8d810977a7d0ebbbf87185ce313830f54af70ab0
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001,
4 2002, 2003, 2004, 2005, 2006, 2007 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
41
42 /* These variables point to the objects
43 representing the predefined C data types. */
44
45 struct type *builtin_type_int0;
46 struct type *builtin_type_int8;
47 struct type *builtin_type_uint8;
48 struct type *builtin_type_int16;
49 struct type *builtin_type_uint16;
50 struct type *builtin_type_int32;
51 struct type *builtin_type_uint32;
52 struct type *builtin_type_int64;
53 struct type *builtin_type_uint64;
54 struct type *builtin_type_int128;
55 struct type *builtin_type_uint128;
56
57 /* Floatformat pairs. */
58 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61 };
62 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65 };
66 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69 };
70 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73 };
74 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77 };
78 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85 };
86 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89 };
90 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93 };
94 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97 };
98 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
101 };
102
103 struct type *builtin_type_ieee_single;
104 struct type *builtin_type_ieee_double;
105 struct type *builtin_type_i387_ext;
106 struct type *builtin_type_m68881_ext;
107 struct type *builtin_type_arm_ext;
108 struct type *builtin_type_ia64_spill;
109 struct type *builtin_type_ia64_quad;
110
111
112 int opaque_type_resolution = 1;
113 static void
114 show_opaque_type_resolution (struct ui_file *file, int from_tty,
115 struct cmd_list_element *c,
116 const char *value)
117 {
118 fprintf_filtered (file, _("\
119 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
120 value);
121 }
122
123 int overload_debug = 0;
124 static void
125 show_overload_debug (struct ui_file *file, int from_tty,
126 struct cmd_list_element *c, const char *value)
127 {
128 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
129 value);
130 }
131
132 struct extra
133 {
134 char str[128];
135 int len;
136 }; /* Maximum extension is 128! FIXME */
137
138 static void print_bit_vector (B_TYPE *, int);
139 static void print_arg_types (struct field *, int, int);
140 static void dump_fn_fieldlists (struct type *, int);
141 static void print_cplus_stuff (struct type *, int);
142
143
144 /* Alloc a new type structure and fill it with some defaults. If
145 OBJFILE is non-NULL, then allocate the space for the type structure
146 in that objfile's objfile_obstack. Otherwise allocate the new type
147 structure by xmalloc () (for permanent types). */
148
149 struct type *
150 alloc_type (struct objfile *objfile)
151 {
152 struct type *type;
153
154 /* Alloc the structure and start off with all fields zeroed. */
155
156 if (objfile == NULL)
157 {
158 type = xmalloc (sizeof (struct type));
159 memset (type, 0, sizeof (struct type));
160 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
161 }
162 else
163 {
164 type = obstack_alloc (&objfile->objfile_obstack,
165 sizeof (struct type));
166 memset (type, 0, sizeof (struct type));
167 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
168 sizeof (struct main_type));
169 OBJSTAT (objfile, n_types++);
170 }
171 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
172
173 /* Initialize the fields that might not be zero. */
174
175 TYPE_CODE (type) = TYPE_CODE_UNDEF;
176 TYPE_OBJFILE (type) = objfile;
177 TYPE_VPTR_FIELDNO (type) = -1;
178 TYPE_CHAIN (type) = type; /* Chain back to itself. */
179
180 return (type);
181 }
182
183 /* Alloc a new type instance structure, fill it with some defaults,
184 and point it at OLDTYPE. Allocate the new type instance from the
185 same place as OLDTYPE. */
186
187 static struct type *
188 alloc_type_instance (struct type *oldtype)
189 {
190 struct type *type;
191
192 /* Allocate the structure. */
193
194 if (TYPE_OBJFILE (oldtype) == NULL)
195 {
196 type = xmalloc (sizeof (struct type));
197 memset (type, 0, sizeof (struct type));
198 }
199 else
200 {
201 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
202 sizeof (struct type));
203 memset (type, 0, sizeof (struct type));
204 }
205 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
206
207 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
208
209 return (type);
210 }
211
212 /* Clear all remnants of the previous type at TYPE, in preparation for
213 replacing it with something else. */
214 static void
215 smash_type (struct type *type)
216 {
217 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
218
219 /* For now, delete the rings. */
220 TYPE_CHAIN (type) = type;
221
222 /* For now, leave the pointer/reference types alone. */
223 }
224
225 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
226 to a pointer to memory where the pointer type should be stored.
227 If *TYPEPTR is zero, update it to point to the pointer type we return.
228 We allocate new memory if needed. */
229
230 struct type *
231 make_pointer_type (struct type *type, struct type **typeptr)
232 {
233 struct type *ntype; /* New type */
234 struct objfile *objfile;
235 struct type *chain;
236
237 ntype = TYPE_POINTER_TYPE (type);
238
239 if (ntype)
240 {
241 if (typeptr == 0)
242 return ntype; /* Don't care about alloc,
243 and have new type. */
244 else if (*typeptr == 0)
245 {
246 *typeptr = ntype; /* Tracking alloc, and have new type. */
247 return ntype;
248 }
249 }
250
251 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
252 {
253 ntype = alloc_type (TYPE_OBJFILE (type));
254 if (typeptr)
255 *typeptr = ntype;
256 }
257 else /* We have storage, but need to reset it. */
258 {
259 ntype = *typeptr;
260 objfile = TYPE_OBJFILE (ntype);
261 chain = TYPE_CHAIN (ntype);
262 smash_type (ntype);
263 TYPE_CHAIN (ntype) = chain;
264 TYPE_OBJFILE (ntype) = objfile;
265 }
266
267 TYPE_TARGET_TYPE (ntype) = type;
268 TYPE_POINTER_TYPE (type) = ntype;
269
270 /* FIXME! Assume the machine has only one representation for
271 pointers! */
272
273 TYPE_LENGTH (ntype) =
274 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
275 TYPE_CODE (ntype) = TYPE_CODE_PTR;
276
277 /* Mark pointers as unsigned. The target converts between pointers
278 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
279 gdbarch_address_to_pointer. */
280 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
281
282 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
283 TYPE_POINTER_TYPE (type) = ntype;
284
285 /* Update the length of all the other variants of this type. */
286 chain = TYPE_CHAIN (ntype);
287 while (chain != ntype)
288 {
289 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
290 chain = TYPE_CHAIN (chain);
291 }
292
293 return ntype;
294 }
295
296 /* Given a type TYPE, return a type of pointers to that type.
297 May need to construct such a type if this is the first use. */
298
299 struct type *
300 lookup_pointer_type (struct type *type)
301 {
302 return make_pointer_type (type, (struct type **) 0);
303 }
304
305 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
306 points to a pointer to memory where the reference type should be
307 stored. If *TYPEPTR is zero, update it to point to the reference
308 type we return. We allocate new memory if needed. */
309
310 struct type *
311 make_reference_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct objfile *objfile;
315 struct type *chain;
316
317 ntype = TYPE_REFERENCE_TYPE (type);
318
319 if (ntype)
320 {
321 if (typeptr == 0)
322 return ntype; /* Don't care about alloc,
323 and have new type. */
324 else if (*typeptr == 0)
325 {
326 *typeptr = ntype; /* Tracking alloc, and have new type. */
327 return ntype;
328 }
329 }
330
331 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
332 {
333 ntype = alloc_type (TYPE_OBJFILE (type));
334 if (typeptr)
335 *typeptr = ntype;
336 }
337 else /* We have storage, but need to reset it. */
338 {
339 ntype = *typeptr;
340 objfile = TYPE_OBJFILE (ntype);
341 chain = TYPE_CHAIN (ntype);
342 smash_type (ntype);
343 TYPE_CHAIN (ntype) = chain;
344 TYPE_OBJFILE (ntype) = objfile;
345 }
346
347 TYPE_TARGET_TYPE (ntype) = type;
348 TYPE_REFERENCE_TYPE (type) = ntype;
349
350 /* FIXME! Assume the machine has only one representation for
351 references, and that it matches the (only) representation for
352 pointers! */
353
354 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
355 TYPE_CODE (ntype) = TYPE_CODE_REF;
356
357 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
358 TYPE_REFERENCE_TYPE (type) = ntype;
359
360 /* Update the length of all the other variants of this type. */
361 chain = TYPE_CHAIN (ntype);
362 while (chain != ntype)
363 {
364 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
365 chain = TYPE_CHAIN (chain);
366 }
367
368 return ntype;
369 }
370
371 /* Same as above, but caller doesn't care about memory allocation
372 details. */
373
374 struct type *
375 lookup_reference_type (struct type *type)
376 {
377 return make_reference_type (type, (struct type **) 0);
378 }
379
380 /* Lookup a function type that returns type TYPE. TYPEPTR, if
381 nonzero, points to a pointer to memory where the function type
382 should be stored. If *TYPEPTR is zero, update it to point to the
383 function type we return. We allocate new memory if needed. */
384
385 struct type *
386 make_function_type (struct type *type, struct type **typeptr)
387 {
388 struct type *ntype; /* New type */
389 struct objfile *objfile;
390
391 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
392 {
393 ntype = alloc_type (TYPE_OBJFILE (type));
394 if (typeptr)
395 *typeptr = ntype;
396 }
397 else /* We have storage, but need to reset it. */
398 {
399 ntype = *typeptr;
400 objfile = TYPE_OBJFILE (ntype);
401 smash_type (ntype);
402 TYPE_OBJFILE (ntype) = objfile;
403 }
404
405 TYPE_TARGET_TYPE (ntype) = type;
406
407 TYPE_LENGTH (ntype) = 1;
408 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
409
410 return ntype;
411 }
412
413
414 /* Given a type TYPE, return a type of functions that return that type.
415 May need to construct such a type if this is the first use. */
416
417 struct type *
418 lookup_function_type (struct type *type)
419 {
420 return make_function_type (type, (struct type **) 0);
421 }
422
423 /* Identify address space identifier by name --
424 return the integer flag defined in gdbtypes.h. */
425 extern int
426 address_space_name_to_int (char *space_identifier)
427 {
428 struct gdbarch *gdbarch = current_gdbarch;
429 int type_flags;
430 /* Check for known address space delimiters. */
431 if (!strcmp (space_identifier, "code"))
432 return TYPE_FLAG_CODE_SPACE;
433 else if (!strcmp (space_identifier, "data"))
434 return TYPE_FLAG_DATA_SPACE;
435 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
436 && gdbarch_address_class_name_to_type_flags (gdbarch,
437 space_identifier,
438 &type_flags))
439 return type_flags;
440 else
441 error (_("Unknown address space specifier: \"%s\""), space_identifier);
442 }
443
444 /* Identify address space identifier by integer flag as defined in
445 gdbtypes.h -- return the string version of the adress space name. */
446
447 const char *
448 address_space_int_to_name (int space_flag)
449 {
450 struct gdbarch *gdbarch = current_gdbarch;
451 if (space_flag & TYPE_FLAG_CODE_SPACE)
452 return "code";
453 else if (space_flag & TYPE_FLAG_DATA_SPACE)
454 return "data";
455 else if ((space_flag & TYPE_FLAG_ADDRESS_CLASS_ALL)
456 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
457 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
458 else
459 return NULL;
460 }
461
462 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
463
464 If STORAGE is non-NULL, create the new type instance there.
465 STORAGE must be in the same obstack as TYPE. */
466
467 static struct type *
468 make_qualified_type (struct type *type, int new_flags,
469 struct type *storage)
470 {
471 struct type *ntype;
472
473 ntype = type;
474 do {
475 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
476 return ntype;
477 ntype = TYPE_CHAIN (ntype);
478 } while (ntype != type);
479
480 /* Create a new type instance. */
481 if (storage == NULL)
482 ntype = alloc_type_instance (type);
483 else
484 {
485 /* If STORAGE was provided, it had better be in the same objfile
486 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
487 if one objfile is freed and the other kept, we'd have
488 dangling pointers. */
489 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
490
491 ntype = storage;
492 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
493 TYPE_CHAIN (ntype) = ntype;
494 }
495
496 /* Pointers or references to the original type are not relevant to
497 the new type. */
498 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
499 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
500
501 /* Chain the new qualified type to the old type. */
502 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
503 TYPE_CHAIN (type) = ntype;
504
505 /* Now set the instance flags and return the new type. */
506 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
507
508 /* Set length of new type to that of the original type. */
509 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
510
511 return ntype;
512 }
513
514 /* Make an address-space-delimited variant of a type -- a type that
515 is identical to the one supplied except that it has an address
516 space attribute attached to it (such as "code" or "data").
517
518 The space attributes "code" and "data" are for Harvard
519 architectures. The address space attributes are for architectures
520 which have alternately sized pointers or pointers with alternate
521 representations. */
522
523 struct type *
524 make_type_with_address_space (struct type *type, int space_flag)
525 {
526 struct type *ntype;
527 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
528 & ~(TYPE_FLAG_CODE_SPACE | TYPE_FLAG_DATA_SPACE
529 | TYPE_FLAG_ADDRESS_CLASS_ALL))
530 | space_flag);
531
532 return make_qualified_type (type, new_flags, NULL);
533 }
534
535 /* Make a "c-v" variant of a type -- a type that is identical to the
536 one supplied except that it may have const or volatile attributes
537 CNST is a flag for setting the const attribute
538 VOLTL is a flag for setting the volatile attribute
539 TYPE is the base type whose variant we are creating.
540
541 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
542 storage to hold the new qualified type; *TYPEPTR and TYPE must be
543 in the same objfile. Otherwise, allocate fresh memory for the new
544 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
545 new type we construct. */
546 struct type *
547 make_cv_type (int cnst, int voltl,
548 struct type *type,
549 struct type **typeptr)
550 {
551 struct type *ntype; /* New type */
552 struct type *tmp_type = type; /* tmp type */
553 struct objfile *objfile;
554
555 int new_flags = (TYPE_INSTANCE_FLAGS (type)
556 & ~(TYPE_FLAG_CONST | TYPE_FLAG_VOLATILE));
557
558 if (cnst)
559 new_flags |= TYPE_FLAG_CONST;
560
561 if (voltl)
562 new_flags |= TYPE_FLAG_VOLATILE;
563
564 if (typeptr && *typeptr != NULL)
565 {
566 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
567 a C-V variant chain that threads across objfiles: if one
568 objfile gets freed, then the other has a broken C-V chain.
569
570 This code used to try to copy over the main type from TYPE to
571 *TYPEPTR if they were in different objfiles, but that's
572 wrong, too: TYPE may have a field list or member function
573 lists, which refer to types of their own, etc. etc. The
574 whole shebang would need to be copied over recursively; you
575 can't have inter-objfile pointers. The only thing to do is
576 to leave stub types as stub types, and look them up afresh by
577 name each time you encounter them. */
578 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
579 }
580
581 ntype = make_qualified_type (type, new_flags,
582 typeptr ? *typeptr : NULL);
583
584 if (typeptr != NULL)
585 *typeptr = ntype;
586
587 return ntype;
588 }
589
590 /* Replace the contents of ntype with the type *type. This changes the
591 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
592 the changes are propogated to all types in the TYPE_CHAIN.
593
594 In order to build recursive types, it's inevitable that we'll need
595 to update types in place --- but this sort of indiscriminate
596 smashing is ugly, and needs to be replaced with something more
597 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
598 clear if more steps are needed. */
599 void
600 replace_type (struct type *ntype, struct type *type)
601 {
602 struct type *chain;
603
604 /* These two types had better be in the same objfile. Otherwise,
605 the assignment of one type's main type structure to the other
606 will produce a type with references to objects (names; field
607 lists; etc.) allocated on an objfile other than its own. */
608 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
609
610 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
611
612 /* The type length is not a part of the main type. Update it for
613 each type on the variant chain. */
614 chain = ntype;
615 do {
616 /* Assert that this element of the chain has no address-class bits
617 set in its flags. Such type variants might have type lengths
618 which are supposed to be different from the non-address-class
619 variants. This assertion shouldn't ever be triggered because
620 symbol readers which do construct address-class variants don't
621 call replace_type(). */
622 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
623
624 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
625 chain = TYPE_CHAIN (chain);
626 } while (ntype != chain);
627
628 /* Assert that the two types have equivalent instance qualifiers.
629 This should be true for at least all of our debug readers. */
630 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
631 }
632
633 /* Implement direct support for MEMBER_TYPE in GNU C++.
634 May need to construct such a type if this is the first use.
635 The TYPE is the type of the member. The DOMAIN is the type
636 of the aggregate that the member belongs to. */
637
638 struct type *
639 lookup_memberptr_type (struct type *type, struct type *domain)
640 {
641 struct type *mtype;
642
643 mtype = alloc_type (TYPE_OBJFILE (type));
644 smash_to_memberptr_type (mtype, domain, type);
645 return (mtype);
646 }
647
648 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
649
650 struct type *
651 lookup_methodptr_type (struct type *to_type)
652 {
653 struct type *mtype;
654
655 mtype = alloc_type (TYPE_OBJFILE (to_type));
656 TYPE_TARGET_TYPE (mtype) = to_type;
657 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
658 TYPE_LENGTH (mtype) = cplus_method_ptr_size ();
659 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
660 return mtype;
661 }
662
663 /* Allocate a stub method whose return type is TYPE. This apparently
664 happens for speed of symbol reading, since parsing out the
665 arguments to the method is cpu-intensive, the way we are doing it.
666 So, we will fill in arguments later. This always returns a fresh
667 type. */
668
669 struct type *
670 allocate_stub_method (struct type *type)
671 {
672 struct type *mtype;
673
674 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
675 TYPE_OBJFILE (type));
676 TYPE_TARGET_TYPE (mtype) = type;
677 /* _DOMAIN_TYPE (mtype) = unknown yet */
678 return (mtype);
679 }
680
681 /* Create a range type using either a blank type supplied in
682 RESULT_TYPE, or creating a new type, inheriting the objfile from
683 INDEX_TYPE.
684
685 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
686 to HIGH_BOUND, inclusive.
687
688 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
689 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
690
691 struct type *
692 create_range_type (struct type *result_type, struct type *index_type,
693 int low_bound, int high_bound)
694 {
695 if (result_type == NULL)
696 {
697 result_type = alloc_type (TYPE_OBJFILE (index_type));
698 }
699 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
700 TYPE_TARGET_TYPE (result_type) = index_type;
701 if (TYPE_STUB (index_type))
702 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
703 else
704 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
705 TYPE_NFIELDS (result_type) = 2;
706 TYPE_FIELDS (result_type) = (struct field *)
707 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
708 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
709 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
710 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
711
712 if (low_bound >= 0)
713 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
714
715 return (result_type);
716 }
717
718 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
719 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
720 bounds will fit in LONGEST), or -1 otherwise. */
721
722 int
723 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
724 {
725 CHECK_TYPEDEF (type);
726 switch (TYPE_CODE (type))
727 {
728 case TYPE_CODE_RANGE:
729 *lowp = TYPE_LOW_BOUND (type);
730 *highp = TYPE_HIGH_BOUND (type);
731 return 1;
732 case TYPE_CODE_ENUM:
733 if (TYPE_NFIELDS (type) > 0)
734 {
735 /* The enums may not be sorted by value, so search all
736 entries */
737 int i;
738
739 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
740 for (i = 0; i < TYPE_NFIELDS (type); i++)
741 {
742 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
743 *lowp = TYPE_FIELD_BITPOS (type, i);
744 if (TYPE_FIELD_BITPOS (type, i) > *highp)
745 *highp = TYPE_FIELD_BITPOS (type, i);
746 }
747
748 /* Set unsigned indicator if warranted. */
749 if (*lowp >= 0)
750 {
751 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
752 }
753 }
754 else
755 {
756 *lowp = 0;
757 *highp = -1;
758 }
759 return 0;
760 case TYPE_CODE_BOOL:
761 *lowp = 0;
762 *highp = 1;
763 return 0;
764 case TYPE_CODE_INT:
765 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
766 return -1;
767 if (!TYPE_UNSIGNED (type))
768 {
769 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
770 *highp = -*lowp - 1;
771 return 0;
772 }
773 /* ... fall through for unsigned ints ... */
774 case TYPE_CODE_CHAR:
775 *lowp = 0;
776 /* This round-about calculation is to avoid shifting by
777 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
778 if TYPE_LENGTH (type) == sizeof (LONGEST). */
779 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
780 *highp = (*highp - 1) | *highp;
781 return 0;
782 default:
783 return -1;
784 }
785 }
786
787 /* Create an array type using either a blank type supplied in
788 RESULT_TYPE, or creating a new type, inheriting the objfile from
789 RANGE_TYPE.
790
791 Elements will be of type ELEMENT_TYPE, the indices will be of type
792 RANGE_TYPE.
793
794 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
795 sure it is TYPE_CODE_UNDEF before we bash it into an array
796 type? */
797
798 struct type *
799 create_array_type (struct type *result_type,
800 struct type *element_type,
801 struct type *range_type)
802 {
803 LONGEST low_bound, high_bound;
804
805 if (result_type == NULL)
806 {
807 result_type = alloc_type (TYPE_OBJFILE (range_type));
808 }
809 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
810 TYPE_TARGET_TYPE (result_type) = element_type;
811 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
812 low_bound = high_bound = 0;
813 CHECK_TYPEDEF (element_type);
814 TYPE_LENGTH (result_type) =
815 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
816 TYPE_NFIELDS (result_type) = 1;
817 TYPE_FIELDS (result_type) =
818 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
819 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
820 TYPE_FIELD_TYPE (result_type, 0) = range_type;
821 TYPE_VPTR_FIELDNO (result_type) = -1;
822
823 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
824 if (TYPE_LENGTH (result_type) == 0)
825 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
826
827 return (result_type);
828 }
829
830 /* Create a string type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type. String types are similar
832 enough to array of char types that we can use create_array_type to
833 build the basic type and then bash it into a string type.
834
835 For fixed length strings, the range type contains 0 as the lower
836 bound and the length of the string minus one as the upper bound.
837
838 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
839 sure it is TYPE_CODE_UNDEF before we bash it into a string
840 type? */
841
842 struct type *
843 create_string_type (struct type *result_type,
844 struct type *range_type)
845 {
846 struct type *string_char_type;
847
848 string_char_type = language_string_char_type (current_language,
849 current_gdbarch);
850 result_type = create_array_type (result_type,
851 string_char_type,
852 range_type);
853 TYPE_CODE (result_type) = TYPE_CODE_STRING;
854 return (result_type);
855 }
856
857 struct type *
858 create_set_type (struct type *result_type, struct type *domain_type)
859 {
860 if (result_type == NULL)
861 {
862 result_type = alloc_type (TYPE_OBJFILE (domain_type));
863 }
864 TYPE_CODE (result_type) = TYPE_CODE_SET;
865 TYPE_NFIELDS (result_type) = 1;
866 TYPE_FIELDS (result_type) = (struct field *)
867 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
868 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
869
870 if (!TYPE_STUB (domain_type))
871 {
872 LONGEST low_bound, high_bound, bit_length;
873 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
874 low_bound = high_bound = 0;
875 bit_length = high_bound - low_bound + 1;
876 TYPE_LENGTH (result_type)
877 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
878 if (low_bound >= 0)
879 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
880 }
881 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
882
883 return (result_type);
884 }
885
886 void
887 append_flags_type_flag (struct type *type, int bitpos, char *name)
888 {
889 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
890 gdb_assert (bitpos < TYPE_NFIELDS (type));
891 gdb_assert (bitpos >= 0);
892
893 if (name)
894 {
895 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
896 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
897 }
898 else
899 {
900 /* Don't show this field to the user. */
901 TYPE_FIELD_BITPOS (type, bitpos) = -1;
902 }
903 }
904
905 struct type *
906 init_flags_type (char *name, int length)
907 {
908 int nfields = length * TARGET_CHAR_BIT;
909 struct type *type;
910
911 type = init_type (TYPE_CODE_FLAGS, length,
912 TYPE_FLAG_UNSIGNED, name, NULL);
913 TYPE_NFIELDS (type) = nfields;
914 TYPE_FIELDS (type) = TYPE_ALLOC (type,
915 nfields * sizeof (struct field));
916 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
917
918 return type;
919 }
920
921 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
922 and any array types nested inside it. */
923
924 void
925 make_vector_type (struct type *array_type)
926 {
927 struct type *inner_array, *elt_type;
928 int flags;
929
930 /* Find the innermost array type, in case the array is
931 multi-dimensional. */
932 inner_array = array_type;
933 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
934 inner_array = TYPE_TARGET_TYPE (inner_array);
935
936 elt_type = TYPE_TARGET_TYPE (inner_array);
937 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
938 {
939 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
940 elt_type = make_qualified_type (elt_type, flags, NULL);
941 TYPE_TARGET_TYPE (inner_array) = elt_type;
942 }
943
944 TYPE_FLAGS (array_type) |= TYPE_FLAG_VECTOR;
945 }
946
947 struct type *
948 init_vector_type (struct type *elt_type, int n)
949 {
950 struct type *array_type;
951
952 array_type = create_array_type (0, elt_type,
953 create_range_type (0,
954 builtin_type_int32,
955 0, n-1));
956 make_vector_type (array_type);
957 return array_type;
958 }
959
960 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
961 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
962 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
963 TYPE doesn't include the offset (that's the value of the MEMBER
964 itself), but does include the structure type into which it points
965 (for some reason).
966
967 When "smashing" the type, we preserve the objfile that the old type
968 pointed to, since we aren't changing where the type is actually
969 allocated. */
970
971 void
972 smash_to_memberptr_type (struct type *type, struct type *domain,
973 struct type *to_type)
974 {
975 struct objfile *objfile;
976
977 objfile = TYPE_OBJFILE (type);
978
979 smash_type (type);
980 TYPE_OBJFILE (type) = objfile;
981 TYPE_TARGET_TYPE (type) = to_type;
982 TYPE_DOMAIN_TYPE (type) = domain;
983 /* Assume that a data member pointer is the same size as a normal
984 pointer. */
985 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
986 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
987 }
988
989 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
990 METHOD just means `function that gets an extra "this" argument'.
991
992 When "smashing" the type, we preserve the objfile that the old type
993 pointed to, since we aren't changing where the type is actually
994 allocated. */
995
996 void
997 smash_to_method_type (struct type *type, struct type *domain,
998 struct type *to_type, struct field *args,
999 int nargs, int varargs)
1000 {
1001 struct objfile *objfile;
1002
1003 objfile = TYPE_OBJFILE (type);
1004
1005 smash_type (type);
1006 TYPE_OBJFILE (type) = objfile;
1007 TYPE_TARGET_TYPE (type) = to_type;
1008 TYPE_DOMAIN_TYPE (type) = domain;
1009 TYPE_FIELDS (type) = args;
1010 TYPE_NFIELDS (type) = nargs;
1011 if (varargs)
1012 TYPE_FLAGS (type) |= TYPE_FLAG_VARARGS;
1013 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1014 TYPE_CODE (type) = TYPE_CODE_METHOD;
1015 }
1016
1017 /* Return a typename for a struct/union/enum type without "struct ",
1018 "union ", or "enum ". If the type has a NULL name, return NULL. */
1019
1020 char *
1021 type_name_no_tag (const struct type *type)
1022 {
1023 if (TYPE_TAG_NAME (type) != NULL)
1024 return TYPE_TAG_NAME (type);
1025
1026 /* Is there code which expects this to return the name if there is
1027 no tag name? My guess is that this is mainly used for C++ in
1028 cases where the two will always be the same. */
1029 return TYPE_NAME (type);
1030 }
1031
1032 /* Lookup a typedef or primitive type named NAME, visible in lexical
1033 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1034 suitably defined. */
1035
1036 struct type *
1037 lookup_typename (char *name, struct block *block, int noerr)
1038 {
1039 struct symbol *sym;
1040 struct type *tmp;
1041
1042 sym = lookup_symbol (name, block, VAR_DOMAIN, 0,
1043 (struct symtab **) NULL);
1044 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1045 {
1046 tmp = language_lookup_primitive_type_by_name (current_language,
1047 current_gdbarch,
1048 name);
1049 if (tmp)
1050 {
1051 return (tmp);
1052 }
1053 else if (!tmp && noerr)
1054 {
1055 return (NULL);
1056 }
1057 else
1058 {
1059 error (_("No type named %s."), name);
1060 }
1061 }
1062 return (SYMBOL_TYPE (sym));
1063 }
1064
1065 struct type *
1066 lookup_unsigned_typename (char *name)
1067 {
1068 char *uns = alloca (strlen (name) + 10);
1069
1070 strcpy (uns, "unsigned ");
1071 strcpy (uns + 9, name);
1072 return (lookup_typename (uns, (struct block *) NULL, 0));
1073 }
1074
1075 struct type *
1076 lookup_signed_typename (char *name)
1077 {
1078 struct type *t;
1079 char *uns = alloca (strlen (name) + 8);
1080
1081 strcpy (uns, "signed ");
1082 strcpy (uns + 7, name);
1083 t = lookup_typename (uns, (struct block *) NULL, 1);
1084 /* If we don't find "signed FOO" just try again with plain "FOO". */
1085 if (t != NULL)
1086 return t;
1087 return lookup_typename (name, (struct block *) NULL, 0);
1088 }
1089
1090 /* Lookup a structure type named "struct NAME",
1091 visible in lexical block BLOCK. */
1092
1093 struct type *
1094 lookup_struct (char *name, struct block *block)
1095 {
1096 struct symbol *sym;
1097
1098 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1099 (struct symtab **) NULL);
1100
1101 if (sym == NULL)
1102 {
1103 error (_("No struct type named %s."), name);
1104 }
1105 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1106 {
1107 error (_("This context has class, union or enum %s, not a struct."),
1108 name);
1109 }
1110 return (SYMBOL_TYPE (sym));
1111 }
1112
1113 /* Lookup a union type named "union NAME",
1114 visible in lexical block BLOCK. */
1115
1116 struct type *
1117 lookup_union (char *name, struct block *block)
1118 {
1119 struct symbol *sym;
1120 struct type *t;
1121
1122 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1123 (struct symtab **) NULL);
1124
1125 if (sym == NULL)
1126 error (_("No union type named %s."), name);
1127
1128 t = SYMBOL_TYPE (sym);
1129
1130 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1131 return (t);
1132
1133 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1134 * a further "declared_type" field to discover it is really a union.
1135 */
1136 if (HAVE_CPLUS_STRUCT (t))
1137 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1138 return (t);
1139
1140 /* If we get here, it's not a union. */
1141 error (_("This context has class, struct or enum %s, not a union."),
1142 name);
1143 }
1144
1145
1146 /* Lookup an enum type named "enum NAME",
1147 visible in lexical block BLOCK. */
1148
1149 struct type *
1150 lookup_enum (char *name, struct block *block)
1151 {
1152 struct symbol *sym;
1153
1154 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0,
1155 (struct symtab **) NULL);
1156 if (sym == NULL)
1157 {
1158 error (_("No enum type named %s."), name);
1159 }
1160 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1161 {
1162 error (_("This context has class, struct or union %s, not an enum."),
1163 name);
1164 }
1165 return (SYMBOL_TYPE (sym));
1166 }
1167
1168 /* Lookup a template type named "template NAME<TYPE>",
1169 visible in lexical block BLOCK. */
1170
1171 struct type *
1172 lookup_template_type (char *name, struct type *type,
1173 struct block *block)
1174 {
1175 struct symbol *sym;
1176 char *nam = (char *)
1177 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1178 strcpy (nam, name);
1179 strcat (nam, "<");
1180 strcat (nam, TYPE_NAME (type));
1181 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1182
1183 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0,
1184 (struct symtab **) NULL);
1185
1186 if (sym == NULL)
1187 {
1188 error (_("No template type named %s."), name);
1189 }
1190 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1191 {
1192 error (_("This context has class, union or enum %s, not a struct."),
1193 name);
1194 }
1195 return (SYMBOL_TYPE (sym));
1196 }
1197
1198 /* Given a type TYPE, lookup the type of the component of type named
1199 NAME.
1200
1201 TYPE can be either a struct or union, or a pointer or reference to
1202 a struct or union. If it is a pointer or reference, its target
1203 type is automatically used. Thus '.' and '->' are interchangable,
1204 as specified for the definitions of the expression element types
1205 STRUCTOP_STRUCT and STRUCTOP_PTR.
1206
1207 If NOERR is nonzero, return zero if NAME is not suitably defined.
1208 If NAME is the name of a baseclass type, return that type. */
1209
1210 struct type *
1211 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1212 {
1213 int i;
1214
1215 for (;;)
1216 {
1217 CHECK_TYPEDEF (type);
1218 if (TYPE_CODE (type) != TYPE_CODE_PTR
1219 && TYPE_CODE (type) != TYPE_CODE_REF)
1220 break;
1221 type = TYPE_TARGET_TYPE (type);
1222 }
1223
1224 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1225 && TYPE_CODE (type) != TYPE_CODE_UNION)
1226 {
1227 target_terminal_ours ();
1228 gdb_flush (gdb_stdout);
1229 fprintf_unfiltered (gdb_stderr, "Type ");
1230 type_print (type, "", gdb_stderr, -1);
1231 error (_(" is not a structure or union type."));
1232 }
1233
1234 #if 0
1235 /* FIXME: This change put in by Michael seems incorrect for the case
1236 where the structure tag name is the same as the member name.
1237 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1238 foo; } bell;" Disabled by fnf. */
1239 {
1240 char *typename;
1241
1242 typename = type_name_no_tag (type);
1243 if (typename != NULL && strcmp (typename, name) == 0)
1244 return type;
1245 }
1246 #endif
1247
1248 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1249 {
1250 char *t_field_name = TYPE_FIELD_NAME (type, i);
1251
1252 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1253 {
1254 return TYPE_FIELD_TYPE (type, i);
1255 }
1256 }
1257
1258 /* OK, it's not in this class. Recursively check the baseclasses. */
1259 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1260 {
1261 struct type *t;
1262
1263 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1264 if (t != NULL)
1265 {
1266 return t;
1267 }
1268 }
1269
1270 if (noerr)
1271 {
1272 return NULL;
1273 }
1274
1275 target_terminal_ours ();
1276 gdb_flush (gdb_stdout);
1277 fprintf_unfiltered (gdb_stderr, "Type ");
1278 type_print (type, "", gdb_stderr, -1);
1279 fprintf_unfiltered (gdb_stderr, " has no component named ");
1280 fputs_filtered (name, gdb_stderr);
1281 error (("."));
1282 return (struct type *) -1; /* For lint */
1283 }
1284
1285 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1286 valid. Callers should be aware that in some cases (for example,
1287 the type or one of its baseclasses is a stub type and we are
1288 debugging a .o file), this function will not be able to find the
1289 virtual function table pointer, and vptr_fieldno will remain -1 and
1290 vptr_basetype will remain NULL. */
1291
1292 void
1293 fill_in_vptr_fieldno (struct type *type)
1294 {
1295 CHECK_TYPEDEF (type);
1296
1297 if (TYPE_VPTR_FIELDNO (type) < 0)
1298 {
1299 int i;
1300
1301 /* We must start at zero in case the first (and only) baseclass
1302 is virtual (and hence we cannot share the table pointer). */
1303 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1304 {
1305 struct type *baseclass = check_typedef (TYPE_BASECLASS (type,
1306 i));
1307 fill_in_vptr_fieldno (baseclass);
1308 if (TYPE_VPTR_FIELDNO (baseclass) >= 0)
1309 {
1310 TYPE_VPTR_FIELDNO (type) = TYPE_VPTR_FIELDNO (baseclass);
1311 TYPE_VPTR_BASETYPE (type) = TYPE_VPTR_BASETYPE (baseclass);
1312 break;
1313 }
1314 }
1315 }
1316 }
1317
1318 /* Find the method and field indices for the destructor in class type T.
1319 Return 1 if the destructor was found, otherwise, return 0. */
1320
1321 int
1322 get_destructor_fn_field (struct type *t,
1323 int *method_indexp,
1324 int *field_indexp)
1325 {
1326 int i;
1327
1328 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1329 {
1330 int j;
1331 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1332
1333 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1334 {
1335 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1336 {
1337 *method_indexp = i;
1338 *field_indexp = j;
1339 return 1;
1340 }
1341 }
1342 }
1343 return 0;
1344 }
1345
1346 static void
1347 stub_noname_complaint (void)
1348 {
1349 complaint (&symfile_complaints, _("stub type has NULL name"));
1350 }
1351
1352 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1353
1354 If this is a stubbed struct (i.e. declared as struct foo *), see if
1355 we can find a full definition in some other file. If so, copy this
1356 definition, so we can use it in future. There used to be a comment
1357 (but not any code) that if we don't find a full definition, we'd
1358 set a flag so we don't spend time in the future checking the same
1359 type. That would be a mistake, though--we might load in more
1360 symbols which contain a full definition for the type.
1361
1362 This used to be coded as a macro, but I don't think it is called
1363 often enough to merit such treatment. */
1364
1365 /* Find the real type of TYPE. This function returns the real type,
1366 after removing all layers of typedefs and completing opaque or stub
1367 types. Completion changes the TYPE argument, but stripping of
1368 typedefs does not. */
1369
1370 struct type *
1371 check_typedef (struct type *type)
1372 {
1373 struct type *orig_type = type;
1374 int is_const, is_volatile;
1375
1376 gdb_assert (type);
1377
1378 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1379 {
1380 if (!TYPE_TARGET_TYPE (type))
1381 {
1382 char *name;
1383 struct symbol *sym;
1384
1385 /* It is dangerous to call lookup_symbol if we are currently
1386 reading a symtab. Infinite recursion is one danger. */
1387 if (currently_reading_symtab)
1388 return type;
1389
1390 name = type_name_no_tag (type);
1391 /* FIXME: shouldn't we separately check the TYPE_NAME and
1392 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1393 VAR_DOMAIN as appropriate? (this code was written before
1394 TYPE_NAME and TYPE_TAG_NAME were separate). */
1395 if (name == NULL)
1396 {
1397 stub_noname_complaint ();
1398 return type;
1399 }
1400 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0,
1401 (struct symtab **) NULL);
1402 if (sym)
1403 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1404 else /* TYPE_CODE_UNDEF */
1405 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
1406 }
1407 type = TYPE_TARGET_TYPE (type);
1408 }
1409
1410 is_const = TYPE_CONST (type);
1411 is_volatile = TYPE_VOLATILE (type);
1412
1413 /* If this is a struct/class/union with no fields, then check
1414 whether a full definition exists somewhere else. This is for
1415 systems where a type definition with no fields is issued for such
1416 types, instead of identifying them as stub types in the first
1417 place. */
1418
1419 if (TYPE_IS_OPAQUE (type)
1420 && opaque_type_resolution
1421 && !currently_reading_symtab)
1422 {
1423 char *name = type_name_no_tag (type);
1424 struct type *newtype;
1425 if (name == NULL)
1426 {
1427 stub_noname_complaint ();
1428 return type;
1429 }
1430 newtype = lookup_transparent_type (name);
1431
1432 if (newtype)
1433 {
1434 /* If the resolved type and the stub are in the same
1435 objfile, then replace the stub type with the real deal.
1436 But if they're in separate objfiles, leave the stub
1437 alone; we'll just look up the transparent type every time
1438 we call check_typedef. We can't create pointers between
1439 types allocated to different objfiles, since they may
1440 have different lifetimes. Trying to copy NEWTYPE over to
1441 TYPE's objfile is pointless, too, since you'll have to
1442 move over any other types NEWTYPE refers to, which could
1443 be an unbounded amount of stuff. */
1444 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1445 make_cv_type (is_const, is_volatile, newtype, &type);
1446 else
1447 type = newtype;
1448 }
1449 }
1450 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1451 types. */
1452 else if (TYPE_STUB (type) && !currently_reading_symtab)
1453 {
1454 char *name = type_name_no_tag (type);
1455 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1456 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1457 as appropriate? (this code was written before TYPE_NAME and
1458 TYPE_TAG_NAME were separate). */
1459 struct symbol *sym;
1460 if (name == NULL)
1461 {
1462 stub_noname_complaint ();
1463 return type;
1464 }
1465 sym = lookup_symbol (name, 0, STRUCT_DOMAIN,
1466 0, (struct symtab **) NULL);
1467 if (sym)
1468 {
1469 /* Same as above for opaque types, we can replace the stub
1470 with the complete type only if they are int the same
1471 objfile. */
1472 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1473 make_cv_type (is_const, is_volatile,
1474 SYMBOL_TYPE (sym), &type);
1475 else
1476 type = SYMBOL_TYPE (sym);
1477 }
1478 }
1479
1480 if (TYPE_TARGET_STUB (type))
1481 {
1482 struct type *range_type;
1483 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1484
1485 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1486 {
1487 /* Empty. */
1488 }
1489 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1490 && TYPE_NFIELDS (type) == 1
1491 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1492 == TYPE_CODE_RANGE))
1493 {
1494 /* Now recompute the length of the array type, based on its
1495 number of elements and the target type's length. */
1496 TYPE_LENGTH (type) =
1497 ((TYPE_FIELD_BITPOS (range_type, 1)
1498 - TYPE_FIELD_BITPOS (range_type, 0) + 1)
1499 * TYPE_LENGTH (target_type));
1500 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1501 }
1502 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1503 {
1504 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1505 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1506 }
1507 }
1508 /* Cache TYPE_LENGTH for future use. */
1509 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1510 return type;
1511 }
1512
1513 /* Parse a type expression in the string [P..P+LENGTH). If an error
1514 occurs, silently return builtin_type_void. */
1515
1516 static struct type *
1517 safe_parse_type (char *p, int length)
1518 {
1519 struct ui_file *saved_gdb_stderr;
1520 struct type *type;
1521
1522 /* Suppress error messages. */
1523 saved_gdb_stderr = gdb_stderr;
1524 gdb_stderr = ui_file_new ();
1525
1526 /* Call parse_and_eval_type() without fear of longjmp()s. */
1527 if (!gdb_parse_and_eval_type (p, length, &type))
1528 type = builtin_type_void;
1529
1530 /* Stop suppressing error messages. */
1531 ui_file_delete (gdb_stderr);
1532 gdb_stderr = saved_gdb_stderr;
1533
1534 return type;
1535 }
1536
1537 /* Ugly hack to convert method stubs into method types.
1538
1539 He ain't kiddin'. This demangles the name of the method into a
1540 string including argument types, parses out each argument type,
1541 generates a string casting a zero to that type, evaluates the
1542 string, and stuffs the resulting type into an argtype vector!!!
1543 Then it knows the type of the whole function (including argument
1544 types for overloading), which info used to be in the stab's but was
1545 removed to hack back the space required for them. */
1546
1547 static void
1548 check_stub_method (struct type *type, int method_id, int signature_id)
1549 {
1550 struct fn_field *f;
1551 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1552 char *demangled_name = cplus_demangle (mangled_name,
1553 DMGL_PARAMS | DMGL_ANSI);
1554 char *argtypetext, *p;
1555 int depth = 0, argcount = 1;
1556 struct field *argtypes;
1557 struct type *mtype;
1558
1559 /* Make sure we got back a function string that we can use. */
1560 if (demangled_name)
1561 p = strchr (demangled_name, '(');
1562 else
1563 p = NULL;
1564
1565 if (demangled_name == NULL || p == NULL)
1566 error (_("Internal: Cannot demangle mangled name `%s'."),
1567 mangled_name);
1568
1569 /* Now, read in the parameters that define this type. */
1570 p += 1;
1571 argtypetext = p;
1572 while (*p)
1573 {
1574 if (*p == '(' || *p == '<')
1575 {
1576 depth += 1;
1577 }
1578 else if (*p == ')' || *p == '>')
1579 {
1580 depth -= 1;
1581 }
1582 else if (*p == ',' && depth == 0)
1583 {
1584 argcount += 1;
1585 }
1586
1587 p += 1;
1588 }
1589
1590 /* If we read one argument and it was ``void'', don't count it. */
1591 if (strncmp (argtypetext, "(void)", 6) == 0)
1592 argcount -= 1;
1593
1594 /* We need one extra slot, for the THIS pointer. */
1595
1596 argtypes = (struct field *)
1597 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1598 p = argtypetext;
1599
1600 /* Add THIS pointer for non-static methods. */
1601 f = TYPE_FN_FIELDLIST1 (type, method_id);
1602 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1603 argcount = 0;
1604 else
1605 {
1606 argtypes[0].type = lookup_pointer_type (type);
1607 argcount = 1;
1608 }
1609
1610 if (*p != ')') /* () means no args, skip while */
1611 {
1612 depth = 0;
1613 while (*p)
1614 {
1615 if (depth <= 0 && (*p == ',' || *p == ')'))
1616 {
1617 /* Avoid parsing of ellipsis, they will be handled below.
1618 Also avoid ``void'' as above. */
1619 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1620 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1621 {
1622 argtypes[argcount].type =
1623 safe_parse_type (argtypetext, p - argtypetext);
1624 argcount += 1;
1625 }
1626 argtypetext = p + 1;
1627 }
1628
1629 if (*p == '(' || *p == '<')
1630 {
1631 depth += 1;
1632 }
1633 else if (*p == ')' || *p == '>')
1634 {
1635 depth -= 1;
1636 }
1637
1638 p += 1;
1639 }
1640 }
1641
1642 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1643
1644 /* Now update the old "stub" type into a real type. */
1645 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1646 TYPE_DOMAIN_TYPE (mtype) = type;
1647 TYPE_FIELDS (mtype) = argtypes;
1648 TYPE_NFIELDS (mtype) = argcount;
1649 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1650 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1651 if (p[-2] == '.')
1652 TYPE_FLAGS (mtype) |= TYPE_FLAG_VARARGS;
1653
1654 xfree (demangled_name);
1655 }
1656
1657 /* This is the external interface to check_stub_method, above. This
1658 function unstubs all of the signatures for TYPE's METHOD_ID method
1659 name. After calling this function TYPE_FN_FIELD_STUB will be
1660 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1661 correct.
1662
1663 This function unfortunately can not die until stabs do. */
1664
1665 void
1666 check_stub_method_group (struct type *type, int method_id)
1667 {
1668 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1669 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1670 int j, found_stub = 0;
1671
1672 for (j = 0; j < len; j++)
1673 if (TYPE_FN_FIELD_STUB (f, j))
1674 {
1675 found_stub = 1;
1676 check_stub_method (type, method_id, j);
1677 }
1678
1679 /* GNU v3 methods with incorrect names were corrected when we read
1680 in type information, because it was cheaper to do it then. The
1681 only GNU v2 methods with incorrect method names are operators and
1682 destructors; destructors were also corrected when we read in type
1683 information.
1684
1685 Therefore the only thing we need to handle here are v2 operator
1686 names. */
1687 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1688 {
1689 int ret;
1690 char dem_opname[256];
1691
1692 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1693 method_id),
1694 dem_opname, DMGL_ANSI);
1695 if (!ret)
1696 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1697 method_id),
1698 dem_opname, 0);
1699 if (ret)
1700 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1701 }
1702 }
1703
1704 const struct cplus_struct_type cplus_struct_default;
1705
1706 void
1707 allocate_cplus_struct_type (struct type *type)
1708 {
1709 if (!HAVE_CPLUS_STRUCT (type))
1710 {
1711 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1712 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1713 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1714 }
1715 }
1716
1717 /* Helper function to initialize the standard scalar types.
1718
1719 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1720 the string pointed to by name in the objfile_obstack for that
1721 objfile, and initialize the type name to that copy. There are
1722 places (mipsread.c in particular, where init_type is called with a
1723 NULL value for NAME). */
1724
1725 struct type *
1726 init_type (enum type_code code, int length, int flags,
1727 char *name, struct objfile *objfile)
1728 {
1729 struct type *type;
1730
1731 type = alloc_type (objfile);
1732 TYPE_CODE (type) = code;
1733 TYPE_LENGTH (type) = length;
1734 TYPE_FLAGS (type) |= flags;
1735 if ((name != NULL) && (objfile != NULL))
1736 {
1737 TYPE_NAME (type) = obsavestring (name, strlen (name),
1738 &objfile->objfile_obstack);
1739 }
1740 else
1741 {
1742 TYPE_NAME (type) = name;
1743 }
1744
1745 /* C++ fancies. */
1746
1747 if (name && strcmp (name, "char") == 0)
1748 TYPE_FLAGS (type) |= TYPE_FLAG_NOSIGN;
1749
1750 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1751 || code == TYPE_CODE_NAMESPACE)
1752 {
1753 INIT_CPLUS_SPECIFIC (type);
1754 }
1755 return (type);
1756 }
1757
1758 /* Helper function. Create an empty composite type. */
1759
1760 struct type *
1761 init_composite_type (char *name, enum type_code code)
1762 {
1763 struct type *t;
1764 gdb_assert (code == TYPE_CODE_STRUCT
1765 || code == TYPE_CODE_UNION);
1766 t = init_type (code, 0, 0, NULL, NULL);
1767 TYPE_TAG_NAME (t) = name;
1768 return t;
1769 }
1770
1771 /* Helper function. Append a field to a composite type. */
1772
1773 void
1774 append_composite_type_field (struct type *t, char *name,
1775 struct type *field)
1776 {
1777 struct field *f;
1778 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1779 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1780 sizeof (struct field) * TYPE_NFIELDS (t));
1781 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1782 memset (f, 0, sizeof f[0]);
1783 FIELD_TYPE (f[0]) = field;
1784 FIELD_NAME (f[0]) = name;
1785 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1786 {
1787 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1788 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1789 }
1790 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1791 {
1792 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1793 if (TYPE_NFIELDS (t) > 1)
1794 {
1795 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1796 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1797 }
1798 }
1799 }
1800
1801 /* Look up a fundamental type for the specified objfile.
1802 May need to construct such a type if this is the first use.
1803
1804 Some object file formats (ELF, COFF, etc) do not define fundamental
1805 types such as "int" or "double". Others (stabs for example), do
1806 define fundamental types.
1807
1808 For the formats which don't provide fundamental types, gdb can
1809 create such types, using defaults reasonable for the current
1810 language and the current target machine.
1811
1812 NOTE: This routine is obsolescent. Each debugging format reader
1813 should manage it's own fundamental types, either creating them from
1814 suitable defaults or reading them from the debugging information,
1815 whichever is appropriate. The DWARF reader has already been fixed
1816 to do this. Once the other readers are fixed, this routine will go
1817 away. Also note that fundamental types should be managed on a
1818 compilation unit basis in a multi-language environment, not on a
1819 linkage unit basis as is done here. */
1820
1821
1822 struct type *
1823 lookup_fundamental_type (struct objfile *objfile, int typeid)
1824 {
1825 struct type **typep;
1826 int nbytes;
1827
1828 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1829 {
1830 error (_("internal error - invalid fundamental type id %d"),
1831 typeid);
1832 }
1833
1834 /* If this is the first time we need a fundamental type for this
1835 objfile then we need to initialize the vector of type
1836 pointers. */
1837
1838 if (objfile->fundamental_types == NULL)
1839 {
1840 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1841 objfile->fundamental_types = (struct type **)
1842 obstack_alloc (&objfile->objfile_obstack, nbytes);
1843 memset ((char *) objfile->fundamental_types, 0, nbytes);
1844 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1845 }
1846
1847 /* Look for this particular type in the fundamental type vector. If
1848 one is not found, create and install one appropriate for the
1849 current language. */
1850
1851 typep = objfile->fundamental_types + typeid;
1852 if (*typep == NULL)
1853 {
1854 *typep = create_fundamental_type (objfile, typeid);
1855 }
1856
1857 return (*typep);
1858 }
1859
1860 int
1861 can_dereference (struct type *t)
1862 {
1863 /* FIXME: Should we return true for references as well as
1864 pointers? */
1865 CHECK_TYPEDEF (t);
1866 return
1867 (t != NULL
1868 && TYPE_CODE (t) == TYPE_CODE_PTR
1869 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1870 }
1871
1872 int
1873 is_integral_type (struct type *t)
1874 {
1875 CHECK_TYPEDEF (t);
1876 return
1877 ((t != NULL)
1878 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1879 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1880 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1881 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1882 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1883 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1884 }
1885
1886 /* Check whether BASE is an ancestor or base class or DCLASS
1887 Return 1 if so, and 0 if not.
1888 Note: callers may want to check for identity of the types before
1889 calling this function -- identical types are considered to satisfy
1890 the ancestor relationship even if they're identical. */
1891
1892 int
1893 is_ancestor (struct type *base, struct type *dclass)
1894 {
1895 int i;
1896
1897 CHECK_TYPEDEF (base);
1898 CHECK_TYPEDEF (dclass);
1899
1900 if (base == dclass)
1901 return 1;
1902 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1903 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1904 return 1;
1905
1906 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1907 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1908 return 1;
1909
1910 return 0;
1911 }
1912 \f
1913
1914
1915 /* Functions for overload resolution begin here */
1916
1917 /* Compare two badness vectors A and B and return the result.
1918 0 => A and B are identical
1919 1 => A and B are incomparable
1920 2 => A is better than B
1921 3 => A is worse than B */
1922
1923 int
1924 compare_badness (struct badness_vector *a, struct badness_vector *b)
1925 {
1926 int i;
1927 int tmp;
1928 short found_pos = 0; /* any positives in c? */
1929 short found_neg = 0; /* any negatives in c? */
1930
1931 /* differing lengths => incomparable */
1932 if (a->length != b->length)
1933 return 1;
1934
1935 /* Subtract b from a */
1936 for (i = 0; i < a->length; i++)
1937 {
1938 tmp = a->rank[i] - b->rank[i];
1939 if (tmp > 0)
1940 found_pos = 1;
1941 else if (tmp < 0)
1942 found_neg = 1;
1943 }
1944
1945 if (found_pos)
1946 {
1947 if (found_neg)
1948 return 1; /* incomparable */
1949 else
1950 return 3; /* A > B */
1951 }
1952 else
1953 /* no positives */
1954 {
1955 if (found_neg)
1956 return 2; /* A < B */
1957 else
1958 return 0; /* A == B */
1959 }
1960 }
1961
1962 /* Rank a function by comparing its parameter types (PARMS, length
1963 NPARMS), to the types of an argument list (ARGS, length NARGS).
1964 Return a pointer to a badness vector. This has NARGS + 1
1965 entries. */
1966
1967 struct badness_vector *
1968 rank_function (struct type **parms, int nparms,
1969 struct type **args, int nargs)
1970 {
1971 int i;
1972 struct badness_vector *bv;
1973 int min_len = nparms < nargs ? nparms : nargs;
1974
1975 bv = xmalloc (sizeof (struct badness_vector));
1976 bv->length = nargs + 1; /* add 1 for the length-match rank */
1977 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1978
1979 /* First compare the lengths of the supplied lists.
1980 If there is a mismatch, set it to a high value. */
1981
1982 /* pai/1997-06-03 FIXME: when we have debug info about default
1983 arguments and ellipsis parameter lists, we should consider those
1984 and rank the length-match more finely. */
1985
1986 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1987
1988 /* Now rank all the parameters of the candidate function */
1989 for (i = 1; i <= min_len; i++)
1990 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1991
1992 /* If more arguments than parameters, add dummy entries */
1993 for (i = min_len + 1; i <= nargs; i++)
1994 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
1995
1996 return bv;
1997 }
1998
1999 /* Compare the names of two integer types, assuming that any sign
2000 qualifiers have been checked already. We do it this way because
2001 there may be an "int" in the name of one of the types. */
2002
2003 static int
2004 integer_types_same_name_p (const char *first, const char *second)
2005 {
2006 int first_p, second_p;
2007
2008 /* If both are shorts, return 1; if neither is a short, keep
2009 checking. */
2010 first_p = (strstr (first, "short") != NULL);
2011 second_p = (strstr (second, "short") != NULL);
2012 if (first_p && second_p)
2013 return 1;
2014 if (first_p || second_p)
2015 return 0;
2016
2017 /* Likewise for long. */
2018 first_p = (strstr (first, "long") != NULL);
2019 second_p = (strstr (second, "long") != NULL);
2020 if (first_p && second_p)
2021 return 1;
2022 if (first_p || second_p)
2023 return 0;
2024
2025 /* Likewise for char. */
2026 first_p = (strstr (first, "char") != NULL);
2027 second_p = (strstr (second, "char") != NULL);
2028 if (first_p && second_p)
2029 return 1;
2030 if (first_p || second_p)
2031 return 0;
2032
2033 /* They must both be ints. */
2034 return 1;
2035 }
2036
2037 /* Compare one type (PARM) for compatibility with another (ARG).
2038 * PARM is intended to be the parameter type of a function; and
2039 * ARG is the supplied argument's type. This function tests if
2040 * the latter can be converted to the former.
2041 *
2042 * Return 0 if they are identical types;
2043 * Otherwise, return an integer which corresponds to how compatible
2044 * PARM is to ARG. The higher the return value, the worse the match.
2045 * Generally the "bad" conversions are all uniformly assigned a 100. */
2046
2047 int
2048 rank_one_type (struct type *parm, struct type *arg)
2049 {
2050 /* Identical type pointers. */
2051 /* However, this still doesn't catch all cases of same type for arg
2052 and param. The reason is that builtin types are different from
2053 the same ones constructed from the object. */
2054 if (parm == arg)
2055 return 0;
2056
2057 /* Resolve typedefs */
2058 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2059 parm = check_typedef (parm);
2060 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2061 arg = check_typedef (arg);
2062
2063 /*
2064 Well, damnit, if the names are exactly the same, I'll say they
2065 are exactly the same. This happens when we generate method
2066 stubs. The types won't point to the same address, but they
2067 really are the same.
2068 */
2069
2070 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2071 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2072 return 0;
2073
2074 /* Check if identical after resolving typedefs. */
2075 if (parm == arg)
2076 return 0;
2077
2078 /* See through references, since we can almost make non-references
2079 references. */
2080 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2081 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2082 + REFERENCE_CONVERSION_BADNESS);
2083 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2084 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2085 + REFERENCE_CONVERSION_BADNESS);
2086 if (overload_debug)
2087 /* Debugging only. */
2088 fprintf_filtered (gdb_stderr,
2089 "------ Arg is %s [%d], parm is %s [%d]\n",
2090 TYPE_NAME (arg), TYPE_CODE (arg),
2091 TYPE_NAME (parm), TYPE_CODE (parm));
2092
2093 /* x -> y means arg of type x being supplied for parameter of type y */
2094
2095 switch (TYPE_CODE (parm))
2096 {
2097 case TYPE_CODE_PTR:
2098 switch (TYPE_CODE (arg))
2099 {
2100 case TYPE_CODE_PTR:
2101 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2102 return VOID_PTR_CONVERSION_BADNESS;
2103 else
2104 return rank_one_type (TYPE_TARGET_TYPE (parm),
2105 TYPE_TARGET_TYPE (arg));
2106 case TYPE_CODE_ARRAY:
2107 return rank_one_type (TYPE_TARGET_TYPE (parm),
2108 TYPE_TARGET_TYPE (arg));
2109 case TYPE_CODE_FUNC:
2110 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2111 case TYPE_CODE_INT:
2112 case TYPE_CODE_ENUM:
2113 case TYPE_CODE_FLAGS:
2114 case TYPE_CODE_CHAR:
2115 case TYPE_CODE_RANGE:
2116 case TYPE_CODE_BOOL:
2117 return POINTER_CONVERSION_BADNESS;
2118 default:
2119 return INCOMPATIBLE_TYPE_BADNESS;
2120 }
2121 case TYPE_CODE_ARRAY:
2122 switch (TYPE_CODE (arg))
2123 {
2124 case TYPE_CODE_PTR:
2125 case TYPE_CODE_ARRAY:
2126 return rank_one_type (TYPE_TARGET_TYPE (parm),
2127 TYPE_TARGET_TYPE (arg));
2128 default:
2129 return INCOMPATIBLE_TYPE_BADNESS;
2130 }
2131 case TYPE_CODE_FUNC:
2132 switch (TYPE_CODE (arg))
2133 {
2134 case TYPE_CODE_PTR: /* funcptr -> func */
2135 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2136 default:
2137 return INCOMPATIBLE_TYPE_BADNESS;
2138 }
2139 case TYPE_CODE_INT:
2140 switch (TYPE_CODE (arg))
2141 {
2142 case TYPE_CODE_INT:
2143 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2144 {
2145 /* Deal with signed, unsigned, and plain chars and
2146 signed and unsigned ints. */
2147 if (TYPE_NOSIGN (parm))
2148 {
2149 /* This case only for character types */
2150 if (TYPE_NOSIGN (arg))
2151 return 0; /* plain char -> plain char */
2152 else /* signed/unsigned char -> plain char */
2153 return INTEGER_CONVERSION_BADNESS;
2154 }
2155 else if (TYPE_UNSIGNED (parm))
2156 {
2157 if (TYPE_UNSIGNED (arg))
2158 {
2159 /* unsigned int -> unsigned int, or
2160 unsigned long -> unsigned long */
2161 if (integer_types_same_name_p (TYPE_NAME (parm),
2162 TYPE_NAME (arg)))
2163 return 0;
2164 else if (integer_types_same_name_p (TYPE_NAME (arg),
2165 "int")
2166 && integer_types_same_name_p (TYPE_NAME (parm),
2167 "long"))
2168 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2169 else
2170 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2171 }
2172 else
2173 {
2174 if (integer_types_same_name_p (TYPE_NAME (arg),
2175 "long")
2176 && integer_types_same_name_p (TYPE_NAME (parm),
2177 "int"))
2178 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2179 else
2180 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2181 }
2182 }
2183 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2184 {
2185 if (integer_types_same_name_p (TYPE_NAME (parm),
2186 TYPE_NAME (arg)))
2187 return 0;
2188 else if (integer_types_same_name_p (TYPE_NAME (arg),
2189 "int")
2190 && integer_types_same_name_p (TYPE_NAME (parm),
2191 "long"))
2192 return INTEGER_PROMOTION_BADNESS;
2193 else
2194 return INTEGER_CONVERSION_BADNESS;
2195 }
2196 else
2197 return INTEGER_CONVERSION_BADNESS;
2198 }
2199 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2200 return INTEGER_PROMOTION_BADNESS;
2201 else
2202 return INTEGER_CONVERSION_BADNESS;
2203 case TYPE_CODE_ENUM:
2204 case TYPE_CODE_FLAGS:
2205 case TYPE_CODE_CHAR:
2206 case TYPE_CODE_RANGE:
2207 case TYPE_CODE_BOOL:
2208 return INTEGER_PROMOTION_BADNESS;
2209 case TYPE_CODE_FLT:
2210 return INT_FLOAT_CONVERSION_BADNESS;
2211 case TYPE_CODE_PTR:
2212 return NS_POINTER_CONVERSION_BADNESS;
2213 default:
2214 return INCOMPATIBLE_TYPE_BADNESS;
2215 }
2216 break;
2217 case TYPE_CODE_ENUM:
2218 switch (TYPE_CODE (arg))
2219 {
2220 case TYPE_CODE_INT:
2221 case TYPE_CODE_CHAR:
2222 case TYPE_CODE_RANGE:
2223 case TYPE_CODE_BOOL:
2224 case TYPE_CODE_ENUM:
2225 return INTEGER_CONVERSION_BADNESS;
2226 case TYPE_CODE_FLT:
2227 return INT_FLOAT_CONVERSION_BADNESS;
2228 default:
2229 return INCOMPATIBLE_TYPE_BADNESS;
2230 }
2231 break;
2232 case TYPE_CODE_CHAR:
2233 switch (TYPE_CODE (arg))
2234 {
2235 case TYPE_CODE_RANGE:
2236 case TYPE_CODE_BOOL:
2237 case TYPE_CODE_ENUM:
2238 return INTEGER_CONVERSION_BADNESS;
2239 case TYPE_CODE_FLT:
2240 return INT_FLOAT_CONVERSION_BADNESS;
2241 case TYPE_CODE_INT:
2242 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2243 return INTEGER_CONVERSION_BADNESS;
2244 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2245 return INTEGER_PROMOTION_BADNESS;
2246 /* >>> !! else fall through !! <<< */
2247 case TYPE_CODE_CHAR:
2248 /* Deal with signed, unsigned, and plain chars for C++ and
2249 with int cases falling through from previous case. */
2250 if (TYPE_NOSIGN (parm))
2251 {
2252 if (TYPE_NOSIGN (arg))
2253 return 0;
2254 else
2255 return INTEGER_CONVERSION_BADNESS;
2256 }
2257 else if (TYPE_UNSIGNED (parm))
2258 {
2259 if (TYPE_UNSIGNED (arg))
2260 return 0;
2261 else
2262 return INTEGER_PROMOTION_BADNESS;
2263 }
2264 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2265 return 0;
2266 else
2267 return INTEGER_CONVERSION_BADNESS;
2268 default:
2269 return INCOMPATIBLE_TYPE_BADNESS;
2270 }
2271 break;
2272 case TYPE_CODE_RANGE:
2273 switch (TYPE_CODE (arg))
2274 {
2275 case TYPE_CODE_INT:
2276 case TYPE_CODE_CHAR:
2277 case TYPE_CODE_RANGE:
2278 case TYPE_CODE_BOOL:
2279 case TYPE_CODE_ENUM:
2280 return INTEGER_CONVERSION_BADNESS;
2281 case TYPE_CODE_FLT:
2282 return INT_FLOAT_CONVERSION_BADNESS;
2283 default:
2284 return INCOMPATIBLE_TYPE_BADNESS;
2285 }
2286 break;
2287 case TYPE_CODE_BOOL:
2288 switch (TYPE_CODE (arg))
2289 {
2290 case TYPE_CODE_INT:
2291 case TYPE_CODE_CHAR:
2292 case TYPE_CODE_RANGE:
2293 case TYPE_CODE_ENUM:
2294 case TYPE_CODE_FLT:
2295 case TYPE_CODE_PTR:
2296 return BOOLEAN_CONVERSION_BADNESS;
2297 case TYPE_CODE_BOOL:
2298 return 0;
2299 default:
2300 return INCOMPATIBLE_TYPE_BADNESS;
2301 }
2302 break;
2303 case TYPE_CODE_FLT:
2304 switch (TYPE_CODE (arg))
2305 {
2306 case TYPE_CODE_FLT:
2307 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2308 return FLOAT_PROMOTION_BADNESS;
2309 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2310 return 0;
2311 else
2312 return FLOAT_CONVERSION_BADNESS;
2313 case TYPE_CODE_INT:
2314 case TYPE_CODE_BOOL:
2315 case TYPE_CODE_ENUM:
2316 case TYPE_CODE_RANGE:
2317 case TYPE_CODE_CHAR:
2318 return INT_FLOAT_CONVERSION_BADNESS;
2319 default:
2320 return INCOMPATIBLE_TYPE_BADNESS;
2321 }
2322 break;
2323 case TYPE_CODE_COMPLEX:
2324 switch (TYPE_CODE (arg))
2325 { /* Strictly not needed for C++, but... */
2326 case TYPE_CODE_FLT:
2327 return FLOAT_PROMOTION_BADNESS;
2328 case TYPE_CODE_COMPLEX:
2329 return 0;
2330 default:
2331 return INCOMPATIBLE_TYPE_BADNESS;
2332 }
2333 break;
2334 case TYPE_CODE_STRUCT:
2335 /* currently same as TYPE_CODE_CLASS */
2336 switch (TYPE_CODE (arg))
2337 {
2338 case TYPE_CODE_STRUCT:
2339 /* Check for derivation */
2340 if (is_ancestor (parm, arg))
2341 return BASE_CONVERSION_BADNESS;
2342 /* else fall through */
2343 default:
2344 return INCOMPATIBLE_TYPE_BADNESS;
2345 }
2346 break;
2347 case TYPE_CODE_UNION:
2348 switch (TYPE_CODE (arg))
2349 {
2350 case TYPE_CODE_UNION:
2351 default:
2352 return INCOMPATIBLE_TYPE_BADNESS;
2353 }
2354 break;
2355 case TYPE_CODE_MEMBERPTR:
2356 switch (TYPE_CODE (arg))
2357 {
2358 default:
2359 return INCOMPATIBLE_TYPE_BADNESS;
2360 }
2361 break;
2362 case TYPE_CODE_METHOD:
2363 switch (TYPE_CODE (arg))
2364 {
2365
2366 default:
2367 return INCOMPATIBLE_TYPE_BADNESS;
2368 }
2369 break;
2370 case TYPE_CODE_REF:
2371 switch (TYPE_CODE (arg))
2372 {
2373
2374 default:
2375 return INCOMPATIBLE_TYPE_BADNESS;
2376 }
2377
2378 break;
2379 case TYPE_CODE_SET:
2380 switch (TYPE_CODE (arg))
2381 {
2382 /* Not in C++ */
2383 case TYPE_CODE_SET:
2384 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2385 TYPE_FIELD_TYPE (arg, 0));
2386 default:
2387 return INCOMPATIBLE_TYPE_BADNESS;
2388 }
2389 break;
2390 case TYPE_CODE_VOID:
2391 default:
2392 return INCOMPATIBLE_TYPE_BADNESS;
2393 } /* switch (TYPE_CODE (arg)) */
2394 }
2395
2396
2397 /* End of functions for overload resolution */
2398
2399 static void
2400 print_bit_vector (B_TYPE *bits, int nbits)
2401 {
2402 int bitno;
2403
2404 for (bitno = 0; bitno < nbits; bitno++)
2405 {
2406 if ((bitno % 8) == 0)
2407 {
2408 puts_filtered (" ");
2409 }
2410 if (B_TST (bits, bitno))
2411 printf_filtered (("1"));
2412 else
2413 printf_filtered (("0"));
2414 }
2415 }
2416
2417 /* Note the first arg should be the "this" pointer, we may not want to
2418 include it since we may get into a infinitely recursive
2419 situation. */
2420
2421 static void
2422 print_arg_types (struct field *args, int nargs, int spaces)
2423 {
2424 if (args != NULL)
2425 {
2426 int i;
2427
2428 for (i = 0; i < nargs; i++)
2429 recursive_dump_type (args[i].type, spaces + 2);
2430 }
2431 }
2432
2433 static void
2434 dump_fn_fieldlists (struct type *type, int spaces)
2435 {
2436 int method_idx;
2437 int overload_idx;
2438 struct fn_field *f;
2439
2440 printfi_filtered (spaces, "fn_fieldlists ");
2441 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2442 printf_filtered ("\n");
2443 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2444 {
2445 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2446 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2447 method_idx,
2448 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2449 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2450 gdb_stdout);
2451 printf_filtered (_(") length %d\n"),
2452 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2453 for (overload_idx = 0;
2454 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2455 overload_idx++)
2456 {
2457 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2458 overload_idx,
2459 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2460 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2461 gdb_stdout);
2462 printf_filtered (")\n");
2463 printfi_filtered (spaces + 8, "type ");
2464 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2465 gdb_stdout);
2466 printf_filtered ("\n");
2467
2468 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2469 spaces + 8 + 2);
2470
2471 printfi_filtered (spaces + 8, "args ");
2472 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2473 gdb_stdout);
2474 printf_filtered ("\n");
2475
2476 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2477 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2478 overload_idx)),
2479 spaces);
2480 printfi_filtered (spaces + 8, "fcontext ");
2481 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2482 gdb_stdout);
2483 printf_filtered ("\n");
2484
2485 printfi_filtered (spaces + 8, "is_const %d\n",
2486 TYPE_FN_FIELD_CONST (f, overload_idx));
2487 printfi_filtered (spaces + 8, "is_volatile %d\n",
2488 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2489 printfi_filtered (spaces + 8, "is_private %d\n",
2490 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2491 printfi_filtered (spaces + 8, "is_protected %d\n",
2492 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2493 printfi_filtered (spaces + 8, "is_stub %d\n",
2494 TYPE_FN_FIELD_STUB (f, overload_idx));
2495 printfi_filtered (spaces + 8, "voffset %u\n",
2496 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2497 }
2498 }
2499 }
2500
2501 static void
2502 print_cplus_stuff (struct type *type, int spaces)
2503 {
2504 printfi_filtered (spaces, "n_baseclasses %d\n",
2505 TYPE_N_BASECLASSES (type));
2506 printfi_filtered (spaces, "nfn_fields %d\n",
2507 TYPE_NFN_FIELDS (type));
2508 printfi_filtered (spaces, "nfn_fields_total %d\n",
2509 TYPE_NFN_FIELDS_TOTAL (type));
2510 if (TYPE_N_BASECLASSES (type) > 0)
2511 {
2512 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2513 TYPE_N_BASECLASSES (type));
2514 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2515 gdb_stdout);
2516 printf_filtered (")");
2517
2518 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2519 TYPE_N_BASECLASSES (type));
2520 puts_filtered ("\n");
2521 }
2522 if (TYPE_NFIELDS (type) > 0)
2523 {
2524 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2525 {
2526 printfi_filtered (spaces,
2527 "private_field_bits (%d bits at *",
2528 TYPE_NFIELDS (type));
2529 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2530 gdb_stdout);
2531 printf_filtered (")");
2532 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2533 TYPE_NFIELDS (type));
2534 puts_filtered ("\n");
2535 }
2536 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2537 {
2538 printfi_filtered (spaces,
2539 "protected_field_bits (%d bits at *",
2540 TYPE_NFIELDS (type));
2541 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2542 gdb_stdout);
2543 printf_filtered (")");
2544 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2545 TYPE_NFIELDS (type));
2546 puts_filtered ("\n");
2547 }
2548 }
2549 if (TYPE_NFN_FIELDS (type) > 0)
2550 {
2551 dump_fn_fieldlists (type, spaces);
2552 }
2553 }
2554
2555 static void
2556 print_bound_type (int bt)
2557 {
2558 switch (bt)
2559 {
2560 case BOUND_CANNOT_BE_DETERMINED:
2561 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2562 break;
2563 case BOUND_BY_REF_ON_STACK:
2564 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2565 break;
2566 case BOUND_BY_VALUE_ON_STACK:
2567 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2568 break;
2569 case BOUND_BY_REF_IN_REG:
2570 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2571 break;
2572 case BOUND_BY_VALUE_IN_REG:
2573 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2574 break;
2575 case BOUND_SIMPLE:
2576 printf_filtered ("(BOUND_SIMPLE)");
2577 break;
2578 default:
2579 printf_filtered (_("(unknown bound type)"));
2580 break;
2581 }
2582 }
2583
2584 static struct obstack dont_print_type_obstack;
2585
2586 void
2587 recursive_dump_type (struct type *type, int spaces)
2588 {
2589 int idx;
2590
2591 if (spaces == 0)
2592 obstack_begin (&dont_print_type_obstack, 0);
2593
2594 if (TYPE_NFIELDS (type) > 0
2595 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2596 {
2597 struct type **first_dont_print
2598 = (struct type **) obstack_base (&dont_print_type_obstack);
2599
2600 int i = (struct type **)
2601 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2602
2603 while (--i >= 0)
2604 {
2605 if (type == first_dont_print[i])
2606 {
2607 printfi_filtered (spaces, "type node ");
2608 gdb_print_host_address (type, gdb_stdout);
2609 printf_filtered (_(" <same as already seen type>\n"));
2610 return;
2611 }
2612 }
2613
2614 obstack_ptr_grow (&dont_print_type_obstack, type);
2615 }
2616
2617 printfi_filtered (spaces, "type node ");
2618 gdb_print_host_address (type, gdb_stdout);
2619 printf_filtered ("\n");
2620 printfi_filtered (spaces, "name '%s' (",
2621 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2622 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2623 printf_filtered (")\n");
2624 printfi_filtered (spaces, "tagname '%s' (",
2625 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2626 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2627 printf_filtered (")\n");
2628 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2629 switch (TYPE_CODE (type))
2630 {
2631 case TYPE_CODE_UNDEF:
2632 printf_filtered ("(TYPE_CODE_UNDEF)");
2633 break;
2634 case TYPE_CODE_PTR:
2635 printf_filtered ("(TYPE_CODE_PTR)");
2636 break;
2637 case TYPE_CODE_ARRAY:
2638 printf_filtered ("(TYPE_CODE_ARRAY)");
2639 break;
2640 case TYPE_CODE_STRUCT:
2641 printf_filtered ("(TYPE_CODE_STRUCT)");
2642 break;
2643 case TYPE_CODE_UNION:
2644 printf_filtered ("(TYPE_CODE_UNION)");
2645 break;
2646 case TYPE_CODE_ENUM:
2647 printf_filtered ("(TYPE_CODE_ENUM)");
2648 break;
2649 case TYPE_CODE_FLAGS:
2650 printf_filtered ("(TYPE_CODE_FLAGS)");
2651 break;
2652 case TYPE_CODE_FUNC:
2653 printf_filtered ("(TYPE_CODE_FUNC)");
2654 break;
2655 case TYPE_CODE_INT:
2656 printf_filtered ("(TYPE_CODE_INT)");
2657 break;
2658 case TYPE_CODE_FLT:
2659 printf_filtered ("(TYPE_CODE_FLT)");
2660 break;
2661 case TYPE_CODE_VOID:
2662 printf_filtered ("(TYPE_CODE_VOID)");
2663 break;
2664 case TYPE_CODE_SET:
2665 printf_filtered ("(TYPE_CODE_SET)");
2666 break;
2667 case TYPE_CODE_RANGE:
2668 printf_filtered ("(TYPE_CODE_RANGE)");
2669 break;
2670 case TYPE_CODE_STRING:
2671 printf_filtered ("(TYPE_CODE_STRING)");
2672 break;
2673 case TYPE_CODE_BITSTRING:
2674 printf_filtered ("(TYPE_CODE_BITSTRING)");
2675 break;
2676 case TYPE_CODE_ERROR:
2677 printf_filtered ("(TYPE_CODE_ERROR)");
2678 break;
2679 case TYPE_CODE_MEMBERPTR:
2680 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2681 break;
2682 case TYPE_CODE_METHODPTR:
2683 printf_filtered ("(TYPE_CODE_METHODPTR)");
2684 break;
2685 case TYPE_CODE_METHOD:
2686 printf_filtered ("(TYPE_CODE_METHOD)");
2687 break;
2688 case TYPE_CODE_REF:
2689 printf_filtered ("(TYPE_CODE_REF)");
2690 break;
2691 case TYPE_CODE_CHAR:
2692 printf_filtered ("(TYPE_CODE_CHAR)");
2693 break;
2694 case TYPE_CODE_BOOL:
2695 printf_filtered ("(TYPE_CODE_BOOL)");
2696 break;
2697 case TYPE_CODE_COMPLEX:
2698 printf_filtered ("(TYPE_CODE_COMPLEX)");
2699 break;
2700 case TYPE_CODE_TYPEDEF:
2701 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2702 break;
2703 case TYPE_CODE_TEMPLATE:
2704 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2705 break;
2706 case TYPE_CODE_TEMPLATE_ARG:
2707 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2708 break;
2709 case TYPE_CODE_NAMESPACE:
2710 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2711 break;
2712 default:
2713 printf_filtered ("(UNKNOWN TYPE CODE)");
2714 break;
2715 }
2716 puts_filtered ("\n");
2717 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2718 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2719 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2720 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2721 puts_filtered ("\n");
2722 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2723 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2724 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2725 puts_filtered ("\n");
2726 printfi_filtered (spaces, "objfile ");
2727 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2728 printf_filtered ("\n");
2729 printfi_filtered (spaces, "target_type ");
2730 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2731 printf_filtered ("\n");
2732 if (TYPE_TARGET_TYPE (type) != NULL)
2733 {
2734 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2735 }
2736 printfi_filtered (spaces, "pointer_type ");
2737 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2738 printf_filtered ("\n");
2739 printfi_filtered (spaces, "reference_type ");
2740 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2741 printf_filtered ("\n");
2742 printfi_filtered (spaces, "type_chain ");
2743 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2744 printf_filtered ("\n");
2745 printfi_filtered (spaces, "instance_flags 0x%x",
2746 TYPE_INSTANCE_FLAGS (type));
2747 if (TYPE_CONST (type))
2748 {
2749 puts_filtered (" TYPE_FLAG_CONST");
2750 }
2751 if (TYPE_VOLATILE (type))
2752 {
2753 puts_filtered (" TYPE_FLAG_VOLATILE");
2754 }
2755 if (TYPE_CODE_SPACE (type))
2756 {
2757 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2758 }
2759 if (TYPE_DATA_SPACE (type))
2760 {
2761 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2762 }
2763 if (TYPE_ADDRESS_CLASS_1 (type))
2764 {
2765 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2766 }
2767 if (TYPE_ADDRESS_CLASS_2 (type))
2768 {
2769 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2770 }
2771 puts_filtered ("\n");
2772 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
2773 if (TYPE_UNSIGNED (type))
2774 {
2775 puts_filtered (" TYPE_FLAG_UNSIGNED");
2776 }
2777 if (TYPE_NOSIGN (type))
2778 {
2779 puts_filtered (" TYPE_FLAG_NOSIGN");
2780 }
2781 if (TYPE_STUB (type))
2782 {
2783 puts_filtered (" TYPE_FLAG_STUB");
2784 }
2785 if (TYPE_TARGET_STUB (type))
2786 {
2787 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2788 }
2789 if (TYPE_STATIC (type))
2790 {
2791 puts_filtered (" TYPE_FLAG_STATIC");
2792 }
2793 if (TYPE_PROTOTYPED (type))
2794 {
2795 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2796 }
2797 if (TYPE_INCOMPLETE (type))
2798 {
2799 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2800 }
2801 if (TYPE_VARARGS (type))
2802 {
2803 puts_filtered (" TYPE_FLAG_VARARGS");
2804 }
2805 /* This is used for things like AltiVec registers on ppc. Gcc emits
2806 an attribute for the array type, which tells whether or not we
2807 have a vector, instead of a regular array. */
2808 if (TYPE_VECTOR (type))
2809 {
2810 puts_filtered (" TYPE_FLAG_VECTOR");
2811 }
2812 puts_filtered ("\n");
2813 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2814 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2815 puts_filtered ("\n");
2816 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2817 {
2818 printfi_filtered (spaces + 2,
2819 "[%d] bitpos %d bitsize %d type ",
2820 idx, TYPE_FIELD_BITPOS (type, idx),
2821 TYPE_FIELD_BITSIZE (type, idx));
2822 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2823 printf_filtered (" name '%s' (",
2824 TYPE_FIELD_NAME (type, idx) != NULL
2825 ? TYPE_FIELD_NAME (type, idx)
2826 : "<NULL>");
2827 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2828 printf_filtered (")\n");
2829 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2830 {
2831 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2832 }
2833 }
2834 printfi_filtered (spaces, "vptr_basetype ");
2835 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2836 puts_filtered ("\n");
2837 if (TYPE_VPTR_BASETYPE (type) != NULL)
2838 {
2839 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2840 }
2841 printfi_filtered (spaces, "vptr_fieldno %d\n",
2842 TYPE_VPTR_FIELDNO (type));
2843 switch (TYPE_CODE (type))
2844 {
2845 case TYPE_CODE_STRUCT:
2846 printfi_filtered (spaces, "cplus_stuff ");
2847 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2848 gdb_stdout);
2849 puts_filtered ("\n");
2850 print_cplus_stuff (type, spaces);
2851 break;
2852
2853 case TYPE_CODE_FLT:
2854 printfi_filtered (spaces, "floatformat ");
2855 if (TYPE_FLOATFORMAT (type) == NULL)
2856 puts_filtered ("(null)");
2857 else
2858 {
2859 puts_filtered ("{ ");
2860 if (TYPE_FLOATFORMAT (type)[0] == NULL
2861 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2862 puts_filtered ("(null)");
2863 else
2864 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2865
2866 puts_filtered (", ");
2867 if (TYPE_FLOATFORMAT (type)[1] == NULL
2868 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2869 puts_filtered ("(null)");
2870 else
2871 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2872
2873 puts_filtered (" }");
2874 }
2875 puts_filtered ("\n");
2876 break;
2877
2878 default:
2879 /* We have to pick one of the union types to be able print and
2880 test the value. Pick cplus_struct_type, even though we know
2881 it isn't any particular one. */
2882 printfi_filtered (spaces, "type_specific ");
2883 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2884 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2885 {
2886 printf_filtered (_(" (unknown data form)"));
2887 }
2888 printf_filtered ("\n");
2889 break;
2890
2891 }
2892 if (spaces == 0)
2893 obstack_free (&dont_print_type_obstack, NULL);
2894 }
2895
2896 /* Trivial helpers for the libiberty hash table, for mapping one
2897 type to another. */
2898
2899 struct type_pair
2900 {
2901 struct type *old, *new;
2902 };
2903
2904 static hashval_t
2905 type_pair_hash (const void *item)
2906 {
2907 const struct type_pair *pair = item;
2908 return htab_hash_pointer (pair->old);
2909 }
2910
2911 static int
2912 type_pair_eq (const void *item_lhs, const void *item_rhs)
2913 {
2914 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2915 return lhs->old == rhs->old;
2916 }
2917
2918 /* Allocate the hash table used by copy_type_recursive to walk
2919 types without duplicates. We use OBJFILE's obstack, because
2920 OBJFILE is about to be deleted. */
2921
2922 htab_t
2923 create_copied_types_hash (struct objfile *objfile)
2924 {
2925 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2926 NULL, &objfile->objfile_obstack,
2927 hashtab_obstack_allocate,
2928 dummy_obstack_deallocate);
2929 }
2930
2931 /* Recursively copy (deep copy) TYPE, if it is associated with
2932 OBJFILE. Return a new type allocated using malloc, a saved type if
2933 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2934 not associated with OBJFILE. */
2935
2936 struct type *
2937 copy_type_recursive (struct objfile *objfile,
2938 struct type *type,
2939 htab_t copied_types)
2940 {
2941 struct type_pair *stored, pair;
2942 void **slot;
2943 struct type *new_type;
2944
2945 if (TYPE_OBJFILE (type) == NULL)
2946 return type;
2947
2948 /* This type shouldn't be pointing to any types in other objfiles;
2949 if it did, the type might disappear unexpectedly. */
2950 gdb_assert (TYPE_OBJFILE (type) == objfile);
2951
2952 pair.old = type;
2953 slot = htab_find_slot (copied_types, &pair, INSERT);
2954 if (*slot != NULL)
2955 return ((struct type_pair *) *slot)->new;
2956
2957 new_type = alloc_type (NULL);
2958
2959 /* We must add the new type to the hash table immediately, in case
2960 we encounter this type again during a recursive call below. */
2961 stored = xmalloc (sizeof (struct type_pair));
2962 stored->old = type;
2963 stored->new = new_type;
2964 *slot = stored;
2965
2966 /* Copy the common fields of types. */
2967 TYPE_CODE (new_type) = TYPE_CODE (type);
2968 TYPE_ARRAY_UPPER_BOUND_TYPE (new_type) =
2969 TYPE_ARRAY_UPPER_BOUND_TYPE (type);
2970 TYPE_ARRAY_LOWER_BOUND_TYPE (new_type) =
2971 TYPE_ARRAY_LOWER_BOUND_TYPE (type);
2972 if (TYPE_NAME (type))
2973 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2974 if (TYPE_TAG_NAME (type))
2975 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2976 TYPE_FLAGS (new_type) = TYPE_FLAGS (type);
2977 TYPE_VPTR_FIELDNO (new_type) = TYPE_VPTR_FIELDNO (type);
2978
2979 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2980 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2981
2982 /* Copy the fields. */
2983 TYPE_NFIELDS (new_type) = TYPE_NFIELDS (type);
2984 if (TYPE_NFIELDS (type))
2985 {
2986 int i, nfields;
2987
2988 nfields = TYPE_NFIELDS (type);
2989 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2990 for (i = 0; i < nfields; i++)
2991 {
2992 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2993 TYPE_FIELD_ARTIFICIAL (type, i);
2994 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2995 if (TYPE_FIELD_TYPE (type, i))
2996 TYPE_FIELD_TYPE (new_type, i)
2997 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2998 copied_types);
2999 if (TYPE_FIELD_NAME (type, i))
3000 TYPE_FIELD_NAME (new_type, i) =
3001 xstrdup (TYPE_FIELD_NAME (type, i));
3002 if (TYPE_FIELD_STATIC_HAS_ADDR (type, i))
3003 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3004 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3005 else if (TYPE_FIELD_STATIC (type, i))
3006 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3007 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3008 i)));
3009 else
3010 {
3011 TYPE_FIELD_BITPOS (new_type, i) =
3012 TYPE_FIELD_BITPOS (type, i);
3013 TYPE_FIELD_STATIC_KIND (new_type, i) = 0;
3014 }
3015 }
3016 }
3017
3018 /* Copy pointers to other types. */
3019 if (TYPE_TARGET_TYPE (type))
3020 TYPE_TARGET_TYPE (new_type) =
3021 copy_type_recursive (objfile,
3022 TYPE_TARGET_TYPE (type),
3023 copied_types);
3024 if (TYPE_VPTR_BASETYPE (type))
3025 TYPE_VPTR_BASETYPE (new_type) =
3026 copy_type_recursive (objfile,
3027 TYPE_VPTR_BASETYPE (type),
3028 copied_types);
3029 /* Maybe copy the type_specific bits.
3030
3031 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3032 base classes and methods. There's no fundamental reason why we
3033 can't, but at the moment it is not needed. */
3034
3035 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3036 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3037 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3038 || TYPE_CODE (type) == TYPE_CODE_UNION
3039 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3040 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3041 INIT_CPLUS_SPECIFIC (new_type);
3042
3043 return new_type;
3044 }
3045
3046 static struct type *
3047 build_flt (int bit, char *name, const struct floatformat **floatformats)
3048 {
3049 struct type *t;
3050
3051 if (bit == -1)
3052 {
3053 gdb_assert (floatformats != NULL);
3054 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3055 bit = floatformats[0]->totalsize;
3056 }
3057 gdb_assert (bit >= 0);
3058
3059 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3060 TYPE_FLOATFORMAT (t) = floatformats;
3061 return t;
3062 }
3063
3064 static struct gdbarch_data *gdbtypes_data;
3065
3066 const struct builtin_type *
3067 builtin_type (struct gdbarch *gdbarch)
3068 {
3069 return gdbarch_data (gdbarch, gdbtypes_data);
3070 }
3071
3072
3073 static struct type *
3074 build_complex (int bit, char *name, struct type *target_type)
3075 {
3076 struct type *t;
3077 if (bit <= 0 || target_type == builtin_type_error)
3078 {
3079 gdb_assert (builtin_type_error != NULL);
3080 return builtin_type_error;
3081 }
3082 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3083 0, name, (struct objfile *) NULL);
3084 TYPE_TARGET_TYPE (t) = target_type;
3085 return t;
3086 }
3087
3088 static void *
3089 gdbtypes_post_init (struct gdbarch *gdbarch)
3090 {
3091 struct builtin_type *builtin_type
3092 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3093
3094 builtin_type->builtin_void =
3095 init_type (TYPE_CODE_VOID, 1,
3096 0,
3097 "void", (struct objfile *) NULL);
3098 builtin_type->builtin_char =
3099 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3100 (TYPE_FLAG_NOSIGN
3101 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3102 "char", (struct objfile *) NULL);
3103 builtin_type->builtin_true_char =
3104 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3105 0,
3106 "true character", (struct objfile *) NULL);
3107 builtin_type->builtin_true_unsigned_char =
3108 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3109 TYPE_FLAG_UNSIGNED,
3110 "true character", (struct objfile *) NULL);
3111 builtin_type->builtin_signed_char =
3112 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3113 0,
3114 "signed char", (struct objfile *) NULL);
3115 builtin_type->builtin_unsigned_char =
3116 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3117 TYPE_FLAG_UNSIGNED,
3118 "unsigned char", (struct objfile *) NULL);
3119 builtin_type->builtin_short =
3120 init_type (TYPE_CODE_INT,
3121 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3122 0, "short", (struct objfile *) NULL);
3123 builtin_type->builtin_unsigned_short =
3124 init_type (TYPE_CODE_INT,
3125 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3126 TYPE_FLAG_UNSIGNED, "unsigned short",
3127 (struct objfile *) NULL);
3128 builtin_type->builtin_int =
3129 init_type (TYPE_CODE_INT,
3130 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3131 0, "int", (struct objfile *) NULL);
3132 builtin_type->builtin_unsigned_int =
3133 init_type (TYPE_CODE_INT,
3134 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3135 TYPE_FLAG_UNSIGNED, "unsigned int",
3136 (struct objfile *) NULL);
3137 builtin_type->builtin_long =
3138 init_type (TYPE_CODE_INT,
3139 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3140 0, "long", (struct objfile *) NULL);
3141 builtin_type->builtin_unsigned_long =
3142 init_type (TYPE_CODE_INT,
3143 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3144 TYPE_FLAG_UNSIGNED, "unsigned long",
3145 (struct objfile *) NULL);
3146 builtin_type->builtin_long_long =
3147 init_type (TYPE_CODE_INT,
3148 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3149 0, "long long", (struct objfile *) NULL);
3150 builtin_type->builtin_unsigned_long_long =
3151 init_type (TYPE_CODE_INT,
3152 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3153 TYPE_FLAG_UNSIGNED, "unsigned long long",
3154 (struct objfile *) NULL);
3155 builtin_type->builtin_float
3156 = build_flt (gdbarch_float_bit (gdbarch), "float",
3157 gdbarch_float_format (gdbarch));
3158 builtin_type->builtin_double
3159 = build_flt (gdbarch_double_bit (gdbarch), "double",
3160 gdbarch_double_format (gdbarch));
3161 builtin_type->builtin_long_double
3162 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3163 gdbarch_long_double_format (gdbarch));
3164 builtin_type->builtin_complex
3165 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3166 builtin_type->builtin_float);
3167 builtin_type->builtin_double_complex
3168 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3169 builtin_type->builtin_double);
3170 builtin_type->builtin_string =
3171 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3172 0,
3173 "string", (struct objfile *) NULL);
3174 builtin_type->builtin_bool =
3175 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3176 0,
3177 "bool", (struct objfile *) NULL);
3178
3179 /* The following three are about decimal floating point types, which
3180 are 32-bits, 64-bits and 128-bits respectively. */
3181 builtin_type->builtin_decfloat
3182 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3183 0,
3184 "decimal float", (struct objfile *) NULL);
3185 builtin_type->builtin_decdouble
3186 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3187 0,
3188 "decimal double", (struct objfile *) NULL);
3189 builtin_type->builtin_declong
3190 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3191 0,
3192 "decimal long double", (struct objfile *) NULL);
3193
3194 /* Pointer/Address types. */
3195
3196 /* NOTE: on some targets, addresses and pointers are not necessarily
3197 the same --- for example, on the D10V, pointers are 16 bits long,
3198 but addresses are 32 bits long. See doc/gdbint.texinfo,
3199 ``Pointers Are Not Always Addresses''.
3200
3201 The upshot is:
3202 - gdb's `struct type' always describes the target's
3203 representation.
3204 - gdb's `struct value' objects should always hold values in
3205 target form.
3206 - gdb's CORE_ADDR values are addresses in the unified virtual
3207 address space that the assembler and linker work with. Thus,
3208 since target_read_memory takes a CORE_ADDR as an argument, it
3209 can access any memory on the target, even if the processor has
3210 separate code and data address spaces.
3211
3212 So, for example:
3213 - If v is a value holding a D10V code pointer, its contents are
3214 in target form: a big-endian address left-shifted two bits.
3215 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3216 sizeof (void *) == 2 on the target.
3217
3218 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3219 target type for a value the target will never see. It's only
3220 used to hold the values of (typeless) linker symbols, which are
3221 indeed in the unified virtual address space. */
3222
3223 builtin_type->builtin_data_ptr =
3224 make_pointer_type (builtin_type->builtin_void, NULL);
3225 builtin_type->builtin_func_ptr =
3226 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3227 builtin_type->builtin_core_addr =
3228 init_type (TYPE_CODE_INT,
3229 gdbarch_addr_bit (gdbarch) / 8,
3230 TYPE_FLAG_UNSIGNED,
3231 "__CORE_ADDR", (struct objfile *) NULL);
3232
3233
3234 /* The following set of types is used for symbols with no
3235 debug information. */
3236 builtin_type->nodebug_text_symbol =
3237 init_type (TYPE_CODE_FUNC, 1, 0,
3238 "<text variable, no debug info>", NULL);
3239 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3240 builtin_type->builtin_int;
3241 builtin_type->nodebug_data_symbol =
3242 init_type (TYPE_CODE_INT,
3243 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3244 "<data variable, no debug info>", NULL);
3245 builtin_type->nodebug_unknown_symbol =
3246 init_type (TYPE_CODE_INT, 1, 0,
3247 "<variable (not text or data), no debug info>", NULL);
3248 builtin_type->nodebug_tls_symbol =
3249 init_type (TYPE_CODE_INT,
3250 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3251 "<thread local variable, no debug info>", NULL);
3252
3253 return builtin_type;
3254 }
3255
3256 extern void _initialize_gdbtypes (void);
3257 void
3258 _initialize_gdbtypes (void)
3259 {
3260 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3261
3262 /* FIXME: The following types are architecture-neutral. However,
3263 they contain pointer_type and reference_type fields potentially
3264 caching pointer or reference types that *are* architecture
3265 dependent. */
3266
3267 builtin_type_int0 =
3268 init_type (TYPE_CODE_INT, 0 / 8,
3269 0,
3270 "int0_t", (struct objfile *) NULL);
3271 builtin_type_int8 =
3272 init_type (TYPE_CODE_INT, 8 / 8,
3273 TYPE_FLAG_NOTTEXT,
3274 "int8_t", (struct objfile *) NULL);
3275 builtin_type_uint8 =
3276 init_type (TYPE_CODE_INT, 8 / 8,
3277 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
3278 "uint8_t", (struct objfile *) NULL);
3279 builtin_type_int16 =
3280 init_type (TYPE_CODE_INT, 16 / 8,
3281 0,
3282 "int16_t", (struct objfile *) NULL);
3283 builtin_type_uint16 =
3284 init_type (TYPE_CODE_INT, 16 / 8,
3285 TYPE_FLAG_UNSIGNED,
3286 "uint16_t", (struct objfile *) NULL);
3287 builtin_type_int32 =
3288 init_type (TYPE_CODE_INT, 32 / 8,
3289 0,
3290 "int32_t", (struct objfile *) NULL);
3291 builtin_type_uint32 =
3292 init_type (TYPE_CODE_INT, 32 / 8,
3293 TYPE_FLAG_UNSIGNED,
3294 "uint32_t", (struct objfile *) NULL);
3295 builtin_type_int64 =
3296 init_type (TYPE_CODE_INT, 64 / 8,
3297 0,
3298 "int64_t", (struct objfile *) NULL);
3299 builtin_type_uint64 =
3300 init_type (TYPE_CODE_INT, 64 / 8,
3301 TYPE_FLAG_UNSIGNED,
3302 "uint64_t", (struct objfile *) NULL);
3303 builtin_type_int128 =
3304 init_type (TYPE_CODE_INT, 128 / 8,
3305 0,
3306 "int128_t", (struct objfile *) NULL);
3307 builtin_type_uint128 =
3308 init_type (TYPE_CODE_INT, 128 / 8,
3309 TYPE_FLAG_UNSIGNED,
3310 "uint128_t", (struct objfile *) NULL);
3311
3312 builtin_type_ieee_single =
3313 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3314 builtin_type_ieee_double =
3315 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3316 builtin_type_i387_ext =
3317 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3318 builtin_type_m68881_ext =
3319 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3320 builtin_type_arm_ext =
3321 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3322 builtin_type_ia64_spill =
3323 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3324 builtin_type_ia64_quad =
3325 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
3326
3327 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3328 Set debugging of C++ overloading."), _("\
3329 Show debugging of C++ overloading."), _("\
3330 When enabled, ranking of the functions is displayed."),
3331 NULL,
3332 show_overload_debug,
3333 &setdebuglist, &showdebuglist);
3334
3335 /* Add user knob for controlling resolution of opaque types. */
3336 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3337 &opaque_type_resolution, _("\
3338 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3339 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3340 NULL,
3341 show_opaque_type_resolution,
3342 &setlist, &showlist);
3343 }
This page took 0.201148 seconds and 3 git commands to generate.