handle VLA in a struct or union
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_RANGE:
1627 return !has_static_range (TYPE_RANGE_DATA (type));
1628
1629 case TYPE_CODE_ARRAY:
1630 {
1631 gdb_assert (TYPE_NFIELDS (type) == 1);
1632
1633 /* The array is dynamic if either the bounds are dynamic,
1634 or the elements it contains have a dynamic contents. */
1635 if (is_dynamic_type (TYPE_INDEX_TYPE (type)))
1636 return 1;
1637 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1638 }
1639
1640 case TYPE_CODE_STRUCT:
1641 case TYPE_CODE_UNION:
1642 {
1643 int i;
1644
1645 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1646 if (!field_is_static (&TYPE_FIELD (type, i))
1647 && is_dynamic_type (TYPE_FIELD_TYPE (type, i)))
1648 return 1;
1649 }
1650 break;
1651 }
1652
1653 return 0;
1654 }
1655
1656 static struct type *
1657 resolve_dynamic_range (struct type *dyn_range_type)
1658 {
1659 CORE_ADDR value;
1660 struct type *static_range_type;
1661 const struct dynamic_prop *prop;
1662 const struct dwarf2_locexpr_baton *baton;
1663 struct dynamic_prop low_bound, high_bound;
1664
1665 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1666
1667 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1668 if (dwarf2_evaluate_property (prop, &value))
1669 {
1670 low_bound.kind = PROP_CONST;
1671 low_bound.data.const_val = value;
1672 }
1673 else
1674 {
1675 low_bound.kind = PROP_UNDEFINED;
1676 low_bound.data.const_val = 0;
1677 }
1678
1679 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1680 if (dwarf2_evaluate_property (prop, &value))
1681 {
1682 high_bound.kind = PROP_CONST;
1683 high_bound.data.const_val = value;
1684
1685 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1686 high_bound.data.const_val
1687 = low_bound.data.const_val + high_bound.data.const_val - 1;
1688 }
1689 else
1690 {
1691 high_bound.kind = PROP_UNDEFINED;
1692 high_bound.data.const_val = 0;
1693 }
1694
1695 static_range_type = create_range_type (copy_type (dyn_range_type),
1696 TYPE_TARGET_TYPE (dyn_range_type),
1697 &low_bound, &high_bound);
1698 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1699 return static_range_type;
1700 }
1701
1702 /* Resolves dynamic bound values of an array type TYPE to static ones.
1703 ADDRESS might be needed to resolve the subrange bounds, it is the location
1704 of the associated array. */
1705
1706 static struct type *
1707 resolve_dynamic_array (struct type *type)
1708 {
1709 CORE_ADDR value;
1710 struct type *elt_type;
1711 struct type *range_type;
1712 struct type *ary_dim;
1713
1714 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1715
1716 elt_type = type;
1717 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1718 range_type = resolve_dynamic_range (range_type);
1719
1720 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1721
1722 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1723 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
1724 else
1725 elt_type = TYPE_TARGET_TYPE (type);
1726
1727 return create_array_type (copy_type (type),
1728 elt_type,
1729 range_type);
1730 }
1731
1732 /* Resolve dynamic bounds of members of the union TYPE to static
1733 bounds. */
1734
1735 static struct type *
1736 resolve_dynamic_union (struct type *type, CORE_ADDR addr)
1737 {
1738 struct type *resolved_type;
1739 int i;
1740 unsigned int max_len = 0;
1741
1742 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1743
1744 resolved_type = copy_type (type);
1745 TYPE_FIELDS (resolved_type)
1746 = TYPE_ALLOC (resolved_type,
1747 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1748 memcpy (TYPE_FIELDS (resolved_type),
1749 TYPE_FIELDS (type),
1750 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1751 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1752 {
1753 struct type *t;
1754
1755 if (field_is_static (&TYPE_FIELD (type, i)))
1756 continue;
1757
1758 t = resolve_dynamic_type (TYPE_FIELD_TYPE (resolved_type, i), addr);
1759 TYPE_FIELD_TYPE (resolved_type, i) = t;
1760 if (TYPE_LENGTH (t) > max_len)
1761 max_len = TYPE_LENGTH (t);
1762 }
1763
1764 TYPE_LENGTH (resolved_type) = max_len;
1765 return resolved_type;
1766 }
1767
1768 /* Resolve dynamic bounds of members of the struct TYPE to static
1769 bounds. */
1770
1771 static struct type *
1772 resolve_dynamic_struct (struct type *type, CORE_ADDR addr)
1773 {
1774 struct type *resolved_type;
1775 int i;
1776 int vla_field = TYPE_NFIELDS (type) - 1;
1777
1778 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1779 gdb_assert (TYPE_NFIELDS (type) > 0);
1780
1781 resolved_type = copy_type (type);
1782 TYPE_FIELDS (resolved_type)
1783 = TYPE_ALLOC (resolved_type,
1784 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1785 memcpy (TYPE_FIELDS (resolved_type),
1786 TYPE_FIELDS (type),
1787 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1788 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1789 {
1790 struct type *t;
1791
1792 if (field_is_static (&TYPE_FIELD (type, i)))
1793 continue;
1794
1795 t = resolve_dynamic_type (TYPE_FIELD_TYPE (resolved_type, i), addr);
1796
1797 /* This is a bit odd. We do not support a VLA in any position
1798 of a struct except for the last. GCC does have an extension
1799 that allows a VLA in the middle of a structure, but the DWARF
1800 it emits is relatively useless to us, so we can't represent
1801 such a type properly -- and even if we could, we do not have
1802 enough information to redo structure layout anyway.
1803 Nevertheless, we check all the fields in case something odd
1804 slips through, since it's better to see an error than
1805 incorrect results. */
1806 if (t != TYPE_FIELD_TYPE (resolved_type, i)
1807 && i != vla_field)
1808 error (_("Attempt to resolve a variably-sized type which appears "
1809 "in the interior of a structure type"));
1810
1811 TYPE_FIELD_TYPE (resolved_type, i) = t;
1812 }
1813
1814 /* Due to the above restrictions we can successfully compute
1815 the size of the resulting structure here, as the offset of
1816 the final field plus its size. */
1817 TYPE_LENGTH (resolved_type)
1818 = (TYPE_FIELD_BITPOS (resolved_type, vla_field) / TARGET_CHAR_BIT
1819 + TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, vla_field)));
1820 return resolved_type;
1821 }
1822
1823 /* See gdbtypes.h */
1824
1825 struct type *
1826 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1827 {
1828 struct type *real_type = check_typedef (type);
1829 struct type *resolved_type = type;
1830
1831 if (!is_dynamic_type (real_type))
1832 return type;
1833
1834 switch (TYPE_CODE (type))
1835 {
1836 case TYPE_CODE_TYPEDEF:
1837 resolved_type = copy_type (type);
1838 TYPE_TARGET_TYPE (resolved_type)
1839 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), addr);
1840 break;
1841
1842 case TYPE_CODE_REF:
1843 {
1844 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1845
1846 resolved_type = copy_type (type);
1847 TYPE_TARGET_TYPE (resolved_type)
1848 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), target_addr);
1849 break;
1850 }
1851
1852 case TYPE_CODE_ARRAY:
1853 resolved_type = resolve_dynamic_array (type);
1854 break;
1855
1856 case TYPE_CODE_RANGE:
1857 resolved_type = resolve_dynamic_range (type);
1858 break;
1859
1860 case TYPE_CODE_UNION:
1861 resolved_type = resolve_dynamic_union (type, addr);
1862 break;
1863
1864 case TYPE_CODE_STRUCT:
1865 resolved_type = resolve_dynamic_struct (type, addr);
1866 break;
1867 }
1868
1869 return resolved_type;
1870 }
1871
1872 /* Find the real type of TYPE. This function returns the real type,
1873 after removing all layers of typedefs, and completing opaque or stub
1874 types. Completion changes the TYPE argument, but stripping of
1875 typedefs does not.
1876
1877 Instance flags (e.g. const/volatile) are preserved as typedefs are
1878 stripped. If necessary a new qualified form of the underlying type
1879 is created.
1880
1881 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1882 not been computed and we're either in the middle of reading symbols, or
1883 there was no name for the typedef in the debug info.
1884
1885 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1886 QUITs in the symbol reading code can also throw.
1887 Thus this function can throw an exception.
1888
1889 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1890 the target type.
1891
1892 If this is a stubbed struct (i.e. declared as struct foo *), see if
1893 we can find a full definition in some other file. If so, copy this
1894 definition, so we can use it in future. There used to be a comment
1895 (but not any code) that if we don't find a full definition, we'd
1896 set a flag so we don't spend time in the future checking the same
1897 type. That would be a mistake, though--we might load in more
1898 symbols which contain a full definition for the type. */
1899
1900 struct type *
1901 check_typedef (struct type *type)
1902 {
1903 struct type *orig_type = type;
1904 /* While we're removing typedefs, we don't want to lose qualifiers.
1905 E.g., const/volatile. */
1906 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1907
1908 gdb_assert (type);
1909
1910 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1911 {
1912 if (!TYPE_TARGET_TYPE (type))
1913 {
1914 const char *name;
1915 struct symbol *sym;
1916
1917 /* It is dangerous to call lookup_symbol if we are currently
1918 reading a symtab. Infinite recursion is one danger. */
1919 if (currently_reading_symtab)
1920 return make_qualified_type (type, instance_flags, NULL);
1921
1922 name = type_name_no_tag (type);
1923 /* FIXME: shouldn't we separately check the TYPE_NAME and
1924 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1925 VAR_DOMAIN as appropriate? (this code was written before
1926 TYPE_NAME and TYPE_TAG_NAME were separate). */
1927 if (name == NULL)
1928 {
1929 stub_noname_complaint ();
1930 return make_qualified_type (type, instance_flags, NULL);
1931 }
1932 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1933 if (sym)
1934 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1935 else /* TYPE_CODE_UNDEF */
1936 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1937 }
1938 type = TYPE_TARGET_TYPE (type);
1939
1940 /* Preserve the instance flags as we traverse down the typedef chain.
1941
1942 Handling address spaces/classes is nasty, what do we do if there's a
1943 conflict?
1944 E.g., what if an outer typedef marks the type as class_1 and an inner
1945 typedef marks the type as class_2?
1946 This is the wrong place to do such error checking. We leave it to
1947 the code that created the typedef in the first place to flag the
1948 error. We just pick the outer address space (akin to letting the
1949 outer cast in a chain of casting win), instead of assuming
1950 "it can't happen". */
1951 {
1952 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1953 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1954 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1955 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1956
1957 /* Treat code vs data spaces and address classes separately. */
1958 if ((instance_flags & ALL_SPACES) != 0)
1959 new_instance_flags &= ~ALL_SPACES;
1960 if ((instance_flags & ALL_CLASSES) != 0)
1961 new_instance_flags &= ~ALL_CLASSES;
1962
1963 instance_flags |= new_instance_flags;
1964 }
1965 }
1966
1967 /* If this is a struct/class/union with no fields, then check
1968 whether a full definition exists somewhere else. This is for
1969 systems where a type definition with no fields is issued for such
1970 types, instead of identifying them as stub types in the first
1971 place. */
1972
1973 if (TYPE_IS_OPAQUE (type)
1974 && opaque_type_resolution
1975 && !currently_reading_symtab)
1976 {
1977 const char *name = type_name_no_tag (type);
1978 struct type *newtype;
1979
1980 if (name == NULL)
1981 {
1982 stub_noname_complaint ();
1983 return make_qualified_type (type, instance_flags, NULL);
1984 }
1985 newtype = lookup_transparent_type (name);
1986
1987 if (newtype)
1988 {
1989 /* If the resolved type and the stub are in the same
1990 objfile, then replace the stub type with the real deal.
1991 But if they're in separate objfiles, leave the stub
1992 alone; we'll just look up the transparent type every time
1993 we call check_typedef. We can't create pointers between
1994 types allocated to different objfiles, since they may
1995 have different lifetimes. Trying to copy NEWTYPE over to
1996 TYPE's objfile is pointless, too, since you'll have to
1997 move over any other types NEWTYPE refers to, which could
1998 be an unbounded amount of stuff. */
1999 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2000 type = make_qualified_type (newtype,
2001 TYPE_INSTANCE_FLAGS (type),
2002 type);
2003 else
2004 type = newtype;
2005 }
2006 }
2007 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2008 types. */
2009 else if (TYPE_STUB (type) && !currently_reading_symtab)
2010 {
2011 const char *name = type_name_no_tag (type);
2012 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2013 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2014 as appropriate? (this code was written before TYPE_NAME and
2015 TYPE_TAG_NAME were separate). */
2016 struct symbol *sym;
2017
2018 if (name == NULL)
2019 {
2020 stub_noname_complaint ();
2021 return make_qualified_type (type, instance_flags, NULL);
2022 }
2023 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2024 if (sym)
2025 {
2026 /* Same as above for opaque types, we can replace the stub
2027 with the complete type only if they are in the same
2028 objfile. */
2029 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2030 type = make_qualified_type (SYMBOL_TYPE (sym),
2031 TYPE_INSTANCE_FLAGS (type),
2032 type);
2033 else
2034 type = SYMBOL_TYPE (sym);
2035 }
2036 }
2037
2038 if (TYPE_TARGET_STUB (type))
2039 {
2040 struct type *range_type;
2041 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2042
2043 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2044 {
2045 /* Nothing we can do. */
2046 }
2047 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2048 {
2049 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2050 TYPE_TARGET_STUB (type) = 0;
2051 }
2052 }
2053
2054 type = make_qualified_type (type, instance_flags, NULL);
2055
2056 /* Cache TYPE_LENGTH for future use. */
2057 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2058
2059 return type;
2060 }
2061
2062 /* Parse a type expression in the string [P..P+LENGTH). If an error
2063 occurs, silently return a void type. */
2064
2065 static struct type *
2066 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2067 {
2068 struct ui_file *saved_gdb_stderr;
2069 struct type *type = NULL; /* Initialize to keep gcc happy. */
2070 volatile struct gdb_exception except;
2071
2072 /* Suppress error messages. */
2073 saved_gdb_stderr = gdb_stderr;
2074 gdb_stderr = ui_file_new ();
2075
2076 /* Call parse_and_eval_type() without fear of longjmp()s. */
2077 TRY_CATCH (except, RETURN_MASK_ERROR)
2078 {
2079 type = parse_and_eval_type (p, length);
2080 }
2081
2082 if (except.reason < 0)
2083 type = builtin_type (gdbarch)->builtin_void;
2084
2085 /* Stop suppressing error messages. */
2086 ui_file_delete (gdb_stderr);
2087 gdb_stderr = saved_gdb_stderr;
2088
2089 return type;
2090 }
2091
2092 /* Ugly hack to convert method stubs into method types.
2093
2094 He ain't kiddin'. This demangles the name of the method into a
2095 string including argument types, parses out each argument type,
2096 generates a string casting a zero to that type, evaluates the
2097 string, and stuffs the resulting type into an argtype vector!!!
2098 Then it knows the type of the whole function (including argument
2099 types for overloading), which info used to be in the stab's but was
2100 removed to hack back the space required for them. */
2101
2102 static void
2103 check_stub_method (struct type *type, int method_id, int signature_id)
2104 {
2105 struct gdbarch *gdbarch = get_type_arch (type);
2106 struct fn_field *f;
2107 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2108 char *demangled_name = gdb_demangle (mangled_name,
2109 DMGL_PARAMS | DMGL_ANSI);
2110 char *argtypetext, *p;
2111 int depth = 0, argcount = 1;
2112 struct field *argtypes;
2113 struct type *mtype;
2114
2115 /* Make sure we got back a function string that we can use. */
2116 if (demangled_name)
2117 p = strchr (demangled_name, '(');
2118 else
2119 p = NULL;
2120
2121 if (demangled_name == NULL || p == NULL)
2122 error (_("Internal: Cannot demangle mangled name `%s'."),
2123 mangled_name);
2124
2125 /* Now, read in the parameters that define this type. */
2126 p += 1;
2127 argtypetext = p;
2128 while (*p)
2129 {
2130 if (*p == '(' || *p == '<')
2131 {
2132 depth += 1;
2133 }
2134 else if (*p == ')' || *p == '>')
2135 {
2136 depth -= 1;
2137 }
2138 else if (*p == ',' && depth == 0)
2139 {
2140 argcount += 1;
2141 }
2142
2143 p += 1;
2144 }
2145
2146 /* If we read one argument and it was ``void'', don't count it. */
2147 if (strncmp (argtypetext, "(void)", 6) == 0)
2148 argcount -= 1;
2149
2150 /* We need one extra slot, for the THIS pointer. */
2151
2152 argtypes = (struct field *)
2153 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2154 p = argtypetext;
2155
2156 /* Add THIS pointer for non-static methods. */
2157 f = TYPE_FN_FIELDLIST1 (type, method_id);
2158 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2159 argcount = 0;
2160 else
2161 {
2162 argtypes[0].type = lookup_pointer_type (type);
2163 argcount = 1;
2164 }
2165
2166 if (*p != ')') /* () means no args, skip while. */
2167 {
2168 depth = 0;
2169 while (*p)
2170 {
2171 if (depth <= 0 && (*p == ',' || *p == ')'))
2172 {
2173 /* Avoid parsing of ellipsis, they will be handled below.
2174 Also avoid ``void'' as above. */
2175 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2176 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2177 {
2178 argtypes[argcount].type =
2179 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2180 argcount += 1;
2181 }
2182 argtypetext = p + 1;
2183 }
2184
2185 if (*p == '(' || *p == '<')
2186 {
2187 depth += 1;
2188 }
2189 else if (*p == ')' || *p == '>')
2190 {
2191 depth -= 1;
2192 }
2193
2194 p += 1;
2195 }
2196 }
2197
2198 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2199
2200 /* Now update the old "stub" type into a real type. */
2201 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2202 TYPE_DOMAIN_TYPE (mtype) = type;
2203 TYPE_FIELDS (mtype) = argtypes;
2204 TYPE_NFIELDS (mtype) = argcount;
2205 TYPE_STUB (mtype) = 0;
2206 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2207 if (p[-2] == '.')
2208 TYPE_VARARGS (mtype) = 1;
2209
2210 xfree (demangled_name);
2211 }
2212
2213 /* This is the external interface to check_stub_method, above. This
2214 function unstubs all of the signatures for TYPE's METHOD_ID method
2215 name. After calling this function TYPE_FN_FIELD_STUB will be
2216 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2217 correct.
2218
2219 This function unfortunately can not die until stabs do. */
2220
2221 void
2222 check_stub_method_group (struct type *type, int method_id)
2223 {
2224 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2225 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2226 int j, found_stub = 0;
2227
2228 for (j = 0; j < len; j++)
2229 if (TYPE_FN_FIELD_STUB (f, j))
2230 {
2231 found_stub = 1;
2232 check_stub_method (type, method_id, j);
2233 }
2234
2235 /* GNU v3 methods with incorrect names were corrected when we read
2236 in type information, because it was cheaper to do it then. The
2237 only GNU v2 methods with incorrect method names are operators and
2238 destructors; destructors were also corrected when we read in type
2239 information.
2240
2241 Therefore the only thing we need to handle here are v2 operator
2242 names. */
2243 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2244 {
2245 int ret;
2246 char dem_opname[256];
2247
2248 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2249 method_id),
2250 dem_opname, DMGL_ANSI);
2251 if (!ret)
2252 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2253 method_id),
2254 dem_opname, 0);
2255 if (ret)
2256 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2257 }
2258 }
2259
2260 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2261 const struct cplus_struct_type cplus_struct_default = { };
2262
2263 void
2264 allocate_cplus_struct_type (struct type *type)
2265 {
2266 if (HAVE_CPLUS_STRUCT (type))
2267 /* Structure was already allocated. Nothing more to do. */
2268 return;
2269
2270 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2271 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2272 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2273 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2274 }
2275
2276 const struct gnat_aux_type gnat_aux_default =
2277 { NULL };
2278
2279 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2280 and allocate the associated gnat-specific data. The gnat-specific
2281 data is also initialized to gnat_aux_default. */
2282
2283 void
2284 allocate_gnat_aux_type (struct type *type)
2285 {
2286 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2287 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2288 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2289 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2290 }
2291
2292 /* Helper function to initialize the standard scalar types.
2293
2294 If NAME is non-NULL, then it is used to initialize the type name.
2295 Note that NAME is not copied; it is required to have a lifetime at
2296 least as long as OBJFILE. */
2297
2298 struct type *
2299 init_type (enum type_code code, int length, int flags,
2300 const char *name, struct objfile *objfile)
2301 {
2302 struct type *type;
2303
2304 type = alloc_type (objfile);
2305 TYPE_CODE (type) = code;
2306 TYPE_LENGTH (type) = length;
2307
2308 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2309 if (flags & TYPE_FLAG_UNSIGNED)
2310 TYPE_UNSIGNED (type) = 1;
2311 if (flags & TYPE_FLAG_NOSIGN)
2312 TYPE_NOSIGN (type) = 1;
2313 if (flags & TYPE_FLAG_STUB)
2314 TYPE_STUB (type) = 1;
2315 if (flags & TYPE_FLAG_TARGET_STUB)
2316 TYPE_TARGET_STUB (type) = 1;
2317 if (flags & TYPE_FLAG_STATIC)
2318 TYPE_STATIC (type) = 1;
2319 if (flags & TYPE_FLAG_PROTOTYPED)
2320 TYPE_PROTOTYPED (type) = 1;
2321 if (flags & TYPE_FLAG_INCOMPLETE)
2322 TYPE_INCOMPLETE (type) = 1;
2323 if (flags & TYPE_FLAG_VARARGS)
2324 TYPE_VARARGS (type) = 1;
2325 if (flags & TYPE_FLAG_VECTOR)
2326 TYPE_VECTOR (type) = 1;
2327 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2328 TYPE_STUB_SUPPORTED (type) = 1;
2329 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2330 TYPE_FIXED_INSTANCE (type) = 1;
2331 if (flags & TYPE_FLAG_GNU_IFUNC)
2332 TYPE_GNU_IFUNC (type) = 1;
2333
2334 TYPE_NAME (type) = name;
2335
2336 /* C++ fancies. */
2337
2338 if (name && strcmp (name, "char") == 0)
2339 TYPE_NOSIGN (type) = 1;
2340
2341 switch (code)
2342 {
2343 case TYPE_CODE_STRUCT:
2344 case TYPE_CODE_UNION:
2345 case TYPE_CODE_NAMESPACE:
2346 INIT_CPLUS_SPECIFIC (type);
2347 break;
2348 case TYPE_CODE_FLT:
2349 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2350 break;
2351 case TYPE_CODE_FUNC:
2352 INIT_FUNC_SPECIFIC (type);
2353 break;
2354 }
2355 return type;
2356 }
2357 \f
2358 /* Queries on types. */
2359
2360 int
2361 can_dereference (struct type *t)
2362 {
2363 /* FIXME: Should we return true for references as well as
2364 pointers? */
2365 CHECK_TYPEDEF (t);
2366 return
2367 (t != NULL
2368 && TYPE_CODE (t) == TYPE_CODE_PTR
2369 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2370 }
2371
2372 int
2373 is_integral_type (struct type *t)
2374 {
2375 CHECK_TYPEDEF (t);
2376 return
2377 ((t != NULL)
2378 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2379 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2380 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2381 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2382 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2383 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2384 }
2385
2386 /* Return true if TYPE is scalar. */
2387
2388 static int
2389 is_scalar_type (struct type *type)
2390 {
2391 CHECK_TYPEDEF (type);
2392
2393 switch (TYPE_CODE (type))
2394 {
2395 case TYPE_CODE_ARRAY:
2396 case TYPE_CODE_STRUCT:
2397 case TYPE_CODE_UNION:
2398 case TYPE_CODE_SET:
2399 case TYPE_CODE_STRING:
2400 return 0;
2401 default:
2402 return 1;
2403 }
2404 }
2405
2406 /* Return true if T is scalar, or a composite type which in practice has
2407 the memory layout of a scalar type. E.g., an array or struct with only
2408 one scalar element inside it, or a union with only scalar elements. */
2409
2410 int
2411 is_scalar_type_recursive (struct type *t)
2412 {
2413 CHECK_TYPEDEF (t);
2414
2415 if (is_scalar_type (t))
2416 return 1;
2417 /* Are we dealing with an array or string of known dimensions? */
2418 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2419 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2420 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2421 {
2422 LONGEST low_bound, high_bound;
2423 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2424
2425 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2426
2427 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2428 }
2429 /* Are we dealing with a struct with one element? */
2430 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2431 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2432 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2433 {
2434 int i, n = TYPE_NFIELDS (t);
2435
2436 /* If all elements of the union are scalar, then the union is scalar. */
2437 for (i = 0; i < n; i++)
2438 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2439 return 0;
2440
2441 return 1;
2442 }
2443
2444 return 0;
2445 }
2446
2447 /* A helper function which returns true if types A and B represent the
2448 "same" class type. This is true if the types have the same main
2449 type, or the same name. */
2450
2451 int
2452 class_types_same_p (const struct type *a, const struct type *b)
2453 {
2454 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2455 || (TYPE_NAME (a) && TYPE_NAME (b)
2456 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2457 }
2458
2459 /* If BASE is an ancestor of DCLASS return the distance between them.
2460 otherwise return -1;
2461 eg:
2462
2463 class A {};
2464 class B: public A {};
2465 class C: public B {};
2466 class D: C {};
2467
2468 distance_to_ancestor (A, A, 0) = 0
2469 distance_to_ancestor (A, B, 0) = 1
2470 distance_to_ancestor (A, C, 0) = 2
2471 distance_to_ancestor (A, D, 0) = 3
2472
2473 If PUBLIC is 1 then only public ancestors are considered,
2474 and the function returns the distance only if BASE is a public ancestor
2475 of DCLASS.
2476 Eg:
2477
2478 distance_to_ancestor (A, D, 1) = -1. */
2479
2480 static int
2481 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2482 {
2483 int i;
2484 int d;
2485
2486 CHECK_TYPEDEF (base);
2487 CHECK_TYPEDEF (dclass);
2488
2489 if (class_types_same_p (base, dclass))
2490 return 0;
2491
2492 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2493 {
2494 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2495 continue;
2496
2497 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2498 if (d >= 0)
2499 return 1 + d;
2500 }
2501
2502 return -1;
2503 }
2504
2505 /* Check whether BASE is an ancestor or base class or DCLASS
2506 Return 1 if so, and 0 if not.
2507 Note: If BASE and DCLASS are of the same type, this function
2508 will return 1. So for some class A, is_ancestor (A, A) will
2509 return 1. */
2510
2511 int
2512 is_ancestor (struct type *base, struct type *dclass)
2513 {
2514 return distance_to_ancestor (base, dclass, 0) >= 0;
2515 }
2516
2517 /* Like is_ancestor, but only returns true when BASE is a public
2518 ancestor of DCLASS. */
2519
2520 int
2521 is_public_ancestor (struct type *base, struct type *dclass)
2522 {
2523 return distance_to_ancestor (base, dclass, 1) >= 0;
2524 }
2525
2526 /* A helper function for is_unique_ancestor. */
2527
2528 static int
2529 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2530 int *offset,
2531 const gdb_byte *valaddr, int embedded_offset,
2532 CORE_ADDR address, struct value *val)
2533 {
2534 int i, count = 0;
2535
2536 CHECK_TYPEDEF (base);
2537 CHECK_TYPEDEF (dclass);
2538
2539 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2540 {
2541 struct type *iter;
2542 int this_offset;
2543
2544 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2545
2546 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2547 address, val);
2548
2549 if (class_types_same_p (base, iter))
2550 {
2551 /* If this is the first subclass, set *OFFSET and set count
2552 to 1. Otherwise, if this is at the same offset as
2553 previous instances, do nothing. Otherwise, increment
2554 count. */
2555 if (*offset == -1)
2556 {
2557 *offset = this_offset;
2558 count = 1;
2559 }
2560 else if (this_offset == *offset)
2561 {
2562 /* Nothing. */
2563 }
2564 else
2565 ++count;
2566 }
2567 else
2568 count += is_unique_ancestor_worker (base, iter, offset,
2569 valaddr,
2570 embedded_offset + this_offset,
2571 address, val);
2572 }
2573
2574 return count;
2575 }
2576
2577 /* Like is_ancestor, but only returns true if BASE is a unique base
2578 class of the type of VAL. */
2579
2580 int
2581 is_unique_ancestor (struct type *base, struct value *val)
2582 {
2583 int offset = -1;
2584
2585 return is_unique_ancestor_worker (base, value_type (val), &offset,
2586 value_contents_for_printing (val),
2587 value_embedded_offset (val),
2588 value_address (val), val) == 1;
2589 }
2590
2591 \f
2592 /* Overload resolution. */
2593
2594 /* Return the sum of the rank of A with the rank of B. */
2595
2596 struct rank
2597 sum_ranks (struct rank a, struct rank b)
2598 {
2599 struct rank c;
2600 c.rank = a.rank + b.rank;
2601 c.subrank = a.subrank + b.subrank;
2602 return c;
2603 }
2604
2605 /* Compare rank A and B and return:
2606 0 if a = b
2607 1 if a is better than b
2608 -1 if b is better than a. */
2609
2610 int
2611 compare_ranks (struct rank a, struct rank b)
2612 {
2613 if (a.rank == b.rank)
2614 {
2615 if (a.subrank == b.subrank)
2616 return 0;
2617 if (a.subrank < b.subrank)
2618 return 1;
2619 if (a.subrank > b.subrank)
2620 return -1;
2621 }
2622
2623 if (a.rank < b.rank)
2624 return 1;
2625
2626 /* a.rank > b.rank */
2627 return -1;
2628 }
2629
2630 /* Functions for overload resolution begin here. */
2631
2632 /* Compare two badness vectors A and B and return the result.
2633 0 => A and B are identical
2634 1 => A and B are incomparable
2635 2 => A is better than B
2636 3 => A is worse than B */
2637
2638 int
2639 compare_badness (struct badness_vector *a, struct badness_vector *b)
2640 {
2641 int i;
2642 int tmp;
2643 short found_pos = 0; /* any positives in c? */
2644 short found_neg = 0; /* any negatives in c? */
2645
2646 /* differing lengths => incomparable */
2647 if (a->length != b->length)
2648 return 1;
2649
2650 /* Subtract b from a */
2651 for (i = 0; i < a->length; i++)
2652 {
2653 tmp = compare_ranks (b->rank[i], a->rank[i]);
2654 if (tmp > 0)
2655 found_pos = 1;
2656 else if (tmp < 0)
2657 found_neg = 1;
2658 }
2659
2660 if (found_pos)
2661 {
2662 if (found_neg)
2663 return 1; /* incomparable */
2664 else
2665 return 3; /* A > B */
2666 }
2667 else
2668 /* no positives */
2669 {
2670 if (found_neg)
2671 return 2; /* A < B */
2672 else
2673 return 0; /* A == B */
2674 }
2675 }
2676
2677 /* Rank a function by comparing its parameter types (PARMS, length
2678 NPARMS), to the types of an argument list (ARGS, length NARGS).
2679 Return a pointer to a badness vector. This has NARGS + 1
2680 entries. */
2681
2682 struct badness_vector *
2683 rank_function (struct type **parms, int nparms,
2684 struct value **args, int nargs)
2685 {
2686 int i;
2687 struct badness_vector *bv;
2688 int min_len = nparms < nargs ? nparms : nargs;
2689
2690 bv = xmalloc (sizeof (struct badness_vector));
2691 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2692 bv->rank = XNEWVEC (struct rank, nargs + 1);
2693
2694 /* First compare the lengths of the supplied lists.
2695 If there is a mismatch, set it to a high value. */
2696
2697 /* pai/1997-06-03 FIXME: when we have debug info about default
2698 arguments and ellipsis parameter lists, we should consider those
2699 and rank the length-match more finely. */
2700
2701 LENGTH_MATCH (bv) = (nargs != nparms)
2702 ? LENGTH_MISMATCH_BADNESS
2703 : EXACT_MATCH_BADNESS;
2704
2705 /* Now rank all the parameters of the candidate function. */
2706 for (i = 1; i <= min_len; i++)
2707 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2708 args[i - 1]);
2709
2710 /* If more arguments than parameters, add dummy entries. */
2711 for (i = min_len + 1; i <= nargs; i++)
2712 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2713
2714 return bv;
2715 }
2716
2717 /* Compare the names of two integer types, assuming that any sign
2718 qualifiers have been checked already. We do it this way because
2719 there may be an "int" in the name of one of the types. */
2720
2721 static int
2722 integer_types_same_name_p (const char *first, const char *second)
2723 {
2724 int first_p, second_p;
2725
2726 /* If both are shorts, return 1; if neither is a short, keep
2727 checking. */
2728 first_p = (strstr (first, "short") != NULL);
2729 second_p = (strstr (second, "short") != NULL);
2730 if (first_p && second_p)
2731 return 1;
2732 if (first_p || second_p)
2733 return 0;
2734
2735 /* Likewise for long. */
2736 first_p = (strstr (first, "long") != NULL);
2737 second_p = (strstr (second, "long") != NULL);
2738 if (first_p && second_p)
2739 return 1;
2740 if (first_p || second_p)
2741 return 0;
2742
2743 /* Likewise for char. */
2744 first_p = (strstr (first, "char") != NULL);
2745 second_p = (strstr (second, "char") != NULL);
2746 if (first_p && second_p)
2747 return 1;
2748 if (first_p || second_p)
2749 return 0;
2750
2751 /* They must both be ints. */
2752 return 1;
2753 }
2754
2755 /* Compares type A to type B returns 1 if the represent the same type
2756 0 otherwise. */
2757
2758 int
2759 types_equal (struct type *a, struct type *b)
2760 {
2761 /* Identical type pointers. */
2762 /* However, this still doesn't catch all cases of same type for b
2763 and a. The reason is that builtin types are different from
2764 the same ones constructed from the object. */
2765 if (a == b)
2766 return 1;
2767
2768 /* Resolve typedefs */
2769 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2770 a = check_typedef (a);
2771 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2772 b = check_typedef (b);
2773
2774 /* If after resolving typedefs a and b are not of the same type
2775 code then they are not equal. */
2776 if (TYPE_CODE (a) != TYPE_CODE (b))
2777 return 0;
2778
2779 /* If a and b are both pointers types or both reference types then
2780 they are equal of the same type iff the objects they refer to are
2781 of the same type. */
2782 if (TYPE_CODE (a) == TYPE_CODE_PTR
2783 || TYPE_CODE (a) == TYPE_CODE_REF)
2784 return types_equal (TYPE_TARGET_TYPE (a),
2785 TYPE_TARGET_TYPE (b));
2786
2787 /* Well, damnit, if the names are exactly the same, I'll say they
2788 are exactly the same. This happens when we generate method
2789 stubs. The types won't point to the same address, but they
2790 really are the same. */
2791
2792 if (TYPE_NAME (a) && TYPE_NAME (b)
2793 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2794 return 1;
2795
2796 /* Check if identical after resolving typedefs. */
2797 if (a == b)
2798 return 1;
2799
2800 /* Two function types are equal if their argument and return types
2801 are equal. */
2802 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2803 {
2804 int i;
2805
2806 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2807 return 0;
2808
2809 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2810 return 0;
2811
2812 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2813 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2814 return 0;
2815
2816 return 1;
2817 }
2818
2819 return 0;
2820 }
2821 \f
2822 /* Deep comparison of types. */
2823
2824 /* An entry in the type-equality bcache. */
2825
2826 typedef struct type_equality_entry
2827 {
2828 struct type *type1, *type2;
2829 } type_equality_entry_d;
2830
2831 DEF_VEC_O (type_equality_entry_d);
2832
2833 /* A helper function to compare two strings. Returns 1 if they are
2834 the same, 0 otherwise. Handles NULLs properly. */
2835
2836 static int
2837 compare_maybe_null_strings (const char *s, const char *t)
2838 {
2839 if (s == NULL && t != NULL)
2840 return 0;
2841 else if (s != NULL && t == NULL)
2842 return 0;
2843 else if (s == NULL && t== NULL)
2844 return 1;
2845 return strcmp (s, t) == 0;
2846 }
2847
2848 /* A helper function for check_types_worklist that checks two types for
2849 "deep" equality. Returns non-zero if the types are considered the
2850 same, zero otherwise. */
2851
2852 static int
2853 check_types_equal (struct type *type1, struct type *type2,
2854 VEC (type_equality_entry_d) **worklist)
2855 {
2856 CHECK_TYPEDEF (type1);
2857 CHECK_TYPEDEF (type2);
2858
2859 if (type1 == type2)
2860 return 1;
2861
2862 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2863 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2864 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2865 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2866 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2867 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2868 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2869 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2870 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2871 return 0;
2872
2873 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2874 TYPE_TAG_NAME (type2)))
2875 return 0;
2876 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2877 return 0;
2878
2879 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2880 {
2881 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2882 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2883 return 0;
2884 }
2885 else
2886 {
2887 int i;
2888
2889 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2890 {
2891 const struct field *field1 = &TYPE_FIELD (type1, i);
2892 const struct field *field2 = &TYPE_FIELD (type2, i);
2893 struct type_equality_entry entry;
2894
2895 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2896 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2897 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2898 return 0;
2899 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2900 FIELD_NAME (*field2)))
2901 return 0;
2902 switch (FIELD_LOC_KIND (*field1))
2903 {
2904 case FIELD_LOC_KIND_BITPOS:
2905 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2906 return 0;
2907 break;
2908 case FIELD_LOC_KIND_ENUMVAL:
2909 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2910 return 0;
2911 break;
2912 case FIELD_LOC_KIND_PHYSADDR:
2913 if (FIELD_STATIC_PHYSADDR (*field1)
2914 != FIELD_STATIC_PHYSADDR (*field2))
2915 return 0;
2916 break;
2917 case FIELD_LOC_KIND_PHYSNAME:
2918 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2919 FIELD_STATIC_PHYSNAME (*field2)))
2920 return 0;
2921 break;
2922 case FIELD_LOC_KIND_DWARF_BLOCK:
2923 {
2924 struct dwarf2_locexpr_baton *block1, *block2;
2925
2926 block1 = FIELD_DWARF_BLOCK (*field1);
2927 block2 = FIELD_DWARF_BLOCK (*field2);
2928 if (block1->per_cu != block2->per_cu
2929 || block1->size != block2->size
2930 || memcmp (block1->data, block2->data, block1->size) != 0)
2931 return 0;
2932 }
2933 break;
2934 default:
2935 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2936 "%d by check_types_equal"),
2937 FIELD_LOC_KIND (*field1));
2938 }
2939
2940 entry.type1 = FIELD_TYPE (*field1);
2941 entry.type2 = FIELD_TYPE (*field2);
2942 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2943 }
2944 }
2945
2946 if (TYPE_TARGET_TYPE (type1) != NULL)
2947 {
2948 struct type_equality_entry entry;
2949
2950 if (TYPE_TARGET_TYPE (type2) == NULL)
2951 return 0;
2952
2953 entry.type1 = TYPE_TARGET_TYPE (type1);
2954 entry.type2 = TYPE_TARGET_TYPE (type2);
2955 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2956 }
2957 else if (TYPE_TARGET_TYPE (type2) != NULL)
2958 return 0;
2959
2960 return 1;
2961 }
2962
2963 /* Check types on a worklist for equality. Returns zero if any pair
2964 is not equal, non-zero if they are all considered equal. */
2965
2966 static int
2967 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2968 struct bcache *cache)
2969 {
2970 while (!VEC_empty (type_equality_entry_d, *worklist))
2971 {
2972 struct type_equality_entry entry;
2973 int added;
2974
2975 entry = *VEC_last (type_equality_entry_d, *worklist);
2976 VEC_pop (type_equality_entry_d, *worklist);
2977
2978 /* If the type pair has already been visited, we know it is
2979 ok. */
2980 bcache_full (&entry, sizeof (entry), cache, &added);
2981 if (!added)
2982 continue;
2983
2984 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2985 return 0;
2986 }
2987
2988 return 1;
2989 }
2990
2991 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2992 "deep comparison". Otherwise return zero. */
2993
2994 int
2995 types_deeply_equal (struct type *type1, struct type *type2)
2996 {
2997 volatile struct gdb_exception except;
2998 int result = 0;
2999 struct bcache *cache;
3000 VEC (type_equality_entry_d) *worklist = NULL;
3001 struct type_equality_entry entry;
3002
3003 gdb_assert (type1 != NULL && type2 != NULL);
3004
3005 /* Early exit for the simple case. */
3006 if (type1 == type2)
3007 return 1;
3008
3009 cache = bcache_xmalloc (NULL, NULL);
3010
3011 entry.type1 = type1;
3012 entry.type2 = type2;
3013 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3014
3015 TRY_CATCH (except, RETURN_MASK_ALL)
3016 {
3017 result = check_types_worklist (&worklist, cache);
3018 }
3019 /* check_types_worklist calls several nested helper functions,
3020 some of which can raise a GDB Exception, so we just check
3021 and rethrow here. If there is a GDB exception, a comparison
3022 is not capable (or trusted), so exit. */
3023 bcache_xfree (cache);
3024 VEC_free (type_equality_entry_d, worklist);
3025 /* Rethrow if there was a problem. */
3026 if (except.reason < 0)
3027 throw_exception (except);
3028
3029 return result;
3030 }
3031 \f
3032 /* Compare one type (PARM) for compatibility with another (ARG).
3033 * PARM is intended to be the parameter type of a function; and
3034 * ARG is the supplied argument's type. This function tests if
3035 * the latter can be converted to the former.
3036 * VALUE is the argument's value or NULL if none (or called recursively)
3037 *
3038 * Return 0 if they are identical types;
3039 * Otherwise, return an integer which corresponds to how compatible
3040 * PARM is to ARG. The higher the return value, the worse the match.
3041 * Generally the "bad" conversions are all uniformly assigned a 100. */
3042
3043 struct rank
3044 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3045 {
3046 struct rank rank = {0,0};
3047
3048 if (types_equal (parm, arg))
3049 return EXACT_MATCH_BADNESS;
3050
3051 /* Resolve typedefs */
3052 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3053 parm = check_typedef (parm);
3054 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3055 arg = check_typedef (arg);
3056
3057 /* See through references, since we can almost make non-references
3058 references. */
3059 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3060 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3061 REFERENCE_CONVERSION_BADNESS));
3062 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3063 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3064 REFERENCE_CONVERSION_BADNESS));
3065 if (overload_debug)
3066 /* Debugging only. */
3067 fprintf_filtered (gdb_stderr,
3068 "------ Arg is %s [%d], parm is %s [%d]\n",
3069 TYPE_NAME (arg), TYPE_CODE (arg),
3070 TYPE_NAME (parm), TYPE_CODE (parm));
3071
3072 /* x -> y means arg of type x being supplied for parameter of type y. */
3073
3074 switch (TYPE_CODE (parm))
3075 {
3076 case TYPE_CODE_PTR:
3077 switch (TYPE_CODE (arg))
3078 {
3079 case TYPE_CODE_PTR:
3080
3081 /* Allowed pointer conversions are:
3082 (a) pointer to void-pointer conversion. */
3083 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3084 return VOID_PTR_CONVERSION_BADNESS;
3085
3086 /* (b) pointer to ancestor-pointer conversion. */
3087 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3088 TYPE_TARGET_TYPE (arg),
3089 0);
3090 if (rank.subrank >= 0)
3091 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3092
3093 return INCOMPATIBLE_TYPE_BADNESS;
3094 case TYPE_CODE_ARRAY:
3095 if (types_equal (TYPE_TARGET_TYPE (parm),
3096 TYPE_TARGET_TYPE (arg)))
3097 return EXACT_MATCH_BADNESS;
3098 return INCOMPATIBLE_TYPE_BADNESS;
3099 case TYPE_CODE_FUNC:
3100 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3101 case TYPE_CODE_INT:
3102 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3103 {
3104 if (value_as_long (value) == 0)
3105 {
3106 /* Null pointer conversion: allow it to be cast to a pointer.
3107 [4.10.1 of C++ standard draft n3290] */
3108 return NULL_POINTER_CONVERSION_BADNESS;
3109 }
3110 else
3111 {
3112 /* If type checking is disabled, allow the conversion. */
3113 if (!strict_type_checking)
3114 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3115 }
3116 }
3117 /* fall through */
3118 case TYPE_CODE_ENUM:
3119 case TYPE_CODE_FLAGS:
3120 case TYPE_CODE_CHAR:
3121 case TYPE_CODE_RANGE:
3122 case TYPE_CODE_BOOL:
3123 default:
3124 return INCOMPATIBLE_TYPE_BADNESS;
3125 }
3126 case TYPE_CODE_ARRAY:
3127 switch (TYPE_CODE (arg))
3128 {
3129 case TYPE_CODE_PTR:
3130 case TYPE_CODE_ARRAY:
3131 return rank_one_type (TYPE_TARGET_TYPE (parm),
3132 TYPE_TARGET_TYPE (arg), NULL);
3133 default:
3134 return INCOMPATIBLE_TYPE_BADNESS;
3135 }
3136 case TYPE_CODE_FUNC:
3137 switch (TYPE_CODE (arg))
3138 {
3139 case TYPE_CODE_PTR: /* funcptr -> func */
3140 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3141 default:
3142 return INCOMPATIBLE_TYPE_BADNESS;
3143 }
3144 case TYPE_CODE_INT:
3145 switch (TYPE_CODE (arg))
3146 {
3147 case TYPE_CODE_INT:
3148 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3149 {
3150 /* Deal with signed, unsigned, and plain chars and
3151 signed and unsigned ints. */
3152 if (TYPE_NOSIGN (parm))
3153 {
3154 /* This case only for character types. */
3155 if (TYPE_NOSIGN (arg))
3156 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3157 else /* signed/unsigned char -> plain char */
3158 return INTEGER_CONVERSION_BADNESS;
3159 }
3160 else if (TYPE_UNSIGNED (parm))
3161 {
3162 if (TYPE_UNSIGNED (arg))
3163 {
3164 /* unsigned int -> unsigned int, or
3165 unsigned long -> unsigned long */
3166 if (integer_types_same_name_p (TYPE_NAME (parm),
3167 TYPE_NAME (arg)))
3168 return EXACT_MATCH_BADNESS;
3169 else if (integer_types_same_name_p (TYPE_NAME (arg),
3170 "int")
3171 && integer_types_same_name_p (TYPE_NAME (parm),
3172 "long"))
3173 /* unsigned int -> unsigned long */
3174 return INTEGER_PROMOTION_BADNESS;
3175 else
3176 /* unsigned long -> unsigned int */
3177 return INTEGER_CONVERSION_BADNESS;
3178 }
3179 else
3180 {
3181 if (integer_types_same_name_p (TYPE_NAME (arg),
3182 "long")
3183 && integer_types_same_name_p (TYPE_NAME (parm),
3184 "int"))
3185 /* signed long -> unsigned int */
3186 return INTEGER_CONVERSION_BADNESS;
3187 else
3188 /* signed int/long -> unsigned int/long */
3189 return INTEGER_CONVERSION_BADNESS;
3190 }
3191 }
3192 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3193 {
3194 if (integer_types_same_name_p (TYPE_NAME (parm),
3195 TYPE_NAME (arg)))
3196 return EXACT_MATCH_BADNESS;
3197 else if (integer_types_same_name_p (TYPE_NAME (arg),
3198 "int")
3199 && integer_types_same_name_p (TYPE_NAME (parm),
3200 "long"))
3201 return INTEGER_PROMOTION_BADNESS;
3202 else
3203 return INTEGER_CONVERSION_BADNESS;
3204 }
3205 else
3206 return INTEGER_CONVERSION_BADNESS;
3207 }
3208 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3209 return INTEGER_PROMOTION_BADNESS;
3210 else
3211 return INTEGER_CONVERSION_BADNESS;
3212 case TYPE_CODE_ENUM:
3213 case TYPE_CODE_FLAGS:
3214 case TYPE_CODE_CHAR:
3215 case TYPE_CODE_RANGE:
3216 case TYPE_CODE_BOOL:
3217 if (TYPE_DECLARED_CLASS (arg))
3218 return INCOMPATIBLE_TYPE_BADNESS;
3219 return INTEGER_PROMOTION_BADNESS;
3220 case TYPE_CODE_FLT:
3221 return INT_FLOAT_CONVERSION_BADNESS;
3222 case TYPE_CODE_PTR:
3223 return NS_POINTER_CONVERSION_BADNESS;
3224 default:
3225 return INCOMPATIBLE_TYPE_BADNESS;
3226 }
3227 break;
3228 case TYPE_CODE_ENUM:
3229 switch (TYPE_CODE (arg))
3230 {
3231 case TYPE_CODE_INT:
3232 case TYPE_CODE_CHAR:
3233 case TYPE_CODE_RANGE:
3234 case TYPE_CODE_BOOL:
3235 case TYPE_CODE_ENUM:
3236 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3237 return INCOMPATIBLE_TYPE_BADNESS;
3238 return INTEGER_CONVERSION_BADNESS;
3239 case TYPE_CODE_FLT:
3240 return INT_FLOAT_CONVERSION_BADNESS;
3241 default:
3242 return INCOMPATIBLE_TYPE_BADNESS;
3243 }
3244 break;
3245 case TYPE_CODE_CHAR:
3246 switch (TYPE_CODE (arg))
3247 {
3248 case TYPE_CODE_RANGE:
3249 case TYPE_CODE_BOOL:
3250 case TYPE_CODE_ENUM:
3251 if (TYPE_DECLARED_CLASS (arg))
3252 return INCOMPATIBLE_TYPE_BADNESS;
3253 return INTEGER_CONVERSION_BADNESS;
3254 case TYPE_CODE_FLT:
3255 return INT_FLOAT_CONVERSION_BADNESS;
3256 case TYPE_CODE_INT:
3257 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3258 return INTEGER_CONVERSION_BADNESS;
3259 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3260 return INTEGER_PROMOTION_BADNESS;
3261 /* >>> !! else fall through !! <<< */
3262 case TYPE_CODE_CHAR:
3263 /* Deal with signed, unsigned, and plain chars for C++ and
3264 with int cases falling through from previous case. */
3265 if (TYPE_NOSIGN (parm))
3266 {
3267 if (TYPE_NOSIGN (arg))
3268 return EXACT_MATCH_BADNESS;
3269 else
3270 return INTEGER_CONVERSION_BADNESS;
3271 }
3272 else if (TYPE_UNSIGNED (parm))
3273 {
3274 if (TYPE_UNSIGNED (arg))
3275 return EXACT_MATCH_BADNESS;
3276 else
3277 return INTEGER_PROMOTION_BADNESS;
3278 }
3279 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3280 return EXACT_MATCH_BADNESS;
3281 else
3282 return INTEGER_CONVERSION_BADNESS;
3283 default:
3284 return INCOMPATIBLE_TYPE_BADNESS;
3285 }
3286 break;
3287 case TYPE_CODE_RANGE:
3288 switch (TYPE_CODE (arg))
3289 {
3290 case TYPE_CODE_INT:
3291 case TYPE_CODE_CHAR:
3292 case TYPE_CODE_RANGE:
3293 case TYPE_CODE_BOOL:
3294 case TYPE_CODE_ENUM:
3295 return INTEGER_CONVERSION_BADNESS;
3296 case TYPE_CODE_FLT:
3297 return INT_FLOAT_CONVERSION_BADNESS;
3298 default:
3299 return INCOMPATIBLE_TYPE_BADNESS;
3300 }
3301 break;
3302 case TYPE_CODE_BOOL:
3303 switch (TYPE_CODE (arg))
3304 {
3305 /* n3290 draft, section 4.12.1 (conv.bool):
3306
3307 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3308 pointer to member type can be converted to a prvalue of type
3309 bool. A zero value, null pointer value, or null member pointer
3310 value is converted to false; any other value is converted to
3311 true. A prvalue of type std::nullptr_t can be converted to a
3312 prvalue of type bool; the resulting value is false." */
3313 case TYPE_CODE_INT:
3314 case TYPE_CODE_CHAR:
3315 case TYPE_CODE_ENUM:
3316 case TYPE_CODE_FLT:
3317 case TYPE_CODE_MEMBERPTR:
3318 case TYPE_CODE_PTR:
3319 return BOOL_CONVERSION_BADNESS;
3320 case TYPE_CODE_RANGE:
3321 return INCOMPATIBLE_TYPE_BADNESS;
3322 case TYPE_CODE_BOOL:
3323 return EXACT_MATCH_BADNESS;
3324 default:
3325 return INCOMPATIBLE_TYPE_BADNESS;
3326 }
3327 break;
3328 case TYPE_CODE_FLT:
3329 switch (TYPE_CODE (arg))
3330 {
3331 case TYPE_CODE_FLT:
3332 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3333 return FLOAT_PROMOTION_BADNESS;
3334 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3335 return EXACT_MATCH_BADNESS;
3336 else
3337 return FLOAT_CONVERSION_BADNESS;
3338 case TYPE_CODE_INT:
3339 case TYPE_CODE_BOOL:
3340 case TYPE_CODE_ENUM:
3341 case TYPE_CODE_RANGE:
3342 case TYPE_CODE_CHAR:
3343 return INT_FLOAT_CONVERSION_BADNESS;
3344 default:
3345 return INCOMPATIBLE_TYPE_BADNESS;
3346 }
3347 break;
3348 case TYPE_CODE_COMPLEX:
3349 switch (TYPE_CODE (arg))
3350 { /* Strictly not needed for C++, but... */
3351 case TYPE_CODE_FLT:
3352 return FLOAT_PROMOTION_BADNESS;
3353 case TYPE_CODE_COMPLEX:
3354 return EXACT_MATCH_BADNESS;
3355 default:
3356 return INCOMPATIBLE_TYPE_BADNESS;
3357 }
3358 break;
3359 case TYPE_CODE_STRUCT:
3360 /* currently same as TYPE_CODE_CLASS. */
3361 switch (TYPE_CODE (arg))
3362 {
3363 case TYPE_CODE_STRUCT:
3364 /* Check for derivation */
3365 rank.subrank = distance_to_ancestor (parm, arg, 0);
3366 if (rank.subrank >= 0)
3367 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3368 /* else fall through */
3369 default:
3370 return INCOMPATIBLE_TYPE_BADNESS;
3371 }
3372 break;
3373 case TYPE_CODE_UNION:
3374 switch (TYPE_CODE (arg))
3375 {
3376 case TYPE_CODE_UNION:
3377 default:
3378 return INCOMPATIBLE_TYPE_BADNESS;
3379 }
3380 break;
3381 case TYPE_CODE_MEMBERPTR:
3382 switch (TYPE_CODE (arg))
3383 {
3384 default:
3385 return INCOMPATIBLE_TYPE_BADNESS;
3386 }
3387 break;
3388 case TYPE_CODE_METHOD:
3389 switch (TYPE_CODE (arg))
3390 {
3391
3392 default:
3393 return INCOMPATIBLE_TYPE_BADNESS;
3394 }
3395 break;
3396 case TYPE_CODE_REF:
3397 switch (TYPE_CODE (arg))
3398 {
3399
3400 default:
3401 return INCOMPATIBLE_TYPE_BADNESS;
3402 }
3403
3404 break;
3405 case TYPE_CODE_SET:
3406 switch (TYPE_CODE (arg))
3407 {
3408 /* Not in C++ */
3409 case TYPE_CODE_SET:
3410 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3411 TYPE_FIELD_TYPE (arg, 0), NULL);
3412 default:
3413 return INCOMPATIBLE_TYPE_BADNESS;
3414 }
3415 break;
3416 case TYPE_CODE_VOID:
3417 default:
3418 return INCOMPATIBLE_TYPE_BADNESS;
3419 } /* switch (TYPE_CODE (arg)) */
3420 }
3421
3422 /* End of functions for overload resolution. */
3423 \f
3424 /* Routines to pretty-print types. */
3425
3426 static void
3427 print_bit_vector (B_TYPE *bits, int nbits)
3428 {
3429 int bitno;
3430
3431 for (bitno = 0; bitno < nbits; bitno++)
3432 {
3433 if ((bitno % 8) == 0)
3434 {
3435 puts_filtered (" ");
3436 }
3437 if (B_TST (bits, bitno))
3438 printf_filtered (("1"));
3439 else
3440 printf_filtered (("0"));
3441 }
3442 }
3443
3444 /* Note the first arg should be the "this" pointer, we may not want to
3445 include it since we may get into a infinitely recursive
3446 situation. */
3447
3448 static void
3449 print_arg_types (struct field *args, int nargs, int spaces)
3450 {
3451 if (args != NULL)
3452 {
3453 int i;
3454
3455 for (i = 0; i < nargs; i++)
3456 recursive_dump_type (args[i].type, spaces + 2);
3457 }
3458 }
3459
3460 int
3461 field_is_static (struct field *f)
3462 {
3463 /* "static" fields are the fields whose location is not relative
3464 to the address of the enclosing struct. It would be nice to
3465 have a dedicated flag that would be set for static fields when
3466 the type is being created. But in practice, checking the field
3467 loc_kind should give us an accurate answer. */
3468 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3469 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3470 }
3471
3472 static void
3473 dump_fn_fieldlists (struct type *type, int spaces)
3474 {
3475 int method_idx;
3476 int overload_idx;
3477 struct fn_field *f;
3478
3479 printfi_filtered (spaces, "fn_fieldlists ");
3480 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3481 printf_filtered ("\n");
3482 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3483 {
3484 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3485 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3486 method_idx,
3487 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3488 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3489 gdb_stdout);
3490 printf_filtered (_(") length %d\n"),
3491 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3492 for (overload_idx = 0;
3493 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3494 overload_idx++)
3495 {
3496 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3497 overload_idx,
3498 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3499 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3500 gdb_stdout);
3501 printf_filtered (")\n");
3502 printfi_filtered (spaces + 8, "type ");
3503 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3504 gdb_stdout);
3505 printf_filtered ("\n");
3506
3507 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3508 spaces + 8 + 2);
3509
3510 printfi_filtered (spaces + 8, "args ");
3511 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3512 gdb_stdout);
3513 printf_filtered ("\n");
3514
3515 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3516 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3517 overload_idx)),
3518 spaces);
3519 printfi_filtered (spaces + 8, "fcontext ");
3520 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3521 gdb_stdout);
3522 printf_filtered ("\n");
3523
3524 printfi_filtered (spaces + 8, "is_const %d\n",
3525 TYPE_FN_FIELD_CONST (f, overload_idx));
3526 printfi_filtered (spaces + 8, "is_volatile %d\n",
3527 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3528 printfi_filtered (spaces + 8, "is_private %d\n",
3529 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3530 printfi_filtered (spaces + 8, "is_protected %d\n",
3531 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3532 printfi_filtered (spaces + 8, "is_stub %d\n",
3533 TYPE_FN_FIELD_STUB (f, overload_idx));
3534 printfi_filtered (spaces + 8, "voffset %u\n",
3535 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3536 }
3537 }
3538 }
3539
3540 static void
3541 print_cplus_stuff (struct type *type, int spaces)
3542 {
3543 printfi_filtered (spaces, "n_baseclasses %d\n",
3544 TYPE_N_BASECLASSES (type));
3545 printfi_filtered (spaces, "nfn_fields %d\n",
3546 TYPE_NFN_FIELDS (type));
3547 if (TYPE_N_BASECLASSES (type) > 0)
3548 {
3549 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3550 TYPE_N_BASECLASSES (type));
3551 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3552 gdb_stdout);
3553 printf_filtered (")");
3554
3555 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3556 TYPE_N_BASECLASSES (type));
3557 puts_filtered ("\n");
3558 }
3559 if (TYPE_NFIELDS (type) > 0)
3560 {
3561 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3562 {
3563 printfi_filtered (spaces,
3564 "private_field_bits (%d bits at *",
3565 TYPE_NFIELDS (type));
3566 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3567 gdb_stdout);
3568 printf_filtered (")");
3569 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3570 TYPE_NFIELDS (type));
3571 puts_filtered ("\n");
3572 }
3573 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3574 {
3575 printfi_filtered (spaces,
3576 "protected_field_bits (%d bits at *",
3577 TYPE_NFIELDS (type));
3578 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3579 gdb_stdout);
3580 printf_filtered (")");
3581 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3582 TYPE_NFIELDS (type));
3583 puts_filtered ("\n");
3584 }
3585 }
3586 if (TYPE_NFN_FIELDS (type) > 0)
3587 {
3588 dump_fn_fieldlists (type, spaces);
3589 }
3590 }
3591
3592 /* Print the contents of the TYPE's type_specific union, assuming that
3593 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3594
3595 static void
3596 print_gnat_stuff (struct type *type, int spaces)
3597 {
3598 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3599
3600 recursive_dump_type (descriptive_type, spaces + 2);
3601 }
3602
3603 static struct obstack dont_print_type_obstack;
3604
3605 void
3606 recursive_dump_type (struct type *type, int spaces)
3607 {
3608 int idx;
3609
3610 if (spaces == 0)
3611 obstack_begin (&dont_print_type_obstack, 0);
3612
3613 if (TYPE_NFIELDS (type) > 0
3614 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3615 {
3616 struct type **first_dont_print
3617 = (struct type **) obstack_base (&dont_print_type_obstack);
3618
3619 int i = (struct type **)
3620 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3621
3622 while (--i >= 0)
3623 {
3624 if (type == first_dont_print[i])
3625 {
3626 printfi_filtered (spaces, "type node ");
3627 gdb_print_host_address (type, gdb_stdout);
3628 printf_filtered (_(" <same as already seen type>\n"));
3629 return;
3630 }
3631 }
3632
3633 obstack_ptr_grow (&dont_print_type_obstack, type);
3634 }
3635
3636 printfi_filtered (spaces, "type node ");
3637 gdb_print_host_address (type, gdb_stdout);
3638 printf_filtered ("\n");
3639 printfi_filtered (spaces, "name '%s' (",
3640 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3641 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3642 printf_filtered (")\n");
3643 printfi_filtered (spaces, "tagname '%s' (",
3644 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3645 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3646 printf_filtered (")\n");
3647 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3648 switch (TYPE_CODE (type))
3649 {
3650 case TYPE_CODE_UNDEF:
3651 printf_filtered ("(TYPE_CODE_UNDEF)");
3652 break;
3653 case TYPE_CODE_PTR:
3654 printf_filtered ("(TYPE_CODE_PTR)");
3655 break;
3656 case TYPE_CODE_ARRAY:
3657 printf_filtered ("(TYPE_CODE_ARRAY)");
3658 break;
3659 case TYPE_CODE_STRUCT:
3660 printf_filtered ("(TYPE_CODE_STRUCT)");
3661 break;
3662 case TYPE_CODE_UNION:
3663 printf_filtered ("(TYPE_CODE_UNION)");
3664 break;
3665 case TYPE_CODE_ENUM:
3666 printf_filtered ("(TYPE_CODE_ENUM)");
3667 break;
3668 case TYPE_CODE_FLAGS:
3669 printf_filtered ("(TYPE_CODE_FLAGS)");
3670 break;
3671 case TYPE_CODE_FUNC:
3672 printf_filtered ("(TYPE_CODE_FUNC)");
3673 break;
3674 case TYPE_CODE_INT:
3675 printf_filtered ("(TYPE_CODE_INT)");
3676 break;
3677 case TYPE_CODE_FLT:
3678 printf_filtered ("(TYPE_CODE_FLT)");
3679 break;
3680 case TYPE_CODE_VOID:
3681 printf_filtered ("(TYPE_CODE_VOID)");
3682 break;
3683 case TYPE_CODE_SET:
3684 printf_filtered ("(TYPE_CODE_SET)");
3685 break;
3686 case TYPE_CODE_RANGE:
3687 printf_filtered ("(TYPE_CODE_RANGE)");
3688 break;
3689 case TYPE_CODE_STRING:
3690 printf_filtered ("(TYPE_CODE_STRING)");
3691 break;
3692 case TYPE_CODE_ERROR:
3693 printf_filtered ("(TYPE_CODE_ERROR)");
3694 break;
3695 case TYPE_CODE_MEMBERPTR:
3696 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3697 break;
3698 case TYPE_CODE_METHODPTR:
3699 printf_filtered ("(TYPE_CODE_METHODPTR)");
3700 break;
3701 case TYPE_CODE_METHOD:
3702 printf_filtered ("(TYPE_CODE_METHOD)");
3703 break;
3704 case TYPE_CODE_REF:
3705 printf_filtered ("(TYPE_CODE_REF)");
3706 break;
3707 case TYPE_CODE_CHAR:
3708 printf_filtered ("(TYPE_CODE_CHAR)");
3709 break;
3710 case TYPE_CODE_BOOL:
3711 printf_filtered ("(TYPE_CODE_BOOL)");
3712 break;
3713 case TYPE_CODE_COMPLEX:
3714 printf_filtered ("(TYPE_CODE_COMPLEX)");
3715 break;
3716 case TYPE_CODE_TYPEDEF:
3717 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3718 break;
3719 case TYPE_CODE_NAMESPACE:
3720 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3721 break;
3722 default:
3723 printf_filtered ("(UNKNOWN TYPE CODE)");
3724 break;
3725 }
3726 puts_filtered ("\n");
3727 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3728 if (TYPE_OBJFILE_OWNED (type))
3729 {
3730 printfi_filtered (spaces, "objfile ");
3731 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3732 }
3733 else
3734 {
3735 printfi_filtered (spaces, "gdbarch ");
3736 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3737 }
3738 printf_filtered ("\n");
3739 printfi_filtered (spaces, "target_type ");
3740 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3741 printf_filtered ("\n");
3742 if (TYPE_TARGET_TYPE (type) != NULL)
3743 {
3744 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3745 }
3746 printfi_filtered (spaces, "pointer_type ");
3747 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3748 printf_filtered ("\n");
3749 printfi_filtered (spaces, "reference_type ");
3750 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3751 printf_filtered ("\n");
3752 printfi_filtered (spaces, "type_chain ");
3753 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3754 printf_filtered ("\n");
3755 printfi_filtered (spaces, "instance_flags 0x%x",
3756 TYPE_INSTANCE_FLAGS (type));
3757 if (TYPE_CONST (type))
3758 {
3759 puts_filtered (" TYPE_FLAG_CONST");
3760 }
3761 if (TYPE_VOLATILE (type))
3762 {
3763 puts_filtered (" TYPE_FLAG_VOLATILE");
3764 }
3765 if (TYPE_CODE_SPACE (type))
3766 {
3767 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3768 }
3769 if (TYPE_DATA_SPACE (type))
3770 {
3771 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3772 }
3773 if (TYPE_ADDRESS_CLASS_1 (type))
3774 {
3775 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3776 }
3777 if (TYPE_ADDRESS_CLASS_2 (type))
3778 {
3779 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3780 }
3781 if (TYPE_RESTRICT (type))
3782 {
3783 puts_filtered (" TYPE_FLAG_RESTRICT");
3784 }
3785 puts_filtered ("\n");
3786
3787 printfi_filtered (spaces, "flags");
3788 if (TYPE_UNSIGNED (type))
3789 {
3790 puts_filtered (" TYPE_FLAG_UNSIGNED");
3791 }
3792 if (TYPE_NOSIGN (type))
3793 {
3794 puts_filtered (" TYPE_FLAG_NOSIGN");
3795 }
3796 if (TYPE_STUB (type))
3797 {
3798 puts_filtered (" TYPE_FLAG_STUB");
3799 }
3800 if (TYPE_TARGET_STUB (type))
3801 {
3802 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3803 }
3804 if (TYPE_STATIC (type))
3805 {
3806 puts_filtered (" TYPE_FLAG_STATIC");
3807 }
3808 if (TYPE_PROTOTYPED (type))
3809 {
3810 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3811 }
3812 if (TYPE_INCOMPLETE (type))
3813 {
3814 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3815 }
3816 if (TYPE_VARARGS (type))
3817 {
3818 puts_filtered (" TYPE_FLAG_VARARGS");
3819 }
3820 /* This is used for things like AltiVec registers on ppc. Gcc emits
3821 an attribute for the array type, which tells whether or not we
3822 have a vector, instead of a regular array. */
3823 if (TYPE_VECTOR (type))
3824 {
3825 puts_filtered (" TYPE_FLAG_VECTOR");
3826 }
3827 if (TYPE_FIXED_INSTANCE (type))
3828 {
3829 puts_filtered (" TYPE_FIXED_INSTANCE");
3830 }
3831 if (TYPE_STUB_SUPPORTED (type))
3832 {
3833 puts_filtered (" TYPE_STUB_SUPPORTED");
3834 }
3835 if (TYPE_NOTTEXT (type))
3836 {
3837 puts_filtered (" TYPE_NOTTEXT");
3838 }
3839 puts_filtered ("\n");
3840 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3841 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3842 puts_filtered ("\n");
3843 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3844 {
3845 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3846 printfi_filtered (spaces + 2,
3847 "[%d] enumval %s type ",
3848 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3849 else
3850 printfi_filtered (spaces + 2,
3851 "[%d] bitpos %d bitsize %d type ",
3852 idx, TYPE_FIELD_BITPOS (type, idx),
3853 TYPE_FIELD_BITSIZE (type, idx));
3854 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3855 printf_filtered (" name '%s' (",
3856 TYPE_FIELD_NAME (type, idx) != NULL
3857 ? TYPE_FIELD_NAME (type, idx)
3858 : "<NULL>");
3859 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3860 printf_filtered (")\n");
3861 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3862 {
3863 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3864 }
3865 }
3866 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3867 {
3868 printfi_filtered (spaces, "low %s%s high %s%s\n",
3869 plongest (TYPE_LOW_BOUND (type)),
3870 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3871 plongest (TYPE_HIGH_BOUND (type)),
3872 TYPE_HIGH_BOUND_UNDEFINED (type)
3873 ? " (undefined)" : "");
3874 }
3875 printfi_filtered (spaces, "vptr_basetype ");
3876 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3877 puts_filtered ("\n");
3878 if (TYPE_VPTR_BASETYPE (type) != NULL)
3879 {
3880 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3881 }
3882 printfi_filtered (spaces, "vptr_fieldno %d\n",
3883 TYPE_VPTR_FIELDNO (type));
3884
3885 switch (TYPE_SPECIFIC_FIELD (type))
3886 {
3887 case TYPE_SPECIFIC_CPLUS_STUFF:
3888 printfi_filtered (spaces, "cplus_stuff ");
3889 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3890 gdb_stdout);
3891 puts_filtered ("\n");
3892 print_cplus_stuff (type, spaces);
3893 break;
3894
3895 case TYPE_SPECIFIC_GNAT_STUFF:
3896 printfi_filtered (spaces, "gnat_stuff ");
3897 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3898 puts_filtered ("\n");
3899 print_gnat_stuff (type, spaces);
3900 break;
3901
3902 case TYPE_SPECIFIC_FLOATFORMAT:
3903 printfi_filtered (spaces, "floatformat ");
3904 if (TYPE_FLOATFORMAT (type) == NULL)
3905 puts_filtered ("(null)");
3906 else
3907 {
3908 puts_filtered ("{ ");
3909 if (TYPE_FLOATFORMAT (type)[0] == NULL
3910 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3911 puts_filtered ("(null)");
3912 else
3913 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3914
3915 puts_filtered (", ");
3916 if (TYPE_FLOATFORMAT (type)[1] == NULL
3917 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3918 puts_filtered ("(null)");
3919 else
3920 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3921
3922 puts_filtered (" }");
3923 }
3924 puts_filtered ("\n");
3925 break;
3926
3927 case TYPE_SPECIFIC_FUNC:
3928 printfi_filtered (spaces, "calling_convention %d\n",
3929 TYPE_CALLING_CONVENTION (type));
3930 /* tail_call_list is not printed. */
3931 break;
3932 }
3933
3934 if (spaces == 0)
3935 obstack_free (&dont_print_type_obstack, NULL);
3936 }
3937 \f
3938 /* Trivial helpers for the libiberty hash table, for mapping one
3939 type to another. */
3940
3941 struct type_pair
3942 {
3943 struct type *old, *new;
3944 };
3945
3946 static hashval_t
3947 type_pair_hash (const void *item)
3948 {
3949 const struct type_pair *pair = item;
3950
3951 return htab_hash_pointer (pair->old);
3952 }
3953
3954 static int
3955 type_pair_eq (const void *item_lhs, const void *item_rhs)
3956 {
3957 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3958
3959 return lhs->old == rhs->old;
3960 }
3961
3962 /* Allocate the hash table used by copy_type_recursive to walk
3963 types without duplicates. We use OBJFILE's obstack, because
3964 OBJFILE is about to be deleted. */
3965
3966 htab_t
3967 create_copied_types_hash (struct objfile *objfile)
3968 {
3969 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3970 NULL, &objfile->objfile_obstack,
3971 hashtab_obstack_allocate,
3972 dummy_obstack_deallocate);
3973 }
3974
3975 /* Recursively copy (deep copy) TYPE, if it is associated with
3976 OBJFILE. Return a new type allocated using malloc, a saved type if
3977 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3978 not associated with OBJFILE. */
3979
3980 struct type *
3981 copy_type_recursive (struct objfile *objfile,
3982 struct type *type,
3983 htab_t copied_types)
3984 {
3985 struct type_pair *stored, pair;
3986 void **slot;
3987 struct type *new_type;
3988
3989 if (! TYPE_OBJFILE_OWNED (type))
3990 return type;
3991
3992 /* This type shouldn't be pointing to any types in other objfiles;
3993 if it did, the type might disappear unexpectedly. */
3994 gdb_assert (TYPE_OBJFILE (type) == objfile);
3995
3996 pair.old = type;
3997 slot = htab_find_slot (copied_types, &pair, INSERT);
3998 if (*slot != NULL)
3999 return ((struct type_pair *) *slot)->new;
4000
4001 new_type = alloc_type_arch (get_type_arch (type));
4002
4003 /* We must add the new type to the hash table immediately, in case
4004 we encounter this type again during a recursive call below. */
4005 stored
4006 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4007 stored->old = type;
4008 stored->new = new_type;
4009 *slot = stored;
4010
4011 /* Copy the common fields of types. For the main type, we simply
4012 copy the entire thing and then update specific fields as needed. */
4013 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4014 TYPE_OBJFILE_OWNED (new_type) = 0;
4015 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4016
4017 if (TYPE_NAME (type))
4018 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4019 if (TYPE_TAG_NAME (type))
4020 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4021
4022 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4023 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4024
4025 /* Copy the fields. */
4026 if (TYPE_NFIELDS (type))
4027 {
4028 int i, nfields;
4029
4030 nfields = TYPE_NFIELDS (type);
4031 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4032 for (i = 0; i < nfields; i++)
4033 {
4034 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4035 TYPE_FIELD_ARTIFICIAL (type, i);
4036 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4037 if (TYPE_FIELD_TYPE (type, i))
4038 TYPE_FIELD_TYPE (new_type, i)
4039 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4040 copied_types);
4041 if (TYPE_FIELD_NAME (type, i))
4042 TYPE_FIELD_NAME (new_type, i) =
4043 xstrdup (TYPE_FIELD_NAME (type, i));
4044 switch (TYPE_FIELD_LOC_KIND (type, i))
4045 {
4046 case FIELD_LOC_KIND_BITPOS:
4047 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4048 TYPE_FIELD_BITPOS (type, i));
4049 break;
4050 case FIELD_LOC_KIND_ENUMVAL:
4051 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4052 TYPE_FIELD_ENUMVAL (type, i));
4053 break;
4054 case FIELD_LOC_KIND_PHYSADDR:
4055 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4056 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4057 break;
4058 case FIELD_LOC_KIND_PHYSNAME:
4059 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4060 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4061 i)));
4062 break;
4063 default:
4064 internal_error (__FILE__, __LINE__,
4065 _("Unexpected type field location kind: %d"),
4066 TYPE_FIELD_LOC_KIND (type, i));
4067 }
4068 }
4069 }
4070
4071 /* For range types, copy the bounds information. */
4072 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4073 {
4074 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4075 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4076 }
4077
4078 /* Copy pointers to other types. */
4079 if (TYPE_TARGET_TYPE (type))
4080 TYPE_TARGET_TYPE (new_type) =
4081 copy_type_recursive (objfile,
4082 TYPE_TARGET_TYPE (type),
4083 copied_types);
4084 if (TYPE_VPTR_BASETYPE (type))
4085 TYPE_VPTR_BASETYPE (new_type) =
4086 copy_type_recursive (objfile,
4087 TYPE_VPTR_BASETYPE (type),
4088 copied_types);
4089 /* Maybe copy the type_specific bits.
4090
4091 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4092 base classes and methods. There's no fundamental reason why we
4093 can't, but at the moment it is not needed. */
4094
4095 if (TYPE_CODE (type) == TYPE_CODE_FLT)
4096 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4097 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
4098 || TYPE_CODE (type) == TYPE_CODE_UNION
4099 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
4100 INIT_CPLUS_SPECIFIC (new_type);
4101
4102 return new_type;
4103 }
4104
4105 /* Make a copy of the given TYPE, except that the pointer & reference
4106 types are not preserved.
4107
4108 This function assumes that the given type has an associated objfile.
4109 This objfile is used to allocate the new type. */
4110
4111 struct type *
4112 copy_type (const struct type *type)
4113 {
4114 struct type *new_type;
4115
4116 gdb_assert (TYPE_OBJFILE_OWNED (type));
4117
4118 new_type = alloc_type_copy (type);
4119 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4120 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4121 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4122 sizeof (struct main_type));
4123
4124 return new_type;
4125 }
4126 \f
4127 /* Helper functions to initialize architecture-specific types. */
4128
4129 /* Allocate a type structure associated with GDBARCH and set its
4130 CODE, LENGTH, and NAME fields. */
4131
4132 struct type *
4133 arch_type (struct gdbarch *gdbarch,
4134 enum type_code code, int length, char *name)
4135 {
4136 struct type *type;
4137
4138 type = alloc_type_arch (gdbarch);
4139 TYPE_CODE (type) = code;
4140 TYPE_LENGTH (type) = length;
4141
4142 if (name)
4143 TYPE_NAME (type) = xstrdup (name);
4144
4145 return type;
4146 }
4147
4148 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4149 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4150 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4151
4152 struct type *
4153 arch_integer_type (struct gdbarch *gdbarch,
4154 int bit, int unsigned_p, char *name)
4155 {
4156 struct type *t;
4157
4158 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4159 if (unsigned_p)
4160 TYPE_UNSIGNED (t) = 1;
4161 if (name && strcmp (name, "char") == 0)
4162 TYPE_NOSIGN (t) = 1;
4163
4164 return t;
4165 }
4166
4167 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4168 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4169 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4170
4171 struct type *
4172 arch_character_type (struct gdbarch *gdbarch,
4173 int bit, int unsigned_p, char *name)
4174 {
4175 struct type *t;
4176
4177 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4178 if (unsigned_p)
4179 TYPE_UNSIGNED (t) = 1;
4180
4181 return t;
4182 }
4183
4184 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4185 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4186 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4187
4188 struct type *
4189 arch_boolean_type (struct gdbarch *gdbarch,
4190 int bit, int unsigned_p, char *name)
4191 {
4192 struct type *t;
4193
4194 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4195 if (unsigned_p)
4196 TYPE_UNSIGNED (t) = 1;
4197
4198 return t;
4199 }
4200
4201 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4202 BIT is the type size in bits; if BIT equals -1, the size is
4203 determined by the floatformat. NAME is the type name. Set the
4204 TYPE_FLOATFORMAT from FLOATFORMATS. */
4205
4206 struct type *
4207 arch_float_type (struct gdbarch *gdbarch,
4208 int bit, char *name, const struct floatformat **floatformats)
4209 {
4210 struct type *t;
4211
4212 if (bit == -1)
4213 {
4214 gdb_assert (floatformats != NULL);
4215 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4216 bit = floatformats[0]->totalsize;
4217 }
4218 gdb_assert (bit >= 0);
4219
4220 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4221 TYPE_FLOATFORMAT (t) = floatformats;
4222 return t;
4223 }
4224
4225 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4226 NAME is the type name. TARGET_TYPE is the component float type. */
4227
4228 struct type *
4229 arch_complex_type (struct gdbarch *gdbarch,
4230 char *name, struct type *target_type)
4231 {
4232 struct type *t;
4233
4234 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4235 2 * TYPE_LENGTH (target_type), name);
4236 TYPE_TARGET_TYPE (t) = target_type;
4237 return t;
4238 }
4239
4240 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4241 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4242
4243 struct type *
4244 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4245 {
4246 int nfields = length * TARGET_CHAR_BIT;
4247 struct type *type;
4248
4249 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4250 TYPE_UNSIGNED (type) = 1;
4251 TYPE_NFIELDS (type) = nfields;
4252 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4253
4254 return type;
4255 }
4256
4257 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4258 position BITPOS is called NAME. */
4259
4260 void
4261 append_flags_type_flag (struct type *type, int bitpos, char *name)
4262 {
4263 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4264 gdb_assert (bitpos < TYPE_NFIELDS (type));
4265 gdb_assert (bitpos >= 0);
4266
4267 if (name)
4268 {
4269 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4270 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4271 }
4272 else
4273 {
4274 /* Don't show this field to the user. */
4275 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4276 }
4277 }
4278
4279 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4280 specified by CODE) associated with GDBARCH. NAME is the type name. */
4281
4282 struct type *
4283 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4284 {
4285 struct type *t;
4286
4287 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4288 t = arch_type (gdbarch, code, 0, NULL);
4289 TYPE_TAG_NAME (t) = name;
4290 INIT_CPLUS_SPECIFIC (t);
4291 return t;
4292 }
4293
4294 /* Add new field with name NAME and type FIELD to composite type T.
4295 Do not set the field's position or adjust the type's length;
4296 the caller should do so. Return the new field. */
4297
4298 struct field *
4299 append_composite_type_field_raw (struct type *t, char *name,
4300 struct type *field)
4301 {
4302 struct field *f;
4303
4304 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4305 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4306 sizeof (struct field) * TYPE_NFIELDS (t));
4307 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4308 memset (f, 0, sizeof f[0]);
4309 FIELD_TYPE (f[0]) = field;
4310 FIELD_NAME (f[0]) = name;
4311 return f;
4312 }
4313
4314 /* Add new field with name NAME and type FIELD to composite type T.
4315 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4316
4317 void
4318 append_composite_type_field_aligned (struct type *t, char *name,
4319 struct type *field, int alignment)
4320 {
4321 struct field *f = append_composite_type_field_raw (t, name, field);
4322
4323 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4324 {
4325 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4326 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4327 }
4328 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4329 {
4330 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4331 if (TYPE_NFIELDS (t) > 1)
4332 {
4333 SET_FIELD_BITPOS (f[0],
4334 (FIELD_BITPOS (f[-1])
4335 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4336 * TARGET_CHAR_BIT)));
4337
4338 if (alignment)
4339 {
4340 int left;
4341
4342 alignment *= TARGET_CHAR_BIT;
4343 left = FIELD_BITPOS (f[0]) % alignment;
4344
4345 if (left)
4346 {
4347 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4348 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4349 }
4350 }
4351 }
4352 }
4353 }
4354
4355 /* Add new field with name NAME and type FIELD to composite type T. */
4356
4357 void
4358 append_composite_type_field (struct type *t, char *name,
4359 struct type *field)
4360 {
4361 append_composite_type_field_aligned (t, name, field, 0);
4362 }
4363
4364 static struct gdbarch_data *gdbtypes_data;
4365
4366 const struct builtin_type *
4367 builtin_type (struct gdbarch *gdbarch)
4368 {
4369 return gdbarch_data (gdbarch, gdbtypes_data);
4370 }
4371
4372 static void *
4373 gdbtypes_post_init (struct gdbarch *gdbarch)
4374 {
4375 struct builtin_type *builtin_type
4376 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4377
4378 /* Basic types. */
4379 builtin_type->builtin_void
4380 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4381 builtin_type->builtin_char
4382 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4383 !gdbarch_char_signed (gdbarch), "char");
4384 builtin_type->builtin_signed_char
4385 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4386 0, "signed char");
4387 builtin_type->builtin_unsigned_char
4388 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4389 1, "unsigned char");
4390 builtin_type->builtin_short
4391 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4392 0, "short");
4393 builtin_type->builtin_unsigned_short
4394 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4395 1, "unsigned short");
4396 builtin_type->builtin_int
4397 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4398 0, "int");
4399 builtin_type->builtin_unsigned_int
4400 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4401 1, "unsigned int");
4402 builtin_type->builtin_long
4403 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4404 0, "long");
4405 builtin_type->builtin_unsigned_long
4406 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4407 1, "unsigned long");
4408 builtin_type->builtin_long_long
4409 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4410 0, "long long");
4411 builtin_type->builtin_unsigned_long_long
4412 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4413 1, "unsigned long long");
4414 builtin_type->builtin_float
4415 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4416 "float", gdbarch_float_format (gdbarch));
4417 builtin_type->builtin_double
4418 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4419 "double", gdbarch_double_format (gdbarch));
4420 builtin_type->builtin_long_double
4421 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4422 "long double", gdbarch_long_double_format (gdbarch));
4423 builtin_type->builtin_complex
4424 = arch_complex_type (gdbarch, "complex",
4425 builtin_type->builtin_float);
4426 builtin_type->builtin_double_complex
4427 = arch_complex_type (gdbarch, "double complex",
4428 builtin_type->builtin_double);
4429 builtin_type->builtin_string
4430 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4431 builtin_type->builtin_bool
4432 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4433
4434 /* The following three are about decimal floating point types, which
4435 are 32-bits, 64-bits and 128-bits respectively. */
4436 builtin_type->builtin_decfloat
4437 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4438 builtin_type->builtin_decdouble
4439 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4440 builtin_type->builtin_declong
4441 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4442
4443 /* "True" character types. */
4444 builtin_type->builtin_true_char
4445 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4446 builtin_type->builtin_true_unsigned_char
4447 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4448
4449 /* Fixed-size integer types. */
4450 builtin_type->builtin_int0
4451 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4452 builtin_type->builtin_int8
4453 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4454 builtin_type->builtin_uint8
4455 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4456 builtin_type->builtin_int16
4457 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4458 builtin_type->builtin_uint16
4459 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4460 builtin_type->builtin_int32
4461 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4462 builtin_type->builtin_uint32
4463 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4464 builtin_type->builtin_int64
4465 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4466 builtin_type->builtin_uint64
4467 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4468 builtin_type->builtin_int128
4469 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4470 builtin_type->builtin_uint128
4471 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4472 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4473 TYPE_INSTANCE_FLAG_NOTTEXT;
4474 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4475 TYPE_INSTANCE_FLAG_NOTTEXT;
4476
4477 /* Wide character types. */
4478 builtin_type->builtin_char16
4479 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4480 builtin_type->builtin_char32
4481 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4482
4483
4484 /* Default data/code pointer types. */
4485 builtin_type->builtin_data_ptr
4486 = lookup_pointer_type (builtin_type->builtin_void);
4487 builtin_type->builtin_func_ptr
4488 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4489 builtin_type->builtin_func_func
4490 = lookup_function_type (builtin_type->builtin_func_ptr);
4491
4492 /* This type represents a GDB internal function. */
4493 builtin_type->internal_fn
4494 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4495 "<internal function>");
4496
4497 /* This type represents an xmethod. */
4498 builtin_type->xmethod
4499 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4500
4501 return builtin_type;
4502 }
4503
4504 /* This set of objfile-based types is intended to be used by symbol
4505 readers as basic types. */
4506
4507 static const struct objfile_data *objfile_type_data;
4508
4509 const struct objfile_type *
4510 objfile_type (struct objfile *objfile)
4511 {
4512 struct gdbarch *gdbarch;
4513 struct objfile_type *objfile_type
4514 = objfile_data (objfile, objfile_type_data);
4515
4516 if (objfile_type)
4517 return objfile_type;
4518
4519 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4520 1, struct objfile_type);
4521
4522 /* Use the objfile architecture to determine basic type properties. */
4523 gdbarch = get_objfile_arch (objfile);
4524
4525 /* Basic types. */
4526 objfile_type->builtin_void
4527 = init_type (TYPE_CODE_VOID, 1,
4528 0,
4529 "void", objfile);
4530
4531 objfile_type->builtin_char
4532 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4533 (TYPE_FLAG_NOSIGN
4534 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4535 "char", objfile);
4536 objfile_type->builtin_signed_char
4537 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4538 0,
4539 "signed char", objfile);
4540 objfile_type->builtin_unsigned_char
4541 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4542 TYPE_FLAG_UNSIGNED,
4543 "unsigned char", objfile);
4544 objfile_type->builtin_short
4545 = init_type (TYPE_CODE_INT,
4546 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4547 0, "short", objfile);
4548 objfile_type->builtin_unsigned_short
4549 = init_type (TYPE_CODE_INT,
4550 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4551 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4552 objfile_type->builtin_int
4553 = init_type (TYPE_CODE_INT,
4554 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4555 0, "int", objfile);
4556 objfile_type->builtin_unsigned_int
4557 = init_type (TYPE_CODE_INT,
4558 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4559 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4560 objfile_type->builtin_long
4561 = init_type (TYPE_CODE_INT,
4562 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4563 0, "long", objfile);
4564 objfile_type->builtin_unsigned_long
4565 = init_type (TYPE_CODE_INT,
4566 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4567 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4568 objfile_type->builtin_long_long
4569 = init_type (TYPE_CODE_INT,
4570 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4571 0, "long long", objfile);
4572 objfile_type->builtin_unsigned_long_long
4573 = init_type (TYPE_CODE_INT,
4574 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4575 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4576
4577 objfile_type->builtin_float
4578 = init_type (TYPE_CODE_FLT,
4579 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4580 0, "float", objfile);
4581 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4582 = gdbarch_float_format (gdbarch);
4583 objfile_type->builtin_double
4584 = init_type (TYPE_CODE_FLT,
4585 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4586 0, "double", objfile);
4587 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4588 = gdbarch_double_format (gdbarch);
4589 objfile_type->builtin_long_double
4590 = init_type (TYPE_CODE_FLT,
4591 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4592 0, "long double", objfile);
4593 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4594 = gdbarch_long_double_format (gdbarch);
4595
4596 /* This type represents a type that was unrecognized in symbol read-in. */
4597 objfile_type->builtin_error
4598 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4599
4600 /* The following set of types is used for symbols with no
4601 debug information. */
4602 objfile_type->nodebug_text_symbol
4603 = init_type (TYPE_CODE_FUNC, 1, 0,
4604 "<text variable, no debug info>", objfile);
4605 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4606 = objfile_type->builtin_int;
4607 objfile_type->nodebug_text_gnu_ifunc_symbol
4608 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4609 "<text gnu-indirect-function variable, no debug info>",
4610 objfile);
4611 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4612 = objfile_type->nodebug_text_symbol;
4613 objfile_type->nodebug_got_plt_symbol
4614 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4615 "<text from jump slot in .got.plt, no debug info>",
4616 objfile);
4617 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4618 = objfile_type->nodebug_text_symbol;
4619 objfile_type->nodebug_data_symbol
4620 = init_type (TYPE_CODE_INT,
4621 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4622 "<data variable, no debug info>", objfile);
4623 objfile_type->nodebug_unknown_symbol
4624 = init_type (TYPE_CODE_INT, 1, 0,
4625 "<variable (not text or data), no debug info>", objfile);
4626 objfile_type->nodebug_tls_symbol
4627 = init_type (TYPE_CODE_INT,
4628 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4629 "<thread local variable, no debug info>", objfile);
4630
4631 /* NOTE: on some targets, addresses and pointers are not necessarily
4632 the same.
4633
4634 The upshot is:
4635 - gdb's `struct type' always describes the target's
4636 representation.
4637 - gdb's `struct value' objects should always hold values in
4638 target form.
4639 - gdb's CORE_ADDR values are addresses in the unified virtual
4640 address space that the assembler and linker work with. Thus,
4641 since target_read_memory takes a CORE_ADDR as an argument, it
4642 can access any memory on the target, even if the processor has
4643 separate code and data address spaces.
4644
4645 In this context, objfile_type->builtin_core_addr is a bit odd:
4646 it's a target type for a value the target will never see. It's
4647 only used to hold the values of (typeless) linker symbols, which
4648 are indeed in the unified virtual address space. */
4649
4650 objfile_type->builtin_core_addr
4651 = init_type (TYPE_CODE_INT,
4652 gdbarch_addr_bit (gdbarch) / 8,
4653 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4654
4655 set_objfile_data (objfile, objfile_type_data, objfile_type);
4656 return objfile_type;
4657 }
4658
4659 extern initialize_file_ftype _initialize_gdbtypes;
4660
4661 void
4662 _initialize_gdbtypes (void)
4663 {
4664 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4665 objfile_type_data = register_objfile_data ();
4666
4667 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4668 _("Set debugging of C++ overloading."),
4669 _("Show debugging of C++ overloading."),
4670 _("When enabled, ranking of the "
4671 "functions is displayed."),
4672 NULL,
4673 show_overload_debug,
4674 &setdebuglist, &showdebuglist);
4675
4676 /* Add user knob for controlling resolution of opaque types. */
4677 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4678 &opaque_type_resolution,
4679 _("Set resolution of opaque struct/class/union"
4680 " types (if set before loading symbols)."),
4681 _("Show resolution of opaque struct/class/union"
4682 " types (if set before loading symbols)."),
4683 NULL, NULL,
4684 show_opaque_type_resolution,
4685 &setlist, &showlist);
4686
4687 /* Add an option to permit non-strict type checking. */
4688 add_setshow_boolean_cmd ("type", class_support,
4689 &strict_type_checking,
4690 _("Set strict type checking."),
4691 _("Show strict type checking."),
4692 NULL, NULL,
4693 show_strict_type_checking,
4694 &setchecklist, &showchecklist);
4695 }
This page took 0.151755 seconds and 4 git commands to generate.