796 {
1797 type = check_typedef (type);
1798 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1799 || TYPE_CODE (type) == TYPE_CODE_UNION);
1800 if (!HAVE_CPLUS_STRUCT (type))
1801 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1802 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1803 }
1804
1805 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1806 cplus_stuff.vptr_basetype. */
1807
1808 struct type *
1809 internal_type_vptr_basetype (struct type *type)
1810 {
1811 type = check_typedef (type);
1812 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1813 || TYPE_CODE (type) == TYPE_CODE_UNION);
1814 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1815 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1816 }
1817
1818 /* Set the value of cplus_stuff.vptr_basetype. */
1819
1820 void
1821 set_type_vptr_basetype (struct type *type, struct type *basetype)
1822 {
1823 type = check_typedef (type);
1824 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1825 || TYPE_CODE (type) == TYPE_CODE_UNION);
1826 if (!HAVE_CPLUS_STRUCT (type))
1827 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1828 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1829 }
1830
1831 /* Lookup the vptr basetype/fieldno values for TYPE.
1832 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1833 vptr_fieldno. Also, if found and basetype is from the same objfile,
1834 cache the results.
1835 If not found, return -1 and ignore BASETYPEP.
1836 Callers should be aware that in some cases (for example,
1837 the type or one of its baseclasses is a stub type and we are
1838 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1839 this function will not be able to find the
1840 virtual function table pointer, and vptr_fieldno will remain -1 and
1841 vptr_basetype will remain NULL or incomplete. */
1842
1843 int
1844 get_vptr_fieldno (struct type *type, struct type **basetypep)
1845 {
1846 type = check_typedef (type);
1847
1848 if (TYPE_VPTR_FIELDNO (type) < 0)
1849 {
1850 int i;
1851
1852 /* We must start at zero in case the first (and only) baseclass
1853 is virtual (and hence we cannot share the table pointer). */
1854 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1855 {
1856 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1857 int fieldno;
1858 struct type *basetype;
1859
1860 fieldno = get_vptr_fieldno (baseclass, &basetype);
1861 if (fieldno >= 0)
1862 {
1863 /* If the type comes from a different objfile we can't cache
1864 it, it may have a different lifetime. PR 2384 */
1865 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1866 {
1867 set_type_vptr_fieldno (type, fieldno);
1868 set_type_vptr_basetype (type, basetype);
1869 }
1870 if (basetypep)
1871 *basetypep = basetype;
1872 return fieldno;
1873 }
1874 }
1875
1876 /* Not found. */
1877 return -1;
1878 }
1879 else
1880 {
1881 if (basetypep)
1882 *basetypep = TYPE_VPTR_BASETYPE (type);
1883 return TYPE_VPTR_FIELDNO (type);
1884 }
1885 }
1886
1887 static void
1888 stub_noname_complaint (void)
1889 {
1890 complaint (&symfile_complaints, _("stub type has NULL name"));
1891 }
1892
1893 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1894 attached to it, and that property has a non-constant value. */
1895
1896 static int
1897 array_type_has_dynamic_stride (struct type *type)
1898 {
1899 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1900
1901 return (prop != NULL && prop->kind != PROP_CONST);
1902 }
1903
1904 /* Worker for is_dynamic_type. */
1905
1906 static int
1907 is_dynamic_type_internal (struct type *type, int top_level)
1908 {
1909 type = check_typedef (type);
1910
1911 /* We only want to recognize references at the outermost level. */
1912 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1913 type = check_typedef (TYPE_TARGET_TYPE (type));
1914
1915 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1916 dynamic, even if the type itself is statically defined.
1917 From a user's point of view, this may appear counter-intuitive;
1918 but it makes sense in this context, because the point is to determine
1919 whether any part of the type needs to be resolved before it can
1920 be exploited. */
1921 if (TYPE_DATA_LOCATION (type) != NULL
1922 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1923 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1924 return 1;
1925
1926 if (TYPE_ASSOCIATED_PROP (type))
1927 return 1;
1928
1929 if (TYPE_ALLOCATED_PROP (type))
1930 return 1;
1931
1932 switch (TYPE_CODE (type))
1933 {
1934 case TYPE_CODE_RANGE:
1935 {
1936 /* A range type is obviously dynamic if it has at least one
1937 dynamic bound. But also consider the range type to be
1938 dynamic when its subtype is dynamic, even if the bounds
1939 of the range type are static. It allows us to assume that
1940 the subtype of a static range type is also static. */
1941 return (!has_static_range (TYPE_RANGE_DATA (type))
1942 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1943 }
1944
1945 case TYPE_CODE_ARRAY:
1946 {
1947 gdb_assert (TYPE_NFIELDS (type) == 1);
1948
1949 /* The array is dynamic if either the bounds are dynamic... */
1950 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1951 return 1;
1952 /* ... or the elements it contains have a dynamic contents... */
1953 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1954 return 1;
1955 /* ... or if it has a dynamic stride... */
1956 if (array_type_has_dynamic_stride (type))
1957 return 1;
1958 return 0;
1959 }
1960
1961 case TYPE_CODE_STRUCT:
1962 case TYPE_CODE_UNION:
1963 {
1964 int i;
1965
1966 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1967 if (!field_is_static (&TYPE_FIELD (type, i))
1968 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1969 return 1;
1970 }
1971 break;
1972 }
1973
1974 return 0;
1975 }
1976
1977 /* See gdbtypes.h. */
1978
1979 int
1980 is_dynamic_type (struct type *type)
1981 {
1982 return is_dynamic_type_internal (type, 1);
1983 }
1984
1985 static struct type *resolve_dynamic_type_internal
1986 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1987
1988 /* Given a dynamic range type (dyn_range_type) and a stack of
1989 struct property_addr_info elements, return a static version
1990 of that type. */
1991
1992 static struct type *
1993 resolve_dynamic_range (struct type *dyn_range_type,
1994 struct property_addr_info *addr_stack)
1995 {
1996 CORE_ADDR value;
1997 struct type *static_range_type, *static_target_type;
1998 const struct dynamic_prop *prop;
1999 struct dynamic_prop low_bound, high_bound;
2000
2001 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2002
2003 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2004 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2005 {
2006 low_bound.kind = PROP_CONST;
2007 low_bound.data.const_val = value;
2008 }
2009 else
2010 {
2011 low_bound.kind = PROP_UNDEFINED;
2012 low_bound.data.const_val = 0;
2013 }
2014
2015 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2016 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2017 {
2018 high_bound.kind = PROP_CONST;
2019 high_bound.data.const_val = value;
2020
2021 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2022 high_bound.data.const_val
2023 = low_bound.data.const_val + high_bound.data.const_val - 1;
2024 }
2025 else
2026 {
2027 high_bound.kind = PROP_UNDEFINED;
2028 high_bound.data.const_val = 0;
2029 }
2030
2031 static_target_type
2032 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2033 addr_stack, 0);
2034 static_range_type = create_range_type (copy_type (dyn_range_type),
2035 static_target_type,
2036 &low_bound, &high_bound);
2037 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2038 return static_range_type;
2039 }
2040
2041 /* Resolves dynamic bound values of an array type TYPE to static ones.
2042 ADDR_STACK is a stack of struct property_addr_info to be used
2043 if needed during the dynamic resolution. */
2044
2045 static struct type *
2046 resolve_dynamic_array (struct type *type,
2047 struct property_addr_info *addr_stack)
2048 {
2049 CORE_ADDR value;
2050 struct type *elt_type;
2051 struct type *range_type;
2052 struct type *ary_dim;
2053 struct dynamic_prop *prop;
2054 unsigned int bit_stride = 0;
2055
2056 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2057
2058 type = copy_type (type);
2059
2060 elt_type = type;
2061 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2062 range_type = resolve_dynamic_range (range_type, addr_stack);
2063
2064 /* Resolve allocated/associated here before creating a new array type, which
2065 will update the length of the array accordingly. */
2066 prop = TYPE_ALLOCATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072 prop = TYPE_ASSOCIATED_PROP (type);
2073 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 TYPE_DYN_PROP_ADDR (prop) = value;
2076 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2077 }
2078
2079 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2080
2081 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2082 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2083 else
2084 elt_type = TYPE_TARGET_TYPE (type);
2085
2086 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2087 if (prop != NULL)
2088 {
2089 int prop_eval_ok
2090 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2091
2092 if (prop_eval_ok)
2093 {
2094 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2095 bit_stride = (unsigned int) (value * 8);
2096 }
2097 else
2098 {
2099 /* Could be a bug in our code, but it could also happen
2100 if the DWARF info is not correct. Issue a warning,
2101 and assume no byte/bit stride (leave bit_stride = 0). */
2102 warning (_("cannot determine array stride for type %s"),
2103 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2104 }
2105 }
2106 else
2107 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2108
2109 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2110 bit_stride);
2111 }
2112
2113 /* Resolve dynamic bounds of members of the union TYPE to static
2114 bounds. ADDR_STACK is a stack of struct property_addr_info
2115 to be used if needed during the dynamic resolution. */
2116
2117 static struct type *
2118 resolve_dynamic_union (struct type *type,
2119 struct property_addr_info *addr_stack)
2120 {
2121 struct type *resolved_type;
2122 int i;
2123 unsigned int max_len = 0;
2124
2125 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2126
2127 resolved_type = copy_type (type);
2128 TYPE_FIELDS (resolved_type)
2129 = (struct field *) TYPE_ALLOC (resolved_type,
2130 TYPE_NFIELDS (resolved_type)
2131 * sizeof (struct field));
2132 memcpy (TYPE_FIELDS (resolved_type),
2133 TYPE_FIELDS (type),
2134 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2135 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2136 {
2137 struct type *t;
2138
2139 if (field_is_static (&TYPE_FIELD (type, i)))
2140 continue;
2141
2142 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2143 addr_stack, 0);
2144 TYPE_FIELD_TYPE (resolved_type, i) = t;
2145 if (TYPE_LENGTH (t) > max_len)
2146 max_len = TYPE_LENGTH (t);
2147 }
2148
2149 TYPE_LENGTH (resolved_type) = max_len;
2150 return resolved_type;
2151 }
2152
2153 /* Resolve dynamic bounds of members of the struct TYPE to static
2154 bounds. ADDR_STACK is a stack of struct property_addr_info to
2155 be used if needed during the dynamic resolution. */
2156
2157 static struct type *
2158 resolve_dynamic_struct (struct type *type,
2159 struct property_addr_info *addr_stack)
2160 {
2161 struct type *resolved_type;
2162 int i;
2163 unsigned resolved_type_bit_length = 0;
2164
2165 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2166 gdb_assert (TYPE_NFIELDS (type) > 0);
2167
2168 resolved_type = copy_type (type);
2169 TYPE_FIELDS (resolved_type)
2170 = (struct field *) TYPE_ALLOC (resolved_type,
2171 TYPE_NFIELDS (resolved_type)
2172 * sizeof (struct field));
2173 memcpy (TYPE_FIELDS (resolved_type),
2174 TYPE_FIELDS (type),
2175 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2176 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2177 {
2178 unsigned new_bit_length;
2179 struct property_addr_info pinfo;
2180
2181 if (field_is_static (&TYPE_FIELD (type, i)))
2182 continue;
2183
2184 /* As we know this field is not a static field, the field's
2185 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2186 this is the case, but only trigger a simple error rather
2187 than an internal error if that fails. While failing
2188 that verification indicates a bug in our code, the error
2189 is not severe enough to suggest to the user he stops
2190 his debugging session because of it. */
2191 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2192 error (_("Cannot determine struct field location"
2193 " (invalid location kind)"));
2194
2195 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2196 pinfo.valaddr = addr_stack->valaddr;
2197 pinfo.addr
2198 = (addr_stack->addr
2199 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2200 pinfo.next = addr_stack;
2201
2202 TYPE_FIELD_TYPE (resolved_type, i)
2203 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2204 &pinfo, 0);
2205 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2206 == FIELD_LOC_KIND_BITPOS);
2207
2208 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2209 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2210 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2211 else
2212 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2213 * TARGET_CHAR_BIT);
2214
2215 /* Normally, we would use the position and size of the last field
2216 to determine the size of the enclosing structure. But GCC seems
2217 to be encoding the position of some fields incorrectly when
2218 the struct contains a dynamic field that is not placed last.
2219 So we compute the struct size based on the field that has
2220 the highest position + size - probably the best we can do. */
2221 if (new_bit_length > resolved_type_bit_length)
2222 resolved_type_bit_length = new_bit_length;
2223 }
2224
2225 /* The length of a type won't change for fortran, but it does for C and Ada.
2226 For fortran the size of dynamic fields might change over time but not the
2227 type length of the structure. If we adapt it, we run into problems
2228 when calculating the element offset for arrays of structs. */
2229 if (current_language->la_language != language_fortran)
2230 TYPE_LENGTH (resolved_type)
2231 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2232
2233 /* The Ada language uses this field as a cache for static fixed types: reset
2234 it as RESOLVED_TYPE must have its own static fixed type. */
2235 TYPE_TARGET_TYPE (resolved_type) = NULL;
2236
2237 return resolved_type;
2238 }
2239
2240 /* Worker for resolved_dynamic_type. */
2241
2242 static struct type *
2243 resolve_dynamic_type_internal (struct type *type,
2244 struct property_addr_info *addr_stack,
2245 int top_level)
2246 {
2247 struct type *real_type = check_typedef (type);
2248 struct type *resolved_type = type;
2249 struct dynamic_prop *prop;
2250 CORE_ADDR value;
2251
2252 if (!is_dynamic_type_internal (real_type, top_level))
2253 return type;
2254
2255 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2256 {
2257 resolved_type = copy_type (type);
2258 TYPE_TARGET_TYPE (resolved_type)
2259 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2260 top_level);
2261 }
2262 else
2263 {
2264 /* Before trying to resolve TYPE, make sure it is not a stub. */
2265 type = real_type;
2266
2267 switch (TYPE_CODE (type))
2268 {
2269 case TYPE_CODE_REF:
2270 {
2271 struct property_addr_info pinfo;
2272
2273 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2274 pinfo.valaddr = NULL;
2275 if (addr_stack->valaddr != NULL)
2276 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2277 else
2278 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2279 pinfo.next = addr_stack;
2280
2281 resolved_type = copy_type (type);
2282 TYPE_TARGET_TYPE (resolved_type)
2283 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2284 &pinfo, top_level);
2285 break;
2286 }
2287
2288 case TYPE_CODE_ARRAY:
2289 resolved_type = resolve_dynamic_array (type, addr_stack);
2290 break;
2291
2292 case TYPE_CODE_RANGE:
2293 resolved_type = resolve_dynamic_range (type, addr_stack);
2294 break;
2295
2296 case TYPE_CODE_UNION:
2297 resolved_type = resolve_dynamic_union (type, addr_stack);
2298 break;
2299
2300 case TYPE_CODE_STRUCT:
2301 resolved_type = resolve_dynamic_struct (type, addr_stack);
2302 break;
2303 }
2304 }
2305
2306 /* Resolve data_location attribute. */
2307 prop = TYPE_DATA_LOCATION (resolved_type);
2308 if (prop != NULL
2309 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2310 {
2311 TYPE_DYN_PROP_ADDR (prop) = value;
2312 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2313 }
2314
2315 return resolved_type;
2316 }
2317
2318 /* See gdbtypes.h */
2319
2320 struct type *
2321 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2322 CORE_ADDR addr)
2323 {
2324 struct property_addr_info pinfo
2325 = {check_typedef (type), valaddr, addr, NULL};
2326
2327 return resolve_dynamic_type_internal (type, &pinfo, 1);
2328 }
2329
2330 /* See gdbtypes.h */
2331
2332 struct dynamic_prop *
2333 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2334 {
2335 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2336
2337 while (node != NULL)
2338 {
2339 if (node->prop_kind == prop_kind)
2340 return &node->prop;
2341 node = node->next;
2342 }
2343 return NULL;
2344 }
2345
2346 /* See gdbtypes.h */
2347
2348 void
2349 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2350 struct type *type)
2351 {
2352 struct dynamic_prop_list *temp;
2353
2354 gdb_assert (TYPE_OBJFILE_OWNED (type));
2355
2356 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2357 struct dynamic_prop_list);
2358 temp->prop_kind = prop_kind;
2359 temp->prop = prop;
2360 temp->next = TYPE_DYN_PROP_LIST (type);
2361
2362 TYPE_DYN_PROP_LIST (type) = temp;
2363 }
2364
2365 /* Remove dynamic property from TYPE in case it exists. */
2366
2367 void
2368 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2369 struct type *type)
2370 {
2371 struct dynamic_prop_list *prev_node, *curr_node;
2372
2373 curr_node = TYPE_DYN_PROP_LIST (type);
2374 prev_node = NULL;
2375
2376 while (NULL != curr_node)
2377 {
2378 if (curr_node->prop_kind == prop_kind)
2379 {
2380 /* Update the linked list but don't free anything.
2381 The property was allocated on objstack and it is not known
2382 if we are on top of it. Nevertheless, everything is released
2383 when the complete objstack is freed. */
2384 if (NULL == prev_node)
2385 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2386 else
2387 prev_node->next = curr_node->next;
2388
2389 return;
2390 }
2391
2392 prev_node = curr_node;
2393 curr_node = curr_node->next;
2394 }
2395 }
2396
2397 /* Find the real type of TYPE. This function returns the real type,
2398 after removing all layers of typedefs, and completing opaque or stub
2399 types. Completion changes the TYPE argument, but stripping of
2400 typedefs does not.
2401
2402 Instance flags (e.g. const/volatile) are preserved as typedefs are
2403 stripped. If necessary a new qualified form of the underlying type
2404 is created.
2405
2406 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2407 not been computed and we're either in the middle of reading symbols, or
2408 there was no name for the typedef in the debug info.
2409
2410 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2411 QUITs in the symbol reading code can also throw.
2412 Thus this function can throw an exception.
2413
2414 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2415 the target type.
2416
2417 If this is a stubbed struct (i.e. declared as struct foo *), see if
2418 we can find a full definition in some other file. If so, copy this
2419 definition, so we can use it in future. There used to be a comment
2420 (but not any code) that if we don't find a full definition, we'd
2421 set a flag so we don't spend time in the future checking the same
2422 type. That would be a mistake, though--we might load in more
2423 symbols which contain a full definition for the type. */
2424
2425 struct type *
2426 check_typedef (struct type *type)
2427 {
2428 struct type *orig_type = type;
2429 /* While we're removing typedefs, we don't want to lose qualifiers.
2430 E.g., const/volatile. */
2431 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2432
2433 gdb_assert (type);
2434
2435 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2436 {
2437 if (!TYPE_TARGET_TYPE (type))
2438 {
2439 const char *name;
2440 struct symbol *sym;
2441
2442 /* It is dangerous to call lookup_symbol if we are currently
2443 reading a symtab. Infinite recursion is one danger. */
2444 if (currently_reading_symtab)
2445 return make_qualified_type (type, instance_flags, NULL);
2446
2447 name = type_name_no_tag (type);
2448 /* FIXME: shouldn't we separately check the TYPE_NAME and
2449 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2450 VAR_DOMAIN as appropriate? (this code was written before
2451 TYPE_NAME and TYPE_TAG_NAME were separate). */
2452 if (name == NULL)
2453 {
2454 stub_noname_complaint ();
2455 return make_qualified_type (type, instance_flags, NULL);
2456 }
2457 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2458 if (sym)
2459 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2460 else /* TYPE_CODE_UNDEF */
2461 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2462 }
2463 type = TYPE_TARGET_TYPE (type);
2464
2465 /* Preserve the instance flags as we traverse down the typedef chain.
2466
2467 Handling address spaces/classes is nasty, what do we do if there's a
2468 conflict?
2469 E.g., what if an outer typedef marks the type as class_1 and an inner
2470 typedef marks the type as class_2?
2471 This is the wrong place to do such error checking. We leave it to
2472 the code that created the typedef in the first place to flag the
2473 error. We just pick the outer address space (akin to letting the
2474 outer cast in a chain of casting win), instead of assuming
2475 "it can't happen". */
2476 {
2477 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2478 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2479 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2480 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2481
2482 /* Treat code vs data spaces and address classes separately. */
2483 if ((instance_flags & ALL_SPACES) != 0)
2484 new_instance_flags &= ~ALL_SPACES;
2485 if ((instance_flags & ALL_CLASSES) != 0)
2486 new_instance_flags &= ~ALL_CLASSES;
2487
2488 instance_flags |= new_instance_flags;
2489 }
2490 }
2491
2492 /* If this is a struct/class/union with no fields, then check
2493 whether a full definition exists somewhere else. This is for
2494 systems where a type definition with no fields is issued for such
2495 types, instead of identifying them as stub types in the first
2496 place. */
2497
2498 if (TYPE_IS_OPAQUE (type)
2499 && opaque_type_resolution
2500 && !currently_reading_symtab)
2501 {
2502 const char *name = type_name_no_tag (type);
2503 struct type *newtype;
2504
2505 if (name == NULL)
2506 {
2507 stub_noname_complaint ();
2508 return make_qualified_type (type, instance_flags, NULL);
2509 }
2510 newtype = lookup_transparent_type (name);
2511
2512 if (newtype)
2513 {
2514 /* If the resolved type and the stub are in the same
2515 objfile, then replace the stub type with the real deal.
2516 But if they're in separate objfiles, leave the stub
2517 alone; we'll just look up the transparent type every time
2518 we call check_typedef. We can't create pointers between
2519 types allocated to different objfiles, since they may
2520 have different lifetimes. Trying to copy NEWTYPE over to
2521 TYPE's objfile is pointless, too, since you'll have to
2522 move over any other types NEWTYPE refers to, which could
2523 be an unbounded amount of stuff. */
2524 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2525 type = make_qualified_type (newtype,
2526 TYPE_INSTANCE_FLAGS (type),
2527 type);
2528 else
2529 type = newtype;
2530 }
2531 }
2532 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2533 types. */
2534 else if (TYPE_STUB (type) && !currently_reading_symtab)
2535 {
2536 const char *name = type_name_no_tag (type);
2537 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2538 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2539 as appropriate? (this code was written before TYPE_NAME and
2540 TYPE_TAG_NAME were separate). */
2541 struct symbol *sym;
2542
2543 if (name == NULL)
2544 {
2545 stub_noname_complaint ();
2546 return make_qualified_type (type, instance_flags, NULL);
2547 }
2548 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2549 if (sym)
2550 {
2551 /* Same as above for opaque types, we can replace the stub
2552 with the complete type only if they are in the same
2553 objfile. */
2554 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2555 type = make_qualified_type (SYMBOL_TYPE (sym),
2556 TYPE_INSTANCE_FLAGS (type),
2557 type);
2558 else
2559 type = SYMBOL_TYPE (sym);
2560 }
2561 }
2562
2563 if (TYPE_TARGET_STUB (type))
2564 {
2565 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2566
2567 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2568 {
2569 /* Nothing we can do. */
2570 }
2571 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2572 {
2573 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2574 TYPE_TARGET_STUB (type) = 0;
2575 }
2576 }
2577
2578 type = make_qualified_type (type, instance_flags, NULL);
2579
2580 /* Cache TYPE_LENGTH for future use. */
2581 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2582
2583 return type;
2584 }
2585
2586 /* Parse a type expression in the string [P..P+LENGTH). If an error
2587 occurs, silently return a void type. */
2588
2589 static struct type *
2590 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2591 {
2592 struct ui_file *saved_gdb_stderr;
2593 struct type *type = NULL; /* Initialize to keep gcc happy. */
2594
2595 /* Suppress error messages. */
2596 saved_gdb_stderr = gdb_stderr;
2597 gdb_stderr = &null_stream;
2598
2599 /* Call parse_and_eval_type() without fear of longjmp()s. */
2600 TRY
2601 {
2602 type = parse_and_eval_type (p, length);
2603 }
2604 CATCH (except, RETURN_MASK_ERROR)
2605 {
2606 type = builtin_type (gdbarch)->builtin_void;
2607 }
2608 END_CATCH
2609
2610 /* Stop suppressing error messages. */
2611 gdb_stderr = saved_gdb_stderr;
2612
2613 return type;
2614 }
2615
2616 /* Ugly hack to convert method stubs into method types.
2617
2618 He ain't kiddin'. This demangles the name of the method into a
2619 string including argument types, parses out each argument type,
2620 generates a string casting a zero to that type, evaluates the
2621 string, and stuffs the resulting type into an argtype vector!!!
2622 Then it knows the type of the whole function (including argument
2623 types for overloading), which info used to be in the stab's but was
2624 removed to hack back the space required for them. */
2625
2626 static void
2627 check_stub_method (struct type *type, int method_id, int signature_id)
2628 {
2629 struct gdbarch *gdbarch = get_type_arch (type);
2630 struct fn_field *f;
2631 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2632 char *demangled_name = gdb_demangle (mangled_name,
2633 DMGL_PARAMS | DMGL_ANSI);
2634 char *argtypetext, *p;
2635 int depth = 0, argcount = 1;
2636 struct field *argtypes;
2637 struct type *mtype;
2638
2639 /* Make sure we got back a function string that we can use. */
2640 if (demangled_name)
2641 p = strchr (demangled_name, '(');
2642 else
2643 p = NULL;
2644
2645 if (demangled_name == NULL || p == NULL)
2646 error (_("Internal: Cannot demangle mangled name `%s'."),
2647 mangled_name);
2648
2649 /* Now, read in the parameters that define this type. */
2650 p += 1;
2651 argtypetext = p;
2652 while (*p)
2653 {
2654 if (*p == '(' || *p == '<')
2655 {
2656 depth += 1;
2657 }
2658 else if (*p == ')' || *p == '>')
2659 {
2660 depth -= 1;
2661 }
2662 else if (*p == ',' && depth == 0)
2663 {
2664 argcount += 1;
2665 }
2666
2667 p += 1;
2668 }
2669
2670 /* If we read one argument and it was ``void'', don't count it. */
2671 if (startswith (argtypetext, "(void)"))
2672 argcount -= 1;
2673
2674 /* We need one extra slot, for the THIS pointer. */
2675
2676 argtypes = (struct field *)
2677 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2678 p = argtypetext;
2679
2680 /* Add THIS pointer for non-static methods. */
2681 f = TYPE_FN_FIELDLIST1 (type, method_id);
2682 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2683 argcount = 0;
2684 else
2685 {
2686 argtypes[0].type = lookup_pointer_type (type);
2687 argcount = 1;
2688 }
2689
2690 if (*p != ')') /* () means no args, skip while. */
2691 {
2692 depth = 0;
2693 while (*p)
2694 {
2695 if (depth <= 0 && (*p == ',' || *p == ')'))
2696 {
2697 /* Avoid parsing of ellipsis, they will be handled below.
2698 Also avoid ``void'' as above. */
2699 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2700 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2701 {
2702 argtypes[argcount].type =
2703 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2704 argcount += 1;
2705 }
2706 argtypetext = p + 1;
2707 }
2708
2709 if (*p == '(' || *p == '<')
2710 {
2711 depth += 1;
2712 }
2713 else if (*p == ')' || *p == '>')
2714 {
2715 depth -= 1;
2716 }
2717
2718 p += 1;
2719 }
2720 }
2721
2722 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2723
2724 /* Now update the old "stub" type into a real type. */
2725 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2726 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2727 We want a method (TYPE_CODE_METHOD). */
2728 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2729 argtypes, argcount, p[-2] == '.');
2730 TYPE_STUB (mtype) = 0;
2731 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2732
2733 xfree (demangled_name);
2734 }
2735
2736 /* This is the external interface to check_stub_method, above. This
2737 function unstubs all of the signatures for TYPE's METHOD_ID method
2738 name. After calling this function TYPE_FN_FIELD_STUB will be
2739 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2740 correct.
2741
2742 This function unfortunately can not die until stabs do. */
2743
2744 void
2745 check_stub_method_group (struct type *type, int method_id)
2746 {
2747 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2748 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2749 int j, found_stub = 0;
2750
2751 for (j = 0; j < len; j++)
2752 if (TYPE_FN_FIELD_STUB (f, j))
2753 {
2754 found_stub = 1;
2755 check_stub_method (type, method_id, j);
2756 }
2757
2758 /* GNU v3 methods with incorrect names were corrected when we read
2759 in type information, because it was cheaper to do it then. The
2760 only GNU v2 methods with incorrect method names are operators and
2761 destructors; destructors were also corrected when we read in type
2762 information.
2763
2764 Therefore the only thing we need to handle here are v2 operator
2765 names. */
2766 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2767 {
2768 int ret;
2769 char dem_opname[256];
2770
2771 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2772 method_id),
2773 dem_opname, DMGL_ANSI);
2774 if (!ret)
2775 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2776 method_id),
2777 dem_opname, 0);
2778 if (ret)
2779 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2780 }
2781 }
2782
2783 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2784 const struct cplus_struct_type cplus_struct_default = { };
2785
2786 void
2787 allocate_cplus_struct_type (struct type *type)
2788 {
2789 if (HAVE_CPLUS_STRUCT (type))
2790 /* Structure was already allocated. Nothing more to do. */
2791 return;
2792
2793 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2794 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2795 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2796 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2797 set_type_vptr_fieldno (type, -1);
2798 }
2799
2800 const struct gnat_aux_type gnat_aux_default =
2801 { NULL };
2802
2803 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2804 and allocate the associated gnat-specific data. The gnat-specific
2805 data is also initialized to gnat_aux_default. */
2806
2807 void
2808 allocate_gnat_aux_type (struct type *type)
2809 {
2810 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2811 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2812 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2813 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2814 }
2815
2816 /* Helper function to initialize a newly allocated type. Set type code
2817 to CODE and initialize the type-specific fields accordingly. */
2818
2819 static void
2820 set_type_code (struct type *type, enum type_code code)
2821 {
2822 TYPE_CODE (type) = code;
2823
2824 switch (code)
2825 {
2826 case TYPE_CODE_STRUCT:
2827 case TYPE_CODE_UNION:
2828 case TYPE_CODE_NAMESPACE:
2829 INIT_CPLUS_SPECIFIC (type);
2830 break;
2831 case TYPE_CODE_FLT:
2832 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2833 break;
2834 case TYPE_CODE_FUNC:
2835 INIT_FUNC_SPECIFIC (type);
2836 break;
2837 }
2838 }
2839
2840 /* Helper function to verify floating-point format and size.
2841 BIT is the type size in bits; if BIT equals -1, the size is
2842 determined by the floatformat. Returns size to be used. */
2843
2844 static int
2845 verify_floatformat (int bit, const struct floatformat *floatformat)
2846 {
2847 gdb_assert (floatformat != NULL);
2848
2849 if (bit == -1)
2850 bit = floatformat->totalsize;
2851
2852 gdb_assert (bit >= 0);
2853 gdb_assert (bit >= floatformat->totalsize);
2854
2855 return bit;
2856 }
2857
2858 /* Return the floating-point format for a floating-point variable of
2859 type TYPE. */
2860
2861 const struct floatformat *
2862 floatformat_from_type (const struct type *type)
2863 {
2864 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2865 gdb_assert (TYPE_FLOATFORMAT (type));
2866 return TYPE_FLOATFORMAT (type);
2867 }
2868
2869 /* Helper function to initialize the standard scalar types.
2870
2871 If NAME is non-NULL, then it is used to initialize the type name.
2872 Note that NAME is not copied; it is required to have a lifetime at
2873 least as long as OBJFILE. */
2874
2875 struct type *
2876 init_type (struct objfile *objfile, enum type_code code, int bit,
2877 const char *name)
2878 {
2879 struct type *type;
2880
2881 type = alloc_type (objfile);
2882 set_type_code (type, code);
2883 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2884 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2885 TYPE_NAME (type) = name;
2886
2887 return type;
2888 }
2889
2890 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2891 to use with variables that have no debug info. NAME is the type
2892 name. */
2893
2894 static struct type *
2895 init_nodebug_var_type (struct objfile *objfile, const char *name)
2896 {
2897 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2898 }
2899
2900 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2901 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2902 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2903
2904 struct type *
2905 init_integer_type (struct objfile *objfile,
2906 int bit, int unsigned_p, const char *name)
2907 {
2908 struct type *t;
2909
2910 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2911 if (unsigned_p)
2912 TYPE_UNSIGNED (t) = 1;
2913
2914 return t;
2915 }
2916
2917 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2918 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2919 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2920
2921 struct type *
2922 init_character_type (struct objfile *objfile,
2923 int bit, int unsigned_p, const char *name)
2924 {
2925 struct type *t;
2926
2927 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2928 if (unsigned_p)
2929 TYPE_UNSIGNED (t) = 1;
2930
2931 return t;
2932 }
2933
2934 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2935 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2936 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2937
2938 struct type *
2939 init_boolean_type (struct objfile *objfile,
2940 int bit, int unsigned_p, const char *name)
2941 {
2942 struct type *t;
2943
2944 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2945 if (unsigned_p)
2946 TYPE_UNSIGNED (t) = 1;
2947
2948 return t;
2949 }
2950
2951 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2952 BIT is the type size in bits; if BIT equals -1, the size is
2953 determined by the floatformat. NAME is the type name. Set the
2954 TYPE_FLOATFORMAT from FLOATFORMATS. */
2955
2956 struct type *
2957 init_float_type (struct objfile *objfile,
2958 int bit, const char *name,
2959 const struct floatformat **floatformats)
2960 {
2961 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2962 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2963 struct type *t;
2964
2965 bit = verify_floatformat (bit, fmt);
2966 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2967 TYPE_FLOATFORMAT (t) = fmt;
2968
2969 return t;
2970 }
2971
2972 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2973 BIT is the type size in bits. NAME is the type name. */
2974
2975 struct type *
2976 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2977 {
2978 struct type *t;
2979
2980 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2981 return t;
2982 }
2983
2984 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2985 NAME is the type name. TARGET_TYPE is the component float type. */
2986
2987 struct type *
2988 init_complex_type (struct objfile *objfile,
2989 const char *name, struct type *target_type)
2990 {
2991 struct type *t;
2992
2993 t = init_type (objfile, TYPE_CODE_COMPLEX,
2994 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2995 TYPE_TARGET_TYPE (t) = target_type;
2996 return t;
2997 }
2998
2999 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3000 BIT is the pointer type size in bits. NAME is the type name.
3001 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3002 TYPE_UNSIGNED flag. */
3003
3004 struct type *
3005 init_pointer_type (struct objfile *objfile,
3006 int bit, const char *name, struct type *target_type)
3007 {
3008 struct type *t;
3009
3010 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3011 TYPE_TARGET_TYPE (t) = target_type;
3012 TYPE_UNSIGNED (t) = 1;
3013 return t;
3014 }
3015
3016 \f
3017 /* Queries on types. */
3018
3019 int
3020 can_dereference (struct type *t)
3021 {
3022 /* FIXME: Should we return true for references as well as
3023 pointers? */
3024 t = check_typedef (t);
3025 return
3026 (t != NULL
3027 && TYPE_CODE (t) == TYPE_CODE_PTR
3028 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3029 }
3030
3031 int
3032 is_integral_type (struct type *t)
3033 {
3034 t = check_typedef (t);
3035 return
3036 ((t != NULL)
3037 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3038 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3039 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3040 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3041 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3042 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3043 }
3044
3045 int
3046 is_floating_type (struct type *t)
3047 {
3048 t = check_typedef (t);
3049 return
3050 ((t != NULL)
3051 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3052 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3053 }
3054
3055 /* Return true if TYPE is scalar. */
3056
3057 int
3058 is_scalar_type (struct type *type)
3059 {
3060 type = check_typedef (type);
3061
3062 switch (TYPE_CODE (type))
3063 {
3064 case TYPE_CODE_ARRAY:
3065 case TYPE_CODE_STRUCT:
3066 case TYPE_CODE_UNION:
3067 case TYPE_CODE_SET:
3068 case TYPE_CODE_STRING:
3069 return 0;
3070 default:
3071 return 1;
3072 }
3073 }
3074
3075 /* Return true if T is scalar, or a composite type which in practice has
3076 the memory layout of a scalar type. E.g., an array or struct with only
3077 one scalar element inside it, or a union with only scalar elements. */
3078
3079 int
3080 is_scalar_type_recursive (struct type *t)
3081 {
3082 t = check_typedef (t);
3083
3084 if (is_scalar_type (t))
3085 return 1;
3086 /* Are we dealing with an array or string of known dimensions? */
3087 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3088 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3089 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3090 {
3091 LONGEST low_bound, high_bound;
3092 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3093
3094 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3095
3096 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3097 }
3098 /* Are we dealing with a struct with one element? */
3099 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3100 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3101 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3102 {
3103 int i, n = TYPE_NFIELDS (t);
3104
3105 /* If all elements of the union are scalar, then the union is scalar. */
3106 for (i = 0; i < n; i++)
3107 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3108 return 0;
3109
3110 return 1;
3111 }
3112
3113 return 0;
3114 }
3115
3116 /* Return true is T is a class or a union. False otherwise. */
3117
3118 int
3119 class_or_union_p (const struct type *t)
3120 {
3121 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3122 || TYPE_CODE (t) == TYPE_CODE_UNION);
3123 }
3124
3125 /* A helper function which returns true if types A and B represent the
3126 "same" class type. This is true if the types have the same main
3127 type, or the same name. */
3128
3129 int
3130 class_types_same_p (const struct type *a, const struct type *b)
3131 {
3132 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3133 || (TYPE_NAME (a) && TYPE_NAME (b)
3134 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3135 }
3136
3137 /* If BASE is an ancestor of DCLASS return the distance between them.
3138 otherwise return -1;
3139 eg:
3140
3141 class A {};
3142 class B: public A {};
3143 class C: public B {};
3144 class D: C {};
3145
3146 distance_to_ancestor (A, A, 0) = 0
3147 distance_to_ancestor (A, B, 0) = 1
3148 distance_to_ancestor (A, C, 0) = 2
3149 distance_to_ancestor (A, D, 0) = 3
3150
3151 If PUBLIC is 1 then only public ancestors are considered,
3152 and the function returns the distance only if BASE is a public ancestor
3153 of DCLASS.
3154 Eg:
3155
3156 distance_to_ancestor (A, D, 1) = -1. */
3157
3158 static int
3159 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3160 {
3161 int i;
3162 int d;
3163
3164 base = check_typedef (base);
3165 dclass = check_typedef (dclass);
3166
3167 if (class_types_same_p (base, dclass))
3168 return 0;
3169
3170 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3171 {
3172 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3173 continue;
3174
3175 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3176 if (d >= 0)
3177 return 1 + d;
3178 }
3179
3180 return -1;
3181 }
3182
3183 /* Check whether BASE is an ancestor or base class or DCLASS
3184 Return 1 if so, and 0 if not.
3185 Note: If BASE and DCLASS are of the same type, this function
3186 will return 1. So for some class A, is_ancestor (A, A) will
3187 return 1. */
3188
3189 int
3190 is_ancestor (struct type *base, struct type *dclass)
3191 {
3192 return distance_to_ancestor (base, dclass, 0) >= 0;
3193 }
3194
3195 /* Like is_ancestor, but only returns true when BASE is a public
3196 ancestor of DCLASS. */
3197
3198 int
3199 is_public_ancestor (struct type *base, struct type *dclass)
3200 {
3201 return distance_to_ancestor (base, dclass, 1) >= 0;
3202 }
3203
3204 /* A helper function for is_unique_ancestor. */
3205
3206 static int
3207 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3208 int *offset,
3209 const gdb_byte *valaddr, int embedded_offset,
3210 CORE_ADDR address, struct value *val)
3211 {
3212 int i, count = 0;
3213
3214 base = check_typedef (base);
3215 dclass = check_typedef (dclass);
3216
3217 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3218 {
3219 struct type *iter;
3220 int this_offset;
3221
3222 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3223
3224 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3225 address, val);
3226
3227 if (class_types_same_p (base, iter))
3228 {
3229 /* If this is the first subclass, set *OFFSET and set count
3230 to 1. Otherwise, if this is at the same offset as
3231 previous instances, do nothing. Otherwise, increment
3232 count. */
3233 if (*offset == -1)
3234 {
3235 *offset = this_offset;
3236 count = 1;
3237 }
3238 else if (this_offset == *offset)
3239 {
3240 /* Nothing. */
3241 }
3242 else
3243 ++count;
3244 }
3245 else
3246 count += is_unique_ancestor_worker (base, iter, offset,
3247 valaddr,
3248 embedded_offset + this_offset,
3249 address, val);
3250 }
3251
3252 return count;
3253 }
3254
3255 /* Like is_ancestor, but only returns true if BASE is a unique base
3256 class of the type of VAL. */
3257
3258 int
3259 is_unique_ancestor (struct type *base, struct value *val)
3260 {
3261 int offset = -1;
3262
3263 return is_unique_ancestor_worker (base, value_type (val), &offset,
3264 value_contents_for_printing (val),
3265 value_embedded_offset (val),
3266 value_address (val), val) == 1;
3267 }
3268
3269 \f
3270 /* Overload resolution. */
3271
3272 /* Return the sum of the rank of A with the rank of B. */
3273
3274 struct rank
3275 sum_ranks (struct rank a, struct rank b)
3276 {
3277 struct rank c;
3278 c.rank = a.rank + b.rank;
3279 c.subrank = a.subrank + b.subrank;
3280 return c;
3281 }
3282
3283 /* Compare rank A and B and return:
3284 0 if a = b
3285 1 if a is better than b
3286 -1 if b is better than a. */
3287
3288 int
3289 compare_ranks (struct rank a, struct rank b)
3290 {
3291 if (a.rank == b.rank)
3292 {
3293 if (a.subrank == b.subrank)
3294 return 0;
3295 if (a.subrank < b.subrank)
3296 return 1;
3297 if (a.subrank > b.subrank)
3298 return -1;
3299 }
3300
3301 if (a.rank < b.rank)
3302 return 1;
3303
3304 /* a.rank > b.rank */
3305 return -1;
3306 }
3307
3308 /* Functions for overload resolution begin here. */
3309
3310 /* Compare two badness vectors A and B and return the result.
3311 0 => A and B are identical
3312 1 => A and B are incomparable
3313 2 => A is better than B
3314 3 => A is worse than B */
3315
3316 int
3317 compare_badness (struct badness_vector *a, struct badness_vector *b)
3318 {
3319 int i;
3320 int tmp;
3321 short found_pos = 0; /* any positives in c? */
3322 short found_neg = 0; /* any negatives in c? */
3323
3324 /* differing lengths => incomparable */
3325 if (a->length != b->length)
3326 return 1;
3327
3328 /* Subtract b from a */
3329 for (i = 0; i < a->length; i++)
3330 {
3331 tmp = compare_ranks (b->rank[i], a->rank[i]);
3332 if (tmp > 0)
3333 found_pos = 1;
3334 else if (tmp < 0)
3335 found_neg = 1;
3336 }
3337
3338 if (found_pos)
3339 {
3340 if (found_neg)
3341 return 1; /* incomparable */
3342 else
3343 return 3; /* A > B */
3344 }
3345 else
3346 /* no positives */
3347 {
3348 if (found_neg)
3349 return 2; /* A < B */
3350 else
3351 return 0; /* A == B */
3352 }
3353 }
3354
3355 /* Rank a function by comparing its parameter types (PARMS, length
3356 NPARMS), to the types of an argument list (ARGS, length NARGS).
3357 Return a pointer to a badness vector. This has NARGS + 1
3358 entries. */
3359
3360 struct badness_vector *
3361 rank_function (struct type **parms, int nparms,
3362 struct value **args, int nargs)
3363 {
3364 int i;
3365 struct badness_vector *bv = XNEW (struct badness_vector);
3366 int min_len = nparms < nargs ? nparms : nargs;
3367
3368 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3369 bv->rank = XNEWVEC (struct rank, nargs + 1);
3370
3371 /* First compare the lengths of the supplied lists.
3372 If there is a mismatch, set it to a high value. */
3373
3374 /* pai/1997-06-03 FIXME: when we have debug info about default
3375 arguments and ellipsis parameter lists, we should consider those
3376 and rank the length-match more finely. */
3377
3378 LENGTH_MATCH (bv) = (nargs != nparms)
3379 ? LENGTH_MISMATCH_BADNESS
3380 : EXACT_MATCH_BADNESS;
3381
3382 /* Now rank all the parameters of the candidate function. */
3383 for (i = 1; i <= min_len; i++)
3384 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3385 args[i - 1]);
3386
3387 /* If more arguments than parameters, add dummy entries. */
3388 for (i = min_len + 1; i <= nargs; i++)
3389 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3390
3391 return bv;
3392 }
3393
3394 /* Compare the names of two integer types, assuming that any sign
3395 qualifiers have been checked already. We do it this way because
3396 there may be an "int" in the name of one of the types. */
3397
3398 static int
3399 integer_types_same_name_p (const char *first, const char *second)
3400 {
3401 int first_p, second_p;
3402
3403 /* If both are shorts, return 1; if neither is a short, keep
3404 checking. */
3405 first_p = (strstr (first, "short") != NULL);
3406 second_p = (strstr (second, "short") != NULL);
3407 if (first_p && second_p)
3408 return 1;
3409 if (first_p || second_p)
3410 return 0;
3411
3412 /* Likewise for long. */
3413 first_p = (strstr (first, "long") != NULL);
3414 second_p = (strstr (second, "long") != NULL);
3415 if (first_p && second_p)
3416 return 1;
3417 if (first_p || second_p)
3418 return 0;
3419
3420 /* Likewise for char. */
3421 first_p = (strstr (first, "char") != NULL);
3422 second_p = (strstr (second, "char") != NULL);
3423 if (first_p && second_p)
3424 return 1;
3425 if (first_p || second_p)
3426 return 0;
3427
3428 /* They must both be ints. */
3429 return 1;
3430 }
3431
3432 /* Compares type A to type B returns 1 if the represent the same type
3433 0 otherwise. */
3434
3435 int
3436 types_equal (struct type *a, struct type *b)
3437 {
3438 /* Identical type pointers. */
3439 /* However, this still doesn't catch all cases of same type for b
3440 and a. The reason is that builtin types are different from
3441 the same ones constructed from the object. */
3442 if (a == b)
3443 return 1;
3444
3445 /* Resolve typedefs */
3446 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3447 a = check_typedef (a);
3448 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3449 b = check_typedef (b);
3450
3451 /* If after resolving typedefs a and b are not of the same type
3452 code then they are not equal. */
3453 if (TYPE_CODE (a) != TYPE_CODE (b))
3454 return 0;
3455
3456 /* If a and b are both pointers types or both reference types then
3457 they are equal of the same type iff the objects they refer to are
3458 of the same type. */
3459 if (TYPE_CODE (a) == TYPE_CODE_PTR
3460 || TYPE_CODE (a) == TYPE_CODE_REF)
3461 return types_equal (TYPE_TARGET_TYPE (a),
3462 TYPE_TARGET_TYPE (b));
3463
3464 /* Well, damnit, if the names are exactly the same, I'll say they
3465 are exactly the same. This happens when we generate method
3466 stubs. The types won't point to the same address, but they
3467 really are the same. */
3468
3469 if (TYPE_NAME (a) && TYPE_NAME (b)
3470 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3471 return 1;
3472
3473 /* Check if identical after resolving typedefs. */
3474 if (a == b)
3475 return 1;
3476
3477 /* Two function types are equal if their argument and return types
3478 are equal. */
3479 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3480 {
3481 int i;
3482
3483 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3484 return 0;
3485
3486 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3487 return 0;
3488
3489 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3490 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3491 return 0;
3492
3493 return 1;
3494 }
3495
3496 return 0;
3497 }
3498 \f
3499 /* Deep comparison of types. */
3500
3501 /* An entry in the type-equality bcache. */
3502
3503 typedef struct type_equality_entry
3504 {
3505 struct type *type1, *type2;
3506 } type_equality_entry_d;
3507
3508 DEF_VEC_O (type_equality_entry_d);
3509
3510 /* A helper function to compare two strings. Returns 1 if they are
3511 the same, 0 otherwise. Handles NULLs properly. */
3512
3513 static int
3514 compare_maybe_null_strings (const char *s, const char *t)
3515 {
3516 if (s == NULL && t != NULL)
3517 return 0;
3518 else if (s != NULL && t == NULL)
3519 return 0;
3520 else if (s == NULL && t== NULL)
3521 return 1;
3522 return strcmp (s, t) == 0;
3523 }
3524
3525 /* A helper function for check_types_worklist that checks two types for
3526 "deep" equality. Returns non-zero if the types are considered the
3527 same, zero otherwise. */
3528
3529 static int
3530 check_types_equal (struct type *type1, struct type *type2,
3531 VEC (type_equality_entry_d) **worklist)
3532 {
3533 type1 = check_typedef (type1);
3534 type2 = check_typedef (type2);
3535
3536 if (type1 == type2)
3537 return 1;
3538
3539 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3540 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3541 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3542 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3543 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3544 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3545 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3546 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3547 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3548 return 0;
3549
3550 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3551 TYPE_TAG_NAME (type2)))
3552 return 0;
3553 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3554 return 0;
3555
3556 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3557 {
3558 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3559 return 0;
3560 }
3561 else
3562 {
3563 int i;
3564
3565 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3566 {
3567 const struct field *field1 = &TYPE_FIELD (type1, i);
3568 const struct field *field2 = &TYPE_FIELD (type2, i);
3569 struct type_equality_entry entry;
3570
3571 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3572 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3573 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3574 return 0;
3575 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3576 FIELD_NAME (*field2)))
3577 return 0;
3578 switch (FIELD_LOC_KIND (*field1))
3579 {
3580 case FIELD_LOC_KIND_BITPOS:
3581 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3582 return 0;
3583 break;
3584 case FIELD_LOC_KIND_ENUMVAL:
3585 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3586 return 0;
3587 break;
3588 case FIELD_LOC_KIND_PHYSADDR:
3589 if (FIELD_STATIC_PHYSADDR (*field1)
3590 != FIELD_STATIC_PHYSADDR (*field2))
3591 return 0;
3592 break;
3593 case FIELD_LOC_KIND_PHYSNAME:
3594 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3595 FIELD_STATIC_PHYSNAME (*field2)))
3596 return 0;
3597 break;
3598 case FIELD_LOC_KIND_DWARF_BLOCK:
3599 {
3600 struct dwarf2_locexpr_baton *block1, *block2;
3601
3602 block1 = FIELD_DWARF_BLOCK (*field1);
3603 block2 = FIELD_DWARF_BLOCK (*field2);
3604 if (block1->per_cu != block2->per_cu
3605 || block1->size != block2->size
3606 || memcmp (block1->data, block2->data, block1->size) != 0)
3607 return 0;
3608 }
3609 break;
3610 default:
3611 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3612 "%d by check_types_equal"),
3613 FIELD_LOC_KIND (*field1));
3614 }
3615
3616 entry.type1 = FIELD_TYPE (*field1);
3617 entry.type2 = FIELD_TYPE (*field2);
3618 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3619 }
3620 }
3621
3622 if (TYPE_TARGET_TYPE (type1) != NULL)
3623 {
3624 struct type_equality_entry entry;
3625
3626 if (TYPE_TARGET_TYPE (type2) == NULL)
3627 return 0;
3628
3629 entry.type1 = TYPE_TARGET_TYPE (type1);
3630 entry.type2 = TYPE_TARGET_TYPE (type2);
3631 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3632 }
3633 else if (TYPE_TARGET_TYPE (type2) != NULL)
3634 return 0;
3635
3636 return 1;
3637 }
3638
3639 /* Check types on a worklist for equality. Returns zero if any pair
3640 is not equal, non-zero if they are all considered equal. */
3641
3642 static int
3643 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3644 struct bcache *cache)
3645 {
3646 while (!VEC_empty (type_equality_entry_d, *worklist))
3647 {
3648 struct type_equality_entry entry;
3649 int added;
3650
3651 entry = *VEC_last (type_equality_entry_d, *worklist);
3652 VEC_pop (type_equality_entry_d, *worklist);
3653
3654 /* If the type pair has already been visited, we know it is
3655 ok. */
3656 bcache_full (&entry, sizeof (entry), cache, &added);
3657 if (!added)
3658 continue;
3659
3660 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3661 return 0;
3662 }
3663
3664 return 1;
3665 }
3666
3667 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3668 "deep comparison". Otherwise return zero. */
3669
3670 int
3671 types_deeply_equal (struct type *type1, struct type *type2)
3672 {
3673 struct gdb_exception except = exception_none;
3674 int result = 0;
3675 struct bcache *cache;
3676 VEC (type_equality_entry_d) *worklist = NULL;
3677 struct type_equality_entry entry;
3678
3679 gdb_assert (type1 != NULL && type2 != NULL);
3680
3681 /* Early exit for the simple case. */
3682 if (type1 == type2)
3683 return 1;
3684
3685 cache = bcache_xmalloc (NULL, NULL);
3686
3687 entry.type1 = type1;
3688 entry.type2 = type2;
3689 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3690
3691 /* check_types_worklist calls several nested helper functions, some
3692 of which can raise a GDB exception, so we just check and rethrow
3693 here. If there is a GDB exception, a comparison is not capable
3694 (or trusted), so exit. */
3695 TRY
3696 {
3697 result = check_types_worklist (&worklist, cache);
3698 }
3699 CATCH (ex, RETURN_MASK_ALL)
3700 {
3701 except = ex;
3702 }
3703 END_CATCH
3704
3705 bcache_xfree (cache);
3706 VEC_free (type_equality_entry_d, worklist);
3707
3708 /* Rethrow if there was a problem. */
3709 if (except.reason < 0)
3710 throw_exception (except);
3711
3712 return result;
3713 }
3714
3715 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3716 Otherwise return one. */
3717
3718 int
3719 type_not_allocated (const struct type *type)
3720 {
3721 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3722
3723 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3724 && !TYPE_DYN_PROP_ADDR (prop));
3725 }
3726
3727 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3728 Otherwise return one. */
3729
3730 int
3731 type_not_associated (const struct type *type)
3732 {
3733 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3734
3735 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3736 && !TYPE_DYN_PROP_ADDR (prop));
3737 }
3738 \f
3739 /* Compare one type (PARM) for compatibility with another (ARG).
3740 * PARM is intended to be the parameter type of a function; and
3741 * ARG is the supplied argument's type. This function tests if
3742 * the latter can be converted to the former.
3743 * VALUE is the argument's value or NULL if none (or called recursively)
3744 *
3745 * Return 0 if they are identical types;
3746 * Otherwise, return an integer which corresponds to how compatible
3747 * PARM is to ARG. The higher the return value, the worse the match.
3748 * Generally the "bad" conversions are all uniformly assigned a 100. */
3749
3750 struct rank
3751 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3752 {
3753 struct rank rank = {0,0};
3754
3755 /* Resolve typedefs */
3756 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3757 parm = check_typedef (parm);
3758 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3759 arg = check_typedef (arg);
3760
3761 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3762 {
3763 if (VALUE_LVAL (value) == not_lval)
3764 {
3765 /* Rvalues should preferably bind to rvalue references or const
3766 lvalue references. */
3767 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3768 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3769 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3770 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3771 else
3772 return INCOMPATIBLE_TYPE_BADNESS;
3773 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3774 }
3775 else
3776 {
3777 /* Lvalues should prefer lvalue overloads. */
3778 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3779 {
3780 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3781 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3782 }
3783 }
3784 }
3785
3786 if (types_equal (parm, arg))
3787 {
3788 struct type *t1 = parm;
3789 struct type *t2 = arg;
3790
3791 /* For pointers and references, compare target type. */
3792 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3793 {
3794 t1 = TYPE_TARGET_TYPE (parm);
3795 t2 = TYPE_TARGET_TYPE (arg);
3796 }
3797
3798 /* Make sure they are CV equal, too. */
3799 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3800 rank.subrank |= CV_CONVERSION_CONST;
3801 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3802 rank.subrank |= CV_CONVERSION_VOLATILE;
3803 if (rank.subrank != 0)
3804 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3805 return EXACT_MATCH_BADNESS;
3806 }
3807
3808 /* See through references, since we can almost make non-references
3809 references. */
3810
3811 if (TYPE_IS_REFERENCE (arg))
3812 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3813 REFERENCE_CONVERSION_BADNESS));
3814 if (TYPE_IS_REFERENCE (parm))
3815 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3816 REFERENCE_CONVERSION_BADNESS));
3817 if (overload_debug)
3818 /* Debugging only. */
3819 fprintf_filtered (gdb_stderr,
3820 "------ Arg is %s [%d], parm is %s [%d]\n",
3821 TYPE_NAME (arg), TYPE_CODE (arg),
3822 TYPE_NAME (parm), TYPE_CODE (parm));
3823
3824 /* x -> y means arg of type x being supplied for parameter of type y. */
3825
3826 switch (TYPE_CODE (parm))
3827 {
3828 case TYPE_CODE_PTR:
3829 switch (TYPE_CODE (arg))
3830 {
3831 case TYPE_CODE_PTR:
3832
3833 /* Allowed pointer conversions are:
3834 (a) pointer to void-pointer conversion. */
3835 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3836 return VOID_PTR_CONVERSION_BADNESS;
3837
3838 /* (b) pointer to ancestor-pointer conversion. */
3839 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3840 TYPE_TARGET_TYPE (arg),
3841 0);
3842 if (rank.subrank >= 0)
3843 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3844
3845 return INCOMPATIBLE_TYPE_BADNESS;
3846 case TYPE_CODE_ARRAY:
3847 {
3848 struct type *t1 = TYPE_TARGET_TYPE (parm);
3849 struct type *t2 = TYPE_TARGET_TYPE (arg);
3850
3851 if (types_equal (t1, t2))
3852 {
3853 /* Make sure they are CV equal. */
3854 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3855 rank.subrank |= CV_CONVERSION_CONST;
3856 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3857 rank.subrank |= CV_CONVERSION_VOLATILE;
3858 if (rank.subrank != 0)
3859 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3860 return EXACT_MATCH_BADNESS;
3861 }
3862 return INCOMPATIBLE_TYPE_BADNESS;
3863 }
3864 case TYPE_CODE_FUNC:
3865 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3866 case TYPE_CODE_INT:
3867 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3868 {
3869 if (value_as_long (value) == 0)
3870 {
3871 /* Null pointer conversion: allow it to be cast to a pointer.
3872 [4.10.1 of C++ standard draft n3290] */
3873 return NULL_POINTER_CONVERSION_BADNESS;
3874 }
3875 else
3876 {
3877 /* If type checking is disabled, allow the conversion. */
3878 if (!strict_type_checking)
3879 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3880 }
3881 }
3882 /* fall through */
3883 case TYPE_CODE_ENUM:
3884 case TYPE_CODE_FLAGS:
3885 case TYPE_CODE_CHAR:
3886 case TYPE_CODE_RANGE:
3887 case TYPE_CODE_BOOL:
3888 default:
3889 return INCOMPATIBLE_TYPE_BADNESS;
3890 }
3891 case TYPE_CODE_ARRAY:
3892 switch (TYPE_CODE (arg))
3893 {
3894 case TYPE_CODE_PTR:
3895 case TYPE_CODE_ARRAY:
3896 return rank_one_type (TYPE_TARGET_TYPE (parm),
3897 TYPE_TARGET_TYPE (arg), NULL);
3898 default:
3899 return INCOMPATIBLE_TYPE_BADNESS;
3900 }
3901 case TYPE_CODE_FUNC:
3902 switch (TYPE_CODE (arg))
3903 {
3904 case TYPE_CODE_PTR: /* funcptr -> func */
3905 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3906 default:
3907 return INCOMPATIBLE_TYPE_BADNESS;
3908 }
3909 case TYPE_CODE_INT:
3910 switch (TYPE_CODE (arg))
3911 {
3912 case TYPE_CODE_INT:
3913 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3914 {
3915 /* Deal with signed, unsigned, and plain chars and
3916 signed and unsigned ints. */
3917 if (TYPE_NOSIGN (parm))
3918 {
3919 /* This case only for character types. */
3920 if (TYPE_NOSIGN (arg))
3921 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3922 else /* signed/unsigned char -> plain char */
3923 return INTEGER_CONVERSION_BADNESS;
3924 }
3925 else if (TYPE_UNSIGNED (parm))
3926 {
3927 if (TYPE_UNSIGNED (arg))
3928 {
3929 /* unsigned int -> unsigned int, or
3930 unsigned long -> unsigned long */
3931 if (integer_types_same_name_p (TYPE_NAME (parm),
3932 TYPE_NAME (arg)))
3933 return EXACT_MATCH_BADNESS;
3934 else if (integer_types_same_name_p (TYPE_NAME (arg),
3935 "int")
3936 && integer_types_same_name_p (TYPE_NAME (parm),
3937 "long"))
3938 /* unsigned int -> unsigned long */
3939 return INTEGER_PROMOTION_BADNESS;
3940 else
3941 /* unsigned long -> unsigned int */
3942 return INTEGER_CONVERSION_BADNESS;
3943 }
3944 else
3945 {
3946 if (integer_types_same_name_p (TYPE_NAME (arg),
3947 "long")
3948 && integer_types_same_name_p (TYPE_NAME (parm),
3949 "int"))
3950 /* signed long -> unsigned int */
3951 return INTEGER_CONVERSION_BADNESS;
3952 else
3953 /* signed int/long -> unsigned int/long */
3954 return INTEGER_CONVERSION_BADNESS;
3955 }
3956 }
3957 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3958 {
3959 if (integer_types_same_name_p (TYPE_NAME (parm),
3960 TYPE_NAME (arg)))
3961 return EXACT_MATCH_BADNESS;
3962 else if (integer_types_same_name_p (TYPE_NAME (arg),
3963 "int")
3964 && integer_types_same_name_p (TYPE_NAME (parm),
3965 "long"))
3966 return INTEGER_PROMOTION_BADNESS;
3967 else
3968 return INTEGER_CONVERSION_BADNESS;
3969 }
3970 else
3971 return INTEGER_CONVERSION_BADNESS;
3972 }
3973 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3974 return INTEGER_PROMOTION_BADNESS;
3975 else
3976 return INTEGER_CONVERSION_BADNESS;
3977 case TYPE_CODE_ENUM:
3978 case TYPE_CODE_FLAGS:
3979 case TYPE_CODE_CHAR:
3980 case TYPE_CODE_RANGE:
3981 case TYPE_CODE_BOOL:
3982 if (TYPE_DECLARED_CLASS (arg))
3983 return INCOMPATIBLE_TYPE_BADNESS;
3984 return INTEGER_PROMOTION_BADNESS;
3985 case TYPE_CODE_FLT:
3986 return INT_FLOAT_CONVERSION_BADNESS;
3987 case TYPE_CODE_PTR:
3988 return NS_POINTER_CONVERSION_BADNESS;
3989 default:
3990 return INCOMPATIBLE_TYPE_BADNESS;
3991 }
3992 break;
3993 case TYPE_CODE_ENUM:
3994 switch (TYPE_CODE (arg))
3995 {
3996 case TYPE_CODE_INT:
3997 case TYPE_CODE_CHAR:
3998 case TYPE_CODE_RANGE:
3999 case TYPE_CODE_BOOL:
4000 case TYPE_CODE_ENUM:
4001 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4002 return INCOMPATIBLE_TYPE_BADNESS;
4003 return INTEGER_CONVERSION_BADNESS;
4004 case TYPE_CODE_FLT:
4005 return INT_FLOAT_CONVERSION_BADNESS;
4006 default:
4007 return INCOMPATIBLE_TYPE_BADNESS;
4008 }
4009 break;
4010 case TYPE_CODE_CHAR:
4011 switch (TYPE_CODE (arg))
4012 {
4013 case TYPE_CODE_RANGE:
4014 case TYPE_CODE_BOOL:
4015 case TYPE_CODE_ENUM:
4016 if (TYPE_DECLARED_CLASS (arg))
4017 return INCOMPATIBLE_TYPE_BADNESS;
4018 return INTEGER_CONVERSION_BADNESS;
4019 case TYPE_CODE_FLT:
4020 return INT_FLOAT_CONVERSION_BADNESS;
4021 case TYPE_CODE_INT:
4022 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4023 return INTEGER_CONVERSION_BADNESS;
4024 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4025 return INTEGER_PROMOTION_BADNESS;
4026 /* >>> !! else fall through !! <<< */
4027 case TYPE_CODE_CHAR:
4028 /* Deal with signed, unsigned, and plain chars for C++ and
4029 with int cases falling through from previous case. */
4030 if (TYPE_NOSIGN (parm))
4031 {
4032 if (TYPE_NOSIGN (arg))
4033 return EXACT_MATCH_BADNESS;
4034 else
4035 return INTEGER_CONVERSION_BADNESS;
4036 }
4037 else if (TYPE_UNSIGNED (parm))
4038 {
4039 if (TYPE_UNSIGNED (arg))
4040 return EXACT_MATCH_BADNESS;
4041 else
4042 return INTEGER_PROMOTION_BADNESS;
4043 }
4044 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4045 return EXACT_MATCH_BADNESS;
4046 else
4047 return INTEGER_CONVERSION_BADNESS;
4048 default:
4049 return INCOMPATIBLE_TYPE_BADNESS;
4050 }
4051 break;
4052 case TYPE_CODE_RANGE:
4053 switch (TYPE_CODE (arg))
4054 {
4055 case TYPE_CODE_INT:
4056 case TYPE_CODE_CHAR:
4057 case TYPE_CODE_RANGE:
4058 case TYPE_CODE_BOOL:
4059 case TYPE_CODE_ENUM:
4060 return INTEGER_CONVERSION_BADNESS;
4061 case TYPE_CODE_FLT:
4062 return INT_FLOAT_CONVERSION_BADNESS;
4063 default:
4064 return INCOMPATIBLE_TYPE_BADNESS;
4065 }
4066 break;
4067 case TYPE_CODE_BOOL:
4068 switch (TYPE_CODE (arg))
4069 {
4070 /* n3290 draft, section 4.12.1 (conv.bool):
4071
4072 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4073 pointer to member type can be converted to a prvalue of type
4074 bool. A zero value, null pointer value, or null member pointer
4075 value is converted to false; any other value is converted to
4076 true. A prvalue of type std::nullptr_t can be converted to a
4077 prvalue of type bool; the resulting value is false." */
4078 case TYPE_CODE_INT:
4079 case TYPE_CODE_CHAR:
4080 case TYPE_CODE_ENUM:
4081 case TYPE_CODE_FLT:
4082 case TYPE_CODE_MEMBERPTR:
4083 case TYPE_CODE_PTR:
4084 return BOOL_CONVERSION_BADNESS;
4085 case TYPE_CODE_RANGE:
4086 return INCOMPATIBLE_TYPE_BADNESS;
4087 case TYPE_CODE_BOOL:
4088 return EXACT_MATCH_BADNESS;
4089 default:
4090 return INCOMPATIBLE_TYPE_BADNESS;
4091 }
4092 break;
4093 case TYPE_CODE_FLT:
4094 switch (TYPE_CODE (arg))
4095 {
4096 case TYPE_CODE_FLT:
4097 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4098 return FLOAT_PROMOTION_BADNESS;
4099 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4100 return EXACT_MATCH_BADNESS;
4101 else
4102 return FLOAT_CONVERSION_BADNESS;
4103 case TYPE_CODE_INT:
4104 case TYPE_CODE_BOOL:
4105 case TYPE_CODE_ENUM:
4106 case TYPE_CODE_RANGE:
4107 case TYPE_CODE_CHAR:
4108 return INT_FLOAT_CONVERSION_BADNESS;
4109 default:
4110 return INCOMPATIBLE_TYPE_BADNESS;
4111 }
4112 break;
4113 case TYPE_CODE_COMPLEX:
4114 switch (TYPE_CODE (arg))
4115 { /* Strictly not needed for C++, but... */
4116 case TYPE_CODE_FLT:
4117 return FLOAT_PROMOTION_BADNESS;
4118 case TYPE_CODE_COMPLEX:
4119 return EXACT_MATCH_BADNESS;
4120 default:
4121 return INCOMPATIBLE_TYPE_BADNESS;
4122 }
4123 break;
4124 case TYPE_CODE_STRUCT:
4125 switch (TYPE_CODE (arg))
4126 {
4127 case TYPE_CODE_STRUCT:
4128 /* Check for derivation */
4129 rank.subrank = distance_to_ancestor (parm, arg, 0);
4130 if (rank.subrank >= 0)
4131 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4132 /* else fall through */
4133 default:
4134 return INCOMPATIBLE_TYPE_BADNESS;
4135 }
4136 break;
4137 case TYPE_CODE_UNION:
4138 switch (TYPE_CODE (arg))
4139 {
4140 case TYPE_CODE_UNION:
4141 default:
4142 return INCOMPATIBLE_TYPE_BADNESS;
4143 }
4144 break;
4145 case TYPE_CODE_MEMBERPTR:
4146 switch (TYPE_CODE (arg))
4147 {
4148 default:
4149 return INCOMPATIBLE_TYPE_BADNESS;
4150 }
4151 break;
4152 case TYPE_CODE_METHOD:
4153 switch (TYPE_CODE (arg))
4154 {
4155
4156 default:
4157 return INCOMPATIBLE_TYPE_BADNESS;
4158 }
4159 break;
4160 case TYPE_CODE_REF:
4161 switch (TYPE_CODE (arg))
4162 {
4163
4164 default:
4165 return INCOMPATIBLE_TYPE_BADNESS;
4166 }
4167
4168 break;
4169 case TYPE_CODE_SET:
4170 switch (TYPE_CODE (arg))
4171 {
4172 /* Not in C++ */
4173 case TYPE_CODE_SET:
4174 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4175 TYPE_FIELD_TYPE (arg, 0), NULL);
4176 default:
4177 return INCOMPATIBLE_TYPE_BADNESS;
4178 }
4179 break;
4180 case TYPE_CODE_VOID:
4181 default:
4182 return INCOMPATIBLE_TYPE_BADNESS;
4183 } /* switch (TYPE_CODE (arg)) */
4184 }
4185
4186 /* End of functions for overload resolution. */
4187 \f
4188 /* Routines to pretty-print types. */
4189
4190 static void
4191 print_bit_vector (B_TYPE *bits, int nbits)
4192 {
4193 int bitno;
4194
4195 for (bitno = 0; bitno < nbits; bitno++)
4196 {
4197 if ((bitno % 8) == 0)
4198 {
4199 puts_filtered (" ");
4200 }
4201 if (B_TST (bits, bitno))
4202 printf_filtered (("1"));
4203 else
4204 printf_filtered (("0"));
4205 }
4206 }
4207
4208 /* Note the first arg should be the "this" pointer, we may not want to
4209 include it since we may get into a infinitely recursive
4210 situation. */
4211
4212 static void
4213 print_args (struct field *args, int nargs, int spaces)
4214 {
4215 if (args != NULL)
4216 {
4217 int i;
4218
4219 for (i = 0; i < nargs; i++)
4220 {
4221 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4222 args[i].name != NULL ? args[i].name : "<NULL>");
4223 recursive_dump_type (args[i].type, spaces + 2);
4224 }
4225 }
4226 }
4227
4228 int
4229 field_is_static (struct field *f)
4230 {
4231 /* "static" fields are the fields whose location is not relative
4232 to the address of the enclosing struct. It would be nice to
4233 have a dedicated flag that would be set for static fields when
4234 the type is being created. But in practice, checking the field
4235 loc_kind should give us an accurate answer. */
4236 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4237 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4238 }
4239
4240 static void
4241 dump_fn_fieldlists (struct type *type, int spaces)
4242 {
4243 int method_idx;
4244 int overload_idx;
4245 struct fn_field *f;
4246
4247 printfi_filtered (spaces, "fn_fieldlists ");
4248 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4249 printf_filtered ("\n");
4250 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4251 {
4252 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4253 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4254 method_idx,
4255 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4256 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4257 gdb_stdout);
4258 printf_filtered (_(") length %d\n"),
4259 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4260 for (overload_idx = 0;
4261 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4262 overload_idx++)
4263 {
4264 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4265 overload_idx,
4266 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4267 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4268 gdb_stdout);
4269 printf_filtered (")\n");
4270 printfi_filtered (spaces + 8, "type ");
4271 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4272 gdb_stdout);
4273 printf_filtered ("\n");
4274
4275 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4276 spaces + 8 + 2);
4277
4278 printfi_filtered (spaces + 8, "args ");
4279 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4280 gdb_stdout);
4281 printf_filtered ("\n");
4282 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4283 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4284 spaces + 8 + 2);
4285 printfi_filtered (spaces + 8, "fcontext ");
4286 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4287 gdb_stdout);
4288 printf_filtered ("\n");
4289
4290 printfi_filtered (spaces + 8, "is_const %d\n",
4291 TYPE_FN_FIELD_CONST (f, overload_idx));
4292 printfi_filtered (spaces + 8, "is_volatile %d\n",
4293 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4294 printfi_filtered (spaces + 8, "is_private %d\n",
4295 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4296 printfi_filtered (spaces + 8, "is_protected %d\n",
4297 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4298 printfi_filtered (spaces + 8, "is_stub %d\n",
4299 TYPE_FN_FIELD_STUB (f, overload_idx));
4300 printfi_filtered (spaces + 8, "voffset %u\n",
4301 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4302 }
4303 }
4304 }
4305
4306 static void
4307 print_cplus_stuff (struct type *type, int spaces)
4308 {
4309 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4310 printfi_filtered (spaces, "vptr_basetype ");
4311 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4312 puts_filtered ("\n");
4313 if (TYPE_VPTR_BASETYPE (type) != NULL)
4314 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4315
4316 printfi_filtered (spaces, "n_baseclasses %d\n",
4317 TYPE_N_BASECLASSES (type));
4318 printfi_filtered (spaces, "nfn_fields %d\n",
4319 TYPE_NFN_FIELDS (type));
4320 if (TYPE_N_BASECLASSES (type) > 0)
4321 {
4322 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4323 TYPE_N_BASECLASSES (type));
4324 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4325 gdb_stdout);
4326 printf_filtered (")");
4327
4328 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4329 TYPE_N_BASECLASSES (type));
4330 puts_filtered ("\n");
4331 }
4332 if (TYPE_NFIELDS (type) > 0)
4333 {
4334 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4335 {
4336 printfi_filtered (spaces,
4337 "private_field_bits (%d bits at *",
4338 TYPE_NFIELDS (type));
4339 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4340 gdb_stdout);
4341 printf_filtered (")");
4342 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4343 TYPE_NFIELDS (type));
4344 puts_filtered ("\n");
4345 }
4346 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4347 {
4348 printfi_filtered (spaces,
4349 "protected_field_bits (%d bits at *",
4350 TYPE_NFIELDS (type));
4351 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4352 gdb_stdout);
4353 printf_filtered (")");
4354 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4355 TYPE_NFIELDS (type));
4356 puts_filtered ("\n");
4357 }
4358 }
4359 if (TYPE_NFN_FIELDS (type) > 0)
4360 {
4361 dump_fn_fieldlists (type, spaces);
4362 }
4363 }
4364
4365 /* Print the contents of the TYPE's type_specific union, assuming that
4366 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4367
4368 static void
4369 print_gnat_stuff (struct type *type, int spaces)
4370 {
4371 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4372
4373 if (descriptive_type == NULL)
4374 printfi_filtered (spaces + 2, "no descriptive type\n");
4375 else
4376 {
4377 printfi_filtered (spaces + 2, "descriptive type\n");
4378 recursive_dump_type (descriptive_type, spaces + 4);
4379 }
4380 }
4381
4382 static struct obstack dont_print_type_obstack;
4383
4384 void
4385 recursive_dump_type (struct type *type, int spaces)
4386 {
4387 int idx;
4388
4389 if (spaces == 0)
4390 obstack_begin (&dont_print_type_obstack, 0);
4391
4392 if (TYPE_NFIELDS (type) > 0
4393 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4394 {
4395 struct type **first_dont_print
4396 = (struct type **) obstack_base (&dont_print_type_obstack);
4397
4398 int i = (struct type **)
4399 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4400
4401 while (--i >= 0)
4402 {
4403 if (type == first_dont_print[i])
4404 {
4405 printfi_filtered (spaces, "type node ");
4406 gdb_print_host_address (type, gdb_stdout);
4407 printf_filtered (_(" <same as already seen type>\n"));
4408 return;
4409 }
4410 }
4411
4412 obstack_ptr_grow (&dont_print_type_obstack, type);
4413 }
4414
4415 printfi_filtered (spaces, "type node ");
4416 gdb_print_host_address (type, gdb_stdout);
4417 printf_filtered ("\n");
4418 printfi_filtered (spaces, "name '%s' (",
4419 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4420 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4421 printf_filtered (")\n");
4422 printfi_filtered (spaces, "tagname '%s' (",
4423 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
4424 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
4425 printf_filtered (")\n");
4426 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4427 switch (TYPE_CODE (type))
4428 {
4429 case TYPE_CODE_UNDEF:
4430 printf_filtered ("(TYPE_CODE_UNDEF)");
4431 break;
4432 case TYPE_CODE_PTR:
4433 printf_filtered ("(TYPE_CODE_PTR)");
4434 break;
4435 case TYPE_CODE_ARRAY:
4436 printf_filtered ("(TYPE_CODE_ARRAY)");
4437 break;
4438 case TYPE_CODE_STRUCT:
4439 printf_filtered ("(TYPE_CODE_STRUCT)");
4440 break;
4441 case TYPE_CODE_UNION:
4442 printf_filtered ("(TYPE_CODE_UNION)");
4443 break;
4444 case TYPE_CODE_ENUM:
4445 printf_filtered ("(TYPE_CODE_ENUM)");
4446 break;
4447 case TYPE_CODE_FLAGS:
4448 printf_filtered ("(TYPE_CODE_FLAGS)");
4449 break;
4450 case TYPE_CODE_FUNC:
4451 printf_filtered ("(TYPE_CODE_FUNC)");
4452 break;
4453 case TYPE_CODE_INT:
4454 printf_filtered ("(TYPE_CODE_INT)");
4455 break;
4456 case TYPE_CODE_FLT:
4457 printf_filtered ("(TYPE_CODE_FLT)");
4458 break;
4459 case TYPE_CODE_VOID:
4460 printf_filtered ("(TYPE_CODE_VOID)");
4461 break;
4462 case TYPE_CODE_SET:
4463 printf_filtered ("(TYPE_CODE_SET)");
4464 break;
4465 case TYPE_CODE_RANGE:
4466 printf_filtered ("(TYPE_CODE_RANGE)");
4467 break;
4468 case TYPE_CODE_STRING:
4469 printf_filtered ("(TYPE_CODE_STRING)");
4470 break;
4471 case TYPE_CODE_ERROR:
4472 printf_filtered ("(TYPE_CODE_ERROR)");
4473 break;
4474 case TYPE_CODE_MEMBERPTR:
4475 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4476 break;
4477 case TYPE_CODE_METHODPTR:
4478 printf_filtered ("(TYPE_CODE_METHODPTR)");
4479 break;
4480 case TYPE_CODE_METHOD:
4481 printf_filtered ("(TYPE_CODE_METHOD)");
4482 break;
4483 case TYPE_CODE_REF:
4484 printf_filtered ("(TYPE_CODE_REF)");
4485 break;
4486 case TYPE_CODE_CHAR:
4487 printf_filtered ("(TYPE_CODE_CHAR)");
4488 break;
4489 case TYPE_CODE_BOOL:
4490 printf_filtered ("(TYPE_CODE_BOOL)");
4491 break;
4492 case TYPE_CODE_COMPLEX:
4493 printf_filtered ("(TYPE_CODE_COMPLEX)");
4494 break;
4495 case TYPE_CODE_TYPEDEF:
4496 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4497 break;
4498 case TYPE_CODE_NAMESPACE:
4499 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4500 break;
4501 default:
4502 printf_filtered ("(UNKNOWN TYPE CODE)");
4503 break;
4504 }
4505 puts_filtered ("\n");
4506 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4507 if (TYPE_OBJFILE_OWNED (type))
4508 {
4509 printfi_filtered (spaces, "objfile ");
4510 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4511 }
4512 else
4513 {
4514 printfi_filtered (spaces, "gdbarch ");
4515 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4516 }
4517 printf_filtered ("\n");
4518 printfi_filtered (spaces, "target_type ");
4519 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4520 printf_filtered ("\n");
4521 if (TYPE_TARGET_TYPE (type) != NULL)
4522 {
4523 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4524 }
4525 printfi_filtered (spaces, "pointer_type ");
4526 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4527 printf_filtered ("\n");
4528 printfi_filtered (spaces, "reference_type ");
4529 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4530 printf_filtered ("\n");
4531 printfi_filtered (spaces, "type_chain ");
4532 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4533 printf_filtered ("\n");
4534 printfi_filtered (spaces, "instance_flags 0x%x",
4535 TYPE_INSTANCE_FLAGS (type));
4536 if (TYPE_CONST (type))
4537 {
4538 puts_filtered (" TYPE_CONST");
4539 }
4540 if (TYPE_VOLATILE (type))
4541 {
4542 puts_filtered (" TYPE_VOLATILE");
4543 }
4544 if (TYPE_CODE_SPACE (type))
4545 {
4546 puts_filtered (" TYPE_CODE_SPACE");
4547 }
4548 if (TYPE_DATA_SPACE (type))
4549 {
4550 puts_filtered (" TYPE_DATA_SPACE");
4551 }
4552 if (TYPE_ADDRESS_CLASS_1 (type))
4553 {
4554 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4555 }
4556 if (TYPE_ADDRESS_CLASS_2 (type))
4557 {
4558 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4559 }
4560 if (TYPE_RESTRICT (type))
4561 {
4562 puts_filtered (" TYPE_RESTRICT");
4563 }
4564 if (TYPE_ATOMIC (type))
4565 {
4566 puts_filtered (" TYPE_ATOMIC");
4567 }
4568 puts_filtered ("\n");
4569
4570 printfi_filtered (spaces, "flags");
4571 if (TYPE_UNSIGNED (type))
4572 {
4573 puts_filtered (" TYPE_UNSIGNED");
4574 }
4575 if (TYPE_NOSIGN (type))
4576 {
4577 puts_filtered (" TYPE_NOSIGN");
4578 }
4579 if (TYPE_STUB (type))
4580 {
4581 puts_filtered (" TYPE_STUB");
4582 }
4583 if (TYPE_TARGET_STUB (type))
4584 {
4585 puts_filtered (" TYPE_TARGET_STUB");
4586 }
4587 if (TYPE_PROTOTYPED (type))
4588 {
4589 puts_filtered (" TYPE_PROTOTYPED");
4590 }
4591 if (TYPE_INCOMPLETE (type))
4592 {
4593 puts_filtered (" TYPE_INCOMPLETE");
4594 }
4595 if (TYPE_VARARGS (type))
4596 {
4597 puts_filtered (" TYPE_VARARGS");
4598 }
4599 /* This is used for things like AltiVec registers on ppc. Gcc emits
4600 an attribute for the array type, which tells whether or not we
4601 have a vector, instead of a regular array. */
4602 if (TYPE_VECTOR (type))
4603 {
4604 puts_filtered (" TYPE_VECTOR");
4605 }
4606 if (TYPE_FIXED_INSTANCE (type))
4607 {
4608 puts_filtered (" TYPE_FIXED_INSTANCE");
4609 }
4610 if (TYPE_STUB_SUPPORTED (type))
4611 {
4612 puts_filtered (" TYPE_STUB_SUPPORTED");
4613 }
4614 if (TYPE_NOTTEXT (type))
4615 {
4616 puts_filtered (" TYPE_NOTTEXT");
4617 }
4618 puts_filtered ("\n");
4619 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4620 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4621 puts_filtered ("\n");
4622 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4623 {
4624 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4625 printfi_filtered (spaces + 2,
4626 "[%d] enumval %s type ",
4627 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4628 else
4629 printfi_filtered (spaces + 2,
4630 "[%d] bitpos %s bitsize %d type ",
4631 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4632 TYPE_FIELD_BITSIZE (type, idx));
4633 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4634 printf_filtered (" name '%s' (",
4635 TYPE_FIELD_NAME (type, idx) != NULL
4636 ? TYPE_FIELD_NAME (type, idx)
4637 : "<NULL>");
4638 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4639 printf_filtered (")\n");
4640 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4641 {
4642 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4643 }
4644 }
4645 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4646 {
4647 printfi_filtered (spaces, "low %s%s high %s%s\n",
4648 plongest (TYPE_LOW_BOUND (type)),
4649 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4650 plongest (TYPE_HIGH_BOUND (type)),
4651 TYPE_HIGH_BOUND_UNDEFINED (type)
4652 ? " (undefined)" : "");
4653 }
4654
4655 switch (TYPE_SPECIFIC_FIELD (type))
4656 {
4657 case TYPE_SPECIFIC_CPLUS_STUFF:
4658 printfi_filtered (spaces, "cplus_stuff ");
4659 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4660 gdb_stdout);
4661 puts_filtered ("\n");
4662 print_cplus_stuff (type, spaces);
4663 break;
4664
4665 case TYPE_SPECIFIC_GNAT_STUFF:
4666 printfi_filtered (spaces, "gnat_stuff ");
4667 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4668 puts_filtered ("\n");
4669 print_gnat_stuff (type, spaces);
4670 break;
4671
4672 case TYPE_SPECIFIC_FLOATFORMAT:
4673 printfi_filtered (spaces, "floatformat ");
4674 if (TYPE_FLOATFORMAT (type) == NULL
4675 || TYPE_FLOATFORMAT (type)->name == NULL)
4676 puts_filtered ("(null)");
4677 else
4678 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4679 puts_filtered ("\n");
4680 break;
4681
4682 case TYPE_SPECIFIC_FUNC:
4683 printfi_filtered (spaces, "calling_convention %d\n",
4684 TYPE_CALLING_CONVENTION (type));
4685 /* tail_call_list is not printed. */
4686 break;
4687
4688 case TYPE_SPECIFIC_SELF_TYPE:
4689 printfi_filtered (spaces, "self_type ");
4690 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4691 puts_filtered ("\n");
4692 break;
4693 }
4694
4695 if (spaces == 0)
4696 obstack_free (&dont_print_type_obstack, NULL);
4697 }
4698 \f
4699 /* Trivial helpers for the libiberty hash table, for mapping one
4700 type to another. */
4701
4702 struct type_pair
4703 {
4704 struct type *old, *newobj;
4705 };
4706
4707 static hashval_t
4708 type_pair_hash (const void *item)
4709 {
4710 const struct type_pair *pair = (const struct type_pair *) item;
4711
4712 return htab_hash_pointer (pair->old);
4713 }
4714
4715 static int
4716 type_pair_eq (const void *item_lhs, const void *item_rhs)
4717 {
4718 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4719 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4720
4721 return lhs->old == rhs->old;
4722 }
4723
4724 /* Allocate the hash table used by copy_type_recursive to walk
4725 types without duplicates. We use OBJFILE's obstack, because
4726 OBJFILE is about to be deleted. */
4727
4728 htab_t
4729 create_copied_types_hash (struct objfile *objfile)
4730 {
4731 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4732 NULL, &objfile->objfile_obstack,
4733 hashtab_obstack_allocate,
4734 dummy_obstack_deallocate);
4735 }
4736
4737 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4738
4739 static struct dynamic_prop_list *
4740 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4741 struct dynamic_prop_list *list)
4742 {
4743 struct dynamic_prop_list *copy = list;
4744 struct dynamic_prop_list **node_ptr = &copy;
4745
4746 while (*node_ptr != NULL)
4747 {
4748 struct dynamic_prop_list *node_copy;
4749
4750 node_copy = ((struct dynamic_prop_list *)
4751 obstack_copy (objfile_obstack, *node_ptr,
4752 sizeof (struct dynamic_prop_list)));
4753 node_copy->prop = (*node_ptr)->prop;
4754 *node_ptr = node_copy;
4755
4756 node_ptr = &node_copy->next;
4757 }
4758
4759 return copy;
4760 }
4761
4762 /* Recursively copy (deep copy) TYPE, if it is associated with
4763 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4764 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4765 it is not associated with OBJFILE. */
4766
4767 struct type *
4768 copy_type_recursive (struct objfile *objfile,
4769 struct type *type,
4770 htab_t copied_types)
4771 {
4772 struct type_pair *stored, pair;
4773 void **slot;
4774 struct type *new_type;
4775
4776 if (! TYPE_OBJFILE_OWNED (type))
4777 return type;
4778
4779 /* This type shouldn't be pointing to any types in other objfiles;
4780 if it did, the type might disappear unexpectedly. */
4781 gdb_assert (TYPE_OBJFILE (type) == objfile);
4782
4783 pair.old = type;
4784 slot = htab_find_slot (copied_types, &pair, INSERT);
4785 if (*slot != NULL)
4786 return ((struct type_pair *) *slot)->newobj;
4787
4788 new_type = alloc_type_arch (get_type_arch (type));
4789
4790 /* We must add the new type to the hash table immediately, in case
4791 we encounter this type again during a recursive call below. */
4792 stored = XOBNEW (&objfile->objfile_obstack, struct type_pair);
4793 stored->old = type;
4794 stored->newobj = new_type;
4795 *slot = stored;
4796
4797 /* Copy the common fields of types. For the main type, we simply
4798 copy the entire thing and then update specific fields as needed. */
4799 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4800 TYPE_OBJFILE_OWNED (new_type) = 0;
4801 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4802
4803 if (TYPE_NAME (type))
4804 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4805 if (TYPE_TAG_NAME (type))
4806 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4807
4808 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4809 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4810
4811 /* Copy the fields. */
4812 if (TYPE_NFIELDS (type))
4813 {
4814 int i, nfields;
4815
4816 nfields = TYPE_NFIELDS (type);
4817 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4818 for (i = 0; i < nfields; i++)
4819 {
4820 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4821 TYPE_FIELD_ARTIFICIAL (type, i);
4822 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4823 if (TYPE_FIELD_TYPE (type, i))
4824 TYPE_FIELD_TYPE (new_type, i)
4825 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4826 copied_types);
4827 if (TYPE_FIELD_NAME (type, i))
4828 TYPE_FIELD_NAME (new_type, i) =
4829 xstrdup (TYPE_FIELD_NAME (type, i));
4830 switch (TYPE_FIELD_LOC_KIND (type, i))
4831 {
4832 case FIELD_LOC_KIND_BITPOS:
4833 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4834 TYPE_FIELD_BITPOS (type, i));
4835 break;
4836 case FIELD_LOC_KIND_ENUMVAL:
4837 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4838 TYPE_FIELD_ENUMVAL (type, i));
4839 break;
4840 case FIELD_LOC_KIND_PHYSADDR:
4841 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4842 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4843 break;
4844 case FIELD_LOC_KIND_PHYSNAME:
4845 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4846 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4847 i)));
4848 break;
4849 default:
4850 internal_error (__FILE__, __LINE__,
4851 _("Unexpected type field location kind: %d"),
4852 TYPE_FIELD_LOC_KIND (type, i));
4853 }
4854 }
4855 }
4856
4857 /* For range types, copy the bounds information. */
4858 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4859 {
4860 TYPE_RANGE_DATA (new_type) = XNEW (struct range_bounds);
4861 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4862 }
4863
4864 if (TYPE_DYN_PROP_LIST (type) != NULL)
4865 TYPE_DYN_PROP_LIST (new_type)
4866 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4867 TYPE_DYN_PROP_LIST (type));
4868
4869
4870 /* Copy pointers to other types. */
4871 if (TYPE_TARGET_TYPE (type))
4872 TYPE_TARGET_TYPE (new_type) =
4873 copy_type_recursive (objfile,
4874 TYPE_TARGET_TYPE (type),
4875 copied_types);
4876
4877 /* Maybe copy the type_specific bits.
4878
4879 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4880 base classes and methods. There's no fundamental reason why we
4881 can't, but at the moment it is not needed. */
4882
4883 switch (TYPE_SPECIFIC_FIELD (type))
4884 {
4885 case TYPE_SPECIFIC_NONE:
4886 break;
4887 case TYPE_SPECIFIC_FUNC:
4888 INIT_FUNC_SPECIFIC (new_type);
4889 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4890 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4891 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4892 break;
4893 case TYPE_SPECIFIC_FLOATFORMAT:
4894 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4895 break;
4896 case TYPE_SPECIFIC_CPLUS_STUFF:
4897 INIT_CPLUS_SPECIFIC (new_type);
4898 break;
4899 case TYPE_SPECIFIC_GNAT_STUFF:
4900 INIT_GNAT_SPECIFIC (new_type);
4901 break;
4902 case TYPE_SPECIFIC_SELF_TYPE:
4903 set_type_self_type (new_type,
4904 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4905 copied_types));
4906 break;
4907 default:
4908 gdb_assert_not_reached ("bad type_specific_kind");
4909 }
4910
4911 return new_type;
4912 }
4913
4914 /* Make a copy of the given TYPE, except that the pointer & reference
4915 types are not preserved.
4916
4917 This function assumes that the given type has an associated objfile.
4918 This objfile is used to allocate the new type. */
4919
4920 struct type *
4921 copy_type (const struct type *type)
4922 {
4923 struct type *new_type;
4924
4925 gdb_assert (TYPE_OBJFILE_OWNED (type));
4926
4927 new_type = alloc_type_copy (type);
4928 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4929 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4930 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4931 sizeof (struct main_type));
4932 if (TYPE_DYN_PROP_LIST (type) != NULL)
4933 TYPE_DYN_PROP_LIST (new_type)
4934 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4935 TYPE_DYN_PROP_LIST (type));
4936
4937 return new_type;
4938 }
4939 \f
4940 /* Helper functions to initialize architecture-specific types. */
4941
4942 /* Allocate a type structure associated with GDBARCH and set its
4943 CODE, LENGTH, and NAME fields. */
4944
4945 struct type *
4946 arch_type (struct gdbarch *gdbarch,
4947 enum type_code code, int bit, const char *name)
4948 {
4949 struct type *type;
4950
4951 type = alloc_type_arch (gdbarch);
4952 set_type_code (type, code);
4953 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
4954 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
4955
4956 if (name)
4957 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
4958
4959 return type;
4960 }
4961
4962 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4963 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4964 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4965
4966 struct type *
4967 arch_integer_type (struct gdbarch *gdbarch,
4968 int bit, int unsigned_p, const char *name)
4969 {
4970 struct type *t;
4971
4972 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
4973 if (unsigned_p)
4974 TYPE_UNSIGNED (t) = 1;
4975
4976 return t;
4977 }
4978
4979 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4980 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4981 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4982
4983 struct type *
4984 arch_character_type (struct gdbarch *gdbarch,
4985 int bit, int unsigned_p, const char *name)
4986 {
4987 struct type *t;
4988
4989 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
4990 if (unsigned_p)
4991 TYPE_UNSIGNED (t) = 1;
4992
4993 return t;
4994 }
4995
4996 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4997 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4998 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4999
5000 struct type *
5001 arch_boolean_type (struct gdbarch *gdbarch,
5002 int bit, int unsigned_p, const char *name)
5003 {
5004 struct type *t;
5005
5006 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5007 if (unsigned_p)
5008 TYPE_UNSIGNED (t) = 1;
5009
5010 return t;
5011 }
5012
5013 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5014 BIT is the type size in bits; if BIT equals -1, the size is
5015 determined by the floatformat. NAME is the type name. Set the
5016 TYPE_FLOATFORMAT from FLOATFORMATS. */
5017
5018 struct type *
5019 arch_float_type (struct gdbarch *gdbarch,
5020 int bit, const char *name,
5021 const struct floatformat **floatformats)
5022 {
5023 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5024 struct type *t;
5025
5026 bit = verify_floatformat (bit, fmt);
5027 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5028 TYPE_FLOATFORMAT (t) = fmt;
5029
5030 return t;
5031 }
5032
5033 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5034 BIT is the type size in bits. NAME is the type name. */
5035
5036 struct type *
5037 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5038 {
5039 struct type *t;
5040
5041 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5042 return t;
5043 }
5044
5045 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5046 NAME is the type name. TARGET_TYPE is the component float type. */
5047
5048 struct type *
5049 arch_complex_type (struct gdbarch *gdbarch,
5050 const char *name, struct type *target_type)
5051 {
5052 struct type *t;
5053
5054 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5055 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5056 TYPE_TARGET_TYPE (t) = target_type;
5057 return t;
5058 }
5059
5060 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5061 BIT is the pointer type size in bits. NAME is the type name.
5062 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5063 TYPE_UNSIGNED flag. */
5064
5065 struct type *
5066 arch_pointer_type (struct gdbarch *gdbarch,
5067 int bit, const char *name, struct type *target_type)
5068 {
5069 struct type *t;
5070
5071 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5072 TYPE_TARGET_TYPE (t) = target_type;
5073 TYPE_UNSIGNED (t) = 1;
5074 return t;
5075 }
5076
5077 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5078 NAME is the type name. BIT is the size of the flag word in bits. */
5079
5080 struct type *
5081 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5082 {
5083 struct type *type;
5084
5085 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5086 TYPE_UNSIGNED (type) = 1;
5087 TYPE_NFIELDS (type) = 0;
5088 /* Pre-allocate enough space assuming every field is one bit. */
5089 TYPE_FIELDS (type)
5090 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5091
5092 return type;
5093 }
5094
5095 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5096 position BITPOS is called NAME. Pass NAME as "" for fields that
5097 should not be printed. */
5098
5099 void
5100 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5101 struct type *field_type, const char *name)
5102 {
5103 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5104 int field_nr = TYPE_NFIELDS (type);
5105
5106 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5107 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5108 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5109 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5110 gdb_assert (name != NULL);
5111
5112 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5113 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5114 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5115 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5116 ++TYPE_NFIELDS (type);
5117 }
5118
5119 /* Special version of append_flags_type_field to add a flag field.
5120 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5121 position BITPOS is called NAME. */
5122
5123 void
5124 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5125 {
5126 struct gdbarch *gdbarch = get_type_arch (type);
5127
5128 append_flags_type_field (type, bitpos, 1,
5129 builtin_type (gdbarch)->builtin_bool,
5130 name);
5131 }
5132
5133 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5134 specified by CODE) associated with GDBARCH. NAME is the type name. */
5135
5136 struct type *
5137 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5138 enum type_code code)
5139 {
5140 struct type *t;
5141
5142 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5143 t = arch_type (gdbarch, code, 0, NULL);
5144 TYPE_TAG_NAME (t) = name;
5145 INIT_CPLUS_SPECIFIC (t);
5146 return t;
5147 }
5148
5149 /* Add new field with name NAME and type FIELD to composite type T.
5150 Do not set the field's position or adjust the type's length;
5151 the caller should do so. Return the new field. */
5152
5153 struct field *
5154 append_composite_type_field_raw (struct type *t, const char *name,
5155 struct type *field)
5156 {
5157 struct field *f;
5158
5159 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5160 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5161 TYPE_NFIELDS (t));
5162 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5163 memset (f, 0, sizeof f[0]);
5164 FIELD_TYPE (f[0]) = field;
5165 FIELD_NAME (f[0]) = name;
5166 return f;
5167 }
5168
5169 /* Add new field with name NAME and type FIELD to composite type T.
5170 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5171
5172 void
5173 append_composite_type_field_aligned (struct type *t, const char *name,
5174 struct type *field, int alignment)
5175 {
5176 struct field *f = append_composite_type_field_raw (t, name, field);
5177
5178 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5179 {
5180 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5181 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5182 }
5183 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5184 {
5185 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5186 if (TYPE_NFIELDS (t) > 1)
5187 {
5188 SET_FIELD_BITPOS (f[0],
5189 (FIELD_BITPOS (f[-1])
5190 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5191 * TARGET_CHAR_BIT)));
5192
5193 if (alignment)
5194 {
5195 int left;
5196
5197 alignment *= TARGET_CHAR_BIT;
5198 left = FIELD_BITPOS (f[0]) % alignment;
5199
5200 if (left)
5201 {
5202 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5203 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5204 }
5205 }
5206 }
5207 }
5208 }
5209
5210 /* Add new field with name NAME and type FIELD to composite type T. */
5211
5212 void
5213 append_composite_type_field (struct type *t, const char *name,
5214 struct type *field)
5215 {
5216 append_composite_type_field_aligned (t, name, field, 0);
5217 }
5218
5219 static struct gdbarch_data *gdbtypes_data;
5220
5221 const struct builtin_type *
5222 builtin_type (struct gdbarch *gdbarch)
5223 {
5224 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5225 }
5226
5227 static void *
5228 gdbtypes_post_init (struct gdbarch *gdbarch)
5229 {
5230 struct builtin_type *builtin_type
5231 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5232
5233 /* Basic types. */
5234 builtin_type->builtin_void
5235 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5236 builtin_type->builtin_char
5237 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5238 !gdbarch_char_signed (gdbarch), "char");
5239 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5240 builtin_type->builtin_signed_char
5241 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5242 0, "signed char");
5243 builtin_type->builtin_unsigned_char
5244 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5245 1, "unsigned char");
5246 builtin_type->builtin_short
5247 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5248 0, "short");
5249 builtin_type->builtin_unsigned_short
5250 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5251 1, "unsigned short");
5252 builtin_type->builtin_int
5253 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5254 0, "int");
5255 builtin_type->builtin_unsigned_int
5256 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5257 1, "unsigned int");
5258 builtin_type->builtin_long
5259 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5260 0, "long");
5261 builtin_type->builtin_unsigned_long
5262 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5263 1, "unsigned long");
5264 builtin_type->builtin_long_long
5265 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5266 0, "long long");
5267 builtin_type->builtin_unsigned_long_long
5268 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5269 1, "unsigned long long");
5270 builtin_type->builtin_float
5271 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5272 "float", gdbarch_float_format (gdbarch));
5273 builtin_type->builtin_double
5274 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5275 "double", gdbarch_double_format (gdbarch));
5276 builtin_type->builtin_long_double
5277 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5278 "long double", gdbarch_long_double_format (gdbarch));
5279 builtin_type->builtin_complex
5280 = arch_complex_type (gdbarch, "complex",
5281 builtin_type->builtin_float);
5282 builtin_type->builtin_double_complex
5283 = arch_complex_type (gdbarch, "double complex",
5284 builtin_type->builtin_double);
5285 builtin_type->builtin_string
5286 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5287 builtin_type->builtin_bool
5288 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5289
5290 /* The following three are about decimal floating point types, which
5291 are 32-bits, 64-bits and 128-bits respectively. */
5292 builtin_type->builtin_decfloat
5293 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5294 builtin_type->builtin_decdouble
5295 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5296 builtin_type->builtin_declong
5297 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5298
5299 /* "True" character types. */
5300 builtin_type->builtin_true_char
5301 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5302 builtin_type->builtin_true_unsigned_char
5303 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5304
5305 /* Fixed-size integer types. */
5306 builtin_type->builtin_int0
5307 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5308 builtin_type->builtin_int8
5309 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5310 builtin_type->builtin_uint8
5311 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5312 builtin_type->builtin_int16
5313 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5314 builtin_type->builtin_uint16
5315 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5316 builtin_type->builtin_int32
5317 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5318 builtin_type->builtin_uint32
5319 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5320 builtin_type->builtin_int64
5321 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5322 builtin_type->builtin_uint64
5323 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5324 builtin_type->builtin_int128
5325 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5326 builtin_type->builtin_uint128
5327 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5328 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5329 TYPE_INSTANCE_FLAG_NOTTEXT;
5330 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5331 TYPE_INSTANCE_FLAG_NOTTEXT;
5332
5333 /* Wide character types. */
5334 builtin_type->builtin_char16
5335 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5336 builtin_type->builtin_char32
5337 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5338 builtin_type->builtin_wchar
5339 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5340 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5341
5342 /* Default data/code pointer types. */
5343 builtin_type->builtin_data_ptr
5344 = lookup_pointer_type (builtin_type->builtin_void);
5345 builtin_type->builtin_func_ptr
5346 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5347 builtin_type->builtin_func_func
5348 = lookup_function_type (builtin_type->builtin_func_ptr);
5349
5350 /* This type represents a GDB internal function. */
5351 builtin_type->internal_fn
5352 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5353 "<internal function>");
5354
5355 /* This type represents an xmethod. */
5356 builtin_type->xmethod
5357 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5358
5359 return builtin_type;
5360 }
5361
5362 /* This set of objfile-based types is intended to be used by symbol
5363 readers as basic types. */
5364
5365 static const struct objfile_data *objfile_type_data;
5366
5367 const struct objfile_type *
5368 objfile_type (struct objfile *objfile)
5369 {
5370 struct gdbarch *gdbarch;
5371 struct objfile_type *objfile_type
5372 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5373
5374 if (objfile_type)
5375 return objfile_type;
5376
5377 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5378 1, struct objfile_type);
5379
5380 /* Use the objfile architecture to determine basic type properties. */
5381 gdbarch = get_objfile_arch (objfile);
5382
5383 /* Basic types. */
5384 objfile_type->builtin_void
5385 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5386 objfile_type->builtin_char
5387 = init_integer_type (objfile, TARGET_CHAR_BIT,
5388 !gdbarch_char_signed (gdbarch), "char");
5389 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5390 objfile_type->builtin_signed_char
5391 = init_integer_type (objfile, TARGET_CHAR_BIT,
5392 0, "signed char");
5393 objfile_type->builtin_unsigned_char
5394 = init_integer_type (objfile, TARGET_CHAR_BIT,
5395 1, "unsigned char");
5396 objfile_type->builtin_short
5397 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5398 0, "short");
5399 objfile_type->builtin_unsigned_short
5400 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5401 1, "unsigned short");
5402 objfile_type->builtin_int
5403 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5404 0, "int");
5405 objfile_type->builtin_unsigned_int
5406 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5407 1, "unsigned int");
5408 objfile_type->builtin_long
5409 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5410 0, "long");
5411 objfile_type->builtin_unsigned_long
5412 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5413 1, "unsigned long");
5414 objfile_type->builtin_long_long
5415 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5416 0, "long long");
5417 objfile_type->builtin_unsigned_long_long
5418 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5419 1, "unsigned long long");
5420 objfile_type->builtin_float
5421 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5422 "float", gdbarch_float_format (gdbarch));
5423 objfile_type->builtin_double
5424 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5425 "double", gdbarch_double_format (gdbarch));
5426 objfile_type->builtin_long_double
5427 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5428 "long double", gdbarch_long_double_format (gdbarch));
5429
5430 /* This type represents a type that was unrecognized in symbol read-in. */
5431 objfile_type->builtin_error
5432 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5433
5434 /* The following set of types is used for symbols with no
5435 debug information. */
5436 objfile_type->nodebug_text_symbol
5437 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5438 "<text variable, no debug info>");
5439 objfile_type->nodebug_text_gnu_ifunc_symbol
5440 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5441 "<text gnu-indirect-function variable, no debug info>");
5442 /* Ifunc resolvers return a function address. */
5443 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5444 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5445 "__IFUNC_RESOLVER_RET");
5446 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5447 objfile_type->nodebug_got_plt_symbol
5448 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5449 "<text from jump slot in .got.plt, no debug info>",
5450 objfile_type->nodebug_text_symbol);
5451 objfile_type->nodebug_data_symbol
5452 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5453 objfile_type->nodebug_unknown_symbol
5454 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5455 objfile_type->nodebug_tls_symbol
5456 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5457
5458 /* NOTE: on some targets, addresses and pointers are not necessarily
5459 the same.
5460
5461 The upshot is:
5462 - gdb's `struct type' always describes the target's
5463 representation.
5464 - gdb's `struct value' objects should always hold values in
5465 target form.
5466 - gdb's CORE_ADDR values are addresses in the unified virtual
5467 address space that the assembler and linker work with. Thus,
5468 since target_read_memory takes a CORE_ADDR as an argument, it
5469 can access any memory on the target, even if the processor has
5470 separate code and data address spaces.
5471
5472 In this context, objfile_type->builtin_core_addr is a bit odd:
5473 it's a target type for a value the target will never see. It's
5474 only used to hold the values of (typeless) linker symbols, which
5475 are indeed in the unified virtual address space. */
5476
5477 objfile_type->builtin_core_addr
5478 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5479 "__CORE_ADDR");
5480
5481 set_objfile_data (objfile, objfile_type_data, objfile_type);
5482 return objfile_type;
5483 }
5484
5485 void
5486 _initialize_gdbtypes (void)
5487 {
5488 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5489 objfile_type_data = register_objfile_data ();
5490
5491 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5492 _("Set debugging of C++ overloading."),
5493 _("Show debugging of C++ overloading."),
5494 _("When enabled, ranking of the "
5495 "functions is displayed."),
5496 NULL,
5497 show_overload_debug,
5498 &setdebuglist, &showdebuglist);
5499
5500 /* Add user knob for controlling resolution of opaque types. */
5501 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5502 &opaque_type_resolution,
5503 _("Set resolution of opaque struct/class/union"
5504 " types (if set before loading symbols)."),
5505 _("Show resolution of opaque struct/class/union"
5506 " types (if set before loading symbols)."),
5507 NULL, NULL,
5508 show_opaque_type_resolution,
5509 &setlist, &showlist);
5510
5511 /* Add an option to permit non-strict type checking. */
5512 add_setshow_boolean_cmd ("type", class_support,
5513 &strict_type_checking,
5514 _("Set strict type checking."),
5515 _("Show strict type checking."),
5516 NULL, NULL,
5517 show_strict_type_checking,
5518 &setchecklist, &showchecklist);
5519 }
This page took 0.14915 seconds and 4 git commands to generate.