DWARF: Add array DW_AT_bit_stride and DW_AT_byte_stride support
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_VPTR_FIELDNO (type) = -1;
186 TYPE_CHAIN (type) = type; /* Chain back to itself. */
187
188 return type;
189 }
190
191 /* Allocate a new GDBARCH-associated type structure and fill it
192 with some defaults. Space for the type structure is allocated
193 on the heap. */
194
195 struct type *
196 alloc_type_arch (struct gdbarch *gdbarch)
197 {
198 struct type *type;
199
200 gdb_assert (gdbarch != NULL);
201
202 /* Alloc the structure and start off with all fields zeroed. */
203
204 type = XCNEW (struct type);
205 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
206
207 TYPE_OBJFILE_OWNED (type) = 0;
208 TYPE_OWNER (type).gdbarch = gdbarch;
209
210 /* Initialize the fields that might not be zero. */
211
212 TYPE_CODE (type) = TYPE_CODE_UNDEF;
213 TYPE_VPTR_FIELDNO (type) = -1;
214 TYPE_CHAIN (type) = type; /* Chain back to itself. */
215
216 return type;
217 }
218
219 /* If TYPE is objfile-associated, allocate a new type structure
220 associated with the same objfile. If TYPE is gdbarch-associated,
221 allocate a new type structure associated with the same gdbarch. */
222
223 struct type *
224 alloc_type_copy (const struct type *type)
225 {
226 if (TYPE_OBJFILE_OWNED (type))
227 return alloc_type (TYPE_OWNER (type).objfile);
228 else
229 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
230 }
231
232 /* If TYPE is gdbarch-associated, return that architecture.
233 If TYPE is objfile-associated, return that objfile's architecture. */
234
235 struct gdbarch *
236 get_type_arch (const struct type *type)
237 {
238 if (TYPE_OBJFILE_OWNED (type))
239 return get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 return TYPE_OWNER (type).gdbarch;
242 }
243
244 /* See gdbtypes.h. */
245
246 struct type *
247 get_target_type (struct type *type)
248 {
249 if (type != NULL)
250 {
251 type = TYPE_TARGET_TYPE (type);
252 if (type != NULL)
253 type = check_typedef (type);
254 }
255
256 return type;
257 }
258
259 /* Alloc a new type instance structure, fill it with some defaults,
260 and point it at OLDTYPE. Allocate the new type instance from the
261 same place as OLDTYPE. */
262
263 static struct type *
264 alloc_type_instance (struct type *oldtype)
265 {
266 struct type *type;
267
268 /* Allocate the structure. */
269
270 if (! TYPE_OBJFILE_OWNED (oldtype))
271 type = XCNEW (struct type);
272 else
273 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
274 struct type);
275
276 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
277
278 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
279
280 return type;
281 }
282
283 /* Clear all remnants of the previous type at TYPE, in preparation for
284 replacing it with something else. Preserve owner information. */
285
286 static void
287 smash_type (struct type *type)
288 {
289 int objfile_owned = TYPE_OBJFILE_OWNED (type);
290 union type_owner owner = TYPE_OWNER (type);
291
292 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
293
294 /* Restore owner information. */
295 TYPE_OBJFILE_OWNED (type) = objfile_owned;
296 TYPE_OWNER (type) = owner;
297
298 /* For now, delete the rings. */
299 TYPE_CHAIN (type) = type;
300
301 /* For now, leave the pointer/reference types alone. */
302 }
303
304 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
305 to a pointer to memory where the pointer type should be stored.
306 If *TYPEPTR is zero, update it to point to the pointer type we return.
307 We allocate new memory if needed. */
308
309 struct type *
310 make_pointer_type (struct type *type, struct type **typeptr)
311 {
312 struct type *ntype; /* New type */
313 struct type *chain;
314
315 ntype = TYPE_POINTER_TYPE (type);
316
317 if (ntype)
318 {
319 if (typeptr == 0)
320 return ntype; /* Don't care about alloc,
321 and have new type. */
322 else if (*typeptr == 0)
323 {
324 *typeptr = ntype; /* Tracking alloc, and have new type. */
325 return ntype;
326 }
327 }
328
329 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
330 {
331 ntype = alloc_type_copy (type);
332 if (typeptr)
333 *typeptr = ntype;
334 }
335 else /* We have storage, but need to reset it. */
336 {
337 ntype = *typeptr;
338 chain = TYPE_CHAIN (ntype);
339 smash_type (ntype);
340 TYPE_CHAIN (ntype) = chain;
341 }
342
343 TYPE_TARGET_TYPE (ntype) = type;
344 TYPE_POINTER_TYPE (type) = ntype;
345
346 /* FIXME! Assumes the machine has only one representation for pointers! */
347
348 TYPE_LENGTH (ntype)
349 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
350 TYPE_CODE (ntype) = TYPE_CODE_PTR;
351
352 /* Mark pointers as unsigned. The target converts between pointers
353 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
354 gdbarch_address_to_pointer. */
355 TYPE_UNSIGNED (ntype) = 1;
356
357 /* Update the length of all the other variants of this type. */
358 chain = TYPE_CHAIN (ntype);
359 while (chain != ntype)
360 {
361 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
362 chain = TYPE_CHAIN (chain);
363 }
364
365 return ntype;
366 }
367
368 /* Given a type TYPE, return a type of pointers to that type.
369 May need to construct such a type if this is the first use. */
370
371 struct type *
372 lookup_pointer_type (struct type *type)
373 {
374 return make_pointer_type (type, (struct type **) 0);
375 }
376
377 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
378 points to a pointer to memory where the reference type should be
379 stored. If *TYPEPTR is zero, update it to point to the reference
380 type we return. We allocate new memory if needed. */
381
382 struct type *
383 make_reference_type (struct type *type, struct type **typeptr)
384 {
385 struct type *ntype; /* New type */
386 struct type *chain;
387
388 ntype = TYPE_REFERENCE_TYPE (type);
389
390 if (ntype)
391 {
392 if (typeptr == 0)
393 return ntype; /* Don't care about alloc,
394 and have new type. */
395 else if (*typeptr == 0)
396 {
397 *typeptr = ntype; /* Tracking alloc, and have new type. */
398 return ntype;
399 }
400 }
401
402 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
403 {
404 ntype = alloc_type_copy (type);
405 if (typeptr)
406 *typeptr = ntype;
407 }
408 else /* We have storage, but need to reset it. */
409 {
410 ntype = *typeptr;
411 chain = TYPE_CHAIN (ntype);
412 smash_type (ntype);
413 TYPE_CHAIN (ntype) = chain;
414 }
415
416 TYPE_TARGET_TYPE (ntype) = type;
417 TYPE_REFERENCE_TYPE (type) = ntype;
418
419 /* FIXME! Assume the machine has only one representation for
420 references, and that it matches the (only) representation for
421 pointers! */
422
423 TYPE_LENGTH (ntype) =
424 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
425 TYPE_CODE (ntype) = TYPE_CODE_REF;
426
427 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
428 TYPE_REFERENCE_TYPE (type) = ntype;
429
430 /* Update the length of all the other variants of this type. */
431 chain = TYPE_CHAIN (ntype);
432 while (chain != ntype)
433 {
434 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
435 chain = TYPE_CHAIN (chain);
436 }
437
438 return ntype;
439 }
440
441 /* Same as above, but caller doesn't care about memory allocation
442 details. */
443
444 struct type *
445 lookup_reference_type (struct type *type)
446 {
447 return make_reference_type (type, (struct type **) 0);
448 }
449
450 /* Lookup a function type that returns type TYPE. TYPEPTR, if
451 nonzero, points to a pointer to memory where the function type
452 should be stored. If *TYPEPTR is zero, update it to point to the
453 function type we return. We allocate new memory if needed. */
454
455 struct type *
456 make_function_type (struct type *type, struct type **typeptr)
457 {
458 struct type *ntype; /* New type */
459
460 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
461 {
462 ntype = alloc_type_copy (type);
463 if (typeptr)
464 *typeptr = ntype;
465 }
466 else /* We have storage, but need to reset it. */
467 {
468 ntype = *typeptr;
469 smash_type (ntype);
470 }
471
472 TYPE_TARGET_TYPE (ntype) = type;
473
474 TYPE_LENGTH (ntype) = 1;
475 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
476
477 INIT_FUNC_SPECIFIC (ntype);
478
479 return ntype;
480 }
481
482 /* Given a type TYPE, return a type of functions that return that type.
483 May need to construct such a type if this is the first use. */
484
485 struct type *
486 lookup_function_type (struct type *type)
487 {
488 return make_function_type (type, (struct type **) 0);
489 }
490
491 /* Given a type TYPE and argument types, return the appropriate
492 function type. If the final type in PARAM_TYPES is NULL, make a
493 varargs function. */
494
495 struct type *
496 lookup_function_type_with_arguments (struct type *type,
497 int nparams,
498 struct type **param_types)
499 {
500 struct type *fn = make_function_type (type, (struct type **) 0);
501 int i;
502
503 if (nparams > 0)
504 {
505 if (param_types[nparams - 1] == NULL)
506 {
507 --nparams;
508 TYPE_VARARGS (fn) = 1;
509 }
510 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
511 == TYPE_CODE_VOID)
512 {
513 --nparams;
514 /* Caller should have ensured this. */
515 gdb_assert (nparams == 0);
516 TYPE_PROTOTYPED (fn) = 1;
517 }
518 }
519
520 TYPE_NFIELDS (fn) = nparams;
521 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
522 for (i = 0; i < nparams; ++i)
523 TYPE_FIELD_TYPE (fn, i) = param_types[i];
524
525 return fn;
526 }
527
528 /* Identify address space identifier by name --
529 return the integer flag defined in gdbtypes.h. */
530
531 int
532 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
533 {
534 int type_flags;
535
536 /* Check for known address space delimiters. */
537 if (!strcmp (space_identifier, "code"))
538 return TYPE_INSTANCE_FLAG_CODE_SPACE;
539 else if (!strcmp (space_identifier, "data"))
540 return TYPE_INSTANCE_FLAG_DATA_SPACE;
541 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
542 && gdbarch_address_class_name_to_type_flags (gdbarch,
543 space_identifier,
544 &type_flags))
545 return type_flags;
546 else
547 error (_("Unknown address space specifier: \"%s\""), space_identifier);
548 }
549
550 /* Identify address space identifier by integer flag as defined in
551 gdbtypes.h -- return the string version of the adress space name. */
552
553 const char *
554 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
555 {
556 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
557 return "code";
558 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
559 return "data";
560 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
561 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
562 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
563 else
564 return NULL;
565 }
566
567 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
568
569 If STORAGE is non-NULL, create the new type instance there.
570 STORAGE must be in the same obstack as TYPE. */
571
572 static struct type *
573 make_qualified_type (struct type *type, int new_flags,
574 struct type *storage)
575 {
576 struct type *ntype;
577
578 ntype = type;
579 do
580 {
581 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
582 return ntype;
583 ntype = TYPE_CHAIN (ntype);
584 }
585 while (ntype != type);
586
587 /* Create a new type instance. */
588 if (storage == NULL)
589 ntype = alloc_type_instance (type);
590 else
591 {
592 /* If STORAGE was provided, it had better be in the same objfile
593 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
594 if one objfile is freed and the other kept, we'd have
595 dangling pointers. */
596 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
597
598 ntype = storage;
599 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
600 TYPE_CHAIN (ntype) = ntype;
601 }
602
603 /* Pointers or references to the original type are not relevant to
604 the new type. */
605 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
606 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
607
608 /* Chain the new qualified type to the old type. */
609 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
610 TYPE_CHAIN (type) = ntype;
611
612 /* Now set the instance flags and return the new type. */
613 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
614
615 /* Set length of new type to that of the original type. */
616 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
617
618 return ntype;
619 }
620
621 /* Make an address-space-delimited variant of a type -- a type that
622 is identical to the one supplied except that it has an address
623 space attribute attached to it (such as "code" or "data").
624
625 The space attributes "code" and "data" are for Harvard
626 architectures. The address space attributes are for architectures
627 which have alternately sized pointers or pointers with alternate
628 representations. */
629
630 struct type *
631 make_type_with_address_space (struct type *type, int space_flag)
632 {
633 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
634 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
635 | TYPE_INSTANCE_FLAG_DATA_SPACE
636 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
637 | space_flag);
638
639 return make_qualified_type (type, new_flags, NULL);
640 }
641
642 /* Make a "c-v" variant of a type -- a type that is identical to the
643 one supplied except that it may have const or volatile attributes
644 CNST is a flag for setting the const attribute
645 VOLTL is a flag for setting the volatile attribute
646 TYPE is the base type whose variant we are creating.
647
648 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
649 storage to hold the new qualified type; *TYPEPTR and TYPE must be
650 in the same objfile. Otherwise, allocate fresh memory for the new
651 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
652 new type we construct. */
653
654 struct type *
655 make_cv_type (int cnst, int voltl,
656 struct type *type,
657 struct type **typeptr)
658 {
659 struct type *ntype; /* New type */
660
661 int new_flags = (TYPE_INSTANCE_FLAGS (type)
662 & ~(TYPE_INSTANCE_FLAG_CONST
663 | TYPE_INSTANCE_FLAG_VOLATILE));
664
665 if (cnst)
666 new_flags |= TYPE_INSTANCE_FLAG_CONST;
667
668 if (voltl)
669 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
670
671 if (typeptr && *typeptr != NULL)
672 {
673 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
674 a C-V variant chain that threads across objfiles: if one
675 objfile gets freed, then the other has a broken C-V chain.
676
677 This code used to try to copy over the main type from TYPE to
678 *TYPEPTR if they were in different objfiles, but that's
679 wrong, too: TYPE may have a field list or member function
680 lists, which refer to types of their own, etc. etc. The
681 whole shebang would need to be copied over recursively; you
682 can't have inter-objfile pointers. The only thing to do is
683 to leave stub types as stub types, and look them up afresh by
684 name each time you encounter them. */
685 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
686 }
687
688 ntype = make_qualified_type (type, new_flags,
689 typeptr ? *typeptr : NULL);
690
691 if (typeptr != NULL)
692 *typeptr = ntype;
693
694 return ntype;
695 }
696
697 /* Make a 'restrict'-qualified version of TYPE. */
698
699 struct type *
700 make_restrict_type (struct type *type)
701 {
702 return make_qualified_type (type,
703 (TYPE_INSTANCE_FLAGS (type)
704 | TYPE_INSTANCE_FLAG_RESTRICT),
705 NULL);
706 }
707
708 /* Replace the contents of ntype with the type *type. This changes the
709 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
710 the changes are propogated to all types in the TYPE_CHAIN.
711
712 In order to build recursive types, it's inevitable that we'll need
713 to update types in place --- but this sort of indiscriminate
714 smashing is ugly, and needs to be replaced with something more
715 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
716 clear if more steps are needed. */
717
718 void
719 replace_type (struct type *ntype, struct type *type)
720 {
721 struct type *chain;
722
723 /* These two types had better be in the same objfile. Otherwise,
724 the assignment of one type's main type structure to the other
725 will produce a type with references to objects (names; field
726 lists; etc.) allocated on an objfile other than its own. */
727 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
728
729 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
730
731 /* The type length is not a part of the main type. Update it for
732 each type on the variant chain. */
733 chain = ntype;
734 do
735 {
736 /* Assert that this element of the chain has no address-class bits
737 set in its flags. Such type variants might have type lengths
738 which are supposed to be different from the non-address-class
739 variants. This assertion shouldn't ever be triggered because
740 symbol readers which do construct address-class variants don't
741 call replace_type(). */
742 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
743
744 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
745 chain = TYPE_CHAIN (chain);
746 }
747 while (ntype != chain);
748
749 /* Assert that the two types have equivalent instance qualifiers.
750 This should be true for at least all of our debug readers. */
751 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
752 }
753
754 /* Implement direct support for MEMBER_TYPE in GNU C++.
755 May need to construct such a type if this is the first use.
756 The TYPE is the type of the member. The DOMAIN is the type
757 of the aggregate that the member belongs to. */
758
759 struct type *
760 lookup_memberptr_type (struct type *type, struct type *domain)
761 {
762 struct type *mtype;
763
764 mtype = alloc_type_copy (type);
765 smash_to_memberptr_type (mtype, domain, type);
766 return mtype;
767 }
768
769 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
770
771 struct type *
772 lookup_methodptr_type (struct type *to_type)
773 {
774 struct type *mtype;
775
776 mtype = alloc_type_copy (to_type);
777 smash_to_methodptr_type (mtype, to_type);
778 return mtype;
779 }
780
781 /* Allocate a stub method whose return type is TYPE. This apparently
782 happens for speed of symbol reading, since parsing out the
783 arguments to the method is cpu-intensive, the way we are doing it.
784 So, we will fill in arguments later. This always returns a fresh
785 type. */
786
787 struct type *
788 allocate_stub_method (struct type *type)
789 {
790 struct type *mtype;
791
792 mtype = alloc_type_copy (type);
793 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
794 TYPE_LENGTH (mtype) = 1;
795 TYPE_STUB (mtype) = 1;
796 TYPE_TARGET_TYPE (mtype) = type;
797 /* _DOMAIN_TYPE (mtype) = unknown yet */
798 return mtype;
799 }
800
801 /* Create a range type using either a blank type supplied in
802 RESULT_TYPE, or creating a new type, inheriting the objfile from
803 INDEX_TYPE.
804
805 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
806 to HIGH_BOUND, inclusive.
807
808 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
809 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
810
811 struct type *
812 create_range_type (struct type *result_type, struct type *index_type,
813 LONGEST low_bound, LONGEST high_bound)
814 {
815 if (result_type == NULL)
816 result_type = alloc_type_copy (index_type);
817 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
818 TYPE_TARGET_TYPE (result_type) = index_type;
819 if (TYPE_STUB (index_type))
820 TYPE_TARGET_STUB (result_type) = 1;
821 else
822 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
823 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
824 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
825 TYPE_LOW_BOUND (result_type) = low_bound;
826 TYPE_HIGH_BOUND (result_type) = high_bound;
827
828 if (low_bound >= 0)
829 TYPE_UNSIGNED (result_type) = 1;
830
831 return result_type;
832 }
833
834 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
835 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
836 bounds will fit in LONGEST), or -1 otherwise. */
837
838 int
839 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
840 {
841 CHECK_TYPEDEF (type);
842 switch (TYPE_CODE (type))
843 {
844 case TYPE_CODE_RANGE:
845 *lowp = TYPE_LOW_BOUND (type);
846 *highp = TYPE_HIGH_BOUND (type);
847 return 1;
848 case TYPE_CODE_ENUM:
849 if (TYPE_NFIELDS (type) > 0)
850 {
851 /* The enums may not be sorted by value, so search all
852 entries. */
853 int i;
854
855 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
856 for (i = 0; i < TYPE_NFIELDS (type); i++)
857 {
858 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
859 *lowp = TYPE_FIELD_ENUMVAL (type, i);
860 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
861 *highp = TYPE_FIELD_ENUMVAL (type, i);
862 }
863
864 /* Set unsigned indicator if warranted. */
865 if (*lowp >= 0)
866 {
867 TYPE_UNSIGNED (type) = 1;
868 }
869 }
870 else
871 {
872 *lowp = 0;
873 *highp = -1;
874 }
875 return 0;
876 case TYPE_CODE_BOOL:
877 *lowp = 0;
878 *highp = 1;
879 return 0;
880 case TYPE_CODE_INT:
881 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
882 return -1;
883 if (!TYPE_UNSIGNED (type))
884 {
885 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
886 *highp = -*lowp - 1;
887 return 0;
888 }
889 /* ... fall through for unsigned ints ... */
890 case TYPE_CODE_CHAR:
891 *lowp = 0;
892 /* This round-about calculation is to avoid shifting by
893 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
894 if TYPE_LENGTH (type) == sizeof (LONGEST). */
895 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
896 *highp = (*highp - 1) | *highp;
897 return 0;
898 default:
899 return -1;
900 }
901 }
902
903 /* Assuming TYPE is a simple, non-empty array type, compute its upper
904 and lower bound. Save the low bound into LOW_BOUND if not NULL.
905 Save the high bound into HIGH_BOUND if not NULL.
906
907 Return 1 if the operation was successful. Return zero otherwise,
908 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
909
910 We now simply use get_discrete_bounds call to get the values
911 of the low and high bounds.
912 get_discrete_bounds can return three values:
913 1, meaning that index is a range,
914 0, meaning that index is a discrete type,
915 or -1 for failure. */
916
917 int
918 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
919 {
920 struct type *index = TYPE_INDEX_TYPE (type);
921 LONGEST low = 0;
922 LONGEST high = 0;
923 int res;
924
925 if (index == NULL)
926 return 0;
927
928 res = get_discrete_bounds (index, &low, &high);
929 if (res == -1)
930 return 0;
931
932 /* Check if the array bounds are undefined. */
933 if (res == 1
934 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
935 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
936 return 0;
937
938 if (low_bound)
939 *low_bound = low;
940
941 if (high_bound)
942 *high_bound = high;
943
944 return 1;
945 }
946
947 /* Create an array type using either a blank type supplied in
948 RESULT_TYPE, or creating a new type, inheriting the objfile from
949 RANGE_TYPE.
950
951 Elements will be of type ELEMENT_TYPE, the indices will be of type
952 RANGE_TYPE.
953
954 If BIT_STRIDE is not zero, build a packed array type whose element
955 size is BIT_STRIDE. Otherwise, ignore this parameter.
956
957 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
958 sure it is TYPE_CODE_UNDEF before we bash it into an array
959 type? */
960
961 struct type *
962 create_array_type_with_stride (struct type *result_type,
963 struct type *element_type,
964 struct type *range_type,
965 unsigned int bit_stride)
966 {
967 LONGEST low_bound, high_bound;
968
969 if (result_type == NULL)
970 result_type = alloc_type_copy (range_type);
971
972 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
973 TYPE_TARGET_TYPE (result_type) = element_type;
974 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
975 low_bound = high_bound = 0;
976 CHECK_TYPEDEF (element_type);
977 /* Be careful when setting the array length. Ada arrays can be
978 empty arrays with the high_bound being smaller than the low_bound.
979 In such cases, the array length should be zero. */
980 if (high_bound < low_bound)
981 TYPE_LENGTH (result_type) = 0;
982 else if (bit_stride > 0)
983 TYPE_LENGTH (result_type) =
984 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
985 else
986 TYPE_LENGTH (result_type) =
987 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
988 TYPE_NFIELDS (result_type) = 1;
989 TYPE_FIELDS (result_type) =
990 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
991 TYPE_INDEX_TYPE (result_type) = range_type;
992 TYPE_VPTR_FIELDNO (result_type) = -1;
993 if (bit_stride > 0)
994 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
995
996 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
997 if (TYPE_LENGTH (result_type) == 0)
998 TYPE_TARGET_STUB (result_type) = 1;
999
1000 return result_type;
1001 }
1002
1003 /* Same as create_array_type_with_stride but with no bit_stride
1004 (BIT_STRIDE = 0), thus building an unpacked array. */
1005
1006 struct type *
1007 create_array_type (struct type *result_type,
1008 struct type *element_type,
1009 struct type *range_type)
1010 {
1011 return create_array_type_with_stride (result_type, element_type,
1012 range_type, 0);
1013 }
1014
1015 struct type *
1016 lookup_array_range_type (struct type *element_type,
1017 LONGEST low_bound, LONGEST high_bound)
1018 {
1019 struct gdbarch *gdbarch = get_type_arch (element_type);
1020 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1021 struct type *range_type
1022 = create_range_type (NULL, index_type, low_bound, high_bound);
1023
1024 return create_array_type (NULL, element_type, range_type);
1025 }
1026
1027 /* Create a string type using either a blank type supplied in
1028 RESULT_TYPE, or creating a new type. String types are similar
1029 enough to array of char types that we can use create_array_type to
1030 build the basic type and then bash it into a string type.
1031
1032 For fixed length strings, the range type contains 0 as the lower
1033 bound and the length of the string minus one as the upper bound.
1034
1035 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1036 sure it is TYPE_CODE_UNDEF before we bash it into a string
1037 type? */
1038
1039 struct type *
1040 create_string_type (struct type *result_type,
1041 struct type *string_char_type,
1042 struct type *range_type)
1043 {
1044 result_type = create_array_type (result_type,
1045 string_char_type,
1046 range_type);
1047 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1048 return result_type;
1049 }
1050
1051 struct type *
1052 lookup_string_range_type (struct type *string_char_type,
1053 LONGEST low_bound, LONGEST high_bound)
1054 {
1055 struct type *result_type;
1056
1057 result_type = lookup_array_range_type (string_char_type,
1058 low_bound, high_bound);
1059 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1060 return result_type;
1061 }
1062
1063 struct type *
1064 create_set_type (struct type *result_type, struct type *domain_type)
1065 {
1066 if (result_type == NULL)
1067 result_type = alloc_type_copy (domain_type);
1068
1069 TYPE_CODE (result_type) = TYPE_CODE_SET;
1070 TYPE_NFIELDS (result_type) = 1;
1071 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1072
1073 if (!TYPE_STUB (domain_type))
1074 {
1075 LONGEST low_bound, high_bound, bit_length;
1076
1077 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1078 low_bound = high_bound = 0;
1079 bit_length = high_bound - low_bound + 1;
1080 TYPE_LENGTH (result_type)
1081 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1082 if (low_bound >= 0)
1083 TYPE_UNSIGNED (result_type) = 1;
1084 }
1085 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1086
1087 return result_type;
1088 }
1089
1090 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1091 and any array types nested inside it. */
1092
1093 void
1094 make_vector_type (struct type *array_type)
1095 {
1096 struct type *inner_array, *elt_type;
1097 int flags;
1098
1099 /* Find the innermost array type, in case the array is
1100 multi-dimensional. */
1101 inner_array = array_type;
1102 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1103 inner_array = TYPE_TARGET_TYPE (inner_array);
1104
1105 elt_type = TYPE_TARGET_TYPE (inner_array);
1106 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1107 {
1108 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1109 elt_type = make_qualified_type (elt_type, flags, NULL);
1110 TYPE_TARGET_TYPE (inner_array) = elt_type;
1111 }
1112
1113 TYPE_VECTOR (array_type) = 1;
1114 }
1115
1116 struct type *
1117 init_vector_type (struct type *elt_type, int n)
1118 {
1119 struct type *array_type;
1120
1121 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1122 make_vector_type (array_type);
1123 return array_type;
1124 }
1125
1126 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1127 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1128 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1129 TYPE doesn't include the offset (that's the value of the MEMBER
1130 itself), but does include the structure type into which it points
1131 (for some reason).
1132
1133 When "smashing" the type, we preserve the objfile that the old type
1134 pointed to, since we aren't changing where the type is actually
1135 allocated. */
1136
1137 void
1138 smash_to_memberptr_type (struct type *type, struct type *domain,
1139 struct type *to_type)
1140 {
1141 smash_type (type);
1142 TYPE_TARGET_TYPE (type) = to_type;
1143 TYPE_DOMAIN_TYPE (type) = domain;
1144 /* Assume that a data member pointer is the same size as a normal
1145 pointer. */
1146 TYPE_LENGTH (type)
1147 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1148 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1149 }
1150
1151 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1152
1153 When "smashing" the type, we preserve the objfile that the old type
1154 pointed to, since we aren't changing where the type is actually
1155 allocated. */
1156
1157 void
1158 smash_to_methodptr_type (struct type *type, struct type *to_type)
1159 {
1160 smash_type (type);
1161 TYPE_TARGET_TYPE (type) = to_type;
1162 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1163 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1164 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1165 }
1166
1167 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1168 METHOD just means `function that gets an extra "this" argument'.
1169
1170 When "smashing" the type, we preserve the objfile that the old type
1171 pointed to, since we aren't changing where the type is actually
1172 allocated. */
1173
1174 void
1175 smash_to_method_type (struct type *type, struct type *domain,
1176 struct type *to_type, struct field *args,
1177 int nargs, int varargs)
1178 {
1179 smash_type (type);
1180 TYPE_TARGET_TYPE (type) = to_type;
1181 TYPE_DOMAIN_TYPE (type) = domain;
1182 TYPE_FIELDS (type) = args;
1183 TYPE_NFIELDS (type) = nargs;
1184 if (varargs)
1185 TYPE_VARARGS (type) = 1;
1186 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1187 TYPE_CODE (type) = TYPE_CODE_METHOD;
1188 }
1189
1190 /* Return a typename for a struct/union/enum type without "struct ",
1191 "union ", or "enum ". If the type has a NULL name, return NULL. */
1192
1193 const char *
1194 type_name_no_tag (const struct type *type)
1195 {
1196 if (TYPE_TAG_NAME (type) != NULL)
1197 return TYPE_TAG_NAME (type);
1198
1199 /* Is there code which expects this to return the name if there is
1200 no tag name? My guess is that this is mainly used for C++ in
1201 cases where the two will always be the same. */
1202 return TYPE_NAME (type);
1203 }
1204
1205 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1206 Since GCC PR debug/47510 DWARF provides associated information to detect the
1207 anonymous class linkage name from its typedef.
1208
1209 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1210 apply it itself. */
1211
1212 const char *
1213 type_name_no_tag_or_error (struct type *type)
1214 {
1215 struct type *saved_type = type;
1216 const char *name;
1217 struct objfile *objfile;
1218
1219 CHECK_TYPEDEF (type);
1220
1221 name = type_name_no_tag (type);
1222 if (name != NULL)
1223 return name;
1224
1225 name = type_name_no_tag (saved_type);
1226 objfile = TYPE_OBJFILE (saved_type);
1227 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1228 name ? name : "<anonymous>",
1229 objfile ? objfile_name (objfile) : "<arch>");
1230 }
1231
1232 /* Lookup a typedef or primitive type named NAME, visible in lexical
1233 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1234 suitably defined. */
1235
1236 struct type *
1237 lookup_typename (const struct language_defn *language,
1238 struct gdbarch *gdbarch, const char *name,
1239 const struct block *block, int noerr)
1240 {
1241 struct symbol *sym;
1242 struct type *type;
1243
1244 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1245 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1246 return SYMBOL_TYPE (sym);
1247
1248 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1249 if (type)
1250 return type;
1251
1252 if (noerr)
1253 return NULL;
1254 error (_("No type named %s."), name);
1255 }
1256
1257 struct type *
1258 lookup_unsigned_typename (const struct language_defn *language,
1259 struct gdbarch *gdbarch, const char *name)
1260 {
1261 char *uns = alloca (strlen (name) + 10);
1262
1263 strcpy (uns, "unsigned ");
1264 strcpy (uns + 9, name);
1265 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1266 }
1267
1268 struct type *
1269 lookup_signed_typename (const struct language_defn *language,
1270 struct gdbarch *gdbarch, const char *name)
1271 {
1272 struct type *t;
1273 char *uns = alloca (strlen (name) + 8);
1274
1275 strcpy (uns, "signed ");
1276 strcpy (uns + 7, name);
1277 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1278 /* If we don't find "signed FOO" just try again with plain "FOO". */
1279 if (t != NULL)
1280 return t;
1281 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1282 }
1283
1284 /* Lookup a structure type named "struct NAME",
1285 visible in lexical block BLOCK. */
1286
1287 struct type *
1288 lookup_struct (const char *name, const struct block *block)
1289 {
1290 struct symbol *sym;
1291
1292 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1293
1294 if (sym == NULL)
1295 {
1296 error (_("No struct type named %s."), name);
1297 }
1298 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1299 {
1300 error (_("This context has class, union or enum %s, not a struct."),
1301 name);
1302 }
1303 return (SYMBOL_TYPE (sym));
1304 }
1305
1306 /* Lookup a union type named "union NAME",
1307 visible in lexical block BLOCK. */
1308
1309 struct type *
1310 lookup_union (const char *name, const struct block *block)
1311 {
1312 struct symbol *sym;
1313 struct type *t;
1314
1315 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1316
1317 if (sym == NULL)
1318 error (_("No union type named %s."), name);
1319
1320 t = SYMBOL_TYPE (sym);
1321
1322 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1323 return t;
1324
1325 /* If we get here, it's not a union. */
1326 error (_("This context has class, struct or enum %s, not a union."),
1327 name);
1328 }
1329
1330 /* Lookup an enum type named "enum NAME",
1331 visible in lexical block BLOCK. */
1332
1333 struct type *
1334 lookup_enum (const char *name, const struct block *block)
1335 {
1336 struct symbol *sym;
1337
1338 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1339 if (sym == NULL)
1340 {
1341 error (_("No enum type named %s."), name);
1342 }
1343 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1344 {
1345 error (_("This context has class, struct or union %s, not an enum."),
1346 name);
1347 }
1348 return (SYMBOL_TYPE (sym));
1349 }
1350
1351 /* Lookup a template type named "template NAME<TYPE>",
1352 visible in lexical block BLOCK. */
1353
1354 struct type *
1355 lookup_template_type (char *name, struct type *type,
1356 const struct block *block)
1357 {
1358 struct symbol *sym;
1359 char *nam = (char *)
1360 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1361
1362 strcpy (nam, name);
1363 strcat (nam, "<");
1364 strcat (nam, TYPE_NAME (type));
1365 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1366
1367 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1368
1369 if (sym == NULL)
1370 {
1371 error (_("No template type named %s."), name);
1372 }
1373 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1374 {
1375 error (_("This context has class, union or enum %s, not a struct."),
1376 name);
1377 }
1378 return (SYMBOL_TYPE (sym));
1379 }
1380
1381 /* Given a type TYPE, lookup the type of the component of type named
1382 NAME.
1383
1384 TYPE can be either a struct or union, or a pointer or reference to
1385 a struct or union. If it is a pointer or reference, its target
1386 type is automatically used. Thus '.' and '->' are interchangable,
1387 as specified for the definitions of the expression element types
1388 STRUCTOP_STRUCT and STRUCTOP_PTR.
1389
1390 If NOERR is nonzero, return zero if NAME is not suitably defined.
1391 If NAME is the name of a baseclass type, return that type. */
1392
1393 struct type *
1394 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1395 {
1396 int i;
1397 char *typename;
1398
1399 for (;;)
1400 {
1401 CHECK_TYPEDEF (type);
1402 if (TYPE_CODE (type) != TYPE_CODE_PTR
1403 && TYPE_CODE (type) != TYPE_CODE_REF)
1404 break;
1405 type = TYPE_TARGET_TYPE (type);
1406 }
1407
1408 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1409 && TYPE_CODE (type) != TYPE_CODE_UNION)
1410 {
1411 typename = type_to_string (type);
1412 make_cleanup (xfree, typename);
1413 error (_("Type %s is not a structure or union type."), typename);
1414 }
1415
1416 #if 0
1417 /* FIXME: This change put in by Michael seems incorrect for the case
1418 where the structure tag name is the same as the member name.
1419 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1420 foo; } bell;" Disabled by fnf. */
1421 {
1422 char *typename;
1423
1424 typename = type_name_no_tag (type);
1425 if (typename != NULL && strcmp (typename, name) == 0)
1426 return type;
1427 }
1428 #endif
1429
1430 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1431 {
1432 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1433
1434 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1435 {
1436 return TYPE_FIELD_TYPE (type, i);
1437 }
1438 else if (!t_field_name || *t_field_name == '\0')
1439 {
1440 struct type *subtype
1441 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1442
1443 if (subtype != NULL)
1444 return subtype;
1445 }
1446 }
1447
1448 /* OK, it's not in this class. Recursively check the baseclasses. */
1449 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1450 {
1451 struct type *t;
1452
1453 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1454 if (t != NULL)
1455 {
1456 return t;
1457 }
1458 }
1459
1460 if (noerr)
1461 {
1462 return NULL;
1463 }
1464
1465 typename = type_to_string (type);
1466 make_cleanup (xfree, typename);
1467 error (_("Type %s has no component named %s."), typename, name);
1468 }
1469
1470 /* Store in *MAX the largest number representable by unsigned integer type
1471 TYPE. */
1472
1473 void
1474 get_unsigned_type_max (struct type *type, ULONGEST *max)
1475 {
1476 unsigned int n;
1477
1478 CHECK_TYPEDEF (type);
1479 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1480 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1481
1482 /* Written this way to avoid overflow. */
1483 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1484 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1485 }
1486
1487 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1488 signed integer type TYPE. */
1489
1490 void
1491 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1492 {
1493 unsigned int n;
1494
1495 CHECK_TYPEDEF (type);
1496 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1497 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1498
1499 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1500 *min = -((ULONGEST) 1 << (n - 1));
1501 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1502 }
1503
1504 /* Lookup the vptr basetype/fieldno values for TYPE.
1505 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1506 vptr_fieldno. Also, if found and basetype is from the same objfile,
1507 cache the results.
1508 If not found, return -1 and ignore BASETYPEP.
1509 Callers should be aware that in some cases (for example,
1510 the type or one of its baseclasses is a stub type and we are
1511 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1512 this function will not be able to find the
1513 virtual function table pointer, and vptr_fieldno will remain -1 and
1514 vptr_basetype will remain NULL or incomplete. */
1515
1516 int
1517 get_vptr_fieldno (struct type *type, struct type **basetypep)
1518 {
1519 CHECK_TYPEDEF (type);
1520
1521 if (TYPE_VPTR_FIELDNO (type) < 0)
1522 {
1523 int i;
1524
1525 /* We must start at zero in case the first (and only) baseclass
1526 is virtual (and hence we cannot share the table pointer). */
1527 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1528 {
1529 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1530 int fieldno;
1531 struct type *basetype;
1532
1533 fieldno = get_vptr_fieldno (baseclass, &basetype);
1534 if (fieldno >= 0)
1535 {
1536 /* If the type comes from a different objfile we can't cache
1537 it, it may have a different lifetime. PR 2384 */
1538 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1539 {
1540 TYPE_VPTR_FIELDNO (type) = fieldno;
1541 TYPE_VPTR_BASETYPE (type) = basetype;
1542 }
1543 if (basetypep)
1544 *basetypep = basetype;
1545 return fieldno;
1546 }
1547 }
1548
1549 /* Not found. */
1550 return -1;
1551 }
1552 else
1553 {
1554 if (basetypep)
1555 *basetypep = TYPE_VPTR_BASETYPE (type);
1556 return TYPE_VPTR_FIELDNO (type);
1557 }
1558 }
1559
1560 static void
1561 stub_noname_complaint (void)
1562 {
1563 complaint (&symfile_complaints, _("stub type has NULL name"));
1564 }
1565
1566 /* Find the real type of TYPE. This function returns the real type,
1567 after removing all layers of typedefs, and completing opaque or stub
1568 types. Completion changes the TYPE argument, but stripping of
1569 typedefs does not.
1570
1571 Instance flags (e.g. const/volatile) are preserved as typedefs are
1572 stripped. If necessary a new qualified form of the underlying type
1573 is created.
1574
1575 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1576 not been computed and we're either in the middle of reading symbols, or
1577 there was no name for the typedef in the debug info.
1578
1579 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1580 QUITs in the symbol reading code can also throw.
1581 Thus this function can throw an exception.
1582
1583 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1584 the target type.
1585
1586 If this is a stubbed struct (i.e. declared as struct foo *), see if
1587 we can find a full definition in some other file. If so, copy this
1588 definition, so we can use it in future. There used to be a comment
1589 (but not any code) that if we don't find a full definition, we'd
1590 set a flag so we don't spend time in the future checking the same
1591 type. That would be a mistake, though--we might load in more
1592 symbols which contain a full definition for the type. */
1593
1594 struct type *
1595 check_typedef (struct type *type)
1596 {
1597 struct type *orig_type = type;
1598 /* While we're removing typedefs, we don't want to lose qualifiers.
1599 E.g., const/volatile. */
1600 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1601
1602 gdb_assert (type);
1603
1604 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1605 {
1606 if (!TYPE_TARGET_TYPE (type))
1607 {
1608 const char *name;
1609 struct symbol *sym;
1610
1611 /* It is dangerous to call lookup_symbol if we are currently
1612 reading a symtab. Infinite recursion is one danger. */
1613 if (currently_reading_symtab)
1614 return make_qualified_type (type, instance_flags, NULL);
1615
1616 name = type_name_no_tag (type);
1617 /* FIXME: shouldn't we separately check the TYPE_NAME and
1618 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1619 VAR_DOMAIN as appropriate? (this code was written before
1620 TYPE_NAME and TYPE_TAG_NAME were separate). */
1621 if (name == NULL)
1622 {
1623 stub_noname_complaint ();
1624 return make_qualified_type (type, instance_flags, NULL);
1625 }
1626 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1627 if (sym)
1628 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1629 else /* TYPE_CODE_UNDEF */
1630 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1631 }
1632 type = TYPE_TARGET_TYPE (type);
1633
1634 /* Preserve the instance flags as we traverse down the typedef chain.
1635
1636 Handling address spaces/classes is nasty, what do we do if there's a
1637 conflict?
1638 E.g., what if an outer typedef marks the type as class_1 and an inner
1639 typedef marks the type as class_2?
1640 This is the wrong place to do such error checking. We leave it to
1641 the code that created the typedef in the first place to flag the
1642 error. We just pick the outer address space (akin to letting the
1643 outer cast in a chain of casting win), instead of assuming
1644 "it can't happen". */
1645 {
1646 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1647 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1648 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1649 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1650
1651 /* Treat code vs data spaces and address classes separately. */
1652 if ((instance_flags & ALL_SPACES) != 0)
1653 new_instance_flags &= ~ALL_SPACES;
1654 if ((instance_flags & ALL_CLASSES) != 0)
1655 new_instance_flags &= ~ALL_CLASSES;
1656
1657 instance_flags |= new_instance_flags;
1658 }
1659 }
1660
1661 /* If this is a struct/class/union with no fields, then check
1662 whether a full definition exists somewhere else. This is for
1663 systems where a type definition with no fields is issued for such
1664 types, instead of identifying them as stub types in the first
1665 place. */
1666
1667 if (TYPE_IS_OPAQUE (type)
1668 && opaque_type_resolution
1669 && !currently_reading_symtab)
1670 {
1671 const char *name = type_name_no_tag (type);
1672 struct type *newtype;
1673
1674 if (name == NULL)
1675 {
1676 stub_noname_complaint ();
1677 return make_qualified_type (type, instance_flags, NULL);
1678 }
1679 newtype = lookup_transparent_type (name);
1680
1681 if (newtype)
1682 {
1683 /* If the resolved type and the stub are in the same
1684 objfile, then replace the stub type with the real deal.
1685 But if they're in separate objfiles, leave the stub
1686 alone; we'll just look up the transparent type every time
1687 we call check_typedef. We can't create pointers between
1688 types allocated to different objfiles, since they may
1689 have different lifetimes. Trying to copy NEWTYPE over to
1690 TYPE's objfile is pointless, too, since you'll have to
1691 move over any other types NEWTYPE refers to, which could
1692 be an unbounded amount of stuff. */
1693 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1694 type = make_qualified_type (newtype,
1695 TYPE_INSTANCE_FLAGS (type),
1696 type);
1697 else
1698 type = newtype;
1699 }
1700 }
1701 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1702 types. */
1703 else if (TYPE_STUB (type) && !currently_reading_symtab)
1704 {
1705 const char *name = type_name_no_tag (type);
1706 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1707 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1708 as appropriate? (this code was written before TYPE_NAME and
1709 TYPE_TAG_NAME were separate). */
1710 struct symbol *sym;
1711
1712 if (name == NULL)
1713 {
1714 stub_noname_complaint ();
1715 return make_qualified_type (type, instance_flags, NULL);
1716 }
1717 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1718 if (sym)
1719 {
1720 /* Same as above for opaque types, we can replace the stub
1721 with the complete type only if they are in the same
1722 objfile. */
1723 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1724 type = make_qualified_type (SYMBOL_TYPE (sym),
1725 TYPE_INSTANCE_FLAGS (type),
1726 type);
1727 else
1728 type = SYMBOL_TYPE (sym);
1729 }
1730 }
1731
1732 if (TYPE_TARGET_STUB (type))
1733 {
1734 struct type *range_type;
1735 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1736
1737 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1738 {
1739 /* Nothing we can do. */
1740 }
1741 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1742 && TYPE_NFIELDS (type) == 1
1743 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1744 == TYPE_CODE_RANGE))
1745 {
1746 /* Now recompute the length of the array type, based on its
1747 number of elements and the target type's length.
1748 Watch out for Ada null Ada arrays where the high bound
1749 is smaller than the low bound. */
1750 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1751 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1752 ULONGEST len;
1753
1754 if (high_bound < low_bound)
1755 len = 0;
1756 else
1757 {
1758 /* For now, we conservatively take the array length to be 0
1759 if its length exceeds UINT_MAX. The code below assumes
1760 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1761 which is technically not guaranteed by C, but is usually true
1762 (because it would be true if x were unsigned with its
1763 high-order bit on). It uses the fact that
1764 high_bound-low_bound is always representable in
1765 ULONGEST and that if high_bound-low_bound+1 overflows,
1766 it overflows to 0. We must change these tests if we
1767 decide to increase the representation of TYPE_LENGTH
1768 from unsigned int to ULONGEST. */
1769 ULONGEST ulow = low_bound, uhigh = high_bound;
1770 ULONGEST tlen = TYPE_LENGTH (target_type);
1771
1772 len = tlen * (uhigh - ulow + 1);
1773 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1774 || len > UINT_MAX)
1775 len = 0;
1776 }
1777 TYPE_LENGTH (type) = len;
1778 TYPE_TARGET_STUB (type) = 0;
1779 }
1780 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1781 {
1782 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1783 TYPE_TARGET_STUB (type) = 0;
1784 }
1785 }
1786
1787 type = make_qualified_type (type, instance_flags, NULL);
1788
1789 /* Cache TYPE_LENGTH for future use. */
1790 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1791
1792 return type;
1793 }
1794
1795 /* Parse a type expression in the string [P..P+LENGTH). If an error
1796 occurs, silently return a void type. */
1797
1798 static struct type *
1799 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1800 {
1801 struct ui_file *saved_gdb_stderr;
1802 struct type *type = NULL; /* Initialize to keep gcc happy. */
1803 volatile struct gdb_exception except;
1804
1805 /* Suppress error messages. */
1806 saved_gdb_stderr = gdb_stderr;
1807 gdb_stderr = ui_file_new ();
1808
1809 /* Call parse_and_eval_type() without fear of longjmp()s. */
1810 TRY_CATCH (except, RETURN_MASK_ERROR)
1811 {
1812 type = parse_and_eval_type (p, length);
1813 }
1814
1815 if (except.reason < 0)
1816 type = builtin_type (gdbarch)->builtin_void;
1817
1818 /* Stop suppressing error messages. */
1819 ui_file_delete (gdb_stderr);
1820 gdb_stderr = saved_gdb_stderr;
1821
1822 return type;
1823 }
1824
1825 /* Ugly hack to convert method stubs into method types.
1826
1827 He ain't kiddin'. This demangles the name of the method into a
1828 string including argument types, parses out each argument type,
1829 generates a string casting a zero to that type, evaluates the
1830 string, and stuffs the resulting type into an argtype vector!!!
1831 Then it knows the type of the whole function (including argument
1832 types for overloading), which info used to be in the stab's but was
1833 removed to hack back the space required for them. */
1834
1835 static void
1836 check_stub_method (struct type *type, int method_id, int signature_id)
1837 {
1838 struct gdbarch *gdbarch = get_type_arch (type);
1839 struct fn_field *f;
1840 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1841 char *demangled_name = gdb_demangle (mangled_name,
1842 DMGL_PARAMS | DMGL_ANSI);
1843 char *argtypetext, *p;
1844 int depth = 0, argcount = 1;
1845 struct field *argtypes;
1846 struct type *mtype;
1847
1848 /* Make sure we got back a function string that we can use. */
1849 if (demangled_name)
1850 p = strchr (demangled_name, '(');
1851 else
1852 p = NULL;
1853
1854 if (demangled_name == NULL || p == NULL)
1855 error (_("Internal: Cannot demangle mangled name `%s'."),
1856 mangled_name);
1857
1858 /* Now, read in the parameters that define this type. */
1859 p += 1;
1860 argtypetext = p;
1861 while (*p)
1862 {
1863 if (*p == '(' || *p == '<')
1864 {
1865 depth += 1;
1866 }
1867 else if (*p == ')' || *p == '>')
1868 {
1869 depth -= 1;
1870 }
1871 else if (*p == ',' && depth == 0)
1872 {
1873 argcount += 1;
1874 }
1875
1876 p += 1;
1877 }
1878
1879 /* If we read one argument and it was ``void'', don't count it. */
1880 if (strncmp (argtypetext, "(void)", 6) == 0)
1881 argcount -= 1;
1882
1883 /* We need one extra slot, for the THIS pointer. */
1884
1885 argtypes = (struct field *)
1886 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1887 p = argtypetext;
1888
1889 /* Add THIS pointer for non-static methods. */
1890 f = TYPE_FN_FIELDLIST1 (type, method_id);
1891 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1892 argcount = 0;
1893 else
1894 {
1895 argtypes[0].type = lookup_pointer_type (type);
1896 argcount = 1;
1897 }
1898
1899 if (*p != ')') /* () means no args, skip while. */
1900 {
1901 depth = 0;
1902 while (*p)
1903 {
1904 if (depth <= 0 && (*p == ',' || *p == ')'))
1905 {
1906 /* Avoid parsing of ellipsis, they will be handled below.
1907 Also avoid ``void'' as above. */
1908 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1909 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1910 {
1911 argtypes[argcount].type =
1912 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1913 argcount += 1;
1914 }
1915 argtypetext = p + 1;
1916 }
1917
1918 if (*p == '(' || *p == '<')
1919 {
1920 depth += 1;
1921 }
1922 else if (*p == ')' || *p == '>')
1923 {
1924 depth -= 1;
1925 }
1926
1927 p += 1;
1928 }
1929 }
1930
1931 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1932
1933 /* Now update the old "stub" type into a real type. */
1934 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1935 TYPE_DOMAIN_TYPE (mtype) = type;
1936 TYPE_FIELDS (mtype) = argtypes;
1937 TYPE_NFIELDS (mtype) = argcount;
1938 TYPE_STUB (mtype) = 0;
1939 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1940 if (p[-2] == '.')
1941 TYPE_VARARGS (mtype) = 1;
1942
1943 xfree (demangled_name);
1944 }
1945
1946 /* This is the external interface to check_stub_method, above. This
1947 function unstubs all of the signatures for TYPE's METHOD_ID method
1948 name. After calling this function TYPE_FN_FIELD_STUB will be
1949 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1950 correct.
1951
1952 This function unfortunately can not die until stabs do. */
1953
1954 void
1955 check_stub_method_group (struct type *type, int method_id)
1956 {
1957 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1958 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1959 int j, found_stub = 0;
1960
1961 for (j = 0; j < len; j++)
1962 if (TYPE_FN_FIELD_STUB (f, j))
1963 {
1964 found_stub = 1;
1965 check_stub_method (type, method_id, j);
1966 }
1967
1968 /* GNU v3 methods with incorrect names were corrected when we read
1969 in type information, because it was cheaper to do it then. The
1970 only GNU v2 methods with incorrect method names are operators and
1971 destructors; destructors were also corrected when we read in type
1972 information.
1973
1974 Therefore the only thing we need to handle here are v2 operator
1975 names. */
1976 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1977 {
1978 int ret;
1979 char dem_opname[256];
1980
1981 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1982 method_id),
1983 dem_opname, DMGL_ANSI);
1984 if (!ret)
1985 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1986 method_id),
1987 dem_opname, 0);
1988 if (ret)
1989 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1990 }
1991 }
1992
1993 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1994 const struct cplus_struct_type cplus_struct_default = { };
1995
1996 void
1997 allocate_cplus_struct_type (struct type *type)
1998 {
1999 if (HAVE_CPLUS_STRUCT (type))
2000 /* Structure was already allocated. Nothing more to do. */
2001 return;
2002
2003 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2004 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2005 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2006 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2007 }
2008
2009 const struct gnat_aux_type gnat_aux_default =
2010 { NULL };
2011
2012 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2013 and allocate the associated gnat-specific data. The gnat-specific
2014 data is also initialized to gnat_aux_default. */
2015
2016 void
2017 allocate_gnat_aux_type (struct type *type)
2018 {
2019 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2020 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2021 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2022 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2023 }
2024
2025 /* Helper function to initialize the standard scalar types.
2026
2027 If NAME is non-NULL, then it is used to initialize the type name.
2028 Note that NAME is not copied; it is required to have a lifetime at
2029 least as long as OBJFILE. */
2030
2031 struct type *
2032 init_type (enum type_code code, int length, int flags,
2033 const char *name, struct objfile *objfile)
2034 {
2035 struct type *type;
2036
2037 type = alloc_type (objfile);
2038 TYPE_CODE (type) = code;
2039 TYPE_LENGTH (type) = length;
2040
2041 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2042 if (flags & TYPE_FLAG_UNSIGNED)
2043 TYPE_UNSIGNED (type) = 1;
2044 if (flags & TYPE_FLAG_NOSIGN)
2045 TYPE_NOSIGN (type) = 1;
2046 if (flags & TYPE_FLAG_STUB)
2047 TYPE_STUB (type) = 1;
2048 if (flags & TYPE_FLAG_TARGET_STUB)
2049 TYPE_TARGET_STUB (type) = 1;
2050 if (flags & TYPE_FLAG_STATIC)
2051 TYPE_STATIC (type) = 1;
2052 if (flags & TYPE_FLAG_PROTOTYPED)
2053 TYPE_PROTOTYPED (type) = 1;
2054 if (flags & TYPE_FLAG_INCOMPLETE)
2055 TYPE_INCOMPLETE (type) = 1;
2056 if (flags & TYPE_FLAG_VARARGS)
2057 TYPE_VARARGS (type) = 1;
2058 if (flags & TYPE_FLAG_VECTOR)
2059 TYPE_VECTOR (type) = 1;
2060 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2061 TYPE_STUB_SUPPORTED (type) = 1;
2062 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2063 TYPE_FIXED_INSTANCE (type) = 1;
2064 if (flags & TYPE_FLAG_GNU_IFUNC)
2065 TYPE_GNU_IFUNC (type) = 1;
2066
2067 TYPE_NAME (type) = name;
2068
2069 /* C++ fancies. */
2070
2071 if (name && strcmp (name, "char") == 0)
2072 TYPE_NOSIGN (type) = 1;
2073
2074 switch (code)
2075 {
2076 case TYPE_CODE_STRUCT:
2077 case TYPE_CODE_UNION:
2078 case TYPE_CODE_NAMESPACE:
2079 INIT_CPLUS_SPECIFIC (type);
2080 break;
2081 case TYPE_CODE_FLT:
2082 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2083 break;
2084 case TYPE_CODE_FUNC:
2085 INIT_FUNC_SPECIFIC (type);
2086 break;
2087 }
2088 return type;
2089 }
2090 \f
2091 /* Queries on types. */
2092
2093 int
2094 can_dereference (struct type *t)
2095 {
2096 /* FIXME: Should we return true for references as well as
2097 pointers? */
2098 CHECK_TYPEDEF (t);
2099 return
2100 (t != NULL
2101 && TYPE_CODE (t) == TYPE_CODE_PTR
2102 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2103 }
2104
2105 int
2106 is_integral_type (struct type *t)
2107 {
2108 CHECK_TYPEDEF (t);
2109 return
2110 ((t != NULL)
2111 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2112 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2113 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2114 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2115 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2116 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2117 }
2118
2119 /* Return true if TYPE is scalar. */
2120
2121 static int
2122 is_scalar_type (struct type *type)
2123 {
2124 CHECK_TYPEDEF (type);
2125
2126 switch (TYPE_CODE (type))
2127 {
2128 case TYPE_CODE_ARRAY:
2129 case TYPE_CODE_STRUCT:
2130 case TYPE_CODE_UNION:
2131 case TYPE_CODE_SET:
2132 case TYPE_CODE_STRING:
2133 return 0;
2134 default:
2135 return 1;
2136 }
2137 }
2138
2139 /* Return true if T is scalar, or a composite type which in practice has
2140 the memory layout of a scalar type. E.g., an array or struct with only
2141 one scalar element inside it, or a union with only scalar elements. */
2142
2143 int
2144 is_scalar_type_recursive (struct type *t)
2145 {
2146 CHECK_TYPEDEF (t);
2147
2148 if (is_scalar_type (t))
2149 return 1;
2150 /* Are we dealing with an array or string of known dimensions? */
2151 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2152 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2153 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2154 {
2155 LONGEST low_bound, high_bound;
2156 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2157
2158 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2159
2160 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2161 }
2162 /* Are we dealing with a struct with one element? */
2163 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2164 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2165 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2166 {
2167 int i, n = TYPE_NFIELDS (t);
2168
2169 /* If all elements of the union are scalar, then the union is scalar. */
2170 for (i = 0; i < n; i++)
2171 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2172 return 0;
2173
2174 return 1;
2175 }
2176
2177 return 0;
2178 }
2179
2180 /* A helper function which returns true if types A and B represent the
2181 "same" class type. This is true if the types have the same main
2182 type, or the same name. */
2183
2184 int
2185 class_types_same_p (const struct type *a, const struct type *b)
2186 {
2187 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2188 || (TYPE_NAME (a) && TYPE_NAME (b)
2189 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2190 }
2191
2192 /* If BASE is an ancestor of DCLASS return the distance between them.
2193 otherwise return -1;
2194 eg:
2195
2196 class A {};
2197 class B: public A {};
2198 class C: public B {};
2199 class D: C {};
2200
2201 distance_to_ancestor (A, A, 0) = 0
2202 distance_to_ancestor (A, B, 0) = 1
2203 distance_to_ancestor (A, C, 0) = 2
2204 distance_to_ancestor (A, D, 0) = 3
2205
2206 If PUBLIC is 1 then only public ancestors are considered,
2207 and the function returns the distance only if BASE is a public ancestor
2208 of DCLASS.
2209 Eg:
2210
2211 distance_to_ancestor (A, D, 1) = -1. */
2212
2213 static int
2214 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2215 {
2216 int i;
2217 int d;
2218
2219 CHECK_TYPEDEF (base);
2220 CHECK_TYPEDEF (dclass);
2221
2222 if (class_types_same_p (base, dclass))
2223 return 0;
2224
2225 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2226 {
2227 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2228 continue;
2229
2230 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2231 if (d >= 0)
2232 return 1 + d;
2233 }
2234
2235 return -1;
2236 }
2237
2238 /* Check whether BASE is an ancestor or base class or DCLASS
2239 Return 1 if so, and 0 if not.
2240 Note: If BASE and DCLASS are of the same type, this function
2241 will return 1. So for some class A, is_ancestor (A, A) will
2242 return 1. */
2243
2244 int
2245 is_ancestor (struct type *base, struct type *dclass)
2246 {
2247 return distance_to_ancestor (base, dclass, 0) >= 0;
2248 }
2249
2250 /* Like is_ancestor, but only returns true when BASE is a public
2251 ancestor of DCLASS. */
2252
2253 int
2254 is_public_ancestor (struct type *base, struct type *dclass)
2255 {
2256 return distance_to_ancestor (base, dclass, 1) >= 0;
2257 }
2258
2259 /* A helper function for is_unique_ancestor. */
2260
2261 static int
2262 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2263 int *offset,
2264 const gdb_byte *valaddr, int embedded_offset,
2265 CORE_ADDR address, struct value *val)
2266 {
2267 int i, count = 0;
2268
2269 CHECK_TYPEDEF (base);
2270 CHECK_TYPEDEF (dclass);
2271
2272 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2273 {
2274 struct type *iter;
2275 int this_offset;
2276
2277 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2278
2279 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2280 address, val);
2281
2282 if (class_types_same_p (base, iter))
2283 {
2284 /* If this is the first subclass, set *OFFSET and set count
2285 to 1. Otherwise, if this is at the same offset as
2286 previous instances, do nothing. Otherwise, increment
2287 count. */
2288 if (*offset == -1)
2289 {
2290 *offset = this_offset;
2291 count = 1;
2292 }
2293 else if (this_offset == *offset)
2294 {
2295 /* Nothing. */
2296 }
2297 else
2298 ++count;
2299 }
2300 else
2301 count += is_unique_ancestor_worker (base, iter, offset,
2302 valaddr,
2303 embedded_offset + this_offset,
2304 address, val);
2305 }
2306
2307 return count;
2308 }
2309
2310 /* Like is_ancestor, but only returns true if BASE is a unique base
2311 class of the type of VAL. */
2312
2313 int
2314 is_unique_ancestor (struct type *base, struct value *val)
2315 {
2316 int offset = -1;
2317
2318 return is_unique_ancestor_worker (base, value_type (val), &offset,
2319 value_contents_for_printing (val),
2320 value_embedded_offset (val),
2321 value_address (val), val) == 1;
2322 }
2323
2324 \f
2325 /* Overload resolution. */
2326
2327 /* Return the sum of the rank of A with the rank of B. */
2328
2329 struct rank
2330 sum_ranks (struct rank a, struct rank b)
2331 {
2332 struct rank c;
2333 c.rank = a.rank + b.rank;
2334 c.subrank = a.subrank + b.subrank;
2335 return c;
2336 }
2337
2338 /* Compare rank A and B and return:
2339 0 if a = b
2340 1 if a is better than b
2341 -1 if b is better than a. */
2342
2343 int
2344 compare_ranks (struct rank a, struct rank b)
2345 {
2346 if (a.rank == b.rank)
2347 {
2348 if (a.subrank == b.subrank)
2349 return 0;
2350 if (a.subrank < b.subrank)
2351 return 1;
2352 if (a.subrank > b.subrank)
2353 return -1;
2354 }
2355
2356 if (a.rank < b.rank)
2357 return 1;
2358
2359 /* a.rank > b.rank */
2360 return -1;
2361 }
2362
2363 /* Functions for overload resolution begin here. */
2364
2365 /* Compare two badness vectors A and B and return the result.
2366 0 => A and B are identical
2367 1 => A and B are incomparable
2368 2 => A is better than B
2369 3 => A is worse than B */
2370
2371 int
2372 compare_badness (struct badness_vector *a, struct badness_vector *b)
2373 {
2374 int i;
2375 int tmp;
2376 short found_pos = 0; /* any positives in c? */
2377 short found_neg = 0; /* any negatives in c? */
2378
2379 /* differing lengths => incomparable */
2380 if (a->length != b->length)
2381 return 1;
2382
2383 /* Subtract b from a */
2384 for (i = 0; i < a->length; i++)
2385 {
2386 tmp = compare_ranks (b->rank[i], a->rank[i]);
2387 if (tmp > 0)
2388 found_pos = 1;
2389 else if (tmp < 0)
2390 found_neg = 1;
2391 }
2392
2393 if (found_pos)
2394 {
2395 if (found_neg)
2396 return 1; /* incomparable */
2397 else
2398 return 3; /* A > B */
2399 }
2400 else
2401 /* no positives */
2402 {
2403 if (found_neg)
2404 return 2; /* A < B */
2405 else
2406 return 0; /* A == B */
2407 }
2408 }
2409
2410 /* Rank a function by comparing its parameter types (PARMS, length
2411 NPARMS), to the types of an argument list (ARGS, length NARGS).
2412 Return a pointer to a badness vector. This has NARGS + 1
2413 entries. */
2414
2415 struct badness_vector *
2416 rank_function (struct type **parms, int nparms,
2417 struct value **args, int nargs)
2418 {
2419 int i;
2420 struct badness_vector *bv;
2421 int min_len = nparms < nargs ? nparms : nargs;
2422
2423 bv = xmalloc (sizeof (struct badness_vector));
2424 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2425 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2426
2427 /* First compare the lengths of the supplied lists.
2428 If there is a mismatch, set it to a high value. */
2429
2430 /* pai/1997-06-03 FIXME: when we have debug info about default
2431 arguments and ellipsis parameter lists, we should consider those
2432 and rank the length-match more finely. */
2433
2434 LENGTH_MATCH (bv) = (nargs != nparms)
2435 ? LENGTH_MISMATCH_BADNESS
2436 : EXACT_MATCH_BADNESS;
2437
2438 /* Now rank all the parameters of the candidate function. */
2439 for (i = 1; i <= min_len; i++)
2440 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2441 args[i - 1]);
2442
2443 /* If more arguments than parameters, add dummy entries. */
2444 for (i = min_len + 1; i <= nargs; i++)
2445 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2446
2447 return bv;
2448 }
2449
2450 /* Compare the names of two integer types, assuming that any sign
2451 qualifiers have been checked already. We do it this way because
2452 there may be an "int" in the name of one of the types. */
2453
2454 static int
2455 integer_types_same_name_p (const char *first, const char *second)
2456 {
2457 int first_p, second_p;
2458
2459 /* If both are shorts, return 1; if neither is a short, keep
2460 checking. */
2461 first_p = (strstr (first, "short") != NULL);
2462 second_p = (strstr (second, "short") != NULL);
2463 if (first_p && second_p)
2464 return 1;
2465 if (first_p || second_p)
2466 return 0;
2467
2468 /* Likewise for long. */
2469 first_p = (strstr (first, "long") != NULL);
2470 second_p = (strstr (second, "long") != NULL);
2471 if (first_p && second_p)
2472 return 1;
2473 if (first_p || second_p)
2474 return 0;
2475
2476 /* Likewise for char. */
2477 first_p = (strstr (first, "char") != NULL);
2478 second_p = (strstr (second, "char") != NULL);
2479 if (first_p && second_p)
2480 return 1;
2481 if (first_p || second_p)
2482 return 0;
2483
2484 /* They must both be ints. */
2485 return 1;
2486 }
2487
2488 /* Compares type A to type B returns 1 if the represent the same type
2489 0 otherwise. */
2490
2491 int
2492 types_equal (struct type *a, struct type *b)
2493 {
2494 /* Identical type pointers. */
2495 /* However, this still doesn't catch all cases of same type for b
2496 and a. The reason is that builtin types are different from
2497 the same ones constructed from the object. */
2498 if (a == b)
2499 return 1;
2500
2501 /* Resolve typedefs */
2502 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2503 a = check_typedef (a);
2504 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2505 b = check_typedef (b);
2506
2507 /* If after resolving typedefs a and b are not of the same type
2508 code then they are not equal. */
2509 if (TYPE_CODE (a) != TYPE_CODE (b))
2510 return 0;
2511
2512 /* If a and b are both pointers types or both reference types then
2513 they are equal of the same type iff the objects they refer to are
2514 of the same type. */
2515 if (TYPE_CODE (a) == TYPE_CODE_PTR
2516 || TYPE_CODE (a) == TYPE_CODE_REF)
2517 return types_equal (TYPE_TARGET_TYPE (a),
2518 TYPE_TARGET_TYPE (b));
2519
2520 /* Well, damnit, if the names are exactly the same, I'll say they
2521 are exactly the same. This happens when we generate method
2522 stubs. The types won't point to the same address, but they
2523 really are the same. */
2524
2525 if (TYPE_NAME (a) && TYPE_NAME (b)
2526 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2527 return 1;
2528
2529 /* Check if identical after resolving typedefs. */
2530 if (a == b)
2531 return 1;
2532
2533 /* Two function types are equal if their argument and return types
2534 are equal. */
2535 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2536 {
2537 int i;
2538
2539 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2540 return 0;
2541
2542 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2543 return 0;
2544
2545 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2546 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2547 return 0;
2548
2549 return 1;
2550 }
2551
2552 return 0;
2553 }
2554 \f
2555 /* Deep comparison of types. */
2556
2557 /* An entry in the type-equality bcache. */
2558
2559 typedef struct type_equality_entry
2560 {
2561 struct type *type1, *type2;
2562 } type_equality_entry_d;
2563
2564 DEF_VEC_O (type_equality_entry_d);
2565
2566 /* A helper function to compare two strings. Returns 1 if they are
2567 the same, 0 otherwise. Handles NULLs properly. */
2568
2569 static int
2570 compare_maybe_null_strings (const char *s, const char *t)
2571 {
2572 if (s == NULL && t != NULL)
2573 return 0;
2574 else if (s != NULL && t == NULL)
2575 return 0;
2576 else if (s == NULL && t== NULL)
2577 return 1;
2578 return strcmp (s, t) == 0;
2579 }
2580
2581 /* A helper function for check_types_worklist that checks two types for
2582 "deep" equality. Returns non-zero if the types are considered the
2583 same, zero otherwise. */
2584
2585 static int
2586 check_types_equal (struct type *type1, struct type *type2,
2587 VEC (type_equality_entry_d) **worklist)
2588 {
2589 CHECK_TYPEDEF (type1);
2590 CHECK_TYPEDEF (type2);
2591
2592 if (type1 == type2)
2593 return 1;
2594
2595 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2596 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2597 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2598 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2599 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2600 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2601 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2602 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2603 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2604 return 0;
2605
2606 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2607 TYPE_TAG_NAME (type2)))
2608 return 0;
2609 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2610 return 0;
2611
2612 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2613 {
2614 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2615 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2616 return 0;
2617 }
2618 else
2619 {
2620 int i;
2621
2622 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2623 {
2624 const struct field *field1 = &TYPE_FIELD (type1, i);
2625 const struct field *field2 = &TYPE_FIELD (type2, i);
2626 struct type_equality_entry entry;
2627
2628 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2629 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2630 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2631 return 0;
2632 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2633 FIELD_NAME (*field2)))
2634 return 0;
2635 switch (FIELD_LOC_KIND (*field1))
2636 {
2637 case FIELD_LOC_KIND_BITPOS:
2638 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2639 return 0;
2640 break;
2641 case FIELD_LOC_KIND_ENUMVAL:
2642 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2643 return 0;
2644 break;
2645 case FIELD_LOC_KIND_PHYSADDR:
2646 if (FIELD_STATIC_PHYSADDR (*field1)
2647 != FIELD_STATIC_PHYSADDR (*field2))
2648 return 0;
2649 break;
2650 case FIELD_LOC_KIND_PHYSNAME:
2651 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2652 FIELD_STATIC_PHYSNAME (*field2)))
2653 return 0;
2654 break;
2655 case FIELD_LOC_KIND_DWARF_BLOCK:
2656 {
2657 struct dwarf2_locexpr_baton *block1, *block2;
2658
2659 block1 = FIELD_DWARF_BLOCK (*field1);
2660 block2 = FIELD_DWARF_BLOCK (*field2);
2661 if (block1->per_cu != block2->per_cu
2662 || block1->size != block2->size
2663 || memcmp (block1->data, block2->data, block1->size) != 0)
2664 return 0;
2665 }
2666 break;
2667 default:
2668 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2669 "%d by check_types_equal"),
2670 FIELD_LOC_KIND (*field1));
2671 }
2672
2673 entry.type1 = FIELD_TYPE (*field1);
2674 entry.type2 = FIELD_TYPE (*field2);
2675 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2676 }
2677 }
2678
2679 if (TYPE_TARGET_TYPE (type1) != NULL)
2680 {
2681 struct type_equality_entry entry;
2682
2683 if (TYPE_TARGET_TYPE (type2) == NULL)
2684 return 0;
2685
2686 entry.type1 = TYPE_TARGET_TYPE (type1);
2687 entry.type2 = TYPE_TARGET_TYPE (type2);
2688 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2689 }
2690 else if (TYPE_TARGET_TYPE (type2) != NULL)
2691 return 0;
2692
2693 return 1;
2694 }
2695
2696 /* Check types on a worklist for equality. Returns zero if any pair
2697 is not equal, non-zero if they are all considered equal. */
2698
2699 static int
2700 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2701 struct bcache *cache)
2702 {
2703 while (!VEC_empty (type_equality_entry_d, *worklist))
2704 {
2705 struct type_equality_entry entry;
2706 int added;
2707
2708 entry = *VEC_last (type_equality_entry_d, *worklist);
2709 VEC_pop (type_equality_entry_d, *worklist);
2710
2711 /* If the type pair has already been visited, we know it is
2712 ok. */
2713 bcache_full (&entry, sizeof (entry), cache, &added);
2714 if (!added)
2715 continue;
2716
2717 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2718 return 0;
2719 }
2720
2721 return 1;
2722 }
2723
2724 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2725 "deep comparison". Otherwise return zero. */
2726
2727 int
2728 types_deeply_equal (struct type *type1, struct type *type2)
2729 {
2730 volatile struct gdb_exception except;
2731 int result = 0;
2732 struct bcache *cache;
2733 VEC (type_equality_entry_d) *worklist = NULL;
2734 struct type_equality_entry entry;
2735
2736 gdb_assert (type1 != NULL && type2 != NULL);
2737
2738 /* Early exit for the simple case. */
2739 if (type1 == type2)
2740 return 1;
2741
2742 cache = bcache_xmalloc (NULL, NULL);
2743
2744 entry.type1 = type1;
2745 entry.type2 = type2;
2746 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2747
2748 TRY_CATCH (except, RETURN_MASK_ALL)
2749 {
2750 result = check_types_worklist (&worklist, cache);
2751 }
2752 /* check_types_worklist calls several nested helper functions,
2753 some of which can raise a GDB Exception, so we just check
2754 and rethrow here. If there is a GDB exception, a comparison
2755 is not capable (or trusted), so exit. */
2756 bcache_xfree (cache);
2757 VEC_free (type_equality_entry_d, worklist);
2758 /* Rethrow if there was a problem. */
2759 if (except.reason < 0)
2760 throw_exception (except);
2761
2762 return result;
2763 }
2764 \f
2765 /* Compare one type (PARM) for compatibility with another (ARG).
2766 * PARM is intended to be the parameter type of a function; and
2767 * ARG is the supplied argument's type. This function tests if
2768 * the latter can be converted to the former.
2769 * VALUE is the argument's value or NULL if none (or called recursively)
2770 *
2771 * Return 0 if they are identical types;
2772 * Otherwise, return an integer which corresponds to how compatible
2773 * PARM is to ARG. The higher the return value, the worse the match.
2774 * Generally the "bad" conversions are all uniformly assigned a 100. */
2775
2776 struct rank
2777 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2778 {
2779 struct rank rank = {0,0};
2780
2781 if (types_equal (parm, arg))
2782 return EXACT_MATCH_BADNESS;
2783
2784 /* Resolve typedefs */
2785 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2786 parm = check_typedef (parm);
2787 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2788 arg = check_typedef (arg);
2789
2790 /* See through references, since we can almost make non-references
2791 references. */
2792 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2793 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2794 REFERENCE_CONVERSION_BADNESS));
2795 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2796 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2797 REFERENCE_CONVERSION_BADNESS));
2798 if (overload_debug)
2799 /* Debugging only. */
2800 fprintf_filtered (gdb_stderr,
2801 "------ Arg is %s [%d], parm is %s [%d]\n",
2802 TYPE_NAME (arg), TYPE_CODE (arg),
2803 TYPE_NAME (parm), TYPE_CODE (parm));
2804
2805 /* x -> y means arg of type x being supplied for parameter of type y. */
2806
2807 switch (TYPE_CODE (parm))
2808 {
2809 case TYPE_CODE_PTR:
2810 switch (TYPE_CODE (arg))
2811 {
2812 case TYPE_CODE_PTR:
2813
2814 /* Allowed pointer conversions are:
2815 (a) pointer to void-pointer conversion. */
2816 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2817 return VOID_PTR_CONVERSION_BADNESS;
2818
2819 /* (b) pointer to ancestor-pointer conversion. */
2820 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2821 TYPE_TARGET_TYPE (arg),
2822 0);
2823 if (rank.subrank >= 0)
2824 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2825
2826 return INCOMPATIBLE_TYPE_BADNESS;
2827 case TYPE_CODE_ARRAY:
2828 if (types_equal (TYPE_TARGET_TYPE (parm),
2829 TYPE_TARGET_TYPE (arg)))
2830 return EXACT_MATCH_BADNESS;
2831 return INCOMPATIBLE_TYPE_BADNESS;
2832 case TYPE_CODE_FUNC:
2833 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2834 case TYPE_CODE_INT:
2835 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2836 {
2837 if (value_as_long (value) == 0)
2838 {
2839 /* Null pointer conversion: allow it to be cast to a pointer.
2840 [4.10.1 of C++ standard draft n3290] */
2841 return NULL_POINTER_CONVERSION_BADNESS;
2842 }
2843 else
2844 {
2845 /* If type checking is disabled, allow the conversion. */
2846 if (!strict_type_checking)
2847 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2848 }
2849 }
2850 /* fall through */
2851 case TYPE_CODE_ENUM:
2852 case TYPE_CODE_FLAGS:
2853 case TYPE_CODE_CHAR:
2854 case TYPE_CODE_RANGE:
2855 case TYPE_CODE_BOOL:
2856 default:
2857 return INCOMPATIBLE_TYPE_BADNESS;
2858 }
2859 case TYPE_CODE_ARRAY:
2860 switch (TYPE_CODE (arg))
2861 {
2862 case TYPE_CODE_PTR:
2863 case TYPE_CODE_ARRAY:
2864 return rank_one_type (TYPE_TARGET_TYPE (parm),
2865 TYPE_TARGET_TYPE (arg), NULL);
2866 default:
2867 return INCOMPATIBLE_TYPE_BADNESS;
2868 }
2869 case TYPE_CODE_FUNC:
2870 switch (TYPE_CODE (arg))
2871 {
2872 case TYPE_CODE_PTR: /* funcptr -> func */
2873 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2874 default:
2875 return INCOMPATIBLE_TYPE_BADNESS;
2876 }
2877 case TYPE_CODE_INT:
2878 switch (TYPE_CODE (arg))
2879 {
2880 case TYPE_CODE_INT:
2881 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2882 {
2883 /* Deal with signed, unsigned, and plain chars and
2884 signed and unsigned ints. */
2885 if (TYPE_NOSIGN (parm))
2886 {
2887 /* This case only for character types. */
2888 if (TYPE_NOSIGN (arg))
2889 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2890 else /* signed/unsigned char -> plain char */
2891 return INTEGER_CONVERSION_BADNESS;
2892 }
2893 else if (TYPE_UNSIGNED (parm))
2894 {
2895 if (TYPE_UNSIGNED (arg))
2896 {
2897 /* unsigned int -> unsigned int, or
2898 unsigned long -> unsigned long */
2899 if (integer_types_same_name_p (TYPE_NAME (parm),
2900 TYPE_NAME (arg)))
2901 return EXACT_MATCH_BADNESS;
2902 else if (integer_types_same_name_p (TYPE_NAME (arg),
2903 "int")
2904 && integer_types_same_name_p (TYPE_NAME (parm),
2905 "long"))
2906 /* unsigned int -> unsigned long */
2907 return INTEGER_PROMOTION_BADNESS;
2908 else
2909 /* unsigned long -> unsigned int */
2910 return INTEGER_CONVERSION_BADNESS;
2911 }
2912 else
2913 {
2914 if (integer_types_same_name_p (TYPE_NAME (arg),
2915 "long")
2916 && integer_types_same_name_p (TYPE_NAME (parm),
2917 "int"))
2918 /* signed long -> unsigned int */
2919 return INTEGER_CONVERSION_BADNESS;
2920 else
2921 /* signed int/long -> unsigned int/long */
2922 return INTEGER_CONVERSION_BADNESS;
2923 }
2924 }
2925 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2926 {
2927 if (integer_types_same_name_p (TYPE_NAME (parm),
2928 TYPE_NAME (arg)))
2929 return EXACT_MATCH_BADNESS;
2930 else if (integer_types_same_name_p (TYPE_NAME (arg),
2931 "int")
2932 && integer_types_same_name_p (TYPE_NAME (parm),
2933 "long"))
2934 return INTEGER_PROMOTION_BADNESS;
2935 else
2936 return INTEGER_CONVERSION_BADNESS;
2937 }
2938 else
2939 return INTEGER_CONVERSION_BADNESS;
2940 }
2941 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2942 return INTEGER_PROMOTION_BADNESS;
2943 else
2944 return INTEGER_CONVERSION_BADNESS;
2945 case TYPE_CODE_ENUM:
2946 case TYPE_CODE_FLAGS:
2947 case TYPE_CODE_CHAR:
2948 case TYPE_CODE_RANGE:
2949 case TYPE_CODE_BOOL:
2950 return INTEGER_PROMOTION_BADNESS;
2951 case TYPE_CODE_FLT:
2952 return INT_FLOAT_CONVERSION_BADNESS;
2953 case TYPE_CODE_PTR:
2954 return NS_POINTER_CONVERSION_BADNESS;
2955 default:
2956 return INCOMPATIBLE_TYPE_BADNESS;
2957 }
2958 break;
2959 case TYPE_CODE_ENUM:
2960 switch (TYPE_CODE (arg))
2961 {
2962 case TYPE_CODE_INT:
2963 case TYPE_CODE_CHAR:
2964 case TYPE_CODE_RANGE:
2965 case TYPE_CODE_BOOL:
2966 case TYPE_CODE_ENUM:
2967 return INTEGER_CONVERSION_BADNESS;
2968 case TYPE_CODE_FLT:
2969 return INT_FLOAT_CONVERSION_BADNESS;
2970 default:
2971 return INCOMPATIBLE_TYPE_BADNESS;
2972 }
2973 break;
2974 case TYPE_CODE_CHAR:
2975 switch (TYPE_CODE (arg))
2976 {
2977 case TYPE_CODE_RANGE:
2978 case TYPE_CODE_BOOL:
2979 case TYPE_CODE_ENUM:
2980 return INTEGER_CONVERSION_BADNESS;
2981 case TYPE_CODE_FLT:
2982 return INT_FLOAT_CONVERSION_BADNESS;
2983 case TYPE_CODE_INT:
2984 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2985 return INTEGER_CONVERSION_BADNESS;
2986 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2987 return INTEGER_PROMOTION_BADNESS;
2988 /* >>> !! else fall through !! <<< */
2989 case TYPE_CODE_CHAR:
2990 /* Deal with signed, unsigned, and plain chars for C++ and
2991 with int cases falling through from previous case. */
2992 if (TYPE_NOSIGN (parm))
2993 {
2994 if (TYPE_NOSIGN (arg))
2995 return EXACT_MATCH_BADNESS;
2996 else
2997 return INTEGER_CONVERSION_BADNESS;
2998 }
2999 else if (TYPE_UNSIGNED (parm))
3000 {
3001 if (TYPE_UNSIGNED (arg))
3002 return EXACT_MATCH_BADNESS;
3003 else
3004 return INTEGER_PROMOTION_BADNESS;
3005 }
3006 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3007 return EXACT_MATCH_BADNESS;
3008 else
3009 return INTEGER_CONVERSION_BADNESS;
3010 default:
3011 return INCOMPATIBLE_TYPE_BADNESS;
3012 }
3013 break;
3014 case TYPE_CODE_RANGE:
3015 switch (TYPE_CODE (arg))
3016 {
3017 case TYPE_CODE_INT:
3018 case TYPE_CODE_CHAR:
3019 case TYPE_CODE_RANGE:
3020 case TYPE_CODE_BOOL:
3021 case TYPE_CODE_ENUM:
3022 return INTEGER_CONVERSION_BADNESS;
3023 case TYPE_CODE_FLT:
3024 return INT_FLOAT_CONVERSION_BADNESS;
3025 default:
3026 return INCOMPATIBLE_TYPE_BADNESS;
3027 }
3028 break;
3029 case TYPE_CODE_BOOL:
3030 switch (TYPE_CODE (arg))
3031 {
3032 /* n3290 draft, section 4.12.1 (conv.bool):
3033
3034 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3035 pointer to member type can be converted to a prvalue of type
3036 bool. A zero value, null pointer value, or null member pointer
3037 value is converted to false; any other value is converted to
3038 true. A prvalue of type std::nullptr_t can be converted to a
3039 prvalue of type bool; the resulting value is false." */
3040 case TYPE_CODE_INT:
3041 case TYPE_CODE_CHAR:
3042 case TYPE_CODE_ENUM:
3043 case TYPE_CODE_FLT:
3044 case TYPE_CODE_MEMBERPTR:
3045 case TYPE_CODE_PTR:
3046 return BOOL_CONVERSION_BADNESS;
3047 case TYPE_CODE_RANGE:
3048 return INCOMPATIBLE_TYPE_BADNESS;
3049 case TYPE_CODE_BOOL:
3050 return EXACT_MATCH_BADNESS;
3051 default:
3052 return INCOMPATIBLE_TYPE_BADNESS;
3053 }
3054 break;
3055 case TYPE_CODE_FLT:
3056 switch (TYPE_CODE (arg))
3057 {
3058 case TYPE_CODE_FLT:
3059 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3060 return FLOAT_PROMOTION_BADNESS;
3061 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3062 return EXACT_MATCH_BADNESS;
3063 else
3064 return FLOAT_CONVERSION_BADNESS;
3065 case TYPE_CODE_INT:
3066 case TYPE_CODE_BOOL:
3067 case TYPE_CODE_ENUM:
3068 case TYPE_CODE_RANGE:
3069 case TYPE_CODE_CHAR:
3070 return INT_FLOAT_CONVERSION_BADNESS;
3071 default:
3072 return INCOMPATIBLE_TYPE_BADNESS;
3073 }
3074 break;
3075 case TYPE_CODE_COMPLEX:
3076 switch (TYPE_CODE (arg))
3077 { /* Strictly not needed for C++, but... */
3078 case TYPE_CODE_FLT:
3079 return FLOAT_PROMOTION_BADNESS;
3080 case TYPE_CODE_COMPLEX:
3081 return EXACT_MATCH_BADNESS;
3082 default:
3083 return INCOMPATIBLE_TYPE_BADNESS;
3084 }
3085 break;
3086 case TYPE_CODE_STRUCT:
3087 /* currently same as TYPE_CODE_CLASS. */
3088 switch (TYPE_CODE (arg))
3089 {
3090 case TYPE_CODE_STRUCT:
3091 /* Check for derivation */
3092 rank.subrank = distance_to_ancestor (parm, arg, 0);
3093 if (rank.subrank >= 0)
3094 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3095 /* else fall through */
3096 default:
3097 return INCOMPATIBLE_TYPE_BADNESS;
3098 }
3099 break;
3100 case TYPE_CODE_UNION:
3101 switch (TYPE_CODE (arg))
3102 {
3103 case TYPE_CODE_UNION:
3104 default:
3105 return INCOMPATIBLE_TYPE_BADNESS;
3106 }
3107 break;
3108 case TYPE_CODE_MEMBERPTR:
3109 switch (TYPE_CODE (arg))
3110 {
3111 default:
3112 return INCOMPATIBLE_TYPE_BADNESS;
3113 }
3114 break;
3115 case TYPE_CODE_METHOD:
3116 switch (TYPE_CODE (arg))
3117 {
3118
3119 default:
3120 return INCOMPATIBLE_TYPE_BADNESS;
3121 }
3122 break;
3123 case TYPE_CODE_REF:
3124 switch (TYPE_CODE (arg))
3125 {
3126
3127 default:
3128 return INCOMPATIBLE_TYPE_BADNESS;
3129 }
3130
3131 break;
3132 case TYPE_CODE_SET:
3133 switch (TYPE_CODE (arg))
3134 {
3135 /* Not in C++ */
3136 case TYPE_CODE_SET:
3137 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3138 TYPE_FIELD_TYPE (arg, 0), NULL);
3139 default:
3140 return INCOMPATIBLE_TYPE_BADNESS;
3141 }
3142 break;
3143 case TYPE_CODE_VOID:
3144 default:
3145 return INCOMPATIBLE_TYPE_BADNESS;
3146 } /* switch (TYPE_CODE (arg)) */
3147 }
3148
3149 /* End of functions for overload resolution. */
3150 \f
3151 /* Routines to pretty-print types. */
3152
3153 static void
3154 print_bit_vector (B_TYPE *bits, int nbits)
3155 {
3156 int bitno;
3157
3158 for (bitno = 0; bitno < nbits; bitno++)
3159 {
3160 if ((bitno % 8) == 0)
3161 {
3162 puts_filtered (" ");
3163 }
3164 if (B_TST (bits, bitno))
3165 printf_filtered (("1"));
3166 else
3167 printf_filtered (("0"));
3168 }
3169 }
3170
3171 /* Note the first arg should be the "this" pointer, we may not want to
3172 include it since we may get into a infinitely recursive
3173 situation. */
3174
3175 static void
3176 print_arg_types (struct field *args, int nargs, int spaces)
3177 {
3178 if (args != NULL)
3179 {
3180 int i;
3181
3182 for (i = 0; i < nargs; i++)
3183 recursive_dump_type (args[i].type, spaces + 2);
3184 }
3185 }
3186
3187 int
3188 field_is_static (struct field *f)
3189 {
3190 /* "static" fields are the fields whose location is not relative
3191 to the address of the enclosing struct. It would be nice to
3192 have a dedicated flag that would be set for static fields when
3193 the type is being created. But in practice, checking the field
3194 loc_kind should give us an accurate answer. */
3195 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3196 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3197 }
3198
3199 static void
3200 dump_fn_fieldlists (struct type *type, int spaces)
3201 {
3202 int method_idx;
3203 int overload_idx;
3204 struct fn_field *f;
3205
3206 printfi_filtered (spaces, "fn_fieldlists ");
3207 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3208 printf_filtered ("\n");
3209 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3210 {
3211 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3212 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3213 method_idx,
3214 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3215 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3216 gdb_stdout);
3217 printf_filtered (_(") length %d\n"),
3218 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3219 for (overload_idx = 0;
3220 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3221 overload_idx++)
3222 {
3223 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3224 overload_idx,
3225 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3226 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3227 gdb_stdout);
3228 printf_filtered (")\n");
3229 printfi_filtered (spaces + 8, "type ");
3230 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3231 gdb_stdout);
3232 printf_filtered ("\n");
3233
3234 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3235 spaces + 8 + 2);
3236
3237 printfi_filtered (spaces + 8, "args ");
3238 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3239 gdb_stdout);
3240 printf_filtered ("\n");
3241
3242 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3243 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3244 overload_idx)),
3245 spaces);
3246 printfi_filtered (spaces + 8, "fcontext ");
3247 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3248 gdb_stdout);
3249 printf_filtered ("\n");
3250
3251 printfi_filtered (spaces + 8, "is_const %d\n",
3252 TYPE_FN_FIELD_CONST (f, overload_idx));
3253 printfi_filtered (spaces + 8, "is_volatile %d\n",
3254 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3255 printfi_filtered (spaces + 8, "is_private %d\n",
3256 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3257 printfi_filtered (spaces + 8, "is_protected %d\n",
3258 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3259 printfi_filtered (spaces + 8, "is_stub %d\n",
3260 TYPE_FN_FIELD_STUB (f, overload_idx));
3261 printfi_filtered (spaces + 8, "voffset %u\n",
3262 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3263 }
3264 }
3265 }
3266
3267 static void
3268 print_cplus_stuff (struct type *type, int spaces)
3269 {
3270 printfi_filtered (spaces, "n_baseclasses %d\n",
3271 TYPE_N_BASECLASSES (type));
3272 printfi_filtered (spaces, "nfn_fields %d\n",
3273 TYPE_NFN_FIELDS (type));
3274 if (TYPE_N_BASECLASSES (type) > 0)
3275 {
3276 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3277 TYPE_N_BASECLASSES (type));
3278 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3279 gdb_stdout);
3280 printf_filtered (")");
3281
3282 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3283 TYPE_N_BASECLASSES (type));
3284 puts_filtered ("\n");
3285 }
3286 if (TYPE_NFIELDS (type) > 0)
3287 {
3288 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3289 {
3290 printfi_filtered (spaces,
3291 "private_field_bits (%d bits at *",
3292 TYPE_NFIELDS (type));
3293 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3294 gdb_stdout);
3295 printf_filtered (")");
3296 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3297 TYPE_NFIELDS (type));
3298 puts_filtered ("\n");
3299 }
3300 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3301 {
3302 printfi_filtered (spaces,
3303 "protected_field_bits (%d bits at *",
3304 TYPE_NFIELDS (type));
3305 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3306 gdb_stdout);
3307 printf_filtered (")");
3308 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3309 TYPE_NFIELDS (type));
3310 puts_filtered ("\n");
3311 }
3312 }
3313 if (TYPE_NFN_FIELDS (type) > 0)
3314 {
3315 dump_fn_fieldlists (type, spaces);
3316 }
3317 }
3318
3319 /* Print the contents of the TYPE's type_specific union, assuming that
3320 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3321
3322 static void
3323 print_gnat_stuff (struct type *type, int spaces)
3324 {
3325 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3326
3327 recursive_dump_type (descriptive_type, spaces + 2);
3328 }
3329
3330 static struct obstack dont_print_type_obstack;
3331
3332 void
3333 recursive_dump_type (struct type *type, int spaces)
3334 {
3335 int idx;
3336
3337 if (spaces == 0)
3338 obstack_begin (&dont_print_type_obstack, 0);
3339
3340 if (TYPE_NFIELDS (type) > 0
3341 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3342 {
3343 struct type **first_dont_print
3344 = (struct type **) obstack_base (&dont_print_type_obstack);
3345
3346 int i = (struct type **)
3347 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3348
3349 while (--i >= 0)
3350 {
3351 if (type == first_dont_print[i])
3352 {
3353 printfi_filtered (spaces, "type node ");
3354 gdb_print_host_address (type, gdb_stdout);
3355 printf_filtered (_(" <same as already seen type>\n"));
3356 return;
3357 }
3358 }
3359
3360 obstack_ptr_grow (&dont_print_type_obstack, type);
3361 }
3362
3363 printfi_filtered (spaces, "type node ");
3364 gdb_print_host_address (type, gdb_stdout);
3365 printf_filtered ("\n");
3366 printfi_filtered (spaces, "name '%s' (",
3367 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3368 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3369 printf_filtered (")\n");
3370 printfi_filtered (spaces, "tagname '%s' (",
3371 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3372 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3373 printf_filtered (")\n");
3374 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3375 switch (TYPE_CODE (type))
3376 {
3377 case TYPE_CODE_UNDEF:
3378 printf_filtered ("(TYPE_CODE_UNDEF)");
3379 break;
3380 case TYPE_CODE_PTR:
3381 printf_filtered ("(TYPE_CODE_PTR)");
3382 break;
3383 case TYPE_CODE_ARRAY:
3384 printf_filtered ("(TYPE_CODE_ARRAY)");
3385 break;
3386 case TYPE_CODE_STRUCT:
3387 printf_filtered ("(TYPE_CODE_STRUCT)");
3388 break;
3389 case TYPE_CODE_UNION:
3390 printf_filtered ("(TYPE_CODE_UNION)");
3391 break;
3392 case TYPE_CODE_ENUM:
3393 printf_filtered ("(TYPE_CODE_ENUM)");
3394 break;
3395 case TYPE_CODE_FLAGS:
3396 printf_filtered ("(TYPE_CODE_FLAGS)");
3397 break;
3398 case TYPE_CODE_FUNC:
3399 printf_filtered ("(TYPE_CODE_FUNC)");
3400 break;
3401 case TYPE_CODE_INT:
3402 printf_filtered ("(TYPE_CODE_INT)");
3403 break;
3404 case TYPE_CODE_FLT:
3405 printf_filtered ("(TYPE_CODE_FLT)");
3406 break;
3407 case TYPE_CODE_VOID:
3408 printf_filtered ("(TYPE_CODE_VOID)");
3409 break;
3410 case TYPE_CODE_SET:
3411 printf_filtered ("(TYPE_CODE_SET)");
3412 break;
3413 case TYPE_CODE_RANGE:
3414 printf_filtered ("(TYPE_CODE_RANGE)");
3415 break;
3416 case TYPE_CODE_STRING:
3417 printf_filtered ("(TYPE_CODE_STRING)");
3418 break;
3419 case TYPE_CODE_ERROR:
3420 printf_filtered ("(TYPE_CODE_ERROR)");
3421 break;
3422 case TYPE_CODE_MEMBERPTR:
3423 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3424 break;
3425 case TYPE_CODE_METHODPTR:
3426 printf_filtered ("(TYPE_CODE_METHODPTR)");
3427 break;
3428 case TYPE_CODE_METHOD:
3429 printf_filtered ("(TYPE_CODE_METHOD)");
3430 break;
3431 case TYPE_CODE_REF:
3432 printf_filtered ("(TYPE_CODE_REF)");
3433 break;
3434 case TYPE_CODE_CHAR:
3435 printf_filtered ("(TYPE_CODE_CHAR)");
3436 break;
3437 case TYPE_CODE_BOOL:
3438 printf_filtered ("(TYPE_CODE_BOOL)");
3439 break;
3440 case TYPE_CODE_COMPLEX:
3441 printf_filtered ("(TYPE_CODE_COMPLEX)");
3442 break;
3443 case TYPE_CODE_TYPEDEF:
3444 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3445 break;
3446 case TYPE_CODE_NAMESPACE:
3447 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3448 break;
3449 default:
3450 printf_filtered ("(UNKNOWN TYPE CODE)");
3451 break;
3452 }
3453 puts_filtered ("\n");
3454 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3455 if (TYPE_OBJFILE_OWNED (type))
3456 {
3457 printfi_filtered (spaces, "objfile ");
3458 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3459 }
3460 else
3461 {
3462 printfi_filtered (spaces, "gdbarch ");
3463 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3464 }
3465 printf_filtered ("\n");
3466 printfi_filtered (spaces, "target_type ");
3467 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3468 printf_filtered ("\n");
3469 if (TYPE_TARGET_TYPE (type) != NULL)
3470 {
3471 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3472 }
3473 printfi_filtered (spaces, "pointer_type ");
3474 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3475 printf_filtered ("\n");
3476 printfi_filtered (spaces, "reference_type ");
3477 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3478 printf_filtered ("\n");
3479 printfi_filtered (spaces, "type_chain ");
3480 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3481 printf_filtered ("\n");
3482 printfi_filtered (spaces, "instance_flags 0x%x",
3483 TYPE_INSTANCE_FLAGS (type));
3484 if (TYPE_CONST (type))
3485 {
3486 puts_filtered (" TYPE_FLAG_CONST");
3487 }
3488 if (TYPE_VOLATILE (type))
3489 {
3490 puts_filtered (" TYPE_FLAG_VOLATILE");
3491 }
3492 if (TYPE_CODE_SPACE (type))
3493 {
3494 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3495 }
3496 if (TYPE_DATA_SPACE (type))
3497 {
3498 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3499 }
3500 if (TYPE_ADDRESS_CLASS_1 (type))
3501 {
3502 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3503 }
3504 if (TYPE_ADDRESS_CLASS_2 (type))
3505 {
3506 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3507 }
3508 if (TYPE_RESTRICT (type))
3509 {
3510 puts_filtered (" TYPE_FLAG_RESTRICT");
3511 }
3512 puts_filtered ("\n");
3513
3514 printfi_filtered (spaces, "flags");
3515 if (TYPE_UNSIGNED (type))
3516 {
3517 puts_filtered (" TYPE_FLAG_UNSIGNED");
3518 }
3519 if (TYPE_NOSIGN (type))
3520 {
3521 puts_filtered (" TYPE_FLAG_NOSIGN");
3522 }
3523 if (TYPE_STUB (type))
3524 {
3525 puts_filtered (" TYPE_FLAG_STUB");
3526 }
3527 if (TYPE_TARGET_STUB (type))
3528 {
3529 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3530 }
3531 if (TYPE_STATIC (type))
3532 {
3533 puts_filtered (" TYPE_FLAG_STATIC");
3534 }
3535 if (TYPE_PROTOTYPED (type))
3536 {
3537 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3538 }
3539 if (TYPE_INCOMPLETE (type))
3540 {
3541 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3542 }
3543 if (TYPE_VARARGS (type))
3544 {
3545 puts_filtered (" TYPE_FLAG_VARARGS");
3546 }
3547 /* This is used for things like AltiVec registers on ppc. Gcc emits
3548 an attribute for the array type, which tells whether or not we
3549 have a vector, instead of a regular array. */
3550 if (TYPE_VECTOR (type))
3551 {
3552 puts_filtered (" TYPE_FLAG_VECTOR");
3553 }
3554 if (TYPE_FIXED_INSTANCE (type))
3555 {
3556 puts_filtered (" TYPE_FIXED_INSTANCE");
3557 }
3558 if (TYPE_STUB_SUPPORTED (type))
3559 {
3560 puts_filtered (" TYPE_STUB_SUPPORTED");
3561 }
3562 if (TYPE_NOTTEXT (type))
3563 {
3564 puts_filtered (" TYPE_NOTTEXT");
3565 }
3566 puts_filtered ("\n");
3567 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3568 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3569 puts_filtered ("\n");
3570 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3571 {
3572 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3573 printfi_filtered (spaces + 2,
3574 "[%d] enumval %s type ",
3575 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3576 else
3577 printfi_filtered (spaces + 2,
3578 "[%d] bitpos %d bitsize %d type ",
3579 idx, TYPE_FIELD_BITPOS (type, idx),
3580 TYPE_FIELD_BITSIZE (type, idx));
3581 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3582 printf_filtered (" name '%s' (",
3583 TYPE_FIELD_NAME (type, idx) != NULL
3584 ? TYPE_FIELD_NAME (type, idx)
3585 : "<NULL>");
3586 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3587 printf_filtered (")\n");
3588 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3589 {
3590 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3591 }
3592 }
3593 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3594 {
3595 printfi_filtered (spaces, "low %s%s high %s%s\n",
3596 plongest (TYPE_LOW_BOUND (type)),
3597 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3598 plongest (TYPE_HIGH_BOUND (type)),
3599 TYPE_HIGH_BOUND_UNDEFINED (type)
3600 ? " (undefined)" : "");
3601 }
3602 printfi_filtered (spaces, "vptr_basetype ");
3603 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3604 puts_filtered ("\n");
3605 if (TYPE_VPTR_BASETYPE (type) != NULL)
3606 {
3607 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3608 }
3609 printfi_filtered (spaces, "vptr_fieldno %d\n",
3610 TYPE_VPTR_FIELDNO (type));
3611
3612 switch (TYPE_SPECIFIC_FIELD (type))
3613 {
3614 case TYPE_SPECIFIC_CPLUS_STUFF:
3615 printfi_filtered (spaces, "cplus_stuff ");
3616 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3617 gdb_stdout);
3618 puts_filtered ("\n");
3619 print_cplus_stuff (type, spaces);
3620 break;
3621
3622 case TYPE_SPECIFIC_GNAT_STUFF:
3623 printfi_filtered (spaces, "gnat_stuff ");
3624 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3625 puts_filtered ("\n");
3626 print_gnat_stuff (type, spaces);
3627 break;
3628
3629 case TYPE_SPECIFIC_FLOATFORMAT:
3630 printfi_filtered (spaces, "floatformat ");
3631 if (TYPE_FLOATFORMAT (type) == NULL)
3632 puts_filtered ("(null)");
3633 else
3634 {
3635 puts_filtered ("{ ");
3636 if (TYPE_FLOATFORMAT (type)[0] == NULL
3637 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3638 puts_filtered ("(null)");
3639 else
3640 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3641
3642 puts_filtered (", ");
3643 if (TYPE_FLOATFORMAT (type)[1] == NULL
3644 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3645 puts_filtered ("(null)");
3646 else
3647 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3648
3649 puts_filtered (" }");
3650 }
3651 puts_filtered ("\n");
3652 break;
3653
3654 case TYPE_SPECIFIC_FUNC:
3655 printfi_filtered (spaces, "calling_convention %d\n",
3656 TYPE_CALLING_CONVENTION (type));
3657 /* tail_call_list is not printed. */
3658 break;
3659 }
3660
3661 if (spaces == 0)
3662 obstack_free (&dont_print_type_obstack, NULL);
3663 }
3664 \f
3665 /* Trivial helpers for the libiberty hash table, for mapping one
3666 type to another. */
3667
3668 struct type_pair
3669 {
3670 struct type *old, *new;
3671 };
3672
3673 static hashval_t
3674 type_pair_hash (const void *item)
3675 {
3676 const struct type_pair *pair = item;
3677
3678 return htab_hash_pointer (pair->old);
3679 }
3680
3681 static int
3682 type_pair_eq (const void *item_lhs, const void *item_rhs)
3683 {
3684 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3685
3686 return lhs->old == rhs->old;
3687 }
3688
3689 /* Allocate the hash table used by copy_type_recursive to walk
3690 types without duplicates. We use OBJFILE's obstack, because
3691 OBJFILE is about to be deleted. */
3692
3693 htab_t
3694 create_copied_types_hash (struct objfile *objfile)
3695 {
3696 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3697 NULL, &objfile->objfile_obstack,
3698 hashtab_obstack_allocate,
3699 dummy_obstack_deallocate);
3700 }
3701
3702 /* Recursively copy (deep copy) TYPE, if it is associated with
3703 OBJFILE. Return a new type allocated using malloc, a saved type if
3704 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3705 not associated with OBJFILE. */
3706
3707 struct type *
3708 copy_type_recursive (struct objfile *objfile,
3709 struct type *type,
3710 htab_t copied_types)
3711 {
3712 struct type_pair *stored, pair;
3713 void **slot;
3714 struct type *new_type;
3715
3716 if (! TYPE_OBJFILE_OWNED (type))
3717 return type;
3718
3719 /* This type shouldn't be pointing to any types in other objfiles;
3720 if it did, the type might disappear unexpectedly. */
3721 gdb_assert (TYPE_OBJFILE (type) == objfile);
3722
3723 pair.old = type;
3724 slot = htab_find_slot (copied_types, &pair, INSERT);
3725 if (*slot != NULL)
3726 return ((struct type_pair *) *slot)->new;
3727
3728 new_type = alloc_type_arch (get_type_arch (type));
3729
3730 /* We must add the new type to the hash table immediately, in case
3731 we encounter this type again during a recursive call below. */
3732 stored
3733 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3734 stored->old = type;
3735 stored->new = new_type;
3736 *slot = stored;
3737
3738 /* Copy the common fields of types. For the main type, we simply
3739 copy the entire thing and then update specific fields as needed. */
3740 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3741 TYPE_OBJFILE_OWNED (new_type) = 0;
3742 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3743
3744 if (TYPE_NAME (type))
3745 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3746 if (TYPE_TAG_NAME (type))
3747 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3748
3749 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3750 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3751
3752 /* Copy the fields. */
3753 if (TYPE_NFIELDS (type))
3754 {
3755 int i, nfields;
3756
3757 nfields = TYPE_NFIELDS (type);
3758 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3759 for (i = 0; i < nfields; i++)
3760 {
3761 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3762 TYPE_FIELD_ARTIFICIAL (type, i);
3763 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3764 if (TYPE_FIELD_TYPE (type, i))
3765 TYPE_FIELD_TYPE (new_type, i)
3766 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3767 copied_types);
3768 if (TYPE_FIELD_NAME (type, i))
3769 TYPE_FIELD_NAME (new_type, i) =
3770 xstrdup (TYPE_FIELD_NAME (type, i));
3771 switch (TYPE_FIELD_LOC_KIND (type, i))
3772 {
3773 case FIELD_LOC_KIND_BITPOS:
3774 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3775 TYPE_FIELD_BITPOS (type, i));
3776 break;
3777 case FIELD_LOC_KIND_ENUMVAL:
3778 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3779 TYPE_FIELD_ENUMVAL (type, i));
3780 break;
3781 case FIELD_LOC_KIND_PHYSADDR:
3782 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3783 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3784 break;
3785 case FIELD_LOC_KIND_PHYSNAME:
3786 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3787 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3788 i)));
3789 break;
3790 default:
3791 internal_error (__FILE__, __LINE__,
3792 _("Unexpected type field location kind: %d"),
3793 TYPE_FIELD_LOC_KIND (type, i));
3794 }
3795 }
3796 }
3797
3798 /* For range types, copy the bounds information. */
3799 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3800 {
3801 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3802 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3803 }
3804
3805 /* Copy pointers to other types. */
3806 if (TYPE_TARGET_TYPE (type))
3807 TYPE_TARGET_TYPE (new_type) =
3808 copy_type_recursive (objfile,
3809 TYPE_TARGET_TYPE (type),
3810 copied_types);
3811 if (TYPE_VPTR_BASETYPE (type))
3812 TYPE_VPTR_BASETYPE (new_type) =
3813 copy_type_recursive (objfile,
3814 TYPE_VPTR_BASETYPE (type),
3815 copied_types);
3816 /* Maybe copy the type_specific bits.
3817
3818 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3819 base classes and methods. There's no fundamental reason why we
3820 can't, but at the moment it is not needed. */
3821
3822 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3823 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3824 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3825 || TYPE_CODE (type) == TYPE_CODE_UNION
3826 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3827 INIT_CPLUS_SPECIFIC (new_type);
3828
3829 return new_type;
3830 }
3831
3832 /* Make a copy of the given TYPE, except that the pointer & reference
3833 types are not preserved.
3834
3835 This function assumes that the given type has an associated objfile.
3836 This objfile is used to allocate the new type. */
3837
3838 struct type *
3839 copy_type (const struct type *type)
3840 {
3841 struct type *new_type;
3842
3843 gdb_assert (TYPE_OBJFILE_OWNED (type));
3844
3845 new_type = alloc_type_copy (type);
3846 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3847 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3848 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3849 sizeof (struct main_type));
3850
3851 return new_type;
3852 }
3853 \f
3854 /* Helper functions to initialize architecture-specific types. */
3855
3856 /* Allocate a type structure associated with GDBARCH and set its
3857 CODE, LENGTH, and NAME fields. */
3858
3859 struct type *
3860 arch_type (struct gdbarch *gdbarch,
3861 enum type_code code, int length, char *name)
3862 {
3863 struct type *type;
3864
3865 type = alloc_type_arch (gdbarch);
3866 TYPE_CODE (type) = code;
3867 TYPE_LENGTH (type) = length;
3868
3869 if (name)
3870 TYPE_NAME (type) = xstrdup (name);
3871
3872 return type;
3873 }
3874
3875 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3876 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3877 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3878
3879 struct type *
3880 arch_integer_type (struct gdbarch *gdbarch,
3881 int bit, int unsigned_p, char *name)
3882 {
3883 struct type *t;
3884
3885 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3886 if (unsigned_p)
3887 TYPE_UNSIGNED (t) = 1;
3888 if (name && strcmp (name, "char") == 0)
3889 TYPE_NOSIGN (t) = 1;
3890
3891 return t;
3892 }
3893
3894 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3895 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3896 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3897
3898 struct type *
3899 arch_character_type (struct gdbarch *gdbarch,
3900 int bit, int unsigned_p, char *name)
3901 {
3902 struct type *t;
3903
3904 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3905 if (unsigned_p)
3906 TYPE_UNSIGNED (t) = 1;
3907
3908 return t;
3909 }
3910
3911 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3912 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3913 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3914
3915 struct type *
3916 arch_boolean_type (struct gdbarch *gdbarch,
3917 int bit, int unsigned_p, char *name)
3918 {
3919 struct type *t;
3920
3921 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3922 if (unsigned_p)
3923 TYPE_UNSIGNED (t) = 1;
3924
3925 return t;
3926 }
3927
3928 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3929 BIT is the type size in bits; if BIT equals -1, the size is
3930 determined by the floatformat. NAME is the type name. Set the
3931 TYPE_FLOATFORMAT from FLOATFORMATS. */
3932
3933 struct type *
3934 arch_float_type (struct gdbarch *gdbarch,
3935 int bit, char *name, const struct floatformat **floatformats)
3936 {
3937 struct type *t;
3938
3939 if (bit == -1)
3940 {
3941 gdb_assert (floatformats != NULL);
3942 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3943 bit = floatformats[0]->totalsize;
3944 }
3945 gdb_assert (bit >= 0);
3946
3947 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3948 TYPE_FLOATFORMAT (t) = floatformats;
3949 return t;
3950 }
3951
3952 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3953 NAME is the type name. TARGET_TYPE is the component float type. */
3954
3955 struct type *
3956 arch_complex_type (struct gdbarch *gdbarch,
3957 char *name, struct type *target_type)
3958 {
3959 struct type *t;
3960
3961 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3962 2 * TYPE_LENGTH (target_type), name);
3963 TYPE_TARGET_TYPE (t) = target_type;
3964 return t;
3965 }
3966
3967 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3968 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3969
3970 struct type *
3971 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3972 {
3973 int nfields = length * TARGET_CHAR_BIT;
3974 struct type *type;
3975
3976 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3977 TYPE_UNSIGNED (type) = 1;
3978 TYPE_NFIELDS (type) = nfields;
3979 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3980
3981 return type;
3982 }
3983
3984 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3985 position BITPOS is called NAME. */
3986
3987 void
3988 append_flags_type_flag (struct type *type, int bitpos, char *name)
3989 {
3990 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3991 gdb_assert (bitpos < TYPE_NFIELDS (type));
3992 gdb_assert (bitpos >= 0);
3993
3994 if (name)
3995 {
3996 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3997 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3998 }
3999 else
4000 {
4001 /* Don't show this field to the user. */
4002 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4003 }
4004 }
4005
4006 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4007 specified by CODE) associated with GDBARCH. NAME is the type name. */
4008
4009 struct type *
4010 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4011 {
4012 struct type *t;
4013
4014 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4015 t = arch_type (gdbarch, code, 0, NULL);
4016 TYPE_TAG_NAME (t) = name;
4017 INIT_CPLUS_SPECIFIC (t);
4018 return t;
4019 }
4020
4021 /* Add new field with name NAME and type FIELD to composite type T.
4022 Do not set the field's position or adjust the type's length;
4023 the caller should do so. Return the new field. */
4024
4025 struct field *
4026 append_composite_type_field_raw (struct type *t, char *name,
4027 struct type *field)
4028 {
4029 struct field *f;
4030
4031 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4032 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4033 sizeof (struct field) * TYPE_NFIELDS (t));
4034 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4035 memset (f, 0, sizeof f[0]);
4036 FIELD_TYPE (f[0]) = field;
4037 FIELD_NAME (f[0]) = name;
4038 return f;
4039 }
4040
4041 /* Add new field with name NAME and type FIELD to composite type T.
4042 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4043
4044 void
4045 append_composite_type_field_aligned (struct type *t, char *name,
4046 struct type *field, int alignment)
4047 {
4048 struct field *f = append_composite_type_field_raw (t, name, field);
4049
4050 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4051 {
4052 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4053 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4054 }
4055 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4056 {
4057 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4058 if (TYPE_NFIELDS (t) > 1)
4059 {
4060 SET_FIELD_BITPOS (f[0],
4061 (FIELD_BITPOS (f[-1])
4062 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4063 * TARGET_CHAR_BIT)));
4064
4065 if (alignment)
4066 {
4067 int left;
4068
4069 alignment *= TARGET_CHAR_BIT;
4070 left = FIELD_BITPOS (f[0]) % alignment;
4071
4072 if (left)
4073 {
4074 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4075 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4076 }
4077 }
4078 }
4079 }
4080 }
4081
4082 /* Add new field with name NAME and type FIELD to composite type T. */
4083
4084 void
4085 append_composite_type_field (struct type *t, char *name,
4086 struct type *field)
4087 {
4088 append_composite_type_field_aligned (t, name, field, 0);
4089 }
4090
4091 static struct gdbarch_data *gdbtypes_data;
4092
4093 const struct builtin_type *
4094 builtin_type (struct gdbarch *gdbarch)
4095 {
4096 return gdbarch_data (gdbarch, gdbtypes_data);
4097 }
4098
4099 static void *
4100 gdbtypes_post_init (struct gdbarch *gdbarch)
4101 {
4102 struct builtin_type *builtin_type
4103 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4104
4105 /* Basic types. */
4106 builtin_type->builtin_void
4107 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4108 builtin_type->builtin_char
4109 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4110 !gdbarch_char_signed (gdbarch), "char");
4111 builtin_type->builtin_signed_char
4112 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4113 0, "signed char");
4114 builtin_type->builtin_unsigned_char
4115 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4116 1, "unsigned char");
4117 builtin_type->builtin_short
4118 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4119 0, "short");
4120 builtin_type->builtin_unsigned_short
4121 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4122 1, "unsigned short");
4123 builtin_type->builtin_int
4124 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4125 0, "int");
4126 builtin_type->builtin_unsigned_int
4127 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4128 1, "unsigned int");
4129 builtin_type->builtin_long
4130 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4131 0, "long");
4132 builtin_type->builtin_unsigned_long
4133 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4134 1, "unsigned long");
4135 builtin_type->builtin_long_long
4136 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4137 0, "long long");
4138 builtin_type->builtin_unsigned_long_long
4139 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4140 1, "unsigned long long");
4141 builtin_type->builtin_float
4142 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4143 "float", gdbarch_float_format (gdbarch));
4144 builtin_type->builtin_double
4145 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4146 "double", gdbarch_double_format (gdbarch));
4147 builtin_type->builtin_long_double
4148 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4149 "long double", gdbarch_long_double_format (gdbarch));
4150 builtin_type->builtin_complex
4151 = arch_complex_type (gdbarch, "complex",
4152 builtin_type->builtin_float);
4153 builtin_type->builtin_double_complex
4154 = arch_complex_type (gdbarch, "double complex",
4155 builtin_type->builtin_double);
4156 builtin_type->builtin_string
4157 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4158 builtin_type->builtin_bool
4159 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4160
4161 /* The following three are about decimal floating point types, which
4162 are 32-bits, 64-bits and 128-bits respectively. */
4163 builtin_type->builtin_decfloat
4164 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4165 builtin_type->builtin_decdouble
4166 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4167 builtin_type->builtin_declong
4168 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4169
4170 /* "True" character types. */
4171 builtin_type->builtin_true_char
4172 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4173 builtin_type->builtin_true_unsigned_char
4174 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4175
4176 /* Fixed-size integer types. */
4177 builtin_type->builtin_int0
4178 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4179 builtin_type->builtin_int8
4180 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4181 builtin_type->builtin_uint8
4182 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4183 builtin_type->builtin_int16
4184 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4185 builtin_type->builtin_uint16
4186 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4187 builtin_type->builtin_int32
4188 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4189 builtin_type->builtin_uint32
4190 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4191 builtin_type->builtin_int64
4192 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4193 builtin_type->builtin_uint64
4194 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4195 builtin_type->builtin_int128
4196 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4197 builtin_type->builtin_uint128
4198 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4199 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4200 TYPE_INSTANCE_FLAG_NOTTEXT;
4201 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4202 TYPE_INSTANCE_FLAG_NOTTEXT;
4203
4204 /* Wide character types. */
4205 builtin_type->builtin_char16
4206 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4207 builtin_type->builtin_char32
4208 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4209
4210
4211 /* Default data/code pointer types. */
4212 builtin_type->builtin_data_ptr
4213 = lookup_pointer_type (builtin_type->builtin_void);
4214 builtin_type->builtin_func_ptr
4215 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4216 builtin_type->builtin_func_func
4217 = lookup_function_type (builtin_type->builtin_func_ptr);
4218
4219 /* This type represents a GDB internal function. */
4220 builtin_type->internal_fn
4221 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4222 "<internal function>");
4223
4224 return builtin_type;
4225 }
4226
4227 /* This set of objfile-based types is intended to be used by symbol
4228 readers as basic types. */
4229
4230 static const struct objfile_data *objfile_type_data;
4231
4232 const struct objfile_type *
4233 objfile_type (struct objfile *objfile)
4234 {
4235 struct gdbarch *gdbarch;
4236 struct objfile_type *objfile_type
4237 = objfile_data (objfile, objfile_type_data);
4238
4239 if (objfile_type)
4240 return objfile_type;
4241
4242 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4243 1, struct objfile_type);
4244
4245 /* Use the objfile architecture to determine basic type properties. */
4246 gdbarch = get_objfile_arch (objfile);
4247
4248 /* Basic types. */
4249 objfile_type->builtin_void
4250 = init_type (TYPE_CODE_VOID, 1,
4251 0,
4252 "void", objfile);
4253
4254 objfile_type->builtin_char
4255 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4256 (TYPE_FLAG_NOSIGN
4257 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4258 "char", objfile);
4259 objfile_type->builtin_signed_char
4260 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4261 0,
4262 "signed char", objfile);
4263 objfile_type->builtin_unsigned_char
4264 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4265 TYPE_FLAG_UNSIGNED,
4266 "unsigned char", objfile);
4267 objfile_type->builtin_short
4268 = init_type (TYPE_CODE_INT,
4269 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4270 0, "short", objfile);
4271 objfile_type->builtin_unsigned_short
4272 = init_type (TYPE_CODE_INT,
4273 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4274 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4275 objfile_type->builtin_int
4276 = init_type (TYPE_CODE_INT,
4277 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4278 0, "int", objfile);
4279 objfile_type->builtin_unsigned_int
4280 = init_type (TYPE_CODE_INT,
4281 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4282 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4283 objfile_type->builtin_long
4284 = init_type (TYPE_CODE_INT,
4285 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4286 0, "long", objfile);
4287 objfile_type->builtin_unsigned_long
4288 = init_type (TYPE_CODE_INT,
4289 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4290 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4291 objfile_type->builtin_long_long
4292 = init_type (TYPE_CODE_INT,
4293 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4294 0, "long long", objfile);
4295 objfile_type->builtin_unsigned_long_long
4296 = init_type (TYPE_CODE_INT,
4297 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4298 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4299
4300 objfile_type->builtin_float
4301 = init_type (TYPE_CODE_FLT,
4302 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4303 0, "float", objfile);
4304 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4305 = gdbarch_float_format (gdbarch);
4306 objfile_type->builtin_double
4307 = init_type (TYPE_CODE_FLT,
4308 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4309 0, "double", objfile);
4310 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4311 = gdbarch_double_format (gdbarch);
4312 objfile_type->builtin_long_double
4313 = init_type (TYPE_CODE_FLT,
4314 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4315 0, "long double", objfile);
4316 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4317 = gdbarch_long_double_format (gdbarch);
4318
4319 /* This type represents a type that was unrecognized in symbol read-in. */
4320 objfile_type->builtin_error
4321 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4322
4323 /* The following set of types is used for symbols with no
4324 debug information. */
4325 objfile_type->nodebug_text_symbol
4326 = init_type (TYPE_CODE_FUNC, 1, 0,
4327 "<text variable, no debug info>", objfile);
4328 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4329 = objfile_type->builtin_int;
4330 objfile_type->nodebug_text_gnu_ifunc_symbol
4331 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4332 "<text gnu-indirect-function variable, no debug info>",
4333 objfile);
4334 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4335 = objfile_type->nodebug_text_symbol;
4336 objfile_type->nodebug_got_plt_symbol
4337 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4338 "<text from jump slot in .got.plt, no debug info>",
4339 objfile);
4340 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4341 = objfile_type->nodebug_text_symbol;
4342 objfile_type->nodebug_data_symbol
4343 = init_type (TYPE_CODE_INT,
4344 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4345 "<data variable, no debug info>", objfile);
4346 objfile_type->nodebug_unknown_symbol
4347 = init_type (TYPE_CODE_INT, 1, 0,
4348 "<variable (not text or data), no debug info>", objfile);
4349 objfile_type->nodebug_tls_symbol
4350 = init_type (TYPE_CODE_INT,
4351 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4352 "<thread local variable, no debug info>", objfile);
4353
4354 /* NOTE: on some targets, addresses and pointers are not necessarily
4355 the same.
4356
4357 The upshot is:
4358 - gdb's `struct type' always describes the target's
4359 representation.
4360 - gdb's `struct value' objects should always hold values in
4361 target form.
4362 - gdb's CORE_ADDR values are addresses in the unified virtual
4363 address space that the assembler and linker work with. Thus,
4364 since target_read_memory takes a CORE_ADDR as an argument, it
4365 can access any memory on the target, even if the processor has
4366 separate code and data address spaces.
4367
4368 In this context, objfile_type->builtin_core_addr is a bit odd:
4369 it's a target type for a value the target will never see. It's
4370 only used to hold the values of (typeless) linker symbols, which
4371 are indeed in the unified virtual address space. */
4372
4373 objfile_type->builtin_core_addr
4374 = init_type (TYPE_CODE_INT,
4375 gdbarch_addr_bit (gdbarch) / 8,
4376 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4377
4378 set_objfile_data (objfile, objfile_type_data, objfile_type);
4379 return objfile_type;
4380 }
4381
4382 extern initialize_file_ftype _initialize_gdbtypes;
4383
4384 void
4385 _initialize_gdbtypes (void)
4386 {
4387 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4388 objfile_type_data = register_objfile_data ();
4389
4390 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4391 _("Set debugging of C++ overloading."),
4392 _("Show debugging of C++ overloading."),
4393 _("When enabled, ranking of the "
4394 "functions is displayed."),
4395 NULL,
4396 show_overload_debug,
4397 &setdebuglist, &showdebuglist);
4398
4399 /* Add user knob for controlling resolution of opaque types. */
4400 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4401 &opaque_type_resolution,
4402 _("Set resolution of opaque struct/class/union"
4403 " types (if set before loading symbols)."),
4404 _("Show resolution of opaque struct/class/union"
4405 " types (if set before loading symbols)."),
4406 NULL, NULL,
4407 show_opaque_type_resolution,
4408 &setlist, &showlist);
4409
4410 /* Add an option to permit non-strict type checking. */
4411 add_setshow_boolean_cmd ("type", class_support,
4412 &strict_type_checking,
4413 _("Set strict type checking."),
4414 _("Show strict type checking."),
4415 NULL, NULL,
4416 show_strict_type_checking,
4417 &setchecklist, &showchecklist);
4418 }
This page took 0.149169 seconds and 4 git commands to generate.