b1dada519806af2ed9dff78a5ab5394bfbffb326
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114 };
115
116
117 int opaque_type_resolution = 1;
118 static void
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
125 value);
126 }
127
128 int overload_debug = 0;
129 static void
130 show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
135 }
136
137 struct extra
138 {
139 char str[128];
140 int len;
141 }; /* Maximum extension is 128! FIXME */
142
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
147
148
149 /* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
152
153 struct type *
154 alloc_type (struct objfile *objfile)
155 {
156 struct type *type;
157
158 gdb_assert (objfile != NULL);
159
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
165
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
174
175 return type;
176 }
177
178 /* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182 struct type *
183 alloc_type_arch (struct gdbarch *gdbarch)
184 {
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204 }
205
206 /* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210 struct type *
211 alloc_type_copy (const struct type *type)
212 {
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217 }
218
219 /* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222 struct gdbarch *
223 get_type_arch (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229 }
230
231
232 /* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236 static struct type *
237 alloc_type_instance (struct type *oldtype)
238 {
239 struct type *type;
240
241 /* Allocate the structure. */
242
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
245 else
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
253 return type;
254 }
255
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
258 static void
259 smash_type (struct type *type)
260 {
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274 }
275
276 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281 struct type *
282 make_pointer_type (struct type *type, struct type **typeptr)
283 {
284 struct type *ntype; /* New type */
285 struct type *chain;
286
287 ntype = TYPE_POINTER_TYPE (type);
288
289 if (ntype)
290 {
291 if (typeptr == 0)
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
295 {
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
297 return ntype;
298 }
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
303 ntype = alloc_type_copy (type);
304 if (typeptr)
305 *typeptr = ntype;
306 }
307 else /* We have storage, but need to reset it. */
308 {
309 ntype = *typeptr;
310 chain = TYPE_CHAIN (ntype);
311 smash_type (ntype);
312 TYPE_CHAIN (ntype) = chain;
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
320
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
329
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
341 return ntype;
342 }
343
344 /* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347 struct type *
348 lookup_pointer_type (struct type *type)
349 {
350 return make_pointer_type (type, (struct type **) 0);
351 }
352
353 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
357
358 struct type *
359 make_reference_type (struct type *type, struct type **typeptr)
360 {
361 struct type *ntype; /* New type */
362 struct type *chain;
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
366 if (ntype)
367 {
368 if (typeptr == 0)
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
372 {
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
374 return ntype;
375 }
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type_copy (type);
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else /* We have storage, but need to reset it. */
385 {
386 ntype = *typeptr;
387 chain = TYPE_CHAIN (ntype);
388 smash_type (ntype);
389 TYPE_CHAIN (ntype) = chain;
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
398
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
402
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
414 return ntype;
415 }
416
417 /* Same as above, but caller doesn't care about memory allocation
418 details. */
419
420 struct type *
421 lookup_reference_type (struct type *type)
422 {
423 return make_reference_type (type, (struct type **) 0);
424 }
425
426 /* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
430
431 struct type *
432 make_function_type (struct type *type, struct type **typeptr)
433 {
434 struct type *ntype; /* New type */
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
438 ntype = alloc_type_copy (type);
439 if (typeptr)
440 *typeptr = ntype;
441 }
442 else /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 smash_type (ntype);
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452
453 INIT_FUNC_SPECIFIC (ntype);
454
455 return ntype;
456 }
457
458
459 /* Given a type TYPE, return a type of functions that return that type.
460 May need to construct such a type if this is the first use. */
461
462 struct type *
463 lookup_function_type (struct type *type)
464 {
465 return make_function_type (type, (struct type **) 0);
466 }
467
468 /* Identify address space identifier by name --
469 return the integer flag defined in gdbtypes.h. */
470 extern int
471 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
472 {
473 int type_flags;
474
475 /* Check for known address space delimiters. */
476 if (!strcmp (space_identifier, "code"))
477 return TYPE_INSTANCE_FLAG_CODE_SPACE;
478 else if (!strcmp (space_identifier, "data"))
479 return TYPE_INSTANCE_FLAG_DATA_SPACE;
480 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
481 && gdbarch_address_class_name_to_type_flags (gdbarch,
482 space_identifier,
483 &type_flags))
484 return type_flags;
485 else
486 error (_("Unknown address space specifier: \"%s\""), space_identifier);
487 }
488
489 /* Identify address space identifier by integer flag as defined in
490 gdbtypes.h -- return the string version of the adress space name. */
491
492 const char *
493 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
494 {
495 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
496 return "code";
497 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
498 return "data";
499 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
500 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
501 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
502 else
503 return NULL;
504 }
505
506 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
507
508 If STORAGE is non-NULL, create the new type instance there.
509 STORAGE must be in the same obstack as TYPE. */
510
511 static struct type *
512 make_qualified_type (struct type *type, int new_flags,
513 struct type *storage)
514 {
515 struct type *ntype;
516
517 ntype = type;
518 do
519 {
520 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
521 return ntype;
522 ntype = TYPE_CHAIN (ntype);
523 }
524 while (ntype != type);
525
526 /* Create a new type instance. */
527 if (storage == NULL)
528 ntype = alloc_type_instance (type);
529 else
530 {
531 /* If STORAGE was provided, it had better be in the same objfile
532 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
533 if one objfile is freed and the other kept, we'd have
534 dangling pointers. */
535 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
536
537 ntype = storage;
538 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
539 TYPE_CHAIN (ntype) = ntype;
540 }
541
542 /* Pointers or references to the original type are not relevant to
543 the new type. */
544 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
545 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
546
547 /* Chain the new qualified type to the old type. */
548 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
549 TYPE_CHAIN (type) = ntype;
550
551 /* Now set the instance flags and return the new type. */
552 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
553
554 /* Set length of new type to that of the original type. */
555 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
556
557 return ntype;
558 }
559
560 /* Make an address-space-delimited variant of a type -- a type that
561 is identical to the one supplied except that it has an address
562 space attribute attached to it (such as "code" or "data").
563
564 The space attributes "code" and "data" are for Harvard
565 architectures. The address space attributes are for architectures
566 which have alternately sized pointers or pointers with alternate
567 representations. */
568
569 struct type *
570 make_type_with_address_space (struct type *type, int space_flag)
571 {
572 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
573 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
574 | TYPE_INSTANCE_FLAG_DATA_SPACE
575 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
576 | space_flag);
577
578 return make_qualified_type (type, new_flags, NULL);
579 }
580
581 /* Make a "c-v" variant of a type -- a type that is identical to the
582 one supplied except that it may have const or volatile attributes
583 CNST is a flag for setting the const attribute
584 VOLTL is a flag for setting the volatile attribute
585 TYPE is the base type whose variant we are creating.
586
587 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
588 storage to hold the new qualified type; *TYPEPTR and TYPE must be
589 in the same objfile. Otherwise, allocate fresh memory for the new
590 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
591 new type we construct. */
592 struct type *
593 make_cv_type (int cnst, int voltl,
594 struct type *type,
595 struct type **typeptr)
596 {
597 struct type *ntype; /* New type */
598
599 int new_flags = (TYPE_INSTANCE_FLAGS (type)
600 & ~(TYPE_INSTANCE_FLAG_CONST
601 | TYPE_INSTANCE_FLAG_VOLATILE));
602
603 if (cnst)
604 new_flags |= TYPE_INSTANCE_FLAG_CONST;
605
606 if (voltl)
607 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
608
609 if (typeptr && *typeptr != NULL)
610 {
611 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
612 a C-V variant chain that threads across objfiles: if one
613 objfile gets freed, then the other has a broken C-V chain.
614
615 This code used to try to copy over the main type from TYPE to
616 *TYPEPTR if they were in different objfiles, but that's
617 wrong, too: TYPE may have a field list or member function
618 lists, which refer to types of their own, etc. etc. The
619 whole shebang would need to be copied over recursively; you
620 can't have inter-objfile pointers. The only thing to do is
621 to leave stub types as stub types, and look them up afresh by
622 name each time you encounter them. */
623 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
624 }
625
626 ntype = make_qualified_type (type, new_flags,
627 typeptr ? *typeptr : NULL);
628
629 if (typeptr != NULL)
630 *typeptr = ntype;
631
632 return ntype;
633 }
634
635 /* Replace the contents of ntype with the type *type. This changes the
636 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
637 the changes are propogated to all types in the TYPE_CHAIN.
638
639 In order to build recursive types, it's inevitable that we'll need
640 to update types in place --- but this sort of indiscriminate
641 smashing is ugly, and needs to be replaced with something more
642 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
643 clear if more steps are needed. */
644 void
645 replace_type (struct type *ntype, struct type *type)
646 {
647 struct type *chain;
648
649 /* These two types had better be in the same objfile. Otherwise,
650 the assignment of one type's main type structure to the other
651 will produce a type with references to objects (names; field
652 lists; etc.) allocated on an objfile other than its own. */
653 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
654
655 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
656
657 /* The type length is not a part of the main type. Update it for
658 each type on the variant chain. */
659 chain = ntype;
660 do
661 {
662 /* Assert that this element of the chain has no address-class bits
663 set in its flags. Such type variants might have type lengths
664 which are supposed to be different from the non-address-class
665 variants. This assertion shouldn't ever be triggered because
666 symbol readers which do construct address-class variants don't
667 call replace_type(). */
668 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
669
670 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
671 chain = TYPE_CHAIN (chain);
672 }
673 while (ntype != chain);
674
675 /* Assert that the two types have equivalent instance qualifiers.
676 This should be true for at least all of our debug readers. */
677 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
678 }
679
680 /* Implement direct support for MEMBER_TYPE in GNU C++.
681 May need to construct such a type if this is the first use.
682 The TYPE is the type of the member. The DOMAIN is the type
683 of the aggregate that the member belongs to. */
684
685 struct type *
686 lookup_memberptr_type (struct type *type, struct type *domain)
687 {
688 struct type *mtype;
689
690 mtype = alloc_type_copy (type);
691 smash_to_memberptr_type (mtype, domain, type);
692 return mtype;
693 }
694
695 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
696
697 struct type *
698 lookup_methodptr_type (struct type *to_type)
699 {
700 struct type *mtype;
701
702 mtype = alloc_type_copy (to_type);
703 smash_to_methodptr_type (mtype, to_type);
704 return mtype;
705 }
706
707 /* Allocate a stub method whose return type is TYPE. This apparently
708 happens for speed of symbol reading, since parsing out the
709 arguments to the method is cpu-intensive, the way we are doing it.
710 So, we will fill in arguments later. This always returns a fresh
711 type. */
712
713 struct type *
714 allocate_stub_method (struct type *type)
715 {
716 struct type *mtype;
717
718 mtype = alloc_type_copy (type);
719 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
720 TYPE_LENGTH (mtype) = 1;
721 TYPE_STUB (mtype) = 1;
722 TYPE_TARGET_TYPE (mtype) = type;
723 /* _DOMAIN_TYPE (mtype) = unknown yet */
724 return mtype;
725 }
726
727 /* Create a range type using either a blank type supplied in
728 RESULT_TYPE, or creating a new type, inheriting the objfile from
729 INDEX_TYPE.
730
731 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
732 to HIGH_BOUND, inclusive.
733
734 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
735 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
736
737 struct type *
738 create_range_type (struct type *result_type, struct type *index_type,
739 LONGEST low_bound, LONGEST high_bound)
740 {
741 if (result_type == NULL)
742 result_type = alloc_type_copy (index_type);
743 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
744 TYPE_TARGET_TYPE (result_type) = index_type;
745 if (TYPE_STUB (index_type))
746 TYPE_TARGET_STUB (result_type) = 1;
747 else
748 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
749 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
750 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
751 TYPE_LOW_BOUND (result_type) = low_bound;
752 TYPE_HIGH_BOUND (result_type) = high_bound;
753
754 if (low_bound >= 0)
755 TYPE_UNSIGNED (result_type) = 1;
756
757 return result_type;
758 }
759
760 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
761 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
762 bounds will fit in LONGEST), or -1 otherwise. */
763
764 int
765 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
766 {
767 CHECK_TYPEDEF (type);
768 switch (TYPE_CODE (type))
769 {
770 case TYPE_CODE_RANGE:
771 *lowp = TYPE_LOW_BOUND (type);
772 *highp = TYPE_HIGH_BOUND (type);
773 return 1;
774 case TYPE_CODE_ENUM:
775 if (TYPE_NFIELDS (type) > 0)
776 {
777 /* The enums may not be sorted by value, so search all
778 entries. */
779 int i;
780
781 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
782 for (i = 0; i < TYPE_NFIELDS (type); i++)
783 {
784 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
785 *lowp = TYPE_FIELD_BITPOS (type, i);
786 if (TYPE_FIELD_BITPOS (type, i) > *highp)
787 *highp = TYPE_FIELD_BITPOS (type, i);
788 }
789
790 /* Set unsigned indicator if warranted. */
791 if (*lowp >= 0)
792 {
793 TYPE_UNSIGNED (type) = 1;
794 }
795 }
796 else
797 {
798 *lowp = 0;
799 *highp = -1;
800 }
801 return 0;
802 case TYPE_CODE_BOOL:
803 *lowp = 0;
804 *highp = 1;
805 return 0;
806 case TYPE_CODE_INT:
807 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
808 return -1;
809 if (!TYPE_UNSIGNED (type))
810 {
811 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
812 *highp = -*lowp - 1;
813 return 0;
814 }
815 /* ... fall through for unsigned ints ... */
816 case TYPE_CODE_CHAR:
817 *lowp = 0;
818 /* This round-about calculation is to avoid shifting by
819 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
820 if TYPE_LENGTH (type) == sizeof (LONGEST). */
821 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
822 *highp = (*highp - 1) | *highp;
823 return 0;
824 default:
825 return -1;
826 }
827 }
828
829 /* Assuming TYPE is a simple, non-empty array type, compute its upper
830 and lower bound. Save the low bound into LOW_BOUND if not NULL.
831 Save the high bound into HIGH_BOUND if not NULL.
832
833 Return 1 if the operation was successful. Return zero otherwise,
834 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
835
836 We now simply use get_discrete_bounds call to get the values
837 of the low and high bounds.
838 get_discrete_bounds can return three values:
839 1, meaning that index is a range,
840 0, meaning that index is a discrete type,
841 or -1 for failure. */
842
843 int
844 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
845 {
846 struct type *index = TYPE_INDEX_TYPE (type);
847 LONGEST low = 0;
848 LONGEST high = 0;
849 int res;
850
851 if (index == NULL)
852 return 0;
853
854 res = get_discrete_bounds (index, &low, &high);
855 if (res == -1)
856 return 0;
857
858 /* Check if the array bounds are undefined. */
859 if (res == 1
860 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
861 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
862 return 0;
863
864 if (low_bound)
865 *low_bound = low;
866
867 if (high_bound)
868 *high_bound = high;
869
870 return 1;
871 }
872
873 /* Create an array type using either a blank type supplied in
874 RESULT_TYPE, or creating a new type, inheriting the objfile from
875 RANGE_TYPE.
876
877 Elements will be of type ELEMENT_TYPE, the indices will be of type
878 RANGE_TYPE.
879
880 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
881 sure it is TYPE_CODE_UNDEF before we bash it into an array
882 type? */
883
884 struct type *
885 create_array_type (struct type *result_type,
886 struct type *element_type,
887 struct type *range_type)
888 {
889 LONGEST low_bound, high_bound;
890
891 if (result_type == NULL)
892 result_type = alloc_type_copy (range_type);
893
894 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
895 TYPE_TARGET_TYPE (result_type) = element_type;
896 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
897 low_bound = high_bound = 0;
898 CHECK_TYPEDEF (element_type);
899 /* Be careful when setting the array length. Ada arrays can be
900 empty arrays with the high_bound being smaller than the low_bound.
901 In such cases, the array length should be zero. */
902 if (high_bound < low_bound)
903 TYPE_LENGTH (result_type) = 0;
904 else
905 TYPE_LENGTH (result_type) =
906 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) =
909 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
910 TYPE_INDEX_TYPE (result_type) = range_type;
911 TYPE_VPTR_FIELDNO (result_type) = -1;
912
913 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
914 if (TYPE_LENGTH (result_type) == 0)
915 TYPE_TARGET_STUB (result_type) = 1;
916
917 return result_type;
918 }
919
920 struct type *
921 lookup_array_range_type (struct type *element_type,
922 int low_bound, int high_bound)
923 {
924 struct gdbarch *gdbarch = get_type_arch (element_type);
925 struct type *index_type = builtin_type (gdbarch)->builtin_int;
926 struct type *range_type
927 = create_range_type (NULL, index_type, low_bound, high_bound);
928
929 return create_array_type (NULL, element_type, range_type);
930 }
931
932 /* Create a string type using either a blank type supplied in
933 RESULT_TYPE, or creating a new type. String types are similar
934 enough to array of char types that we can use create_array_type to
935 build the basic type and then bash it into a string type.
936
937 For fixed length strings, the range type contains 0 as the lower
938 bound and the length of the string minus one as the upper bound.
939
940 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
941 sure it is TYPE_CODE_UNDEF before we bash it into a string
942 type? */
943
944 struct type *
945 create_string_type (struct type *result_type,
946 struct type *string_char_type,
947 struct type *range_type)
948 {
949 result_type = create_array_type (result_type,
950 string_char_type,
951 range_type);
952 TYPE_CODE (result_type) = TYPE_CODE_STRING;
953 return result_type;
954 }
955
956 struct type *
957 lookup_string_range_type (struct type *string_char_type,
958 int low_bound, int high_bound)
959 {
960 struct type *result_type;
961
962 result_type = lookup_array_range_type (string_char_type,
963 low_bound, high_bound);
964 TYPE_CODE (result_type) = TYPE_CODE_STRING;
965 return result_type;
966 }
967
968 struct type *
969 create_set_type (struct type *result_type, struct type *domain_type)
970 {
971 if (result_type == NULL)
972 result_type = alloc_type_copy (domain_type);
973
974 TYPE_CODE (result_type) = TYPE_CODE_SET;
975 TYPE_NFIELDS (result_type) = 1;
976 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
977
978 if (!TYPE_STUB (domain_type))
979 {
980 LONGEST low_bound, high_bound, bit_length;
981
982 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
983 low_bound = high_bound = 0;
984 bit_length = high_bound - low_bound + 1;
985 TYPE_LENGTH (result_type)
986 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
987 if (low_bound >= 0)
988 TYPE_UNSIGNED (result_type) = 1;
989 }
990 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
991
992 return result_type;
993 }
994
995 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
996 and any array types nested inside it. */
997
998 void
999 make_vector_type (struct type *array_type)
1000 {
1001 struct type *inner_array, *elt_type;
1002 int flags;
1003
1004 /* Find the innermost array type, in case the array is
1005 multi-dimensional. */
1006 inner_array = array_type;
1007 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1008 inner_array = TYPE_TARGET_TYPE (inner_array);
1009
1010 elt_type = TYPE_TARGET_TYPE (inner_array);
1011 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1012 {
1013 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1014 elt_type = make_qualified_type (elt_type, flags, NULL);
1015 TYPE_TARGET_TYPE (inner_array) = elt_type;
1016 }
1017
1018 TYPE_VECTOR (array_type) = 1;
1019 }
1020
1021 struct type *
1022 init_vector_type (struct type *elt_type, int n)
1023 {
1024 struct type *array_type;
1025
1026 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1027 make_vector_type (array_type);
1028 return array_type;
1029 }
1030
1031 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1032 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1033 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1034 TYPE doesn't include the offset (that's the value of the MEMBER
1035 itself), but does include the structure type into which it points
1036 (for some reason).
1037
1038 When "smashing" the type, we preserve the objfile that the old type
1039 pointed to, since we aren't changing where the type is actually
1040 allocated. */
1041
1042 void
1043 smash_to_memberptr_type (struct type *type, struct type *domain,
1044 struct type *to_type)
1045 {
1046 smash_type (type);
1047 TYPE_TARGET_TYPE (type) = to_type;
1048 TYPE_DOMAIN_TYPE (type) = domain;
1049 /* Assume that a data member pointer is the same size as a normal
1050 pointer. */
1051 TYPE_LENGTH (type)
1052 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1053 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1054 }
1055
1056 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1057
1058 When "smashing" the type, we preserve the objfile that the old type
1059 pointed to, since we aren't changing where the type is actually
1060 allocated. */
1061
1062 void
1063 smash_to_methodptr_type (struct type *type, struct type *to_type)
1064 {
1065 smash_type (type);
1066 TYPE_TARGET_TYPE (type) = to_type;
1067 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1068 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1069 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1070 }
1071
1072 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1073 METHOD just means `function that gets an extra "this" argument'.
1074
1075 When "smashing" the type, we preserve the objfile that the old type
1076 pointed to, since we aren't changing where the type is actually
1077 allocated. */
1078
1079 void
1080 smash_to_method_type (struct type *type, struct type *domain,
1081 struct type *to_type, struct field *args,
1082 int nargs, int varargs)
1083 {
1084 smash_type (type);
1085 TYPE_TARGET_TYPE (type) = to_type;
1086 TYPE_DOMAIN_TYPE (type) = domain;
1087 TYPE_FIELDS (type) = args;
1088 TYPE_NFIELDS (type) = nargs;
1089 if (varargs)
1090 TYPE_VARARGS (type) = 1;
1091 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1092 TYPE_CODE (type) = TYPE_CODE_METHOD;
1093 }
1094
1095 /* Return a typename for a struct/union/enum type without "struct ",
1096 "union ", or "enum ". If the type has a NULL name, return NULL. */
1097
1098 char *
1099 type_name_no_tag (const struct type *type)
1100 {
1101 if (TYPE_TAG_NAME (type) != NULL)
1102 return TYPE_TAG_NAME (type);
1103
1104 /* Is there code which expects this to return the name if there is
1105 no tag name? My guess is that this is mainly used for C++ in
1106 cases where the two will always be the same. */
1107 return TYPE_NAME (type);
1108 }
1109
1110 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1111 Since GCC PR debug/47510 DWARF provides associated information to detect the
1112 anonymous class linkage name from its typedef.
1113
1114 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1115 apply it itself. */
1116
1117 const char *
1118 type_name_no_tag_or_error (struct type *type)
1119 {
1120 struct type *saved_type = type;
1121 const char *name;
1122 struct objfile *objfile;
1123
1124 CHECK_TYPEDEF (type);
1125
1126 name = type_name_no_tag (type);
1127 if (name != NULL)
1128 return name;
1129
1130 name = type_name_no_tag (saved_type);
1131 objfile = TYPE_OBJFILE (saved_type);
1132 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1133 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1134 }
1135
1136 /* Lookup a typedef or primitive type named NAME, visible in lexical
1137 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1138 suitably defined. */
1139
1140 struct type *
1141 lookup_typename (const struct language_defn *language,
1142 struct gdbarch *gdbarch, const char *name,
1143 const struct block *block, int noerr)
1144 {
1145 struct symbol *sym;
1146 struct type *tmp;
1147
1148 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1149 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1150 {
1151 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1152 if (tmp)
1153 {
1154 return tmp;
1155 }
1156 else if (!tmp && noerr)
1157 {
1158 return NULL;
1159 }
1160 else
1161 {
1162 error (_("No type named %s."), name);
1163 }
1164 }
1165 return (SYMBOL_TYPE (sym));
1166 }
1167
1168 struct type *
1169 lookup_unsigned_typename (const struct language_defn *language,
1170 struct gdbarch *gdbarch, char *name)
1171 {
1172 char *uns = alloca (strlen (name) + 10);
1173
1174 strcpy (uns, "unsigned ");
1175 strcpy (uns + 9, name);
1176 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1177 }
1178
1179 struct type *
1180 lookup_signed_typename (const struct language_defn *language,
1181 struct gdbarch *gdbarch, char *name)
1182 {
1183 struct type *t;
1184 char *uns = alloca (strlen (name) + 8);
1185
1186 strcpy (uns, "signed ");
1187 strcpy (uns + 7, name);
1188 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1189 /* If we don't find "signed FOO" just try again with plain "FOO". */
1190 if (t != NULL)
1191 return t;
1192 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1193 }
1194
1195 /* Lookup a structure type named "struct NAME",
1196 visible in lexical block BLOCK. */
1197
1198 struct type *
1199 lookup_struct (const char *name, struct block *block)
1200 {
1201 struct symbol *sym;
1202
1203 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1204
1205 if (sym == NULL)
1206 {
1207 error (_("No struct type named %s."), name);
1208 }
1209 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1210 {
1211 error (_("This context has class, union or enum %s, not a struct."),
1212 name);
1213 }
1214 return (SYMBOL_TYPE (sym));
1215 }
1216
1217 /* Lookup a union type named "union NAME",
1218 visible in lexical block BLOCK. */
1219
1220 struct type *
1221 lookup_union (const char *name, struct block *block)
1222 {
1223 struct symbol *sym;
1224 struct type *t;
1225
1226 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1227
1228 if (sym == NULL)
1229 error (_("No union type named %s."), name);
1230
1231 t = SYMBOL_TYPE (sym);
1232
1233 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1234 return t;
1235
1236 /* If we get here, it's not a union. */
1237 error (_("This context has class, struct or enum %s, not a union."),
1238 name);
1239 }
1240
1241
1242 /* Lookup an enum type named "enum NAME",
1243 visible in lexical block BLOCK. */
1244
1245 struct type *
1246 lookup_enum (const char *name, struct block *block)
1247 {
1248 struct symbol *sym;
1249
1250 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1251 if (sym == NULL)
1252 {
1253 error (_("No enum type named %s."), name);
1254 }
1255 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1256 {
1257 error (_("This context has class, struct or union %s, not an enum."),
1258 name);
1259 }
1260 return (SYMBOL_TYPE (sym));
1261 }
1262
1263 /* Lookup a template type named "template NAME<TYPE>",
1264 visible in lexical block BLOCK. */
1265
1266 struct type *
1267 lookup_template_type (char *name, struct type *type,
1268 struct block *block)
1269 {
1270 struct symbol *sym;
1271 char *nam = (char *)
1272 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1273
1274 strcpy (nam, name);
1275 strcat (nam, "<");
1276 strcat (nam, TYPE_NAME (type));
1277 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1278
1279 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1280
1281 if (sym == NULL)
1282 {
1283 error (_("No template type named %s."), name);
1284 }
1285 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1286 {
1287 error (_("This context has class, union or enum %s, not a struct."),
1288 name);
1289 }
1290 return (SYMBOL_TYPE (sym));
1291 }
1292
1293 /* Given a type TYPE, lookup the type of the component of type named
1294 NAME.
1295
1296 TYPE can be either a struct or union, or a pointer or reference to
1297 a struct or union. If it is a pointer or reference, its target
1298 type is automatically used. Thus '.' and '->' are interchangable,
1299 as specified for the definitions of the expression element types
1300 STRUCTOP_STRUCT and STRUCTOP_PTR.
1301
1302 If NOERR is nonzero, return zero if NAME is not suitably defined.
1303 If NAME is the name of a baseclass type, return that type. */
1304
1305 struct type *
1306 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1307 {
1308 int i;
1309 char *typename;
1310
1311 for (;;)
1312 {
1313 CHECK_TYPEDEF (type);
1314 if (TYPE_CODE (type) != TYPE_CODE_PTR
1315 && TYPE_CODE (type) != TYPE_CODE_REF)
1316 break;
1317 type = TYPE_TARGET_TYPE (type);
1318 }
1319
1320 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1321 && TYPE_CODE (type) != TYPE_CODE_UNION)
1322 {
1323 typename = type_to_string (type);
1324 make_cleanup (xfree, typename);
1325 error (_("Type %s is not a structure or union type."), typename);
1326 }
1327
1328 #if 0
1329 /* FIXME: This change put in by Michael seems incorrect for the case
1330 where the structure tag name is the same as the member name.
1331 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1332 foo; } bell;" Disabled by fnf. */
1333 {
1334 char *typename;
1335
1336 typename = type_name_no_tag (type);
1337 if (typename != NULL && strcmp (typename, name) == 0)
1338 return type;
1339 }
1340 #endif
1341
1342 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1343 {
1344 char *t_field_name = TYPE_FIELD_NAME (type, i);
1345
1346 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1347 {
1348 return TYPE_FIELD_TYPE (type, i);
1349 }
1350 else if (!t_field_name || *t_field_name == '\0')
1351 {
1352 struct type *subtype
1353 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1354
1355 if (subtype != NULL)
1356 return subtype;
1357 }
1358 }
1359
1360 /* OK, it's not in this class. Recursively check the baseclasses. */
1361 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1362 {
1363 struct type *t;
1364
1365 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1366 if (t != NULL)
1367 {
1368 return t;
1369 }
1370 }
1371
1372 if (noerr)
1373 {
1374 return NULL;
1375 }
1376
1377 typename = type_to_string (type);
1378 make_cleanup (xfree, typename);
1379 error (_("Type %s has no component named %s."), typename, name);
1380 }
1381
1382 /* Lookup the vptr basetype/fieldno values for TYPE.
1383 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1384 vptr_fieldno. Also, if found and basetype is from the same objfile,
1385 cache the results.
1386 If not found, return -1 and ignore BASETYPEP.
1387 Callers should be aware that in some cases (for example,
1388 the type or one of its baseclasses is a stub type and we are
1389 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1390 this function will not be able to find the
1391 virtual function table pointer, and vptr_fieldno will remain -1 and
1392 vptr_basetype will remain NULL or incomplete. */
1393
1394 int
1395 get_vptr_fieldno (struct type *type, struct type **basetypep)
1396 {
1397 CHECK_TYPEDEF (type);
1398
1399 if (TYPE_VPTR_FIELDNO (type) < 0)
1400 {
1401 int i;
1402
1403 /* We must start at zero in case the first (and only) baseclass
1404 is virtual (and hence we cannot share the table pointer). */
1405 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1406 {
1407 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1408 int fieldno;
1409 struct type *basetype;
1410
1411 fieldno = get_vptr_fieldno (baseclass, &basetype);
1412 if (fieldno >= 0)
1413 {
1414 /* If the type comes from a different objfile we can't cache
1415 it, it may have a different lifetime. PR 2384 */
1416 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1417 {
1418 TYPE_VPTR_FIELDNO (type) = fieldno;
1419 TYPE_VPTR_BASETYPE (type) = basetype;
1420 }
1421 if (basetypep)
1422 *basetypep = basetype;
1423 return fieldno;
1424 }
1425 }
1426
1427 /* Not found. */
1428 return -1;
1429 }
1430 else
1431 {
1432 if (basetypep)
1433 *basetypep = TYPE_VPTR_BASETYPE (type);
1434 return TYPE_VPTR_FIELDNO (type);
1435 }
1436 }
1437
1438 static void
1439 stub_noname_complaint (void)
1440 {
1441 complaint (&symfile_complaints, _("stub type has NULL name"));
1442 }
1443
1444 /* Find the real type of TYPE. This function returns the real type,
1445 after removing all layers of typedefs, and completing opaque or stub
1446 types. Completion changes the TYPE argument, but stripping of
1447 typedefs does not.
1448
1449 Instance flags (e.g. const/volatile) are preserved as typedefs are
1450 stripped. If necessary a new qualified form of the underlying type
1451 is created.
1452
1453 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1454 not been computed and we're either in the middle of reading symbols, or
1455 there was no name for the typedef in the debug info.
1456
1457 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1458 the target type.
1459
1460 If this is a stubbed struct (i.e. declared as struct foo *), see if
1461 we can find a full definition in some other file. If so, copy this
1462 definition, so we can use it in future. There used to be a comment
1463 (but not any code) that if we don't find a full definition, we'd
1464 set a flag so we don't spend time in the future checking the same
1465 type. That would be a mistake, though--we might load in more
1466 symbols which contain a full definition for the type. */
1467
1468 struct type *
1469 check_typedef (struct type *type)
1470 {
1471 struct type *orig_type = type;
1472 /* While we're removing typedefs, we don't want to lose qualifiers.
1473 E.g., const/volatile. */
1474 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1475
1476 gdb_assert (type);
1477
1478 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1479 {
1480 if (!TYPE_TARGET_TYPE (type))
1481 {
1482 char *name;
1483 struct symbol *sym;
1484
1485 /* It is dangerous to call lookup_symbol if we are currently
1486 reading a symtab. Infinite recursion is one danger. */
1487 if (currently_reading_symtab)
1488 return make_qualified_type (type, instance_flags, NULL);
1489
1490 name = type_name_no_tag (type);
1491 /* FIXME: shouldn't we separately check the TYPE_NAME and
1492 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1493 VAR_DOMAIN as appropriate? (this code was written before
1494 TYPE_NAME and TYPE_TAG_NAME were separate). */
1495 if (name == NULL)
1496 {
1497 stub_noname_complaint ();
1498 return make_qualified_type (type, instance_flags, NULL);
1499 }
1500 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1501 if (sym)
1502 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1503 else /* TYPE_CODE_UNDEF */
1504 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1505 }
1506 type = TYPE_TARGET_TYPE (type);
1507
1508 /* Preserve the instance flags as we traverse down the typedef chain.
1509
1510 Handling address spaces/classes is nasty, what do we do if there's a
1511 conflict?
1512 E.g., what if an outer typedef marks the type as class_1 and an inner
1513 typedef marks the type as class_2?
1514 This is the wrong place to do such error checking. We leave it to
1515 the code that created the typedef in the first place to flag the
1516 error. We just pick the outer address space (akin to letting the
1517 outer cast in a chain of casting win), instead of assuming
1518 "it can't happen". */
1519 {
1520 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1521 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1522 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1523 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1524
1525 /* Treat code vs data spaces and address classes separately. */
1526 if ((instance_flags & ALL_SPACES) != 0)
1527 new_instance_flags &= ~ALL_SPACES;
1528 if ((instance_flags & ALL_CLASSES) != 0)
1529 new_instance_flags &= ~ALL_CLASSES;
1530
1531 instance_flags |= new_instance_flags;
1532 }
1533 }
1534
1535 /* If this is a struct/class/union with no fields, then check
1536 whether a full definition exists somewhere else. This is for
1537 systems where a type definition with no fields is issued for such
1538 types, instead of identifying them as stub types in the first
1539 place. */
1540
1541 if (TYPE_IS_OPAQUE (type)
1542 && opaque_type_resolution
1543 && !currently_reading_symtab)
1544 {
1545 char *name = type_name_no_tag (type);
1546 struct type *newtype;
1547
1548 if (name == NULL)
1549 {
1550 stub_noname_complaint ();
1551 return make_qualified_type (type, instance_flags, NULL);
1552 }
1553 newtype = lookup_transparent_type (name);
1554
1555 if (newtype)
1556 {
1557 /* If the resolved type and the stub are in the same
1558 objfile, then replace the stub type with the real deal.
1559 But if they're in separate objfiles, leave the stub
1560 alone; we'll just look up the transparent type every time
1561 we call check_typedef. We can't create pointers between
1562 types allocated to different objfiles, since they may
1563 have different lifetimes. Trying to copy NEWTYPE over to
1564 TYPE's objfile is pointless, too, since you'll have to
1565 move over any other types NEWTYPE refers to, which could
1566 be an unbounded amount of stuff. */
1567 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1568 type = make_qualified_type (newtype,
1569 TYPE_INSTANCE_FLAGS (type),
1570 type);
1571 else
1572 type = newtype;
1573 }
1574 }
1575 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1576 types. */
1577 else if (TYPE_STUB (type) && !currently_reading_symtab)
1578 {
1579 char *name = type_name_no_tag (type);
1580 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1581 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1582 as appropriate? (this code was written before TYPE_NAME and
1583 TYPE_TAG_NAME were separate). */
1584 struct symbol *sym;
1585
1586 if (name == NULL)
1587 {
1588 stub_noname_complaint ();
1589 return make_qualified_type (type, instance_flags, NULL);
1590 }
1591 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1592 if (sym)
1593 {
1594 /* Same as above for opaque types, we can replace the stub
1595 with the complete type only if they are in the same
1596 objfile. */
1597 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1598 type = make_qualified_type (SYMBOL_TYPE (sym),
1599 TYPE_INSTANCE_FLAGS (type),
1600 type);
1601 else
1602 type = SYMBOL_TYPE (sym);
1603 }
1604 }
1605
1606 if (TYPE_TARGET_STUB (type))
1607 {
1608 struct type *range_type;
1609 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1610
1611 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1612 {
1613 /* Nothing we can do. */
1614 }
1615 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1616 && TYPE_NFIELDS (type) == 1
1617 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1618 == TYPE_CODE_RANGE))
1619 {
1620 /* Now recompute the length of the array type, based on its
1621 number of elements and the target type's length.
1622 Watch out for Ada null Ada arrays where the high bound
1623 is smaller than the low bound. */
1624 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1625 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1626 ULONGEST len;
1627
1628 if (high_bound < low_bound)
1629 len = 0;
1630 else
1631 {
1632 /* For now, we conservatively take the array length to be 0
1633 if its length exceeds UINT_MAX. The code below assumes
1634 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1635 which is technically not guaranteed by C, but is usually true
1636 (because it would be true if x were unsigned with its
1637 high-order bit on). It uses the fact that
1638 high_bound-low_bound is always representable in
1639 ULONGEST and that if high_bound-low_bound+1 overflows,
1640 it overflows to 0. We must change these tests if we
1641 decide to increase the representation of TYPE_LENGTH
1642 from unsigned int to ULONGEST. */
1643 ULONGEST ulow = low_bound, uhigh = high_bound;
1644 ULONGEST tlen = TYPE_LENGTH (target_type);
1645
1646 len = tlen * (uhigh - ulow + 1);
1647 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1648 || len > UINT_MAX)
1649 len = 0;
1650 }
1651 TYPE_LENGTH (type) = len;
1652 TYPE_TARGET_STUB (type) = 0;
1653 }
1654 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1655 {
1656 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1657 TYPE_TARGET_STUB (type) = 0;
1658 }
1659 }
1660
1661 type = make_qualified_type (type, instance_flags, NULL);
1662
1663 /* Cache TYPE_LENGTH for future use. */
1664 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1665
1666 return type;
1667 }
1668
1669 /* Parse a type expression in the string [P..P+LENGTH). If an error
1670 occurs, silently return a void type. */
1671
1672 static struct type *
1673 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1674 {
1675 struct ui_file *saved_gdb_stderr;
1676 struct type *type;
1677
1678 /* Suppress error messages. */
1679 saved_gdb_stderr = gdb_stderr;
1680 gdb_stderr = ui_file_new ();
1681
1682 /* Call parse_and_eval_type() without fear of longjmp()s. */
1683 if (!gdb_parse_and_eval_type (p, length, &type))
1684 type = builtin_type (gdbarch)->builtin_void;
1685
1686 /* Stop suppressing error messages. */
1687 ui_file_delete (gdb_stderr);
1688 gdb_stderr = saved_gdb_stderr;
1689
1690 return type;
1691 }
1692
1693 /* Ugly hack to convert method stubs into method types.
1694
1695 He ain't kiddin'. This demangles the name of the method into a
1696 string including argument types, parses out each argument type,
1697 generates a string casting a zero to that type, evaluates the
1698 string, and stuffs the resulting type into an argtype vector!!!
1699 Then it knows the type of the whole function (including argument
1700 types for overloading), which info used to be in the stab's but was
1701 removed to hack back the space required for them. */
1702
1703 static void
1704 check_stub_method (struct type *type, int method_id, int signature_id)
1705 {
1706 struct gdbarch *gdbarch = get_type_arch (type);
1707 struct fn_field *f;
1708 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1709 char *demangled_name = cplus_demangle (mangled_name,
1710 DMGL_PARAMS | DMGL_ANSI);
1711 char *argtypetext, *p;
1712 int depth = 0, argcount = 1;
1713 struct field *argtypes;
1714 struct type *mtype;
1715
1716 /* Make sure we got back a function string that we can use. */
1717 if (demangled_name)
1718 p = strchr (demangled_name, '(');
1719 else
1720 p = NULL;
1721
1722 if (demangled_name == NULL || p == NULL)
1723 error (_("Internal: Cannot demangle mangled name `%s'."),
1724 mangled_name);
1725
1726 /* Now, read in the parameters that define this type. */
1727 p += 1;
1728 argtypetext = p;
1729 while (*p)
1730 {
1731 if (*p == '(' || *p == '<')
1732 {
1733 depth += 1;
1734 }
1735 else if (*p == ')' || *p == '>')
1736 {
1737 depth -= 1;
1738 }
1739 else if (*p == ',' && depth == 0)
1740 {
1741 argcount += 1;
1742 }
1743
1744 p += 1;
1745 }
1746
1747 /* If we read one argument and it was ``void'', don't count it. */
1748 if (strncmp (argtypetext, "(void)", 6) == 0)
1749 argcount -= 1;
1750
1751 /* We need one extra slot, for the THIS pointer. */
1752
1753 argtypes = (struct field *)
1754 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1755 p = argtypetext;
1756
1757 /* Add THIS pointer for non-static methods. */
1758 f = TYPE_FN_FIELDLIST1 (type, method_id);
1759 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1760 argcount = 0;
1761 else
1762 {
1763 argtypes[0].type = lookup_pointer_type (type);
1764 argcount = 1;
1765 }
1766
1767 if (*p != ')') /* () means no args, skip while. */
1768 {
1769 depth = 0;
1770 while (*p)
1771 {
1772 if (depth <= 0 && (*p == ',' || *p == ')'))
1773 {
1774 /* Avoid parsing of ellipsis, they will be handled below.
1775 Also avoid ``void'' as above. */
1776 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1777 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1778 {
1779 argtypes[argcount].type =
1780 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1781 argcount += 1;
1782 }
1783 argtypetext = p + 1;
1784 }
1785
1786 if (*p == '(' || *p == '<')
1787 {
1788 depth += 1;
1789 }
1790 else if (*p == ')' || *p == '>')
1791 {
1792 depth -= 1;
1793 }
1794
1795 p += 1;
1796 }
1797 }
1798
1799 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1800
1801 /* Now update the old "stub" type into a real type. */
1802 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1803 TYPE_DOMAIN_TYPE (mtype) = type;
1804 TYPE_FIELDS (mtype) = argtypes;
1805 TYPE_NFIELDS (mtype) = argcount;
1806 TYPE_STUB (mtype) = 0;
1807 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1808 if (p[-2] == '.')
1809 TYPE_VARARGS (mtype) = 1;
1810
1811 xfree (demangled_name);
1812 }
1813
1814 /* This is the external interface to check_stub_method, above. This
1815 function unstubs all of the signatures for TYPE's METHOD_ID method
1816 name. After calling this function TYPE_FN_FIELD_STUB will be
1817 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1818 correct.
1819
1820 This function unfortunately can not die until stabs do. */
1821
1822 void
1823 check_stub_method_group (struct type *type, int method_id)
1824 {
1825 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1826 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1827 int j, found_stub = 0;
1828
1829 for (j = 0; j < len; j++)
1830 if (TYPE_FN_FIELD_STUB (f, j))
1831 {
1832 found_stub = 1;
1833 check_stub_method (type, method_id, j);
1834 }
1835
1836 /* GNU v3 methods with incorrect names were corrected when we read
1837 in type information, because it was cheaper to do it then. The
1838 only GNU v2 methods with incorrect method names are operators and
1839 destructors; destructors were also corrected when we read in type
1840 information.
1841
1842 Therefore the only thing we need to handle here are v2 operator
1843 names. */
1844 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1845 {
1846 int ret;
1847 char dem_opname[256];
1848
1849 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1850 method_id),
1851 dem_opname, DMGL_ANSI);
1852 if (!ret)
1853 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1854 method_id),
1855 dem_opname, 0);
1856 if (ret)
1857 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1858 }
1859 }
1860
1861 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1862 const struct cplus_struct_type cplus_struct_default = { };
1863
1864 void
1865 allocate_cplus_struct_type (struct type *type)
1866 {
1867 if (HAVE_CPLUS_STRUCT (type))
1868 /* Structure was already allocated. Nothing more to do. */
1869 return;
1870
1871 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1872 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1873 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1874 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1875 }
1876
1877 const struct gnat_aux_type gnat_aux_default =
1878 { NULL };
1879
1880 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1881 and allocate the associated gnat-specific data. The gnat-specific
1882 data is also initialized to gnat_aux_default. */
1883 void
1884 allocate_gnat_aux_type (struct type *type)
1885 {
1886 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1887 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1888 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1889 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1890 }
1891
1892
1893 /* Helper function to initialize the standard scalar types.
1894
1895 If NAME is non-NULL, then we make a copy of the string pointed
1896 to by name in the objfile_obstack for that objfile, and initialize
1897 the type name to that copy. There are places (mipsread.c in particular),
1898 where init_type is called with a NULL value for NAME). */
1899
1900 struct type *
1901 init_type (enum type_code code, int length, int flags,
1902 char *name, struct objfile *objfile)
1903 {
1904 struct type *type;
1905
1906 type = alloc_type (objfile);
1907 TYPE_CODE (type) = code;
1908 TYPE_LENGTH (type) = length;
1909
1910 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1911 if (flags & TYPE_FLAG_UNSIGNED)
1912 TYPE_UNSIGNED (type) = 1;
1913 if (flags & TYPE_FLAG_NOSIGN)
1914 TYPE_NOSIGN (type) = 1;
1915 if (flags & TYPE_FLAG_STUB)
1916 TYPE_STUB (type) = 1;
1917 if (flags & TYPE_FLAG_TARGET_STUB)
1918 TYPE_TARGET_STUB (type) = 1;
1919 if (flags & TYPE_FLAG_STATIC)
1920 TYPE_STATIC (type) = 1;
1921 if (flags & TYPE_FLAG_PROTOTYPED)
1922 TYPE_PROTOTYPED (type) = 1;
1923 if (flags & TYPE_FLAG_INCOMPLETE)
1924 TYPE_INCOMPLETE (type) = 1;
1925 if (flags & TYPE_FLAG_VARARGS)
1926 TYPE_VARARGS (type) = 1;
1927 if (flags & TYPE_FLAG_VECTOR)
1928 TYPE_VECTOR (type) = 1;
1929 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1930 TYPE_STUB_SUPPORTED (type) = 1;
1931 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1932 TYPE_FIXED_INSTANCE (type) = 1;
1933 if (flags & TYPE_FLAG_GNU_IFUNC)
1934 TYPE_GNU_IFUNC (type) = 1;
1935
1936 if (name)
1937 TYPE_NAME (type) = obsavestring (name, strlen (name),
1938 &objfile->objfile_obstack);
1939
1940 /* C++ fancies. */
1941
1942 if (name && strcmp (name, "char") == 0)
1943 TYPE_NOSIGN (type) = 1;
1944
1945 switch (code)
1946 {
1947 case TYPE_CODE_STRUCT:
1948 case TYPE_CODE_UNION:
1949 case TYPE_CODE_NAMESPACE:
1950 INIT_CPLUS_SPECIFIC (type);
1951 break;
1952 case TYPE_CODE_FLT:
1953 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1954 break;
1955 case TYPE_CODE_FUNC:
1956 INIT_FUNC_SPECIFIC (type);
1957 break;
1958 }
1959 return type;
1960 }
1961
1962 int
1963 can_dereference (struct type *t)
1964 {
1965 /* FIXME: Should we return true for references as well as
1966 pointers? */
1967 CHECK_TYPEDEF (t);
1968 return
1969 (t != NULL
1970 && TYPE_CODE (t) == TYPE_CODE_PTR
1971 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1972 }
1973
1974 int
1975 is_integral_type (struct type *t)
1976 {
1977 CHECK_TYPEDEF (t);
1978 return
1979 ((t != NULL)
1980 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1981 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1982 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1983 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1984 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1985 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1986 }
1987
1988 /* Return true if TYPE is scalar. */
1989
1990 static int
1991 is_scalar_type (struct type *type)
1992 {
1993 CHECK_TYPEDEF (type);
1994
1995 switch (TYPE_CODE (type))
1996 {
1997 case TYPE_CODE_ARRAY:
1998 case TYPE_CODE_STRUCT:
1999 case TYPE_CODE_UNION:
2000 case TYPE_CODE_SET:
2001 case TYPE_CODE_STRING:
2002 case TYPE_CODE_BITSTRING:
2003 return 0;
2004 default:
2005 return 1;
2006 }
2007 }
2008
2009 /* Return true if T is scalar, or a composite type which in practice has
2010 the memory layout of a scalar type. E.g., an array or struct with only
2011 one scalar element inside it, or a union with only scalar elements. */
2012
2013 int
2014 is_scalar_type_recursive (struct type *t)
2015 {
2016 CHECK_TYPEDEF (t);
2017
2018 if (is_scalar_type (t))
2019 return 1;
2020 /* Are we dealing with an array or string of known dimensions? */
2021 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2022 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2023 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2024 {
2025 LONGEST low_bound, high_bound;
2026 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2027
2028 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2029
2030 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2031 }
2032 /* Are we dealing with a struct with one element? */
2033 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2034 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2035 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2036 {
2037 int i, n = TYPE_NFIELDS (t);
2038
2039 /* If all elements of the union are scalar, then the union is scalar. */
2040 for (i = 0; i < n; i++)
2041 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2042 return 0;
2043
2044 return 1;
2045 }
2046
2047 return 0;
2048 }
2049
2050 /* A helper function which returns true if types A and B represent the
2051 "same" class type. This is true if the types have the same main
2052 type, or the same name. */
2053
2054 int
2055 class_types_same_p (const struct type *a, const struct type *b)
2056 {
2057 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2058 || (TYPE_NAME (a) && TYPE_NAME (b)
2059 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2060 }
2061
2062 /* If BASE is an ancestor of DCLASS return the distance between them.
2063 otherwise return -1;
2064 eg:
2065
2066 class A {};
2067 class B: public A {};
2068 class C: public B {};
2069 class D: C {};
2070
2071 distance_to_ancestor (A, A, 0) = 0
2072 distance_to_ancestor (A, B, 0) = 1
2073 distance_to_ancestor (A, C, 0) = 2
2074 distance_to_ancestor (A, D, 0) = 3
2075
2076 If PUBLIC is 1 then only public ancestors are considered,
2077 and the function returns the distance only if BASE is a public ancestor
2078 of DCLASS.
2079 Eg:
2080
2081 distance_to_ancestor (A, D, 1) = -1. */
2082
2083 static int
2084 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2085 {
2086 int i;
2087 int d;
2088
2089 CHECK_TYPEDEF (base);
2090 CHECK_TYPEDEF (dclass);
2091
2092 if (class_types_same_p (base, dclass))
2093 return 0;
2094
2095 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2096 {
2097 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2098 continue;
2099
2100 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2101 if (d >= 0)
2102 return 1 + d;
2103 }
2104
2105 return -1;
2106 }
2107
2108 /* Check whether BASE is an ancestor or base class or DCLASS
2109 Return 1 if so, and 0 if not.
2110 Note: If BASE and DCLASS are of the same type, this function
2111 will return 1. So for some class A, is_ancestor (A, A) will
2112 return 1. */
2113
2114 int
2115 is_ancestor (struct type *base, struct type *dclass)
2116 {
2117 return distance_to_ancestor (base, dclass, 0) >= 0;
2118 }
2119
2120 /* Like is_ancestor, but only returns true when BASE is a public
2121 ancestor of DCLASS. */
2122
2123 int
2124 is_public_ancestor (struct type *base, struct type *dclass)
2125 {
2126 return distance_to_ancestor (base, dclass, 1) >= 0;
2127 }
2128
2129 /* A helper function for is_unique_ancestor. */
2130
2131 static int
2132 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2133 int *offset,
2134 const gdb_byte *valaddr, int embedded_offset,
2135 CORE_ADDR address, struct value *val)
2136 {
2137 int i, count = 0;
2138
2139 CHECK_TYPEDEF (base);
2140 CHECK_TYPEDEF (dclass);
2141
2142 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2143 {
2144 struct type *iter;
2145 int this_offset;
2146
2147 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2148
2149 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2150 address, val);
2151
2152 if (class_types_same_p (base, iter))
2153 {
2154 /* If this is the first subclass, set *OFFSET and set count
2155 to 1. Otherwise, if this is at the same offset as
2156 previous instances, do nothing. Otherwise, increment
2157 count. */
2158 if (*offset == -1)
2159 {
2160 *offset = this_offset;
2161 count = 1;
2162 }
2163 else if (this_offset == *offset)
2164 {
2165 /* Nothing. */
2166 }
2167 else
2168 ++count;
2169 }
2170 else
2171 count += is_unique_ancestor_worker (base, iter, offset,
2172 valaddr,
2173 embedded_offset + this_offset,
2174 address, val);
2175 }
2176
2177 return count;
2178 }
2179
2180 /* Like is_ancestor, but only returns true if BASE is a unique base
2181 class of the type of VAL. */
2182
2183 int
2184 is_unique_ancestor (struct type *base, struct value *val)
2185 {
2186 int offset = -1;
2187
2188 return is_unique_ancestor_worker (base, value_type (val), &offset,
2189 value_contents_for_printing (val),
2190 value_embedded_offset (val),
2191 value_address (val), val) == 1;
2192 }
2193
2194 \f
2195
2196 /* Return the sum of the rank of A with the rank of B. */
2197
2198 struct rank
2199 sum_ranks (struct rank a, struct rank b)
2200 {
2201 struct rank c;
2202 c.rank = a.rank + b.rank;
2203 c.subrank = a.subrank + b.subrank;
2204 return c;
2205 }
2206
2207 /* Compare rank A and B and return:
2208 0 if a = b
2209 1 if a is better than b
2210 -1 if b is better than a. */
2211
2212 int
2213 compare_ranks (struct rank a, struct rank b)
2214 {
2215 if (a.rank == b.rank)
2216 {
2217 if (a.subrank == b.subrank)
2218 return 0;
2219 if (a.subrank < b.subrank)
2220 return 1;
2221 if (a.subrank > b.subrank)
2222 return -1;
2223 }
2224
2225 if (a.rank < b.rank)
2226 return 1;
2227
2228 /* a.rank > b.rank */
2229 return -1;
2230 }
2231
2232 /* Functions for overload resolution begin here. */
2233
2234 /* Compare two badness vectors A and B and return the result.
2235 0 => A and B are identical
2236 1 => A and B are incomparable
2237 2 => A is better than B
2238 3 => A is worse than B */
2239
2240 int
2241 compare_badness (struct badness_vector *a, struct badness_vector *b)
2242 {
2243 int i;
2244 int tmp;
2245 short found_pos = 0; /* any positives in c? */
2246 short found_neg = 0; /* any negatives in c? */
2247
2248 /* differing lengths => incomparable */
2249 if (a->length != b->length)
2250 return 1;
2251
2252 /* Subtract b from a */
2253 for (i = 0; i < a->length; i++)
2254 {
2255 tmp = compare_ranks (b->rank[i], a->rank[i]);
2256 if (tmp > 0)
2257 found_pos = 1;
2258 else if (tmp < 0)
2259 found_neg = 1;
2260 }
2261
2262 if (found_pos)
2263 {
2264 if (found_neg)
2265 return 1; /* incomparable */
2266 else
2267 return 3; /* A > B */
2268 }
2269 else
2270 /* no positives */
2271 {
2272 if (found_neg)
2273 return 2; /* A < B */
2274 else
2275 return 0; /* A == B */
2276 }
2277 }
2278
2279 /* Rank a function by comparing its parameter types (PARMS, length
2280 NPARMS), to the types of an argument list (ARGS, length NARGS).
2281 Return a pointer to a badness vector. This has NARGS + 1
2282 entries. */
2283
2284 struct badness_vector *
2285 rank_function (struct type **parms, int nparms,
2286 struct type **args, int nargs)
2287 {
2288 int i;
2289 struct badness_vector *bv;
2290 int min_len = nparms < nargs ? nparms : nargs;
2291
2292 bv = xmalloc (sizeof (struct badness_vector));
2293 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2294 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2295
2296 /* First compare the lengths of the supplied lists.
2297 If there is a mismatch, set it to a high value. */
2298
2299 /* pai/1997-06-03 FIXME: when we have debug info about default
2300 arguments and ellipsis parameter lists, we should consider those
2301 and rank the length-match more finely. */
2302
2303 LENGTH_MATCH (bv) = (nargs != nparms)
2304 ? LENGTH_MISMATCH_BADNESS
2305 : EXACT_MATCH_BADNESS;
2306
2307 /* Now rank all the parameters of the candidate function. */
2308 for (i = 1; i <= min_len; i++)
2309 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2310
2311 /* If more arguments than parameters, add dummy entries. */
2312 for (i = min_len + 1; i <= nargs; i++)
2313 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2314
2315 return bv;
2316 }
2317
2318 /* Compare the names of two integer types, assuming that any sign
2319 qualifiers have been checked already. We do it this way because
2320 there may be an "int" in the name of one of the types. */
2321
2322 static int
2323 integer_types_same_name_p (const char *first, const char *second)
2324 {
2325 int first_p, second_p;
2326
2327 /* If both are shorts, return 1; if neither is a short, keep
2328 checking. */
2329 first_p = (strstr (first, "short") != NULL);
2330 second_p = (strstr (second, "short") != NULL);
2331 if (first_p && second_p)
2332 return 1;
2333 if (first_p || second_p)
2334 return 0;
2335
2336 /* Likewise for long. */
2337 first_p = (strstr (first, "long") != NULL);
2338 second_p = (strstr (second, "long") != NULL);
2339 if (first_p && second_p)
2340 return 1;
2341 if (first_p || second_p)
2342 return 0;
2343
2344 /* Likewise for char. */
2345 first_p = (strstr (first, "char") != NULL);
2346 second_p = (strstr (second, "char") != NULL);
2347 if (first_p && second_p)
2348 return 1;
2349 if (first_p || second_p)
2350 return 0;
2351
2352 /* They must both be ints. */
2353 return 1;
2354 }
2355
2356 /* Compares type A to type B returns 1 if the represent the same type
2357 0 otherwise. */
2358
2359 static int
2360 types_equal (struct type *a, struct type *b)
2361 {
2362 /* Identical type pointers. */
2363 /* However, this still doesn't catch all cases of same type for b
2364 and a. The reason is that builtin types are different from
2365 the same ones constructed from the object. */
2366 if (a == b)
2367 return 1;
2368
2369 /* Resolve typedefs */
2370 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2371 a = check_typedef (a);
2372 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2373 b = check_typedef (b);
2374
2375 /* If after resolving typedefs a and b are not of the same type
2376 code then they are not equal. */
2377 if (TYPE_CODE (a) != TYPE_CODE (b))
2378 return 0;
2379
2380 /* If a and b are both pointers types or both reference types then
2381 they are equal of the same type iff the objects they refer to are
2382 of the same type. */
2383 if (TYPE_CODE (a) == TYPE_CODE_PTR
2384 || TYPE_CODE (a) == TYPE_CODE_REF)
2385 return types_equal (TYPE_TARGET_TYPE (a),
2386 TYPE_TARGET_TYPE (b));
2387
2388 /* Well, damnit, if the names are exactly the same, I'll say they
2389 are exactly the same. This happens when we generate method
2390 stubs. The types won't point to the same address, but they
2391 really are the same. */
2392
2393 if (TYPE_NAME (a) && TYPE_NAME (b)
2394 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2395 return 1;
2396
2397 /* Check if identical after resolving typedefs. */
2398 if (a == b)
2399 return 1;
2400
2401 return 0;
2402 }
2403
2404 /* Compare one type (PARM) for compatibility with another (ARG).
2405 * PARM is intended to be the parameter type of a function; and
2406 * ARG is the supplied argument's type. This function tests if
2407 * the latter can be converted to the former.
2408 *
2409 * Return 0 if they are identical types;
2410 * Otherwise, return an integer which corresponds to how compatible
2411 * PARM is to ARG. The higher the return value, the worse the match.
2412 * Generally the "bad" conversions are all uniformly assigned a 100. */
2413
2414 struct rank
2415 rank_one_type (struct type *parm, struct type *arg)
2416 {
2417 struct rank rank = {0,0};
2418
2419 if (types_equal (parm, arg))
2420 return EXACT_MATCH_BADNESS;
2421
2422 /* Resolve typedefs */
2423 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2424 parm = check_typedef (parm);
2425 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2426 arg = check_typedef (arg);
2427
2428 /* See through references, since we can almost make non-references
2429 references. */
2430 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2431 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2432 REFERENCE_CONVERSION_BADNESS));
2433 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2434 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2435 REFERENCE_CONVERSION_BADNESS));
2436 if (overload_debug)
2437 /* Debugging only. */
2438 fprintf_filtered (gdb_stderr,
2439 "------ Arg is %s [%d], parm is %s [%d]\n",
2440 TYPE_NAME (arg), TYPE_CODE (arg),
2441 TYPE_NAME (parm), TYPE_CODE (parm));
2442
2443 /* x -> y means arg of type x being supplied for parameter of type y. */
2444
2445 switch (TYPE_CODE (parm))
2446 {
2447 case TYPE_CODE_PTR:
2448 switch (TYPE_CODE (arg))
2449 {
2450 case TYPE_CODE_PTR:
2451
2452 /* Allowed pointer conversions are:
2453 (a) pointer to void-pointer conversion. */
2454 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2455 return VOID_PTR_CONVERSION_BADNESS;
2456
2457 /* (b) pointer to ancestor-pointer conversion. */
2458 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2459 TYPE_TARGET_TYPE (arg),
2460 0);
2461 if (rank.subrank >= 0)
2462 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2463
2464 return INCOMPATIBLE_TYPE_BADNESS;
2465 case TYPE_CODE_ARRAY:
2466 if (types_equal (TYPE_TARGET_TYPE (parm),
2467 TYPE_TARGET_TYPE (arg)))
2468 return EXACT_MATCH_BADNESS;
2469 return INCOMPATIBLE_TYPE_BADNESS;
2470 case TYPE_CODE_FUNC:
2471 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2472 case TYPE_CODE_INT:
2473 case TYPE_CODE_ENUM:
2474 case TYPE_CODE_FLAGS:
2475 case TYPE_CODE_CHAR:
2476 case TYPE_CODE_RANGE:
2477 case TYPE_CODE_BOOL:
2478 default:
2479 return INCOMPATIBLE_TYPE_BADNESS;
2480 }
2481 case TYPE_CODE_ARRAY:
2482 switch (TYPE_CODE (arg))
2483 {
2484 case TYPE_CODE_PTR:
2485 case TYPE_CODE_ARRAY:
2486 return rank_one_type (TYPE_TARGET_TYPE (parm),
2487 TYPE_TARGET_TYPE (arg));
2488 default:
2489 return INCOMPATIBLE_TYPE_BADNESS;
2490 }
2491 case TYPE_CODE_FUNC:
2492 switch (TYPE_CODE (arg))
2493 {
2494 case TYPE_CODE_PTR: /* funcptr -> func */
2495 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2496 default:
2497 return INCOMPATIBLE_TYPE_BADNESS;
2498 }
2499 case TYPE_CODE_INT:
2500 switch (TYPE_CODE (arg))
2501 {
2502 case TYPE_CODE_INT:
2503 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2504 {
2505 /* Deal with signed, unsigned, and plain chars and
2506 signed and unsigned ints. */
2507 if (TYPE_NOSIGN (parm))
2508 {
2509 /* This case only for character types. */
2510 if (TYPE_NOSIGN (arg))
2511 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2512 else /* signed/unsigned char -> plain char */
2513 return INTEGER_CONVERSION_BADNESS;
2514 }
2515 else if (TYPE_UNSIGNED (parm))
2516 {
2517 if (TYPE_UNSIGNED (arg))
2518 {
2519 /* unsigned int -> unsigned int, or
2520 unsigned long -> unsigned long */
2521 if (integer_types_same_name_p (TYPE_NAME (parm),
2522 TYPE_NAME (arg)))
2523 return EXACT_MATCH_BADNESS;
2524 else if (integer_types_same_name_p (TYPE_NAME (arg),
2525 "int")
2526 && integer_types_same_name_p (TYPE_NAME (parm),
2527 "long"))
2528 /* unsigned int -> unsigned long */
2529 return INTEGER_PROMOTION_BADNESS;
2530 else
2531 /* unsigned long -> unsigned int */
2532 return INTEGER_CONVERSION_BADNESS;
2533 }
2534 else
2535 {
2536 if (integer_types_same_name_p (TYPE_NAME (arg),
2537 "long")
2538 && integer_types_same_name_p (TYPE_NAME (parm),
2539 "int"))
2540 /* signed long -> unsigned int */
2541 return INTEGER_CONVERSION_BADNESS;
2542 else
2543 /* signed int/long -> unsigned int/long */
2544 return INTEGER_CONVERSION_BADNESS;
2545 }
2546 }
2547 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2548 {
2549 if (integer_types_same_name_p (TYPE_NAME (parm),
2550 TYPE_NAME (arg)))
2551 return EXACT_MATCH_BADNESS;
2552 else if (integer_types_same_name_p (TYPE_NAME (arg),
2553 "int")
2554 && integer_types_same_name_p (TYPE_NAME (parm),
2555 "long"))
2556 return INTEGER_PROMOTION_BADNESS;
2557 else
2558 return INTEGER_CONVERSION_BADNESS;
2559 }
2560 else
2561 return INTEGER_CONVERSION_BADNESS;
2562 }
2563 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2564 return INTEGER_PROMOTION_BADNESS;
2565 else
2566 return INTEGER_CONVERSION_BADNESS;
2567 case TYPE_CODE_ENUM:
2568 case TYPE_CODE_FLAGS:
2569 case TYPE_CODE_CHAR:
2570 case TYPE_CODE_RANGE:
2571 case TYPE_CODE_BOOL:
2572 return INTEGER_PROMOTION_BADNESS;
2573 case TYPE_CODE_FLT:
2574 return INT_FLOAT_CONVERSION_BADNESS;
2575 case TYPE_CODE_PTR:
2576 return NS_POINTER_CONVERSION_BADNESS;
2577 default:
2578 return INCOMPATIBLE_TYPE_BADNESS;
2579 }
2580 break;
2581 case TYPE_CODE_ENUM:
2582 switch (TYPE_CODE (arg))
2583 {
2584 case TYPE_CODE_INT:
2585 case TYPE_CODE_CHAR:
2586 case TYPE_CODE_RANGE:
2587 case TYPE_CODE_BOOL:
2588 case TYPE_CODE_ENUM:
2589 return INTEGER_CONVERSION_BADNESS;
2590 case TYPE_CODE_FLT:
2591 return INT_FLOAT_CONVERSION_BADNESS;
2592 default:
2593 return INCOMPATIBLE_TYPE_BADNESS;
2594 }
2595 break;
2596 case TYPE_CODE_CHAR:
2597 switch (TYPE_CODE (arg))
2598 {
2599 case TYPE_CODE_RANGE:
2600 case TYPE_CODE_BOOL:
2601 case TYPE_CODE_ENUM:
2602 return INTEGER_CONVERSION_BADNESS;
2603 case TYPE_CODE_FLT:
2604 return INT_FLOAT_CONVERSION_BADNESS;
2605 case TYPE_CODE_INT:
2606 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2607 return INTEGER_CONVERSION_BADNESS;
2608 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2609 return INTEGER_PROMOTION_BADNESS;
2610 /* >>> !! else fall through !! <<< */
2611 case TYPE_CODE_CHAR:
2612 /* Deal with signed, unsigned, and plain chars for C++ and
2613 with int cases falling through from previous case. */
2614 if (TYPE_NOSIGN (parm))
2615 {
2616 if (TYPE_NOSIGN (arg))
2617 return EXACT_MATCH_BADNESS;
2618 else
2619 return INTEGER_CONVERSION_BADNESS;
2620 }
2621 else if (TYPE_UNSIGNED (parm))
2622 {
2623 if (TYPE_UNSIGNED (arg))
2624 return EXACT_MATCH_BADNESS;
2625 else
2626 return INTEGER_PROMOTION_BADNESS;
2627 }
2628 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2629 return EXACT_MATCH_BADNESS;
2630 else
2631 return INTEGER_CONVERSION_BADNESS;
2632 default:
2633 return INCOMPATIBLE_TYPE_BADNESS;
2634 }
2635 break;
2636 case TYPE_CODE_RANGE:
2637 switch (TYPE_CODE (arg))
2638 {
2639 case TYPE_CODE_INT:
2640 case TYPE_CODE_CHAR:
2641 case TYPE_CODE_RANGE:
2642 case TYPE_CODE_BOOL:
2643 case TYPE_CODE_ENUM:
2644 return INTEGER_CONVERSION_BADNESS;
2645 case TYPE_CODE_FLT:
2646 return INT_FLOAT_CONVERSION_BADNESS;
2647 default:
2648 return INCOMPATIBLE_TYPE_BADNESS;
2649 }
2650 break;
2651 case TYPE_CODE_BOOL:
2652 switch (TYPE_CODE (arg))
2653 {
2654 case TYPE_CODE_INT:
2655 case TYPE_CODE_CHAR:
2656 case TYPE_CODE_RANGE:
2657 case TYPE_CODE_ENUM:
2658 case TYPE_CODE_FLT:
2659 return INCOMPATIBLE_TYPE_BADNESS;
2660 case TYPE_CODE_PTR:
2661 return BOOL_PTR_CONVERSION_BADNESS;
2662 case TYPE_CODE_BOOL:
2663 return EXACT_MATCH_BADNESS;
2664 default:
2665 return INCOMPATIBLE_TYPE_BADNESS;
2666 }
2667 break;
2668 case TYPE_CODE_FLT:
2669 switch (TYPE_CODE (arg))
2670 {
2671 case TYPE_CODE_FLT:
2672 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2673 return FLOAT_PROMOTION_BADNESS;
2674 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2675 return EXACT_MATCH_BADNESS;
2676 else
2677 return FLOAT_CONVERSION_BADNESS;
2678 case TYPE_CODE_INT:
2679 case TYPE_CODE_BOOL:
2680 case TYPE_CODE_ENUM:
2681 case TYPE_CODE_RANGE:
2682 case TYPE_CODE_CHAR:
2683 return INT_FLOAT_CONVERSION_BADNESS;
2684 default:
2685 return INCOMPATIBLE_TYPE_BADNESS;
2686 }
2687 break;
2688 case TYPE_CODE_COMPLEX:
2689 switch (TYPE_CODE (arg))
2690 { /* Strictly not needed for C++, but... */
2691 case TYPE_CODE_FLT:
2692 return FLOAT_PROMOTION_BADNESS;
2693 case TYPE_CODE_COMPLEX:
2694 return EXACT_MATCH_BADNESS;
2695 default:
2696 return INCOMPATIBLE_TYPE_BADNESS;
2697 }
2698 break;
2699 case TYPE_CODE_STRUCT:
2700 /* currently same as TYPE_CODE_CLASS. */
2701 switch (TYPE_CODE (arg))
2702 {
2703 case TYPE_CODE_STRUCT:
2704 /* Check for derivation */
2705 rank.subrank = distance_to_ancestor (parm, arg, 0);
2706 if (rank.subrank >= 0)
2707 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2708 /* else fall through */
2709 default:
2710 return INCOMPATIBLE_TYPE_BADNESS;
2711 }
2712 break;
2713 case TYPE_CODE_UNION:
2714 switch (TYPE_CODE (arg))
2715 {
2716 case TYPE_CODE_UNION:
2717 default:
2718 return INCOMPATIBLE_TYPE_BADNESS;
2719 }
2720 break;
2721 case TYPE_CODE_MEMBERPTR:
2722 switch (TYPE_CODE (arg))
2723 {
2724 default:
2725 return INCOMPATIBLE_TYPE_BADNESS;
2726 }
2727 break;
2728 case TYPE_CODE_METHOD:
2729 switch (TYPE_CODE (arg))
2730 {
2731
2732 default:
2733 return INCOMPATIBLE_TYPE_BADNESS;
2734 }
2735 break;
2736 case TYPE_CODE_REF:
2737 switch (TYPE_CODE (arg))
2738 {
2739
2740 default:
2741 return INCOMPATIBLE_TYPE_BADNESS;
2742 }
2743
2744 break;
2745 case TYPE_CODE_SET:
2746 switch (TYPE_CODE (arg))
2747 {
2748 /* Not in C++ */
2749 case TYPE_CODE_SET:
2750 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2751 TYPE_FIELD_TYPE (arg, 0));
2752 default:
2753 return INCOMPATIBLE_TYPE_BADNESS;
2754 }
2755 break;
2756 case TYPE_CODE_VOID:
2757 default:
2758 return INCOMPATIBLE_TYPE_BADNESS;
2759 } /* switch (TYPE_CODE (arg)) */
2760 }
2761
2762
2763 /* End of functions for overload resolution. */
2764
2765 static void
2766 print_bit_vector (B_TYPE *bits, int nbits)
2767 {
2768 int bitno;
2769
2770 for (bitno = 0; bitno < nbits; bitno++)
2771 {
2772 if ((bitno % 8) == 0)
2773 {
2774 puts_filtered (" ");
2775 }
2776 if (B_TST (bits, bitno))
2777 printf_filtered (("1"));
2778 else
2779 printf_filtered (("0"));
2780 }
2781 }
2782
2783 /* Note the first arg should be the "this" pointer, we may not want to
2784 include it since we may get into a infinitely recursive
2785 situation. */
2786
2787 static void
2788 print_arg_types (struct field *args, int nargs, int spaces)
2789 {
2790 if (args != NULL)
2791 {
2792 int i;
2793
2794 for (i = 0; i < nargs; i++)
2795 recursive_dump_type (args[i].type, spaces + 2);
2796 }
2797 }
2798
2799 int
2800 field_is_static (struct field *f)
2801 {
2802 /* "static" fields are the fields whose location is not relative
2803 to the address of the enclosing struct. It would be nice to
2804 have a dedicated flag that would be set for static fields when
2805 the type is being created. But in practice, checking the field
2806 loc_kind should give us an accurate answer. */
2807 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2808 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2809 }
2810
2811 static void
2812 dump_fn_fieldlists (struct type *type, int spaces)
2813 {
2814 int method_idx;
2815 int overload_idx;
2816 struct fn_field *f;
2817
2818 printfi_filtered (spaces, "fn_fieldlists ");
2819 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2820 printf_filtered ("\n");
2821 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2822 {
2823 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2824 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2825 method_idx,
2826 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2827 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2828 gdb_stdout);
2829 printf_filtered (_(") length %d\n"),
2830 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2831 for (overload_idx = 0;
2832 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2833 overload_idx++)
2834 {
2835 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2836 overload_idx,
2837 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2838 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2839 gdb_stdout);
2840 printf_filtered (")\n");
2841 printfi_filtered (spaces + 8, "type ");
2842 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2843 gdb_stdout);
2844 printf_filtered ("\n");
2845
2846 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2847 spaces + 8 + 2);
2848
2849 printfi_filtered (spaces + 8, "args ");
2850 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2851 gdb_stdout);
2852 printf_filtered ("\n");
2853
2854 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2855 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2856 overload_idx)),
2857 spaces);
2858 printfi_filtered (spaces + 8, "fcontext ");
2859 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2860 gdb_stdout);
2861 printf_filtered ("\n");
2862
2863 printfi_filtered (spaces + 8, "is_const %d\n",
2864 TYPE_FN_FIELD_CONST (f, overload_idx));
2865 printfi_filtered (spaces + 8, "is_volatile %d\n",
2866 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2867 printfi_filtered (spaces + 8, "is_private %d\n",
2868 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2869 printfi_filtered (spaces + 8, "is_protected %d\n",
2870 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2871 printfi_filtered (spaces + 8, "is_stub %d\n",
2872 TYPE_FN_FIELD_STUB (f, overload_idx));
2873 printfi_filtered (spaces + 8, "voffset %u\n",
2874 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2875 }
2876 }
2877 }
2878
2879 static void
2880 print_cplus_stuff (struct type *type, int spaces)
2881 {
2882 printfi_filtered (spaces, "n_baseclasses %d\n",
2883 TYPE_N_BASECLASSES (type));
2884 printfi_filtered (spaces, "nfn_fields %d\n",
2885 TYPE_NFN_FIELDS (type));
2886 printfi_filtered (spaces, "nfn_fields_total %d\n",
2887 TYPE_NFN_FIELDS_TOTAL (type));
2888 if (TYPE_N_BASECLASSES (type) > 0)
2889 {
2890 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2891 TYPE_N_BASECLASSES (type));
2892 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2893 gdb_stdout);
2894 printf_filtered (")");
2895
2896 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2897 TYPE_N_BASECLASSES (type));
2898 puts_filtered ("\n");
2899 }
2900 if (TYPE_NFIELDS (type) > 0)
2901 {
2902 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2903 {
2904 printfi_filtered (spaces,
2905 "private_field_bits (%d bits at *",
2906 TYPE_NFIELDS (type));
2907 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2908 gdb_stdout);
2909 printf_filtered (")");
2910 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2911 TYPE_NFIELDS (type));
2912 puts_filtered ("\n");
2913 }
2914 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2915 {
2916 printfi_filtered (spaces,
2917 "protected_field_bits (%d bits at *",
2918 TYPE_NFIELDS (type));
2919 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2920 gdb_stdout);
2921 printf_filtered (")");
2922 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2923 TYPE_NFIELDS (type));
2924 puts_filtered ("\n");
2925 }
2926 }
2927 if (TYPE_NFN_FIELDS (type) > 0)
2928 {
2929 dump_fn_fieldlists (type, spaces);
2930 }
2931 }
2932
2933 /* Print the contents of the TYPE's type_specific union, assuming that
2934 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2935
2936 static void
2937 print_gnat_stuff (struct type *type, int spaces)
2938 {
2939 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2940
2941 recursive_dump_type (descriptive_type, spaces + 2);
2942 }
2943
2944 static struct obstack dont_print_type_obstack;
2945
2946 void
2947 recursive_dump_type (struct type *type, int spaces)
2948 {
2949 int idx;
2950
2951 if (spaces == 0)
2952 obstack_begin (&dont_print_type_obstack, 0);
2953
2954 if (TYPE_NFIELDS (type) > 0
2955 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2956 {
2957 struct type **first_dont_print
2958 = (struct type **) obstack_base (&dont_print_type_obstack);
2959
2960 int i = (struct type **)
2961 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2962
2963 while (--i >= 0)
2964 {
2965 if (type == first_dont_print[i])
2966 {
2967 printfi_filtered (spaces, "type node ");
2968 gdb_print_host_address (type, gdb_stdout);
2969 printf_filtered (_(" <same as already seen type>\n"));
2970 return;
2971 }
2972 }
2973
2974 obstack_ptr_grow (&dont_print_type_obstack, type);
2975 }
2976
2977 printfi_filtered (spaces, "type node ");
2978 gdb_print_host_address (type, gdb_stdout);
2979 printf_filtered ("\n");
2980 printfi_filtered (spaces, "name '%s' (",
2981 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2982 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2983 printf_filtered (")\n");
2984 printfi_filtered (spaces, "tagname '%s' (",
2985 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2986 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2987 printf_filtered (")\n");
2988 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2989 switch (TYPE_CODE (type))
2990 {
2991 case TYPE_CODE_UNDEF:
2992 printf_filtered ("(TYPE_CODE_UNDEF)");
2993 break;
2994 case TYPE_CODE_PTR:
2995 printf_filtered ("(TYPE_CODE_PTR)");
2996 break;
2997 case TYPE_CODE_ARRAY:
2998 printf_filtered ("(TYPE_CODE_ARRAY)");
2999 break;
3000 case TYPE_CODE_STRUCT:
3001 printf_filtered ("(TYPE_CODE_STRUCT)");
3002 break;
3003 case TYPE_CODE_UNION:
3004 printf_filtered ("(TYPE_CODE_UNION)");
3005 break;
3006 case TYPE_CODE_ENUM:
3007 printf_filtered ("(TYPE_CODE_ENUM)");
3008 break;
3009 case TYPE_CODE_FLAGS:
3010 printf_filtered ("(TYPE_CODE_FLAGS)");
3011 break;
3012 case TYPE_CODE_FUNC:
3013 printf_filtered ("(TYPE_CODE_FUNC)");
3014 break;
3015 case TYPE_CODE_INT:
3016 printf_filtered ("(TYPE_CODE_INT)");
3017 break;
3018 case TYPE_CODE_FLT:
3019 printf_filtered ("(TYPE_CODE_FLT)");
3020 break;
3021 case TYPE_CODE_VOID:
3022 printf_filtered ("(TYPE_CODE_VOID)");
3023 break;
3024 case TYPE_CODE_SET:
3025 printf_filtered ("(TYPE_CODE_SET)");
3026 break;
3027 case TYPE_CODE_RANGE:
3028 printf_filtered ("(TYPE_CODE_RANGE)");
3029 break;
3030 case TYPE_CODE_STRING:
3031 printf_filtered ("(TYPE_CODE_STRING)");
3032 break;
3033 case TYPE_CODE_BITSTRING:
3034 printf_filtered ("(TYPE_CODE_BITSTRING)");
3035 break;
3036 case TYPE_CODE_ERROR:
3037 printf_filtered ("(TYPE_CODE_ERROR)");
3038 break;
3039 case TYPE_CODE_MEMBERPTR:
3040 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3041 break;
3042 case TYPE_CODE_METHODPTR:
3043 printf_filtered ("(TYPE_CODE_METHODPTR)");
3044 break;
3045 case TYPE_CODE_METHOD:
3046 printf_filtered ("(TYPE_CODE_METHOD)");
3047 break;
3048 case TYPE_CODE_REF:
3049 printf_filtered ("(TYPE_CODE_REF)");
3050 break;
3051 case TYPE_CODE_CHAR:
3052 printf_filtered ("(TYPE_CODE_CHAR)");
3053 break;
3054 case TYPE_CODE_BOOL:
3055 printf_filtered ("(TYPE_CODE_BOOL)");
3056 break;
3057 case TYPE_CODE_COMPLEX:
3058 printf_filtered ("(TYPE_CODE_COMPLEX)");
3059 break;
3060 case TYPE_CODE_TYPEDEF:
3061 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3062 break;
3063 case TYPE_CODE_NAMESPACE:
3064 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3065 break;
3066 default:
3067 printf_filtered ("(UNKNOWN TYPE CODE)");
3068 break;
3069 }
3070 puts_filtered ("\n");
3071 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3072 if (TYPE_OBJFILE_OWNED (type))
3073 {
3074 printfi_filtered (spaces, "objfile ");
3075 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3076 }
3077 else
3078 {
3079 printfi_filtered (spaces, "gdbarch ");
3080 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3081 }
3082 printf_filtered ("\n");
3083 printfi_filtered (spaces, "target_type ");
3084 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3085 printf_filtered ("\n");
3086 if (TYPE_TARGET_TYPE (type) != NULL)
3087 {
3088 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3089 }
3090 printfi_filtered (spaces, "pointer_type ");
3091 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3092 printf_filtered ("\n");
3093 printfi_filtered (spaces, "reference_type ");
3094 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3095 printf_filtered ("\n");
3096 printfi_filtered (spaces, "type_chain ");
3097 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3098 printf_filtered ("\n");
3099 printfi_filtered (spaces, "instance_flags 0x%x",
3100 TYPE_INSTANCE_FLAGS (type));
3101 if (TYPE_CONST (type))
3102 {
3103 puts_filtered (" TYPE_FLAG_CONST");
3104 }
3105 if (TYPE_VOLATILE (type))
3106 {
3107 puts_filtered (" TYPE_FLAG_VOLATILE");
3108 }
3109 if (TYPE_CODE_SPACE (type))
3110 {
3111 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3112 }
3113 if (TYPE_DATA_SPACE (type))
3114 {
3115 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3116 }
3117 if (TYPE_ADDRESS_CLASS_1 (type))
3118 {
3119 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3120 }
3121 if (TYPE_ADDRESS_CLASS_2 (type))
3122 {
3123 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3124 }
3125 puts_filtered ("\n");
3126
3127 printfi_filtered (spaces, "flags");
3128 if (TYPE_UNSIGNED (type))
3129 {
3130 puts_filtered (" TYPE_FLAG_UNSIGNED");
3131 }
3132 if (TYPE_NOSIGN (type))
3133 {
3134 puts_filtered (" TYPE_FLAG_NOSIGN");
3135 }
3136 if (TYPE_STUB (type))
3137 {
3138 puts_filtered (" TYPE_FLAG_STUB");
3139 }
3140 if (TYPE_TARGET_STUB (type))
3141 {
3142 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3143 }
3144 if (TYPE_STATIC (type))
3145 {
3146 puts_filtered (" TYPE_FLAG_STATIC");
3147 }
3148 if (TYPE_PROTOTYPED (type))
3149 {
3150 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3151 }
3152 if (TYPE_INCOMPLETE (type))
3153 {
3154 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3155 }
3156 if (TYPE_VARARGS (type))
3157 {
3158 puts_filtered (" TYPE_FLAG_VARARGS");
3159 }
3160 /* This is used for things like AltiVec registers on ppc. Gcc emits
3161 an attribute for the array type, which tells whether or not we
3162 have a vector, instead of a regular array. */
3163 if (TYPE_VECTOR (type))
3164 {
3165 puts_filtered (" TYPE_FLAG_VECTOR");
3166 }
3167 if (TYPE_FIXED_INSTANCE (type))
3168 {
3169 puts_filtered (" TYPE_FIXED_INSTANCE");
3170 }
3171 if (TYPE_STUB_SUPPORTED (type))
3172 {
3173 puts_filtered (" TYPE_STUB_SUPPORTED");
3174 }
3175 if (TYPE_NOTTEXT (type))
3176 {
3177 puts_filtered (" TYPE_NOTTEXT");
3178 }
3179 puts_filtered ("\n");
3180 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3181 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3182 puts_filtered ("\n");
3183 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3184 {
3185 printfi_filtered (spaces + 2,
3186 "[%d] bitpos %d bitsize %d type ",
3187 idx, TYPE_FIELD_BITPOS (type, idx),
3188 TYPE_FIELD_BITSIZE (type, idx));
3189 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3190 printf_filtered (" name '%s' (",
3191 TYPE_FIELD_NAME (type, idx) != NULL
3192 ? TYPE_FIELD_NAME (type, idx)
3193 : "<NULL>");
3194 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3195 printf_filtered (")\n");
3196 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3197 {
3198 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3199 }
3200 }
3201 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3202 {
3203 printfi_filtered (spaces, "low %s%s high %s%s\n",
3204 plongest (TYPE_LOW_BOUND (type)),
3205 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3206 plongest (TYPE_HIGH_BOUND (type)),
3207 TYPE_HIGH_BOUND_UNDEFINED (type)
3208 ? " (undefined)" : "");
3209 }
3210 printfi_filtered (spaces, "vptr_basetype ");
3211 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3212 puts_filtered ("\n");
3213 if (TYPE_VPTR_BASETYPE (type) != NULL)
3214 {
3215 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3216 }
3217 printfi_filtered (spaces, "vptr_fieldno %d\n",
3218 TYPE_VPTR_FIELDNO (type));
3219
3220 switch (TYPE_SPECIFIC_FIELD (type))
3221 {
3222 case TYPE_SPECIFIC_CPLUS_STUFF:
3223 printfi_filtered (spaces, "cplus_stuff ");
3224 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3225 gdb_stdout);
3226 puts_filtered ("\n");
3227 print_cplus_stuff (type, spaces);
3228 break;
3229
3230 case TYPE_SPECIFIC_GNAT_STUFF:
3231 printfi_filtered (spaces, "gnat_stuff ");
3232 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3233 puts_filtered ("\n");
3234 print_gnat_stuff (type, spaces);
3235 break;
3236
3237 case TYPE_SPECIFIC_FLOATFORMAT:
3238 printfi_filtered (spaces, "floatformat ");
3239 if (TYPE_FLOATFORMAT (type) == NULL)
3240 puts_filtered ("(null)");
3241 else
3242 {
3243 puts_filtered ("{ ");
3244 if (TYPE_FLOATFORMAT (type)[0] == NULL
3245 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3246 puts_filtered ("(null)");
3247 else
3248 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3249
3250 puts_filtered (", ");
3251 if (TYPE_FLOATFORMAT (type)[1] == NULL
3252 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3253 puts_filtered ("(null)");
3254 else
3255 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3256
3257 puts_filtered (" }");
3258 }
3259 puts_filtered ("\n");
3260 break;
3261
3262 case TYPE_SPECIFIC_FUNC:
3263 printfi_filtered (spaces, "calling_convention %d\n",
3264 TYPE_CALLING_CONVENTION (type));
3265 /* tail_call_list is not printed. */
3266 break;
3267 }
3268
3269 if (spaces == 0)
3270 obstack_free (&dont_print_type_obstack, NULL);
3271 }
3272
3273 /* Trivial helpers for the libiberty hash table, for mapping one
3274 type to another. */
3275
3276 struct type_pair
3277 {
3278 struct type *old, *new;
3279 };
3280
3281 static hashval_t
3282 type_pair_hash (const void *item)
3283 {
3284 const struct type_pair *pair = item;
3285
3286 return htab_hash_pointer (pair->old);
3287 }
3288
3289 static int
3290 type_pair_eq (const void *item_lhs, const void *item_rhs)
3291 {
3292 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3293
3294 return lhs->old == rhs->old;
3295 }
3296
3297 /* Allocate the hash table used by copy_type_recursive to walk
3298 types without duplicates. We use OBJFILE's obstack, because
3299 OBJFILE is about to be deleted. */
3300
3301 htab_t
3302 create_copied_types_hash (struct objfile *objfile)
3303 {
3304 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3305 NULL, &objfile->objfile_obstack,
3306 hashtab_obstack_allocate,
3307 dummy_obstack_deallocate);
3308 }
3309
3310 /* Recursively copy (deep copy) TYPE, if it is associated with
3311 OBJFILE. Return a new type allocated using malloc, a saved type if
3312 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3313 not associated with OBJFILE. */
3314
3315 struct type *
3316 copy_type_recursive (struct objfile *objfile,
3317 struct type *type,
3318 htab_t copied_types)
3319 {
3320 struct type_pair *stored, pair;
3321 void **slot;
3322 struct type *new_type;
3323
3324 if (! TYPE_OBJFILE_OWNED (type))
3325 return type;
3326
3327 /* This type shouldn't be pointing to any types in other objfiles;
3328 if it did, the type might disappear unexpectedly. */
3329 gdb_assert (TYPE_OBJFILE (type) == objfile);
3330
3331 pair.old = type;
3332 slot = htab_find_slot (copied_types, &pair, INSERT);
3333 if (*slot != NULL)
3334 return ((struct type_pair *) *slot)->new;
3335
3336 new_type = alloc_type_arch (get_type_arch (type));
3337
3338 /* We must add the new type to the hash table immediately, in case
3339 we encounter this type again during a recursive call below. */
3340 stored
3341 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3342 stored->old = type;
3343 stored->new = new_type;
3344 *slot = stored;
3345
3346 /* Copy the common fields of types. For the main type, we simply
3347 copy the entire thing and then update specific fields as needed. */
3348 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3349 TYPE_OBJFILE_OWNED (new_type) = 0;
3350 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3351
3352 if (TYPE_NAME (type))
3353 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3354 if (TYPE_TAG_NAME (type))
3355 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3356
3357 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3358 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3359
3360 /* Copy the fields. */
3361 if (TYPE_NFIELDS (type))
3362 {
3363 int i, nfields;
3364
3365 nfields = TYPE_NFIELDS (type);
3366 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3367 for (i = 0; i < nfields; i++)
3368 {
3369 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3370 TYPE_FIELD_ARTIFICIAL (type, i);
3371 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3372 if (TYPE_FIELD_TYPE (type, i))
3373 TYPE_FIELD_TYPE (new_type, i)
3374 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3375 copied_types);
3376 if (TYPE_FIELD_NAME (type, i))
3377 TYPE_FIELD_NAME (new_type, i) =
3378 xstrdup (TYPE_FIELD_NAME (type, i));
3379 switch (TYPE_FIELD_LOC_KIND (type, i))
3380 {
3381 case FIELD_LOC_KIND_BITPOS:
3382 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3383 TYPE_FIELD_BITPOS (type, i));
3384 break;
3385 case FIELD_LOC_KIND_PHYSADDR:
3386 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3387 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3388 break;
3389 case FIELD_LOC_KIND_PHYSNAME:
3390 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3391 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3392 i)));
3393 break;
3394 default:
3395 internal_error (__FILE__, __LINE__,
3396 _("Unexpected type field location kind: %d"),
3397 TYPE_FIELD_LOC_KIND (type, i));
3398 }
3399 }
3400 }
3401
3402 /* For range types, copy the bounds information. */
3403 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3404 {
3405 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3406 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3407 }
3408
3409 /* Copy pointers to other types. */
3410 if (TYPE_TARGET_TYPE (type))
3411 TYPE_TARGET_TYPE (new_type) =
3412 copy_type_recursive (objfile,
3413 TYPE_TARGET_TYPE (type),
3414 copied_types);
3415 if (TYPE_VPTR_BASETYPE (type))
3416 TYPE_VPTR_BASETYPE (new_type) =
3417 copy_type_recursive (objfile,
3418 TYPE_VPTR_BASETYPE (type),
3419 copied_types);
3420 /* Maybe copy the type_specific bits.
3421
3422 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3423 base classes and methods. There's no fundamental reason why we
3424 can't, but at the moment it is not needed. */
3425
3426 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3427 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3428 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3429 || TYPE_CODE (type) == TYPE_CODE_UNION
3430 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3431 INIT_CPLUS_SPECIFIC (new_type);
3432
3433 return new_type;
3434 }
3435
3436 /* Make a copy of the given TYPE, except that the pointer & reference
3437 types are not preserved.
3438
3439 This function assumes that the given type has an associated objfile.
3440 This objfile is used to allocate the new type. */
3441
3442 struct type *
3443 copy_type (const struct type *type)
3444 {
3445 struct type *new_type;
3446
3447 gdb_assert (TYPE_OBJFILE_OWNED (type));
3448
3449 new_type = alloc_type_copy (type);
3450 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3451 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3452 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3453 sizeof (struct main_type));
3454
3455 return new_type;
3456 }
3457
3458
3459 /* Helper functions to initialize architecture-specific types. */
3460
3461 /* Allocate a type structure associated with GDBARCH and set its
3462 CODE, LENGTH, and NAME fields. */
3463 struct type *
3464 arch_type (struct gdbarch *gdbarch,
3465 enum type_code code, int length, char *name)
3466 {
3467 struct type *type;
3468
3469 type = alloc_type_arch (gdbarch);
3470 TYPE_CODE (type) = code;
3471 TYPE_LENGTH (type) = length;
3472
3473 if (name)
3474 TYPE_NAME (type) = xstrdup (name);
3475
3476 return type;
3477 }
3478
3479 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3480 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3481 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3482 struct type *
3483 arch_integer_type (struct gdbarch *gdbarch,
3484 int bit, int unsigned_p, char *name)
3485 {
3486 struct type *t;
3487
3488 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3489 if (unsigned_p)
3490 TYPE_UNSIGNED (t) = 1;
3491 if (name && strcmp (name, "char") == 0)
3492 TYPE_NOSIGN (t) = 1;
3493
3494 return t;
3495 }
3496
3497 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3498 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3499 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3500 struct type *
3501 arch_character_type (struct gdbarch *gdbarch,
3502 int bit, int unsigned_p, char *name)
3503 {
3504 struct type *t;
3505
3506 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3507 if (unsigned_p)
3508 TYPE_UNSIGNED (t) = 1;
3509
3510 return t;
3511 }
3512
3513 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3514 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3515 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3516 struct type *
3517 arch_boolean_type (struct gdbarch *gdbarch,
3518 int bit, int unsigned_p, char *name)
3519 {
3520 struct type *t;
3521
3522 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3523 if (unsigned_p)
3524 TYPE_UNSIGNED (t) = 1;
3525
3526 return t;
3527 }
3528
3529 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3530 BIT is the type size in bits; if BIT equals -1, the size is
3531 determined by the floatformat. NAME is the type name. Set the
3532 TYPE_FLOATFORMAT from FLOATFORMATS. */
3533 struct type *
3534 arch_float_type (struct gdbarch *gdbarch,
3535 int bit, char *name, const struct floatformat **floatformats)
3536 {
3537 struct type *t;
3538
3539 if (bit == -1)
3540 {
3541 gdb_assert (floatformats != NULL);
3542 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3543 bit = floatformats[0]->totalsize;
3544 }
3545 gdb_assert (bit >= 0);
3546
3547 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3548 TYPE_FLOATFORMAT (t) = floatformats;
3549 return t;
3550 }
3551
3552 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3553 NAME is the type name. TARGET_TYPE is the component float type. */
3554 struct type *
3555 arch_complex_type (struct gdbarch *gdbarch,
3556 char *name, struct type *target_type)
3557 {
3558 struct type *t;
3559
3560 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3561 2 * TYPE_LENGTH (target_type), name);
3562 TYPE_TARGET_TYPE (t) = target_type;
3563 return t;
3564 }
3565
3566 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3567 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3568 struct type *
3569 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3570 {
3571 int nfields = length * TARGET_CHAR_BIT;
3572 struct type *type;
3573
3574 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3575 TYPE_UNSIGNED (type) = 1;
3576 TYPE_NFIELDS (type) = nfields;
3577 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3578
3579 return type;
3580 }
3581
3582 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3583 position BITPOS is called NAME. */
3584 void
3585 append_flags_type_flag (struct type *type, int bitpos, char *name)
3586 {
3587 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3588 gdb_assert (bitpos < TYPE_NFIELDS (type));
3589 gdb_assert (bitpos >= 0);
3590
3591 if (name)
3592 {
3593 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3594 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3595 }
3596 else
3597 {
3598 /* Don't show this field to the user. */
3599 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3600 }
3601 }
3602
3603 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3604 specified by CODE) associated with GDBARCH. NAME is the type name. */
3605 struct type *
3606 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3607 {
3608 struct type *t;
3609
3610 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3611 t = arch_type (gdbarch, code, 0, NULL);
3612 TYPE_TAG_NAME (t) = name;
3613 INIT_CPLUS_SPECIFIC (t);
3614 return t;
3615 }
3616
3617 /* Add new field with name NAME and type FIELD to composite type T.
3618 Do not set the field's position or adjust the type's length;
3619 the caller should do so. Return the new field. */
3620 struct field *
3621 append_composite_type_field_raw (struct type *t, char *name,
3622 struct type *field)
3623 {
3624 struct field *f;
3625
3626 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3627 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3628 sizeof (struct field) * TYPE_NFIELDS (t));
3629 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3630 memset (f, 0, sizeof f[0]);
3631 FIELD_TYPE (f[0]) = field;
3632 FIELD_NAME (f[0]) = name;
3633 return f;
3634 }
3635
3636 /* Add new field with name NAME and type FIELD to composite type T.
3637 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3638 void
3639 append_composite_type_field_aligned (struct type *t, char *name,
3640 struct type *field, int alignment)
3641 {
3642 struct field *f = append_composite_type_field_raw (t, name, field);
3643
3644 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3645 {
3646 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3647 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3648 }
3649 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3650 {
3651 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3652 if (TYPE_NFIELDS (t) > 1)
3653 {
3654 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3655 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3656 * TARGET_CHAR_BIT));
3657
3658 if (alignment)
3659 {
3660 int left;
3661
3662 alignment *= TARGET_CHAR_BIT;
3663 left = FIELD_BITPOS (f[0]) % alignment;
3664
3665 if (left)
3666 {
3667 FIELD_BITPOS (f[0]) += (alignment - left);
3668 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3669 }
3670 }
3671 }
3672 }
3673 }
3674
3675 /* Add new field with name NAME and type FIELD to composite type T. */
3676 void
3677 append_composite_type_field (struct type *t, char *name,
3678 struct type *field)
3679 {
3680 append_composite_type_field_aligned (t, name, field, 0);
3681 }
3682
3683
3684 static struct gdbarch_data *gdbtypes_data;
3685
3686 const struct builtin_type *
3687 builtin_type (struct gdbarch *gdbarch)
3688 {
3689 return gdbarch_data (gdbarch, gdbtypes_data);
3690 }
3691
3692 static void *
3693 gdbtypes_post_init (struct gdbarch *gdbarch)
3694 {
3695 struct builtin_type *builtin_type
3696 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3697
3698 /* Basic types. */
3699 builtin_type->builtin_void
3700 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3701 builtin_type->builtin_char
3702 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3703 !gdbarch_char_signed (gdbarch), "char");
3704 builtin_type->builtin_signed_char
3705 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3706 0, "signed char");
3707 builtin_type->builtin_unsigned_char
3708 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3709 1, "unsigned char");
3710 builtin_type->builtin_short
3711 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3712 0, "short");
3713 builtin_type->builtin_unsigned_short
3714 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3715 1, "unsigned short");
3716 builtin_type->builtin_int
3717 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3718 0, "int");
3719 builtin_type->builtin_unsigned_int
3720 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3721 1, "unsigned int");
3722 builtin_type->builtin_long
3723 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3724 0, "long");
3725 builtin_type->builtin_unsigned_long
3726 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3727 1, "unsigned long");
3728 builtin_type->builtin_long_long
3729 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3730 0, "long long");
3731 builtin_type->builtin_unsigned_long_long
3732 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3733 1, "unsigned long long");
3734 builtin_type->builtin_float
3735 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3736 "float", gdbarch_float_format (gdbarch));
3737 builtin_type->builtin_double
3738 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3739 "double", gdbarch_double_format (gdbarch));
3740 builtin_type->builtin_long_double
3741 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3742 "long double", gdbarch_long_double_format (gdbarch));
3743 builtin_type->builtin_complex
3744 = arch_complex_type (gdbarch, "complex",
3745 builtin_type->builtin_float);
3746 builtin_type->builtin_double_complex
3747 = arch_complex_type (gdbarch, "double complex",
3748 builtin_type->builtin_double);
3749 builtin_type->builtin_string
3750 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3751 builtin_type->builtin_bool
3752 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3753
3754 /* The following three are about decimal floating point types, which
3755 are 32-bits, 64-bits and 128-bits respectively. */
3756 builtin_type->builtin_decfloat
3757 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3758 builtin_type->builtin_decdouble
3759 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3760 builtin_type->builtin_declong
3761 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3762
3763 /* "True" character types. */
3764 builtin_type->builtin_true_char
3765 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3766 builtin_type->builtin_true_unsigned_char
3767 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3768
3769 /* Fixed-size integer types. */
3770 builtin_type->builtin_int0
3771 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3772 builtin_type->builtin_int8
3773 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3774 builtin_type->builtin_uint8
3775 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3776 builtin_type->builtin_int16
3777 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3778 builtin_type->builtin_uint16
3779 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3780 builtin_type->builtin_int32
3781 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3782 builtin_type->builtin_uint32
3783 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3784 builtin_type->builtin_int64
3785 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3786 builtin_type->builtin_uint64
3787 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3788 builtin_type->builtin_int128
3789 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3790 builtin_type->builtin_uint128
3791 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3792 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3793 TYPE_INSTANCE_FLAG_NOTTEXT;
3794 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3795 TYPE_INSTANCE_FLAG_NOTTEXT;
3796
3797 /* Wide character types. */
3798 builtin_type->builtin_char16
3799 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3800 builtin_type->builtin_char32
3801 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3802
3803
3804 /* Default data/code pointer types. */
3805 builtin_type->builtin_data_ptr
3806 = lookup_pointer_type (builtin_type->builtin_void);
3807 builtin_type->builtin_func_ptr
3808 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3809 builtin_type->builtin_func_func
3810 = lookup_function_type (builtin_type->builtin_func_ptr);
3811
3812 /* This type represents a GDB internal function. */
3813 builtin_type->internal_fn
3814 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3815 "<internal function>");
3816
3817 return builtin_type;
3818 }
3819
3820
3821 /* This set of objfile-based types is intended to be used by symbol
3822 readers as basic types. */
3823
3824 static const struct objfile_data *objfile_type_data;
3825
3826 const struct objfile_type *
3827 objfile_type (struct objfile *objfile)
3828 {
3829 struct gdbarch *gdbarch;
3830 struct objfile_type *objfile_type
3831 = objfile_data (objfile, objfile_type_data);
3832
3833 if (objfile_type)
3834 return objfile_type;
3835
3836 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3837 1, struct objfile_type);
3838
3839 /* Use the objfile architecture to determine basic type properties. */
3840 gdbarch = get_objfile_arch (objfile);
3841
3842 /* Basic types. */
3843 objfile_type->builtin_void
3844 = init_type (TYPE_CODE_VOID, 1,
3845 0,
3846 "void", objfile);
3847
3848 objfile_type->builtin_char
3849 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3850 (TYPE_FLAG_NOSIGN
3851 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3852 "char", objfile);
3853 objfile_type->builtin_signed_char
3854 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3855 0,
3856 "signed char", objfile);
3857 objfile_type->builtin_unsigned_char
3858 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3859 TYPE_FLAG_UNSIGNED,
3860 "unsigned char", objfile);
3861 objfile_type->builtin_short
3862 = init_type (TYPE_CODE_INT,
3863 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3864 0, "short", objfile);
3865 objfile_type->builtin_unsigned_short
3866 = init_type (TYPE_CODE_INT,
3867 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3868 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3869 objfile_type->builtin_int
3870 = init_type (TYPE_CODE_INT,
3871 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3872 0, "int", objfile);
3873 objfile_type->builtin_unsigned_int
3874 = init_type (TYPE_CODE_INT,
3875 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3876 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3877 objfile_type->builtin_long
3878 = init_type (TYPE_CODE_INT,
3879 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3880 0, "long", objfile);
3881 objfile_type->builtin_unsigned_long
3882 = init_type (TYPE_CODE_INT,
3883 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3884 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3885 objfile_type->builtin_long_long
3886 = init_type (TYPE_CODE_INT,
3887 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3888 0, "long long", objfile);
3889 objfile_type->builtin_unsigned_long_long
3890 = init_type (TYPE_CODE_INT,
3891 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3892 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3893
3894 objfile_type->builtin_float
3895 = init_type (TYPE_CODE_FLT,
3896 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3897 0, "float", objfile);
3898 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3899 = gdbarch_float_format (gdbarch);
3900 objfile_type->builtin_double
3901 = init_type (TYPE_CODE_FLT,
3902 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3903 0, "double", objfile);
3904 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3905 = gdbarch_double_format (gdbarch);
3906 objfile_type->builtin_long_double
3907 = init_type (TYPE_CODE_FLT,
3908 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3909 0, "long double", objfile);
3910 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3911 = gdbarch_long_double_format (gdbarch);
3912
3913 /* This type represents a type that was unrecognized in symbol read-in. */
3914 objfile_type->builtin_error
3915 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3916
3917 /* The following set of types is used for symbols with no
3918 debug information. */
3919 objfile_type->nodebug_text_symbol
3920 = init_type (TYPE_CODE_FUNC, 1, 0,
3921 "<text variable, no debug info>", objfile);
3922 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3923 = objfile_type->builtin_int;
3924 objfile_type->nodebug_text_gnu_ifunc_symbol
3925 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3926 "<text gnu-indirect-function variable, no debug info>",
3927 objfile);
3928 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3929 = objfile_type->nodebug_text_symbol;
3930 objfile_type->nodebug_got_plt_symbol
3931 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3932 "<text from jump slot in .got.plt, no debug info>",
3933 objfile);
3934 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3935 = objfile_type->nodebug_text_symbol;
3936 objfile_type->nodebug_data_symbol
3937 = init_type (TYPE_CODE_INT,
3938 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3939 "<data variable, no debug info>", objfile);
3940 objfile_type->nodebug_unknown_symbol
3941 = init_type (TYPE_CODE_INT, 1, 0,
3942 "<variable (not text or data), no debug info>", objfile);
3943 objfile_type->nodebug_tls_symbol
3944 = init_type (TYPE_CODE_INT,
3945 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3946 "<thread local variable, no debug info>", objfile);
3947
3948 /* NOTE: on some targets, addresses and pointers are not necessarily
3949 the same --- for example, on the D10V, pointers are 16 bits long,
3950 but addresses are 32 bits long. See doc/gdbint.texinfo,
3951 ``Pointers Are Not Always Addresses''.
3952
3953 The upshot is:
3954 - gdb's `struct type' always describes the target's
3955 representation.
3956 - gdb's `struct value' objects should always hold values in
3957 target form.
3958 - gdb's CORE_ADDR values are addresses in the unified virtual
3959 address space that the assembler and linker work with. Thus,
3960 since target_read_memory takes a CORE_ADDR as an argument, it
3961 can access any memory on the target, even if the processor has
3962 separate code and data address spaces.
3963
3964 So, for example:
3965 - If v is a value holding a D10V code pointer, its contents are
3966 in target form: a big-endian address left-shifted two bits.
3967 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3968 sizeof (void *) == 2 on the target.
3969
3970 In this context, objfile_type->builtin_core_addr is a bit odd:
3971 it's a target type for a value the target will never see. It's
3972 only used to hold the values of (typeless) linker symbols, which
3973 are indeed in the unified virtual address space. */
3974
3975 objfile_type->builtin_core_addr
3976 = init_type (TYPE_CODE_INT,
3977 gdbarch_addr_bit (gdbarch) / 8,
3978 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3979
3980 set_objfile_data (objfile, objfile_type_data, objfile_type);
3981 return objfile_type;
3982 }
3983
3984
3985 extern void _initialize_gdbtypes (void);
3986 void
3987 _initialize_gdbtypes (void)
3988 {
3989 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3990 objfile_type_data = register_objfile_data ();
3991
3992 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3993 _("Set debugging of C++ overloading."),
3994 _("Show debugging of C++ overloading."),
3995 _("When enabled, ranking of the "
3996 "functions is displayed."),
3997 NULL,
3998 show_overload_debug,
3999 &setdebuglist, &showdebuglist);
4000
4001 /* Add user knob for controlling resolution of opaque types. */
4002 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4003 &opaque_type_resolution,
4004 _("Set resolution of opaque struct/class/union"
4005 " types (if set before loading symbols)."),
4006 _("Show resolution of opaque struct/class/union"
4007 " types (if set before loading symbols)."),
4008 NULL, NULL,
4009 show_opaque_type_resolution,
4010 &setlist, &showlist);
4011 }
This page took 0.157836 seconds and 4 git commands to generate.