Delete TYPE_CODE_CLASS, it's just an alias of TYPE_CODE_STRUCT.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XCNEW (struct type);
203 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* See gdbtypes.h. */
243
244 struct type *
245 get_target_type (struct type *type)
246 {
247 if (type != NULL)
248 {
249 type = TYPE_TARGET_TYPE (type);
250 if (type != NULL)
251 type = check_typedef (type);
252 }
253
254 return type;
255 }
256
257 /* Alloc a new type instance structure, fill it with some defaults,
258 and point it at OLDTYPE. Allocate the new type instance from the
259 same place as OLDTYPE. */
260
261 static struct type *
262 alloc_type_instance (struct type *oldtype)
263 {
264 struct type *type;
265
266 /* Allocate the structure. */
267
268 if (! TYPE_OBJFILE_OWNED (oldtype))
269 type = XCNEW (struct type);
270 else
271 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
272 struct type);
273
274 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
275
276 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
277
278 return type;
279 }
280
281 /* Clear all remnants of the previous type at TYPE, in preparation for
282 replacing it with something else. Preserve owner information. */
283
284 static void
285 smash_type (struct type *type)
286 {
287 int objfile_owned = TYPE_OBJFILE_OWNED (type);
288 union type_owner owner = TYPE_OWNER (type);
289
290 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
291
292 /* Restore owner information. */
293 TYPE_OBJFILE_OWNED (type) = objfile_owned;
294 TYPE_OWNER (type) = owner;
295
296 /* For now, delete the rings. */
297 TYPE_CHAIN (type) = type;
298
299 /* For now, leave the pointer/reference types alone. */
300 }
301
302 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
303 to a pointer to memory where the pointer type should be stored.
304 If *TYPEPTR is zero, update it to point to the pointer type we return.
305 We allocate new memory if needed. */
306
307 struct type *
308 make_pointer_type (struct type *type, struct type **typeptr)
309 {
310 struct type *ntype; /* New type */
311 struct type *chain;
312
313 ntype = TYPE_POINTER_TYPE (type);
314
315 if (ntype)
316 {
317 if (typeptr == 0)
318 return ntype; /* Don't care about alloc,
319 and have new type. */
320 else if (*typeptr == 0)
321 {
322 *typeptr = ntype; /* Tracking alloc, and have new type. */
323 return ntype;
324 }
325 }
326
327 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
328 {
329 ntype = alloc_type_copy (type);
330 if (typeptr)
331 *typeptr = ntype;
332 }
333 else /* We have storage, but need to reset it. */
334 {
335 ntype = *typeptr;
336 chain = TYPE_CHAIN (ntype);
337 smash_type (ntype);
338 TYPE_CHAIN (ntype) = chain;
339 }
340
341 TYPE_TARGET_TYPE (ntype) = type;
342 TYPE_POINTER_TYPE (type) = ntype;
343
344 /* FIXME! Assumes the machine has only one representation for pointers! */
345
346 TYPE_LENGTH (ntype)
347 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
348 TYPE_CODE (ntype) = TYPE_CODE_PTR;
349
350 /* Mark pointers as unsigned. The target converts between pointers
351 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
352 gdbarch_address_to_pointer. */
353 TYPE_UNSIGNED (ntype) = 1;
354
355 /* Update the length of all the other variants of this type. */
356 chain = TYPE_CHAIN (ntype);
357 while (chain != ntype)
358 {
359 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
360 chain = TYPE_CHAIN (chain);
361 }
362
363 return ntype;
364 }
365
366 /* Given a type TYPE, return a type of pointers to that type.
367 May need to construct such a type if this is the first use. */
368
369 struct type *
370 lookup_pointer_type (struct type *type)
371 {
372 return make_pointer_type (type, (struct type **) 0);
373 }
374
375 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
376 points to a pointer to memory where the reference type should be
377 stored. If *TYPEPTR is zero, update it to point to the reference
378 type we return. We allocate new memory if needed. */
379
380 struct type *
381 make_reference_type (struct type *type, struct type **typeptr)
382 {
383 struct type *ntype; /* New type */
384 struct type *chain;
385
386 ntype = TYPE_REFERENCE_TYPE (type);
387
388 if (ntype)
389 {
390 if (typeptr == 0)
391 return ntype; /* Don't care about alloc,
392 and have new type. */
393 else if (*typeptr == 0)
394 {
395 *typeptr = ntype; /* Tracking alloc, and have new type. */
396 return ntype;
397 }
398 }
399
400 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
401 {
402 ntype = alloc_type_copy (type);
403 if (typeptr)
404 *typeptr = ntype;
405 }
406 else /* We have storage, but need to reset it. */
407 {
408 ntype = *typeptr;
409 chain = TYPE_CHAIN (ntype);
410 smash_type (ntype);
411 TYPE_CHAIN (ntype) = chain;
412 }
413
414 TYPE_TARGET_TYPE (ntype) = type;
415 TYPE_REFERENCE_TYPE (type) = ntype;
416
417 /* FIXME! Assume the machine has only one representation for
418 references, and that it matches the (only) representation for
419 pointers! */
420
421 TYPE_LENGTH (ntype) =
422 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
423 TYPE_CODE (ntype) = TYPE_CODE_REF;
424
425 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
426 TYPE_REFERENCE_TYPE (type) = ntype;
427
428 /* Update the length of all the other variants of this type. */
429 chain = TYPE_CHAIN (ntype);
430 while (chain != ntype)
431 {
432 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
433 chain = TYPE_CHAIN (chain);
434 }
435
436 return ntype;
437 }
438
439 /* Same as above, but caller doesn't care about memory allocation
440 details. */
441
442 struct type *
443 lookup_reference_type (struct type *type)
444 {
445 return make_reference_type (type, (struct type **) 0);
446 }
447
448 /* Lookup a function type that returns type TYPE. TYPEPTR, if
449 nonzero, points to a pointer to memory where the function type
450 should be stored. If *TYPEPTR is zero, update it to point to the
451 function type we return. We allocate new memory if needed. */
452
453 struct type *
454 make_function_type (struct type *type, struct type **typeptr)
455 {
456 struct type *ntype; /* New type */
457
458 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
459 {
460 ntype = alloc_type_copy (type);
461 if (typeptr)
462 *typeptr = ntype;
463 }
464 else /* We have storage, but need to reset it. */
465 {
466 ntype = *typeptr;
467 smash_type (ntype);
468 }
469
470 TYPE_TARGET_TYPE (ntype) = type;
471
472 TYPE_LENGTH (ntype) = 1;
473 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
474
475 INIT_FUNC_SPECIFIC (ntype);
476
477 return ntype;
478 }
479
480 /* Given a type TYPE, return a type of functions that return that type.
481 May need to construct such a type if this is the first use. */
482
483 struct type *
484 lookup_function_type (struct type *type)
485 {
486 return make_function_type (type, (struct type **) 0);
487 }
488
489 /* Given a type TYPE and argument types, return the appropriate
490 function type. If the final type in PARAM_TYPES is NULL, make a
491 varargs function. */
492
493 struct type *
494 lookup_function_type_with_arguments (struct type *type,
495 int nparams,
496 struct type **param_types)
497 {
498 struct type *fn = make_function_type (type, (struct type **) 0);
499 int i;
500
501 if (nparams > 0)
502 {
503 if (param_types[nparams - 1] == NULL)
504 {
505 --nparams;
506 TYPE_VARARGS (fn) = 1;
507 }
508 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
509 == TYPE_CODE_VOID)
510 {
511 --nparams;
512 /* Caller should have ensured this. */
513 gdb_assert (nparams == 0);
514 TYPE_PROTOTYPED (fn) = 1;
515 }
516 }
517
518 TYPE_NFIELDS (fn) = nparams;
519 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
520 for (i = 0; i < nparams; ++i)
521 TYPE_FIELD_TYPE (fn, i) = param_types[i];
522
523 return fn;
524 }
525
526 /* Identify address space identifier by name --
527 return the integer flag defined in gdbtypes.h. */
528
529 int
530 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
531 {
532 int type_flags;
533
534 /* Check for known address space delimiters. */
535 if (!strcmp (space_identifier, "code"))
536 return TYPE_INSTANCE_FLAG_CODE_SPACE;
537 else if (!strcmp (space_identifier, "data"))
538 return TYPE_INSTANCE_FLAG_DATA_SPACE;
539 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
540 && gdbarch_address_class_name_to_type_flags (gdbarch,
541 space_identifier,
542 &type_flags))
543 return type_flags;
544 else
545 error (_("Unknown address space specifier: \"%s\""), space_identifier);
546 }
547
548 /* Identify address space identifier by integer flag as defined in
549 gdbtypes.h -- return the string version of the adress space name. */
550
551 const char *
552 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
553 {
554 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
555 return "code";
556 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
557 return "data";
558 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
559 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
560 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
561 else
562 return NULL;
563 }
564
565 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
566
567 If STORAGE is non-NULL, create the new type instance there.
568 STORAGE must be in the same obstack as TYPE. */
569
570 static struct type *
571 make_qualified_type (struct type *type, int new_flags,
572 struct type *storage)
573 {
574 struct type *ntype;
575
576 ntype = type;
577 do
578 {
579 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
580 return ntype;
581 ntype = TYPE_CHAIN (ntype);
582 }
583 while (ntype != type);
584
585 /* Create a new type instance. */
586 if (storage == NULL)
587 ntype = alloc_type_instance (type);
588 else
589 {
590 /* If STORAGE was provided, it had better be in the same objfile
591 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
592 if one objfile is freed and the other kept, we'd have
593 dangling pointers. */
594 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
595
596 ntype = storage;
597 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
598 TYPE_CHAIN (ntype) = ntype;
599 }
600
601 /* Pointers or references to the original type are not relevant to
602 the new type. */
603 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
604 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
605
606 /* Chain the new qualified type to the old type. */
607 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
608 TYPE_CHAIN (type) = ntype;
609
610 /* Now set the instance flags and return the new type. */
611 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
612
613 /* Set length of new type to that of the original type. */
614 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
615
616 return ntype;
617 }
618
619 /* Make an address-space-delimited variant of a type -- a type that
620 is identical to the one supplied except that it has an address
621 space attribute attached to it (such as "code" or "data").
622
623 The space attributes "code" and "data" are for Harvard
624 architectures. The address space attributes are for architectures
625 which have alternately sized pointers or pointers with alternate
626 representations. */
627
628 struct type *
629 make_type_with_address_space (struct type *type, int space_flag)
630 {
631 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
632 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
633 | TYPE_INSTANCE_FLAG_DATA_SPACE
634 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
635 | space_flag);
636
637 return make_qualified_type (type, new_flags, NULL);
638 }
639
640 /* Make a "c-v" variant of a type -- a type that is identical to the
641 one supplied except that it may have const or volatile attributes
642 CNST is a flag for setting the const attribute
643 VOLTL is a flag for setting the volatile attribute
644 TYPE is the base type whose variant we are creating.
645
646 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
647 storage to hold the new qualified type; *TYPEPTR and TYPE must be
648 in the same objfile. Otherwise, allocate fresh memory for the new
649 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
650 new type we construct. */
651
652 struct type *
653 make_cv_type (int cnst, int voltl,
654 struct type *type,
655 struct type **typeptr)
656 {
657 struct type *ntype; /* New type */
658
659 int new_flags = (TYPE_INSTANCE_FLAGS (type)
660 & ~(TYPE_INSTANCE_FLAG_CONST
661 | TYPE_INSTANCE_FLAG_VOLATILE));
662
663 if (cnst)
664 new_flags |= TYPE_INSTANCE_FLAG_CONST;
665
666 if (voltl)
667 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
668
669 if (typeptr && *typeptr != NULL)
670 {
671 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
672 a C-V variant chain that threads across objfiles: if one
673 objfile gets freed, then the other has a broken C-V chain.
674
675 This code used to try to copy over the main type from TYPE to
676 *TYPEPTR if they were in different objfiles, but that's
677 wrong, too: TYPE may have a field list or member function
678 lists, which refer to types of their own, etc. etc. The
679 whole shebang would need to be copied over recursively; you
680 can't have inter-objfile pointers. The only thing to do is
681 to leave stub types as stub types, and look them up afresh by
682 name each time you encounter them. */
683 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
684 }
685
686 ntype = make_qualified_type (type, new_flags,
687 typeptr ? *typeptr : NULL);
688
689 if (typeptr != NULL)
690 *typeptr = ntype;
691
692 return ntype;
693 }
694
695 /* Make a 'restrict'-qualified version of TYPE. */
696
697 struct type *
698 make_restrict_type (struct type *type)
699 {
700 return make_qualified_type (type,
701 (TYPE_INSTANCE_FLAGS (type)
702 | TYPE_INSTANCE_FLAG_RESTRICT),
703 NULL);
704 }
705
706 /* Replace the contents of ntype with the type *type. This changes the
707 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
708 the changes are propogated to all types in the TYPE_CHAIN.
709
710 In order to build recursive types, it's inevitable that we'll need
711 to update types in place --- but this sort of indiscriminate
712 smashing is ugly, and needs to be replaced with something more
713 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
714 clear if more steps are needed. */
715
716 void
717 replace_type (struct type *ntype, struct type *type)
718 {
719 struct type *chain;
720
721 /* These two types had better be in the same objfile. Otherwise,
722 the assignment of one type's main type structure to the other
723 will produce a type with references to objects (names; field
724 lists; etc.) allocated on an objfile other than its own. */
725 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
726
727 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
728
729 /* The type length is not a part of the main type. Update it for
730 each type on the variant chain. */
731 chain = ntype;
732 do
733 {
734 /* Assert that this element of the chain has no address-class bits
735 set in its flags. Such type variants might have type lengths
736 which are supposed to be different from the non-address-class
737 variants. This assertion shouldn't ever be triggered because
738 symbol readers which do construct address-class variants don't
739 call replace_type(). */
740 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
741
742 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
743 chain = TYPE_CHAIN (chain);
744 }
745 while (ntype != chain);
746
747 /* Assert that the two types have equivalent instance qualifiers.
748 This should be true for at least all of our debug readers. */
749 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
750 }
751
752 /* Implement direct support for MEMBER_TYPE in GNU C++.
753 May need to construct such a type if this is the first use.
754 The TYPE is the type of the member. The DOMAIN is the type
755 of the aggregate that the member belongs to. */
756
757 struct type *
758 lookup_memberptr_type (struct type *type, struct type *domain)
759 {
760 struct type *mtype;
761
762 mtype = alloc_type_copy (type);
763 smash_to_memberptr_type (mtype, domain, type);
764 return mtype;
765 }
766
767 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
768
769 struct type *
770 lookup_methodptr_type (struct type *to_type)
771 {
772 struct type *mtype;
773
774 mtype = alloc_type_copy (to_type);
775 smash_to_methodptr_type (mtype, to_type);
776 return mtype;
777 }
778
779 /* Allocate a stub method whose return type is TYPE. This apparently
780 happens for speed of symbol reading, since parsing out the
781 arguments to the method is cpu-intensive, the way we are doing it.
782 So, we will fill in arguments later. This always returns a fresh
783 type. */
784
785 struct type *
786 allocate_stub_method (struct type *type)
787 {
788 struct type *mtype;
789
790 mtype = alloc_type_copy (type);
791 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
792 TYPE_LENGTH (mtype) = 1;
793 TYPE_STUB (mtype) = 1;
794 TYPE_TARGET_TYPE (mtype) = type;
795 /* _DOMAIN_TYPE (mtype) = unknown yet */
796 return mtype;
797 }
798
799 /* Create a range type with a dynamic range from LOW_BOUND to
800 HIGH_BOUND, inclusive. See create_range_type for further details. */
801
802 struct type *
803 create_range_type (struct type *result_type, struct type *index_type,
804 const struct dynamic_prop *low_bound,
805 const struct dynamic_prop *high_bound)
806 {
807 if (result_type == NULL)
808 result_type = alloc_type_copy (index_type);
809 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
810 TYPE_TARGET_TYPE (result_type) = index_type;
811 if (TYPE_STUB (index_type))
812 TYPE_TARGET_STUB (result_type) = 1;
813 else
814 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
815
816 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
817 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
818 TYPE_RANGE_DATA (result_type)->low = *low_bound;
819 TYPE_RANGE_DATA (result_type)->high = *high_bound;
820
821 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
822 TYPE_UNSIGNED (result_type) = 1;
823
824 return result_type;
825 }
826
827 /* Create a range type using either a blank type supplied in
828 RESULT_TYPE, or creating a new type, inheriting the objfile from
829 INDEX_TYPE.
830
831 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
832 to HIGH_BOUND, inclusive.
833
834 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
835 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
836
837 struct type *
838 create_static_range_type (struct type *result_type, struct type *index_type,
839 LONGEST low_bound, LONGEST high_bound)
840 {
841 struct dynamic_prop low, high;
842
843 low.kind = PROP_CONST;
844 low.data.const_val = low_bound;
845
846 high.kind = PROP_CONST;
847 high.data.const_val = high_bound;
848
849 result_type = create_range_type (result_type, index_type, &low, &high);
850
851 return result_type;
852 }
853
854 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
855 are static, otherwise returns 0. */
856
857 static int
858 has_static_range (const struct range_bounds *bounds)
859 {
860 return (bounds->low.kind == PROP_CONST
861 && bounds->high.kind == PROP_CONST);
862 }
863
864
865 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
866 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
867 bounds will fit in LONGEST), or -1 otherwise. */
868
869 int
870 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
871 {
872 CHECK_TYPEDEF (type);
873 switch (TYPE_CODE (type))
874 {
875 case TYPE_CODE_RANGE:
876 *lowp = TYPE_LOW_BOUND (type);
877 *highp = TYPE_HIGH_BOUND (type);
878 return 1;
879 case TYPE_CODE_ENUM:
880 if (TYPE_NFIELDS (type) > 0)
881 {
882 /* The enums may not be sorted by value, so search all
883 entries. */
884 int i;
885
886 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
887 for (i = 0; i < TYPE_NFIELDS (type); i++)
888 {
889 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
890 *lowp = TYPE_FIELD_ENUMVAL (type, i);
891 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
892 *highp = TYPE_FIELD_ENUMVAL (type, i);
893 }
894
895 /* Set unsigned indicator if warranted. */
896 if (*lowp >= 0)
897 {
898 TYPE_UNSIGNED (type) = 1;
899 }
900 }
901 else
902 {
903 *lowp = 0;
904 *highp = -1;
905 }
906 return 0;
907 case TYPE_CODE_BOOL:
908 *lowp = 0;
909 *highp = 1;
910 return 0;
911 case TYPE_CODE_INT:
912 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
913 return -1;
914 if (!TYPE_UNSIGNED (type))
915 {
916 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
917 *highp = -*lowp - 1;
918 return 0;
919 }
920 /* ... fall through for unsigned ints ... */
921 case TYPE_CODE_CHAR:
922 *lowp = 0;
923 /* This round-about calculation is to avoid shifting by
924 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
925 if TYPE_LENGTH (type) == sizeof (LONGEST). */
926 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
927 *highp = (*highp - 1) | *highp;
928 return 0;
929 default:
930 return -1;
931 }
932 }
933
934 /* Assuming TYPE is a simple, non-empty array type, compute its upper
935 and lower bound. Save the low bound into LOW_BOUND if not NULL.
936 Save the high bound into HIGH_BOUND if not NULL.
937
938 Return 1 if the operation was successful. Return zero otherwise,
939 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
940
941 We now simply use get_discrete_bounds call to get the values
942 of the low and high bounds.
943 get_discrete_bounds can return three values:
944 1, meaning that index is a range,
945 0, meaning that index is a discrete type,
946 or -1 for failure. */
947
948 int
949 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
950 {
951 struct type *index = TYPE_INDEX_TYPE (type);
952 LONGEST low = 0;
953 LONGEST high = 0;
954 int res;
955
956 if (index == NULL)
957 return 0;
958
959 res = get_discrete_bounds (index, &low, &high);
960 if (res == -1)
961 return 0;
962
963 /* Check if the array bounds are undefined. */
964 if (res == 1
965 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
966 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
967 return 0;
968
969 if (low_bound)
970 *low_bound = low;
971
972 if (high_bound)
973 *high_bound = high;
974
975 return 1;
976 }
977
978 /* Create an array type using either a blank type supplied in
979 RESULT_TYPE, or creating a new type, inheriting the objfile from
980 RANGE_TYPE.
981
982 Elements will be of type ELEMENT_TYPE, the indices will be of type
983 RANGE_TYPE.
984
985 If BIT_STRIDE is not zero, build a packed array type whose element
986 size is BIT_STRIDE. Otherwise, ignore this parameter.
987
988 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
989 sure it is TYPE_CODE_UNDEF before we bash it into an array
990 type? */
991
992 struct type *
993 create_array_type_with_stride (struct type *result_type,
994 struct type *element_type,
995 struct type *range_type,
996 unsigned int bit_stride)
997 {
998 if (result_type == NULL)
999 result_type = alloc_type_copy (range_type);
1000
1001 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1002 TYPE_TARGET_TYPE (result_type) = element_type;
1003 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1004 {
1005 LONGEST low_bound, high_bound;
1006
1007 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1008 low_bound = high_bound = 0;
1009 CHECK_TYPEDEF (element_type);
1010 /* Be careful when setting the array length. Ada arrays can be
1011 empty arrays with the high_bound being smaller than the low_bound.
1012 In such cases, the array length should be zero. */
1013 if (high_bound < low_bound)
1014 TYPE_LENGTH (result_type) = 0;
1015 else if (bit_stride > 0)
1016 TYPE_LENGTH (result_type) =
1017 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1018 else
1019 TYPE_LENGTH (result_type) =
1020 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1021 }
1022 else
1023 {
1024 /* This type is dynamic and its length needs to be computed
1025 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1026 undefined by setting it to zero. Although we are not expected
1027 to trust TYPE_LENGTH in this case, setting the size to zero
1028 allows us to avoid allocating objects of random sizes in case
1029 we accidently do. */
1030 TYPE_LENGTH (result_type) = 0;
1031 }
1032
1033 TYPE_NFIELDS (result_type) = 1;
1034 TYPE_FIELDS (result_type) =
1035 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1036 TYPE_INDEX_TYPE (result_type) = range_type;
1037 TYPE_VPTR_FIELDNO (result_type) = -1;
1038 if (bit_stride > 0)
1039 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1040
1041 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1042 if (TYPE_LENGTH (result_type) == 0)
1043 TYPE_TARGET_STUB (result_type) = 1;
1044
1045 return result_type;
1046 }
1047
1048 /* Same as create_array_type_with_stride but with no bit_stride
1049 (BIT_STRIDE = 0), thus building an unpacked array. */
1050
1051 struct type *
1052 create_array_type (struct type *result_type,
1053 struct type *element_type,
1054 struct type *range_type)
1055 {
1056 return create_array_type_with_stride (result_type, element_type,
1057 range_type, 0);
1058 }
1059
1060 struct type *
1061 lookup_array_range_type (struct type *element_type,
1062 LONGEST low_bound, LONGEST high_bound)
1063 {
1064 struct gdbarch *gdbarch = get_type_arch (element_type);
1065 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1066 struct type *range_type
1067 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1068
1069 return create_array_type (NULL, element_type, range_type);
1070 }
1071
1072 /* Create a string type using either a blank type supplied in
1073 RESULT_TYPE, or creating a new type. String types are similar
1074 enough to array of char types that we can use create_array_type to
1075 build the basic type and then bash it into a string type.
1076
1077 For fixed length strings, the range type contains 0 as the lower
1078 bound and the length of the string minus one as the upper bound.
1079
1080 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1081 sure it is TYPE_CODE_UNDEF before we bash it into a string
1082 type? */
1083
1084 struct type *
1085 create_string_type (struct type *result_type,
1086 struct type *string_char_type,
1087 struct type *range_type)
1088 {
1089 result_type = create_array_type (result_type,
1090 string_char_type,
1091 range_type);
1092 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1093 return result_type;
1094 }
1095
1096 struct type *
1097 lookup_string_range_type (struct type *string_char_type,
1098 LONGEST low_bound, LONGEST high_bound)
1099 {
1100 struct type *result_type;
1101
1102 result_type = lookup_array_range_type (string_char_type,
1103 low_bound, high_bound);
1104 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1105 return result_type;
1106 }
1107
1108 struct type *
1109 create_set_type (struct type *result_type, struct type *domain_type)
1110 {
1111 if (result_type == NULL)
1112 result_type = alloc_type_copy (domain_type);
1113
1114 TYPE_CODE (result_type) = TYPE_CODE_SET;
1115 TYPE_NFIELDS (result_type) = 1;
1116 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1117
1118 if (!TYPE_STUB (domain_type))
1119 {
1120 LONGEST low_bound, high_bound, bit_length;
1121
1122 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1123 low_bound = high_bound = 0;
1124 bit_length = high_bound - low_bound + 1;
1125 TYPE_LENGTH (result_type)
1126 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1127 if (low_bound >= 0)
1128 TYPE_UNSIGNED (result_type) = 1;
1129 }
1130 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1131
1132 return result_type;
1133 }
1134
1135 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1136 and any array types nested inside it. */
1137
1138 void
1139 make_vector_type (struct type *array_type)
1140 {
1141 struct type *inner_array, *elt_type;
1142 int flags;
1143
1144 /* Find the innermost array type, in case the array is
1145 multi-dimensional. */
1146 inner_array = array_type;
1147 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1148 inner_array = TYPE_TARGET_TYPE (inner_array);
1149
1150 elt_type = TYPE_TARGET_TYPE (inner_array);
1151 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1152 {
1153 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1154 elt_type = make_qualified_type (elt_type, flags, NULL);
1155 TYPE_TARGET_TYPE (inner_array) = elt_type;
1156 }
1157
1158 TYPE_VECTOR (array_type) = 1;
1159 }
1160
1161 struct type *
1162 init_vector_type (struct type *elt_type, int n)
1163 {
1164 struct type *array_type;
1165
1166 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1167 make_vector_type (array_type);
1168 return array_type;
1169 }
1170
1171 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1172 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1173 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1174 TYPE doesn't include the offset (that's the value of the MEMBER
1175 itself), but does include the structure type into which it points
1176 (for some reason).
1177
1178 When "smashing" the type, we preserve the objfile that the old type
1179 pointed to, since we aren't changing where the type is actually
1180 allocated. */
1181
1182 void
1183 smash_to_memberptr_type (struct type *type, struct type *domain,
1184 struct type *to_type)
1185 {
1186 smash_type (type);
1187 TYPE_TARGET_TYPE (type) = to_type;
1188 TYPE_DOMAIN_TYPE (type) = domain;
1189 /* Assume that a data member pointer is the same size as a normal
1190 pointer. */
1191 TYPE_LENGTH (type)
1192 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1193 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1194 }
1195
1196 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1197
1198 When "smashing" the type, we preserve the objfile that the old type
1199 pointed to, since we aren't changing where the type is actually
1200 allocated. */
1201
1202 void
1203 smash_to_methodptr_type (struct type *type, struct type *to_type)
1204 {
1205 smash_type (type);
1206 TYPE_TARGET_TYPE (type) = to_type;
1207 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1208 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1209 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1210 }
1211
1212 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1213 METHOD just means `function that gets an extra "this" argument'.
1214
1215 When "smashing" the type, we preserve the objfile that the old type
1216 pointed to, since we aren't changing where the type is actually
1217 allocated. */
1218
1219 void
1220 smash_to_method_type (struct type *type, struct type *domain,
1221 struct type *to_type, struct field *args,
1222 int nargs, int varargs)
1223 {
1224 smash_type (type);
1225 TYPE_TARGET_TYPE (type) = to_type;
1226 TYPE_DOMAIN_TYPE (type) = domain;
1227 TYPE_FIELDS (type) = args;
1228 TYPE_NFIELDS (type) = nargs;
1229 if (varargs)
1230 TYPE_VARARGS (type) = 1;
1231 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1232 TYPE_CODE (type) = TYPE_CODE_METHOD;
1233 }
1234
1235 /* Return a typename for a struct/union/enum type without "struct ",
1236 "union ", or "enum ". If the type has a NULL name, return NULL. */
1237
1238 const char *
1239 type_name_no_tag (const struct type *type)
1240 {
1241 if (TYPE_TAG_NAME (type) != NULL)
1242 return TYPE_TAG_NAME (type);
1243
1244 /* Is there code which expects this to return the name if there is
1245 no tag name? My guess is that this is mainly used for C++ in
1246 cases where the two will always be the same. */
1247 return TYPE_NAME (type);
1248 }
1249
1250 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1251 Since GCC PR debug/47510 DWARF provides associated information to detect the
1252 anonymous class linkage name from its typedef.
1253
1254 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1255 apply it itself. */
1256
1257 const char *
1258 type_name_no_tag_or_error (struct type *type)
1259 {
1260 struct type *saved_type = type;
1261 const char *name;
1262 struct objfile *objfile;
1263
1264 CHECK_TYPEDEF (type);
1265
1266 name = type_name_no_tag (type);
1267 if (name != NULL)
1268 return name;
1269
1270 name = type_name_no_tag (saved_type);
1271 objfile = TYPE_OBJFILE (saved_type);
1272 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1273 name ? name : "<anonymous>",
1274 objfile ? objfile_name (objfile) : "<arch>");
1275 }
1276
1277 /* Lookup a typedef or primitive type named NAME, visible in lexical
1278 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1279 suitably defined. */
1280
1281 struct type *
1282 lookup_typename (const struct language_defn *language,
1283 struct gdbarch *gdbarch, const char *name,
1284 const struct block *block, int noerr)
1285 {
1286 struct symbol *sym;
1287 struct type *type;
1288
1289 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1290 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1291 return SYMBOL_TYPE (sym);
1292
1293 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1294 if (type)
1295 return type;
1296
1297 if (noerr)
1298 return NULL;
1299 error (_("No type named %s."), name);
1300 }
1301
1302 struct type *
1303 lookup_unsigned_typename (const struct language_defn *language,
1304 struct gdbarch *gdbarch, const char *name)
1305 {
1306 char *uns = alloca (strlen (name) + 10);
1307
1308 strcpy (uns, "unsigned ");
1309 strcpy (uns + 9, name);
1310 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1311 }
1312
1313 struct type *
1314 lookup_signed_typename (const struct language_defn *language,
1315 struct gdbarch *gdbarch, const char *name)
1316 {
1317 struct type *t;
1318 char *uns = alloca (strlen (name) + 8);
1319
1320 strcpy (uns, "signed ");
1321 strcpy (uns + 7, name);
1322 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1323 /* If we don't find "signed FOO" just try again with plain "FOO". */
1324 if (t != NULL)
1325 return t;
1326 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1327 }
1328
1329 /* Lookup a structure type named "struct NAME",
1330 visible in lexical block BLOCK. */
1331
1332 struct type *
1333 lookup_struct (const char *name, const struct block *block)
1334 {
1335 struct symbol *sym;
1336
1337 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1338
1339 if (sym == NULL)
1340 {
1341 error (_("No struct type named %s."), name);
1342 }
1343 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1344 {
1345 error (_("This context has class, union or enum %s, not a struct."),
1346 name);
1347 }
1348 return (SYMBOL_TYPE (sym));
1349 }
1350
1351 /* Lookup a union type named "union NAME",
1352 visible in lexical block BLOCK. */
1353
1354 struct type *
1355 lookup_union (const char *name, const struct block *block)
1356 {
1357 struct symbol *sym;
1358 struct type *t;
1359
1360 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1361
1362 if (sym == NULL)
1363 error (_("No union type named %s."), name);
1364
1365 t = SYMBOL_TYPE (sym);
1366
1367 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1368 return t;
1369
1370 /* If we get here, it's not a union. */
1371 error (_("This context has class, struct or enum %s, not a union."),
1372 name);
1373 }
1374
1375 /* Lookup an enum type named "enum NAME",
1376 visible in lexical block BLOCK. */
1377
1378 struct type *
1379 lookup_enum (const char *name, const struct block *block)
1380 {
1381 struct symbol *sym;
1382
1383 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1384 if (sym == NULL)
1385 {
1386 error (_("No enum type named %s."), name);
1387 }
1388 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1389 {
1390 error (_("This context has class, struct or union %s, not an enum."),
1391 name);
1392 }
1393 return (SYMBOL_TYPE (sym));
1394 }
1395
1396 /* Lookup a template type named "template NAME<TYPE>",
1397 visible in lexical block BLOCK. */
1398
1399 struct type *
1400 lookup_template_type (char *name, struct type *type,
1401 const struct block *block)
1402 {
1403 struct symbol *sym;
1404 char *nam = (char *)
1405 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1406
1407 strcpy (nam, name);
1408 strcat (nam, "<");
1409 strcat (nam, TYPE_NAME (type));
1410 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1411
1412 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1413
1414 if (sym == NULL)
1415 {
1416 error (_("No template type named %s."), name);
1417 }
1418 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1419 {
1420 error (_("This context has class, union or enum %s, not a struct."),
1421 name);
1422 }
1423 return (SYMBOL_TYPE (sym));
1424 }
1425
1426 /* Given a type TYPE, lookup the type of the component of type named
1427 NAME.
1428
1429 TYPE can be either a struct or union, or a pointer or reference to
1430 a struct or union. If it is a pointer or reference, its target
1431 type is automatically used. Thus '.' and '->' are interchangable,
1432 as specified for the definitions of the expression element types
1433 STRUCTOP_STRUCT and STRUCTOP_PTR.
1434
1435 If NOERR is nonzero, return zero if NAME is not suitably defined.
1436 If NAME is the name of a baseclass type, return that type. */
1437
1438 struct type *
1439 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1440 {
1441 int i;
1442 char *typename;
1443
1444 for (;;)
1445 {
1446 CHECK_TYPEDEF (type);
1447 if (TYPE_CODE (type) != TYPE_CODE_PTR
1448 && TYPE_CODE (type) != TYPE_CODE_REF)
1449 break;
1450 type = TYPE_TARGET_TYPE (type);
1451 }
1452
1453 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1454 && TYPE_CODE (type) != TYPE_CODE_UNION)
1455 {
1456 typename = type_to_string (type);
1457 make_cleanup (xfree, typename);
1458 error (_("Type %s is not a structure or union type."), typename);
1459 }
1460
1461 #if 0
1462 /* FIXME: This change put in by Michael seems incorrect for the case
1463 where the structure tag name is the same as the member name.
1464 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1465 foo; } bell;" Disabled by fnf. */
1466 {
1467 char *typename;
1468
1469 typename = type_name_no_tag (type);
1470 if (typename != NULL && strcmp (typename, name) == 0)
1471 return type;
1472 }
1473 #endif
1474
1475 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1476 {
1477 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1478
1479 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1480 {
1481 return TYPE_FIELD_TYPE (type, i);
1482 }
1483 else if (!t_field_name || *t_field_name == '\0')
1484 {
1485 struct type *subtype
1486 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1487
1488 if (subtype != NULL)
1489 return subtype;
1490 }
1491 }
1492
1493 /* OK, it's not in this class. Recursively check the baseclasses. */
1494 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1495 {
1496 struct type *t;
1497
1498 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1499 if (t != NULL)
1500 {
1501 return t;
1502 }
1503 }
1504
1505 if (noerr)
1506 {
1507 return NULL;
1508 }
1509
1510 typename = type_to_string (type);
1511 make_cleanup (xfree, typename);
1512 error (_("Type %s has no component named %s."), typename, name);
1513 }
1514
1515 /* Store in *MAX the largest number representable by unsigned integer type
1516 TYPE. */
1517
1518 void
1519 get_unsigned_type_max (struct type *type, ULONGEST *max)
1520 {
1521 unsigned int n;
1522
1523 CHECK_TYPEDEF (type);
1524 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1525 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1526
1527 /* Written this way to avoid overflow. */
1528 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1529 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1530 }
1531
1532 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1533 signed integer type TYPE. */
1534
1535 void
1536 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1537 {
1538 unsigned int n;
1539
1540 CHECK_TYPEDEF (type);
1541 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1542 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1543
1544 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1545 *min = -((ULONGEST) 1 << (n - 1));
1546 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1547 }
1548
1549 /* Lookup the vptr basetype/fieldno values for TYPE.
1550 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1551 vptr_fieldno. Also, if found and basetype is from the same objfile,
1552 cache the results.
1553 If not found, return -1 and ignore BASETYPEP.
1554 Callers should be aware that in some cases (for example,
1555 the type or one of its baseclasses is a stub type and we are
1556 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1557 this function will not be able to find the
1558 virtual function table pointer, and vptr_fieldno will remain -1 and
1559 vptr_basetype will remain NULL or incomplete. */
1560
1561 int
1562 get_vptr_fieldno (struct type *type, struct type **basetypep)
1563 {
1564 CHECK_TYPEDEF (type);
1565
1566 if (TYPE_VPTR_FIELDNO (type) < 0)
1567 {
1568 int i;
1569
1570 /* We must start at zero in case the first (and only) baseclass
1571 is virtual (and hence we cannot share the table pointer). */
1572 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1573 {
1574 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1575 int fieldno;
1576 struct type *basetype;
1577
1578 fieldno = get_vptr_fieldno (baseclass, &basetype);
1579 if (fieldno >= 0)
1580 {
1581 /* If the type comes from a different objfile we can't cache
1582 it, it may have a different lifetime. PR 2384 */
1583 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1584 {
1585 TYPE_VPTR_FIELDNO (type) = fieldno;
1586 TYPE_VPTR_BASETYPE (type) = basetype;
1587 }
1588 if (basetypep)
1589 *basetypep = basetype;
1590 return fieldno;
1591 }
1592 }
1593
1594 /* Not found. */
1595 return -1;
1596 }
1597 else
1598 {
1599 if (basetypep)
1600 *basetypep = TYPE_VPTR_BASETYPE (type);
1601 return TYPE_VPTR_FIELDNO (type);
1602 }
1603 }
1604
1605 static void
1606 stub_noname_complaint (void)
1607 {
1608 complaint (&symfile_complaints, _("stub type has NULL name"));
1609 }
1610
1611 /* Worker for is_dynamic_type. */
1612
1613 static int
1614 is_dynamic_type_internal (struct type *type, int top_level)
1615 {
1616 type = check_typedef (type);
1617
1618 /* We only want to recognize references at the outermost level. */
1619 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1620 type = check_typedef (TYPE_TARGET_TYPE (type));
1621
1622 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1623 dynamic, even if the type itself is statically defined.
1624 From a user's point of view, this may appear counter-intuitive;
1625 but it makes sense in this context, because the point is to determine
1626 whether any part of the type needs to be resolved before it can
1627 be exploited. */
1628 if (TYPE_DATA_LOCATION (type) != NULL
1629 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1630 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1631 return 1;
1632
1633 switch (TYPE_CODE (type))
1634 {
1635 case TYPE_CODE_RANGE:
1636 return !has_static_range (TYPE_RANGE_DATA (type));
1637
1638 case TYPE_CODE_ARRAY:
1639 {
1640 gdb_assert (TYPE_NFIELDS (type) == 1);
1641
1642 /* The array is dynamic if either the bounds are dynamic,
1643 or the elements it contains have a dynamic contents. */
1644 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1645 return 1;
1646 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1647 }
1648
1649 case TYPE_CODE_STRUCT:
1650 case TYPE_CODE_UNION:
1651 {
1652 int i;
1653
1654 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1655 if (!field_is_static (&TYPE_FIELD (type, i))
1656 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1657 return 1;
1658 }
1659 break;
1660 }
1661
1662 return 0;
1663 }
1664
1665 /* See gdbtypes.h. */
1666
1667 int
1668 is_dynamic_type (struct type *type)
1669 {
1670 return is_dynamic_type_internal (type, 1);
1671 }
1672
1673 static struct type *resolve_dynamic_type_internal (struct type *type,
1674 CORE_ADDR addr,
1675 int top_level);
1676
1677 /* Given a dynamic range type (dyn_range_type) and address,
1678 return a static version of that type. */
1679
1680 static struct type *
1681 resolve_dynamic_range (struct type *dyn_range_type, CORE_ADDR addr)
1682 {
1683 CORE_ADDR value;
1684 struct type *static_range_type;
1685 const struct dynamic_prop *prop;
1686 const struct dwarf2_locexpr_baton *baton;
1687 struct dynamic_prop low_bound, high_bound;
1688
1689 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1690
1691 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1692 if (dwarf2_evaluate_property (prop, addr, &value))
1693 {
1694 low_bound.kind = PROP_CONST;
1695 low_bound.data.const_val = value;
1696 }
1697 else
1698 {
1699 low_bound.kind = PROP_UNDEFINED;
1700 low_bound.data.const_val = 0;
1701 }
1702
1703 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1704 if (dwarf2_evaluate_property (prop, addr, &value))
1705 {
1706 high_bound.kind = PROP_CONST;
1707 high_bound.data.const_val = value;
1708
1709 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1710 high_bound.data.const_val
1711 = low_bound.data.const_val + high_bound.data.const_val - 1;
1712 }
1713 else
1714 {
1715 high_bound.kind = PROP_UNDEFINED;
1716 high_bound.data.const_val = 0;
1717 }
1718
1719 static_range_type = create_range_type (copy_type (dyn_range_type),
1720 TYPE_TARGET_TYPE (dyn_range_type),
1721 &low_bound, &high_bound);
1722 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1723 return static_range_type;
1724 }
1725
1726 /* Resolves dynamic bound values of an array type TYPE to static ones.
1727 ADDRESS might be needed to resolve the subrange bounds, it is the location
1728 of the associated array. */
1729
1730 static struct type *
1731 resolve_dynamic_array (struct type *type, CORE_ADDR addr)
1732 {
1733 CORE_ADDR value;
1734 struct type *elt_type;
1735 struct type *range_type;
1736 struct type *ary_dim;
1737
1738 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1739
1740 elt_type = type;
1741 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1742 range_type = resolve_dynamic_range (range_type, addr);
1743
1744 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1745
1746 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1747 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr);
1748 else
1749 elt_type = TYPE_TARGET_TYPE (type);
1750
1751 return create_array_type (copy_type (type),
1752 elt_type,
1753 range_type);
1754 }
1755
1756 /* Resolve dynamic bounds of members of the union TYPE to static
1757 bounds. */
1758
1759 static struct type *
1760 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1761 {
1762 struct type *resolved_type;
1763 int i;
1764 unsigned int max_len = 0;
1765
1766 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1767
1768 resolved_type = copy_type (type);
1769 TYPE_FIELDS (resolved_type)
1770 = TYPE_ALLOC (resolved_type,
1771 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1772 memcpy (TYPE_FIELDS (resolved_type),
1773 TYPE_FIELDS (type),
1774 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1775 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1776 {
1777 struct type *t;
1778
1779 if (field_is_static (&TYPE_FIELD (type, i)))
1780 continue;
1781
1782 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1783 addr, 0);
1784 TYPE_FIELD_TYPE (resolved_type, i) = t;
1785 if (TYPE_LENGTH (t) > max_len)
1786 max_len = TYPE_LENGTH (t);
1787 }
1788
1789 TYPE_LENGTH (resolved_type) = max_len;
1790 return resolved_type;
1791 }
1792
1793 /* Resolve dynamic bounds of members of the struct TYPE to static
1794 bounds. */
1795
1796 static struct type *
1797 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1798 {
1799 struct type *resolved_type;
1800 int i;
1801 unsigned resolved_type_bit_length = 0;
1802
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1804 gdb_assert (TYPE_NFIELDS (type) > 0);
1805
1806 resolved_type = copy_type (type);
1807 TYPE_FIELDS (resolved_type)
1808 = TYPE_ALLOC (resolved_type,
1809 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1810 memcpy (TYPE_FIELDS (resolved_type),
1811 TYPE_FIELDS (type),
1812 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1813 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1814 {
1815 unsigned new_bit_length;
1816
1817 if (field_is_static (&TYPE_FIELD (type, i)))
1818 continue;
1819
1820 TYPE_FIELD_TYPE (resolved_type, i)
1821 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1822 addr, 0);
1823
1824 /* As we know this field is not a static field, the field's
1825 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
1826 this is the case, but only trigger a simple error rather
1827 than an internal error if that fails. While failing
1828 that verification indicates a bug in our code, the error
1829 is not severe enough to suggest to the user he stops
1830 his debugging session because of it. */
1831 if (TYPE_FIELD_LOC_KIND (resolved_type, i) != FIELD_LOC_KIND_BITPOS)
1832 error (_("Cannot determine struct field location"
1833 " (invalid location kind)"));
1834 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
1835 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
1836 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
1837 else
1838 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
1839 * TARGET_CHAR_BIT);
1840
1841 /* Normally, we would use the position and size of the last field
1842 to determine the size of the enclosing structure. But GCC seems
1843 to be encoding the position of some fields incorrectly when
1844 the struct contains a dynamic field that is not placed last.
1845 So we compute the struct size based on the field that has
1846 the highest position + size - probably the best we can do. */
1847 if (new_bit_length > resolved_type_bit_length)
1848 resolved_type_bit_length = new_bit_length;
1849 }
1850
1851 TYPE_LENGTH (resolved_type)
1852 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1853
1854 return resolved_type;
1855 }
1856
1857 /* Worker for resolved_dynamic_type. */
1858
1859 static struct type *
1860 resolve_dynamic_type_internal (struct type *type, CORE_ADDR addr,
1861 int top_level)
1862 {
1863 struct type *real_type = check_typedef (type);
1864 struct type *resolved_type = type;
1865 const struct dynamic_prop *prop;
1866 CORE_ADDR value;
1867
1868 if (!is_dynamic_type_internal (real_type, top_level))
1869 return type;
1870
1871 switch (TYPE_CODE (type))
1872 {
1873 case TYPE_CODE_TYPEDEF:
1874 resolved_type = copy_type (type);
1875 TYPE_TARGET_TYPE (resolved_type)
1876 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr,
1877 top_level);
1878 break;
1879
1880 case TYPE_CODE_REF:
1881 {
1882 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1883
1884 resolved_type = copy_type (type);
1885 TYPE_TARGET_TYPE (resolved_type)
1886 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
1887 target_addr, top_level);
1888 break;
1889 }
1890
1891 case TYPE_CODE_ARRAY:
1892 resolved_type = resolve_dynamic_array (type, addr);
1893 break;
1894
1895 case TYPE_CODE_RANGE:
1896 resolved_type = resolve_dynamic_range (type, addr);
1897 break;
1898
1899 case TYPE_CODE_UNION:
1900 resolved_type = resolve_dynamic_union (type, addr);
1901 break;
1902
1903 case TYPE_CODE_STRUCT:
1904 resolved_type = resolve_dynamic_struct (type, addr);
1905 break;
1906 }
1907
1908 /* Resolve data_location attribute. */
1909 prop = TYPE_DATA_LOCATION (resolved_type);
1910 if (dwarf2_evaluate_property (prop, addr, &value))
1911 {
1912 TYPE_DATA_LOCATION_ADDR (resolved_type) = value;
1913 TYPE_DATA_LOCATION_KIND (resolved_type) = PROP_CONST;
1914 }
1915 else
1916 TYPE_DATA_LOCATION (resolved_type) = NULL;
1917
1918 return resolved_type;
1919 }
1920
1921 /* See gdbtypes.h */
1922
1923 struct type *
1924 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1925 {
1926 return resolve_dynamic_type_internal (type, addr, 1);
1927 }
1928
1929 /* Find the real type of TYPE. This function returns the real type,
1930 after removing all layers of typedefs, and completing opaque or stub
1931 types. Completion changes the TYPE argument, but stripping of
1932 typedefs does not.
1933
1934 Instance flags (e.g. const/volatile) are preserved as typedefs are
1935 stripped. If necessary a new qualified form of the underlying type
1936 is created.
1937
1938 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1939 not been computed and we're either in the middle of reading symbols, or
1940 there was no name for the typedef in the debug info.
1941
1942 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1943 QUITs in the symbol reading code can also throw.
1944 Thus this function can throw an exception.
1945
1946 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1947 the target type.
1948
1949 If this is a stubbed struct (i.e. declared as struct foo *), see if
1950 we can find a full definition in some other file. If so, copy this
1951 definition, so we can use it in future. There used to be a comment
1952 (but not any code) that if we don't find a full definition, we'd
1953 set a flag so we don't spend time in the future checking the same
1954 type. That would be a mistake, though--we might load in more
1955 symbols which contain a full definition for the type. */
1956
1957 struct type *
1958 check_typedef (struct type *type)
1959 {
1960 struct type *orig_type = type;
1961 /* While we're removing typedefs, we don't want to lose qualifiers.
1962 E.g., const/volatile. */
1963 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1964
1965 gdb_assert (type);
1966
1967 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1968 {
1969 if (!TYPE_TARGET_TYPE (type))
1970 {
1971 const char *name;
1972 struct symbol *sym;
1973
1974 /* It is dangerous to call lookup_symbol if we are currently
1975 reading a symtab. Infinite recursion is one danger. */
1976 if (currently_reading_symtab)
1977 return make_qualified_type (type, instance_flags, NULL);
1978
1979 name = type_name_no_tag (type);
1980 /* FIXME: shouldn't we separately check the TYPE_NAME and
1981 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1982 VAR_DOMAIN as appropriate? (this code was written before
1983 TYPE_NAME and TYPE_TAG_NAME were separate). */
1984 if (name == NULL)
1985 {
1986 stub_noname_complaint ();
1987 return make_qualified_type (type, instance_flags, NULL);
1988 }
1989 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1990 if (sym)
1991 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1992 else /* TYPE_CODE_UNDEF */
1993 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1994 }
1995 type = TYPE_TARGET_TYPE (type);
1996
1997 /* Preserve the instance flags as we traverse down the typedef chain.
1998
1999 Handling address spaces/classes is nasty, what do we do if there's a
2000 conflict?
2001 E.g., what if an outer typedef marks the type as class_1 and an inner
2002 typedef marks the type as class_2?
2003 This is the wrong place to do such error checking. We leave it to
2004 the code that created the typedef in the first place to flag the
2005 error. We just pick the outer address space (akin to letting the
2006 outer cast in a chain of casting win), instead of assuming
2007 "it can't happen". */
2008 {
2009 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2010 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2011 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2012 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2013
2014 /* Treat code vs data spaces and address classes separately. */
2015 if ((instance_flags & ALL_SPACES) != 0)
2016 new_instance_flags &= ~ALL_SPACES;
2017 if ((instance_flags & ALL_CLASSES) != 0)
2018 new_instance_flags &= ~ALL_CLASSES;
2019
2020 instance_flags |= new_instance_flags;
2021 }
2022 }
2023
2024 /* If this is a struct/class/union with no fields, then check
2025 whether a full definition exists somewhere else. This is for
2026 systems where a type definition with no fields is issued for such
2027 types, instead of identifying them as stub types in the first
2028 place. */
2029
2030 if (TYPE_IS_OPAQUE (type)
2031 && opaque_type_resolution
2032 && !currently_reading_symtab)
2033 {
2034 const char *name = type_name_no_tag (type);
2035 struct type *newtype;
2036
2037 if (name == NULL)
2038 {
2039 stub_noname_complaint ();
2040 return make_qualified_type (type, instance_flags, NULL);
2041 }
2042 newtype = lookup_transparent_type (name);
2043
2044 if (newtype)
2045 {
2046 /* If the resolved type and the stub are in the same
2047 objfile, then replace the stub type with the real deal.
2048 But if they're in separate objfiles, leave the stub
2049 alone; we'll just look up the transparent type every time
2050 we call check_typedef. We can't create pointers between
2051 types allocated to different objfiles, since they may
2052 have different lifetimes. Trying to copy NEWTYPE over to
2053 TYPE's objfile is pointless, too, since you'll have to
2054 move over any other types NEWTYPE refers to, which could
2055 be an unbounded amount of stuff. */
2056 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2057 type = make_qualified_type (newtype,
2058 TYPE_INSTANCE_FLAGS (type),
2059 type);
2060 else
2061 type = newtype;
2062 }
2063 }
2064 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2065 types. */
2066 else if (TYPE_STUB (type) && !currently_reading_symtab)
2067 {
2068 const char *name = type_name_no_tag (type);
2069 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2070 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2071 as appropriate? (this code was written before TYPE_NAME and
2072 TYPE_TAG_NAME were separate). */
2073 struct symbol *sym;
2074
2075 if (name == NULL)
2076 {
2077 stub_noname_complaint ();
2078 return make_qualified_type (type, instance_flags, NULL);
2079 }
2080 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2081 if (sym)
2082 {
2083 /* Same as above for opaque types, we can replace the stub
2084 with the complete type only if they are in the same
2085 objfile. */
2086 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2087 type = make_qualified_type (SYMBOL_TYPE (sym),
2088 TYPE_INSTANCE_FLAGS (type),
2089 type);
2090 else
2091 type = SYMBOL_TYPE (sym);
2092 }
2093 }
2094
2095 if (TYPE_TARGET_STUB (type))
2096 {
2097 struct type *range_type;
2098 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2099
2100 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2101 {
2102 /* Nothing we can do. */
2103 }
2104 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2105 {
2106 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2107 TYPE_TARGET_STUB (type) = 0;
2108 }
2109 }
2110
2111 type = make_qualified_type (type, instance_flags, NULL);
2112
2113 /* Cache TYPE_LENGTH for future use. */
2114 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2115
2116 return type;
2117 }
2118
2119 /* Parse a type expression in the string [P..P+LENGTH). If an error
2120 occurs, silently return a void type. */
2121
2122 static struct type *
2123 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2124 {
2125 struct ui_file *saved_gdb_stderr;
2126 struct type *type = NULL; /* Initialize to keep gcc happy. */
2127 volatile struct gdb_exception except;
2128
2129 /* Suppress error messages. */
2130 saved_gdb_stderr = gdb_stderr;
2131 gdb_stderr = ui_file_new ();
2132
2133 /* Call parse_and_eval_type() without fear of longjmp()s. */
2134 TRY_CATCH (except, RETURN_MASK_ERROR)
2135 {
2136 type = parse_and_eval_type (p, length);
2137 }
2138
2139 if (except.reason < 0)
2140 type = builtin_type (gdbarch)->builtin_void;
2141
2142 /* Stop suppressing error messages. */
2143 ui_file_delete (gdb_stderr);
2144 gdb_stderr = saved_gdb_stderr;
2145
2146 return type;
2147 }
2148
2149 /* Ugly hack to convert method stubs into method types.
2150
2151 He ain't kiddin'. This demangles the name of the method into a
2152 string including argument types, parses out each argument type,
2153 generates a string casting a zero to that type, evaluates the
2154 string, and stuffs the resulting type into an argtype vector!!!
2155 Then it knows the type of the whole function (including argument
2156 types for overloading), which info used to be in the stab's but was
2157 removed to hack back the space required for them. */
2158
2159 static void
2160 check_stub_method (struct type *type, int method_id, int signature_id)
2161 {
2162 struct gdbarch *gdbarch = get_type_arch (type);
2163 struct fn_field *f;
2164 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2165 char *demangled_name = gdb_demangle (mangled_name,
2166 DMGL_PARAMS | DMGL_ANSI);
2167 char *argtypetext, *p;
2168 int depth = 0, argcount = 1;
2169 struct field *argtypes;
2170 struct type *mtype;
2171
2172 /* Make sure we got back a function string that we can use. */
2173 if (demangled_name)
2174 p = strchr (demangled_name, '(');
2175 else
2176 p = NULL;
2177
2178 if (demangled_name == NULL || p == NULL)
2179 error (_("Internal: Cannot demangle mangled name `%s'."),
2180 mangled_name);
2181
2182 /* Now, read in the parameters that define this type. */
2183 p += 1;
2184 argtypetext = p;
2185 while (*p)
2186 {
2187 if (*p == '(' || *p == '<')
2188 {
2189 depth += 1;
2190 }
2191 else if (*p == ')' || *p == '>')
2192 {
2193 depth -= 1;
2194 }
2195 else if (*p == ',' && depth == 0)
2196 {
2197 argcount += 1;
2198 }
2199
2200 p += 1;
2201 }
2202
2203 /* If we read one argument and it was ``void'', don't count it. */
2204 if (strncmp (argtypetext, "(void)", 6) == 0)
2205 argcount -= 1;
2206
2207 /* We need one extra slot, for the THIS pointer. */
2208
2209 argtypes = (struct field *)
2210 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2211 p = argtypetext;
2212
2213 /* Add THIS pointer for non-static methods. */
2214 f = TYPE_FN_FIELDLIST1 (type, method_id);
2215 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2216 argcount = 0;
2217 else
2218 {
2219 argtypes[0].type = lookup_pointer_type (type);
2220 argcount = 1;
2221 }
2222
2223 if (*p != ')') /* () means no args, skip while. */
2224 {
2225 depth = 0;
2226 while (*p)
2227 {
2228 if (depth <= 0 && (*p == ',' || *p == ')'))
2229 {
2230 /* Avoid parsing of ellipsis, they will be handled below.
2231 Also avoid ``void'' as above. */
2232 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2233 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2234 {
2235 argtypes[argcount].type =
2236 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2237 argcount += 1;
2238 }
2239 argtypetext = p + 1;
2240 }
2241
2242 if (*p == '(' || *p == '<')
2243 {
2244 depth += 1;
2245 }
2246 else if (*p == ')' || *p == '>')
2247 {
2248 depth -= 1;
2249 }
2250
2251 p += 1;
2252 }
2253 }
2254
2255 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2256
2257 /* Now update the old "stub" type into a real type. */
2258 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2259 TYPE_DOMAIN_TYPE (mtype) = type;
2260 TYPE_FIELDS (mtype) = argtypes;
2261 TYPE_NFIELDS (mtype) = argcount;
2262 TYPE_STUB (mtype) = 0;
2263 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2264 if (p[-2] == '.')
2265 TYPE_VARARGS (mtype) = 1;
2266
2267 xfree (demangled_name);
2268 }
2269
2270 /* This is the external interface to check_stub_method, above. This
2271 function unstubs all of the signatures for TYPE's METHOD_ID method
2272 name. After calling this function TYPE_FN_FIELD_STUB will be
2273 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2274 correct.
2275
2276 This function unfortunately can not die until stabs do. */
2277
2278 void
2279 check_stub_method_group (struct type *type, int method_id)
2280 {
2281 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2282 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2283 int j, found_stub = 0;
2284
2285 for (j = 0; j < len; j++)
2286 if (TYPE_FN_FIELD_STUB (f, j))
2287 {
2288 found_stub = 1;
2289 check_stub_method (type, method_id, j);
2290 }
2291
2292 /* GNU v3 methods with incorrect names were corrected when we read
2293 in type information, because it was cheaper to do it then. The
2294 only GNU v2 methods with incorrect method names are operators and
2295 destructors; destructors were also corrected when we read in type
2296 information.
2297
2298 Therefore the only thing we need to handle here are v2 operator
2299 names. */
2300 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2301 {
2302 int ret;
2303 char dem_opname[256];
2304
2305 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2306 method_id),
2307 dem_opname, DMGL_ANSI);
2308 if (!ret)
2309 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2310 method_id),
2311 dem_opname, 0);
2312 if (ret)
2313 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2314 }
2315 }
2316
2317 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2318 const struct cplus_struct_type cplus_struct_default = { };
2319
2320 void
2321 allocate_cplus_struct_type (struct type *type)
2322 {
2323 if (HAVE_CPLUS_STRUCT (type))
2324 /* Structure was already allocated. Nothing more to do. */
2325 return;
2326
2327 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2328 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2329 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2330 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2331 }
2332
2333 const struct gnat_aux_type gnat_aux_default =
2334 { NULL };
2335
2336 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2337 and allocate the associated gnat-specific data. The gnat-specific
2338 data is also initialized to gnat_aux_default. */
2339
2340 void
2341 allocate_gnat_aux_type (struct type *type)
2342 {
2343 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2344 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2345 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2346 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2347 }
2348
2349 /* Helper function to initialize the standard scalar types.
2350
2351 If NAME is non-NULL, then it is used to initialize the type name.
2352 Note that NAME is not copied; it is required to have a lifetime at
2353 least as long as OBJFILE. */
2354
2355 struct type *
2356 init_type (enum type_code code, int length, int flags,
2357 const char *name, struct objfile *objfile)
2358 {
2359 struct type *type;
2360
2361 type = alloc_type (objfile);
2362 TYPE_CODE (type) = code;
2363 TYPE_LENGTH (type) = length;
2364
2365 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2366 if (flags & TYPE_FLAG_UNSIGNED)
2367 TYPE_UNSIGNED (type) = 1;
2368 if (flags & TYPE_FLAG_NOSIGN)
2369 TYPE_NOSIGN (type) = 1;
2370 if (flags & TYPE_FLAG_STUB)
2371 TYPE_STUB (type) = 1;
2372 if (flags & TYPE_FLAG_TARGET_STUB)
2373 TYPE_TARGET_STUB (type) = 1;
2374 if (flags & TYPE_FLAG_STATIC)
2375 TYPE_STATIC (type) = 1;
2376 if (flags & TYPE_FLAG_PROTOTYPED)
2377 TYPE_PROTOTYPED (type) = 1;
2378 if (flags & TYPE_FLAG_INCOMPLETE)
2379 TYPE_INCOMPLETE (type) = 1;
2380 if (flags & TYPE_FLAG_VARARGS)
2381 TYPE_VARARGS (type) = 1;
2382 if (flags & TYPE_FLAG_VECTOR)
2383 TYPE_VECTOR (type) = 1;
2384 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2385 TYPE_STUB_SUPPORTED (type) = 1;
2386 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2387 TYPE_FIXED_INSTANCE (type) = 1;
2388 if (flags & TYPE_FLAG_GNU_IFUNC)
2389 TYPE_GNU_IFUNC (type) = 1;
2390
2391 TYPE_NAME (type) = name;
2392
2393 /* C++ fancies. */
2394
2395 if (name && strcmp (name, "char") == 0)
2396 TYPE_NOSIGN (type) = 1;
2397
2398 switch (code)
2399 {
2400 case TYPE_CODE_STRUCT:
2401 case TYPE_CODE_UNION:
2402 case TYPE_CODE_NAMESPACE:
2403 INIT_CPLUS_SPECIFIC (type);
2404 break;
2405 case TYPE_CODE_FLT:
2406 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2407 break;
2408 case TYPE_CODE_FUNC:
2409 INIT_FUNC_SPECIFIC (type);
2410 break;
2411 }
2412 return type;
2413 }
2414 \f
2415 /* Queries on types. */
2416
2417 int
2418 can_dereference (struct type *t)
2419 {
2420 /* FIXME: Should we return true for references as well as
2421 pointers? */
2422 CHECK_TYPEDEF (t);
2423 return
2424 (t != NULL
2425 && TYPE_CODE (t) == TYPE_CODE_PTR
2426 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2427 }
2428
2429 int
2430 is_integral_type (struct type *t)
2431 {
2432 CHECK_TYPEDEF (t);
2433 return
2434 ((t != NULL)
2435 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2436 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2437 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2438 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2439 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2440 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2441 }
2442
2443 /* Return true if TYPE is scalar. */
2444
2445 static int
2446 is_scalar_type (struct type *type)
2447 {
2448 CHECK_TYPEDEF (type);
2449
2450 switch (TYPE_CODE (type))
2451 {
2452 case TYPE_CODE_ARRAY:
2453 case TYPE_CODE_STRUCT:
2454 case TYPE_CODE_UNION:
2455 case TYPE_CODE_SET:
2456 case TYPE_CODE_STRING:
2457 return 0;
2458 default:
2459 return 1;
2460 }
2461 }
2462
2463 /* Return true if T is scalar, or a composite type which in practice has
2464 the memory layout of a scalar type. E.g., an array or struct with only
2465 one scalar element inside it, or a union with only scalar elements. */
2466
2467 int
2468 is_scalar_type_recursive (struct type *t)
2469 {
2470 CHECK_TYPEDEF (t);
2471
2472 if (is_scalar_type (t))
2473 return 1;
2474 /* Are we dealing with an array or string of known dimensions? */
2475 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2476 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2477 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2478 {
2479 LONGEST low_bound, high_bound;
2480 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2481
2482 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2483
2484 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2485 }
2486 /* Are we dealing with a struct with one element? */
2487 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2488 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2489 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2490 {
2491 int i, n = TYPE_NFIELDS (t);
2492
2493 /* If all elements of the union are scalar, then the union is scalar. */
2494 for (i = 0; i < n; i++)
2495 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2496 return 0;
2497
2498 return 1;
2499 }
2500
2501 return 0;
2502 }
2503
2504 /* A helper function which returns true if types A and B represent the
2505 "same" class type. This is true if the types have the same main
2506 type, or the same name. */
2507
2508 int
2509 class_types_same_p (const struct type *a, const struct type *b)
2510 {
2511 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2512 || (TYPE_NAME (a) && TYPE_NAME (b)
2513 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2514 }
2515
2516 /* If BASE is an ancestor of DCLASS return the distance between them.
2517 otherwise return -1;
2518 eg:
2519
2520 class A {};
2521 class B: public A {};
2522 class C: public B {};
2523 class D: C {};
2524
2525 distance_to_ancestor (A, A, 0) = 0
2526 distance_to_ancestor (A, B, 0) = 1
2527 distance_to_ancestor (A, C, 0) = 2
2528 distance_to_ancestor (A, D, 0) = 3
2529
2530 If PUBLIC is 1 then only public ancestors are considered,
2531 and the function returns the distance only if BASE is a public ancestor
2532 of DCLASS.
2533 Eg:
2534
2535 distance_to_ancestor (A, D, 1) = -1. */
2536
2537 static int
2538 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2539 {
2540 int i;
2541 int d;
2542
2543 CHECK_TYPEDEF (base);
2544 CHECK_TYPEDEF (dclass);
2545
2546 if (class_types_same_p (base, dclass))
2547 return 0;
2548
2549 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2550 {
2551 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2552 continue;
2553
2554 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2555 if (d >= 0)
2556 return 1 + d;
2557 }
2558
2559 return -1;
2560 }
2561
2562 /* Check whether BASE is an ancestor or base class or DCLASS
2563 Return 1 if so, and 0 if not.
2564 Note: If BASE and DCLASS are of the same type, this function
2565 will return 1. So for some class A, is_ancestor (A, A) will
2566 return 1. */
2567
2568 int
2569 is_ancestor (struct type *base, struct type *dclass)
2570 {
2571 return distance_to_ancestor (base, dclass, 0) >= 0;
2572 }
2573
2574 /* Like is_ancestor, but only returns true when BASE is a public
2575 ancestor of DCLASS. */
2576
2577 int
2578 is_public_ancestor (struct type *base, struct type *dclass)
2579 {
2580 return distance_to_ancestor (base, dclass, 1) >= 0;
2581 }
2582
2583 /* A helper function for is_unique_ancestor. */
2584
2585 static int
2586 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2587 int *offset,
2588 const gdb_byte *valaddr, int embedded_offset,
2589 CORE_ADDR address, struct value *val)
2590 {
2591 int i, count = 0;
2592
2593 CHECK_TYPEDEF (base);
2594 CHECK_TYPEDEF (dclass);
2595
2596 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2597 {
2598 struct type *iter;
2599 int this_offset;
2600
2601 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2602
2603 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2604 address, val);
2605
2606 if (class_types_same_p (base, iter))
2607 {
2608 /* If this is the first subclass, set *OFFSET and set count
2609 to 1. Otherwise, if this is at the same offset as
2610 previous instances, do nothing. Otherwise, increment
2611 count. */
2612 if (*offset == -1)
2613 {
2614 *offset = this_offset;
2615 count = 1;
2616 }
2617 else if (this_offset == *offset)
2618 {
2619 /* Nothing. */
2620 }
2621 else
2622 ++count;
2623 }
2624 else
2625 count += is_unique_ancestor_worker (base, iter, offset,
2626 valaddr,
2627 embedded_offset + this_offset,
2628 address, val);
2629 }
2630
2631 return count;
2632 }
2633
2634 /* Like is_ancestor, but only returns true if BASE is a unique base
2635 class of the type of VAL. */
2636
2637 int
2638 is_unique_ancestor (struct type *base, struct value *val)
2639 {
2640 int offset = -1;
2641
2642 return is_unique_ancestor_worker (base, value_type (val), &offset,
2643 value_contents_for_printing (val),
2644 value_embedded_offset (val),
2645 value_address (val), val) == 1;
2646 }
2647
2648 \f
2649 /* Overload resolution. */
2650
2651 /* Return the sum of the rank of A with the rank of B. */
2652
2653 struct rank
2654 sum_ranks (struct rank a, struct rank b)
2655 {
2656 struct rank c;
2657 c.rank = a.rank + b.rank;
2658 c.subrank = a.subrank + b.subrank;
2659 return c;
2660 }
2661
2662 /* Compare rank A and B and return:
2663 0 if a = b
2664 1 if a is better than b
2665 -1 if b is better than a. */
2666
2667 int
2668 compare_ranks (struct rank a, struct rank b)
2669 {
2670 if (a.rank == b.rank)
2671 {
2672 if (a.subrank == b.subrank)
2673 return 0;
2674 if (a.subrank < b.subrank)
2675 return 1;
2676 if (a.subrank > b.subrank)
2677 return -1;
2678 }
2679
2680 if (a.rank < b.rank)
2681 return 1;
2682
2683 /* a.rank > b.rank */
2684 return -1;
2685 }
2686
2687 /* Functions for overload resolution begin here. */
2688
2689 /* Compare two badness vectors A and B and return the result.
2690 0 => A and B are identical
2691 1 => A and B are incomparable
2692 2 => A is better than B
2693 3 => A is worse than B */
2694
2695 int
2696 compare_badness (struct badness_vector *a, struct badness_vector *b)
2697 {
2698 int i;
2699 int tmp;
2700 short found_pos = 0; /* any positives in c? */
2701 short found_neg = 0; /* any negatives in c? */
2702
2703 /* differing lengths => incomparable */
2704 if (a->length != b->length)
2705 return 1;
2706
2707 /* Subtract b from a */
2708 for (i = 0; i < a->length; i++)
2709 {
2710 tmp = compare_ranks (b->rank[i], a->rank[i]);
2711 if (tmp > 0)
2712 found_pos = 1;
2713 else if (tmp < 0)
2714 found_neg = 1;
2715 }
2716
2717 if (found_pos)
2718 {
2719 if (found_neg)
2720 return 1; /* incomparable */
2721 else
2722 return 3; /* A > B */
2723 }
2724 else
2725 /* no positives */
2726 {
2727 if (found_neg)
2728 return 2; /* A < B */
2729 else
2730 return 0; /* A == B */
2731 }
2732 }
2733
2734 /* Rank a function by comparing its parameter types (PARMS, length
2735 NPARMS), to the types of an argument list (ARGS, length NARGS).
2736 Return a pointer to a badness vector. This has NARGS + 1
2737 entries. */
2738
2739 struct badness_vector *
2740 rank_function (struct type **parms, int nparms,
2741 struct value **args, int nargs)
2742 {
2743 int i;
2744 struct badness_vector *bv;
2745 int min_len = nparms < nargs ? nparms : nargs;
2746
2747 bv = xmalloc (sizeof (struct badness_vector));
2748 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2749 bv->rank = XNEWVEC (struct rank, nargs + 1);
2750
2751 /* First compare the lengths of the supplied lists.
2752 If there is a mismatch, set it to a high value. */
2753
2754 /* pai/1997-06-03 FIXME: when we have debug info about default
2755 arguments and ellipsis parameter lists, we should consider those
2756 and rank the length-match more finely. */
2757
2758 LENGTH_MATCH (bv) = (nargs != nparms)
2759 ? LENGTH_MISMATCH_BADNESS
2760 : EXACT_MATCH_BADNESS;
2761
2762 /* Now rank all the parameters of the candidate function. */
2763 for (i = 1; i <= min_len; i++)
2764 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2765 args[i - 1]);
2766
2767 /* If more arguments than parameters, add dummy entries. */
2768 for (i = min_len + 1; i <= nargs; i++)
2769 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2770
2771 return bv;
2772 }
2773
2774 /* Compare the names of two integer types, assuming that any sign
2775 qualifiers have been checked already. We do it this way because
2776 there may be an "int" in the name of one of the types. */
2777
2778 static int
2779 integer_types_same_name_p (const char *first, const char *second)
2780 {
2781 int first_p, second_p;
2782
2783 /* If both are shorts, return 1; if neither is a short, keep
2784 checking. */
2785 first_p = (strstr (first, "short") != NULL);
2786 second_p = (strstr (second, "short") != NULL);
2787 if (first_p && second_p)
2788 return 1;
2789 if (first_p || second_p)
2790 return 0;
2791
2792 /* Likewise for long. */
2793 first_p = (strstr (first, "long") != NULL);
2794 second_p = (strstr (second, "long") != NULL);
2795 if (first_p && second_p)
2796 return 1;
2797 if (first_p || second_p)
2798 return 0;
2799
2800 /* Likewise for char. */
2801 first_p = (strstr (first, "char") != NULL);
2802 second_p = (strstr (second, "char") != NULL);
2803 if (first_p && second_p)
2804 return 1;
2805 if (first_p || second_p)
2806 return 0;
2807
2808 /* They must both be ints. */
2809 return 1;
2810 }
2811
2812 /* Compares type A to type B returns 1 if the represent the same type
2813 0 otherwise. */
2814
2815 int
2816 types_equal (struct type *a, struct type *b)
2817 {
2818 /* Identical type pointers. */
2819 /* However, this still doesn't catch all cases of same type for b
2820 and a. The reason is that builtin types are different from
2821 the same ones constructed from the object. */
2822 if (a == b)
2823 return 1;
2824
2825 /* Resolve typedefs */
2826 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2827 a = check_typedef (a);
2828 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2829 b = check_typedef (b);
2830
2831 /* If after resolving typedefs a and b are not of the same type
2832 code then they are not equal. */
2833 if (TYPE_CODE (a) != TYPE_CODE (b))
2834 return 0;
2835
2836 /* If a and b are both pointers types or both reference types then
2837 they are equal of the same type iff the objects they refer to are
2838 of the same type. */
2839 if (TYPE_CODE (a) == TYPE_CODE_PTR
2840 || TYPE_CODE (a) == TYPE_CODE_REF)
2841 return types_equal (TYPE_TARGET_TYPE (a),
2842 TYPE_TARGET_TYPE (b));
2843
2844 /* Well, damnit, if the names are exactly the same, I'll say they
2845 are exactly the same. This happens when we generate method
2846 stubs. The types won't point to the same address, but they
2847 really are the same. */
2848
2849 if (TYPE_NAME (a) && TYPE_NAME (b)
2850 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2851 return 1;
2852
2853 /* Check if identical after resolving typedefs. */
2854 if (a == b)
2855 return 1;
2856
2857 /* Two function types are equal if their argument and return types
2858 are equal. */
2859 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2860 {
2861 int i;
2862
2863 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2864 return 0;
2865
2866 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2867 return 0;
2868
2869 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2870 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2871 return 0;
2872
2873 return 1;
2874 }
2875
2876 return 0;
2877 }
2878 \f
2879 /* Deep comparison of types. */
2880
2881 /* An entry in the type-equality bcache. */
2882
2883 typedef struct type_equality_entry
2884 {
2885 struct type *type1, *type2;
2886 } type_equality_entry_d;
2887
2888 DEF_VEC_O (type_equality_entry_d);
2889
2890 /* A helper function to compare two strings. Returns 1 if they are
2891 the same, 0 otherwise. Handles NULLs properly. */
2892
2893 static int
2894 compare_maybe_null_strings (const char *s, const char *t)
2895 {
2896 if (s == NULL && t != NULL)
2897 return 0;
2898 else if (s != NULL && t == NULL)
2899 return 0;
2900 else if (s == NULL && t== NULL)
2901 return 1;
2902 return strcmp (s, t) == 0;
2903 }
2904
2905 /* A helper function for check_types_worklist that checks two types for
2906 "deep" equality. Returns non-zero if the types are considered the
2907 same, zero otherwise. */
2908
2909 static int
2910 check_types_equal (struct type *type1, struct type *type2,
2911 VEC (type_equality_entry_d) **worklist)
2912 {
2913 CHECK_TYPEDEF (type1);
2914 CHECK_TYPEDEF (type2);
2915
2916 if (type1 == type2)
2917 return 1;
2918
2919 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2920 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2921 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2922 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2923 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2924 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2925 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2926 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2927 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2928 return 0;
2929
2930 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2931 TYPE_TAG_NAME (type2)))
2932 return 0;
2933 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2934 return 0;
2935
2936 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2937 {
2938 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2939 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2940 return 0;
2941 }
2942 else
2943 {
2944 int i;
2945
2946 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2947 {
2948 const struct field *field1 = &TYPE_FIELD (type1, i);
2949 const struct field *field2 = &TYPE_FIELD (type2, i);
2950 struct type_equality_entry entry;
2951
2952 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2953 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2954 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2955 return 0;
2956 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2957 FIELD_NAME (*field2)))
2958 return 0;
2959 switch (FIELD_LOC_KIND (*field1))
2960 {
2961 case FIELD_LOC_KIND_BITPOS:
2962 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2963 return 0;
2964 break;
2965 case FIELD_LOC_KIND_ENUMVAL:
2966 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2967 return 0;
2968 break;
2969 case FIELD_LOC_KIND_PHYSADDR:
2970 if (FIELD_STATIC_PHYSADDR (*field1)
2971 != FIELD_STATIC_PHYSADDR (*field2))
2972 return 0;
2973 break;
2974 case FIELD_LOC_KIND_PHYSNAME:
2975 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2976 FIELD_STATIC_PHYSNAME (*field2)))
2977 return 0;
2978 break;
2979 case FIELD_LOC_KIND_DWARF_BLOCK:
2980 {
2981 struct dwarf2_locexpr_baton *block1, *block2;
2982
2983 block1 = FIELD_DWARF_BLOCK (*field1);
2984 block2 = FIELD_DWARF_BLOCK (*field2);
2985 if (block1->per_cu != block2->per_cu
2986 || block1->size != block2->size
2987 || memcmp (block1->data, block2->data, block1->size) != 0)
2988 return 0;
2989 }
2990 break;
2991 default:
2992 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2993 "%d by check_types_equal"),
2994 FIELD_LOC_KIND (*field1));
2995 }
2996
2997 entry.type1 = FIELD_TYPE (*field1);
2998 entry.type2 = FIELD_TYPE (*field2);
2999 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3000 }
3001 }
3002
3003 if (TYPE_TARGET_TYPE (type1) != NULL)
3004 {
3005 struct type_equality_entry entry;
3006
3007 if (TYPE_TARGET_TYPE (type2) == NULL)
3008 return 0;
3009
3010 entry.type1 = TYPE_TARGET_TYPE (type1);
3011 entry.type2 = TYPE_TARGET_TYPE (type2);
3012 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3013 }
3014 else if (TYPE_TARGET_TYPE (type2) != NULL)
3015 return 0;
3016
3017 return 1;
3018 }
3019
3020 /* Check types on a worklist for equality. Returns zero if any pair
3021 is not equal, non-zero if they are all considered equal. */
3022
3023 static int
3024 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3025 struct bcache *cache)
3026 {
3027 while (!VEC_empty (type_equality_entry_d, *worklist))
3028 {
3029 struct type_equality_entry entry;
3030 int added;
3031
3032 entry = *VEC_last (type_equality_entry_d, *worklist);
3033 VEC_pop (type_equality_entry_d, *worklist);
3034
3035 /* If the type pair has already been visited, we know it is
3036 ok. */
3037 bcache_full (&entry, sizeof (entry), cache, &added);
3038 if (!added)
3039 continue;
3040
3041 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3042 return 0;
3043 }
3044
3045 return 1;
3046 }
3047
3048 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3049 "deep comparison". Otherwise return zero. */
3050
3051 int
3052 types_deeply_equal (struct type *type1, struct type *type2)
3053 {
3054 volatile struct gdb_exception except;
3055 int result = 0;
3056 struct bcache *cache;
3057 VEC (type_equality_entry_d) *worklist = NULL;
3058 struct type_equality_entry entry;
3059
3060 gdb_assert (type1 != NULL && type2 != NULL);
3061
3062 /* Early exit for the simple case. */
3063 if (type1 == type2)
3064 return 1;
3065
3066 cache = bcache_xmalloc (NULL, NULL);
3067
3068 entry.type1 = type1;
3069 entry.type2 = type2;
3070 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3071
3072 TRY_CATCH (except, RETURN_MASK_ALL)
3073 {
3074 result = check_types_worklist (&worklist, cache);
3075 }
3076 /* check_types_worklist calls several nested helper functions,
3077 some of which can raise a GDB Exception, so we just check
3078 and rethrow here. If there is a GDB exception, a comparison
3079 is not capable (or trusted), so exit. */
3080 bcache_xfree (cache);
3081 VEC_free (type_equality_entry_d, worklist);
3082 /* Rethrow if there was a problem. */
3083 if (except.reason < 0)
3084 throw_exception (except);
3085
3086 return result;
3087 }
3088 \f
3089 /* Compare one type (PARM) for compatibility with another (ARG).
3090 * PARM is intended to be the parameter type of a function; and
3091 * ARG is the supplied argument's type. This function tests if
3092 * the latter can be converted to the former.
3093 * VALUE is the argument's value or NULL if none (or called recursively)
3094 *
3095 * Return 0 if they are identical types;
3096 * Otherwise, return an integer which corresponds to how compatible
3097 * PARM is to ARG. The higher the return value, the worse the match.
3098 * Generally the "bad" conversions are all uniformly assigned a 100. */
3099
3100 struct rank
3101 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3102 {
3103 struct rank rank = {0,0};
3104
3105 if (types_equal (parm, arg))
3106 return EXACT_MATCH_BADNESS;
3107
3108 /* Resolve typedefs */
3109 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3110 parm = check_typedef (parm);
3111 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3112 arg = check_typedef (arg);
3113
3114 /* See through references, since we can almost make non-references
3115 references. */
3116 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3117 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3118 REFERENCE_CONVERSION_BADNESS));
3119 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3120 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3121 REFERENCE_CONVERSION_BADNESS));
3122 if (overload_debug)
3123 /* Debugging only. */
3124 fprintf_filtered (gdb_stderr,
3125 "------ Arg is %s [%d], parm is %s [%d]\n",
3126 TYPE_NAME (arg), TYPE_CODE (arg),
3127 TYPE_NAME (parm), TYPE_CODE (parm));
3128
3129 /* x -> y means arg of type x being supplied for parameter of type y. */
3130
3131 switch (TYPE_CODE (parm))
3132 {
3133 case TYPE_CODE_PTR:
3134 switch (TYPE_CODE (arg))
3135 {
3136 case TYPE_CODE_PTR:
3137
3138 /* Allowed pointer conversions are:
3139 (a) pointer to void-pointer conversion. */
3140 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3141 return VOID_PTR_CONVERSION_BADNESS;
3142
3143 /* (b) pointer to ancestor-pointer conversion. */
3144 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3145 TYPE_TARGET_TYPE (arg),
3146 0);
3147 if (rank.subrank >= 0)
3148 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3149
3150 return INCOMPATIBLE_TYPE_BADNESS;
3151 case TYPE_CODE_ARRAY:
3152 if (types_equal (TYPE_TARGET_TYPE (parm),
3153 TYPE_TARGET_TYPE (arg)))
3154 return EXACT_MATCH_BADNESS;
3155 return INCOMPATIBLE_TYPE_BADNESS;
3156 case TYPE_CODE_FUNC:
3157 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3158 case TYPE_CODE_INT:
3159 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3160 {
3161 if (value_as_long (value) == 0)
3162 {
3163 /* Null pointer conversion: allow it to be cast to a pointer.
3164 [4.10.1 of C++ standard draft n3290] */
3165 return NULL_POINTER_CONVERSION_BADNESS;
3166 }
3167 else
3168 {
3169 /* If type checking is disabled, allow the conversion. */
3170 if (!strict_type_checking)
3171 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3172 }
3173 }
3174 /* fall through */
3175 case TYPE_CODE_ENUM:
3176 case TYPE_CODE_FLAGS:
3177 case TYPE_CODE_CHAR:
3178 case TYPE_CODE_RANGE:
3179 case TYPE_CODE_BOOL:
3180 default:
3181 return INCOMPATIBLE_TYPE_BADNESS;
3182 }
3183 case TYPE_CODE_ARRAY:
3184 switch (TYPE_CODE (arg))
3185 {
3186 case TYPE_CODE_PTR:
3187 case TYPE_CODE_ARRAY:
3188 return rank_one_type (TYPE_TARGET_TYPE (parm),
3189 TYPE_TARGET_TYPE (arg), NULL);
3190 default:
3191 return INCOMPATIBLE_TYPE_BADNESS;
3192 }
3193 case TYPE_CODE_FUNC:
3194 switch (TYPE_CODE (arg))
3195 {
3196 case TYPE_CODE_PTR: /* funcptr -> func */
3197 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3198 default:
3199 return INCOMPATIBLE_TYPE_BADNESS;
3200 }
3201 case TYPE_CODE_INT:
3202 switch (TYPE_CODE (arg))
3203 {
3204 case TYPE_CODE_INT:
3205 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3206 {
3207 /* Deal with signed, unsigned, and plain chars and
3208 signed and unsigned ints. */
3209 if (TYPE_NOSIGN (parm))
3210 {
3211 /* This case only for character types. */
3212 if (TYPE_NOSIGN (arg))
3213 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3214 else /* signed/unsigned char -> plain char */
3215 return INTEGER_CONVERSION_BADNESS;
3216 }
3217 else if (TYPE_UNSIGNED (parm))
3218 {
3219 if (TYPE_UNSIGNED (arg))
3220 {
3221 /* unsigned int -> unsigned int, or
3222 unsigned long -> unsigned long */
3223 if (integer_types_same_name_p (TYPE_NAME (parm),
3224 TYPE_NAME (arg)))
3225 return EXACT_MATCH_BADNESS;
3226 else if (integer_types_same_name_p (TYPE_NAME (arg),
3227 "int")
3228 && integer_types_same_name_p (TYPE_NAME (parm),
3229 "long"))
3230 /* unsigned int -> unsigned long */
3231 return INTEGER_PROMOTION_BADNESS;
3232 else
3233 /* unsigned long -> unsigned int */
3234 return INTEGER_CONVERSION_BADNESS;
3235 }
3236 else
3237 {
3238 if (integer_types_same_name_p (TYPE_NAME (arg),
3239 "long")
3240 && integer_types_same_name_p (TYPE_NAME (parm),
3241 "int"))
3242 /* signed long -> unsigned int */
3243 return INTEGER_CONVERSION_BADNESS;
3244 else
3245 /* signed int/long -> unsigned int/long */
3246 return INTEGER_CONVERSION_BADNESS;
3247 }
3248 }
3249 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3250 {
3251 if (integer_types_same_name_p (TYPE_NAME (parm),
3252 TYPE_NAME (arg)))
3253 return EXACT_MATCH_BADNESS;
3254 else if (integer_types_same_name_p (TYPE_NAME (arg),
3255 "int")
3256 && integer_types_same_name_p (TYPE_NAME (parm),
3257 "long"))
3258 return INTEGER_PROMOTION_BADNESS;
3259 else
3260 return INTEGER_CONVERSION_BADNESS;
3261 }
3262 else
3263 return INTEGER_CONVERSION_BADNESS;
3264 }
3265 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3266 return INTEGER_PROMOTION_BADNESS;
3267 else
3268 return INTEGER_CONVERSION_BADNESS;
3269 case TYPE_CODE_ENUM:
3270 case TYPE_CODE_FLAGS:
3271 case TYPE_CODE_CHAR:
3272 case TYPE_CODE_RANGE:
3273 case TYPE_CODE_BOOL:
3274 if (TYPE_DECLARED_CLASS (arg))
3275 return INCOMPATIBLE_TYPE_BADNESS;
3276 return INTEGER_PROMOTION_BADNESS;
3277 case TYPE_CODE_FLT:
3278 return INT_FLOAT_CONVERSION_BADNESS;
3279 case TYPE_CODE_PTR:
3280 return NS_POINTER_CONVERSION_BADNESS;
3281 default:
3282 return INCOMPATIBLE_TYPE_BADNESS;
3283 }
3284 break;
3285 case TYPE_CODE_ENUM:
3286 switch (TYPE_CODE (arg))
3287 {
3288 case TYPE_CODE_INT:
3289 case TYPE_CODE_CHAR:
3290 case TYPE_CODE_RANGE:
3291 case TYPE_CODE_BOOL:
3292 case TYPE_CODE_ENUM:
3293 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3294 return INCOMPATIBLE_TYPE_BADNESS;
3295 return INTEGER_CONVERSION_BADNESS;
3296 case TYPE_CODE_FLT:
3297 return INT_FLOAT_CONVERSION_BADNESS;
3298 default:
3299 return INCOMPATIBLE_TYPE_BADNESS;
3300 }
3301 break;
3302 case TYPE_CODE_CHAR:
3303 switch (TYPE_CODE (arg))
3304 {
3305 case TYPE_CODE_RANGE:
3306 case TYPE_CODE_BOOL:
3307 case TYPE_CODE_ENUM:
3308 if (TYPE_DECLARED_CLASS (arg))
3309 return INCOMPATIBLE_TYPE_BADNESS;
3310 return INTEGER_CONVERSION_BADNESS;
3311 case TYPE_CODE_FLT:
3312 return INT_FLOAT_CONVERSION_BADNESS;
3313 case TYPE_CODE_INT:
3314 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3315 return INTEGER_CONVERSION_BADNESS;
3316 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3317 return INTEGER_PROMOTION_BADNESS;
3318 /* >>> !! else fall through !! <<< */
3319 case TYPE_CODE_CHAR:
3320 /* Deal with signed, unsigned, and plain chars for C++ and
3321 with int cases falling through from previous case. */
3322 if (TYPE_NOSIGN (parm))
3323 {
3324 if (TYPE_NOSIGN (arg))
3325 return EXACT_MATCH_BADNESS;
3326 else
3327 return INTEGER_CONVERSION_BADNESS;
3328 }
3329 else if (TYPE_UNSIGNED (parm))
3330 {
3331 if (TYPE_UNSIGNED (arg))
3332 return EXACT_MATCH_BADNESS;
3333 else
3334 return INTEGER_PROMOTION_BADNESS;
3335 }
3336 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3337 return EXACT_MATCH_BADNESS;
3338 else
3339 return INTEGER_CONVERSION_BADNESS;
3340 default:
3341 return INCOMPATIBLE_TYPE_BADNESS;
3342 }
3343 break;
3344 case TYPE_CODE_RANGE:
3345 switch (TYPE_CODE (arg))
3346 {
3347 case TYPE_CODE_INT:
3348 case TYPE_CODE_CHAR:
3349 case TYPE_CODE_RANGE:
3350 case TYPE_CODE_BOOL:
3351 case TYPE_CODE_ENUM:
3352 return INTEGER_CONVERSION_BADNESS;
3353 case TYPE_CODE_FLT:
3354 return INT_FLOAT_CONVERSION_BADNESS;
3355 default:
3356 return INCOMPATIBLE_TYPE_BADNESS;
3357 }
3358 break;
3359 case TYPE_CODE_BOOL:
3360 switch (TYPE_CODE (arg))
3361 {
3362 /* n3290 draft, section 4.12.1 (conv.bool):
3363
3364 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3365 pointer to member type can be converted to a prvalue of type
3366 bool. A zero value, null pointer value, or null member pointer
3367 value is converted to false; any other value is converted to
3368 true. A prvalue of type std::nullptr_t can be converted to a
3369 prvalue of type bool; the resulting value is false." */
3370 case TYPE_CODE_INT:
3371 case TYPE_CODE_CHAR:
3372 case TYPE_CODE_ENUM:
3373 case TYPE_CODE_FLT:
3374 case TYPE_CODE_MEMBERPTR:
3375 case TYPE_CODE_PTR:
3376 return BOOL_CONVERSION_BADNESS;
3377 case TYPE_CODE_RANGE:
3378 return INCOMPATIBLE_TYPE_BADNESS;
3379 case TYPE_CODE_BOOL:
3380 return EXACT_MATCH_BADNESS;
3381 default:
3382 return INCOMPATIBLE_TYPE_BADNESS;
3383 }
3384 break;
3385 case TYPE_CODE_FLT:
3386 switch (TYPE_CODE (arg))
3387 {
3388 case TYPE_CODE_FLT:
3389 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3390 return FLOAT_PROMOTION_BADNESS;
3391 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3392 return EXACT_MATCH_BADNESS;
3393 else
3394 return FLOAT_CONVERSION_BADNESS;
3395 case TYPE_CODE_INT:
3396 case TYPE_CODE_BOOL:
3397 case TYPE_CODE_ENUM:
3398 case TYPE_CODE_RANGE:
3399 case TYPE_CODE_CHAR:
3400 return INT_FLOAT_CONVERSION_BADNESS;
3401 default:
3402 return INCOMPATIBLE_TYPE_BADNESS;
3403 }
3404 break;
3405 case TYPE_CODE_COMPLEX:
3406 switch (TYPE_CODE (arg))
3407 { /* Strictly not needed for C++, but... */
3408 case TYPE_CODE_FLT:
3409 return FLOAT_PROMOTION_BADNESS;
3410 case TYPE_CODE_COMPLEX:
3411 return EXACT_MATCH_BADNESS;
3412 default:
3413 return INCOMPATIBLE_TYPE_BADNESS;
3414 }
3415 break;
3416 case TYPE_CODE_STRUCT:
3417 switch (TYPE_CODE (arg))
3418 {
3419 case TYPE_CODE_STRUCT:
3420 /* Check for derivation */
3421 rank.subrank = distance_to_ancestor (parm, arg, 0);
3422 if (rank.subrank >= 0)
3423 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3424 /* else fall through */
3425 default:
3426 return INCOMPATIBLE_TYPE_BADNESS;
3427 }
3428 break;
3429 case TYPE_CODE_UNION:
3430 switch (TYPE_CODE (arg))
3431 {
3432 case TYPE_CODE_UNION:
3433 default:
3434 return INCOMPATIBLE_TYPE_BADNESS;
3435 }
3436 break;
3437 case TYPE_CODE_MEMBERPTR:
3438 switch (TYPE_CODE (arg))
3439 {
3440 default:
3441 return INCOMPATIBLE_TYPE_BADNESS;
3442 }
3443 break;
3444 case TYPE_CODE_METHOD:
3445 switch (TYPE_CODE (arg))
3446 {
3447
3448 default:
3449 return INCOMPATIBLE_TYPE_BADNESS;
3450 }
3451 break;
3452 case TYPE_CODE_REF:
3453 switch (TYPE_CODE (arg))
3454 {
3455
3456 default:
3457 return INCOMPATIBLE_TYPE_BADNESS;
3458 }
3459
3460 break;
3461 case TYPE_CODE_SET:
3462 switch (TYPE_CODE (arg))
3463 {
3464 /* Not in C++ */
3465 case TYPE_CODE_SET:
3466 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3467 TYPE_FIELD_TYPE (arg, 0), NULL);
3468 default:
3469 return INCOMPATIBLE_TYPE_BADNESS;
3470 }
3471 break;
3472 case TYPE_CODE_VOID:
3473 default:
3474 return INCOMPATIBLE_TYPE_BADNESS;
3475 } /* switch (TYPE_CODE (arg)) */
3476 }
3477
3478 /* End of functions for overload resolution. */
3479 \f
3480 /* Routines to pretty-print types. */
3481
3482 static void
3483 print_bit_vector (B_TYPE *bits, int nbits)
3484 {
3485 int bitno;
3486
3487 for (bitno = 0; bitno < nbits; bitno++)
3488 {
3489 if ((bitno % 8) == 0)
3490 {
3491 puts_filtered (" ");
3492 }
3493 if (B_TST (bits, bitno))
3494 printf_filtered (("1"));
3495 else
3496 printf_filtered (("0"));
3497 }
3498 }
3499
3500 /* Note the first arg should be the "this" pointer, we may not want to
3501 include it since we may get into a infinitely recursive
3502 situation. */
3503
3504 static void
3505 print_arg_types (struct field *args, int nargs, int spaces)
3506 {
3507 if (args != NULL)
3508 {
3509 int i;
3510
3511 for (i = 0; i < nargs; i++)
3512 recursive_dump_type (args[i].type, spaces + 2);
3513 }
3514 }
3515
3516 int
3517 field_is_static (struct field *f)
3518 {
3519 /* "static" fields are the fields whose location is not relative
3520 to the address of the enclosing struct. It would be nice to
3521 have a dedicated flag that would be set for static fields when
3522 the type is being created. But in practice, checking the field
3523 loc_kind should give us an accurate answer. */
3524 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3525 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3526 }
3527
3528 static void
3529 dump_fn_fieldlists (struct type *type, int spaces)
3530 {
3531 int method_idx;
3532 int overload_idx;
3533 struct fn_field *f;
3534
3535 printfi_filtered (spaces, "fn_fieldlists ");
3536 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3537 printf_filtered ("\n");
3538 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3539 {
3540 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3541 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3542 method_idx,
3543 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3544 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3545 gdb_stdout);
3546 printf_filtered (_(") length %d\n"),
3547 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3548 for (overload_idx = 0;
3549 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3550 overload_idx++)
3551 {
3552 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3553 overload_idx,
3554 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3555 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3556 gdb_stdout);
3557 printf_filtered (")\n");
3558 printfi_filtered (spaces + 8, "type ");
3559 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3560 gdb_stdout);
3561 printf_filtered ("\n");
3562
3563 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3564 spaces + 8 + 2);
3565
3566 printfi_filtered (spaces + 8, "args ");
3567 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3568 gdb_stdout);
3569 printf_filtered ("\n");
3570
3571 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3572 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3573 overload_idx)),
3574 spaces);
3575 printfi_filtered (spaces + 8, "fcontext ");
3576 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3577 gdb_stdout);
3578 printf_filtered ("\n");
3579
3580 printfi_filtered (spaces + 8, "is_const %d\n",
3581 TYPE_FN_FIELD_CONST (f, overload_idx));
3582 printfi_filtered (spaces + 8, "is_volatile %d\n",
3583 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3584 printfi_filtered (spaces + 8, "is_private %d\n",
3585 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3586 printfi_filtered (spaces + 8, "is_protected %d\n",
3587 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3588 printfi_filtered (spaces + 8, "is_stub %d\n",
3589 TYPE_FN_FIELD_STUB (f, overload_idx));
3590 printfi_filtered (spaces + 8, "voffset %u\n",
3591 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3592 }
3593 }
3594 }
3595
3596 static void
3597 print_cplus_stuff (struct type *type, int spaces)
3598 {
3599 printfi_filtered (spaces, "n_baseclasses %d\n",
3600 TYPE_N_BASECLASSES (type));
3601 printfi_filtered (spaces, "nfn_fields %d\n",
3602 TYPE_NFN_FIELDS (type));
3603 if (TYPE_N_BASECLASSES (type) > 0)
3604 {
3605 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3606 TYPE_N_BASECLASSES (type));
3607 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3608 gdb_stdout);
3609 printf_filtered (")");
3610
3611 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3612 TYPE_N_BASECLASSES (type));
3613 puts_filtered ("\n");
3614 }
3615 if (TYPE_NFIELDS (type) > 0)
3616 {
3617 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3618 {
3619 printfi_filtered (spaces,
3620 "private_field_bits (%d bits at *",
3621 TYPE_NFIELDS (type));
3622 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3623 gdb_stdout);
3624 printf_filtered (")");
3625 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3626 TYPE_NFIELDS (type));
3627 puts_filtered ("\n");
3628 }
3629 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3630 {
3631 printfi_filtered (spaces,
3632 "protected_field_bits (%d bits at *",
3633 TYPE_NFIELDS (type));
3634 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3635 gdb_stdout);
3636 printf_filtered (")");
3637 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3638 TYPE_NFIELDS (type));
3639 puts_filtered ("\n");
3640 }
3641 }
3642 if (TYPE_NFN_FIELDS (type) > 0)
3643 {
3644 dump_fn_fieldlists (type, spaces);
3645 }
3646 }
3647
3648 /* Print the contents of the TYPE's type_specific union, assuming that
3649 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3650
3651 static void
3652 print_gnat_stuff (struct type *type, int spaces)
3653 {
3654 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3655
3656 recursive_dump_type (descriptive_type, spaces + 2);
3657 }
3658
3659 static struct obstack dont_print_type_obstack;
3660
3661 void
3662 recursive_dump_type (struct type *type, int spaces)
3663 {
3664 int idx;
3665
3666 if (spaces == 0)
3667 obstack_begin (&dont_print_type_obstack, 0);
3668
3669 if (TYPE_NFIELDS (type) > 0
3670 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3671 {
3672 struct type **first_dont_print
3673 = (struct type **) obstack_base (&dont_print_type_obstack);
3674
3675 int i = (struct type **)
3676 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3677
3678 while (--i >= 0)
3679 {
3680 if (type == first_dont_print[i])
3681 {
3682 printfi_filtered (spaces, "type node ");
3683 gdb_print_host_address (type, gdb_stdout);
3684 printf_filtered (_(" <same as already seen type>\n"));
3685 return;
3686 }
3687 }
3688
3689 obstack_ptr_grow (&dont_print_type_obstack, type);
3690 }
3691
3692 printfi_filtered (spaces, "type node ");
3693 gdb_print_host_address (type, gdb_stdout);
3694 printf_filtered ("\n");
3695 printfi_filtered (spaces, "name '%s' (",
3696 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3697 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3698 printf_filtered (")\n");
3699 printfi_filtered (spaces, "tagname '%s' (",
3700 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3701 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3702 printf_filtered (")\n");
3703 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3704 switch (TYPE_CODE (type))
3705 {
3706 case TYPE_CODE_UNDEF:
3707 printf_filtered ("(TYPE_CODE_UNDEF)");
3708 break;
3709 case TYPE_CODE_PTR:
3710 printf_filtered ("(TYPE_CODE_PTR)");
3711 break;
3712 case TYPE_CODE_ARRAY:
3713 printf_filtered ("(TYPE_CODE_ARRAY)");
3714 break;
3715 case TYPE_CODE_STRUCT:
3716 printf_filtered ("(TYPE_CODE_STRUCT)");
3717 break;
3718 case TYPE_CODE_UNION:
3719 printf_filtered ("(TYPE_CODE_UNION)");
3720 break;
3721 case TYPE_CODE_ENUM:
3722 printf_filtered ("(TYPE_CODE_ENUM)");
3723 break;
3724 case TYPE_CODE_FLAGS:
3725 printf_filtered ("(TYPE_CODE_FLAGS)");
3726 break;
3727 case TYPE_CODE_FUNC:
3728 printf_filtered ("(TYPE_CODE_FUNC)");
3729 break;
3730 case TYPE_CODE_INT:
3731 printf_filtered ("(TYPE_CODE_INT)");
3732 break;
3733 case TYPE_CODE_FLT:
3734 printf_filtered ("(TYPE_CODE_FLT)");
3735 break;
3736 case TYPE_CODE_VOID:
3737 printf_filtered ("(TYPE_CODE_VOID)");
3738 break;
3739 case TYPE_CODE_SET:
3740 printf_filtered ("(TYPE_CODE_SET)");
3741 break;
3742 case TYPE_CODE_RANGE:
3743 printf_filtered ("(TYPE_CODE_RANGE)");
3744 break;
3745 case TYPE_CODE_STRING:
3746 printf_filtered ("(TYPE_CODE_STRING)");
3747 break;
3748 case TYPE_CODE_ERROR:
3749 printf_filtered ("(TYPE_CODE_ERROR)");
3750 break;
3751 case TYPE_CODE_MEMBERPTR:
3752 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3753 break;
3754 case TYPE_CODE_METHODPTR:
3755 printf_filtered ("(TYPE_CODE_METHODPTR)");
3756 break;
3757 case TYPE_CODE_METHOD:
3758 printf_filtered ("(TYPE_CODE_METHOD)");
3759 break;
3760 case TYPE_CODE_REF:
3761 printf_filtered ("(TYPE_CODE_REF)");
3762 break;
3763 case TYPE_CODE_CHAR:
3764 printf_filtered ("(TYPE_CODE_CHAR)");
3765 break;
3766 case TYPE_CODE_BOOL:
3767 printf_filtered ("(TYPE_CODE_BOOL)");
3768 break;
3769 case TYPE_CODE_COMPLEX:
3770 printf_filtered ("(TYPE_CODE_COMPLEX)");
3771 break;
3772 case TYPE_CODE_TYPEDEF:
3773 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3774 break;
3775 case TYPE_CODE_NAMESPACE:
3776 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3777 break;
3778 default:
3779 printf_filtered ("(UNKNOWN TYPE CODE)");
3780 break;
3781 }
3782 puts_filtered ("\n");
3783 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3784 if (TYPE_OBJFILE_OWNED (type))
3785 {
3786 printfi_filtered (spaces, "objfile ");
3787 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3788 }
3789 else
3790 {
3791 printfi_filtered (spaces, "gdbarch ");
3792 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3793 }
3794 printf_filtered ("\n");
3795 printfi_filtered (spaces, "target_type ");
3796 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3797 printf_filtered ("\n");
3798 if (TYPE_TARGET_TYPE (type) != NULL)
3799 {
3800 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3801 }
3802 printfi_filtered (spaces, "pointer_type ");
3803 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3804 printf_filtered ("\n");
3805 printfi_filtered (spaces, "reference_type ");
3806 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3807 printf_filtered ("\n");
3808 printfi_filtered (spaces, "type_chain ");
3809 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3810 printf_filtered ("\n");
3811 printfi_filtered (spaces, "instance_flags 0x%x",
3812 TYPE_INSTANCE_FLAGS (type));
3813 if (TYPE_CONST (type))
3814 {
3815 puts_filtered (" TYPE_FLAG_CONST");
3816 }
3817 if (TYPE_VOLATILE (type))
3818 {
3819 puts_filtered (" TYPE_FLAG_VOLATILE");
3820 }
3821 if (TYPE_CODE_SPACE (type))
3822 {
3823 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3824 }
3825 if (TYPE_DATA_SPACE (type))
3826 {
3827 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3828 }
3829 if (TYPE_ADDRESS_CLASS_1 (type))
3830 {
3831 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3832 }
3833 if (TYPE_ADDRESS_CLASS_2 (type))
3834 {
3835 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3836 }
3837 if (TYPE_RESTRICT (type))
3838 {
3839 puts_filtered (" TYPE_FLAG_RESTRICT");
3840 }
3841 puts_filtered ("\n");
3842
3843 printfi_filtered (spaces, "flags");
3844 if (TYPE_UNSIGNED (type))
3845 {
3846 puts_filtered (" TYPE_FLAG_UNSIGNED");
3847 }
3848 if (TYPE_NOSIGN (type))
3849 {
3850 puts_filtered (" TYPE_FLAG_NOSIGN");
3851 }
3852 if (TYPE_STUB (type))
3853 {
3854 puts_filtered (" TYPE_FLAG_STUB");
3855 }
3856 if (TYPE_TARGET_STUB (type))
3857 {
3858 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3859 }
3860 if (TYPE_STATIC (type))
3861 {
3862 puts_filtered (" TYPE_FLAG_STATIC");
3863 }
3864 if (TYPE_PROTOTYPED (type))
3865 {
3866 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3867 }
3868 if (TYPE_INCOMPLETE (type))
3869 {
3870 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3871 }
3872 if (TYPE_VARARGS (type))
3873 {
3874 puts_filtered (" TYPE_FLAG_VARARGS");
3875 }
3876 /* This is used for things like AltiVec registers on ppc. Gcc emits
3877 an attribute for the array type, which tells whether or not we
3878 have a vector, instead of a regular array. */
3879 if (TYPE_VECTOR (type))
3880 {
3881 puts_filtered (" TYPE_FLAG_VECTOR");
3882 }
3883 if (TYPE_FIXED_INSTANCE (type))
3884 {
3885 puts_filtered (" TYPE_FIXED_INSTANCE");
3886 }
3887 if (TYPE_STUB_SUPPORTED (type))
3888 {
3889 puts_filtered (" TYPE_STUB_SUPPORTED");
3890 }
3891 if (TYPE_NOTTEXT (type))
3892 {
3893 puts_filtered (" TYPE_NOTTEXT");
3894 }
3895 puts_filtered ("\n");
3896 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3897 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3898 puts_filtered ("\n");
3899 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3900 {
3901 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3902 printfi_filtered (spaces + 2,
3903 "[%d] enumval %s type ",
3904 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3905 else
3906 printfi_filtered (spaces + 2,
3907 "[%d] bitpos %d bitsize %d type ",
3908 idx, TYPE_FIELD_BITPOS (type, idx),
3909 TYPE_FIELD_BITSIZE (type, idx));
3910 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3911 printf_filtered (" name '%s' (",
3912 TYPE_FIELD_NAME (type, idx) != NULL
3913 ? TYPE_FIELD_NAME (type, idx)
3914 : "<NULL>");
3915 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3916 printf_filtered (")\n");
3917 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3918 {
3919 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3920 }
3921 }
3922 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3923 {
3924 printfi_filtered (spaces, "low %s%s high %s%s\n",
3925 plongest (TYPE_LOW_BOUND (type)),
3926 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3927 plongest (TYPE_HIGH_BOUND (type)),
3928 TYPE_HIGH_BOUND_UNDEFINED (type)
3929 ? " (undefined)" : "");
3930 }
3931 printfi_filtered (spaces, "vptr_basetype ");
3932 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3933 puts_filtered ("\n");
3934 if (TYPE_VPTR_BASETYPE (type) != NULL)
3935 {
3936 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3937 }
3938 printfi_filtered (spaces, "vptr_fieldno %d\n",
3939 TYPE_VPTR_FIELDNO (type));
3940
3941 switch (TYPE_SPECIFIC_FIELD (type))
3942 {
3943 case TYPE_SPECIFIC_CPLUS_STUFF:
3944 printfi_filtered (spaces, "cplus_stuff ");
3945 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3946 gdb_stdout);
3947 puts_filtered ("\n");
3948 print_cplus_stuff (type, spaces);
3949 break;
3950
3951 case TYPE_SPECIFIC_GNAT_STUFF:
3952 printfi_filtered (spaces, "gnat_stuff ");
3953 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3954 puts_filtered ("\n");
3955 print_gnat_stuff (type, spaces);
3956 break;
3957
3958 case TYPE_SPECIFIC_FLOATFORMAT:
3959 printfi_filtered (spaces, "floatformat ");
3960 if (TYPE_FLOATFORMAT (type) == NULL)
3961 puts_filtered ("(null)");
3962 else
3963 {
3964 puts_filtered ("{ ");
3965 if (TYPE_FLOATFORMAT (type)[0] == NULL
3966 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3967 puts_filtered ("(null)");
3968 else
3969 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3970
3971 puts_filtered (", ");
3972 if (TYPE_FLOATFORMAT (type)[1] == NULL
3973 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3974 puts_filtered ("(null)");
3975 else
3976 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3977
3978 puts_filtered (" }");
3979 }
3980 puts_filtered ("\n");
3981 break;
3982
3983 case TYPE_SPECIFIC_FUNC:
3984 printfi_filtered (spaces, "calling_convention %d\n",
3985 TYPE_CALLING_CONVENTION (type));
3986 /* tail_call_list is not printed. */
3987 break;
3988 }
3989
3990 if (spaces == 0)
3991 obstack_free (&dont_print_type_obstack, NULL);
3992 }
3993 \f
3994 /* Trivial helpers for the libiberty hash table, for mapping one
3995 type to another. */
3996
3997 struct type_pair
3998 {
3999 struct type *old, *new;
4000 };
4001
4002 static hashval_t
4003 type_pair_hash (const void *item)
4004 {
4005 const struct type_pair *pair = item;
4006
4007 return htab_hash_pointer (pair->old);
4008 }
4009
4010 static int
4011 type_pair_eq (const void *item_lhs, const void *item_rhs)
4012 {
4013 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4014
4015 return lhs->old == rhs->old;
4016 }
4017
4018 /* Allocate the hash table used by copy_type_recursive to walk
4019 types without duplicates. We use OBJFILE's obstack, because
4020 OBJFILE is about to be deleted. */
4021
4022 htab_t
4023 create_copied_types_hash (struct objfile *objfile)
4024 {
4025 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4026 NULL, &objfile->objfile_obstack,
4027 hashtab_obstack_allocate,
4028 dummy_obstack_deallocate);
4029 }
4030
4031 /* Recursively copy (deep copy) TYPE, if it is associated with
4032 OBJFILE. Return a new type allocated using malloc, a saved type if
4033 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4034 not associated with OBJFILE. */
4035
4036 struct type *
4037 copy_type_recursive (struct objfile *objfile,
4038 struct type *type,
4039 htab_t copied_types)
4040 {
4041 struct type_pair *stored, pair;
4042 void **slot;
4043 struct type *new_type;
4044
4045 if (! TYPE_OBJFILE_OWNED (type))
4046 return type;
4047
4048 /* This type shouldn't be pointing to any types in other objfiles;
4049 if it did, the type might disappear unexpectedly. */
4050 gdb_assert (TYPE_OBJFILE (type) == objfile);
4051
4052 pair.old = type;
4053 slot = htab_find_slot (copied_types, &pair, INSERT);
4054 if (*slot != NULL)
4055 return ((struct type_pair *) *slot)->new;
4056
4057 new_type = alloc_type_arch (get_type_arch (type));
4058
4059 /* We must add the new type to the hash table immediately, in case
4060 we encounter this type again during a recursive call below. */
4061 stored
4062 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4063 stored->old = type;
4064 stored->new = new_type;
4065 *slot = stored;
4066
4067 /* Copy the common fields of types. For the main type, we simply
4068 copy the entire thing and then update specific fields as needed. */
4069 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4070 TYPE_OBJFILE_OWNED (new_type) = 0;
4071 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4072
4073 if (TYPE_NAME (type))
4074 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4075 if (TYPE_TAG_NAME (type))
4076 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4077
4078 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4079 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4080
4081 /* Copy the fields. */
4082 if (TYPE_NFIELDS (type))
4083 {
4084 int i, nfields;
4085
4086 nfields = TYPE_NFIELDS (type);
4087 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4088 for (i = 0; i < nfields; i++)
4089 {
4090 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4091 TYPE_FIELD_ARTIFICIAL (type, i);
4092 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4093 if (TYPE_FIELD_TYPE (type, i))
4094 TYPE_FIELD_TYPE (new_type, i)
4095 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4096 copied_types);
4097 if (TYPE_FIELD_NAME (type, i))
4098 TYPE_FIELD_NAME (new_type, i) =
4099 xstrdup (TYPE_FIELD_NAME (type, i));
4100 switch (TYPE_FIELD_LOC_KIND (type, i))
4101 {
4102 case FIELD_LOC_KIND_BITPOS:
4103 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4104 TYPE_FIELD_BITPOS (type, i));
4105 break;
4106 case FIELD_LOC_KIND_ENUMVAL:
4107 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4108 TYPE_FIELD_ENUMVAL (type, i));
4109 break;
4110 case FIELD_LOC_KIND_PHYSADDR:
4111 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4112 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4113 break;
4114 case FIELD_LOC_KIND_PHYSNAME:
4115 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4116 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4117 i)));
4118 break;
4119 default:
4120 internal_error (__FILE__, __LINE__,
4121 _("Unexpected type field location kind: %d"),
4122 TYPE_FIELD_LOC_KIND (type, i));
4123 }
4124 }
4125 }
4126
4127 /* For range types, copy the bounds information. */
4128 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4129 {
4130 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4131 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4132 }
4133
4134 /* Copy the data location information. */
4135 if (TYPE_DATA_LOCATION (type) != NULL)
4136 {
4137 TYPE_DATA_LOCATION (new_type)
4138 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4139 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4140 sizeof (struct dynamic_prop));
4141 }
4142
4143 /* Copy pointers to other types. */
4144 if (TYPE_TARGET_TYPE (type))
4145 TYPE_TARGET_TYPE (new_type) =
4146 copy_type_recursive (objfile,
4147 TYPE_TARGET_TYPE (type),
4148 copied_types);
4149 if (TYPE_VPTR_BASETYPE (type))
4150 TYPE_VPTR_BASETYPE (new_type) =
4151 copy_type_recursive (objfile,
4152 TYPE_VPTR_BASETYPE (type),
4153 copied_types);
4154 /* Maybe copy the type_specific bits.
4155
4156 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4157 base classes and methods. There's no fundamental reason why we
4158 can't, but at the moment it is not needed. */
4159
4160 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4161 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4162 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4163 || TYPE_CODE (type) == TYPE_CODE_UNION
4164 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4165 INIT_CPLUS_SPECIFIC (new_type);
4166
4167 return new_type;
4168 }
4169
4170 /* Make a copy of the given TYPE, except that the pointer & reference
4171 types are not preserved.
4172
4173 This function assumes that the given type has an associated objfile.
4174 This objfile is used to allocate the new type. */
4175
4176 struct type *
4177 copy_type (const struct type *type)
4178 {
4179 struct type *new_type;
4180
4181 gdb_assert (TYPE_OBJFILE_OWNED (type));
4182
4183 new_type = alloc_type_copy (type);
4184 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4185 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4186 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4187 sizeof (struct main_type));
4188 if (TYPE_DATA_LOCATION (type) != NULL)
4189 {
4190 TYPE_DATA_LOCATION (new_type)
4191 = TYPE_ALLOC (new_type, sizeof (struct dynamic_prop));
4192 memcpy (TYPE_DATA_LOCATION (new_type), TYPE_DATA_LOCATION (type),
4193 sizeof (struct dynamic_prop));
4194 }
4195
4196 return new_type;
4197 }
4198 \f
4199 /* Helper functions to initialize architecture-specific types. */
4200
4201 /* Allocate a type structure associated with GDBARCH and set its
4202 CODE, LENGTH, and NAME fields. */
4203
4204 struct type *
4205 arch_type (struct gdbarch *gdbarch,
4206 enum type_code code, int length, char *name)
4207 {
4208 struct type *type;
4209
4210 type = alloc_type_arch (gdbarch);
4211 TYPE_CODE (type) = code;
4212 TYPE_LENGTH (type) = length;
4213
4214 if (name)
4215 TYPE_NAME (type) = xstrdup (name);
4216
4217 return type;
4218 }
4219
4220 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4221 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4222 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4223
4224 struct type *
4225 arch_integer_type (struct gdbarch *gdbarch,
4226 int bit, int unsigned_p, char *name)
4227 {
4228 struct type *t;
4229
4230 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4231 if (unsigned_p)
4232 TYPE_UNSIGNED (t) = 1;
4233 if (name && strcmp (name, "char") == 0)
4234 TYPE_NOSIGN (t) = 1;
4235
4236 return t;
4237 }
4238
4239 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4240 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4241 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4242
4243 struct type *
4244 arch_character_type (struct gdbarch *gdbarch,
4245 int bit, int unsigned_p, char *name)
4246 {
4247 struct type *t;
4248
4249 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4250 if (unsigned_p)
4251 TYPE_UNSIGNED (t) = 1;
4252
4253 return t;
4254 }
4255
4256 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4257 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4258 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4259
4260 struct type *
4261 arch_boolean_type (struct gdbarch *gdbarch,
4262 int bit, int unsigned_p, char *name)
4263 {
4264 struct type *t;
4265
4266 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4267 if (unsigned_p)
4268 TYPE_UNSIGNED (t) = 1;
4269
4270 return t;
4271 }
4272
4273 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4274 BIT is the type size in bits; if BIT equals -1, the size is
4275 determined by the floatformat. NAME is the type name. Set the
4276 TYPE_FLOATFORMAT from FLOATFORMATS. */
4277
4278 struct type *
4279 arch_float_type (struct gdbarch *gdbarch,
4280 int bit, char *name, const struct floatformat **floatformats)
4281 {
4282 struct type *t;
4283
4284 if (bit == -1)
4285 {
4286 gdb_assert (floatformats != NULL);
4287 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4288 bit = floatformats[0]->totalsize;
4289 }
4290 gdb_assert (bit >= 0);
4291
4292 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4293 TYPE_FLOATFORMAT (t) = floatformats;
4294 return t;
4295 }
4296
4297 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4298 NAME is the type name. TARGET_TYPE is the component float type. */
4299
4300 struct type *
4301 arch_complex_type (struct gdbarch *gdbarch,
4302 char *name, struct type *target_type)
4303 {
4304 struct type *t;
4305
4306 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4307 2 * TYPE_LENGTH (target_type), name);
4308 TYPE_TARGET_TYPE (t) = target_type;
4309 return t;
4310 }
4311
4312 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4313 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4314
4315 struct type *
4316 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4317 {
4318 int nfields = length * TARGET_CHAR_BIT;
4319 struct type *type;
4320
4321 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4322 TYPE_UNSIGNED (type) = 1;
4323 TYPE_NFIELDS (type) = nfields;
4324 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4325
4326 return type;
4327 }
4328
4329 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4330 position BITPOS is called NAME. */
4331
4332 void
4333 append_flags_type_flag (struct type *type, int bitpos, char *name)
4334 {
4335 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4336 gdb_assert (bitpos < TYPE_NFIELDS (type));
4337 gdb_assert (bitpos >= 0);
4338
4339 if (name)
4340 {
4341 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4342 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4343 }
4344 else
4345 {
4346 /* Don't show this field to the user. */
4347 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4348 }
4349 }
4350
4351 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4352 specified by CODE) associated with GDBARCH. NAME is the type name. */
4353
4354 struct type *
4355 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4356 {
4357 struct type *t;
4358
4359 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4360 t = arch_type (gdbarch, code, 0, NULL);
4361 TYPE_TAG_NAME (t) = name;
4362 INIT_CPLUS_SPECIFIC (t);
4363 return t;
4364 }
4365
4366 /* Add new field with name NAME and type FIELD to composite type T.
4367 Do not set the field's position or adjust the type's length;
4368 the caller should do so. Return the new field. */
4369
4370 struct field *
4371 append_composite_type_field_raw (struct type *t, char *name,
4372 struct type *field)
4373 {
4374 struct field *f;
4375
4376 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4377 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4378 sizeof (struct field) * TYPE_NFIELDS (t));
4379 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4380 memset (f, 0, sizeof f[0]);
4381 FIELD_TYPE (f[0]) = field;
4382 FIELD_NAME (f[0]) = name;
4383 return f;
4384 }
4385
4386 /* Add new field with name NAME and type FIELD to composite type T.
4387 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4388
4389 void
4390 append_composite_type_field_aligned (struct type *t, char *name,
4391 struct type *field, int alignment)
4392 {
4393 struct field *f = append_composite_type_field_raw (t, name, field);
4394
4395 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4396 {
4397 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4398 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4399 }
4400 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4401 {
4402 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4403 if (TYPE_NFIELDS (t) > 1)
4404 {
4405 SET_FIELD_BITPOS (f[0],
4406 (FIELD_BITPOS (f[-1])
4407 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4408 * TARGET_CHAR_BIT)));
4409
4410 if (alignment)
4411 {
4412 int left;
4413
4414 alignment *= TARGET_CHAR_BIT;
4415 left = FIELD_BITPOS (f[0]) % alignment;
4416
4417 if (left)
4418 {
4419 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4420 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4421 }
4422 }
4423 }
4424 }
4425 }
4426
4427 /* Add new field with name NAME and type FIELD to composite type T. */
4428
4429 void
4430 append_composite_type_field (struct type *t, char *name,
4431 struct type *field)
4432 {
4433 append_composite_type_field_aligned (t, name, field, 0);
4434 }
4435
4436 static struct gdbarch_data *gdbtypes_data;
4437
4438 const struct builtin_type *
4439 builtin_type (struct gdbarch *gdbarch)
4440 {
4441 return gdbarch_data (gdbarch, gdbtypes_data);
4442 }
4443
4444 static void *
4445 gdbtypes_post_init (struct gdbarch *gdbarch)
4446 {
4447 struct builtin_type *builtin_type
4448 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4449
4450 /* Basic types. */
4451 builtin_type->builtin_void
4452 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4453 builtin_type->builtin_char
4454 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4455 !gdbarch_char_signed (gdbarch), "char");
4456 builtin_type->builtin_signed_char
4457 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4458 0, "signed char");
4459 builtin_type->builtin_unsigned_char
4460 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4461 1, "unsigned char");
4462 builtin_type->builtin_short
4463 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4464 0, "short");
4465 builtin_type->builtin_unsigned_short
4466 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4467 1, "unsigned short");
4468 builtin_type->builtin_int
4469 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4470 0, "int");
4471 builtin_type->builtin_unsigned_int
4472 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4473 1, "unsigned int");
4474 builtin_type->builtin_long
4475 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4476 0, "long");
4477 builtin_type->builtin_unsigned_long
4478 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4479 1, "unsigned long");
4480 builtin_type->builtin_long_long
4481 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4482 0, "long long");
4483 builtin_type->builtin_unsigned_long_long
4484 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4485 1, "unsigned long long");
4486 builtin_type->builtin_float
4487 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4488 "float", gdbarch_float_format (gdbarch));
4489 builtin_type->builtin_double
4490 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4491 "double", gdbarch_double_format (gdbarch));
4492 builtin_type->builtin_long_double
4493 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4494 "long double", gdbarch_long_double_format (gdbarch));
4495 builtin_type->builtin_complex
4496 = arch_complex_type (gdbarch, "complex",
4497 builtin_type->builtin_float);
4498 builtin_type->builtin_double_complex
4499 = arch_complex_type (gdbarch, "double complex",
4500 builtin_type->builtin_double);
4501 builtin_type->builtin_string
4502 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4503 builtin_type->builtin_bool
4504 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4505
4506 /* The following three are about decimal floating point types, which
4507 are 32-bits, 64-bits and 128-bits respectively. */
4508 builtin_type->builtin_decfloat
4509 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4510 builtin_type->builtin_decdouble
4511 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4512 builtin_type->builtin_declong
4513 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4514
4515 /* "True" character types. */
4516 builtin_type->builtin_true_char
4517 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4518 builtin_type->builtin_true_unsigned_char
4519 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4520
4521 /* Fixed-size integer types. */
4522 builtin_type->builtin_int0
4523 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4524 builtin_type->builtin_int8
4525 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4526 builtin_type->builtin_uint8
4527 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4528 builtin_type->builtin_int16
4529 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4530 builtin_type->builtin_uint16
4531 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4532 builtin_type->builtin_int32
4533 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4534 builtin_type->builtin_uint32
4535 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4536 builtin_type->builtin_int64
4537 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4538 builtin_type->builtin_uint64
4539 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4540 builtin_type->builtin_int128
4541 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4542 builtin_type->builtin_uint128
4543 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4544 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4545 TYPE_INSTANCE_FLAG_NOTTEXT;
4546 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4547 TYPE_INSTANCE_FLAG_NOTTEXT;
4548
4549 /* Wide character types. */
4550 builtin_type->builtin_char16
4551 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4552 builtin_type->builtin_char32
4553 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4554
4555
4556 /* Default data/code pointer types. */
4557 builtin_type->builtin_data_ptr
4558 = lookup_pointer_type (builtin_type->builtin_void);
4559 builtin_type->builtin_func_ptr
4560 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4561 builtin_type->builtin_func_func
4562 = lookup_function_type (builtin_type->builtin_func_ptr);
4563
4564 /* This type represents a GDB internal function. */
4565 builtin_type->internal_fn
4566 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4567 "<internal function>");
4568
4569 /* This type represents an xmethod. */
4570 builtin_type->xmethod
4571 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4572
4573 return builtin_type;
4574 }
4575
4576 /* This set of objfile-based types is intended to be used by symbol
4577 readers as basic types. */
4578
4579 static const struct objfile_data *objfile_type_data;
4580
4581 const struct objfile_type *
4582 objfile_type (struct objfile *objfile)
4583 {
4584 struct gdbarch *gdbarch;
4585 struct objfile_type *objfile_type
4586 = objfile_data (objfile, objfile_type_data);
4587
4588 if (objfile_type)
4589 return objfile_type;
4590
4591 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4592 1, struct objfile_type);
4593
4594 /* Use the objfile architecture to determine basic type properties. */
4595 gdbarch = get_objfile_arch (objfile);
4596
4597 /* Basic types. */
4598 objfile_type->builtin_void
4599 = init_type (TYPE_CODE_VOID, 1,
4600 0,
4601 "void", objfile);
4602
4603 objfile_type->builtin_char
4604 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4605 (TYPE_FLAG_NOSIGN
4606 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4607 "char", objfile);
4608 objfile_type->builtin_signed_char
4609 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4610 0,
4611 "signed char", objfile);
4612 objfile_type->builtin_unsigned_char
4613 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4614 TYPE_FLAG_UNSIGNED,
4615 "unsigned char", objfile);
4616 objfile_type->builtin_short
4617 = init_type (TYPE_CODE_INT,
4618 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4619 0, "short", objfile);
4620 objfile_type->builtin_unsigned_short
4621 = init_type (TYPE_CODE_INT,
4622 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4623 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4624 objfile_type->builtin_int
4625 = init_type (TYPE_CODE_INT,
4626 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4627 0, "int", objfile);
4628 objfile_type->builtin_unsigned_int
4629 = init_type (TYPE_CODE_INT,
4630 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4631 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4632 objfile_type->builtin_long
4633 = init_type (TYPE_CODE_INT,
4634 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4635 0, "long", objfile);
4636 objfile_type->builtin_unsigned_long
4637 = init_type (TYPE_CODE_INT,
4638 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4639 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4640 objfile_type->builtin_long_long
4641 = init_type (TYPE_CODE_INT,
4642 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4643 0, "long long", objfile);
4644 objfile_type->builtin_unsigned_long_long
4645 = init_type (TYPE_CODE_INT,
4646 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4647 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4648
4649 objfile_type->builtin_float
4650 = init_type (TYPE_CODE_FLT,
4651 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4652 0, "float", objfile);
4653 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4654 = gdbarch_float_format (gdbarch);
4655 objfile_type->builtin_double
4656 = init_type (TYPE_CODE_FLT,
4657 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4658 0, "double", objfile);
4659 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4660 = gdbarch_double_format (gdbarch);
4661 objfile_type->builtin_long_double
4662 = init_type (TYPE_CODE_FLT,
4663 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4664 0, "long double", objfile);
4665 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4666 = gdbarch_long_double_format (gdbarch);
4667
4668 /* This type represents a type that was unrecognized in symbol read-in. */
4669 objfile_type->builtin_error
4670 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4671
4672 /* The following set of types is used for symbols with no
4673 debug information. */
4674 objfile_type->nodebug_text_symbol
4675 = init_type (TYPE_CODE_FUNC, 1, 0,
4676 "<text variable, no debug info>", objfile);
4677 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4678 = objfile_type->builtin_int;
4679 objfile_type->nodebug_text_gnu_ifunc_symbol
4680 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4681 "<text gnu-indirect-function variable, no debug info>",
4682 objfile);
4683 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4684 = objfile_type->nodebug_text_symbol;
4685 objfile_type->nodebug_got_plt_symbol
4686 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4687 "<text from jump slot in .got.plt, no debug info>",
4688 objfile);
4689 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4690 = objfile_type->nodebug_text_symbol;
4691 objfile_type->nodebug_data_symbol
4692 = init_type (TYPE_CODE_INT,
4693 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4694 "<data variable, no debug info>", objfile);
4695 objfile_type->nodebug_unknown_symbol
4696 = init_type (TYPE_CODE_INT, 1, 0,
4697 "<variable (not text or data), no debug info>", objfile);
4698 objfile_type->nodebug_tls_symbol
4699 = init_type (TYPE_CODE_INT,
4700 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4701 "<thread local variable, no debug info>", objfile);
4702
4703 /* NOTE: on some targets, addresses and pointers are not necessarily
4704 the same.
4705
4706 The upshot is:
4707 - gdb's `struct type' always describes the target's
4708 representation.
4709 - gdb's `struct value' objects should always hold values in
4710 target form.
4711 - gdb's CORE_ADDR values are addresses in the unified virtual
4712 address space that the assembler and linker work with. Thus,
4713 since target_read_memory takes a CORE_ADDR as an argument, it
4714 can access any memory on the target, even if the processor has
4715 separate code and data address spaces.
4716
4717 In this context, objfile_type->builtin_core_addr is a bit odd:
4718 it's a target type for a value the target will never see. It's
4719 only used to hold the values of (typeless) linker symbols, which
4720 are indeed in the unified virtual address space. */
4721
4722 objfile_type->builtin_core_addr
4723 = init_type (TYPE_CODE_INT,
4724 gdbarch_addr_bit (gdbarch) / 8,
4725 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4726
4727 set_objfile_data (objfile, objfile_type_data, objfile_type);
4728 return objfile_type;
4729 }
4730
4731 extern initialize_file_ftype _initialize_gdbtypes;
4732
4733 void
4734 _initialize_gdbtypes (void)
4735 {
4736 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4737 objfile_type_data = register_objfile_data ();
4738
4739 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4740 _("Set debugging of C++ overloading."),
4741 _("Show debugging of C++ overloading."),
4742 _("When enabled, ranking of the "
4743 "functions is displayed."),
4744 NULL,
4745 show_overload_debug,
4746 &setdebuglist, &showdebuglist);
4747
4748 /* Add user knob for controlling resolution of opaque types. */
4749 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4750 &opaque_type_resolution,
4751 _("Set resolution of opaque struct/class/union"
4752 " types (if set before loading symbols)."),
4753 _("Show resolution of opaque struct/class/union"
4754 " types (if set before loading symbols)."),
4755 NULL, NULL,
4756 show_opaque_type_resolution,
4757 &setlist, &showlist);
4758
4759 /* Add an option to permit non-strict type checking. */
4760 add_setshow_boolean_cmd ("type", class_support,
4761 &strict_type_checking,
4762 _("Set strict type checking."),
4763 _("Show strict type checking."),
4764 NULL, NULL,
4765 show_strict_type_checking,
4766 &setchecklist, &showchecklist);
4767 }
This page took 0.141824 seconds and 4 git commands to generate.