* configure.tgt (arm*-*-netbsd*): This variant is now fully multi-arch.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2 Copyright 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002
3 Free Software Foundation, Inc.
4 Contributed by Cygnus Support, using pieces from other GDB modules.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40
41 /* These variables point to the objects
42 representing the predefined C data types. */
43
44 struct type *builtin_type_void;
45 struct type *builtin_type_char;
46 struct type *builtin_type_true_char;
47 struct type *builtin_type_short;
48 struct type *builtin_type_int;
49 struct type *builtin_type_long;
50 struct type *builtin_type_long_long;
51 struct type *builtin_type_signed_char;
52 struct type *builtin_type_unsigned_char;
53 struct type *builtin_type_unsigned_short;
54 struct type *builtin_type_unsigned_int;
55 struct type *builtin_type_unsigned_long;
56 struct type *builtin_type_unsigned_long_long;
57 struct type *builtin_type_float;
58 struct type *builtin_type_double;
59 struct type *builtin_type_long_double;
60 struct type *builtin_type_complex;
61 struct type *builtin_type_double_complex;
62 struct type *builtin_type_string;
63 struct type *builtin_type_int8;
64 struct type *builtin_type_uint8;
65 struct type *builtin_type_int16;
66 struct type *builtin_type_uint16;
67 struct type *builtin_type_int32;
68 struct type *builtin_type_uint32;
69 struct type *builtin_type_int64;
70 struct type *builtin_type_uint64;
71 struct type *builtin_type_int128;
72 struct type *builtin_type_uint128;
73 struct type *builtin_type_bool;
74 struct type *builtin_type_v4sf;
75 struct type *builtin_type_v4si;
76 struct type *builtin_type_v16qi;
77 struct type *builtin_type_v8qi;
78 struct type *builtin_type_v8hi;
79 struct type *builtin_type_v4hi;
80 struct type *builtin_type_v2si;
81 struct type *builtin_type_vec128;
82 struct type *builtin_type_ieee_single_big;
83 struct type *builtin_type_ieee_single_little;
84 struct type *builtin_type_ieee_double_big;
85 struct type *builtin_type_ieee_double_little;
86 struct type *builtin_type_ieee_double_littlebyte_bigword;
87 struct type *builtin_type_i387_ext;
88 struct type *builtin_type_m68881_ext;
89 struct type *builtin_type_i960_ext;
90 struct type *builtin_type_m88110_ext;
91 struct type *builtin_type_m88110_harris_ext;
92 struct type *builtin_type_arm_ext_big;
93 struct type *builtin_type_arm_ext_littlebyte_bigword;
94 struct type *builtin_type_ia64_spill_big;
95 struct type *builtin_type_ia64_spill_little;
96 struct type *builtin_type_ia64_quad_big;
97 struct type *builtin_type_ia64_quad_little;
98 struct type *builtin_type_void_data_ptr;
99 struct type *builtin_type_void_func_ptr;
100 struct type *builtin_type_CORE_ADDR;
101 struct type *builtin_type_bfd_vma;
102
103 int opaque_type_resolution = 1;
104 int overload_debug = 0;
105
106 struct extra
107 {
108 char str[128];
109 int len;
110 }; /* maximum extension is 128! FIXME */
111
112 static void add_name (struct extra *, char *);
113 static void add_mangled_type (struct extra *, struct type *);
114 #if 0
115 static void cfront_mangle_name (struct type *, int, int);
116 #endif
117 static void print_bit_vector (B_TYPE *, int);
118 static void print_arg_types (struct type **, int);
119 static void dump_fn_fieldlists (struct type *, int);
120 static void print_cplus_stuff (struct type *, int);
121 static void virtual_base_list_aux (struct type *dclass);
122
123
124 /* Alloc a new type structure and fill it with some defaults. If
125 OBJFILE is non-NULL, then allocate the space for the type structure
126 in that objfile's type_obstack. */
127
128 struct type *
129 alloc_type (struct objfile *objfile)
130 {
131 register struct type *type;
132
133 /* Alloc the structure and start off with all fields zeroed. */
134
135 if (objfile == NULL)
136 {
137 type = (struct type *) xmalloc (sizeof (struct type));
138 }
139 else
140 {
141 type = (struct type *) obstack_alloc (&objfile->type_obstack,
142 sizeof (struct type));
143 OBJSTAT (objfile, n_types++);
144 }
145 memset ((char *) type, 0, sizeof (struct type));
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_OBJFILE (type) = objfile;
151 TYPE_VPTR_FIELDNO (type) = -1;
152 TYPE_CV_TYPE (type) = type; /* chain back to itself */
153 TYPE_AS_TYPE (type) = type; /* ditto */
154
155 return (type);
156 }
157
158 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
159 to a pointer to memory where the pointer type should be stored.
160 If *TYPEPTR is zero, update it to point to the pointer type we return.
161 We allocate new memory if needed. */
162
163 struct type *
164 make_pointer_type (struct type *type, struct type **typeptr)
165 {
166 register struct type *ntype; /* New type */
167 struct objfile *objfile;
168
169 ntype = TYPE_POINTER_TYPE (type);
170
171 if (ntype)
172 {
173 if (typeptr == 0)
174 return ntype; /* Don't care about alloc, and have new type. */
175 else if (*typeptr == 0)
176 {
177 *typeptr = ntype; /* Tracking alloc, and we have new type. */
178 return ntype;
179 }
180 }
181
182 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
183 {
184 ntype = alloc_type (TYPE_OBJFILE (type));
185 if (typeptr)
186 *typeptr = ntype;
187 }
188 else
189 /* We have storage, but need to reset it. */
190 {
191 ntype = *typeptr;
192 objfile = TYPE_OBJFILE (ntype);
193 memset ((char *) ntype, 0, sizeof (struct type));
194 TYPE_OBJFILE (ntype) = objfile;
195 }
196
197 TYPE_TARGET_TYPE (ntype) = type;
198 TYPE_POINTER_TYPE (type) = ntype;
199
200 /* FIXME! Assume the machine has only one representation for pointers! */
201
202 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
203 TYPE_CODE (ntype) = TYPE_CODE_PTR;
204
205 /* Mark pointers as unsigned. The target converts between pointers
206 and addresses (CORE_ADDRs) using POINTER_TO_ADDRESS() and
207 ADDRESS_TO_POINTER(). */
208 TYPE_FLAGS (ntype) |= TYPE_FLAG_UNSIGNED;
209
210 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
211 TYPE_POINTER_TYPE (type) = ntype;
212
213 return ntype;
214 }
215
216 /* Given a type TYPE, return a type of pointers to that type.
217 May need to construct such a type if this is the first use. */
218
219 struct type *
220 lookup_pointer_type (struct type *type)
221 {
222 return make_pointer_type (type, (struct type **) 0);
223 }
224
225 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero, points
226 to a pointer to memory where the reference type should be stored.
227 If *TYPEPTR is zero, update it to point to the reference type we return.
228 We allocate new memory if needed. */
229
230 struct type *
231 make_reference_type (struct type *type, struct type **typeptr)
232 {
233 register struct type *ntype; /* New type */
234 struct objfile *objfile;
235
236 ntype = TYPE_REFERENCE_TYPE (type);
237
238 if (ntype)
239 {
240 if (typeptr == 0)
241 return ntype; /* Don't care about alloc, and have new type. */
242 else if (*typeptr == 0)
243 {
244 *typeptr = ntype; /* Tracking alloc, and we have new type. */
245 return ntype;
246 }
247 }
248
249 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
250 {
251 ntype = alloc_type (TYPE_OBJFILE (type));
252 if (typeptr)
253 *typeptr = ntype;
254 }
255 else
256 /* We have storage, but need to reset it. */
257 {
258 ntype = *typeptr;
259 objfile = TYPE_OBJFILE (ntype);
260 memset ((char *) ntype, 0, sizeof (struct type));
261 TYPE_OBJFILE (ntype) = objfile;
262 }
263
264 TYPE_TARGET_TYPE (ntype) = type;
265 TYPE_REFERENCE_TYPE (type) = ntype;
266
267 /* FIXME! Assume the machine has only one representation for references,
268 and that it matches the (only) representation for pointers! */
269
270 TYPE_LENGTH (ntype) = TARGET_PTR_BIT / TARGET_CHAR_BIT;
271 TYPE_CODE (ntype) = TYPE_CODE_REF;
272
273 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
274 TYPE_REFERENCE_TYPE (type) = ntype;
275
276 return ntype;
277 }
278
279 /* Same as above, but caller doesn't care about memory allocation details. */
280
281 struct type *
282 lookup_reference_type (struct type *type)
283 {
284 return make_reference_type (type, (struct type **) 0);
285 }
286
287 /* Lookup a function type that returns type TYPE. TYPEPTR, if nonzero, points
288 to a pointer to memory where the function type should be stored.
289 If *TYPEPTR is zero, update it to point to the function type we return.
290 We allocate new memory if needed. */
291
292 struct type *
293 make_function_type (struct type *type, struct type **typeptr)
294 {
295 register struct type *ntype; /* New type */
296 struct objfile *objfile;
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
300 ntype = alloc_type (TYPE_OBJFILE (type));
301 if (typeptr)
302 *typeptr = ntype;
303 }
304 else
305 /* We have storage, but need to reset it. */
306 {
307 ntype = *typeptr;
308 objfile = TYPE_OBJFILE (ntype);
309 memset ((char *) ntype, 0, sizeof (struct type));
310 TYPE_OBJFILE (ntype) = objfile;
311 }
312
313 TYPE_TARGET_TYPE (ntype) = type;
314
315 TYPE_LENGTH (ntype) = 1;
316 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
317
318 return ntype;
319 }
320
321
322 /* Given a type TYPE, return a type of functions that return that type.
323 May need to construct such a type if this is the first use. */
324
325 struct type *
326 lookup_function_type (struct type *type)
327 {
328 return make_function_type (type, (struct type **) 0);
329 }
330
331 /* Identify address space identifier by name --
332 return the integer flag defined in gdbtypes.h. */
333 extern int
334 address_space_name_to_int (char *space_identifier)
335 {
336 /* Check for known address space delimiters. */
337 if (!strcmp (space_identifier, "code"))
338 return TYPE_FLAG_CODE_SPACE;
339 else if (!strcmp (space_identifier, "data"))
340 return TYPE_FLAG_DATA_SPACE;
341 else
342 error ("Unknown address space specifier: \"%s\"", space_identifier);
343 }
344
345 /* Identify address space identifier by integer flag as defined in
346 gdbtypes.h -- return the string version of the adress space name. */
347
348 extern char *
349 address_space_int_to_name (int space_flag)
350 {
351 if (space_flag & TYPE_FLAG_CODE_SPACE)
352 return "code";
353 else if (space_flag & TYPE_FLAG_DATA_SPACE)
354 return "data";
355 else
356 return NULL;
357 }
358
359 /* Make an address-space-delimited variant of a type -- a type that
360 is identical to the one supplied except that it has an address
361 space attribute attached to it (such as "code" or "data").
362
363 This is for Harvard architectures. */
364
365 struct type *
366 make_type_with_address_space (struct type *type, int space_flag)
367 {
368 struct type *ntype;
369
370 ntype = type;
371 do {
372 if ((ntype->flags & space_flag) != 0)
373 return ntype;
374 ntype = TYPE_AS_TYPE (ntype);
375 } while (ntype != type);
376
377 /* Create a new, duplicate type. */
378 ntype = alloc_type (TYPE_OBJFILE (type));
379 /* Copy original type. */
380 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
381
382 /* Pointers or references to the original type are not relevant to
383 the new type; but if the original type is a pointer, the new type
384 points to the same thing (so TYPE_TARGET_TYPE remains unchanged). */
385 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
386 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
387 TYPE_CV_TYPE (ntype) = ntype;
388
389 /* Chain the new address-space-specific type to the old type. */
390 ntype->as_type = type->as_type;
391 type->as_type = ntype;
392
393 /* Now set the address-space flag, and return the new type. */
394 ntype->flags |= space_flag;
395 return ntype;
396 }
397
398
399 /* Make a "c-v" variant of a type -- a type that is identical to the
400 one supplied except that it may have const or volatile attributes
401 CNST is a flag for setting the const attribute
402 VOLTL is a flag for setting the volatile attribute
403 TYPE is the base type whose variant we are creating.
404 TYPEPTR, if nonzero, points
405 to a pointer to memory where the reference type should be stored.
406 If *TYPEPTR is zero, update it to point to the reference type we return.
407 We allocate new memory if needed. */
408
409 struct type *
410 make_cv_type (int cnst, int voltl, struct type *type, struct type **typeptr)
411 {
412 register struct type *ntype; /* New type */
413 register struct type *tmp_type = type; /* tmp type */
414 struct objfile *objfile;
415
416 ntype = TYPE_CV_TYPE (type);
417
418 while (ntype != type)
419 {
420 if ((TYPE_CONST (ntype) == cnst) &&
421 (TYPE_VOLATILE (ntype) == voltl))
422 {
423 if (typeptr == 0)
424 return ntype;
425 else if (*typeptr == 0)
426 {
427 *typeptr = ntype; /* Tracking alloc, and we have new type. */
428 return ntype;
429 }
430 }
431 tmp_type = ntype;
432 ntype = TYPE_CV_TYPE (ntype);
433 }
434
435 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
436 {
437 ntype = alloc_type (TYPE_OBJFILE (type));
438 if (typeptr)
439 *typeptr = ntype;
440 }
441 else
442 /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 objfile = TYPE_OBJFILE (ntype);
446 /* memset ((char *) ntype, 0, sizeof (struct type)); */
447 TYPE_OBJFILE (ntype) = objfile;
448 }
449
450 /* Copy original type */
451 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
452 /* But zero out fields that shouldn't be copied */
453 TYPE_POINTER_TYPE (ntype) = (struct type *) 0; /* Need new pointer kind */
454 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0; /* Need new referene kind */
455 TYPE_AS_TYPE (ntype) = ntype; /* Need new address-space kind. */
456 /* Note: TYPE_TARGET_TYPE can be left as is */
457
458 /* Set flags appropriately */
459 if (cnst)
460 TYPE_FLAGS (ntype) |= TYPE_FLAG_CONST;
461 else
462 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_CONST;
463
464 if (voltl)
465 TYPE_FLAGS (ntype) |= TYPE_FLAG_VOLATILE;
466 else
467 TYPE_FLAGS (ntype) &= ~TYPE_FLAG_VOLATILE;
468
469 /* Fix the chain of cv variants */
470 TYPE_CV_TYPE (ntype) = type;
471 TYPE_CV_TYPE (tmp_type) = ntype;
472
473 return ntype;
474 }
475
476 /* When reading in a class type, we may have created references to
477 cv-qualified versions of the type (in method arguments, for
478 instance). Update everything on the cv ring from the primary
479 type TYPE.
480
481 The only reason we do not need to do the same thing for address
482 spaces is that type readers do not create address space qualified
483 types. */
484 void
485 finish_cv_type (struct type *type)
486 {
487 struct type *ntype, *cv_type, *ptr_type, *ref_type;
488 int cv_flags;
489
490 gdb_assert (!TYPE_CONST (type) && !TYPE_VOLATILE (type));
491
492 ntype = type;
493 while ((ntype = TYPE_CV_TYPE (ntype)) != type)
494 {
495 /* Save cv_flags. */
496 cv_flags = TYPE_FLAGS (ntype) & (TYPE_FLAG_VOLATILE | TYPE_FLAG_CONST);
497
498 /* If any reference or pointer types were created, save them too. */
499 ptr_type = TYPE_POINTER_TYPE (ntype);
500 ref_type = TYPE_REFERENCE_TYPE (ntype);
501
502 /* Don't disturb the CV chain. */
503 cv_type = TYPE_CV_TYPE (ntype);
504
505 /* Verify that we haven't added any address-space qualified types,
506 for the future. */
507 gdb_assert (ntype == TYPE_AS_TYPE (ntype));
508
509 /* Copy original type */
510 memcpy ((char *) ntype, (char *) type, sizeof (struct type));
511
512 /* Restore everything. */
513 TYPE_POINTER_TYPE (ntype) = ptr_type;
514 TYPE_REFERENCE_TYPE (ntype) = ref_type;
515 TYPE_CV_TYPE (ntype) = cv_type;
516 TYPE_FLAGS (ntype) = TYPE_FLAGS (ntype) | cv_flags;
517
518 TYPE_AS_TYPE (ntype) = ntype;
519 }
520 }
521
522 /* Replace the contents of ntype with the type *type.
523
524 This function should not be necessary, but is due to quirks in the stabs
525 reader. This should go away. It does not handle the replacement type
526 being cv-qualified; it could be easily fixed to, but it should go away,
527 remember? */
528 void
529 replace_type (struct type *ntype, struct type *type)
530 {
531 struct type *cv_chain, *as_chain, *ptr, *ref;
532
533 cv_chain = TYPE_CV_TYPE (ntype);
534 as_chain = TYPE_AS_TYPE (ntype);
535 ptr = TYPE_POINTER_TYPE (ntype);
536 ref = TYPE_REFERENCE_TYPE (ntype);
537
538 *ntype = *type;
539
540 TYPE_POINTER_TYPE (ntype) = ptr;
541 TYPE_REFERENCE_TYPE (ntype) = ref;
542 TYPE_CV_TYPE (ntype) = cv_chain;
543 TYPE_AS_TYPE (ntype) = as_chain;
544
545 finish_cv_type (ntype);
546 }
547
548 /* Implement direct support for MEMBER_TYPE in GNU C++.
549 May need to construct such a type if this is the first use.
550 The TYPE is the type of the member. The DOMAIN is the type
551 of the aggregate that the member belongs to. */
552
553 struct type *
554 lookup_member_type (struct type *type, struct type *domain)
555 {
556 register struct type *mtype;
557
558 mtype = alloc_type (TYPE_OBJFILE (type));
559 smash_to_member_type (mtype, domain, type);
560 return (mtype);
561 }
562
563 /* Allocate a stub method whose return type is TYPE.
564 This apparently happens for speed of symbol reading, since parsing
565 out the arguments to the method is cpu-intensive, the way we are doing
566 it. So, we will fill in arguments later.
567 This always returns a fresh type. */
568
569 struct type *
570 allocate_stub_method (struct type *type)
571 {
572 struct type *mtype;
573
574 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
575 TYPE_OBJFILE (type));
576 TYPE_TARGET_TYPE (mtype) = type;
577 /* _DOMAIN_TYPE (mtype) = unknown yet */
578 /* _ARG_TYPES (mtype) = unknown yet */
579 return (mtype);
580 }
581
582 /* Create a range type using either a blank type supplied in RESULT_TYPE,
583 or creating a new type, inheriting the objfile from INDEX_TYPE.
584
585 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND to
586 HIGH_BOUND, inclusive.
587
588 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
589 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
590
591 struct type *
592 create_range_type (struct type *result_type, struct type *index_type,
593 int low_bound, int high_bound)
594 {
595 if (result_type == NULL)
596 {
597 result_type = alloc_type (TYPE_OBJFILE (index_type));
598 }
599 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
600 TYPE_TARGET_TYPE (result_type) = index_type;
601 if (TYPE_STUB (index_type))
602 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
603 else
604 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
605 TYPE_NFIELDS (result_type) = 2;
606 TYPE_FIELDS (result_type) = (struct field *)
607 TYPE_ALLOC (result_type, 2 * sizeof (struct field));
608 memset (TYPE_FIELDS (result_type), 0, 2 * sizeof (struct field));
609 TYPE_FIELD_BITPOS (result_type, 0) = low_bound;
610 TYPE_FIELD_BITPOS (result_type, 1) = high_bound;
611 TYPE_FIELD_TYPE (result_type, 0) = builtin_type_int; /* FIXME */
612 TYPE_FIELD_TYPE (result_type, 1) = builtin_type_int; /* FIXME */
613
614 if (low_bound >= 0)
615 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
616
617 return (result_type);
618 }
619
620 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type TYPE.
621 Return 1 of type is a range type, 0 if it is discrete (and bounds
622 will fit in LONGEST), or -1 otherwise. */
623
624 int
625 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
626 {
627 CHECK_TYPEDEF (type);
628 switch (TYPE_CODE (type))
629 {
630 case TYPE_CODE_RANGE:
631 *lowp = TYPE_LOW_BOUND (type);
632 *highp = TYPE_HIGH_BOUND (type);
633 return 1;
634 case TYPE_CODE_ENUM:
635 if (TYPE_NFIELDS (type) > 0)
636 {
637 /* The enums may not be sorted by value, so search all
638 entries */
639 int i;
640
641 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
642 for (i = 0; i < TYPE_NFIELDS (type); i++)
643 {
644 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
645 *lowp = TYPE_FIELD_BITPOS (type, i);
646 if (TYPE_FIELD_BITPOS (type, i) > *highp)
647 *highp = TYPE_FIELD_BITPOS (type, i);
648 }
649
650 /* Set unsigned indicator if warranted. */
651 if (*lowp >= 0)
652 {
653 TYPE_FLAGS (type) |= TYPE_FLAG_UNSIGNED;
654 }
655 }
656 else
657 {
658 *lowp = 0;
659 *highp = -1;
660 }
661 return 0;
662 case TYPE_CODE_BOOL:
663 *lowp = 0;
664 *highp = 1;
665 return 0;
666 case TYPE_CODE_INT:
667 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
668 return -1;
669 if (!TYPE_UNSIGNED (type))
670 {
671 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
672 *highp = -*lowp - 1;
673 return 0;
674 }
675 /* ... fall through for unsigned ints ... */
676 case TYPE_CODE_CHAR:
677 *lowp = 0;
678 /* This round-about calculation is to avoid shifting by
679 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
680 if TYPE_LENGTH (type) == sizeof (LONGEST). */
681 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
682 *highp = (*highp - 1) | *highp;
683 return 0;
684 default:
685 return -1;
686 }
687 }
688
689 /* Create an array type using either a blank type supplied in RESULT_TYPE,
690 or creating a new type, inheriting the objfile from RANGE_TYPE.
691
692 Elements will be of type ELEMENT_TYPE, the indices will be of type
693 RANGE_TYPE.
694
695 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
696 sure it is TYPE_CODE_UNDEF before we bash it into an array type? */
697
698 struct type *
699 create_array_type (struct type *result_type, struct type *element_type,
700 struct type *range_type)
701 {
702 LONGEST low_bound, high_bound;
703
704 if (result_type == NULL)
705 {
706 result_type = alloc_type (TYPE_OBJFILE (range_type));
707 }
708 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
709 TYPE_TARGET_TYPE (result_type) = element_type;
710 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
711 low_bound = high_bound = 0;
712 CHECK_TYPEDEF (element_type);
713 TYPE_LENGTH (result_type) =
714 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
715 TYPE_NFIELDS (result_type) = 1;
716 TYPE_FIELDS (result_type) =
717 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
718 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
719 TYPE_FIELD_TYPE (result_type, 0) = range_type;
720 TYPE_VPTR_FIELDNO (result_type) = -1;
721
722 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
723 if (TYPE_LENGTH (result_type) == 0)
724 TYPE_FLAGS (result_type) |= TYPE_FLAG_TARGET_STUB;
725
726 return (result_type);
727 }
728
729 /* Create a string type using either a blank type supplied in RESULT_TYPE,
730 or creating a new type. String types are similar enough to array of
731 char types that we can use create_array_type to build the basic type
732 and then bash it into a string type.
733
734 For fixed length strings, the range type contains 0 as the lower
735 bound and the length of the string minus one as the upper bound.
736
737 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
738 sure it is TYPE_CODE_UNDEF before we bash it into a string type? */
739
740 struct type *
741 create_string_type (struct type *result_type, struct type *range_type)
742 {
743 result_type = create_array_type (result_type,
744 *current_language->string_char_type,
745 range_type);
746 TYPE_CODE (result_type) = TYPE_CODE_STRING;
747 return (result_type);
748 }
749
750 struct type *
751 create_set_type (struct type *result_type, struct type *domain_type)
752 {
753 LONGEST low_bound, high_bound, bit_length;
754 if (result_type == NULL)
755 {
756 result_type = alloc_type (TYPE_OBJFILE (domain_type));
757 }
758 TYPE_CODE (result_type) = TYPE_CODE_SET;
759 TYPE_NFIELDS (result_type) = 1;
760 TYPE_FIELDS (result_type) = (struct field *)
761 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
762 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
763
764 if (!TYPE_STUB (domain_type))
765 {
766 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
767 low_bound = high_bound = 0;
768 bit_length = high_bound - low_bound + 1;
769 TYPE_LENGTH (result_type)
770 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
771 }
772 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
773
774 if (low_bound >= 0)
775 TYPE_FLAGS (result_type) |= TYPE_FLAG_UNSIGNED;
776
777 return (result_type);
778 }
779
780
781 /* Construct and return a type of the form:
782 struct NAME { ELT_TYPE ELT_NAME[N]; }
783 We use these types for SIMD registers. For example, the type of
784 the SSE registers on the late x86-family processors is:
785 struct __builtin_v4sf { float f[4]; }
786 built by the function call:
787 init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4)
788 The type returned is a permanent type, allocated using malloc; it
789 doesn't live in any objfile's obstack. */
790 static struct type *
791 init_simd_type (char *name,
792 struct type *elt_type,
793 char *elt_name,
794 int n)
795 {
796 struct type *t;
797 struct field *f;
798
799 /* Build the field structure. */
800 f = xmalloc (sizeof (*f));
801 memset (f, 0, sizeof (*f));
802 f->loc.bitpos = 0;
803 f->type = create_array_type (0, elt_type,
804 create_range_type (0, builtin_type_int,
805 0, n-1));
806 f->name = elt_name;
807
808 /* Build a struct type with that field. */
809 t = init_type (TYPE_CODE_STRUCT, n * TYPE_LENGTH (elt_type), 0, 0, 0);
810 t->nfields = 1;
811 t->fields = f;
812 TYPE_TAG_NAME (t) = name;
813
814 return t;
815 }
816
817 static struct type *
818 build_builtin_type_vec128 (void)
819 {
820 /* Construct a type for the 128 bit registers. The type we're
821 building is this: */
822 #if 0
823 union __gdb_builtin_type_vec128
824 {
825 struct __builtin_v16qi v16qi;
826 struct __builtin_v8hi v8hi;
827 struct __builtin_v4si v4si;
828 struct __builtin_v4sf v4sf;
829 uint128_t uint128;
830 };
831 #endif
832
833 struct type *t;
834 struct field *f;
835
836 f = (struct field *) xcalloc (5, sizeof (*f));
837
838 FIELD_TYPE (f[0]) = builtin_type_int128;
839 FIELD_NAME (f[0]) = "uint128";
840
841 FIELD_TYPE (f[1]) = builtin_type_v4sf;
842 FIELD_NAME (f[1]) = "v4sf";
843
844 FIELD_TYPE (f[2]) = builtin_type_v4si;
845 FIELD_NAME (f[2]) = "v4si";
846
847 FIELD_TYPE (f[3]) = builtin_type_v8hi;
848 FIELD_NAME (f[3]) = "v8hi";
849
850 FIELD_TYPE (f[4]) = builtin_type_v16qi;
851 FIELD_NAME (f[4]) = "v16qi";
852
853 /* Build a union type with those fields. */
854 t = init_type (TYPE_CODE_UNION, 16, 0, 0, 0);
855 TYPE_NFIELDS (t) = 5;
856 TYPE_FIELDS (t) = f;
857 TYPE_TAG_NAME (t) = "__gdb_builtin_type_vec128";
858
859 return t;
860 }
861
862 /* Smash TYPE to be a type of members of DOMAIN with type TO_TYPE.
863 A MEMBER is a wierd thing -- it amounts to a typed offset into
864 a struct, e.g. "an int at offset 8". A MEMBER TYPE doesn't
865 include the offset (that's the value of the MEMBER itself), but does
866 include the structure type into which it points (for some reason).
867
868 When "smashing" the type, we preserve the objfile that the
869 old type pointed to, since we aren't changing where the type is actually
870 allocated. */
871
872 void
873 smash_to_member_type (struct type *type, struct type *domain,
874 struct type *to_type)
875 {
876 struct objfile *objfile;
877
878 objfile = TYPE_OBJFILE (type);
879
880 memset ((char *) type, 0, sizeof (struct type));
881 TYPE_OBJFILE (type) = objfile;
882 TYPE_TARGET_TYPE (type) = to_type;
883 TYPE_DOMAIN_TYPE (type) = domain;
884 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
885 TYPE_CODE (type) = TYPE_CODE_MEMBER;
886 }
887
888 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
889 METHOD just means `function that gets an extra "this" argument'.
890
891 When "smashing" the type, we preserve the objfile that the
892 old type pointed to, since we aren't changing where the type is actually
893 allocated. */
894
895 void
896 smash_to_method_type (struct type *type, struct type *domain,
897 struct type *to_type, struct type **args)
898 {
899 struct objfile *objfile;
900
901 objfile = TYPE_OBJFILE (type);
902
903 memset ((char *) type, 0, sizeof (struct type));
904 TYPE_OBJFILE (type) = objfile;
905 TYPE_TARGET_TYPE (type) = to_type;
906 TYPE_DOMAIN_TYPE (type) = domain;
907 TYPE_ARG_TYPES (type) = args;
908 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
909 TYPE_CODE (type) = TYPE_CODE_METHOD;
910 }
911
912 /* Return a typename for a struct/union/enum type without "struct ",
913 "union ", or "enum ". If the type has a NULL name, return NULL. */
914
915 char *
916 type_name_no_tag (register const struct type *type)
917 {
918 if (TYPE_TAG_NAME (type) != NULL)
919 return TYPE_TAG_NAME (type);
920
921 /* Is there code which expects this to return the name if there is no
922 tag name? My guess is that this is mainly used for C++ in cases where
923 the two will always be the same. */
924 return TYPE_NAME (type);
925 }
926
927 /* Lookup a primitive type named NAME.
928 Return zero if NAME is not a primitive type. */
929
930 struct type *
931 lookup_primitive_typename (char *name)
932 {
933 struct type **const *p;
934
935 for (p = current_language->la_builtin_type_vector; *p != NULL; p++)
936 {
937 if (STREQ ((**p)->name, name))
938 {
939 return (**p);
940 }
941 }
942 return (NULL);
943 }
944
945 /* Lookup a typedef or primitive type named NAME,
946 visible in lexical block BLOCK.
947 If NOERR is nonzero, return zero if NAME is not suitably defined. */
948
949 struct type *
950 lookup_typename (char *name, struct block *block, int noerr)
951 {
952 register struct symbol *sym;
953 register struct type *tmp;
954
955 sym = lookup_symbol (name, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
956 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
957 {
958 tmp = lookup_primitive_typename (name);
959 if (tmp)
960 {
961 return (tmp);
962 }
963 else if (!tmp && noerr)
964 {
965 return (NULL);
966 }
967 else
968 {
969 error ("No type named %s.", name);
970 }
971 }
972 return (SYMBOL_TYPE (sym));
973 }
974
975 struct type *
976 lookup_unsigned_typename (char *name)
977 {
978 char *uns = alloca (strlen (name) + 10);
979
980 strcpy (uns, "unsigned ");
981 strcpy (uns + 9, name);
982 return (lookup_typename (uns, (struct block *) NULL, 0));
983 }
984
985 struct type *
986 lookup_signed_typename (char *name)
987 {
988 struct type *t;
989 char *uns = alloca (strlen (name) + 8);
990
991 strcpy (uns, "signed ");
992 strcpy (uns + 7, name);
993 t = lookup_typename (uns, (struct block *) NULL, 1);
994 /* If we don't find "signed FOO" just try again with plain "FOO". */
995 if (t != NULL)
996 return t;
997 return lookup_typename (name, (struct block *) NULL, 0);
998 }
999
1000 /* Lookup a structure type named "struct NAME",
1001 visible in lexical block BLOCK. */
1002
1003 struct type *
1004 lookup_struct (char *name, struct block *block)
1005 {
1006 register struct symbol *sym;
1007
1008 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1009 (struct symtab **) NULL);
1010
1011 if (sym == NULL)
1012 {
1013 error ("No struct type named %s.", name);
1014 }
1015 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1016 {
1017 error ("This context has class, union or enum %s, not a struct.", name);
1018 }
1019 return (SYMBOL_TYPE (sym));
1020 }
1021
1022 /* Lookup a union type named "union NAME",
1023 visible in lexical block BLOCK. */
1024
1025 struct type *
1026 lookup_union (char *name, struct block *block)
1027 {
1028 register struct symbol *sym;
1029 struct type *t;
1030
1031 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1032 (struct symtab **) NULL);
1033
1034 if (sym == NULL)
1035 error ("No union type named %s.", name);
1036
1037 t = SYMBOL_TYPE (sym);
1038
1039 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1040 return (t);
1041
1042 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1043 * a further "declared_type" field to discover it is really a union.
1044 */
1045 if (HAVE_CPLUS_STRUCT (t))
1046 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1047 return (t);
1048
1049 /* If we get here, it's not a union */
1050 error ("This context has class, struct or enum %s, not a union.", name);
1051 }
1052
1053
1054 /* Lookup an enum type named "enum NAME",
1055 visible in lexical block BLOCK. */
1056
1057 struct type *
1058 lookup_enum (char *name, struct block *block)
1059 {
1060 register struct symbol *sym;
1061
1062 sym = lookup_symbol (name, block, STRUCT_NAMESPACE, 0,
1063 (struct symtab **) NULL);
1064 if (sym == NULL)
1065 {
1066 error ("No enum type named %s.", name);
1067 }
1068 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1069 {
1070 error ("This context has class, struct or union %s, not an enum.", name);
1071 }
1072 return (SYMBOL_TYPE (sym));
1073 }
1074
1075 /* Lookup a template type named "template NAME<TYPE>",
1076 visible in lexical block BLOCK. */
1077
1078 struct type *
1079 lookup_template_type (char *name, struct type *type, struct block *block)
1080 {
1081 struct symbol *sym;
1082 char *nam = (char *) alloca (strlen (name) + strlen (type->name) + 4);
1083 strcpy (nam, name);
1084 strcat (nam, "<");
1085 strcat (nam, type->name);
1086 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1087
1088 sym = lookup_symbol (nam, block, VAR_NAMESPACE, 0, (struct symtab **) NULL);
1089
1090 if (sym == NULL)
1091 {
1092 error ("No template type named %s.", name);
1093 }
1094 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1095 {
1096 error ("This context has class, union or enum %s, not a struct.", name);
1097 }
1098 return (SYMBOL_TYPE (sym));
1099 }
1100
1101 /* Given a type TYPE, lookup the type of the component of type named NAME.
1102
1103 TYPE can be either a struct or union, or a pointer or reference to a struct or
1104 union. If it is a pointer or reference, its target type is automatically used.
1105 Thus '.' and '->' are interchangable, as specified for the definitions of the
1106 expression element types STRUCTOP_STRUCT and STRUCTOP_PTR.
1107
1108 If NOERR is nonzero, return zero if NAME is not suitably defined.
1109 If NAME is the name of a baseclass type, return that type. */
1110
1111 struct type *
1112 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1113 {
1114 int i;
1115
1116 for (;;)
1117 {
1118 CHECK_TYPEDEF (type);
1119 if (TYPE_CODE (type) != TYPE_CODE_PTR
1120 && TYPE_CODE (type) != TYPE_CODE_REF)
1121 break;
1122 type = TYPE_TARGET_TYPE (type);
1123 }
1124
1125 if (TYPE_CODE (type) != TYPE_CODE_STRUCT &&
1126 TYPE_CODE (type) != TYPE_CODE_UNION)
1127 {
1128 target_terminal_ours ();
1129 gdb_flush (gdb_stdout);
1130 fprintf_unfiltered (gdb_stderr, "Type ");
1131 type_print (type, "", gdb_stderr, -1);
1132 error (" is not a structure or union type.");
1133 }
1134
1135 #if 0
1136 /* FIXME: This change put in by Michael seems incorrect for the case where
1137 the structure tag name is the same as the member name. I.E. when doing
1138 "ptype bell->bar" for "struct foo { int bar; int foo; } bell;"
1139 Disabled by fnf. */
1140 {
1141 char *typename;
1142
1143 typename = type_name_no_tag (type);
1144 if (typename != NULL && STREQ (typename, name))
1145 return type;
1146 }
1147 #endif
1148
1149 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1150 {
1151 char *t_field_name = TYPE_FIELD_NAME (type, i);
1152
1153 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1154 {
1155 return TYPE_FIELD_TYPE (type, i);
1156 }
1157 }
1158
1159 /* OK, it's not in this class. Recursively check the baseclasses. */
1160 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1161 {
1162 struct type *t;
1163
1164 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, noerr);
1165 if (t != NULL)
1166 {
1167 return t;
1168 }
1169 }
1170
1171 if (noerr)
1172 {
1173 return NULL;
1174 }
1175
1176 target_terminal_ours ();
1177 gdb_flush (gdb_stdout);
1178 fprintf_unfiltered (gdb_stderr, "Type ");
1179 type_print (type, "", gdb_stderr, -1);
1180 fprintf_unfiltered (gdb_stderr, " has no component named ");
1181 fputs_filtered (name, gdb_stderr);
1182 error (".");
1183 return (struct type *) -1; /* For lint */
1184 }
1185
1186 /* If possible, make the vptr_fieldno and vptr_basetype fields of TYPE
1187 valid. Callers should be aware that in some cases (for example,
1188 the type or one of its baseclasses is a stub type and we are
1189 debugging a .o file), this function will not be able to find the virtual
1190 function table pointer, and vptr_fieldno will remain -1 and vptr_basetype
1191 will remain NULL. */
1192
1193 void
1194 fill_in_vptr_fieldno (struct type *type)
1195 {
1196 CHECK_TYPEDEF (type);
1197
1198 if (TYPE_VPTR_FIELDNO (type) < 0)
1199 {
1200 int i;
1201
1202 /* We must start at zero in case the first (and only) baseclass is
1203 virtual (and hence we cannot share the table pointer). */
1204 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1205 {
1206 fill_in_vptr_fieldno (TYPE_BASECLASS (type, i));
1207 if (TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i)) >= 0)
1208 {
1209 TYPE_VPTR_FIELDNO (type)
1210 = TYPE_VPTR_FIELDNO (TYPE_BASECLASS (type, i));
1211 TYPE_VPTR_BASETYPE (type)
1212 = TYPE_VPTR_BASETYPE (TYPE_BASECLASS (type, i));
1213 break;
1214 }
1215 }
1216 }
1217 }
1218
1219 /* Find the method and field indices for the destructor in class type T.
1220 Return 1 if the destructor was found, otherwise, return 0. */
1221
1222 int
1223 get_destructor_fn_field (struct type *t, int *method_indexp, int *field_indexp)
1224 {
1225 int i;
1226
1227 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1228 {
1229 int j;
1230 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1231
1232 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1233 {
1234 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1235 {
1236 *method_indexp = i;
1237 *field_indexp = j;
1238 return 1;
1239 }
1240 }
1241 }
1242 return 0;
1243 }
1244
1245 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1246
1247 If this is a stubbed struct (i.e. declared as struct foo *), see if
1248 we can find a full definition in some other file. If so, copy this
1249 definition, so we can use it in future. There used to be a comment (but
1250 not any code) that if we don't find a full definition, we'd set a flag
1251 so we don't spend time in the future checking the same type. That would
1252 be a mistake, though--we might load in more symbols which contain a
1253 full definition for the type.
1254
1255 This used to be coded as a macro, but I don't think it is called
1256 often enough to merit such treatment. */
1257
1258 struct complaint stub_noname_complaint =
1259 {"stub type has NULL name", 0, 0};
1260
1261 struct type *
1262 check_typedef (struct type *type)
1263 {
1264 struct type *orig_type = type;
1265 int is_const, is_volatile;
1266
1267 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1268 {
1269 if (!TYPE_TARGET_TYPE (type))
1270 {
1271 char *name;
1272 struct symbol *sym;
1273
1274 /* It is dangerous to call lookup_symbol if we are currently
1275 reading a symtab. Infinite recursion is one danger. */
1276 if (currently_reading_symtab)
1277 return type;
1278
1279 name = type_name_no_tag (type);
1280 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1281 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1282 as appropriate? (this code was written before TYPE_NAME and
1283 TYPE_TAG_NAME were separate). */
1284 if (name == NULL)
1285 {
1286 complain (&stub_noname_complaint);
1287 return type;
1288 }
1289 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0,
1290 (struct symtab **) NULL);
1291 if (sym)
1292 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1293 else
1294 TYPE_TARGET_TYPE (type) = alloc_type (NULL); /* TYPE_CODE_UNDEF */
1295 }
1296 type = TYPE_TARGET_TYPE (type);
1297 }
1298
1299 is_const = TYPE_CONST (type);
1300 is_volatile = TYPE_VOLATILE (type);
1301
1302 /* If this is a struct/class/union with no fields, then check whether a
1303 full definition exists somewhere else. This is for systems where a
1304 type definition with no fields is issued for such types, instead of
1305 identifying them as stub types in the first place */
1306
1307 if (TYPE_IS_OPAQUE (type) && opaque_type_resolution && !currently_reading_symtab)
1308 {
1309 char *name = type_name_no_tag (type);
1310 struct type *newtype;
1311 if (name == NULL)
1312 {
1313 complain (&stub_noname_complaint);
1314 return type;
1315 }
1316 newtype = lookup_transparent_type (name);
1317 if (newtype)
1318 make_cv_type (is_const, is_volatile, newtype, &type);
1319 }
1320 /* Otherwise, rely on the stub flag being set for opaque/stubbed types */
1321 else if (TYPE_STUB (type) && !currently_reading_symtab)
1322 {
1323 char *name = type_name_no_tag (type);
1324 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1325 TYPE_TAG_NAME, and look in STRUCT_NAMESPACE and/or VAR_NAMESPACE
1326 as appropriate? (this code was written before TYPE_NAME and
1327 TYPE_TAG_NAME were separate). */
1328 struct symbol *sym;
1329 if (name == NULL)
1330 {
1331 complain (&stub_noname_complaint);
1332 return type;
1333 }
1334 sym = lookup_symbol (name, 0, STRUCT_NAMESPACE, 0, (struct symtab **) NULL);
1335 if (sym)
1336 make_cv_type (is_const, is_volatile, SYMBOL_TYPE (sym), &type);
1337 }
1338
1339 if (TYPE_TARGET_STUB (type))
1340 {
1341 struct type *range_type;
1342 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1343
1344 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1345 {
1346 }
1347 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1348 && TYPE_NFIELDS (type) == 1
1349 && (TYPE_CODE (range_type = TYPE_FIELD_TYPE (type, 0))
1350 == TYPE_CODE_RANGE))
1351 {
1352 /* Now recompute the length of the array type, based on its
1353 number of elements and the target type's length. */
1354 TYPE_LENGTH (type) =
1355 ((TYPE_FIELD_BITPOS (range_type, 1)
1356 - TYPE_FIELD_BITPOS (range_type, 0)
1357 + 1)
1358 * TYPE_LENGTH (target_type));
1359 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1360 }
1361 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1362 {
1363 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1364 TYPE_FLAGS (type) &= ~TYPE_FLAG_TARGET_STUB;
1365 }
1366 }
1367 /* Cache TYPE_LENGTH for future use. */
1368 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1369 return type;
1370 }
1371
1372 /* New code added to support parsing of Cfront stabs strings */
1373 #define INIT_EXTRA { pextras->len=0; pextras->str[0]='\0'; }
1374 #define ADD_EXTRA(c) { pextras->str[pextras->len++]=c; }
1375
1376 static void
1377 add_name (struct extra *pextras, char *n)
1378 {
1379 int nlen;
1380
1381 if ((nlen = (n ? strlen (n) : 0)) == 0)
1382 return;
1383 sprintf (pextras->str + pextras->len, "%d%s", nlen, n);
1384 pextras->len = strlen (pextras->str);
1385 }
1386
1387 static void
1388 add_mangled_type (struct extra *pextras, struct type *t)
1389 {
1390 enum type_code tcode;
1391 int tlen, tflags;
1392 char *tname;
1393
1394 tcode = TYPE_CODE (t);
1395 tlen = TYPE_LENGTH (t);
1396 tflags = TYPE_FLAGS (t);
1397 tname = TYPE_NAME (t);
1398 /* args of "..." seem to get mangled as "e" */
1399
1400 switch (tcode)
1401 {
1402 case TYPE_CODE_INT:
1403 if (tflags == 1)
1404 ADD_EXTRA ('U');
1405 switch (tlen)
1406 {
1407 case 1:
1408 ADD_EXTRA ('c');
1409 break;
1410 case 2:
1411 ADD_EXTRA ('s');
1412 break;
1413 case 4:
1414 {
1415 char *pname;
1416 if ((pname = strrchr (tname, 'l'), pname) && !strcmp (pname, "long"))
1417 {
1418 ADD_EXTRA ('l');
1419 }
1420 else
1421 {
1422 ADD_EXTRA ('i');
1423 }
1424 }
1425 break;
1426 default:
1427 {
1428
1429 static struct complaint msg =
1430 {"Bad int type code length x%x\n", 0, 0};
1431
1432 complain (&msg, tlen);
1433
1434 }
1435 }
1436 break;
1437 case TYPE_CODE_FLT:
1438 switch (tlen)
1439 {
1440 case 4:
1441 ADD_EXTRA ('f');
1442 break;
1443 case 8:
1444 ADD_EXTRA ('d');
1445 break;
1446 case 16:
1447 ADD_EXTRA ('r');
1448 break;
1449 default:
1450 {
1451 static struct complaint msg =
1452 {"Bad float type code length x%x\n", 0, 0};
1453 complain (&msg, tlen);
1454 }
1455 }
1456 break;
1457 case TYPE_CODE_REF:
1458 ADD_EXTRA ('R');
1459 /* followed by what it's a ref to */
1460 break;
1461 case TYPE_CODE_PTR:
1462 ADD_EXTRA ('P');
1463 /* followed by what it's a ptr to */
1464 break;
1465 case TYPE_CODE_TYPEDEF:
1466 {
1467 static struct complaint msg =
1468 {"Typedefs in overloaded functions not yet supported\n", 0, 0};
1469 complain (&msg);
1470 }
1471 /* followed by type bytes & name */
1472 break;
1473 case TYPE_CODE_FUNC:
1474 ADD_EXTRA ('F');
1475 /* followed by func's arg '_' & ret types */
1476 break;
1477 case TYPE_CODE_VOID:
1478 ADD_EXTRA ('v');
1479 break;
1480 case TYPE_CODE_METHOD:
1481 ADD_EXTRA ('M');
1482 /* followed by name of class and func's arg '_' & ret types */
1483 add_name (pextras, tname);
1484 ADD_EXTRA ('F'); /* then mangle function */
1485 break;
1486 case TYPE_CODE_STRUCT: /* C struct */
1487 case TYPE_CODE_UNION: /* C union */
1488 case TYPE_CODE_ENUM: /* Enumeration type */
1489 /* followed by name of type */
1490 add_name (pextras, tname);
1491 break;
1492
1493 /* errors possible types/not supported */
1494 case TYPE_CODE_CHAR:
1495 case TYPE_CODE_ARRAY: /* Array type */
1496 case TYPE_CODE_MEMBER: /* Member type */
1497 case TYPE_CODE_BOOL:
1498 case TYPE_CODE_COMPLEX: /* Complex float */
1499 case TYPE_CODE_UNDEF:
1500 case TYPE_CODE_SET: /* Pascal sets */
1501 case TYPE_CODE_RANGE:
1502 case TYPE_CODE_STRING:
1503 case TYPE_CODE_BITSTRING:
1504 case TYPE_CODE_ERROR:
1505 default:
1506 {
1507 static struct complaint msg =
1508 {"Unknown type code x%x\n", 0, 0};
1509 complain (&msg, tcode);
1510 }
1511 }
1512 if (t->target_type)
1513 add_mangled_type (pextras, t->target_type);
1514 }
1515
1516 #if 0
1517 void
1518 cfront_mangle_name (struct type *type, int i, int j)
1519 {
1520 struct fn_field *f;
1521 char *mangled_name = gdb_mangle_name (type, i, j);
1522
1523 f = TYPE_FN_FIELDLIST1 (type, i); /* moved from below */
1524
1525 /* kludge to support cfront methods - gdb expects to find "F" for
1526 ARM_mangled names, so when we mangle, we have to add it here */
1527 if (ARM_DEMANGLING)
1528 {
1529 int k;
1530 char *arm_mangled_name;
1531 struct fn_field *method = &f[j];
1532 char *field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1533 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
1534 char *newname = type_name_no_tag (type);
1535
1536 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1537 int nargs = TYPE_NFIELDS (ftype); /* number of args */
1538 struct extra extras, *pextras = &extras;
1539 INIT_EXTRA
1540
1541 if (TYPE_FN_FIELD_STATIC_P (f, j)) /* j for sublist within this list */
1542 ADD_EXTRA ('S')
1543 ADD_EXTRA ('F')
1544 /* add args here! */
1545 if (nargs <= 1) /* no args besides this */
1546 ADD_EXTRA ('v')
1547 else
1548 {
1549 for (k = 1; k < nargs; k++)
1550 {
1551 struct type *t;
1552 t = TYPE_FIELD_TYPE (ftype, k);
1553 add_mangled_type (pextras, t);
1554 }
1555 }
1556 ADD_EXTRA ('\0')
1557 printf ("add_mangled_type: %s\n", extras.str); /* FIXME */
1558 xasprintf (&arm_mangled_name, "%s%s", mangled_name, extras.str);
1559 xfree (mangled_name);
1560 mangled_name = arm_mangled_name;
1561 }
1562 }
1563 #endif /* 0 */
1564
1565 #undef ADD_EXTRA
1566 /* End of new code added to support parsing of Cfront stabs strings */
1567
1568 /* Parse a type expression in the string [P..P+LENGTH). If an error occurs,
1569 silently return builtin_type_void. */
1570
1571 struct type *
1572 safe_parse_type (char *p, int length)
1573 {
1574 struct ui_file *saved_gdb_stderr;
1575 struct type *type;
1576
1577 /* Suppress error messages. */
1578 saved_gdb_stderr = gdb_stderr;
1579 gdb_stderr = ui_file_new ();
1580
1581 /* Call parse_and_eval_type() without fear of longjmp()s. */
1582 if (!gdb_parse_and_eval_type (p, length, &type))
1583 type = builtin_type_void;
1584
1585 /* Stop suppressing error messages. */
1586 ui_file_delete (gdb_stderr);
1587 gdb_stderr = saved_gdb_stderr;
1588
1589 return type;
1590 }
1591
1592 /* Ugly hack to convert method stubs into method types.
1593
1594 He ain't kiddin'. This demangles the name of the method into a string
1595 including argument types, parses out each argument type, generates
1596 a string casting a zero to that type, evaluates the string, and stuffs
1597 the resulting type into an argtype vector!!! Then it knows the type
1598 of the whole function (including argument types for overloading),
1599 which info used to be in the stab's but was removed to hack back
1600 the space required for them. */
1601
1602 void
1603 check_stub_method (struct type *type, int method_id, int signature_id)
1604 {
1605 struct fn_field *f;
1606 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1607 char *demangled_name = cplus_demangle (mangled_name,
1608 DMGL_PARAMS | DMGL_ANSI);
1609 char *argtypetext, *p;
1610 int depth = 0, argcount = 1;
1611 struct type **argtypes;
1612 struct type *mtype;
1613
1614 /* Make sure we got back a function string that we can use. */
1615 if (demangled_name)
1616 p = strchr (demangled_name, '(');
1617 else
1618 p = NULL;
1619
1620 if (demangled_name == NULL || p == NULL)
1621 error ("Internal: Cannot demangle mangled name `%s'.", mangled_name);
1622
1623 /* Now, read in the parameters that define this type. */
1624 p += 1;
1625 argtypetext = p;
1626 while (*p)
1627 {
1628 if (*p == '(' || *p == '<')
1629 {
1630 depth += 1;
1631 }
1632 else if (*p == ')' || *p == '>')
1633 {
1634 depth -= 1;
1635 }
1636 else if (*p == ',' && depth == 0)
1637 {
1638 argcount += 1;
1639 }
1640
1641 p += 1;
1642 }
1643
1644 /* We need two more slots: one for the THIS pointer, and one for the
1645 NULL [...] or void [end of arglist]. */
1646
1647 argtypes = (struct type **)
1648 TYPE_ALLOC (type, (argcount + 2) * sizeof (struct type *));
1649 p = argtypetext;
1650 /* FIXME: This is wrong for static member functions. */
1651 argtypes[0] = lookup_pointer_type (type);
1652 argcount = 1;
1653
1654 if (*p != ')') /* () means no args, skip while */
1655 {
1656 depth = 0;
1657 while (*p)
1658 {
1659 if (depth <= 0 && (*p == ',' || *p == ')'))
1660 {
1661 /* Avoid parsing of ellipsis, they will be handled below. */
1662 if (strncmp (argtypetext, "...", p - argtypetext) != 0)
1663 {
1664 argtypes[argcount] =
1665 safe_parse_type (argtypetext, p - argtypetext);
1666 argcount += 1;
1667 }
1668 argtypetext = p + 1;
1669 }
1670
1671 if (*p == '(' || *p == '<')
1672 {
1673 depth += 1;
1674 }
1675 else if (*p == ')' || *p == '>')
1676 {
1677 depth -= 1;
1678 }
1679
1680 p += 1;
1681 }
1682 }
1683
1684 if (p[-2] != '.') /* Not '...' */
1685 {
1686 argtypes[argcount] = builtin_type_void; /* List terminator */
1687 }
1688 else
1689 {
1690 argtypes[argcount] = NULL; /* Ellist terminator */
1691 }
1692
1693 xfree (demangled_name);
1694
1695 f = TYPE_FN_FIELDLIST1 (type, method_id);
1696
1697 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1698
1699 /* Now update the old "stub" type into a real type. */
1700 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1701 TYPE_DOMAIN_TYPE (mtype) = type;
1702 TYPE_ARG_TYPES (mtype) = argtypes;
1703 TYPE_FLAGS (mtype) &= ~TYPE_FLAG_STUB;
1704 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1705 }
1706
1707 const struct cplus_struct_type cplus_struct_default;
1708
1709 void
1710 allocate_cplus_struct_type (struct type *type)
1711 {
1712 if (!HAVE_CPLUS_STRUCT (type))
1713 {
1714 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1715 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1716 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1717 }
1718 }
1719
1720 /* Helper function to initialize the standard scalar types.
1721
1722 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy
1723 of the string pointed to by name in the type_obstack for that objfile,
1724 and initialize the type name to that copy. There are places (mipsread.c
1725 in particular, where init_type is called with a NULL value for NAME). */
1726
1727 struct type *
1728 init_type (enum type_code code, int length, int flags, char *name,
1729 struct objfile *objfile)
1730 {
1731 register struct type *type;
1732
1733 type = alloc_type (objfile);
1734 TYPE_CODE (type) = code;
1735 TYPE_LENGTH (type) = length;
1736 TYPE_FLAGS (type) |= flags;
1737 if ((name != NULL) && (objfile != NULL))
1738 {
1739 TYPE_NAME (type) =
1740 obsavestring (name, strlen (name), &objfile->type_obstack);
1741 }
1742 else
1743 {
1744 TYPE_NAME (type) = name;
1745 }
1746
1747 /* C++ fancies. */
1748
1749 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION)
1750 {
1751 INIT_CPLUS_SPECIFIC (type);
1752 }
1753 return (type);
1754 }
1755
1756 /* Look up a fundamental type for the specified objfile.
1757 May need to construct such a type if this is the first use.
1758
1759 Some object file formats (ELF, COFF, etc) do not define fundamental
1760 types such as "int" or "double". Others (stabs for example), do
1761 define fundamental types.
1762
1763 For the formats which don't provide fundamental types, gdb can create
1764 such types, using defaults reasonable for the current language and
1765 the current target machine.
1766
1767 NOTE: This routine is obsolescent. Each debugging format reader
1768 should manage it's own fundamental types, either creating them from
1769 suitable defaults or reading them from the debugging information,
1770 whichever is appropriate. The DWARF reader has already been
1771 fixed to do this. Once the other readers are fixed, this routine
1772 will go away. Also note that fundamental types should be managed
1773 on a compilation unit basis in a multi-language environment, not
1774 on a linkage unit basis as is done here. */
1775
1776
1777 struct type *
1778 lookup_fundamental_type (struct objfile *objfile, int typeid)
1779 {
1780 register struct type **typep;
1781 register int nbytes;
1782
1783 if (typeid < 0 || typeid >= FT_NUM_MEMBERS)
1784 {
1785 error ("internal error - invalid fundamental type id %d", typeid);
1786 }
1787
1788 /* If this is the first time we need a fundamental type for this objfile
1789 then we need to initialize the vector of type pointers. */
1790
1791 if (objfile->fundamental_types == NULL)
1792 {
1793 nbytes = FT_NUM_MEMBERS * sizeof (struct type *);
1794 objfile->fundamental_types = (struct type **)
1795 obstack_alloc (&objfile->type_obstack, nbytes);
1796 memset ((char *) objfile->fundamental_types, 0, nbytes);
1797 OBJSTAT (objfile, n_types += FT_NUM_MEMBERS);
1798 }
1799
1800 /* Look for this particular type in the fundamental type vector. If one is
1801 not found, create and install one appropriate for the current language. */
1802
1803 typep = objfile->fundamental_types + typeid;
1804 if (*typep == NULL)
1805 {
1806 *typep = create_fundamental_type (objfile, typeid);
1807 }
1808
1809 return (*typep);
1810 }
1811
1812 int
1813 can_dereference (struct type *t)
1814 {
1815 /* FIXME: Should we return true for references as well as pointers? */
1816 CHECK_TYPEDEF (t);
1817 return
1818 (t != NULL
1819 && TYPE_CODE (t) == TYPE_CODE_PTR
1820 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1821 }
1822
1823 int
1824 is_integral_type (struct type *t)
1825 {
1826 CHECK_TYPEDEF (t);
1827 return
1828 ((t != NULL)
1829 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1830 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1831 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1832 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1833 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1834 }
1835
1836 /* Chill varying string and arrays are represented as follows:
1837
1838 struct { int __var_length; ELEMENT_TYPE[MAX_SIZE] __var_data};
1839
1840 Return true if TYPE is such a Chill varying type. */
1841
1842 int
1843 chill_varying_type (struct type *type)
1844 {
1845 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1846 || TYPE_NFIELDS (type) != 2
1847 || strcmp (TYPE_FIELD_NAME (type, 0), "__var_length") != 0)
1848 return 0;
1849 return 1;
1850 }
1851
1852 /* Check whether BASE is an ancestor or base class or DCLASS
1853 Return 1 if so, and 0 if not.
1854 Note: callers may want to check for identity of the types before
1855 calling this function -- identical types are considered to satisfy
1856 the ancestor relationship even if they're identical */
1857
1858 int
1859 is_ancestor (struct type *base, struct type *dclass)
1860 {
1861 int i;
1862
1863 CHECK_TYPEDEF (base);
1864 CHECK_TYPEDEF (dclass);
1865
1866 if (base == dclass)
1867 return 1;
1868 if (TYPE_NAME (base) && TYPE_NAME (dclass) &&
1869 !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1870 return 1;
1871
1872 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1873 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1874 return 1;
1875
1876 return 0;
1877 }
1878
1879
1880
1881 /* See whether DCLASS has a virtual table. This routine is aimed at
1882 the HP/Taligent ANSI C++ runtime model, and may not work with other
1883 runtime models. Return 1 => Yes, 0 => No. */
1884
1885 int
1886 has_vtable (struct type *dclass)
1887 {
1888 /* In the HP ANSI C++ runtime model, a class has a vtable only if it
1889 has virtual functions or virtual bases. */
1890
1891 register int i;
1892
1893 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1894 return 0;
1895
1896 /* First check for the presence of virtual bases */
1897 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1898 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1899 if (B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i))
1900 return 1;
1901
1902 /* Next check for virtual functions */
1903 if (TYPE_FN_FIELDLISTS (dclass))
1904 for (i = 0; i < TYPE_NFN_FIELDS (dclass); i++)
1905 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, i), 0))
1906 return 1;
1907
1908 /* Recurse on non-virtual bases to see if any of them needs a vtable */
1909 if (TYPE_FIELD_VIRTUAL_BITS (dclass))
1910 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1911 if ((!B_TST (TYPE_FIELD_VIRTUAL_BITS (dclass), i)) &&
1912 (has_vtable (TYPE_FIELD_TYPE (dclass, i))))
1913 return 1;
1914
1915 /* Well, maybe we don't need a virtual table */
1916 return 0;
1917 }
1918
1919 /* Return a pointer to the "primary base class" of DCLASS.
1920
1921 A NULL return indicates that DCLASS has no primary base, or that it
1922 couldn't be found (insufficient information).
1923
1924 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
1925 and may not work with other runtime models. */
1926
1927 struct type *
1928 primary_base_class (struct type *dclass)
1929 {
1930 /* In HP ANSI C++'s runtime model, a "primary base class" of a class
1931 is the first directly inherited, non-virtual base class that
1932 requires a virtual table */
1933
1934 register int i;
1935
1936 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1937 return NULL;
1938
1939 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1940 if (!TYPE_FIELD_VIRTUAL (dclass, i) &&
1941 has_vtable (TYPE_FIELD_TYPE (dclass, i)))
1942 return TYPE_FIELD_TYPE (dclass, i);
1943
1944 return NULL;
1945 }
1946
1947 /* Global manipulated by virtual_base_list[_aux]() */
1948
1949 static struct vbase *current_vbase_list = NULL;
1950
1951 /* Return a pointer to a null-terminated list of struct vbase
1952 items. The vbasetype pointer of each item in the list points to the
1953 type information for a virtual base of the argument DCLASS.
1954
1955 Helper function for virtual_base_list().
1956 Note: the list goes backward, right-to-left. virtual_base_list()
1957 copies the items out in reverse order. */
1958
1959 static void
1960 virtual_base_list_aux (struct type *dclass)
1961 {
1962 struct vbase *tmp_vbase;
1963 register int i;
1964
1965 if (TYPE_CODE (dclass) != TYPE_CODE_CLASS)
1966 return;
1967
1968 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1969 {
1970 /* Recurse on this ancestor, first */
1971 virtual_base_list_aux (TYPE_FIELD_TYPE (dclass, i));
1972
1973 /* If this current base is itself virtual, add it to the list */
1974 if (BASETYPE_VIA_VIRTUAL (dclass, i))
1975 {
1976 struct type *basetype = TYPE_FIELD_TYPE (dclass, i);
1977
1978 /* Check if base already recorded */
1979 tmp_vbase = current_vbase_list;
1980 while (tmp_vbase)
1981 {
1982 if (tmp_vbase->vbasetype == basetype)
1983 break; /* found it */
1984 tmp_vbase = tmp_vbase->next;
1985 }
1986
1987 if (!tmp_vbase) /* normal exit from loop */
1988 {
1989 /* Allocate new item for this virtual base */
1990 tmp_vbase = (struct vbase *) xmalloc (sizeof (struct vbase));
1991
1992 /* Stick it on at the end of the list */
1993 tmp_vbase->vbasetype = basetype;
1994 tmp_vbase->next = current_vbase_list;
1995 current_vbase_list = tmp_vbase;
1996 }
1997 } /* if virtual */
1998 } /* for loop over bases */
1999 }
2000
2001
2002 /* Compute the list of virtual bases in the right order. Virtual
2003 bases are laid out in the object's memory area in order of their
2004 occurrence in a depth-first, left-to-right search through the
2005 ancestors.
2006
2007 Argument DCLASS is the type whose virtual bases are required.
2008 Return value is the address of a null-terminated array of pointers
2009 to struct type items.
2010
2011 This routine is aimed at the HP/Taligent ANSI C++ runtime model,
2012 and may not work with other runtime models.
2013
2014 This routine merely hands off the argument to virtual_base_list_aux()
2015 and then copies the result into an array to save space. */
2016
2017 struct type **
2018 virtual_base_list (struct type *dclass)
2019 {
2020 register struct vbase *tmp_vbase;
2021 register struct vbase *tmp_vbase_2;
2022 register int i;
2023 int count;
2024 struct type **vbase_array;
2025
2026 current_vbase_list = NULL;
2027 virtual_base_list_aux (dclass);
2028
2029 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
2030 /* no body */ ;
2031
2032 count = i;
2033
2034 vbase_array = (struct type **) xmalloc ((count + 1) * sizeof (struct type *));
2035
2036 for (i = count - 1, tmp_vbase = current_vbase_list; i >= 0; i--, tmp_vbase = tmp_vbase->next)
2037 vbase_array[i] = tmp_vbase->vbasetype;
2038
2039 /* Get rid of constructed chain */
2040 tmp_vbase_2 = tmp_vbase = current_vbase_list;
2041 while (tmp_vbase)
2042 {
2043 tmp_vbase = tmp_vbase->next;
2044 xfree (tmp_vbase_2);
2045 tmp_vbase_2 = tmp_vbase;
2046 }
2047
2048 vbase_array[count] = NULL;
2049 return vbase_array;
2050 }
2051
2052 /* Return the length of the virtual base list of the type DCLASS. */
2053
2054 int
2055 virtual_base_list_length (struct type *dclass)
2056 {
2057 register int i;
2058 register struct vbase *tmp_vbase;
2059
2060 current_vbase_list = NULL;
2061 virtual_base_list_aux (dclass);
2062
2063 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; i++, tmp_vbase = tmp_vbase->next)
2064 /* no body */ ;
2065 return i;
2066 }
2067
2068 /* Return the number of elements of the virtual base list of the type
2069 DCLASS, ignoring those appearing in the primary base (and its
2070 primary base, recursively). */
2071
2072 int
2073 virtual_base_list_length_skip_primaries (struct type *dclass)
2074 {
2075 register int i;
2076 register struct vbase *tmp_vbase;
2077 struct type *primary;
2078
2079 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2080
2081 if (!primary)
2082 return virtual_base_list_length (dclass);
2083
2084 current_vbase_list = NULL;
2085 virtual_base_list_aux (dclass);
2086
2087 for (i = 0, tmp_vbase = current_vbase_list; tmp_vbase != NULL; tmp_vbase = tmp_vbase->next)
2088 {
2089 if (virtual_base_index (tmp_vbase->vbasetype, primary) >= 0)
2090 continue;
2091 i++;
2092 }
2093 return i;
2094 }
2095
2096
2097 /* Return the index (position) of type BASE, which is a virtual base
2098 class of DCLASS, in the latter's virtual base list. A return of -1
2099 indicates "not found" or a problem. */
2100
2101 int
2102 virtual_base_index (struct type *base, struct type *dclass)
2103 {
2104 register struct type *vbase;
2105 register int i;
2106
2107 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2108 (TYPE_CODE (base) != TYPE_CODE_CLASS))
2109 return -1;
2110
2111 i = 0;
2112 vbase = virtual_base_list (dclass)[0];
2113 while (vbase)
2114 {
2115 if (vbase == base)
2116 break;
2117 vbase = virtual_base_list (dclass)[++i];
2118 }
2119
2120 return vbase ? i : -1;
2121 }
2122
2123
2124
2125 /* Return the index (position) of type BASE, which is a virtual base
2126 class of DCLASS, in the latter's virtual base list. Skip over all
2127 bases that may appear in the virtual base list of the primary base
2128 class of DCLASS (recursively). A return of -1 indicates "not
2129 found" or a problem. */
2130
2131 int
2132 virtual_base_index_skip_primaries (struct type *base, struct type *dclass)
2133 {
2134 register struct type *vbase;
2135 register int i, j;
2136 struct type *primary;
2137
2138 if ((TYPE_CODE (dclass) != TYPE_CODE_CLASS) ||
2139 (TYPE_CODE (base) != TYPE_CODE_CLASS))
2140 return -1;
2141
2142 primary = TYPE_RUNTIME_PTR (dclass) ? TYPE_PRIMARY_BASE (dclass) : NULL;
2143
2144 j = -1;
2145 i = 0;
2146 vbase = virtual_base_list (dclass)[0];
2147 while (vbase)
2148 {
2149 if (!primary || (virtual_base_index_skip_primaries (vbase, primary) < 0))
2150 j++;
2151 if (vbase == base)
2152 break;
2153 vbase = virtual_base_list (dclass)[++i];
2154 }
2155
2156 return vbase ? j : -1;
2157 }
2158
2159 /* Return position of a derived class DCLASS in the list of
2160 * primary bases starting with the remotest ancestor.
2161 * Position returned is 0-based. */
2162
2163 int
2164 class_index_in_primary_list (struct type *dclass)
2165 {
2166 struct type *pbc; /* primary base class */
2167
2168 /* Simply recurse on primary base */
2169 pbc = TYPE_PRIMARY_BASE (dclass);
2170 if (pbc)
2171 return 1 + class_index_in_primary_list (pbc);
2172 else
2173 return 0;
2174 }
2175
2176 /* Return a count of the number of virtual functions a type has.
2177 * This includes all the virtual functions it inherits from its
2178 * base classes too.
2179 */
2180
2181 /* pai: FIXME This doesn't do the right thing: count redefined virtual
2182 * functions only once (latest redefinition)
2183 */
2184
2185 int
2186 count_virtual_fns (struct type *dclass)
2187 {
2188 int fn, oi; /* function and overloaded instance indices */
2189 int vfuncs; /* count to return */
2190
2191 /* recurse on bases that can share virtual table */
2192 struct type *pbc = primary_base_class (dclass);
2193 if (pbc)
2194 vfuncs = count_virtual_fns (pbc);
2195 else
2196 vfuncs = 0;
2197
2198 for (fn = 0; fn < TYPE_NFN_FIELDS (dclass); fn++)
2199 for (oi = 0; oi < TYPE_FN_FIELDLIST_LENGTH (dclass, fn); oi++)
2200 if (TYPE_FN_FIELD_VIRTUAL_P (TYPE_FN_FIELDLIST1 (dclass, fn), oi))
2201 vfuncs++;
2202
2203 return vfuncs;
2204 }
2205 \f
2206
2207
2208 /* Functions for overload resolution begin here */
2209
2210 /* Compare two badness vectors A and B and return the result.
2211 * 0 => A and B are identical
2212 * 1 => A and B are incomparable
2213 * 2 => A is better than B
2214 * 3 => A is worse than B */
2215
2216 int
2217 compare_badness (struct badness_vector *a, struct badness_vector *b)
2218 {
2219 int i;
2220 int tmp;
2221 short found_pos = 0; /* any positives in c? */
2222 short found_neg = 0; /* any negatives in c? */
2223
2224 /* differing lengths => incomparable */
2225 if (a->length != b->length)
2226 return 1;
2227
2228 /* Subtract b from a */
2229 for (i = 0; i < a->length; i++)
2230 {
2231 tmp = a->rank[i] - b->rank[i];
2232 if (tmp > 0)
2233 found_pos = 1;
2234 else if (tmp < 0)
2235 found_neg = 1;
2236 }
2237
2238 if (found_pos)
2239 {
2240 if (found_neg)
2241 return 1; /* incomparable */
2242 else
2243 return 3; /* A > B */
2244 }
2245 else
2246 /* no positives */
2247 {
2248 if (found_neg)
2249 return 2; /* A < B */
2250 else
2251 return 0; /* A == B */
2252 }
2253 }
2254
2255 /* Rank a function by comparing its parameter types (PARMS, length NPARMS),
2256 * to the types of an argument list (ARGS, length NARGS).
2257 * Return a pointer to a badness vector. This has NARGS + 1 entries. */
2258
2259 struct badness_vector *
2260 rank_function (struct type **parms, int nparms, struct type **args, int nargs)
2261 {
2262 int i;
2263 struct badness_vector *bv;
2264 int min_len = nparms < nargs ? nparms : nargs;
2265
2266 bv = xmalloc (sizeof (struct badness_vector));
2267 bv->length = nargs + 1; /* add 1 for the length-match rank */
2268 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2269
2270 /* First compare the lengths of the supplied lists.
2271 * If there is a mismatch, set it to a high value. */
2272
2273 /* pai/1997-06-03 FIXME: when we have debug info about default
2274 * arguments and ellipsis parameter lists, we should consider those
2275 * and rank the length-match more finely. */
2276
2277 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2278
2279 /* Now rank all the parameters of the candidate function */
2280 for (i = 1; i <= min_len; i++)
2281 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2282
2283 /* If more arguments than parameters, add dummy entries */
2284 for (i = min_len + 1; i <= nargs; i++)
2285 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2286
2287 return bv;
2288 }
2289
2290 /* Compare one type (PARM) for compatibility with another (ARG).
2291 * PARM is intended to be the parameter type of a function; and
2292 * ARG is the supplied argument's type. This function tests if
2293 * the latter can be converted to the former.
2294 *
2295 * Return 0 if they are identical types;
2296 * Otherwise, return an integer which corresponds to how compatible
2297 * PARM is to ARG. The higher the return value, the worse the match.
2298 * Generally the "bad" conversions are all uniformly assigned a 100 */
2299
2300 int
2301 rank_one_type (struct type *parm, struct type *arg)
2302 {
2303 /* Identical type pointers */
2304 /* However, this still doesn't catch all cases of same type for arg
2305 * and param. The reason is that builtin types are different from
2306 * the same ones constructed from the object. */
2307 if (parm == arg)
2308 return 0;
2309
2310 /* Resolve typedefs */
2311 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2312 parm = check_typedef (parm);
2313 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2314 arg = check_typedef (arg);
2315
2316 /*
2317 Well, damnit, if the names are exactly the same,
2318 i'll say they are exactly the same. This happens when we generate
2319 method stubs. The types won't point to the same address, but they
2320 really are the same.
2321 */
2322
2323 if (TYPE_NAME (parm) && TYPE_NAME (arg) &&
2324 !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2325 return 0;
2326
2327 /* Check if identical after resolving typedefs */
2328 if (parm == arg)
2329 return 0;
2330
2331 /* See through references, since we can almost make non-references
2332 references. */
2333 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2334 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2335 + REFERENCE_CONVERSION_BADNESS);
2336 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2337 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2338 + REFERENCE_CONVERSION_BADNESS);
2339 if (overload_debug)
2340 /* Debugging only. */
2341 fprintf_filtered (gdb_stderr,"------ Arg is %s [%d], parm is %s [%d]\n",
2342 TYPE_NAME (arg), TYPE_CODE (arg), TYPE_NAME (parm), TYPE_CODE (parm));
2343
2344 /* x -> y means arg of type x being supplied for parameter of type y */
2345
2346 switch (TYPE_CODE (parm))
2347 {
2348 case TYPE_CODE_PTR:
2349 switch (TYPE_CODE (arg))
2350 {
2351 case TYPE_CODE_PTR:
2352 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2353 return VOID_PTR_CONVERSION_BADNESS;
2354 else
2355 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2356 case TYPE_CODE_ARRAY:
2357 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2358 case TYPE_CODE_FUNC:
2359 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2360 case TYPE_CODE_INT:
2361 case TYPE_CODE_ENUM:
2362 case TYPE_CODE_CHAR:
2363 case TYPE_CODE_RANGE:
2364 case TYPE_CODE_BOOL:
2365 return POINTER_CONVERSION_BADNESS;
2366 default:
2367 return INCOMPATIBLE_TYPE_BADNESS;
2368 }
2369 case TYPE_CODE_ARRAY:
2370 switch (TYPE_CODE (arg))
2371 {
2372 case TYPE_CODE_PTR:
2373 case TYPE_CODE_ARRAY:
2374 return rank_one_type (TYPE_TARGET_TYPE (parm), TYPE_TARGET_TYPE (arg));
2375 default:
2376 return INCOMPATIBLE_TYPE_BADNESS;
2377 }
2378 case TYPE_CODE_FUNC:
2379 switch (TYPE_CODE (arg))
2380 {
2381 case TYPE_CODE_PTR: /* funcptr -> func */
2382 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2383 default:
2384 return INCOMPATIBLE_TYPE_BADNESS;
2385 }
2386 case TYPE_CODE_INT:
2387 switch (TYPE_CODE (arg))
2388 {
2389 case TYPE_CODE_INT:
2390 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2391 {
2392 /* Deal with signed, unsigned, and plain chars and
2393 signed and unsigned ints */
2394 if (TYPE_NOSIGN (parm))
2395 {
2396 /* This case only for character types */
2397 if (TYPE_NOSIGN (arg)) /* plain char -> plain char */
2398 return 0;
2399 else
2400 return INTEGER_COERCION_BADNESS; /* signed/unsigned char -> plain char */
2401 }
2402 else if (TYPE_UNSIGNED (parm))
2403 {
2404 if (TYPE_UNSIGNED (arg))
2405 {
2406 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
2407 return 0; /* unsigned int -> unsigned int, or unsigned long -> unsigned long */
2408 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
2409 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2410 else
2411 return INTEGER_COERCION_BADNESS; /* unsigned long -> unsigned int */
2412 }
2413 else
2414 {
2415 if (!strcmp_iw (TYPE_NAME (arg), "long") && !strcmp_iw (TYPE_NAME (parm), "int"))
2416 return INTEGER_COERCION_BADNESS; /* signed long -> unsigned int */
2417 else
2418 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2419 }
2420 }
2421 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2422 {
2423 if (!strcmp_iw (TYPE_NAME (parm), TYPE_NAME (arg)))
2424 return 0;
2425 else if (!strcmp_iw (TYPE_NAME (arg), "int") && !strcmp_iw (TYPE_NAME (parm), "long"))
2426 return INTEGER_PROMOTION_BADNESS;
2427 else
2428 return INTEGER_COERCION_BADNESS;
2429 }
2430 else
2431 return INTEGER_COERCION_BADNESS;
2432 }
2433 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2434 return INTEGER_PROMOTION_BADNESS;
2435 else
2436 return INTEGER_COERCION_BADNESS;
2437 case TYPE_CODE_ENUM:
2438 case TYPE_CODE_CHAR:
2439 case TYPE_CODE_RANGE:
2440 case TYPE_CODE_BOOL:
2441 return INTEGER_PROMOTION_BADNESS;
2442 case TYPE_CODE_FLT:
2443 return INT_FLOAT_CONVERSION_BADNESS;
2444 case TYPE_CODE_PTR:
2445 return NS_POINTER_CONVERSION_BADNESS;
2446 default:
2447 return INCOMPATIBLE_TYPE_BADNESS;
2448 }
2449 break;
2450 case TYPE_CODE_ENUM:
2451 switch (TYPE_CODE (arg))
2452 {
2453 case TYPE_CODE_INT:
2454 case TYPE_CODE_CHAR:
2455 case TYPE_CODE_RANGE:
2456 case TYPE_CODE_BOOL:
2457 case TYPE_CODE_ENUM:
2458 return INTEGER_COERCION_BADNESS;
2459 case TYPE_CODE_FLT:
2460 return INT_FLOAT_CONVERSION_BADNESS;
2461 default:
2462 return INCOMPATIBLE_TYPE_BADNESS;
2463 }
2464 break;
2465 case TYPE_CODE_CHAR:
2466 switch (TYPE_CODE (arg))
2467 {
2468 case TYPE_CODE_RANGE:
2469 case TYPE_CODE_BOOL:
2470 case TYPE_CODE_ENUM:
2471 return INTEGER_COERCION_BADNESS;
2472 case TYPE_CODE_FLT:
2473 return INT_FLOAT_CONVERSION_BADNESS;
2474 case TYPE_CODE_INT:
2475 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2476 return INTEGER_COERCION_BADNESS;
2477 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2478 return INTEGER_PROMOTION_BADNESS;
2479 /* >>> !! else fall through !! <<< */
2480 case TYPE_CODE_CHAR:
2481 /* Deal with signed, unsigned, and plain chars for C++
2482 and with int cases falling through from previous case */
2483 if (TYPE_NOSIGN (parm))
2484 {
2485 if (TYPE_NOSIGN (arg))
2486 return 0;
2487 else
2488 return INTEGER_COERCION_BADNESS;
2489 }
2490 else if (TYPE_UNSIGNED (parm))
2491 {
2492 if (TYPE_UNSIGNED (arg))
2493 return 0;
2494 else
2495 return INTEGER_PROMOTION_BADNESS;
2496 }
2497 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2498 return 0;
2499 else
2500 return INTEGER_COERCION_BADNESS;
2501 default:
2502 return INCOMPATIBLE_TYPE_BADNESS;
2503 }
2504 break;
2505 case TYPE_CODE_RANGE:
2506 switch (TYPE_CODE (arg))
2507 {
2508 case TYPE_CODE_INT:
2509 case TYPE_CODE_CHAR:
2510 case TYPE_CODE_RANGE:
2511 case TYPE_CODE_BOOL:
2512 case TYPE_CODE_ENUM:
2513 return INTEGER_COERCION_BADNESS;
2514 case TYPE_CODE_FLT:
2515 return INT_FLOAT_CONVERSION_BADNESS;
2516 default:
2517 return INCOMPATIBLE_TYPE_BADNESS;
2518 }
2519 break;
2520 case TYPE_CODE_BOOL:
2521 switch (TYPE_CODE (arg))
2522 {
2523 case TYPE_CODE_INT:
2524 case TYPE_CODE_CHAR:
2525 case TYPE_CODE_RANGE:
2526 case TYPE_CODE_ENUM:
2527 case TYPE_CODE_FLT:
2528 case TYPE_CODE_PTR:
2529 return BOOLEAN_CONVERSION_BADNESS;
2530 case TYPE_CODE_BOOL:
2531 return 0;
2532 default:
2533 return INCOMPATIBLE_TYPE_BADNESS;
2534 }
2535 break;
2536 case TYPE_CODE_FLT:
2537 switch (TYPE_CODE (arg))
2538 {
2539 case TYPE_CODE_FLT:
2540 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2541 return FLOAT_PROMOTION_BADNESS;
2542 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2543 return 0;
2544 else
2545 return FLOAT_CONVERSION_BADNESS;
2546 case TYPE_CODE_INT:
2547 case TYPE_CODE_BOOL:
2548 case TYPE_CODE_ENUM:
2549 case TYPE_CODE_RANGE:
2550 case TYPE_CODE_CHAR:
2551 return INT_FLOAT_CONVERSION_BADNESS;
2552 default:
2553 return INCOMPATIBLE_TYPE_BADNESS;
2554 }
2555 break;
2556 case TYPE_CODE_COMPLEX:
2557 switch (TYPE_CODE (arg))
2558 { /* Strictly not needed for C++, but... */
2559 case TYPE_CODE_FLT:
2560 return FLOAT_PROMOTION_BADNESS;
2561 case TYPE_CODE_COMPLEX:
2562 return 0;
2563 default:
2564 return INCOMPATIBLE_TYPE_BADNESS;
2565 }
2566 break;
2567 case TYPE_CODE_STRUCT:
2568 /* currently same as TYPE_CODE_CLASS */
2569 switch (TYPE_CODE (arg))
2570 {
2571 case TYPE_CODE_STRUCT:
2572 /* Check for derivation */
2573 if (is_ancestor (parm, arg))
2574 return BASE_CONVERSION_BADNESS;
2575 /* else fall through */
2576 default:
2577 return INCOMPATIBLE_TYPE_BADNESS;
2578 }
2579 break;
2580 case TYPE_CODE_UNION:
2581 switch (TYPE_CODE (arg))
2582 {
2583 case TYPE_CODE_UNION:
2584 default:
2585 return INCOMPATIBLE_TYPE_BADNESS;
2586 }
2587 break;
2588 case TYPE_CODE_MEMBER:
2589 switch (TYPE_CODE (arg))
2590 {
2591 default:
2592 return INCOMPATIBLE_TYPE_BADNESS;
2593 }
2594 break;
2595 case TYPE_CODE_METHOD:
2596 switch (TYPE_CODE (arg))
2597 {
2598
2599 default:
2600 return INCOMPATIBLE_TYPE_BADNESS;
2601 }
2602 break;
2603 case TYPE_CODE_REF:
2604 switch (TYPE_CODE (arg))
2605 {
2606
2607 default:
2608 return INCOMPATIBLE_TYPE_BADNESS;
2609 }
2610
2611 break;
2612 case TYPE_CODE_SET:
2613 switch (TYPE_CODE (arg))
2614 {
2615 /* Not in C++ */
2616 case TYPE_CODE_SET:
2617 return rank_one_type (TYPE_FIELD_TYPE (parm, 0), TYPE_FIELD_TYPE (arg, 0));
2618 default:
2619 return INCOMPATIBLE_TYPE_BADNESS;
2620 }
2621 break;
2622 case TYPE_CODE_VOID:
2623 default:
2624 return INCOMPATIBLE_TYPE_BADNESS;
2625 } /* switch (TYPE_CODE (arg)) */
2626 }
2627
2628
2629 /* End of functions for overload resolution */
2630
2631 static void
2632 print_bit_vector (B_TYPE *bits, int nbits)
2633 {
2634 int bitno;
2635
2636 for (bitno = 0; bitno < nbits; bitno++)
2637 {
2638 if ((bitno % 8) == 0)
2639 {
2640 puts_filtered (" ");
2641 }
2642 if (B_TST (bits, bitno))
2643 {
2644 printf_filtered ("1");
2645 }
2646 else
2647 {
2648 printf_filtered ("0");
2649 }
2650 }
2651 }
2652
2653 /* The args list is a strange beast. It is either terminated by a NULL
2654 pointer for varargs functions, or by a pointer to a TYPE_CODE_VOID
2655 type for normal fixed argcount functions. (FIXME someday)
2656 Also note the first arg should be the "this" pointer, we may not want to
2657 include it since we may get into a infinitely recursive situation. */
2658
2659 static void
2660 print_arg_types (struct type **args, int spaces)
2661 {
2662 if (args != NULL)
2663 {
2664 while (*args != NULL)
2665 {
2666 recursive_dump_type (*args, spaces + 2);
2667 if ((*args++)->code == TYPE_CODE_VOID)
2668 {
2669 break;
2670 }
2671 }
2672 }
2673 }
2674
2675 static void
2676 dump_fn_fieldlists (struct type *type, int spaces)
2677 {
2678 int method_idx;
2679 int overload_idx;
2680 struct fn_field *f;
2681
2682 printfi_filtered (spaces, "fn_fieldlists ");
2683 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2684 printf_filtered ("\n");
2685 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2686 {
2687 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2688 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2689 method_idx,
2690 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2691 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2692 gdb_stdout);
2693 printf_filtered (") length %d\n",
2694 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2695 for (overload_idx = 0;
2696 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2697 overload_idx++)
2698 {
2699 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2700 overload_idx,
2701 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2702 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2703 gdb_stdout);
2704 printf_filtered (")\n");
2705 printfi_filtered (spaces + 8, "type ");
2706 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx), gdb_stdout);
2707 printf_filtered ("\n");
2708
2709 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2710 spaces + 8 + 2);
2711
2712 printfi_filtered (spaces + 8, "args ");
2713 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx), gdb_stdout);
2714 printf_filtered ("\n");
2715
2716 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx), spaces);
2717 printfi_filtered (spaces + 8, "fcontext ");
2718 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2719 gdb_stdout);
2720 printf_filtered ("\n");
2721
2722 printfi_filtered (spaces + 8, "is_const %d\n",
2723 TYPE_FN_FIELD_CONST (f, overload_idx));
2724 printfi_filtered (spaces + 8, "is_volatile %d\n",
2725 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2726 printfi_filtered (spaces + 8, "is_private %d\n",
2727 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2728 printfi_filtered (spaces + 8, "is_protected %d\n",
2729 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2730 printfi_filtered (spaces + 8, "is_stub %d\n",
2731 TYPE_FN_FIELD_STUB (f, overload_idx));
2732 printfi_filtered (spaces + 8, "voffset %u\n",
2733 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2734 }
2735 }
2736 }
2737
2738 static void
2739 print_cplus_stuff (struct type *type, int spaces)
2740 {
2741 printfi_filtered (spaces, "n_baseclasses %d\n",
2742 TYPE_N_BASECLASSES (type));
2743 printfi_filtered (spaces, "nfn_fields %d\n",
2744 TYPE_NFN_FIELDS (type));
2745 printfi_filtered (spaces, "nfn_fields_total %d\n",
2746 TYPE_NFN_FIELDS_TOTAL (type));
2747 if (TYPE_N_BASECLASSES (type) > 0)
2748 {
2749 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2750 TYPE_N_BASECLASSES (type));
2751 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type), gdb_stdout);
2752 printf_filtered (")");
2753
2754 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2755 TYPE_N_BASECLASSES (type));
2756 puts_filtered ("\n");
2757 }
2758 if (TYPE_NFIELDS (type) > 0)
2759 {
2760 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2761 {
2762 printfi_filtered (spaces, "private_field_bits (%d bits at *",
2763 TYPE_NFIELDS (type));
2764 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type), gdb_stdout);
2765 printf_filtered (")");
2766 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2767 TYPE_NFIELDS (type));
2768 puts_filtered ("\n");
2769 }
2770 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2771 {
2772 printfi_filtered (spaces, "protected_field_bits (%d bits at *",
2773 TYPE_NFIELDS (type));
2774 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type), gdb_stdout);
2775 printf_filtered (")");
2776 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2777 TYPE_NFIELDS (type));
2778 puts_filtered ("\n");
2779 }
2780 }
2781 if (TYPE_NFN_FIELDS (type) > 0)
2782 {
2783 dump_fn_fieldlists (type, spaces);
2784 }
2785 }
2786
2787 static void
2788 print_bound_type (int bt)
2789 {
2790 switch (bt)
2791 {
2792 case BOUND_CANNOT_BE_DETERMINED:
2793 printf_filtered ("(BOUND_CANNOT_BE_DETERMINED)");
2794 break;
2795 case BOUND_BY_REF_ON_STACK:
2796 printf_filtered ("(BOUND_BY_REF_ON_STACK)");
2797 break;
2798 case BOUND_BY_VALUE_ON_STACK:
2799 printf_filtered ("(BOUND_BY_VALUE_ON_STACK)");
2800 break;
2801 case BOUND_BY_REF_IN_REG:
2802 printf_filtered ("(BOUND_BY_REF_IN_REG)");
2803 break;
2804 case BOUND_BY_VALUE_IN_REG:
2805 printf_filtered ("(BOUND_BY_VALUE_IN_REG)");
2806 break;
2807 case BOUND_SIMPLE:
2808 printf_filtered ("(BOUND_SIMPLE)");
2809 break;
2810 default:
2811 printf_filtered ("(unknown bound type)");
2812 break;
2813 }
2814 }
2815
2816 static struct obstack dont_print_type_obstack;
2817
2818 void
2819 recursive_dump_type (struct type *type, int spaces)
2820 {
2821 int idx;
2822
2823 if (spaces == 0)
2824 obstack_begin (&dont_print_type_obstack, 0);
2825
2826 if (TYPE_NFIELDS (type) > 0
2827 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2828 {
2829 struct type **first_dont_print
2830 = (struct type **) obstack_base (&dont_print_type_obstack);
2831
2832 int i = (struct type **) obstack_next_free (&dont_print_type_obstack)
2833 - first_dont_print;
2834
2835 while (--i >= 0)
2836 {
2837 if (type == first_dont_print[i])
2838 {
2839 printfi_filtered (spaces, "type node ");
2840 gdb_print_host_address (type, gdb_stdout);
2841 printf_filtered (" <same as already seen type>\n");
2842 return;
2843 }
2844 }
2845
2846 obstack_ptr_grow (&dont_print_type_obstack, type);
2847 }
2848
2849 printfi_filtered (spaces, "type node ");
2850 gdb_print_host_address (type, gdb_stdout);
2851 printf_filtered ("\n");
2852 printfi_filtered (spaces, "name '%s' (",
2853 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2854 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2855 printf_filtered (")\n");
2856 printfi_filtered (spaces, "tagname '%s' (",
2857 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2858 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2859 printf_filtered (")\n");
2860 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2861 switch (TYPE_CODE (type))
2862 {
2863 case TYPE_CODE_UNDEF:
2864 printf_filtered ("(TYPE_CODE_UNDEF)");
2865 break;
2866 case TYPE_CODE_PTR:
2867 printf_filtered ("(TYPE_CODE_PTR)");
2868 break;
2869 case TYPE_CODE_ARRAY:
2870 printf_filtered ("(TYPE_CODE_ARRAY)");
2871 break;
2872 case TYPE_CODE_STRUCT:
2873 printf_filtered ("(TYPE_CODE_STRUCT)");
2874 break;
2875 case TYPE_CODE_UNION:
2876 printf_filtered ("(TYPE_CODE_UNION)");
2877 break;
2878 case TYPE_CODE_ENUM:
2879 printf_filtered ("(TYPE_CODE_ENUM)");
2880 break;
2881 case TYPE_CODE_FUNC:
2882 printf_filtered ("(TYPE_CODE_FUNC)");
2883 break;
2884 case TYPE_CODE_INT:
2885 printf_filtered ("(TYPE_CODE_INT)");
2886 break;
2887 case TYPE_CODE_FLT:
2888 printf_filtered ("(TYPE_CODE_FLT)");
2889 break;
2890 case TYPE_CODE_VOID:
2891 printf_filtered ("(TYPE_CODE_VOID)");
2892 break;
2893 case TYPE_CODE_SET:
2894 printf_filtered ("(TYPE_CODE_SET)");
2895 break;
2896 case TYPE_CODE_RANGE:
2897 printf_filtered ("(TYPE_CODE_RANGE)");
2898 break;
2899 case TYPE_CODE_STRING:
2900 printf_filtered ("(TYPE_CODE_STRING)");
2901 break;
2902 case TYPE_CODE_BITSTRING:
2903 printf_filtered ("(TYPE_CODE_BITSTRING)");
2904 break;
2905 case TYPE_CODE_ERROR:
2906 printf_filtered ("(TYPE_CODE_ERROR)");
2907 break;
2908 case TYPE_CODE_MEMBER:
2909 printf_filtered ("(TYPE_CODE_MEMBER)");
2910 break;
2911 case TYPE_CODE_METHOD:
2912 printf_filtered ("(TYPE_CODE_METHOD)");
2913 break;
2914 case TYPE_CODE_REF:
2915 printf_filtered ("(TYPE_CODE_REF)");
2916 break;
2917 case TYPE_CODE_CHAR:
2918 printf_filtered ("(TYPE_CODE_CHAR)");
2919 break;
2920 case TYPE_CODE_BOOL:
2921 printf_filtered ("(TYPE_CODE_BOOL)");
2922 break;
2923 case TYPE_CODE_COMPLEX:
2924 printf_filtered ("(TYPE_CODE_COMPLEX)");
2925 break;
2926 case TYPE_CODE_TYPEDEF:
2927 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2928 break;
2929 case TYPE_CODE_TEMPLATE:
2930 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2931 break;
2932 case TYPE_CODE_TEMPLATE_ARG:
2933 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2934 break;
2935 default:
2936 printf_filtered ("(UNKNOWN TYPE CODE)");
2937 break;
2938 }
2939 puts_filtered ("\n");
2940 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2941 printfi_filtered (spaces, "upper_bound_type 0x%x ",
2942 TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2943 print_bound_type (TYPE_ARRAY_UPPER_BOUND_TYPE (type));
2944 puts_filtered ("\n");
2945 printfi_filtered (spaces, "lower_bound_type 0x%x ",
2946 TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2947 print_bound_type (TYPE_ARRAY_LOWER_BOUND_TYPE (type));
2948 puts_filtered ("\n");
2949 printfi_filtered (spaces, "objfile ");
2950 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2951 printf_filtered ("\n");
2952 printfi_filtered (spaces, "target_type ");
2953 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2954 printf_filtered ("\n");
2955 if (TYPE_TARGET_TYPE (type) != NULL)
2956 {
2957 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2958 }
2959 printfi_filtered (spaces, "pointer_type ");
2960 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2961 printf_filtered ("\n");
2962 printfi_filtered (spaces, "reference_type ");
2963 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2964 printf_filtered ("\n");
2965 printfi_filtered (spaces, "cv_type ");
2966 gdb_print_host_address (TYPE_CV_TYPE (type), gdb_stdout);
2967 printf_filtered ("\n");
2968 printfi_filtered (spaces, "as_type ");
2969 gdb_print_host_address (TYPE_AS_TYPE (type), gdb_stdout);
2970 printf_filtered ("\n");
2971 printfi_filtered (spaces, "flags 0x%x", TYPE_FLAGS (type));
2972 if (TYPE_UNSIGNED (type))
2973 {
2974 puts_filtered (" TYPE_FLAG_UNSIGNED");
2975 }
2976 if (TYPE_NOSIGN (type))
2977 {
2978 puts_filtered (" TYPE_FLAG_NOSIGN");
2979 }
2980 if (TYPE_STUB (type))
2981 {
2982 puts_filtered (" TYPE_FLAG_STUB");
2983 }
2984 if (TYPE_TARGET_STUB (type))
2985 {
2986 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2987 }
2988 if (TYPE_STATIC (type))
2989 {
2990 puts_filtered (" TYPE_FLAG_STATIC");
2991 }
2992 if (TYPE_CONST (type))
2993 {
2994 puts_filtered (" TYPE_FLAG_CONST");
2995 }
2996 if (TYPE_VOLATILE (type))
2997 {
2998 puts_filtered (" TYPE_FLAG_VOLATILE");
2999 }
3000 if (TYPE_PROTOTYPED (type))
3001 {
3002 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3003 }
3004 if (TYPE_INCOMPLETE (type))
3005 {
3006 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3007 }
3008 if (TYPE_CODE_SPACE (type))
3009 {
3010 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3011 }
3012 if (TYPE_DATA_SPACE (type))
3013 {
3014 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3015 }
3016 if (TYPE_VARARGS (type))
3017 {
3018 puts_filtered (" TYPE_FLAG_VARARGS");
3019 }
3020 puts_filtered ("\n");
3021 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3022 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3023 puts_filtered ("\n");
3024 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3025 {
3026 printfi_filtered (spaces + 2,
3027 "[%d] bitpos %d bitsize %d type ",
3028 idx, TYPE_FIELD_BITPOS (type, idx),
3029 TYPE_FIELD_BITSIZE (type, idx));
3030 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3031 printf_filtered (" name '%s' (",
3032 TYPE_FIELD_NAME (type, idx) != NULL
3033 ? TYPE_FIELD_NAME (type, idx)
3034 : "<NULL>");
3035 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3036 printf_filtered (")\n");
3037 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3038 {
3039 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3040 }
3041 }
3042 printfi_filtered (spaces, "vptr_basetype ");
3043 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3044 puts_filtered ("\n");
3045 if (TYPE_VPTR_BASETYPE (type) != NULL)
3046 {
3047 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3048 }
3049 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3050 switch (TYPE_CODE (type))
3051 {
3052 case TYPE_CODE_METHOD:
3053 case TYPE_CODE_FUNC:
3054 printfi_filtered (spaces, "arg_types ");
3055 gdb_print_host_address (TYPE_ARG_TYPES (type), gdb_stdout);
3056 puts_filtered ("\n");
3057 print_arg_types (TYPE_ARG_TYPES (type), spaces);
3058 break;
3059
3060 case TYPE_CODE_STRUCT:
3061 printfi_filtered (spaces, "cplus_stuff ");
3062 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3063 puts_filtered ("\n");
3064 print_cplus_stuff (type, spaces);
3065 break;
3066
3067 case TYPE_CODE_FLT:
3068 printfi_filtered (spaces, "floatformat ");
3069 if (TYPE_FLOATFORMAT (type) == NULL
3070 || TYPE_FLOATFORMAT (type)->name == NULL)
3071 puts_filtered ("(null)");
3072 else
3073 puts_filtered (TYPE_FLOATFORMAT (type)->name);
3074 puts_filtered ("\n");
3075 break;
3076
3077 default:
3078 /* We have to pick one of the union types to be able print and test
3079 the value. Pick cplus_struct_type, even though we know it isn't
3080 any particular one. */
3081 printfi_filtered (spaces, "type_specific ");
3082 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
3083 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
3084 {
3085 printf_filtered (" (unknown data form)");
3086 }
3087 printf_filtered ("\n");
3088 break;
3089
3090 }
3091 if (spaces == 0)
3092 obstack_free (&dont_print_type_obstack, NULL);
3093 }
3094
3095 static void build_gdbtypes (void);
3096 static void
3097 build_gdbtypes (void)
3098 {
3099 builtin_type_void =
3100 init_type (TYPE_CODE_VOID, 1,
3101 0,
3102 "void", (struct objfile *) NULL);
3103 builtin_type_char =
3104 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3105 (TYPE_FLAG_NOSIGN
3106 | (TARGET_CHAR_SIGNED ? 0 : TYPE_FLAG_UNSIGNED)),
3107 "char", (struct objfile *) NULL);
3108 builtin_type_true_char =
3109 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3110 0,
3111 "true character", (struct objfile *) NULL);
3112 builtin_type_signed_char =
3113 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3114 0,
3115 "signed char", (struct objfile *) NULL);
3116 builtin_type_unsigned_char =
3117 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3118 TYPE_FLAG_UNSIGNED,
3119 "unsigned char", (struct objfile *) NULL);
3120 builtin_type_short =
3121 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3122 0,
3123 "short", (struct objfile *) NULL);
3124 builtin_type_unsigned_short =
3125 init_type (TYPE_CODE_INT, TARGET_SHORT_BIT / TARGET_CHAR_BIT,
3126 TYPE_FLAG_UNSIGNED,
3127 "unsigned short", (struct objfile *) NULL);
3128 builtin_type_int =
3129 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3130 0,
3131 "int", (struct objfile *) NULL);
3132 builtin_type_unsigned_int =
3133 init_type (TYPE_CODE_INT, TARGET_INT_BIT / TARGET_CHAR_BIT,
3134 TYPE_FLAG_UNSIGNED,
3135 "unsigned int", (struct objfile *) NULL);
3136 builtin_type_long =
3137 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3138 0,
3139 "long", (struct objfile *) NULL);
3140 builtin_type_unsigned_long =
3141 init_type (TYPE_CODE_INT, TARGET_LONG_BIT / TARGET_CHAR_BIT,
3142 TYPE_FLAG_UNSIGNED,
3143 "unsigned long", (struct objfile *) NULL);
3144 builtin_type_long_long =
3145 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3146 0,
3147 "long long", (struct objfile *) NULL);
3148 builtin_type_unsigned_long_long =
3149 init_type (TYPE_CODE_INT, TARGET_LONG_LONG_BIT / TARGET_CHAR_BIT,
3150 TYPE_FLAG_UNSIGNED,
3151 "unsigned long long", (struct objfile *) NULL);
3152 builtin_type_float =
3153 init_type (TYPE_CODE_FLT, TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3154 0,
3155 "float", (struct objfile *) NULL);
3156 /* vinschen@redhat.com 2002-02-08:
3157 The below lines are disabled since they are doing the wrong
3158 thing for non-multiarch targets. They are setting the correct
3159 type of floats for the target but while on multiarch targets
3160 this is done everytime the architecture changes, it's done on
3161 non-multiarch targets only on startup, leaving the wrong values
3162 in even if the architecture changes (eg. from big-endian to
3163 little-endian). */
3164 #if 0
3165 TYPE_FLOATFORMAT (builtin_type_float) = TARGET_FLOAT_FORMAT;
3166 #endif
3167 builtin_type_double =
3168 init_type (TYPE_CODE_FLT, TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3169 0,
3170 "double", (struct objfile *) NULL);
3171 #if 0
3172 TYPE_FLOATFORMAT (builtin_type_double) = TARGET_DOUBLE_FORMAT;
3173 #endif
3174 builtin_type_long_double =
3175 init_type (TYPE_CODE_FLT, TARGET_LONG_DOUBLE_BIT / TARGET_CHAR_BIT,
3176 0,
3177 "long double", (struct objfile *) NULL);
3178 #if 0
3179 TYPE_FLOATFORMAT (builtin_type_long_double) = TARGET_LONG_DOUBLE_FORMAT;
3180 #endif
3181 builtin_type_complex =
3182 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_FLOAT_BIT / TARGET_CHAR_BIT,
3183 0,
3184 "complex", (struct objfile *) NULL);
3185 TYPE_TARGET_TYPE (builtin_type_complex) = builtin_type_float;
3186 builtin_type_double_complex =
3187 init_type (TYPE_CODE_COMPLEX, 2 * TARGET_DOUBLE_BIT / TARGET_CHAR_BIT,
3188 0,
3189 "double complex", (struct objfile *) NULL);
3190 TYPE_TARGET_TYPE (builtin_type_double_complex) = builtin_type_double;
3191 builtin_type_string =
3192 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3193 0,
3194 "string", (struct objfile *) NULL);
3195 builtin_type_int8 =
3196 init_type (TYPE_CODE_INT, 8 / 8,
3197 0,
3198 "int8_t", (struct objfile *) NULL);
3199 builtin_type_uint8 =
3200 init_type (TYPE_CODE_INT, 8 / 8,
3201 TYPE_FLAG_UNSIGNED,
3202 "uint8_t", (struct objfile *) NULL);
3203 builtin_type_int16 =
3204 init_type (TYPE_CODE_INT, 16 / 8,
3205 0,
3206 "int16_t", (struct objfile *) NULL);
3207 builtin_type_uint16 =
3208 init_type (TYPE_CODE_INT, 16 / 8,
3209 TYPE_FLAG_UNSIGNED,
3210 "uint16_t", (struct objfile *) NULL);
3211 builtin_type_int32 =
3212 init_type (TYPE_CODE_INT, 32 / 8,
3213 0,
3214 "int32_t", (struct objfile *) NULL);
3215 builtin_type_uint32 =
3216 init_type (TYPE_CODE_INT, 32 / 8,
3217 TYPE_FLAG_UNSIGNED,
3218 "uint32_t", (struct objfile *) NULL);
3219 builtin_type_int64 =
3220 init_type (TYPE_CODE_INT, 64 / 8,
3221 0,
3222 "int64_t", (struct objfile *) NULL);
3223 builtin_type_uint64 =
3224 init_type (TYPE_CODE_INT, 64 / 8,
3225 TYPE_FLAG_UNSIGNED,
3226 "uint64_t", (struct objfile *) NULL);
3227 builtin_type_int128 =
3228 init_type (TYPE_CODE_INT, 128 / 8,
3229 0,
3230 "int128_t", (struct objfile *) NULL);
3231 builtin_type_uint128 =
3232 init_type (TYPE_CODE_INT, 128 / 8,
3233 TYPE_FLAG_UNSIGNED,
3234 "uint128_t", (struct objfile *) NULL);
3235 builtin_type_bool =
3236 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3237 0,
3238 "bool", (struct objfile *) NULL);
3239
3240 /* Add user knob for controlling resolution of opaque types */
3241 add_show_from_set
3242 (add_set_cmd ("opaque-type-resolution", class_support, var_boolean, (char *) &opaque_type_resolution,
3243 "Set resolution of opaque struct/class/union types (if set before loading symbols).",
3244 &setlist),
3245 &showlist);
3246 opaque_type_resolution = 1;
3247
3248 /* Build SIMD types. */
3249 builtin_type_v4sf
3250 = init_simd_type ("__builtin_v4sf", builtin_type_float, "f", 4);
3251 builtin_type_v4si
3252 = init_simd_type ("__builtin_v4si", builtin_type_int32, "f", 4);
3253 builtin_type_v16qi
3254 = init_simd_type ("__builtin_v16qi", builtin_type_int8, "f", 16);
3255 builtin_type_v8qi
3256 = init_simd_type ("__builtin_v8qi", builtin_type_int8, "f", 8);
3257 builtin_type_v8hi
3258 = init_simd_type ("__builtin_v8hi", builtin_type_int16, "f", 8);
3259 builtin_type_v4hi
3260 = init_simd_type ("__builtin_v4hi", builtin_type_int16, "f", 4);
3261 builtin_type_v2si
3262 = init_simd_type ("__builtin_v2si", builtin_type_int32, "f", 2);
3263
3264 /* Vector types. */
3265 builtin_type_vec128
3266 = build_builtin_type_vec128 ();
3267
3268 /* Pointer/Address types. */
3269
3270 /* NOTE: on some targets, addresses and pointers are not necessarily
3271 the same --- for example, on the D10V, pointers are 16 bits long,
3272 but addresses are 32 bits long. See doc/gdbint.texinfo,
3273 ``Pointers Are Not Always Addresses''.
3274
3275 The upshot is:
3276 - gdb's `struct type' always describes the target's
3277 representation.
3278 - gdb's `struct value' objects should always hold values in
3279 target form.
3280 - gdb's CORE_ADDR values are addresses in the unified virtual
3281 address space that the assembler and linker work with. Thus,
3282 since target_read_memory takes a CORE_ADDR as an argument, it
3283 can access any memory on the target, even if the processor has
3284 separate code and data address spaces.
3285
3286 So, for example:
3287 - If v is a value holding a D10V code pointer, its contents are
3288 in target form: a big-endian address left-shifted two bits.
3289 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3290 sizeof (void *) == 2 on the target.
3291
3292 In this context, builtin_type_CORE_ADDR is a bit odd: it's a
3293 target type for a value the target will never see. It's only
3294 used to hold the values of (typeless) linker symbols, which are
3295 indeed in the unified virtual address space. */
3296 builtin_type_void_data_ptr = make_pointer_type (builtin_type_void, NULL);
3297 builtin_type_void_func_ptr
3298 = lookup_pointer_type (lookup_function_type (builtin_type_void));
3299 builtin_type_CORE_ADDR =
3300 init_type (TYPE_CODE_INT, TARGET_ADDR_BIT / 8,
3301 TYPE_FLAG_UNSIGNED,
3302 "__CORE_ADDR", (struct objfile *) NULL);
3303 builtin_type_bfd_vma =
3304 init_type (TYPE_CODE_INT, TARGET_BFD_VMA_BIT / 8,
3305 TYPE_FLAG_UNSIGNED,
3306 "__bfd_vma", (struct objfile *) NULL);
3307 }
3308
3309
3310 extern void _initialize_gdbtypes (void);
3311 void
3312 _initialize_gdbtypes (void)
3313 {
3314 struct cmd_list_element *c;
3315 build_gdbtypes ();
3316
3317 /* FIXME - For the moment, handle types by swapping them in and out.
3318 Should be using the per-architecture data-pointer and a large
3319 struct. */
3320 register_gdbarch_swap (&builtin_type_void, sizeof (struct type *), NULL);
3321 register_gdbarch_swap (&builtin_type_char, sizeof (struct type *), NULL);
3322 register_gdbarch_swap (&builtin_type_short, sizeof (struct type *), NULL);
3323 register_gdbarch_swap (&builtin_type_int, sizeof (struct type *), NULL);
3324 register_gdbarch_swap (&builtin_type_long, sizeof (struct type *), NULL);
3325 register_gdbarch_swap (&builtin_type_long_long, sizeof (struct type *), NULL);
3326 register_gdbarch_swap (&builtin_type_signed_char, sizeof (struct type *), NULL);
3327 register_gdbarch_swap (&builtin_type_unsigned_char, sizeof (struct type *), NULL);
3328 register_gdbarch_swap (&builtin_type_unsigned_short, sizeof (struct type *), NULL);
3329 register_gdbarch_swap (&builtin_type_unsigned_int, sizeof (struct type *), NULL);
3330 register_gdbarch_swap (&builtin_type_unsigned_long, sizeof (struct type *), NULL);
3331 register_gdbarch_swap (&builtin_type_unsigned_long_long, sizeof (struct type *), NULL);
3332 register_gdbarch_swap (&builtin_type_float, sizeof (struct type *), NULL);
3333 register_gdbarch_swap (&builtin_type_double, sizeof (struct type *), NULL);
3334 register_gdbarch_swap (&builtin_type_long_double, sizeof (struct type *), NULL);
3335 register_gdbarch_swap (&builtin_type_complex, sizeof (struct type *), NULL);
3336 register_gdbarch_swap (&builtin_type_double_complex, sizeof (struct type *), NULL);
3337 register_gdbarch_swap (&builtin_type_string, sizeof (struct type *), NULL);
3338 register_gdbarch_swap (&builtin_type_int8, sizeof (struct type *), NULL);
3339 register_gdbarch_swap (&builtin_type_uint8, sizeof (struct type *), NULL);
3340 register_gdbarch_swap (&builtin_type_int16, sizeof (struct type *), NULL);
3341 register_gdbarch_swap (&builtin_type_uint16, sizeof (struct type *), NULL);
3342 register_gdbarch_swap (&builtin_type_int32, sizeof (struct type *), NULL);
3343 register_gdbarch_swap (&builtin_type_uint32, sizeof (struct type *), NULL);
3344 register_gdbarch_swap (&builtin_type_int64, sizeof (struct type *), NULL);
3345 register_gdbarch_swap (&builtin_type_uint64, sizeof (struct type *), NULL);
3346 register_gdbarch_swap (&builtin_type_int128, sizeof (struct type *), NULL);
3347 register_gdbarch_swap (&builtin_type_uint128, sizeof (struct type *), NULL);
3348 register_gdbarch_swap (&builtin_type_v4sf, sizeof (struct type *), NULL);
3349 register_gdbarch_swap (&builtin_type_v4si, sizeof (struct type *), NULL);
3350 register_gdbarch_swap (&builtin_type_v16qi, sizeof (struct type *), NULL);
3351 register_gdbarch_swap (&builtin_type_v8qi, sizeof (struct type *), NULL);
3352 register_gdbarch_swap (&builtin_type_v8hi, sizeof (struct type *), NULL);
3353 register_gdbarch_swap (&builtin_type_v4hi, sizeof (struct type *), NULL);
3354 register_gdbarch_swap (&builtin_type_v2si, sizeof (struct type *), NULL);
3355 register_gdbarch_swap (&builtin_type_vec128, sizeof (struct type *), NULL);
3356 REGISTER_GDBARCH_SWAP (builtin_type_void_data_ptr);
3357 REGISTER_GDBARCH_SWAP (builtin_type_void_func_ptr);
3358 REGISTER_GDBARCH_SWAP (builtin_type_CORE_ADDR);
3359 REGISTER_GDBARCH_SWAP (builtin_type_bfd_vma);
3360 register_gdbarch_swap (NULL, 0, build_gdbtypes);
3361
3362 /* Note: These types do not need to be swapped - they are target
3363 neutral. */
3364 builtin_type_ieee_single_big =
3365 init_type (TYPE_CODE_FLT, floatformat_ieee_single_big.totalsize / 8,
3366 0, "builtin_type_ieee_single_big", NULL);
3367 TYPE_FLOATFORMAT (builtin_type_ieee_single_big) = &floatformat_ieee_single_big;
3368 builtin_type_ieee_single_little =
3369 init_type (TYPE_CODE_FLT, floatformat_ieee_single_little.totalsize / 8,
3370 0, "builtin_type_ieee_single_little", NULL);
3371 TYPE_FLOATFORMAT (builtin_type_ieee_single_little) = &floatformat_ieee_single_little;
3372 builtin_type_ieee_double_big =
3373 init_type (TYPE_CODE_FLT, floatformat_ieee_double_big.totalsize / 8,
3374 0, "builtin_type_ieee_double_big", NULL);
3375 TYPE_FLOATFORMAT (builtin_type_ieee_double_big) = &floatformat_ieee_double_big;
3376 builtin_type_ieee_double_little =
3377 init_type (TYPE_CODE_FLT, floatformat_ieee_double_little.totalsize / 8,
3378 0, "builtin_type_ieee_double_little", NULL);
3379 TYPE_FLOATFORMAT (builtin_type_ieee_double_little) = &floatformat_ieee_double_little;
3380 builtin_type_ieee_double_littlebyte_bigword =
3381 init_type (TYPE_CODE_FLT, floatformat_ieee_double_littlebyte_bigword.totalsize / 8,
3382 0, "builtin_type_ieee_double_littlebyte_bigword", NULL);
3383 TYPE_FLOATFORMAT (builtin_type_ieee_double_littlebyte_bigword) = &floatformat_ieee_double_littlebyte_bigword;
3384 builtin_type_i387_ext =
3385 init_type (TYPE_CODE_FLT, floatformat_i387_ext.totalsize / 8,
3386 0, "builtin_type_i387_ext", NULL);
3387 TYPE_FLOATFORMAT (builtin_type_i387_ext) = &floatformat_i387_ext;
3388 builtin_type_m68881_ext =
3389 init_type (TYPE_CODE_FLT, floatformat_m68881_ext.totalsize / 8,
3390 0, "builtin_type_m68881_ext", NULL);
3391 TYPE_FLOATFORMAT (builtin_type_m68881_ext) = &floatformat_m68881_ext;
3392 builtin_type_i960_ext =
3393 init_type (TYPE_CODE_FLT, floatformat_i960_ext.totalsize / 8,
3394 0, "builtin_type_i960_ext", NULL);
3395 TYPE_FLOATFORMAT (builtin_type_i960_ext) = &floatformat_i960_ext;
3396 builtin_type_m88110_ext =
3397 init_type (TYPE_CODE_FLT, floatformat_m88110_ext.totalsize / 8,
3398 0, "builtin_type_m88110_ext", NULL);
3399 TYPE_FLOATFORMAT (builtin_type_m88110_ext) = &floatformat_m88110_ext;
3400 builtin_type_m88110_harris_ext =
3401 init_type (TYPE_CODE_FLT, floatformat_m88110_harris_ext.totalsize / 8,
3402 0, "builtin_type_m88110_harris_ext", NULL);
3403 TYPE_FLOATFORMAT (builtin_type_m88110_harris_ext) = &floatformat_m88110_harris_ext;
3404 builtin_type_arm_ext_big =
3405 init_type (TYPE_CODE_FLT, floatformat_arm_ext_big.totalsize / 8,
3406 0, "builtin_type_arm_ext_big", NULL);
3407 TYPE_FLOATFORMAT (builtin_type_arm_ext_big) = &floatformat_arm_ext_big;
3408 builtin_type_arm_ext_littlebyte_bigword =
3409 init_type (TYPE_CODE_FLT, floatformat_arm_ext_littlebyte_bigword.totalsize / 8,
3410 0, "builtin_type_arm_ext_littlebyte_bigword", NULL);
3411 TYPE_FLOATFORMAT (builtin_type_arm_ext_littlebyte_bigword) = &floatformat_arm_ext_littlebyte_bigword;
3412 builtin_type_ia64_spill_big =
3413 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_big.totalsize / 8,
3414 0, "builtin_type_ia64_spill_big", NULL);
3415 TYPE_FLOATFORMAT (builtin_type_ia64_spill_big) = &floatformat_ia64_spill_big;
3416 builtin_type_ia64_spill_little =
3417 init_type (TYPE_CODE_FLT, floatformat_ia64_spill_little.totalsize / 8,
3418 0, "builtin_type_ia64_spill_little", NULL);
3419 TYPE_FLOATFORMAT (builtin_type_ia64_spill_little) = &floatformat_ia64_spill_little;
3420 builtin_type_ia64_quad_big =
3421 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_big.totalsize / 8,
3422 0, "builtin_type_ia64_quad_big", NULL);
3423 TYPE_FLOATFORMAT (builtin_type_ia64_quad_big) = &floatformat_ia64_quad_big;
3424 builtin_type_ia64_quad_little =
3425 init_type (TYPE_CODE_FLT, floatformat_ia64_quad_little.totalsize / 8,
3426 0, "builtin_type_ia64_quad_little", NULL);
3427 TYPE_FLOATFORMAT (builtin_type_ia64_quad_little) = &floatformat_ia64_quad_little;
3428
3429 add_show_from_set (
3430 add_set_cmd ("overload", no_class, var_zinteger, (char *) &overload_debug,
3431 "Set debugging of C++ overloading.\n\
3432 When enabled, ranking of the functions\n\
3433 is displayed.", &setdebuglist),
3434 &showdebuglist);
3435 }
This page took 0.350714 seconds and 4 git commands to generate.