2011-01-11 Sergio Durigan Junior <sergiodj@linux.vnet.ibm.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114 };
115
116
117 int opaque_type_resolution = 1;
118 static void
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
125 value);
126 }
127
128 int overload_debug = 0;
129 static void
130 show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
135 }
136
137 struct extra
138 {
139 char str[128];
140 int len;
141 }; /* Maximum extension is 128! FIXME */
142
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
147
148
149 /* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
152
153 struct type *
154 alloc_type (struct objfile *objfile)
155 {
156 struct type *type;
157
158 gdb_assert (objfile != NULL);
159
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
165
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
174
175 return type;
176 }
177
178 /* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182 struct type *
183 alloc_type_arch (struct gdbarch *gdbarch)
184 {
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204 }
205
206 /* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210 struct type *
211 alloc_type_copy (const struct type *type)
212 {
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217 }
218
219 /* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222 struct gdbarch *
223 get_type_arch (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229 }
230
231
232 /* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236 static struct type *
237 alloc_type_instance (struct type *oldtype)
238 {
239 struct type *type;
240
241 /* Allocate the structure. */
242
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
245 else
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
253 return type;
254 }
255
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
258 static void
259 smash_type (struct type *type)
260 {
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274 }
275
276 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281 struct type *
282 make_pointer_type (struct type *type, struct type **typeptr)
283 {
284 struct type *ntype; /* New type */
285 struct type *chain;
286
287 ntype = TYPE_POINTER_TYPE (type);
288
289 if (ntype)
290 {
291 if (typeptr == 0)
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
295 {
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
297 return ntype;
298 }
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
303 ntype = alloc_type_copy (type);
304 if (typeptr)
305 *typeptr = ntype;
306 }
307 else /* We have storage, but need to reset it. */
308 {
309 ntype = *typeptr;
310 chain = TYPE_CHAIN (ntype);
311 smash_type (ntype);
312 TYPE_CHAIN (ntype) = chain;
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
320
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
329
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
341 return ntype;
342 }
343
344 /* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347 struct type *
348 lookup_pointer_type (struct type *type)
349 {
350 return make_pointer_type (type, (struct type **) 0);
351 }
352
353 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
357
358 struct type *
359 make_reference_type (struct type *type, struct type **typeptr)
360 {
361 struct type *ntype; /* New type */
362 struct type *chain;
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
366 if (ntype)
367 {
368 if (typeptr == 0)
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
372 {
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
374 return ntype;
375 }
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type_copy (type);
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else /* We have storage, but need to reset it. */
385 {
386 ntype = *typeptr;
387 chain = TYPE_CHAIN (ntype);
388 smash_type (ntype);
389 TYPE_CHAIN (ntype) = chain;
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
398
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
402
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
414 return ntype;
415 }
416
417 /* Same as above, but caller doesn't care about memory allocation
418 details. */
419
420 struct type *
421 lookup_reference_type (struct type *type)
422 {
423 return make_reference_type (type, (struct type **) 0);
424 }
425
426 /* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
430
431 struct type *
432 make_function_type (struct type *type, struct type **typeptr)
433 {
434 struct type *ntype; /* New type */
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
438 ntype = alloc_type_copy (type);
439 if (typeptr)
440 *typeptr = ntype;
441 }
442 else /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 smash_type (ntype);
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452
453 return ntype;
454 }
455
456
457 /* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460 struct type *
461 lookup_function_type (struct type *type)
462 {
463 return make_function_type (type, (struct type **) 0);
464 }
465
466 /* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468 extern int
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470 {
471 int type_flags;
472
473 /* Check for known address space delimiters. */
474 if (!strcmp (space_identifier, "code"))
475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
476 else if (!strcmp (space_identifier, "data"))
477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
482 return type_flags;
483 else
484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
485 }
486
487 /* Identify address space identifier by integer flag as defined in
488 gdbtypes.h -- return the string version of the adress space name. */
489
490 const char *
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492 {
493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494 return "code";
495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496 return "data";
497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500 else
501 return NULL;
502 }
503
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
508
509 static struct type *
510 make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
512 {
513 struct type *ntype;
514
515 ntype = type;
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
523
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
539
540 /* Pointers or references to the original type are not relevant to
541 the new type. */
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
555 return ntype;
556 }
557
558 /* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
566
567 struct type *
568 make_type_with_address_space (struct type *type, int space_flag)
569 {
570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577 }
578
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
584
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
590 struct type *
591 make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
594 {
595 struct type *ntype; /* New type */
596
597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
600
601 if (cnst)
602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
603
604 if (voltl)
605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606
607 if (typeptr && *typeptr != NULL)
608 {
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622 }
623
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
626
627 if (typeptr != NULL)
628 *typeptr = ntype;
629
630 return ntype;
631 }
632
633 /* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
636
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
642 void
643 replace_type (struct type *ntype, struct type *type)
644 {
645 struct type *chain;
646
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
657 chain = ntype;
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
672
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676 }
677
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683 struct type *
684 lookup_memberptr_type (struct type *type, struct type *domain)
685 {
686 struct type *mtype;
687
688 mtype = alloc_type_copy (type);
689 smash_to_memberptr_type (mtype, domain, type);
690 return mtype;
691 }
692
693 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695 struct type *
696 lookup_methodptr_type (struct type *to_type)
697 {
698 struct type *mtype;
699
700 mtype = alloc_type_copy (to_type);
701 smash_to_methodptr_type (mtype, to_type);
702 return mtype;
703 }
704
705 /* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
710
711 struct type *
712 allocate_stub_method (struct type *type)
713 {
714 struct type *mtype;
715
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
722 return mtype;
723 }
724
725 /* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
728
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
731
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
734
735 struct type *
736 create_range_type (struct type *result_type, struct type *index_type,
737 LONGEST low_bound, LONGEST high_bound)
738 {
739 if (result_type == NULL)
740 result_type = alloc_type_copy (index_type);
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
743 if (TYPE_STUB (index_type))
744 TYPE_TARGET_STUB (result_type) = 1;
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
751
752 if (low_bound >= 0)
753 TYPE_UNSIGNED (result_type) = 1;
754
755 return result_type;
756 }
757
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
761
762 int
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764 {
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
776 entries. */
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
788 /* Set unsigned indicator if warranted. */
789 if (*lowp >= 0)
790 {
791 TYPE_UNSIGNED (type) = 1;
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 *highp = -*lowp - 1;
811 return 0;
812 }
813 /* ... fall through for unsigned ints ... */
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825 }
826
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841 int
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843 {
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869 }
870
871 /* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
881
882 struct type *
883 create_array_type (struct type *result_type,
884 struct type *element_type,
885 struct type *range_type)
886 {
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
890 result_type = alloc_type_copy (range_type);
891
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908 TYPE_INDEX_TYPE (result_type) = range_type;
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
912 if (TYPE_LENGTH (result_type) == 0)
913 TYPE_TARGET_STUB (result_type) = 1;
914
915 return result_type;
916 }
917
918 struct type *
919 lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921 {
922 struct gdbarch *gdbarch = get_type_arch (element_type);
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
926
927 return create_array_type (NULL, element_type, range_type);
928 }
929
930 /* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
941
942 struct type *
943 create_string_type (struct type *result_type,
944 struct type *string_char_type,
945 struct type *range_type)
946 {
947 result_type = create_array_type (result_type,
948 string_char_type,
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
951 return result_type;
952 }
953
954 struct type *
955 lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957 {
958 struct type *result_type;
959
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964 }
965
966 struct type *
967 create_set_type (struct type *result_type, struct type *domain_type)
968 {
969 if (result_type == NULL)
970 result_type = alloc_type_copy (domain_type);
971
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975
976 if (!TYPE_STUB (domain_type))
977 {
978 LONGEST low_bound, high_bound, bit_length;
979
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985 if (low_bound >= 0)
986 TYPE_UNSIGNED (result_type) = 1;
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
990 return result_type;
991 }
992
993 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996 void
997 make_vector_type (struct type *array_type)
998 {
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
1016 TYPE_VECTOR (array_type) = 1;
1017 }
1018
1019 struct type *
1020 init_vector_type (struct type *elt_type, int n)
1021 {
1022 struct type *array_type;
1023
1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025 make_vector_type (array_type);
1026 return array_type;
1027 }
1028
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
1035
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
1038 allocated. */
1039
1040 void
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
1043 {
1044 smash_type (type);
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052 }
1053
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060 void
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1062 {
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068 }
1069
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
1075 allocated. */
1076
1077 void
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
1081 {
1082 smash_type (type);
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
1088 TYPE_VARARGS (type) = 1;
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091 }
1092
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096 char *
1097 type_name_no_tag (const struct type *type)
1098 {
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
1105 return TYPE_NAME (type);
1106 }
1107
1108 /* Lookup a typedef or primitive type named NAME, visible in lexical
1109 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1110 suitably defined. */
1111
1112 struct type *
1113 lookup_typename (const struct language_defn *language,
1114 struct gdbarch *gdbarch, char *name,
1115 const struct block *block, int noerr)
1116 {
1117 struct symbol *sym;
1118 struct type *tmp;
1119
1120 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1121 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1122 {
1123 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1124 if (tmp)
1125 {
1126 return tmp;
1127 }
1128 else if (!tmp && noerr)
1129 {
1130 return NULL;
1131 }
1132 else
1133 {
1134 error (_("No type named %s."), name);
1135 }
1136 }
1137 return (SYMBOL_TYPE (sym));
1138 }
1139
1140 struct type *
1141 lookup_unsigned_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, char *name)
1143 {
1144 char *uns = alloca (strlen (name) + 10);
1145
1146 strcpy (uns, "unsigned ");
1147 strcpy (uns + 9, name);
1148 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1149 }
1150
1151 struct type *
1152 lookup_signed_typename (const struct language_defn *language,
1153 struct gdbarch *gdbarch, char *name)
1154 {
1155 struct type *t;
1156 char *uns = alloca (strlen (name) + 8);
1157
1158 strcpy (uns, "signed ");
1159 strcpy (uns + 7, name);
1160 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1161 /* If we don't find "signed FOO" just try again with plain "FOO". */
1162 if (t != NULL)
1163 return t;
1164 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1165 }
1166
1167 /* Lookup a structure type named "struct NAME",
1168 visible in lexical block BLOCK. */
1169
1170 struct type *
1171 lookup_struct (char *name, struct block *block)
1172 {
1173 struct symbol *sym;
1174
1175 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1176
1177 if (sym == NULL)
1178 {
1179 error (_("No struct type named %s."), name);
1180 }
1181 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1182 {
1183 error (_("This context has class, union or enum %s, not a struct."),
1184 name);
1185 }
1186 return (SYMBOL_TYPE (sym));
1187 }
1188
1189 /* Lookup a union type named "union NAME",
1190 visible in lexical block BLOCK. */
1191
1192 struct type *
1193 lookup_union (char *name, struct block *block)
1194 {
1195 struct symbol *sym;
1196 struct type *t;
1197
1198 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1199
1200 if (sym == NULL)
1201 error (_("No union type named %s."), name);
1202
1203 t = SYMBOL_TYPE (sym);
1204
1205 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1206 return t;
1207
1208 /* If we get here, it's not a union. */
1209 error (_("This context has class, struct or enum %s, not a union."),
1210 name);
1211 }
1212
1213
1214 /* Lookup an enum type named "enum NAME",
1215 visible in lexical block BLOCK. */
1216
1217 struct type *
1218 lookup_enum (char *name, struct block *block)
1219 {
1220 struct symbol *sym;
1221
1222 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1223 if (sym == NULL)
1224 {
1225 error (_("No enum type named %s."), name);
1226 }
1227 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1228 {
1229 error (_("This context has class, struct or union %s, not an enum."),
1230 name);
1231 }
1232 return (SYMBOL_TYPE (sym));
1233 }
1234
1235 /* Lookup a template type named "template NAME<TYPE>",
1236 visible in lexical block BLOCK. */
1237
1238 struct type *
1239 lookup_template_type (char *name, struct type *type,
1240 struct block *block)
1241 {
1242 struct symbol *sym;
1243 char *nam = (char *)
1244 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1245
1246 strcpy (nam, name);
1247 strcat (nam, "<");
1248 strcat (nam, TYPE_NAME (type));
1249 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1250
1251 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1252
1253 if (sym == NULL)
1254 {
1255 error (_("No template type named %s."), name);
1256 }
1257 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1258 {
1259 error (_("This context has class, union or enum %s, not a struct."),
1260 name);
1261 }
1262 return (SYMBOL_TYPE (sym));
1263 }
1264
1265 /* Given a type TYPE, lookup the type of the component of type named
1266 NAME.
1267
1268 TYPE can be either a struct or union, or a pointer or reference to
1269 a struct or union. If it is a pointer or reference, its target
1270 type is automatically used. Thus '.' and '->' are interchangable,
1271 as specified for the definitions of the expression element types
1272 STRUCTOP_STRUCT and STRUCTOP_PTR.
1273
1274 If NOERR is nonzero, return zero if NAME is not suitably defined.
1275 If NAME is the name of a baseclass type, return that type. */
1276
1277 struct type *
1278 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1279 {
1280 int i;
1281 char *typename;
1282
1283 for (;;)
1284 {
1285 CHECK_TYPEDEF (type);
1286 if (TYPE_CODE (type) != TYPE_CODE_PTR
1287 && TYPE_CODE (type) != TYPE_CODE_REF)
1288 break;
1289 type = TYPE_TARGET_TYPE (type);
1290 }
1291
1292 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1293 && TYPE_CODE (type) != TYPE_CODE_UNION)
1294 {
1295 typename = type_to_string (type);
1296 make_cleanup (xfree, typename);
1297 error (_("Type %s is not a structure or union type."), typename);
1298 }
1299
1300 #if 0
1301 /* FIXME: This change put in by Michael seems incorrect for the case
1302 where the structure tag name is the same as the member name.
1303 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1304 foo; } bell;" Disabled by fnf. */
1305 {
1306 char *typename;
1307
1308 typename = type_name_no_tag (type);
1309 if (typename != NULL && strcmp (typename, name) == 0)
1310 return type;
1311 }
1312 #endif
1313
1314 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1315 {
1316 char *t_field_name = TYPE_FIELD_NAME (type, i);
1317
1318 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1319 {
1320 return TYPE_FIELD_TYPE (type, i);
1321 }
1322 else if (!t_field_name || *t_field_name == '\0')
1323 {
1324 struct type *subtype
1325 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1326
1327 if (subtype != NULL)
1328 return subtype;
1329 }
1330 }
1331
1332 /* OK, it's not in this class. Recursively check the baseclasses. */
1333 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1334 {
1335 struct type *t;
1336
1337 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1338 if (t != NULL)
1339 {
1340 return t;
1341 }
1342 }
1343
1344 if (noerr)
1345 {
1346 return NULL;
1347 }
1348
1349 typename = type_to_string (type);
1350 make_cleanup (xfree, typename);
1351 error (_("Type %s has no component named %s."), typename, name);
1352 }
1353
1354 /* Lookup the vptr basetype/fieldno values for TYPE.
1355 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1356 vptr_fieldno. Also, if found and basetype is from the same objfile,
1357 cache the results.
1358 If not found, return -1 and ignore BASETYPEP.
1359 Callers should be aware that in some cases (for example,
1360 the type or one of its baseclasses is a stub type and we are
1361 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1362 this function will not be able to find the
1363 virtual function table pointer, and vptr_fieldno will remain -1 and
1364 vptr_basetype will remain NULL or incomplete. */
1365
1366 int
1367 get_vptr_fieldno (struct type *type, struct type **basetypep)
1368 {
1369 CHECK_TYPEDEF (type);
1370
1371 if (TYPE_VPTR_FIELDNO (type) < 0)
1372 {
1373 int i;
1374
1375 /* We must start at zero in case the first (and only) baseclass
1376 is virtual (and hence we cannot share the table pointer). */
1377 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1378 {
1379 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1380 int fieldno;
1381 struct type *basetype;
1382
1383 fieldno = get_vptr_fieldno (baseclass, &basetype);
1384 if (fieldno >= 0)
1385 {
1386 /* If the type comes from a different objfile we can't cache
1387 it, it may have a different lifetime. PR 2384 */
1388 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1389 {
1390 TYPE_VPTR_FIELDNO (type) = fieldno;
1391 TYPE_VPTR_BASETYPE (type) = basetype;
1392 }
1393 if (basetypep)
1394 *basetypep = basetype;
1395 return fieldno;
1396 }
1397 }
1398
1399 /* Not found. */
1400 return -1;
1401 }
1402 else
1403 {
1404 if (basetypep)
1405 *basetypep = TYPE_VPTR_BASETYPE (type);
1406 return TYPE_VPTR_FIELDNO (type);
1407 }
1408 }
1409
1410 static void
1411 stub_noname_complaint (void)
1412 {
1413 complaint (&symfile_complaints, _("stub type has NULL name"));
1414 }
1415
1416 /* Find the real type of TYPE. This function returns the real type,
1417 after removing all layers of typedefs, and completing opaque or stub
1418 types. Completion changes the TYPE argument, but stripping of
1419 typedefs does not.
1420
1421 Instance flags (e.g. const/volatile) are preserved as typedefs are
1422 stripped. If necessary a new qualified form of the underlying type
1423 is created.
1424
1425 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1426 not been computed and we're either in the middle of reading symbols, or
1427 there was no name for the typedef in the debug info.
1428
1429 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1430 the target type.
1431
1432 If this is a stubbed struct (i.e. declared as struct foo *), see if
1433 we can find a full definition in some other file. If so, copy this
1434 definition, so we can use it in future. There used to be a comment
1435 (but not any code) that if we don't find a full definition, we'd
1436 set a flag so we don't spend time in the future checking the same
1437 type. That would be a mistake, though--we might load in more
1438 symbols which contain a full definition for the type. */
1439
1440 struct type *
1441 check_typedef (struct type *type)
1442 {
1443 struct type *orig_type = type;
1444 /* While we're removing typedefs, we don't want to lose qualifiers.
1445 E.g., const/volatile. */
1446 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1447
1448 gdb_assert (type);
1449
1450 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1451 {
1452 if (!TYPE_TARGET_TYPE (type))
1453 {
1454 char *name;
1455 struct symbol *sym;
1456
1457 /* It is dangerous to call lookup_symbol if we are currently
1458 reading a symtab. Infinite recursion is one danger. */
1459 if (currently_reading_symtab)
1460 return make_qualified_type (type, instance_flags, NULL);
1461
1462 name = type_name_no_tag (type);
1463 /* FIXME: shouldn't we separately check the TYPE_NAME and
1464 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1465 VAR_DOMAIN as appropriate? (this code was written before
1466 TYPE_NAME and TYPE_TAG_NAME were separate). */
1467 if (name == NULL)
1468 {
1469 stub_noname_complaint ();
1470 return make_qualified_type (type, instance_flags, NULL);
1471 }
1472 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1473 if (sym)
1474 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1475 else /* TYPE_CODE_UNDEF */
1476 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1477 }
1478 type = TYPE_TARGET_TYPE (type);
1479
1480 /* Preserve the instance flags as we traverse down the typedef chain.
1481
1482 Handling address spaces/classes is nasty, what do we do if there's a
1483 conflict?
1484 E.g., what if an outer typedef marks the type as class_1 and an inner
1485 typedef marks the type as class_2?
1486 This is the wrong place to do such error checking. We leave it to
1487 the code that created the typedef in the first place to flag the
1488 error. We just pick the outer address space (akin to letting the
1489 outer cast in a chain of casting win), instead of assuming
1490 "it can't happen". */
1491 {
1492 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1493 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1494 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1495 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1496
1497 /* Treat code vs data spaces and address classes separately. */
1498 if ((instance_flags & ALL_SPACES) != 0)
1499 new_instance_flags &= ~ALL_SPACES;
1500 if ((instance_flags & ALL_CLASSES) != 0)
1501 new_instance_flags &= ~ALL_CLASSES;
1502
1503 instance_flags |= new_instance_flags;
1504 }
1505 }
1506
1507 /* If this is a struct/class/union with no fields, then check
1508 whether a full definition exists somewhere else. This is for
1509 systems where a type definition with no fields is issued for such
1510 types, instead of identifying them as stub types in the first
1511 place. */
1512
1513 if (TYPE_IS_OPAQUE (type)
1514 && opaque_type_resolution
1515 && !currently_reading_symtab)
1516 {
1517 char *name = type_name_no_tag (type);
1518 struct type *newtype;
1519
1520 if (name == NULL)
1521 {
1522 stub_noname_complaint ();
1523 return make_qualified_type (type, instance_flags, NULL);
1524 }
1525 newtype = lookup_transparent_type (name);
1526
1527 if (newtype)
1528 {
1529 /* If the resolved type and the stub are in the same
1530 objfile, then replace the stub type with the real deal.
1531 But if they're in separate objfiles, leave the stub
1532 alone; we'll just look up the transparent type every time
1533 we call check_typedef. We can't create pointers between
1534 types allocated to different objfiles, since they may
1535 have different lifetimes. Trying to copy NEWTYPE over to
1536 TYPE's objfile is pointless, too, since you'll have to
1537 move over any other types NEWTYPE refers to, which could
1538 be an unbounded amount of stuff. */
1539 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1540 type = make_qualified_type (newtype,
1541 TYPE_INSTANCE_FLAGS (type),
1542 type);
1543 else
1544 type = newtype;
1545 }
1546 }
1547 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1548 types. */
1549 else if (TYPE_STUB (type) && !currently_reading_symtab)
1550 {
1551 char *name = type_name_no_tag (type);
1552 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1553 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1554 as appropriate? (this code was written before TYPE_NAME and
1555 TYPE_TAG_NAME were separate). */
1556 struct symbol *sym;
1557
1558 if (name == NULL)
1559 {
1560 stub_noname_complaint ();
1561 return make_qualified_type (type, instance_flags, NULL);
1562 }
1563 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1564 if (sym)
1565 {
1566 /* Same as above for opaque types, we can replace the stub
1567 with the complete type only if they are in the same
1568 objfile. */
1569 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1570 type = make_qualified_type (SYMBOL_TYPE (sym),
1571 TYPE_INSTANCE_FLAGS (type),
1572 type);
1573 else
1574 type = SYMBOL_TYPE (sym);
1575 }
1576 }
1577
1578 if (TYPE_TARGET_STUB (type))
1579 {
1580 struct type *range_type;
1581 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1582
1583 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1584 {
1585 /* Nothing we can do. */
1586 }
1587 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1588 && TYPE_NFIELDS (type) == 1
1589 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1590 == TYPE_CODE_RANGE))
1591 {
1592 /* Now recompute the length of the array type, based on its
1593 number of elements and the target type's length.
1594 Watch out for Ada null Ada arrays where the high bound
1595 is smaller than the low bound. */
1596 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1597 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1598 ULONGEST len;
1599
1600 if (high_bound < low_bound)
1601 len = 0;
1602 else
1603 {
1604 /* For now, we conservatively take the array length to be 0
1605 if its length exceeds UINT_MAX. The code below assumes
1606 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1607 which is technically not guaranteed by C, but is usually true
1608 (because it would be true if x were unsigned with its
1609 high-order bit on). It uses the fact that
1610 high_bound-low_bound is always representable in
1611 ULONGEST and that if high_bound-low_bound+1 overflows,
1612 it overflows to 0. We must change these tests if we
1613 decide to increase the representation of TYPE_LENGTH
1614 from unsigned int to ULONGEST. */
1615 ULONGEST ulow = low_bound, uhigh = high_bound;
1616 ULONGEST tlen = TYPE_LENGTH (target_type);
1617
1618 len = tlen * (uhigh - ulow + 1);
1619 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1620 || len > UINT_MAX)
1621 len = 0;
1622 }
1623 TYPE_LENGTH (type) = len;
1624 TYPE_TARGET_STUB (type) = 0;
1625 }
1626 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1627 {
1628 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1629 TYPE_TARGET_STUB (type) = 0;
1630 }
1631 }
1632
1633 type = make_qualified_type (type, instance_flags, NULL);
1634
1635 /* Cache TYPE_LENGTH for future use. */
1636 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1637
1638 return type;
1639 }
1640
1641 /* Parse a type expression in the string [P..P+LENGTH). If an error
1642 occurs, silently return a void type. */
1643
1644 static struct type *
1645 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1646 {
1647 struct ui_file *saved_gdb_stderr;
1648 struct type *type;
1649
1650 /* Suppress error messages. */
1651 saved_gdb_stderr = gdb_stderr;
1652 gdb_stderr = ui_file_new ();
1653
1654 /* Call parse_and_eval_type() without fear of longjmp()s. */
1655 if (!gdb_parse_and_eval_type (p, length, &type))
1656 type = builtin_type (gdbarch)->builtin_void;
1657
1658 /* Stop suppressing error messages. */
1659 ui_file_delete (gdb_stderr);
1660 gdb_stderr = saved_gdb_stderr;
1661
1662 return type;
1663 }
1664
1665 /* Ugly hack to convert method stubs into method types.
1666
1667 He ain't kiddin'. This demangles the name of the method into a
1668 string including argument types, parses out each argument type,
1669 generates a string casting a zero to that type, evaluates the
1670 string, and stuffs the resulting type into an argtype vector!!!
1671 Then it knows the type of the whole function (including argument
1672 types for overloading), which info used to be in the stab's but was
1673 removed to hack back the space required for them. */
1674
1675 static void
1676 check_stub_method (struct type *type, int method_id, int signature_id)
1677 {
1678 struct gdbarch *gdbarch = get_type_arch (type);
1679 struct fn_field *f;
1680 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1681 char *demangled_name = cplus_demangle (mangled_name,
1682 DMGL_PARAMS | DMGL_ANSI);
1683 char *argtypetext, *p;
1684 int depth = 0, argcount = 1;
1685 struct field *argtypes;
1686 struct type *mtype;
1687
1688 /* Make sure we got back a function string that we can use. */
1689 if (demangled_name)
1690 p = strchr (demangled_name, '(');
1691 else
1692 p = NULL;
1693
1694 if (demangled_name == NULL || p == NULL)
1695 error (_("Internal: Cannot demangle mangled name `%s'."),
1696 mangled_name);
1697
1698 /* Now, read in the parameters that define this type. */
1699 p += 1;
1700 argtypetext = p;
1701 while (*p)
1702 {
1703 if (*p == '(' || *p == '<')
1704 {
1705 depth += 1;
1706 }
1707 else if (*p == ')' || *p == '>')
1708 {
1709 depth -= 1;
1710 }
1711 else if (*p == ',' && depth == 0)
1712 {
1713 argcount += 1;
1714 }
1715
1716 p += 1;
1717 }
1718
1719 /* If we read one argument and it was ``void'', don't count it. */
1720 if (strncmp (argtypetext, "(void)", 6) == 0)
1721 argcount -= 1;
1722
1723 /* We need one extra slot, for the THIS pointer. */
1724
1725 argtypes = (struct field *)
1726 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1727 p = argtypetext;
1728
1729 /* Add THIS pointer for non-static methods. */
1730 f = TYPE_FN_FIELDLIST1 (type, method_id);
1731 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1732 argcount = 0;
1733 else
1734 {
1735 argtypes[0].type = lookup_pointer_type (type);
1736 argcount = 1;
1737 }
1738
1739 if (*p != ')') /* () means no args, skip while. */
1740 {
1741 depth = 0;
1742 while (*p)
1743 {
1744 if (depth <= 0 && (*p == ',' || *p == ')'))
1745 {
1746 /* Avoid parsing of ellipsis, they will be handled below.
1747 Also avoid ``void'' as above. */
1748 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1749 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1750 {
1751 argtypes[argcount].type =
1752 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1753 argcount += 1;
1754 }
1755 argtypetext = p + 1;
1756 }
1757
1758 if (*p == '(' || *p == '<')
1759 {
1760 depth += 1;
1761 }
1762 else if (*p == ')' || *p == '>')
1763 {
1764 depth -= 1;
1765 }
1766
1767 p += 1;
1768 }
1769 }
1770
1771 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1772
1773 /* Now update the old "stub" type into a real type. */
1774 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1775 TYPE_DOMAIN_TYPE (mtype) = type;
1776 TYPE_FIELDS (mtype) = argtypes;
1777 TYPE_NFIELDS (mtype) = argcount;
1778 TYPE_STUB (mtype) = 0;
1779 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1780 if (p[-2] == '.')
1781 TYPE_VARARGS (mtype) = 1;
1782
1783 xfree (demangled_name);
1784 }
1785
1786 /* This is the external interface to check_stub_method, above. This
1787 function unstubs all of the signatures for TYPE's METHOD_ID method
1788 name. After calling this function TYPE_FN_FIELD_STUB will be
1789 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1790 correct.
1791
1792 This function unfortunately can not die until stabs do. */
1793
1794 void
1795 check_stub_method_group (struct type *type, int method_id)
1796 {
1797 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1798 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1799 int j, found_stub = 0;
1800
1801 for (j = 0; j < len; j++)
1802 if (TYPE_FN_FIELD_STUB (f, j))
1803 {
1804 found_stub = 1;
1805 check_stub_method (type, method_id, j);
1806 }
1807
1808 /* GNU v3 methods with incorrect names were corrected when we read
1809 in type information, because it was cheaper to do it then. The
1810 only GNU v2 methods with incorrect method names are operators and
1811 destructors; destructors were also corrected when we read in type
1812 information.
1813
1814 Therefore the only thing we need to handle here are v2 operator
1815 names. */
1816 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1817 {
1818 int ret;
1819 char dem_opname[256];
1820
1821 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1822 method_id),
1823 dem_opname, DMGL_ANSI);
1824 if (!ret)
1825 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1826 method_id),
1827 dem_opname, 0);
1828 if (ret)
1829 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1830 }
1831 }
1832
1833 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1834 const struct cplus_struct_type cplus_struct_default = { };
1835
1836 void
1837 allocate_cplus_struct_type (struct type *type)
1838 {
1839 if (HAVE_CPLUS_STRUCT (type))
1840 /* Structure was already allocated. Nothing more to do. */
1841 return;
1842
1843 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1844 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1845 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1846 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1847 }
1848
1849 const struct gnat_aux_type gnat_aux_default =
1850 { NULL };
1851
1852 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1853 and allocate the associated gnat-specific data. The gnat-specific
1854 data is also initialized to gnat_aux_default. */
1855 void
1856 allocate_gnat_aux_type (struct type *type)
1857 {
1858 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1859 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1860 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1861 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1862 }
1863
1864
1865 /* Helper function to initialize the standard scalar types.
1866
1867 If NAME is non-NULL, then we make a copy of the string pointed
1868 to by name in the objfile_obstack for that objfile, and initialize
1869 the type name to that copy. There are places (mipsread.c in particular),
1870 where init_type is called with a NULL value for NAME). */
1871
1872 struct type *
1873 init_type (enum type_code code, int length, int flags,
1874 char *name, struct objfile *objfile)
1875 {
1876 struct type *type;
1877
1878 type = alloc_type (objfile);
1879 TYPE_CODE (type) = code;
1880 TYPE_LENGTH (type) = length;
1881
1882 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1883 if (flags & TYPE_FLAG_UNSIGNED)
1884 TYPE_UNSIGNED (type) = 1;
1885 if (flags & TYPE_FLAG_NOSIGN)
1886 TYPE_NOSIGN (type) = 1;
1887 if (flags & TYPE_FLAG_STUB)
1888 TYPE_STUB (type) = 1;
1889 if (flags & TYPE_FLAG_TARGET_STUB)
1890 TYPE_TARGET_STUB (type) = 1;
1891 if (flags & TYPE_FLAG_STATIC)
1892 TYPE_STATIC (type) = 1;
1893 if (flags & TYPE_FLAG_PROTOTYPED)
1894 TYPE_PROTOTYPED (type) = 1;
1895 if (flags & TYPE_FLAG_INCOMPLETE)
1896 TYPE_INCOMPLETE (type) = 1;
1897 if (flags & TYPE_FLAG_VARARGS)
1898 TYPE_VARARGS (type) = 1;
1899 if (flags & TYPE_FLAG_VECTOR)
1900 TYPE_VECTOR (type) = 1;
1901 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1902 TYPE_STUB_SUPPORTED (type) = 1;
1903 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1904 TYPE_FIXED_INSTANCE (type) = 1;
1905
1906 if (name)
1907 TYPE_NAME (type) = obsavestring (name, strlen (name),
1908 &objfile->objfile_obstack);
1909
1910 /* C++ fancies. */
1911
1912 if (name && strcmp (name, "char") == 0)
1913 TYPE_NOSIGN (type) = 1;
1914
1915 switch (code)
1916 {
1917 case TYPE_CODE_STRUCT:
1918 case TYPE_CODE_UNION:
1919 case TYPE_CODE_NAMESPACE:
1920 INIT_CPLUS_SPECIFIC (type);
1921 break;
1922 case TYPE_CODE_FLT:
1923 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1924 break;
1925 case TYPE_CODE_FUNC:
1926 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1927 break;
1928 }
1929 return type;
1930 }
1931
1932 int
1933 can_dereference (struct type *t)
1934 {
1935 /* FIXME: Should we return true for references as well as
1936 pointers? */
1937 CHECK_TYPEDEF (t);
1938 return
1939 (t != NULL
1940 && TYPE_CODE (t) == TYPE_CODE_PTR
1941 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1942 }
1943
1944 int
1945 is_integral_type (struct type *t)
1946 {
1947 CHECK_TYPEDEF (t);
1948 return
1949 ((t != NULL)
1950 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1951 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1952 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1953 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1954 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1955 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1956 }
1957
1958 /* Return true if TYPE is scalar. */
1959
1960 static int
1961 is_scalar_type (struct type *type)
1962 {
1963 CHECK_TYPEDEF (type);
1964
1965 switch (TYPE_CODE (type))
1966 {
1967 case TYPE_CODE_ARRAY:
1968 case TYPE_CODE_STRUCT:
1969 case TYPE_CODE_UNION:
1970 case TYPE_CODE_SET:
1971 case TYPE_CODE_STRING:
1972 case TYPE_CODE_BITSTRING:
1973 return 0;
1974 default:
1975 return 1;
1976 }
1977 }
1978
1979 /* Return true if T is scalar, or a composite type which in practice has
1980 the memory layout of a scalar type. E.g., an array or struct with only one
1981 scalar element inside it, or a union with only scalar elements. */
1982
1983 int
1984 is_scalar_type_recursive (struct type *t)
1985 {
1986 CHECK_TYPEDEF (t);
1987
1988 if (is_scalar_type (t))
1989 return 1;
1990 /* Are we dealing with an array or string of known dimensions? */
1991 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
1992 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
1993 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
1994 {
1995 LONGEST low_bound, high_bound;
1996 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
1997
1998 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
1999
2000 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2001 }
2002 /* Are we dealing with a struct with one element? */
2003 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2004 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2005 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2006 {
2007 int i, n = TYPE_NFIELDS (t);
2008
2009 /* If all elements of the union are scalar, then the union is scalar. */
2010 for (i = 0; i < n; i++)
2011 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2012 return 0;
2013
2014 return 1;
2015 }
2016
2017 return 0;
2018 }
2019
2020 /* A helper function which returns true if types A and B represent the
2021 "same" class type. This is true if the types have the same main
2022 type, or the same name. */
2023
2024 int
2025 class_types_same_p (const struct type *a, const struct type *b)
2026 {
2027 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2028 || (TYPE_NAME (a) && TYPE_NAME (b)
2029 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2030 }
2031
2032 /* If BASE is an ancestor of DCLASS return the distance between them.
2033 otherwise return -1;
2034 eg:
2035
2036 class A {};
2037 class B: public A {};
2038 class C: public B {};
2039 class D: C {};
2040
2041 distance_to_ancestor (A, A, 0) = 0
2042 distance_to_ancestor (A, B, 0) = 1
2043 distance_to_ancestor (A, C, 0) = 2
2044 distance_to_ancestor (A, D, 0) = 3
2045
2046 If PUBLIC is 1 then only public ancestors are considered,
2047 and the function returns the distance only if BASE is a public ancestor
2048 of DCLASS.
2049 Eg:
2050
2051 distance_to_ancestor (A, D, 1) = -1. */
2052
2053 static int
2054 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2055 {
2056 int i;
2057 int d;
2058
2059 CHECK_TYPEDEF (base);
2060 CHECK_TYPEDEF (dclass);
2061
2062 if (class_types_same_p (base, dclass))
2063 return 0;
2064
2065 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2066 {
2067 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2068 continue;
2069
2070 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2071 if (d >= 0)
2072 return 1 + d;
2073 }
2074
2075 return -1;
2076 }
2077
2078 /* Check whether BASE is an ancestor or base class or DCLASS
2079 Return 1 if so, and 0 if not.
2080 Note: If BASE and DCLASS are of the same type, this function
2081 will return 1. So for some class A, is_ancestor (A, A) will
2082 return 1. */
2083
2084 int
2085 is_ancestor (struct type *base, struct type *dclass)
2086 {
2087 return distance_to_ancestor (base, dclass, 0) >= 0;
2088 }
2089
2090 /* Like is_ancestor, but only returns true when BASE is a public
2091 ancestor of DCLASS. */
2092
2093 int
2094 is_public_ancestor (struct type *base, struct type *dclass)
2095 {
2096 return distance_to_ancestor (base, dclass, 1) >= 0;
2097 }
2098
2099 /* A helper function for is_unique_ancestor. */
2100
2101 static int
2102 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2103 int *offset,
2104 const bfd_byte *contents, CORE_ADDR address)
2105 {
2106 int i, count = 0;
2107
2108 CHECK_TYPEDEF (base);
2109 CHECK_TYPEDEF (dclass);
2110
2111 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2112 {
2113 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
2114 int this_offset = baseclass_offset (dclass, i, contents, address);
2115
2116 if (this_offset == -1)
2117 error (_("virtual baseclass botch"));
2118
2119 if (class_types_same_p (base, iter))
2120 {
2121 /* If this is the first subclass, set *OFFSET and set count
2122 to 1. Otherwise, if this is at the same offset as
2123 previous instances, do nothing. Otherwise, increment
2124 count. */
2125 if (*offset == -1)
2126 {
2127 *offset = this_offset;
2128 count = 1;
2129 }
2130 else if (this_offset == *offset)
2131 {
2132 /* Nothing. */
2133 }
2134 else
2135 ++count;
2136 }
2137 else
2138 count += is_unique_ancestor_worker (base, iter, offset,
2139 contents + this_offset,
2140 address + this_offset);
2141 }
2142
2143 return count;
2144 }
2145
2146 /* Like is_ancestor, but only returns true if BASE is a unique base
2147 class of the type of VAL. */
2148
2149 int
2150 is_unique_ancestor (struct type *base, struct value *val)
2151 {
2152 int offset = -1;
2153
2154 return is_unique_ancestor_worker (base, value_type (val), &offset,
2155 value_contents (val),
2156 value_address (val)) == 1;
2157 }
2158
2159 \f
2160
2161 /* Return the sum of the rank of A with the rank of B. */
2162
2163 struct rank
2164 sum_ranks (struct rank a, struct rank b)
2165 {
2166 struct rank c;
2167 c.rank = a.rank + b.rank;
2168 c.subrank = a.subrank + b.subrank;
2169 return c;
2170 }
2171
2172 /* Compare rank A and B and return:
2173 0 if a = b
2174 1 if a is better than b
2175 -1 if b is better than a. */
2176
2177 int
2178 compare_ranks (struct rank a, struct rank b)
2179 {
2180 if (a.rank == b.rank)
2181 {
2182 if (a.subrank == b.subrank)
2183 return 0;
2184 if (a.subrank < b.subrank)
2185 return 1;
2186 if (a.subrank > b.subrank)
2187 return -1;
2188 }
2189
2190 if (a.rank < b.rank)
2191 return 1;
2192
2193 /* a.rank > b.rank */
2194 return -1;
2195 }
2196
2197 /* Functions for overload resolution begin here. */
2198
2199 /* Compare two badness vectors A and B and return the result.
2200 0 => A and B are identical
2201 1 => A and B are incomparable
2202 2 => A is better than B
2203 3 => A is worse than B */
2204
2205 int
2206 compare_badness (struct badness_vector *a, struct badness_vector *b)
2207 {
2208 int i;
2209 int tmp;
2210 short found_pos = 0; /* any positives in c? */
2211 short found_neg = 0; /* any negatives in c? */
2212
2213 /* differing lengths => incomparable */
2214 if (a->length != b->length)
2215 return 1;
2216
2217 /* Subtract b from a */
2218 for (i = 0; i < a->length; i++)
2219 {
2220 tmp = compare_ranks (b->rank[i], a->rank[i]);
2221 if (tmp > 0)
2222 found_pos = 1;
2223 else if (tmp < 0)
2224 found_neg = 1;
2225 }
2226
2227 if (found_pos)
2228 {
2229 if (found_neg)
2230 return 1; /* incomparable */
2231 else
2232 return 3; /* A > B */
2233 }
2234 else
2235 /* no positives */
2236 {
2237 if (found_neg)
2238 return 2; /* A < B */
2239 else
2240 return 0; /* A == B */
2241 }
2242 }
2243
2244 /* Rank a function by comparing its parameter types (PARMS, length
2245 NPARMS), to the types of an argument list (ARGS, length NARGS).
2246 Return a pointer to a badness vector. This has NARGS + 1
2247 entries. */
2248
2249 struct badness_vector *
2250 rank_function (struct type **parms, int nparms,
2251 struct type **args, int nargs)
2252 {
2253 int i;
2254 struct badness_vector *bv;
2255 int min_len = nparms < nargs ? nparms : nargs;
2256
2257 bv = xmalloc (sizeof (struct badness_vector));
2258 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2259 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2260
2261 /* First compare the lengths of the supplied lists.
2262 If there is a mismatch, set it to a high value. */
2263
2264 /* pai/1997-06-03 FIXME: when we have debug info about default
2265 arguments and ellipsis parameter lists, we should consider those
2266 and rank the length-match more finely. */
2267
2268 LENGTH_MATCH (bv) = (nargs != nparms)
2269 ? LENGTH_MISMATCH_BADNESS
2270 : EXACT_MATCH_BADNESS;
2271
2272 /* Now rank all the parameters of the candidate function. */
2273 for (i = 1; i <= min_len; i++)
2274 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2275
2276 /* If more arguments than parameters, add dummy entries. */
2277 for (i = min_len + 1; i <= nargs; i++)
2278 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2279
2280 return bv;
2281 }
2282
2283 /* Compare the names of two integer types, assuming that any sign
2284 qualifiers have been checked already. We do it this way because
2285 there may be an "int" in the name of one of the types. */
2286
2287 static int
2288 integer_types_same_name_p (const char *first, const char *second)
2289 {
2290 int first_p, second_p;
2291
2292 /* If both are shorts, return 1; if neither is a short, keep
2293 checking. */
2294 first_p = (strstr (first, "short") != NULL);
2295 second_p = (strstr (second, "short") != NULL);
2296 if (first_p && second_p)
2297 return 1;
2298 if (first_p || second_p)
2299 return 0;
2300
2301 /* Likewise for long. */
2302 first_p = (strstr (first, "long") != NULL);
2303 second_p = (strstr (second, "long") != NULL);
2304 if (first_p && second_p)
2305 return 1;
2306 if (first_p || second_p)
2307 return 0;
2308
2309 /* Likewise for char. */
2310 first_p = (strstr (first, "char") != NULL);
2311 second_p = (strstr (second, "char") != NULL);
2312 if (first_p && second_p)
2313 return 1;
2314 if (first_p || second_p)
2315 return 0;
2316
2317 /* They must both be ints. */
2318 return 1;
2319 }
2320
2321 /* Compares type A to type B returns 1 if the represent the same type
2322 0 otherwise. */
2323
2324 static int
2325 types_equal (struct type *a, struct type *b)
2326 {
2327 /* Identical type pointers. */
2328 /* However, this still doesn't catch all cases of same type for b
2329 and a. The reason is that builtin types are different from
2330 the same ones constructed from the object. */
2331 if (a == b)
2332 return 1;
2333
2334 /* Resolve typedefs */
2335 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2336 a = check_typedef (a);
2337 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2338 b = check_typedef (b);
2339
2340 /* If after resolving typedefs a and b are not of the same type
2341 code then they are not equal. */
2342 if (TYPE_CODE (a) != TYPE_CODE (b))
2343 return 0;
2344
2345 /* If a and b are both pointers types or both reference types then
2346 they are equal of the same type iff the objects they refer to are
2347 of the same type. */
2348 if (TYPE_CODE (a) == TYPE_CODE_PTR
2349 || TYPE_CODE (a) == TYPE_CODE_REF)
2350 return types_equal (TYPE_TARGET_TYPE (a),
2351 TYPE_TARGET_TYPE (b));
2352
2353 /* Well, damnit, if the names are exactly the same, I'll say they
2354 are exactly the same. This happens when we generate method
2355 stubs. The types won't point to the same address, but they
2356 really are the same. */
2357
2358 if (TYPE_NAME (a) && TYPE_NAME (b)
2359 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2360 return 1;
2361
2362 /* Check if identical after resolving typedefs. */
2363 if (a == b)
2364 return 1;
2365
2366 return 0;
2367 }
2368
2369 /* Compare one type (PARM) for compatibility with another (ARG).
2370 * PARM is intended to be the parameter type of a function; and
2371 * ARG is the supplied argument's type. This function tests if
2372 * the latter can be converted to the former.
2373 *
2374 * Return 0 if they are identical types;
2375 * Otherwise, return an integer which corresponds to how compatible
2376 * PARM is to ARG. The higher the return value, the worse the match.
2377 * Generally the "bad" conversions are all uniformly assigned a 100. */
2378
2379 struct rank
2380 rank_one_type (struct type *parm, struct type *arg)
2381 {
2382 struct rank rank = {0,0};
2383
2384 if (types_equal (parm, arg))
2385 return EXACT_MATCH_BADNESS;
2386
2387 /* Resolve typedefs */
2388 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2389 parm = check_typedef (parm);
2390 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2391 arg = check_typedef (arg);
2392
2393 /* See through references, since we can almost make non-references
2394 references. */
2395 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2396 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2397 REFERENCE_CONVERSION_BADNESS));
2398 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2399 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2400 REFERENCE_CONVERSION_BADNESS));
2401 if (overload_debug)
2402 /* Debugging only. */
2403 fprintf_filtered (gdb_stderr,
2404 "------ Arg is %s [%d], parm is %s [%d]\n",
2405 TYPE_NAME (arg), TYPE_CODE (arg),
2406 TYPE_NAME (parm), TYPE_CODE (parm));
2407
2408 /* x -> y means arg of type x being supplied for parameter of type y. */
2409
2410 switch (TYPE_CODE (parm))
2411 {
2412 case TYPE_CODE_PTR:
2413 switch (TYPE_CODE (arg))
2414 {
2415 case TYPE_CODE_PTR:
2416
2417 /* Allowed pointer conversions are:
2418 (a) pointer to void-pointer conversion. */
2419 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2420 return VOID_PTR_CONVERSION_BADNESS;
2421
2422 /* (b) pointer to ancestor-pointer conversion. */
2423 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2424 TYPE_TARGET_TYPE (arg),
2425 0);
2426 if (rank.subrank >= 0)
2427 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2428
2429 return INCOMPATIBLE_TYPE_BADNESS;
2430 case TYPE_CODE_ARRAY:
2431 if (types_equal (TYPE_TARGET_TYPE (parm),
2432 TYPE_TARGET_TYPE (arg)))
2433 return EXACT_MATCH_BADNESS;
2434 return INCOMPATIBLE_TYPE_BADNESS;
2435 case TYPE_CODE_FUNC:
2436 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2437 case TYPE_CODE_INT:
2438 case TYPE_CODE_ENUM:
2439 case TYPE_CODE_FLAGS:
2440 case TYPE_CODE_CHAR:
2441 case TYPE_CODE_RANGE:
2442 case TYPE_CODE_BOOL:
2443 default:
2444 return INCOMPATIBLE_TYPE_BADNESS;
2445 }
2446 case TYPE_CODE_ARRAY:
2447 switch (TYPE_CODE (arg))
2448 {
2449 case TYPE_CODE_PTR:
2450 case TYPE_CODE_ARRAY:
2451 return rank_one_type (TYPE_TARGET_TYPE (parm),
2452 TYPE_TARGET_TYPE (arg));
2453 default:
2454 return INCOMPATIBLE_TYPE_BADNESS;
2455 }
2456 case TYPE_CODE_FUNC:
2457 switch (TYPE_CODE (arg))
2458 {
2459 case TYPE_CODE_PTR: /* funcptr -> func */
2460 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2461 default:
2462 return INCOMPATIBLE_TYPE_BADNESS;
2463 }
2464 case TYPE_CODE_INT:
2465 switch (TYPE_CODE (arg))
2466 {
2467 case TYPE_CODE_INT:
2468 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2469 {
2470 /* Deal with signed, unsigned, and plain chars and
2471 signed and unsigned ints. */
2472 if (TYPE_NOSIGN (parm))
2473 {
2474 /* This case only for character types. */
2475 if (TYPE_NOSIGN (arg))
2476 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2477 else /* signed/unsigned char -> plain char */
2478 return INTEGER_CONVERSION_BADNESS;
2479 }
2480 else if (TYPE_UNSIGNED (parm))
2481 {
2482 if (TYPE_UNSIGNED (arg))
2483 {
2484 /* unsigned int -> unsigned int, or
2485 unsigned long -> unsigned long */
2486 if (integer_types_same_name_p (TYPE_NAME (parm),
2487 TYPE_NAME (arg)))
2488 return EXACT_MATCH_BADNESS;
2489 else if (integer_types_same_name_p (TYPE_NAME (arg),
2490 "int")
2491 && integer_types_same_name_p (TYPE_NAME (parm),
2492 "long"))
2493 /* unsigned int -> unsigned long */
2494 return INTEGER_PROMOTION_BADNESS;
2495 else
2496 /* unsigned long -> unsigned int */
2497 return INTEGER_CONVERSION_BADNESS;
2498 }
2499 else
2500 {
2501 if (integer_types_same_name_p (TYPE_NAME (arg),
2502 "long")
2503 && integer_types_same_name_p (TYPE_NAME (parm),
2504 "int"))
2505 /* signed long -> unsigned int */
2506 return INTEGER_CONVERSION_BADNESS;
2507 else
2508 /* signed int/long -> unsigned int/long */
2509 return INTEGER_CONVERSION_BADNESS;
2510 }
2511 }
2512 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2513 {
2514 if (integer_types_same_name_p (TYPE_NAME (parm),
2515 TYPE_NAME (arg)))
2516 return EXACT_MATCH_BADNESS;
2517 else if (integer_types_same_name_p (TYPE_NAME (arg),
2518 "int")
2519 && integer_types_same_name_p (TYPE_NAME (parm),
2520 "long"))
2521 return INTEGER_PROMOTION_BADNESS;
2522 else
2523 return INTEGER_CONVERSION_BADNESS;
2524 }
2525 else
2526 return INTEGER_CONVERSION_BADNESS;
2527 }
2528 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2529 return INTEGER_PROMOTION_BADNESS;
2530 else
2531 return INTEGER_CONVERSION_BADNESS;
2532 case TYPE_CODE_ENUM:
2533 case TYPE_CODE_FLAGS:
2534 case TYPE_CODE_CHAR:
2535 case TYPE_CODE_RANGE:
2536 case TYPE_CODE_BOOL:
2537 return INTEGER_PROMOTION_BADNESS;
2538 case TYPE_CODE_FLT:
2539 return INT_FLOAT_CONVERSION_BADNESS;
2540 case TYPE_CODE_PTR:
2541 return NS_POINTER_CONVERSION_BADNESS;
2542 default:
2543 return INCOMPATIBLE_TYPE_BADNESS;
2544 }
2545 break;
2546 case TYPE_CODE_ENUM:
2547 switch (TYPE_CODE (arg))
2548 {
2549 case TYPE_CODE_INT:
2550 case TYPE_CODE_CHAR:
2551 case TYPE_CODE_RANGE:
2552 case TYPE_CODE_BOOL:
2553 case TYPE_CODE_ENUM:
2554 return INTEGER_CONVERSION_BADNESS;
2555 case TYPE_CODE_FLT:
2556 return INT_FLOAT_CONVERSION_BADNESS;
2557 default:
2558 return INCOMPATIBLE_TYPE_BADNESS;
2559 }
2560 break;
2561 case TYPE_CODE_CHAR:
2562 switch (TYPE_CODE (arg))
2563 {
2564 case TYPE_CODE_RANGE:
2565 case TYPE_CODE_BOOL:
2566 case TYPE_CODE_ENUM:
2567 return INTEGER_CONVERSION_BADNESS;
2568 case TYPE_CODE_FLT:
2569 return INT_FLOAT_CONVERSION_BADNESS;
2570 case TYPE_CODE_INT:
2571 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2572 return INTEGER_CONVERSION_BADNESS;
2573 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2574 return INTEGER_PROMOTION_BADNESS;
2575 /* >>> !! else fall through !! <<< */
2576 case TYPE_CODE_CHAR:
2577 /* Deal with signed, unsigned, and plain chars for C++ and
2578 with int cases falling through from previous case. */
2579 if (TYPE_NOSIGN (parm))
2580 {
2581 if (TYPE_NOSIGN (arg))
2582 return EXACT_MATCH_BADNESS;
2583 else
2584 return INTEGER_CONVERSION_BADNESS;
2585 }
2586 else if (TYPE_UNSIGNED (parm))
2587 {
2588 if (TYPE_UNSIGNED (arg))
2589 return EXACT_MATCH_BADNESS;
2590 else
2591 return INTEGER_PROMOTION_BADNESS;
2592 }
2593 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2594 return EXACT_MATCH_BADNESS;
2595 else
2596 return INTEGER_CONVERSION_BADNESS;
2597 default:
2598 return INCOMPATIBLE_TYPE_BADNESS;
2599 }
2600 break;
2601 case TYPE_CODE_RANGE:
2602 switch (TYPE_CODE (arg))
2603 {
2604 case TYPE_CODE_INT:
2605 case TYPE_CODE_CHAR:
2606 case TYPE_CODE_RANGE:
2607 case TYPE_CODE_BOOL:
2608 case TYPE_CODE_ENUM:
2609 return INTEGER_CONVERSION_BADNESS;
2610 case TYPE_CODE_FLT:
2611 return INT_FLOAT_CONVERSION_BADNESS;
2612 default:
2613 return INCOMPATIBLE_TYPE_BADNESS;
2614 }
2615 break;
2616 case TYPE_CODE_BOOL:
2617 switch (TYPE_CODE (arg))
2618 {
2619 case TYPE_CODE_INT:
2620 case TYPE_CODE_CHAR:
2621 case TYPE_CODE_RANGE:
2622 case TYPE_CODE_ENUM:
2623 case TYPE_CODE_FLT:
2624 return INCOMPATIBLE_TYPE_BADNESS;
2625 case TYPE_CODE_PTR:
2626 return BOOL_PTR_CONVERSION_BADNESS;
2627 case TYPE_CODE_BOOL:
2628 return EXACT_MATCH_BADNESS;
2629 default:
2630 return INCOMPATIBLE_TYPE_BADNESS;
2631 }
2632 break;
2633 case TYPE_CODE_FLT:
2634 switch (TYPE_CODE (arg))
2635 {
2636 case TYPE_CODE_FLT:
2637 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2638 return FLOAT_PROMOTION_BADNESS;
2639 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2640 return EXACT_MATCH_BADNESS;
2641 else
2642 return FLOAT_CONVERSION_BADNESS;
2643 case TYPE_CODE_INT:
2644 case TYPE_CODE_BOOL:
2645 case TYPE_CODE_ENUM:
2646 case TYPE_CODE_RANGE:
2647 case TYPE_CODE_CHAR:
2648 return INT_FLOAT_CONVERSION_BADNESS;
2649 default:
2650 return INCOMPATIBLE_TYPE_BADNESS;
2651 }
2652 break;
2653 case TYPE_CODE_COMPLEX:
2654 switch (TYPE_CODE (arg))
2655 { /* Strictly not needed for C++, but... */
2656 case TYPE_CODE_FLT:
2657 return FLOAT_PROMOTION_BADNESS;
2658 case TYPE_CODE_COMPLEX:
2659 return EXACT_MATCH_BADNESS;
2660 default:
2661 return INCOMPATIBLE_TYPE_BADNESS;
2662 }
2663 break;
2664 case TYPE_CODE_STRUCT:
2665 /* currently same as TYPE_CODE_CLASS. */
2666 switch (TYPE_CODE (arg))
2667 {
2668 case TYPE_CODE_STRUCT:
2669 /* Check for derivation */
2670 rank.subrank = distance_to_ancestor (parm, arg, 0);
2671 if (rank.subrank >= 0)
2672 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2673 /* else fall through */
2674 default:
2675 return INCOMPATIBLE_TYPE_BADNESS;
2676 }
2677 break;
2678 case TYPE_CODE_UNION:
2679 switch (TYPE_CODE (arg))
2680 {
2681 case TYPE_CODE_UNION:
2682 default:
2683 return INCOMPATIBLE_TYPE_BADNESS;
2684 }
2685 break;
2686 case TYPE_CODE_MEMBERPTR:
2687 switch (TYPE_CODE (arg))
2688 {
2689 default:
2690 return INCOMPATIBLE_TYPE_BADNESS;
2691 }
2692 break;
2693 case TYPE_CODE_METHOD:
2694 switch (TYPE_CODE (arg))
2695 {
2696
2697 default:
2698 return INCOMPATIBLE_TYPE_BADNESS;
2699 }
2700 break;
2701 case TYPE_CODE_REF:
2702 switch (TYPE_CODE (arg))
2703 {
2704
2705 default:
2706 return INCOMPATIBLE_TYPE_BADNESS;
2707 }
2708
2709 break;
2710 case TYPE_CODE_SET:
2711 switch (TYPE_CODE (arg))
2712 {
2713 /* Not in C++ */
2714 case TYPE_CODE_SET:
2715 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2716 TYPE_FIELD_TYPE (arg, 0));
2717 default:
2718 return INCOMPATIBLE_TYPE_BADNESS;
2719 }
2720 break;
2721 case TYPE_CODE_VOID:
2722 default:
2723 return INCOMPATIBLE_TYPE_BADNESS;
2724 } /* switch (TYPE_CODE (arg)) */
2725 }
2726
2727
2728 /* End of functions for overload resolution. */
2729
2730 static void
2731 print_bit_vector (B_TYPE *bits, int nbits)
2732 {
2733 int bitno;
2734
2735 for (bitno = 0; bitno < nbits; bitno++)
2736 {
2737 if ((bitno % 8) == 0)
2738 {
2739 puts_filtered (" ");
2740 }
2741 if (B_TST (bits, bitno))
2742 printf_filtered (("1"));
2743 else
2744 printf_filtered (("0"));
2745 }
2746 }
2747
2748 /* Note the first arg should be the "this" pointer, we may not want to
2749 include it since we may get into a infinitely recursive
2750 situation. */
2751
2752 static void
2753 print_arg_types (struct field *args, int nargs, int spaces)
2754 {
2755 if (args != NULL)
2756 {
2757 int i;
2758
2759 for (i = 0; i < nargs; i++)
2760 recursive_dump_type (args[i].type, spaces + 2);
2761 }
2762 }
2763
2764 int
2765 field_is_static (struct field *f)
2766 {
2767 /* "static" fields are the fields whose location is not relative
2768 to the address of the enclosing struct. It would be nice to
2769 have a dedicated flag that would be set for static fields when
2770 the type is being created. But in practice, checking the field
2771 loc_kind should give us an accurate answer. */
2772 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2773 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2774 }
2775
2776 static void
2777 dump_fn_fieldlists (struct type *type, int spaces)
2778 {
2779 int method_idx;
2780 int overload_idx;
2781 struct fn_field *f;
2782
2783 printfi_filtered (spaces, "fn_fieldlists ");
2784 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2785 printf_filtered ("\n");
2786 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2787 {
2788 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2789 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2790 method_idx,
2791 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2792 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2793 gdb_stdout);
2794 printf_filtered (_(") length %d\n"),
2795 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2796 for (overload_idx = 0;
2797 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2798 overload_idx++)
2799 {
2800 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2801 overload_idx,
2802 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2803 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2804 gdb_stdout);
2805 printf_filtered (")\n");
2806 printfi_filtered (spaces + 8, "type ");
2807 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2808 gdb_stdout);
2809 printf_filtered ("\n");
2810
2811 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2812 spaces + 8 + 2);
2813
2814 printfi_filtered (spaces + 8, "args ");
2815 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2816 gdb_stdout);
2817 printf_filtered ("\n");
2818
2819 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2820 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2821 overload_idx)),
2822 spaces);
2823 printfi_filtered (spaces + 8, "fcontext ");
2824 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2825 gdb_stdout);
2826 printf_filtered ("\n");
2827
2828 printfi_filtered (spaces + 8, "is_const %d\n",
2829 TYPE_FN_FIELD_CONST (f, overload_idx));
2830 printfi_filtered (spaces + 8, "is_volatile %d\n",
2831 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2832 printfi_filtered (spaces + 8, "is_private %d\n",
2833 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2834 printfi_filtered (spaces + 8, "is_protected %d\n",
2835 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2836 printfi_filtered (spaces + 8, "is_stub %d\n",
2837 TYPE_FN_FIELD_STUB (f, overload_idx));
2838 printfi_filtered (spaces + 8, "voffset %u\n",
2839 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2840 }
2841 }
2842 }
2843
2844 static void
2845 print_cplus_stuff (struct type *type, int spaces)
2846 {
2847 printfi_filtered (spaces, "n_baseclasses %d\n",
2848 TYPE_N_BASECLASSES (type));
2849 printfi_filtered (spaces, "nfn_fields %d\n",
2850 TYPE_NFN_FIELDS (type));
2851 printfi_filtered (spaces, "nfn_fields_total %d\n",
2852 TYPE_NFN_FIELDS_TOTAL (type));
2853 if (TYPE_N_BASECLASSES (type) > 0)
2854 {
2855 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2856 TYPE_N_BASECLASSES (type));
2857 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2858 gdb_stdout);
2859 printf_filtered (")");
2860
2861 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2862 TYPE_N_BASECLASSES (type));
2863 puts_filtered ("\n");
2864 }
2865 if (TYPE_NFIELDS (type) > 0)
2866 {
2867 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2868 {
2869 printfi_filtered (spaces,
2870 "private_field_bits (%d bits at *",
2871 TYPE_NFIELDS (type));
2872 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2873 gdb_stdout);
2874 printf_filtered (")");
2875 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2876 TYPE_NFIELDS (type));
2877 puts_filtered ("\n");
2878 }
2879 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2880 {
2881 printfi_filtered (spaces,
2882 "protected_field_bits (%d bits at *",
2883 TYPE_NFIELDS (type));
2884 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2885 gdb_stdout);
2886 printf_filtered (")");
2887 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2888 TYPE_NFIELDS (type));
2889 puts_filtered ("\n");
2890 }
2891 }
2892 if (TYPE_NFN_FIELDS (type) > 0)
2893 {
2894 dump_fn_fieldlists (type, spaces);
2895 }
2896 }
2897
2898 /* Print the contents of the TYPE's type_specific union, assuming that
2899 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2900
2901 static void
2902 print_gnat_stuff (struct type *type, int spaces)
2903 {
2904 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2905
2906 recursive_dump_type (descriptive_type, spaces + 2);
2907 }
2908
2909 static struct obstack dont_print_type_obstack;
2910
2911 void
2912 recursive_dump_type (struct type *type, int spaces)
2913 {
2914 int idx;
2915
2916 if (spaces == 0)
2917 obstack_begin (&dont_print_type_obstack, 0);
2918
2919 if (TYPE_NFIELDS (type) > 0
2920 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2921 {
2922 struct type **first_dont_print
2923 = (struct type **) obstack_base (&dont_print_type_obstack);
2924
2925 int i = (struct type **)
2926 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2927
2928 while (--i >= 0)
2929 {
2930 if (type == first_dont_print[i])
2931 {
2932 printfi_filtered (spaces, "type node ");
2933 gdb_print_host_address (type, gdb_stdout);
2934 printf_filtered (_(" <same as already seen type>\n"));
2935 return;
2936 }
2937 }
2938
2939 obstack_ptr_grow (&dont_print_type_obstack, type);
2940 }
2941
2942 printfi_filtered (spaces, "type node ");
2943 gdb_print_host_address (type, gdb_stdout);
2944 printf_filtered ("\n");
2945 printfi_filtered (spaces, "name '%s' (",
2946 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2947 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2948 printf_filtered (")\n");
2949 printfi_filtered (spaces, "tagname '%s' (",
2950 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2951 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2952 printf_filtered (")\n");
2953 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2954 switch (TYPE_CODE (type))
2955 {
2956 case TYPE_CODE_UNDEF:
2957 printf_filtered ("(TYPE_CODE_UNDEF)");
2958 break;
2959 case TYPE_CODE_PTR:
2960 printf_filtered ("(TYPE_CODE_PTR)");
2961 break;
2962 case TYPE_CODE_ARRAY:
2963 printf_filtered ("(TYPE_CODE_ARRAY)");
2964 break;
2965 case TYPE_CODE_STRUCT:
2966 printf_filtered ("(TYPE_CODE_STRUCT)");
2967 break;
2968 case TYPE_CODE_UNION:
2969 printf_filtered ("(TYPE_CODE_UNION)");
2970 break;
2971 case TYPE_CODE_ENUM:
2972 printf_filtered ("(TYPE_CODE_ENUM)");
2973 break;
2974 case TYPE_CODE_FLAGS:
2975 printf_filtered ("(TYPE_CODE_FLAGS)");
2976 break;
2977 case TYPE_CODE_FUNC:
2978 printf_filtered ("(TYPE_CODE_FUNC)");
2979 break;
2980 case TYPE_CODE_INT:
2981 printf_filtered ("(TYPE_CODE_INT)");
2982 break;
2983 case TYPE_CODE_FLT:
2984 printf_filtered ("(TYPE_CODE_FLT)");
2985 break;
2986 case TYPE_CODE_VOID:
2987 printf_filtered ("(TYPE_CODE_VOID)");
2988 break;
2989 case TYPE_CODE_SET:
2990 printf_filtered ("(TYPE_CODE_SET)");
2991 break;
2992 case TYPE_CODE_RANGE:
2993 printf_filtered ("(TYPE_CODE_RANGE)");
2994 break;
2995 case TYPE_CODE_STRING:
2996 printf_filtered ("(TYPE_CODE_STRING)");
2997 break;
2998 case TYPE_CODE_BITSTRING:
2999 printf_filtered ("(TYPE_CODE_BITSTRING)");
3000 break;
3001 case TYPE_CODE_ERROR:
3002 printf_filtered ("(TYPE_CODE_ERROR)");
3003 break;
3004 case TYPE_CODE_MEMBERPTR:
3005 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3006 break;
3007 case TYPE_CODE_METHODPTR:
3008 printf_filtered ("(TYPE_CODE_METHODPTR)");
3009 break;
3010 case TYPE_CODE_METHOD:
3011 printf_filtered ("(TYPE_CODE_METHOD)");
3012 break;
3013 case TYPE_CODE_REF:
3014 printf_filtered ("(TYPE_CODE_REF)");
3015 break;
3016 case TYPE_CODE_CHAR:
3017 printf_filtered ("(TYPE_CODE_CHAR)");
3018 break;
3019 case TYPE_CODE_BOOL:
3020 printf_filtered ("(TYPE_CODE_BOOL)");
3021 break;
3022 case TYPE_CODE_COMPLEX:
3023 printf_filtered ("(TYPE_CODE_COMPLEX)");
3024 break;
3025 case TYPE_CODE_TYPEDEF:
3026 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3027 break;
3028 case TYPE_CODE_NAMESPACE:
3029 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3030 break;
3031 default:
3032 printf_filtered ("(UNKNOWN TYPE CODE)");
3033 break;
3034 }
3035 puts_filtered ("\n");
3036 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3037 if (TYPE_OBJFILE_OWNED (type))
3038 {
3039 printfi_filtered (spaces, "objfile ");
3040 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3041 }
3042 else
3043 {
3044 printfi_filtered (spaces, "gdbarch ");
3045 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3046 }
3047 printf_filtered ("\n");
3048 printfi_filtered (spaces, "target_type ");
3049 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3050 printf_filtered ("\n");
3051 if (TYPE_TARGET_TYPE (type) != NULL)
3052 {
3053 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3054 }
3055 printfi_filtered (spaces, "pointer_type ");
3056 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3057 printf_filtered ("\n");
3058 printfi_filtered (spaces, "reference_type ");
3059 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3060 printf_filtered ("\n");
3061 printfi_filtered (spaces, "type_chain ");
3062 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3063 printf_filtered ("\n");
3064 printfi_filtered (spaces, "instance_flags 0x%x",
3065 TYPE_INSTANCE_FLAGS (type));
3066 if (TYPE_CONST (type))
3067 {
3068 puts_filtered (" TYPE_FLAG_CONST");
3069 }
3070 if (TYPE_VOLATILE (type))
3071 {
3072 puts_filtered (" TYPE_FLAG_VOLATILE");
3073 }
3074 if (TYPE_CODE_SPACE (type))
3075 {
3076 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3077 }
3078 if (TYPE_DATA_SPACE (type))
3079 {
3080 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3081 }
3082 if (TYPE_ADDRESS_CLASS_1 (type))
3083 {
3084 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3085 }
3086 if (TYPE_ADDRESS_CLASS_2 (type))
3087 {
3088 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3089 }
3090 puts_filtered ("\n");
3091
3092 printfi_filtered (spaces, "flags");
3093 if (TYPE_UNSIGNED (type))
3094 {
3095 puts_filtered (" TYPE_FLAG_UNSIGNED");
3096 }
3097 if (TYPE_NOSIGN (type))
3098 {
3099 puts_filtered (" TYPE_FLAG_NOSIGN");
3100 }
3101 if (TYPE_STUB (type))
3102 {
3103 puts_filtered (" TYPE_FLAG_STUB");
3104 }
3105 if (TYPE_TARGET_STUB (type))
3106 {
3107 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3108 }
3109 if (TYPE_STATIC (type))
3110 {
3111 puts_filtered (" TYPE_FLAG_STATIC");
3112 }
3113 if (TYPE_PROTOTYPED (type))
3114 {
3115 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3116 }
3117 if (TYPE_INCOMPLETE (type))
3118 {
3119 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3120 }
3121 if (TYPE_VARARGS (type))
3122 {
3123 puts_filtered (" TYPE_FLAG_VARARGS");
3124 }
3125 /* This is used for things like AltiVec registers on ppc. Gcc emits
3126 an attribute for the array type, which tells whether or not we
3127 have a vector, instead of a regular array. */
3128 if (TYPE_VECTOR (type))
3129 {
3130 puts_filtered (" TYPE_FLAG_VECTOR");
3131 }
3132 if (TYPE_FIXED_INSTANCE (type))
3133 {
3134 puts_filtered (" TYPE_FIXED_INSTANCE");
3135 }
3136 if (TYPE_STUB_SUPPORTED (type))
3137 {
3138 puts_filtered (" TYPE_STUB_SUPPORTED");
3139 }
3140 if (TYPE_NOTTEXT (type))
3141 {
3142 puts_filtered (" TYPE_NOTTEXT");
3143 }
3144 puts_filtered ("\n");
3145 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3146 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3147 puts_filtered ("\n");
3148 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3149 {
3150 printfi_filtered (spaces + 2,
3151 "[%d] bitpos %d bitsize %d type ",
3152 idx, TYPE_FIELD_BITPOS (type, idx),
3153 TYPE_FIELD_BITSIZE (type, idx));
3154 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3155 printf_filtered (" name '%s' (",
3156 TYPE_FIELD_NAME (type, idx) != NULL
3157 ? TYPE_FIELD_NAME (type, idx)
3158 : "<NULL>");
3159 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3160 printf_filtered (")\n");
3161 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3162 {
3163 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3164 }
3165 }
3166 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3167 {
3168 printfi_filtered (spaces, "low %s%s high %s%s\n",
3169 plongest (TYPE_LOW_BOUND (type)),
3170 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3171 plongest (TYPE_HIGH_BOUND (type)),
3172 TYPE_HIGH_BOUND_UNDEFINED (type)
3173 ? " (undefined)" : "");
3174 }
3175 printfi_filtered (spaces, "vptr_basetype ");
3176 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3177 puts_filtered ("\n");
3178 if (TYPE_VPTR_BASETYPE (type) != NULL)
3179 {
3180 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3181 }
3182 printfi_filtered (spaces, "vptr_fieldno %d\n",
3183 TYPE_VPTR_FIELDNO (type));
3184
3185 switch (TYPE_SPECIFIC_FIELD (type))
3186 {
3187 case TYPE_SPECIFIC_CPLUS_STUFF:
3188 printfi_filtered (spaces, "cplus_stuff ");
3189 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3190 gdb_stdout);
3191 puts_filtered ("\n");
3192 print_cplus_stuff (type, spaces);
3193 break;
3194
3195 case TYPE_SPECIFIC_GNAT_STUFF:
3196 printfi_filtered (spaces, "gnat_stuff ");
3197 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3198 puts_filtered ("\n");
3199 print_gnat_stuff (type, spaces);
3200 break;
3201
3202 case TYPE_SPECIFIC_FLOATFORMAT:
3203 printfi_filtered (spaces, "floatformat ");
3204 if (TYPE_FLOATFORMAT (type) == NULL)
3205 puts_filtered ("(null)");
3206 else
3207 {
3208 puts_filtered ("{ ");
3209 if (TYPE_FLOATFORMAT (type)[0] == NULL
3210 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3211 puts_filtered ("(null)");
3212 else
3213 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3214
3215 puts_filtered (", ");
3216 if (TYPE_FLOATFORMAT (type)[1] == NULL
3217 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3218 puts_filtered ("(null)");
3219 else
3220 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3221
3222 puts_filtered (" }");
3223 }
3224 puts_filtered ("\n");
3225 break;
3226
3227 case TYPE_SPECIFIC_CALLING_CONVENTION:
3228 printfi_filtered (spaces, "calling_convention %d\n",
3229 TYPE_CALLING_CONVENTION (type));
3230 break;
3231 }
3232
3233 if (spaces == 0)
3234 obstack_free (&dont_print_type_obstack, NULL);
3235 }
3236
3237 /* Trivial helpers for the libiberty hash table, for mapping one
3238 type to another. */
3239
3240 struct type_pair
3241 {
3242 struct type *old, *new;
3243 };
3244
3245 static hashval_t
3246 type_pair_hash (const void *item)
3247 {
3248 const struct type_pair *pair = item;
3249
3250 return htab_hash_pointer (pair->old);
3251 }
3252
3253 static int
3254 type_pair_eq (const void *item_lhs, const void *item_rhs)
3255 {
3256 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3257
3258 return lhs->old == rhs->old;
3259 }
3260
3261 /* Allocate the hash table used by copy_type_recursive to walk
3262 types without duplicates. We use OBJFILE's obstack, because
3263 OBJFILE is about to be deleted. */
3264
3265 htab_t
3266 create_copied_types_hash (struct objfile *objfile)
3267 {
3268 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3269 NULL, &objfile->objfile_obstack,
3270 hashtab_obstack_allocate,
3271 dummy_obstack_deallocate);
3272 }
3273
3274 /* Recursively copy (deep copy) TYPE, if it is associated with
3275 OBJFILE. Return a new type allocated using malloc, a saved type if
3276 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3277 not associated with OBJFILE. */
3278
3279 struct type *
3280 copy_type_recursive (struct objfile *objfile,
3281 struct type *type,
3282 htab_t copied_types)
3283 {
3284 struct type_pair *stored, pair;
3285 void **slot;
3286 struct type *new_type;
3287
3288 if (! TYPE_OBJFILE_OWNED (type))
3289 return type;
3290
3291 /* This type shouldn't be pointing to any types in other objfiles;
3292 if it did, the type might disappear unexpectedly. */
3293 gdb_assert (TYPE_OBJFILE (type) == objfile);
3294
3295 pair.old = type;
3296 slot = htab_find_slot (copied_types, &pair, INSERT);
3297 if (*slot != NULL)
3298 return ((struct type_pair *) *slot)->new;
3299
3300 new_type = alloc_type_arch (get_type_arch (type));
3301
3302 /* We must add the new type to the hash table immediately, in case
3303 we encounter this type again during a recursive call below. */
3304 stored
3305 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3306 stored->old = type;
3307 stored->new = new_type;
3308 *slot = stored;
3309
3310 /* Copy the common fields of types. For the main type, we simply
3311 copy the entire thing and then update specific fields as needed. */
3312 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3313 TYPE_OBJFILE_OWNED (new_type) = 0;
3314 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3315
3316 if (TYPE_NAME (type))
3317 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3318 if (TYPE_TAG_NAME (type))
3319 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3320
3321 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3322 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3323
3324 /* Copy the fields. */
3325 if (TYPE_NFIELDS (type))
3326 {
3327 int i, nfields;
3328
3329 nfields = TYPE_NFIELDS (type);
3330 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3331 for (i = 0; i < nfields; i++)
3332 {
3333 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3334 TYPE_FIELD_ARTIFICIAL (type, i);
3335 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3336 if (TYPE_FIELD_TYPE (type, i))
3337 TYPE_FIELD_TYPE (new_type, i)
3338 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3339 copied_types);
3340 if (TYPE_FIELD_NAME (type, i))
3341 TYPE_FIELD_NAME (new_type, i) =
3342 xstrdup (TYPE_FIELD_NAME (type, i));
3343 switch (TYPE_FIELD_LOC_KIND (type, i))
3344 {
3345 case FIELD_LOC_KIND_BITPOS:
3346 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3347 TYPE_FIELD_BITPOS (type, i));
3348 break;
3349 case FIELD_LOC_KIND_PHYSADDR:
3350 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3351 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3352 break;
3353 case FIELD_LOC_KIND_PHYSNAME:
3354 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3355 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3356 i)));
3357 break;
3358 default:
3359 internal_error (__FILE__, __LINE__,
3360 _("Unexpected type field location kind: %d"),
3361 TYPE_FIELD_LOC_KIND (type, i));
3362 }
3363 }
3364 }
3365
3366 /* For range types, copy the bounds information. */
3367 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3368 {
3369 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3370 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3371 }
3372
3373 /* Copy pointers to other types. */
3374 if (TYPE_TARGET_TYPE (type))
3375 TYPE_TARGET_TYPE (new_type) =
3376 copy_type_recursive (objfile,
3377 TYPE_TARGET_TYPE (type),
3378 copied_types);
3379 if (TYPE_VPTR_BASETYPE (type))
3380 TYPE_VPTR_BASETYPE (new_type) =
3381 copy_type_recursive (objfile,
3382 TYPE_VPTR_BASETYPE (type),
3383 copied_types);
3384 /* Maybe copy the type_specific bits.
3385
3386 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3387 base classes and methods. There's no fundamental reason why we
3388 can't, but at the moment it is not needed. */
3389
3390 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3391 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3392 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3393 || TYPE_CODE (type) == TYPE_CODE_UNION
3394 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3395 INIT_CPLUS_SPECIFIC (new_type);
3396
3397 return new_type;
3398 }
3399
3400 /* Make a copy of the given TYPE, except that the pointer & reference
3401 types are not preserved.
3402
3403 This function assumes that the given type has an associated objfile.
3404 This objfile is used to allocate the new type. */
3405
3406 struct type *
3407 copy_type (const struct type *type)
3408 {
3409 struct type *new_type;
3410
3411 gdb_assert (TYPE_OBJFILE_OWNED (type));
3412
3413 new_type = alloc_type_copy (type);
3414 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3415 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3416 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3417 sizeof (struct main_type));
3418
3419 return new_type;
3420 }
3421
3422
3423 /* Helper functions to initialize architecture-specific types. */
3424
3425 /* Allocate a type structure associated with GDBARCH and set its
3426 CODE, LENGTH, and NAME fields. */
3427 struct type *
3428 arch_type (struct gdbarch *gdbarch,
3429 enum type_code code, int length, char *name)
3430 {
3431 struct type *type;
3432
3433 type = alloc_type_arch (gdbarch);
3434 TYPE_CODE (type) = code;
3435 TYPE_LENGTH (type) = length;
3436
3437 if (name)
3438 TYPE_NAME (type) = xstrdup (name);
3439
3440 return type;
3441 }
3442
3443 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3444 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3445 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3446 struct type *
3447 arch_integer_type (struct gdbarch *gdbarch,
3448 int bit, int unsigned_p, char *name)
3449 {
3450 struct type *t;
3451
3452 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3453 if (unsigned_p)
3454 TYPE_UNSIGNED (t) = 1;
3455 if (name && strcmp (name, "char") == 0)
3456 TYPE_NOSIGN (t) = 1;
3457
3458 return t;
3459 }
3460
3461 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3462 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3463 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3464 struct type *
3465 arch_character_type (struct gdbarch *gdbarch,
3466 int bit, int unsigned_p, char *name)
3467 {
3468 struct type *t;
3469
3470 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3471 if (unsigned_p)
3472 TYPE_UNSIGNED (t) = 1;
3473
3474 return t;
3475 }
3476
3477 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3478 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3479 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3480 struct type *
3481 arch_boolean_type (struct gdbarch *gdbarch,
3482 int bit, int unsigned_p, char *name)
3483 {
3484 struct type *t;
3485
3486 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3487 if (unsigned_p)
3488 TYPE_UNSIGNED (t) = 1;
3489
3490 return t;
3491 }
3492
3493 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3494 BIT is the type size in bits; if BIT equals -1, the size is
3495 determined by the floatformat. NAME is the type name. Set the
3496 TYPE_FLOATFORMAT from FLOATFORMATS. */
3497 struct type *
3498 arch_float_type (struct gdbarch *gdbarch,
3499 int bit, char *name, const struct floatformat **floatformats)
3500 {
3501 struct type *t;
3502
3503 if (bit == -1)
3504 {
3505 gdb_assert (floatformats != NULL);
3506 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3507 bit = floatformats[0]->totalsize;
3508 }
3509 gdb_assert (bit >= 0);
3510
3511 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3512 TYPE_FLOATFORMAT (t) = floatformats;
3513 return t;
3514 }
3515
3516 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3517 NAME is the type name. TARGET_TYPE is the component float type. */
3518 struct type *
3519 arch_complex_type (struct gdbarch *gdbarch,
3520 char *name, struct type *target_type)
3521 {
3522 struct type *t;
3523
3524 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3525 2 * TYPE_LENGTH (target_type), name);
3526 TYPE_TARGET_TYPE (t) = target_type;
3527 return t;
3528 }
3529
3530 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3531 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3532 struct type *
3533 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3534 {
3535 int nfields = length * TARGET_CHAR_BIT;
3536 struct type *type;
3537
3538 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3539 TYPE_UNSIGNED (type) = 1;
3540 TYPE_NFIELDS (type) = nfields;
3541 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3542
3543 return type;
3544 }
3545
3546 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3547 position BITPOS is called NAME. */
3548 void
3549 append_flags_type_flag (struct type *type, int bitpos, char *name)
3550 {
3551 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3552 gdb_assert (bitpos < TYPE_NFIELDS (type));
3553 gdb_assert (bitpos >= 0);
3554
3555 if (name)
3556 {
3557 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3558 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3559 }
3560 else
3561 {
3562 /* Don't show this field to the user. */
3563 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3564 }
3565 }
3566
3567 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3568 specified by CODE) associated with GDBARCH. NAME is the type name. */
3569 struct type *
3570 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3571 {
3572 struct type *t;
3573
3574 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3575 t = arch_type (gdbarch, code, 0, NULL);
3576 TYPE_TAG_NAME (t) = name;
3577 INIT_CPLUS_SPECIFIC (t);
3578 return t;
3579 }
3580
3581 /* Add new field with name NAME and type FIELD to composite type T.
3582 Do not set the field's position or adjust the type's length;
3583 the caller should do so. Return the new field. */
3584 struct field *
3585 append_composite_type_field_raw (struct type *t, char *name,
3586 struct type *field)
3587 {
3588 struct field *f;
3589
3590 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3591 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3592 sizeof (struct field) * TYPE_NFIELDS (t));
3593 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3594 memset (f, 0, sizeof f[0]);
3595 FIELD_TYPE (f[0]) = field;
3596 FIELD_NAME (f[0]) = name;
3597 return f;
3598 }
3599
3600 /* Add new field with name NAME and type FIELD to composite type T.
3601 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3602 void
3603 append_composite_type_field_aligned (struct type *t, char *name,
3604 struct type *field, int alignment)
3605 {
3606 struct field *f = append_composite_type_field_raw (t, name, field);
3607
3608 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3609 {
3610 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3611 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3612 }
3613 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3614 {
3615 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3616 if (TYPE_NFIELDS (t) > 1)
3617 {
3618 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3619 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3620 * TARGET_CHAR_BIT));
3621
3622 if (alignment)
3623 {
3624 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3625
3626 if (left)
3627 {
3628 FIELD_BITPOS (f[0]) += left;
3629 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3630 }
3631 }
3632 }
3633 }
3634 }
3635
3636 /* Add new field with name NAME and type FIELD to composite type T. */
3637 void
3638 append_composite_type_field (struct type *t, char *name,
3639 struct type *field)
3640 {
3641 append_composite_type_field_aligned (t, name, field, 0);
3642 }
3643
3644
3645 static struct gdbarch_data *gdbtypes_data;
3646
3647 const struct builtin_type *
3648 builtin_type (struct gdbarch *gdbarch)
3649 {
3650 return gdbarch_data (gdbarch, gdbtypes_data);
3651 }
3652
3653 static void *
3654 gdbtypes_post_init (struct gdbarch *gdbarch)
3655 {
3656 struct builtin_type *builtin_type
3657 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3658
3659 /* Basic types. */
3660 builtin_type->builtin_void
3661 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3662 builtin_type->builtin_char
3663 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3664 !gdbarch_char_signed (gdbarch), "char");
3665 builtin_type->builtin_signed_char
3666 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3667 0, "signed char");
3668 builtin_type->builtin_unsigned_char
3669 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3670 1, "unsigned char");
3671 builtin_type->builtin_short
3672 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3673 0, "short");
3674 builtin_type->builtin_unsigned_short
3675 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3676 1, "unsigned short");
3677 builtin_type->builtin_int
3678 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3679 0, "int");
3680 builtin_type->builtin_unsigned_int
3681 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3682 1, "unsigned int");
3683 builtin_type->builtin_long
3684 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3685 0, "long");
3686 builtin_type->builtin_unsigned_long
3687 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3688 1, "unsigned long");
3689 builtin_type->builtin_long_long
3690 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3691 0, "long long");
3692 builtin_type->builtin_unsigned_long_long
3693 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3694 1, "unsigned long long");
3695 builtin_type->builtin_float
3696 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3697 "float", gdbarch_float_format (gdbarch));
3698 builtin_type->builtin_double
3699 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3700 "double", gdbarch_double_format (gdbarch));
3701 builtin_type->builtin_long_double
3702 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3703 "long double", gdbarch_long_double_format (gdbarch));
3704 builtin_type->builtin_complex
3705 = arch_complex_type (gdbarch, "complex",
3706 builtin_type->builtin_float);
3707 builtin_type->builtin_double_complex
3708 = arch_complex_type (gdbarch, "double complex",
3709 builtin_type->builtin_double);
3710 builtin_type->builtin_string
3711 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3712 builtin_type->builtin_bool
3713 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3714
3715 /* The following three are about decimal floating point types, which
3716 are 32-bits, 64-bits and 128-bits respectively. */
3717 builtin_type->builtin_decfloat
3718 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3719 builtin_type->builtin_decdouble
3720 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3721 builtin_type->builtin_declong
3722 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3723
3724 /* "True" character types. */
3725 builtin_type->builtin_true_char
3726 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3727 builtin_type->builtin_true_unsigned_char
3728 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3729
3730 /* Fixed-size integer types. */
3731 builtin_type->builtin_int0
3732 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3733 builtin_type->builtin_int8
3734 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3735 builtin_type->builtin_uint8
3736 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3737 builtin_type->builtin_int16
3738 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3739 builtin_type->builtin_uint16
3740 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3741 builtin_type->builtin_int32
3742 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3743 builtin_type->builtin_uint32
3744 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3745 builtin_type->builtin_int64
3746 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3747 builtin_type->builtin_uint64
3748 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3749 builtin_type->builtin_int128
3750 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3751 builtin_type->builtin_uint128
3752 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3753 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3754 TYPE_INSTANCE_FLAG_NOTTEXT;
3755 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3756 TYPE_INSTANCE_FLAG_NOTTEXT;
3757
3758 /* Wide character types. */
3759 builtin_type->builtin_char16
3760 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3761 builtin_type->builtin_char32
3762 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3763
3764
3765 /* Default data/code pointer types. */
3766 builtin_type->builtin_data_ptr
3767 = lookup_pointer_type (builtin_type->builtin_void);
3768 builtin_type->builtin_func_ptr
3769 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3770
3771 /* This type represents a GDB internal function. */
3772 builtin_type->internal_fn
3773 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3774 "<internal function>");
3775
3776 return builtin_type;
3777 }
3778
3779
3780 /* This set of objfile-based types is intended to be used by symbol
3781 readers as basic types. */
3782
3783 static const struct objfile_data *objfile_type_data;
3784
3785 const struct objfile_type *
3786 objfile_type (struct objfile *objfile)
3787 {
3788 struct gdbarch *gdbarch;
3789 struct objfile_type *objfile_type
3790 = objfile_data (objfile, objfile_type_data);
3791
3792 if (objfile_type)
3793 return objfile_type;
3794
3795 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3796 1, struct objfile_type);
3797
3798 /* Use the objfile architecture to determine basic type properties. */
3799 gdbarch = get_objfile_arch (objfile);
3800
3801 /* Basic types. */
3802 objfile_type->builtin_void
3803 = init_type (TYPE_CODE_VOID, 1,
3804 0,
3805 "void", objfile);
3806
3807 objfile_type->builtin_char
3808 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3809 (TYPE_FLAG_NOSIGN
3810 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3811 "char", objfile);
3812 objfile_type->builtin_signed_char
3813 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3814 0,
3815 "signed char", objfile);
3816 objfile_type->builtin_unsigned_char
3817 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3818 TYPE_FLAG_UNSIGNED,
3819 "unsigned char", objfile);
3820 objfile_type->builtin_short
3821 = init_type (TYPE_CODE_INT,
3822 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3823 0, "short", objfile);
3824 objfile_type->builtin_unsigned_short
3825 = init_type (TYPE_CODE_INT,
3826 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3827 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3828 objfile_type->builtin_int
3829 = init_type (TYPE_CODE_INT,
3830 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3831 0, "int", objfile);
3832 objfile_type->builtin_unsigned_int
3833 = init_type (TYPE_CODE_INT,
3834 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3835 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3836 objfile_type->builtin_long
3837 = init_type (TYPE_CODE_INT,
3838 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3839 0, "long", objfile);
3840 objfile_type->builtin_unsigned_long
3841 = init_type (TYPE_CODE_INT,
3842 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3843 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3844 objfile_type->builtin_long_long
3845 = init_type (TYPE_CODE_INT,
3846 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3847 0, "long long", objfile);
3848 objfile_type->builtin_unsigned_long_long
3849 = init_type (TYPE_CODE_INT,
3850 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3851 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3852
3853 objfile_type->builtin_float
3854 = init_type (TYPE_CODE_FLT,
3855 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3856 0, "float", objfile);
3857 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3858 = gdbarch_float_format (gdbarch);
3859 objfile_type->builtin_double
3860 = init_type (TYPE_CODE_FLT,
3861 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3862 0, "double", objfile);
3863 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3864 = gdbarch_double_format (gdbarch);
3865 objfile_type->builtin_long_double
3866 = init_type (TYPE_CODE_FLT,
3867 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3868 0, "long double", objfile);
3869 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3870 = gdbarch_long_double_format (gdbarch);
3871
3872 /* This type represents a type that was unrecognized in symbol read-in. */
3873 objfile_type->builtin_error
3874 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3875
3876 /* The following set of types is used for symbols with no
3877 debug information. */
3878 objfile_type->nodebug_text_symbol
3879 = init_type (TYPE_CODE_FUNC, 1, 0,
3880 "<text variable, no debug info>", objfile);
3881 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3882 = objfile_type->builtin_int;
3883 objfile_type->nodebug_data_symbol
3884 = init_type (TYPE_CODE_INT,
3885 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3886 "<data variable, no debug info>", objfile);
3887 objfile_type->nodebug_unknown_symbol
3888 = init_type (TYPE_CODE_INT, 1, 0,
3889 "<variable (not text or data), no debug info>", objfile);
3890 objfile_type->nodebug_tls_symbol
3891 = init_type (TYPE_CODE_INT,
3892 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3893 "<thread local variable, no debug info>", objfile);
3894
3895 /* NOTE: on some targets, addresses and pointers are not necessarily
3896 the same --- for example, on the D10V, pointers are 16 bits long,
3897 but addresses are 32 bits long. See doc/gdbint.texinfo,
3898 ``Pointers Are Not Always Addresses''.
3899
3900 The upshot is:
3901 - gdb's `struct type' always describes the target's
3902 representation.
3903 - gdb's `struct value' objects should always hold values in
3904 target form.
3905 - gdb's CORE_ADDR values are addresses in the unified virtual
3906 address space that the assembler and linker work with. Thus,
3907 since target_read_memory takes a CORE_ADDR as an argument, it
3908 can access any memory on the target, even if the processor has
3909 separate code and data address spaces.
3910
3911 So, for example:
3912 - If v is a value holding a D10V code pointer, its contents are
3913 in target form: a big-endian address left-shifted two bits.
3914 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3915 sizeof (void *) == 2 on the target.
3916
3917 In this context, objfile_type->builtin_core_addr is a bit odd:
3918 it's a target type for a value the target will never see. It's
3919 only used to hold the values of (typeless) linker symbols, which
3920 are indeed in the unified virtual address space. */
3921
3922 objfile_type->builtin_core_addr
3923 = init_type (TYPE_CODE_INT,
3924 gdbarch_addr_bit (gdbarch) / 8,
3925 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3926
3927 set_objfile_data (objfile, objfile_type_data, objfile_type);
3928 return objfile_type;
3929 }
3930
3931
3932 extern void _initialize_gdbtypes (void);
3933 void
3934 _initialize_gdbtypes (void)
3935 {
3936 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3937 objfile_type_data = register_objfile_data ();
3938
3939 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3940 _("Set debugging of C++ overloading."),
3941 _("Show debugging of C++ overloading."),
3942 _("When enabled, ranking of the "
3943 "functions is displayed."),
3944 NULL,
3945 show_overload_debug,
3946 &setdebuglist, &showdebuglist);
3947
3948 /* Add user knob for controlling resolution of opaque types. */
3949 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3950 &opaque_type_resolution,
3951 _("Set resolution of opaque struct/class/union"
3952 " types (if set before loading symbols)."),
3953 _("Show resolution of opaque struct/class/union"
3954 " types (if set before loading symbols)."),
3955 NULL, NULL,
3956 show_opaque_type_resolution,
3957 &setlist, &showlist);
3958 }
This page took 0.173809 seconds and 4 git commands to generate.