* src/opcodes/dlx-dis.c (print_insn_dlx): Use dlx_insn type for
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_half_big,
47 &floatformat_ieee_half_little
48 };
49 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_single_big,
51 &floatformat_ieee_single_little
52 };
53 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_little
56 };
57 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_ieee_double_big,
59 &floatformat_ieee_double_littlebyte_bigword
60 };
61 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_i387_ext,
63 &floatformat_i387_ext
64 };
65 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_m68881_ext,
67 &floatformat_m68881_ext
68 };
69 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_arm_ext_big,
71 &floatformat_arm_ext_littlebyte_bigword
72 };
73 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_spill_big,
75 &floatformat_ia64_spill_little
76 };
77 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ia64_quad_big,
79 &floatformat_ia64_quad_little
80 };
81 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_f,
83 &floatformat_vax_f
84 };
85 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_vax_d,
87 &floatformat_vax_d
88 };
89 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_ibm_long_double,
91 &floatformat_ibm_long_double
92 };
93
94
95 int opaque_type_resolution = 1;
96 static void
97 show_opaque_type_resolution (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c,
99 const char *value)
100 {
101 fprintf_filtered (file, _("\
102 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
103 value);
104 }
105
106 int overload_debug = 0;
107 static void
108 show_overload_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
112 value);
113 }
114
115 struct extra
116 {
117 char str[128];
118 int len;
119 }; /* Maximum extension is 128! FIXME */
120
121 static void print_bit_vector (B_TYPE *, int);
122 static void print_arg_types (struct field *, int, int);
123 static void dump_fn_fieldlists (struct type *, int);
124 static void print_cplus_stuff (struct type *, int);
125
126
127 /* Allocate a new OBJFILE-associated type structure and fill it
128 with some defaults. Space for the type structure is allocated
129 on the objfile's objfile_obstack. */
130
131 struct type *
132 alloc_type (struct objfile *objfile)
133 {
134 struct type *type;
135
136 gdb_assert (objfile != NULL);
137
138 /* Alloc the structure and start off with all fields zeroed. */
139 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
140 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
141 struct main_type);
142 OBJSTAT (objfile, n_types++);
143
144 TYPE_OBJFILE_OWNED (type) = 1;
145 TYPE_OWNER (type).objfile = objfile;
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_VPTR_FIELDNO (type) = -1;
151 TYPE_CHAIN (type) = type; /* Chain back to itself. */
152
153 return type;
154 }
155
156 /* Allocate a new GDBARCH-associated type structure and fill it
157 with some defaults. Space for the type structure is allocated
158 on the heap. */
159
160 struct type *
161 alloc_type_arch (struct gdbarch *gdbarch)
162 {
163 struct type *type;
164
165 gdb_assert (gdbarch != NULL);
166
167 /* Alloc the structure and start off with all fields zeroed. */
168
169 type = XZALLOC (struct type);
170 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
171
172 TYPE_OBJFILE_OWNED (type) = 0;
173 TYPE_OWNER (type).gdbarch = gdbarch;
174
175 /* Initialize the fields that might not be zero. */
176
177 TYPE_CODE (type) = TYPE_CODE_UNDEF;
178 TYPE_VPTR_FIELDNO (type) = -1;
179 TYPE_CHAIN (type) = type; /* Chain back to itself. */
180
181 return type;
182 }
183
184 /* If TYPE is objfile-associated, allocate a new type structure
185 associated with the same objfile. If TYPE is gdbarch-associated,
186 allocate a new type structure associated with the same gdbarch. */
187
188 struct type *
189 alloc_type_copy (const struct type *type)
190 {
191 if (TYPE_OBJFILE_OWNED (type))
192 return alloc_type (TYPE_OWNER (type).objfile);
193 else
194 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
195 }
196
197 /* If TYPE is gdbarch-associated, return that architecture.
198 If TYPE is objfile-associated, return that objfile's architecture. */
199
200 struct gdbarch *
201 get_type_arch (const struct type *type)
202 {
203 if (TYPE_OBJFILE_OWNED (type))
204 return get_objfile_arch (TYPE_OWNER (type).objfile);
205 else
206 return TYPE_OWNER (type).gdbarch;
207 }
208
209
210 /* Alloc a new type instance structure, fill it with some defaults,
211 and point it at OLDTYPE. Allocate the new type instance from the
212 same place as OLDTYPE. */
213
214 static struct type *
215 alloc_type_instance (struct type *oldtype)
216 {
217 struct type *type;
218
219 /* Allocate the structure. */
220
221 if (! TYPE_OBJFILE_OWNED (oldtype))
222 type = XZALLOC (struct type);
223 else
224 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
225 struct type);
226
227 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
228
229 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
230
231 return type;
232 }
233
234 /* Clear all remnants of the previous type at TYPE, in preparation for
235 replacing it with something else. Preserve owner information. */
236 static void
237 smash_type (struct type *type)
238 {
239 int objfile_owned = TYPE_OBJFILE_OWNED (type);
240 union type_owner owner = TYPE_OWNER (type);
241
242 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
243
244 /* Restore owner information. */
245 TYPE_OBJFILE_OWNED (type) = objfile_owned;
246 TYPE_OWNER (type) = owner;
247
248 /* For now, delete the rings. */
249 TYPE_CHAIN (type) = type;
250
251 /* For now, leave the pointer/reference types alone. */
252 }
253
254 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
255 to a pointer to memory where the pointer type should be stored.
256 If *TYPEPTR is zero, update it to point to the pointer type we return.
257 We allocate new memory if needed. */
258
259 struct type *
260 make_pointer_type (struct type *type, struct type **typeptr)
261 {
262 struct type *ntype; /* New type */
263 struct type *chain;
264
265 ntype = TYPE_POINTER_TYPE (type);
266
267 if (ntype)
268 {
269 if (typeptr == 0)
270 return ntype; /* Don't care about alloc,
271 and have new type. */
272 else if (*typeptr == 0)
273 {
274 *typeptr = ntype; /* Tracking alloc, and have new type. */
275 return ntype;
276 }
277 }
278
279 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
280 {
281 ntype = alloc_type_copy (type);
282 if (typeptr)
283 *typeptr = ntype;
284 }
285 else /* We have storage, but need to reset it. */
286 {
287 ntype = *typeptr;
288 chain = TYPE_CHAIN (ntype);
289 smash_type (ntype);
290 TYPE_CHAIN (ntype) = chain;
291 }
292
293 TYPE_TARGET_TYPE (ntype) = type;
294 TYPE_POINTER_TYPE (type) = ntype;
295
296 /* FIXME! Assume the machine has only one representation for
297 pointers! */
298
299 TYPE_LENGTH (ntype)
300 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
301 TYPE_CODE (ntype) = TYPE_CODE_PTR;
302
303 /* Mark pointers as unsigned. The target converts between pointers
304 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
305 gdbarch_address_to_pointer. */
306 TYPE_UNSIGNED (ntype) = 1;
307
308 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
309 TYPE_POINTER_TYPE (type) = ntype;
310
311 /* Update the length of all the other variants of this type. */
312 chain = TYPE_CHAIN (ntype);
313 while (chain != ntype)
314 {
315 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
316 chain = TYPE_CHAIN (chain);
317 }
318
319 return ntype;
320 }
321
322 /* Given a type TYPE, return a type of pointers to that type.
323 May need to construct such a type if this is the first use. */
324
325 struct type *
326 lookup_pointer_type (struct type *type)
327 {
328 return make_pointer_type (type, (struct type **) 0);
329 }
330
331 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
332 points to a pointer to memory where the reference type should be
333 stored. If *TYPEPTR is zero, update it to point to the reference
334 type we return. We allocate new memory if needed. */
335
336 struct type *
337 make_reference_type (struct type *type, struct type **typeptr)
338 {
339 struct type *ntype; /* New type */
340 struct type *chain;
341
342 ntype = TYPE_REFERENCE_TYPE (type);
343
344 if (ntype)
345 {
346 if (typeptr == 0)
347 return ntype; /* Don't care about alloc,
348 and have new type. */
349 else if (*typeptr == 0)
350 {
351 *typeptr = ntype; /* Tracking alloc, and have new type. */
352 return ntype;
353 }
354 }
355
356 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
357 {
358 ntype = alloc_type_copy (type);
359 if (typeptr)
360 *typeptr = ntype;
361 }
362 else /* We have storage, but need to reset it. */
363 {
364 ntype = *typeptr;
365 chain = TYPE_CHAIN (ntype);
366 smash_type (ntype);
367 TYPE_CHAIN (ntype) = chain;
368 }
369
370 TYPE_TARGET_TYPE (ntype) = type;
371 TYPE_REFERENCE_TYPE (type) = ntype;
372
373 /* FIXME! Assume the machine has only one representation for
374 references, and that it matches the (only) representation for
375 pointers! */
376
377 TYPE_LENGTH (ntype) =
378 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
379 TYPE_CODE (ntype) = TYPE_CODE_REF;
380
381 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
382 TYPE_REFERENCE_TYPE (type) = ntype;
383
384 /* Update the length of all the other variants of this type. */
385 chain = TYPE_CHAIN (ntype);
386 while (chain != ntype)
387 {
388 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
389 chain = TYPE_CHAIN (chain);
390 }
391
392 return ntype;
393 }
394
395 /* Same as above, but caller doesn't care about memory allocation
396 details. */
397
398 struct type *
399 lookup_reference_type (struct type *type)
400 {
401 return make_reference_type (type, (struct type **) 0);
402 }
403
404 /* Lookup a function type that returns type TYPE. TYPEPTR, if
405 nonzero, points to a pointer to memory where the function type
406 should be stored. If *TYPEPTR is zero, update it to point to the
407 function type we return. We allocate new memory if needed. */
408
409 struct type *
410 make_function_type (struct type *type, struct type **typeptr)
411 {
412 struct type *ntype; /* New type */
413
414 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
415 {
416 ntype = alloc_type_copy (type);
417 if (typeptr)
418 *typeptr = ntype;
419 }
420 else /* We have storage, but need to reset it. */
421 {
422 ntype = *typeptr;
423 smash_type (ntype);
424 }
425
426 TYPE_TARGET_TYPE (ntype) = type;
427
428 TYPE_LENGTH (ntype) = 1;
429 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
430
431 return ntype;
432 }
433
434
435 /* Given a type TYPE, return a type of functions that return that type.
436 May need to construct such a type if this is the first use. */
437
438 struct type *
439 lookup_function_type (struct type *type)
440 {
441 return make_function_type (type, (struct type **) 0);
442 }
443
444 /* Identify address space identifier by name --
445 return the integer flag defined in gdbtypes.h. */
446 extern int
447 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
448 {
449 int type_flags;
450
451 /* Check for known address space delimiters. */
452 if (!strcmp (space_identifier, "code"))
453 return TYPE_INSTANCE_FLAG_CODE_SPACE;
454 else if (!strcmp (space_identifier, "data"))
455 return TYPE_INSTANCE_FLAG_DATA_SPACE;
456 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
457 && gdbarch_address_class_name_to_type_flags (gdbarch,
458 space_identifier,
459 &type_flags))
460 return type_flags;
461 else
462 error (_("Unknown address space specifier: \"%s\""), space_identifier);
463 }
464
465 /* Identify address space identifier by integer flag as defined in
466 gdbtypes.h -- return the string version of the adress space name. */
467
468 const char *
469 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
470 {
471 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
472 return "code";
473 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
474 return "data";
475 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
476 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
477 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
478 else
479 return NULL;
480 }
481
482 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
483
484 If STORAGE is non-NULL, create the new type instance there.
485 STORAGE must be in the same obstack as TYPE. */
486
487 static struct type *
488 make_qualified_type (struct type *type, int new_flags,
489 struct type *storage)
490 {
491 struct type *ntype;
492
493 ntype = type;
494 do
495 {
496 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
497 return ntype;
498 ntype = TYPE_CHAIN (ntype);
499 }
500 while (ntype != type);
501
502 /* Create a new type instance. */
503 if (storage == NULL)
504 ntype = alloc_type_instance (type);
505 else
506 {
507 /* If STORAGE was provided, it had better be in the same objfile
508 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
509 if one objfile is freed and the other kept, we'd have
510 dangling pointers. */
511 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
512
513 ntype = storage;
514 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
515 TYPE_CHAIN (ntype) = ntype;
516 }
517
518 /* Pointers or references to the original type are not relevant to
519 the new type. */
520 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
521 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
522
523 /* Chain the new qualified type to the old type. */
524 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
525 TYPE_CHAIN (type) = ntype;
526
527 /* Now set the instance flags and return the new type. */
528 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
529
530 /* Set length of new type to that of the original type. */
531 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
532
533 return ntype;
534 }
535
536 /* Make an address-space-delimited variant of a type -- a type that
537 is identical to the one supplied except that it has an address
538 space attribute attached to it (such as "code" or "data").
539
540 The space attributes "code" and "data" are for Harvard
541 architectures. The address space attributes are for architectures
542 which have alternately sized pointers or pointers with alternate
543 representations. */
544
545 struct type *
546 make_type_with_address_space (struct type *type, int space_flag)
547 {
548 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
549 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
550 | TYPE_INSTANCE_FLAG_DATA_SPACE
551 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
552 | space_flag);
553
554 return make_qualified_type (type, new_flags, NULL);
555 }
556
557 /* Make a "c-v" variant of a type -- a type that is identical to the
558 one supplied except that it may have const or volatile attributes
559 CNST is a flag for setting the const attribute
560 VOLTL is a flag for setting the volatile attribute
561 TYPE is the base type whose variant we are creating.
562
563 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
564 storage to hold the new qualified type; *TYPEPTR and TYPE must be
565 in the same objfile. Otherwise, allocate fresh memory for the new
566 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
567 new type we construct. */
568 struct type *
569 make_cv_type (int cnst, int voltl,
570 struct type *type,
571 struct type **typeptr)
572 {
573 struct type *ntype; /* New type */
574
575 int new_flags = (TYPE_INSTANCE_FLAGS (type)
576 & ~(TYPE_INSTANCE_FLAG_CONST
577 | TYPE_INSTANCE_FLAG_VOLATILE));
578
579 if (cnst)
580 new_flags |= TYPE_INSTANCE_FLAG_CONST;
581
582 if (voltl)
583 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
584
585 if (typeptr && *typeptr != NULL)
586 {
587 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
588 a C-V variant chain that threads across objfiles: if one
589 objfile gets freed, then the other has a broken C-V chain.
590
591 This code used to try to copy over the main type from TYPE to
592 *TYPEPTR if they were in different objfiles, but that's
593 wrong, too: TYPE may have a field list or member function
594 lists, which refer to types of their own, etc. etc. The
595 whole shebang would need to be copied over recursively; you
596 can't have inter-objfile pointers. The only thing to do is
597 to leave stub types as stub types, and look them up afresh by
598 name each time you encounter them. */
599 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
600 }
601
602 ntype = make_qualified_type (type, new_flags,
603 typeptr ? *typeptr : NULL);
604
605 if (typeptr != NULL)
606 *typeptr = ntype;
607
608 return ntype;
609 }
610
611 /* Replace the contents of ntype with the type *type. This changes the
612 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
613 the changes are propogated to all types in the TYPE_CHAIN.
614
615 In order to build recursive types, it's inevitable that we'll need
616 to update types in place --- but this sort of indiscriminate
617 smashing is ugly, and needs to be replaced with something more
618 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
619 clear if more steps are needed. */
620 void
621 replace_type (struct type *ntype, struct type *type)
622 {
623 struct type *chain;
624
625 /* These two types had better be in the same objfile. Otherwise,
626 the assignment of one type's main type structure to the other
627 will produce a type with references to objects (names; field
628 lists; etc.) allocated on an objfile other than its own. */
629 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
630
631 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
632
633 /* The type length is not a part of the main type. Update it for
634 each type on the variant chain. */
635 chain = ntype;
636 do
637 {
638 /* Assert that this element of the chain has no address-class bits
639 set in its flags. Such type variants might have type lengths
640 which are supposed to be different from the non-address-class
641 variants. This assertion shouldn't ever be triggered because
642 symbol readers which do construct address-class variants don't
643 call replace_type(). */
644 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
645
646 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
647 chain = TYPE_CHAIN (chain);
648 }
649 while (ntype != chain);
650
651 /* Assert that the two types have equivalent instance qualifiers.
652 This should be true for at least all of our debug readers. */
653 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
654 }
655
656 /* Implement direct support for MEMBER_TYPE in GNU C++.
657 May need to construct such a type if this is the first use.
658 The TYPE is the type of the member. The DOMAIN is the type
659 of the aggregate that the member belongs to. */
660
661 struct type *
662 lookup_memberptr_type (struct type *type, struct type *domain)
663 {
664 struct type *mtype;
665
666 mtype = alloc_type_copy (type);
667 smash_to_memberptr_type (mtype, domain, type);
668 return mtype;
669 }
670
671 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
672
673 struct type *
674 lookup_methodptr_type (struct type *to_type)
675 {
676 struct type *mtype;
677
678 mtype = alloc_type_copy (to_type);
679 smash_to_methodptr_type (mtype, to_type);
680 return mtype;
681 }
682
683 /* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
688
689 struct type *
690 allocate_stub_method (struct type *type)
691 {
692 struct type *mtype;
693
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
700 return mtype;
701 }
702
703 /* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
706
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
709
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
712
713 struct type *
714 create_range_type (struct type *result_type, struct type *index_type,
715 LONGEST low_bound, LONGEST high_bound)
716 {
717 if (result_type == NULL)
718 result_type = alloc_type_copy (index_type);
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
721 if (TYPE_STUB (index_type))
722 TYPE_TARGET_STUB (result_type) = 1;
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
729
730 if (low_bound >= 0)
731 TYPE_UNSIGNED (result_type) = 1;
732
733 return result_type;
734 }
735
736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
739
740 int
741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
742 {
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
766 /* Set unsigned indicator if warranted. */
767 if (*lowp >= 0)
768 {
769 TYPE_UNSIGNED (type) = 1;
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
788 *highp = -*lowp - 1;
789 return 0;
790 }
791 /* ... fall through for unsigned ints ... */
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803 }
804
805 /* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
815
816 struct type *
817 create_array_type (struct type *result_type,
818 struct type *element_type,
819 struct type *range_type)
820 {
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
824 result_type = alloc_type_copy (range_type);
825
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
842 TYPE_INDEX_TYPE (result_type) = range_type;
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
847 TYPE_TARGET_STUB (result_type) = 1;
848
849 return result_type;
850 }
851
852 struct type *
853 lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855 {
856 struct gdbarch *gdbarch = get_type_arch (element_type);
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860
861 return create_array_type (NULL, element_type, range_type);
862 }
863
864 /* Create a string type using either a blank type supplied in
865 RESULT_TYPE, or creating a new type. String types are similar
866 enough to array of char types that we can use create_array_type to
867 build the basic type and then bash it into a string type.
868
869 For fixed length strings, the range type contains 0 as the lower
870 bound and the length of the string minus one as the upper bound.
871
872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873 sure it is TYPE_CODE_UNDEF before we bash it into a string
874 type? */
875
876 struct type *
877 create_string_type (struct type *result_type,
878 struct type *string_char_type,
879 struct type *range_type)
880 {
881 result_type = create_array_type (result_type,
882 string_char_type,
883 range_type);
884 TYPE_CODE (result_type) = TYPE_CODE_STRING;
885 return result_type;
886 }
887
888 struct type *
889 lookup_string_range_type (struct type *string_char_type,
890 int low_bound, int high_bound)
891 {
892 struct type *result_type;
893
894 result_type = lookup_array_range_type (string_char_type,
895 low_bound, high_bound);
896 TYPE_CODE (result_type) = TYPE_CODE_STRING;
897 return result_type;
898 }
899
900 struct type *
901 create_set_type (struct type *result_type, struct type *domain_type)
902 {
903 if (result_type == NULL)
904 result_type = alloc_type_copy (domain_type);
905
906 TYPE_CODE (result_type) = TYPE_CODE_SET;
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
909
910 if (!TYPE_STUB (domain_type))
911 {
912 LONGEST low_bound, high_bound, bit_length;
913
914 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
915 low_bound = high_bound = 0;
916 bit_length = high_bound - low_bound + 1;
917 TYPE_LENGTH (result_type)
918 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
919 if (low_bound >= 0)
920 TYPE_UNSIGNED (result_type) = 1;
921 }
922 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
923
924 return result_type;
925 }
926
927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
929
930 void
931 make_vector_type (struct type *array_type)
932 {
933 struct type *inner_array, *elt_type;
934 int flags;
935
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
941
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
944 {
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
948 }
949
950 TYPE_VECTOR (array_type) = 1;
951 }
952
953 struct type *
954 init_vector_type (struct type *elt_type, int n)
955 {
956 struct type *array_type;
957
958 array_type = lookup_array_range_type (elt_type, 0, n - 1);
959 make_vector_type (array_type);
960 return array_type;
961 }
962
963 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
964 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
965 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
966 TYPE doesn't include the offset (that's the value of the MEMBER
967 itself), but does include the structure type into which it points
968 (for some reason).
969
970 When "smashing" the type, we preserve the objfile that the old type
971 pointed to, since we aren't changing where the type is actually
972 allocated. */
973
974 void
975 smash_to_memberptr_type (struct type *type, struct type *domain,
976 struct type *to_type)
977 {
978 smash_type (type);
979 TYPE_TARGET_TYPE (type) = to_type;
980 TYPE_DOMAIN_TYPE (type) = domain;
981 /* Assume that a data member pointer is the same size as a normal
982 pointer. */
983 TYPE_LENGTH (type)
984 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
985 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
986 }
987
988 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
989
990 When "smashing" the type, we preserve the objfile that the old type
991 pointed to, since we aren't changing where the type is actually
992 allocated. */
993
994 void
995 smash_to_methodptr_type (struct type *type, struct type *to_type)
996 {
997 smash_type (type);
998 TYPE_TARGET_TYPE (type) = to_type;
999 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1000 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1001 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1002 }
1003
1004 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1005 METHOD just means `function that gets an extra "this" argument'.
1006
1007 When "smashing" the type, we preserve the objfile that the old type
1008 pointed to, since we aren't changing where the type is actually
1009 allocated. */
1010
1011 void
1012 smash_to_method_type (struct type *type, struct type *domain,
1013 struct type *to_type, struct field *args,
1014 int nargs, int varargs)
1015 {
1016 smash_type (type);
1017 TYPE_TARGET_TYPE (type) = to_type;
1018 TYPE_DOMAIN_TYPE (type) = domain;
1019 TYPE_FIELDS (type) = args;
1020 TYPE_NFIELDS (type) = nargs;
1021 if (varargs)
1022 TYPE_VARARGS (type) = 1;
1023 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1024 TYPE_CODE (type) = TYPE_CODE_METHOD;
1025 }
1026
1027 /* Return a typename for a struct/union/enum type without "struct ",
1028 "union ", or "enum ". If the type has a NULL name, return NULL. */
1029
1030 char *
1031 type_name_no_tag (const struct type *type)
1032 {
1033 if (TYPE_TAG_NAME (type) != NULL)
1034 return TYPE_TAG_NAME (type);
1035
1036 /* Is there code which expects this to return the name if there is
1037 no tag name? My guess is that this is mainly used for C++ in
1038 cases where the two will always be the same. */
1039 return TYPE_NAME (type);
1040 }
1041
1042 /* Lookup a typedef or primitive type named NAME, visible in lexical
1043 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1044 suitably defined. */
1045
1046 struct type *
1047 lookup_typename (const struct language_defn *language,
1048 struct gdbarch *gdbarch, char *name,
1049 const struct block *block, int noerr)
1050 {
1051 struct symbol *sym;
1052 struct type *tmp;
1053
1054 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1055 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1056 {
1057 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1058 if (tmp)
1059 {
1060 return tmp;
1061 }
1062 else if (!tmp && noerr)
1063 {
1064 return NULL;
1065 }
1066 else
1067 {
1068 error (_("No type named %s."), name);
1069 }
1070 }
1071 return (SYMBOL_TYPE (sym));
1072 }
1073
1074 struct type *
1075 lookup_unsigned_typename (const struct language_defn *language,
1076 struct gdbarch *gdbarch, char *name)
1077 {
1078 char *uns = alloca (strlen (name) + 10);
1079
1080 strcpy (uns, "unsigned ");
1081 strcpy (uns + 9, name);
1082 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1083 }
1084
1085 struct type *
1086 lookup_signed_typename (const struct language_defn *language,
1087 struct gdbarch *gdbarch, char *name)
1088 {
1089 struct type *t;
1090 char *uns = alloca (strlen (name) + 8);
1091
1092 strcpy (uns, "signed ");
1093 strcpy (uns + 7, name);
1094 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1095 /* If we don't find "signed FOO" just try again with plain "FOO". */
1096 if (t != NULL)
1097 return t;
1098 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1099 }
1100
1101 /* Lookup a structure type named "struct NAME",
1102 visible in lexical block BLOCK. */
1103
1104 struct type *
1105 lookup_struct (char *name, struct block *block)
1106 {
1107 struct symbol *sym;
1108
1109 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1110
1111 if (sym == NULL)
1112 {
1113 error (_("No struct type named %s."), name);
1114 }
1115 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1116 {
1117 error (_("This context has class, union or enum %s, not a struct."),
1118 name);
1119 }
1120 return (SYMBOL_TYPE (sym));
1121 }
1122
1123 /* Lookup a union type named "union NAME",
1124 visible in lexical block BLOCK. */
1125
1126 struct type *
1127 lookup_union (char *name, struct block *block)
1128 {
1129 struct symbol *sym;
1130 struct type *t;
1131
1132 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1133
1134 if (sym == NULL)
1135 error (_("No union type named %s."), name);
1136
1137 t = SYMBOL_TYPE (sym);
1138
1139 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1140 return t;
1141
1142 /* If we get here, it's not a union. */
1143 error (_("This context has class, struct or enum %s, not a union."),
1144 name);
1145 }
1146
1147
1148 /* Lookup an enum type named "enum NAME",
1149 visible in lexical block BLOCK. */
1150
1151 struct type *
1152 lookup_enum (char *name, struct block *block)
1153 {
1154 struct symbol *sym;
1155
1156 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1157 if (sym == NULL)
1158 {
1159 error (_("No enum type named %s."), name);
1160 }
1161 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1162 {
1163 error (_("This context has class, struct or union %s, not an enum."),
1164 name);
1165 }
1166 return (SYMBOL_TYPE (sym));
1167 }
1168
1169 /* Lookup a template type named "template NAME<TYPE>",
1170 visible in lexical block BLOCK. */
1171
1172 struct type *
1173 lookup_template_type (char *name, struct type *type,
1174 struct block *block)
1175 {
1176 struct symbol *sym;
1177 char *nam = (char *)
1178 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1179
1180 strcpy (nam, name);
1181 strcat (nam, "<");
1182 strcat (nam, TYPE_NAME (type));
1183 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1184
1185 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1186
1187 if (sym == NULL)
1188 {
1189 error (_("No template type named %s."), name);
1190 }
1191 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1192 {
1193 error (_("This context has class, union or enum %s, not a struct."),
1194 name);
1195 }
1196 return (SYMBOL_TYPE (sym));
1197 }
1198
1199 /* Given a type TYPE, lookup the type of the component of type named
1200 NAME.
1201
1202 TYPE can be either a struct or union, or a pointer or reference to
1203 a struct or union. If it is a pointer or reference, its target
1204 type is automatically used. Thus '.' and '->' are interchangable,
1205 as specified for the definitions of the expression element types
1206 STRUCTOP_STRUCT and STRUCTOP_PTR.
1207
1208 If NOERR is nonzero, return zero if NAME is not suitably defined.
1209 If NAME is the name of a baseclass type, return that type. */
1210
1211 struct type *
1212 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1213 {
1214 int i;
1215 char *typename;
1216
1217 for (;;)
1218 {
1219 CHECK_TYPEDEF (type);
1220 if (TYPE_CODE (type) != TYPE_CODE_PTR
1221 && TYPE_CODE (type) != TYPE_CODE_REF)
1222 break;
1223 type = TYPE_TARGET_TYPE (type);
1224 }
1225
1226 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1227 && TYPE_CODE (type) != TYPE_CODE_UNION)
1228 {
1229 typename = type_to_string (type);
1230 make_cleanup (xfree, typename);
1231 error (_("Type %s is not a structure or union type."), typename);
1232 }
1233
1234 #if 0
1235 /* FIXME: This change put in by Michael seems incorrect for the case
1236 where the structure tag name is the same as the member name.
1237 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1238 foo; } bell;" Disabled by fnf. */
1239 {
1240 char *typename;
1241
1242 typename = type_name_no_tag (type);
1243 if (typename != NULL && strcmp (typename, name) == 0)
1244 return type;
1245 }
1246 #endif
1247
1248 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1249 {
1250 char *t_field_name = TYPE_FIELD_NAME (type, i);
1251
1252 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1253 {
1254 return TYPE_FIELD_TYPE (type, i);
1255 }
1256 else if (!t_field_name || *t_field_name == '\0')
1257 {
1258 struct type *subtype
1259 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1260
1261 if (subtype != NULL)
1262 return subtype;
1263 }
1264 }
1265
1266 /* OK, it's not in this class. Recursively check the baseclasses. */
1267 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1268 {
1269 struct type *t;
1270
1271 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1272 if (t != NULL)
1273 {
1274 return t;
1275 }
1276 }
1277
1278 if (noerr)
1279 {
1280 return NULL;
1281 }
1282
1283 typename = type_to_string (type);
1284 make_cleanup (xfree, typename);
1285 error (_("Type %s has no component named %s."), typename, name);
1286 }
1287
1288 /* Lookup the vptr basetype/fieldno values for TYPE.
1289 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1290 vptr_fieldno. Also, if found and basetype is from the same objfile,
1291 cache the results.
1292 If not found, return -1 and ignore BASETYPEP.
1293 Callers should be aware that in some cases (for example,
1294 the type or one of its baseclasses is a stub type and we are
1295 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1296 this function will not be able to find the
1297 virtual function table pointer, and vptr_fieldno will remain -1 and
1298 vptr_basetype will remain NULL or incomplete. */
1299
1300 int
1301 get_vptr_fieldno (struct type *type, struct type **basetypep)
1302 {
1303 CHECK_TYPEDEF (type);
1304
1305 if (TYPE_VPTR_FIELDNO (type) < 0)
1306 {
1307 int i;
1308
1309 /* We must start at zero in case the first (and only) baseclass
1310 is virtual (and hence we cannot share the table pointer). */
1311 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1312 {
1313 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1314 int fieldno;
1315 struct type *basetype;
1316
1317 fieldno = get_vptr_fieldno (baseclass, &basetype);
1318 if (fieldno >= 0)
1319 {
1320 /* If the type comes from a different objfile we can't cache
1321 it, it may have a different lifetime. PR 2384 */
1322 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1323 {
1324 TYPE_VPTR_FIELDNO (type) = fieldno;
1325 TYPE_VPTR_BASETYPE (type) = basetype;
1326 }
1327 if (basetypep)
1328 *basetypep = basetype;
1329 return fieldno;
1330 }
1331 }
1332
1333 /* Not found. */
1334 return -1;
1335 }
1336 else
1337 {
1338 if (basetypep)
1339 *basetypep = TYPE_VPTR_BASETYPE (type);
1340 return TYPE_VPTR_FIELDNO (type);
1341 }
1342 }
1343
1344 static void
1345 stub_noname_complaint (void)
1346 {
1347 complaint (&symfile_complaints, _("stub type has NULL name"));
1348 }
1349
1350 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1351
1352 If this is a stubbed struct (i.e. declared as struct foo *), see if
1353 we can find a full definition in some other file. If so, copy this
1354 definition, so we can use it in future. There used to be a comment
1355 (but not any code) that if we don't find a full definition, we'd
1356 set a flag so we don't spend time in the future checking the same
1357 type. That would be a mistake, though--we might load in more
1358 symbols which contain a full definition for the type.
1359
1360 This used to be coded as a macro, but I don't think it is called
1361 often enough to merit such treatment.
1362
1363 Find the real type of TYPE. This function returns the real type,
1364 after removing all layers of typedefs and completing opaque or stub
1365 types. Completion changes the TYPE argument, but stripping of
1366 typedefs does not.
1367
1368 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1369 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1370 check_typedef can still return different type than the original TYPE
1371 pointer. */
1372
1373 struct type *
1374 check_typedef (struct type *type)
1375 {
1376 struct type *orig_type = type;
1377 int is_const, is_volatile;
1378
1379 gdb_assert (type);
1380
1381 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1382 {
1383 if (!TYPE_TARGET_TYPE (type))
1384 {
1385 char *name;
1386 struct symbol *sym;
1387
1388 /* It is dangerous to call lookup_symbol if we are currently
1389 reading a symtab. Infinite recursion is one danger. */
1390 if (currently_reading_symtab)
1391 return type;
1392
1393 name = type_name_no_tag (type);
1394 /* FIXME: shouldn't we separately check the TYPE_NAME and
1395 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1396 VAR_DOMAIN as appropriate? (this code was written before
1397 TYPE_NAME and TYPE_TAG_NAME were separate). */
1398 if (name == NULL)
1399 {
1400 stub_noname_complaint ();
1401 return type;
1402 }
1403 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1404 if (sym)
1405 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1406 else /* TYPE_CODE_UNDEF */
1407 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1408 }
1409 type = TYPE_TARGET_TYPE (type);
1410 }
1411
1412 is_const = TYPE_CONST (type);
1413 is_volatile = TYPE_VOLATILE (type);
1414
1415 /* If this is a struct/class/union with no fields, then check
1416 whether a full definition exists somewhere else. This is for
1417 systems where a type definition with no fields is issued for such
1418 types, instead of identifying them as stub types in the first
1419 place. */
1420
1421 if (TYPE_IS_OPAQUE (type)
1422 && opaque_type_resolution
1423 && !currently_reading_symtab)
1424 {
1425 char *name = type_name_no_tag (type);
1426 struct type *newtype;
1427
1428 if (name == NULL)
1429 {
1430 stub_noname_complaint ();
1431 return type;
1432 }
1433 newtype = lookup_transparent_type (name);
1434
1435 if (newtype)
1436 {
1437 /* If the resolved type and the stub are in the same
1438 objfile, then replace the stub type with the real deal.
1439 But if they're in separate objfiles, leave the stub
1440 alone; we'll just look up the transparent type every time
1441 we call check_typedef. We can't create pointers between
1442 types allocated to different objfiles, since they may
1443 have different lifetimes. Trying to copy NEWTYPE over to
1444 TYPE's objfile is pointless, too, since you'll have to
1445 move over any other types NEWTYPE refers to, which could
1446 be an unbounded amount of stuff. */
1447 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1448 make_cv_type (is_const, is_volatile, newtype, &type);
1449 else
1450 type = newtype;
1451 }
1452 }
1453 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1454 types. */
1455 else if (TYPE_STUB (type) && !currently_reading_symtab)
1456 {
1457 char *name = type_name_no_tag (type);
1458 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1459 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1460 as appropriate? (this code was written before TYPE_NAME and
1461 TYPE_TAG_NAME were separate). */
1462 struct symbol *sym;
1463
1464 if (name == NULL)
1465 {
1466 stub_noname_complaint ();
1467 return type;
1468 }
1469 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1470 if (sym)
1471 {
1472 /* Same as above for opaque types, we can replace the stub
1473 with the complete type only if they are int the same
1474 objfile. */
1475 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1476 make_cv_type (is_const, is_volatile,
1477 SYMBOL_TYPE (sym), &type);
1478 else
1479 type = SYMBOL_TYPE (sym);
1480 }
1481 }
1482
1483 if (TYPE_TARGET_STUB (type))
1484 {
1485 struct type *range_type;
1486 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1487
1488 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1489 {
1490 /* Empty. */
1491 }
1492 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1493 && TYPE_NFIELDS (type) == 1
1494 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1495 == TYPE_CODE_RANGE))
1496 {
1497 /* Now recompute the length of the array type, based on its
1498 number of elements and the target type's length.
1499 Watch out for Ada null Ada arrays where the high bound
1500 is smaller than the low bound. */
1501 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1502 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1503 ULONGEST len;
1504
1505 if (high_bound < low_bound)
1506 len = 0;
1507 else
1508 {
1509 /* For now, we conservatively take the array length to be 0
1510 if its length exceeds UINT_MAX. The code below assumes
1511 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1512 which is technically not guaranteed by C, but is usually true
1513 (because it would be true if x were unsigned with its
1514 high-order bit on). It uses the fact that
1515 high_bound-low_bound is always representable in
1516 ULONGEST and that if high_bound-low_bound+1 overflows,
1517 it overflows to 0. We must change these tests if we
1518 decide to increase the representation of TYPE_LENGTH
1519 from unsigned int to ULONGEST. */
1520 ULONGEST ulow = low_bound, uhigh = high_bound;
1521 ULONGEST tlen = TYPE_LENGTH (target_type);
1522
1523 len = tlen * (uhigh - ulow + 1);
1524 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1525 || len > UINT_MAX)
1526 len = 0;
1527 }
1528 TYPE_LENGTH (type) = len;
1529 TYPE_TARGET_STUB (type) = 0;
1530 }
1531 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1532 {
1533 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1534 TYPE_TARGET_STUB (type) = 0;
1535 }
1536 }
1537 /* Cache TYPE_LENGTH for future use. */
1538 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1539 return type;
1540 }
1541
1542 /* Parse a type expression in the string [P..P+LENGTH). If an error
1543 occurs, silently return a void type. */
1544
1545 static struct type *
1546 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1547 {
1548 struct ui_file *saved_gdb_stderr;
1549 struct type *type;
1550
1551 /* Suppress error messages. */
1552 saved_gdb_stderr = gdb_stderr;
1553 gdb_stderr = ui_file_new ();
1554
1555 /* Call parse_and_eval_type() without fear of longjmp()s. */
1556 if (!gdb_parse_and_eval_type (p, length, &type))
1557 type = builtin_type (gdbarch)->builtin_void;
1558
1559 /* Stop suppressing error messages. */
1560 ui_file_delete (gdb_stderr);
1561 gdb_stderr = saved_gdb_stderr;
1562
1563 return type;
1564 }
1565
1566 /* Ugly hack to convert method stubs into method types.
1567
1568 He ain't kiddin'. This demangles the name of the method into a
1569 string including argument types, parses out each argument type,
1570 generates a string casting a zero to that type, evaluates the
1571 string, and stuffs the resulting type into an argtype vector!!!
1572 Then it knows the type of the whole function (including argument
1573 types for overloading), which info used to be in the stab's but was
1574 removed to hack back the space required for them. */
1575
1576 static void
1577 check_stub_method (struct type *type, int method_id, int signature_id)
1578 {
1579 struct gdbarch *gdbarch = get_type_arch (type);
1580 struct fn_field *f;
1581 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1582 char *demangled_name = cplus_demangle (mangled_name,
1583 DMGL_PARAMS | DMGL_ANSI);
1584 char *argtypetext, *p;
1585 int depth = 0, argcount = 1;
1586 struct field *argtypes;
1587 struct type *mtype;
1588
1589 /* Make sure we got back a function string that we can use. */
1590 if (demangled_name)
1591 p = strchr (demangled_name, '(');
1592 else
1593 p = NULL;
1594
1595 if (demangled_name == NULL || p == NULL)
1596 error (_("Internal: Cannot demangle mangled name `%s'."),
1597 mangled_name);
1598
1599 /* Now, read in the parameters that define this type. */
1600 p += 1;
1601 argtypetext = p;
1602 while (*p)
1603 {
1604 if (*p == '(' || *p == '<')
1605 {
1606 depth += 1;
1607 }
1608 else if (*p == ')' || *p == '>')
1609 {
1610 depth -= 1;
1611 }
1612 else if (*p == ',' && depth == 0)
1613 {
1614 argcount += 1;
1615 }
1616
1617 p += 1;
1618 }
1619
1620 /* If we read one argument and it was ``void'', don't count it. */
1621 if (strncmp (argtypetext, "(void)", 6) == 0)
1622 argcount -= 1;
1623
1624 /* We need one extra slot, for the THIS pointer. */
1625
1626 argtypes = (struct field *)
1627 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1628 p = argtypetext;
1629
1630 /* Add THIS pointer for non-static methods. */
1631 f = TYPE_FN_FIELDLIST1 (type, method_id);
1632 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1633 argcount = 0;
1634 else
1635 {
1636 argtypes[0].type = lookup_pointer_type (type);
1637 argcount = 1;
1638 }
1639
1640 if (*p != ')') /* () means no args, skip while */
1641 {
1642 depth = 0;
1643 while (*p)
1644 {
1645 if (depth <= 0 && (*p == ',' || *p == ')'))
1646 {
1647 /* Avoid parsing of ellipsis, they will be handled below.
1648 Also avoid ``void'' as above. */
1649 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1650 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1651 {
1652 argtypes[argcount].type =
1653 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1654 argcount += 1;
1655 }
1656 argtypetext = p + 1;
1657 }
1658
1659 if (*p == '(' || *p == '<')
1660 {
1661 depth += 1;
1662 }
1663 else if (*p == ')' || *p == '>')
1664 {
1665 depth -= 1;
1666 }
1667
1668 p += 1;
1669 }
1670 }
1671
1672 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1673
1674 /* Now update the old "stub" type into a real type. */
1675 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1676 TYPE_DOMAIN_TYPE (mtype) = type;
1677 TYPE_FIELDS (mtype) = argtypes;
1678 TYPE_NFIELDS (mtype) = argcount;
1679 TYPE_STUB (mtype) = 0;
1680 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1681 if (p[-2] == '.')
1682 TYPE_VARARGS (mtype) = 1;
1683
1684 xfree (demangled_name);
1685 }
1686
1687 /* This is the external interface to check_stub_method, above. This
1688 function unstubs all of the signatures for TYPE's METHOD_ID method
1689 name. After calling this function TYPE_FN_FIELD_STUB will be
1690 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1691 correct.
1692
1693 This function unfortunately can not die until stabs do. */
1694
1695 void
1696 check_stub_method_group (struct type *type, int method_id)
1697 {
1698 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1699 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1700 int j, found_stub = 0;
1701
1702 for (j = 0; j < len; j++)
1703 if (TYPE_FN_FIELD_STUB (f, j))
1704 {
1705 found_stub = 1;
1706 check_stub_method (type, method_id, j);
1707 }
1708
1709 /* GNU v3 methods with incorrect names were corrected when we read
1710 in type information, because it was cheaper to do it then. The
1711 only GNU v2 methods with incorrect method names are operators and
1712 destructors; destructors were also corrected when we read in type
1713 information.
1714
1715 Therefore the only thing we need to handle here are v2 operator
1716 names. */
1717 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1718 {
1719 int ret;
1720 char dem_opname[256];
1721
1722 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1723 method_id),
1724 dem_opname, DMGL_ANSI);
1725 if (!ret)
1726 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1727 method_id),
1728 dem_opname, 0);
1729 if (ret)
1730 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1731 }
1732 }
1733
1734 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1735 const struct cplus_struct_type cplus_struct_default = { };
1736
1737 void
1738 allocate_cplus_struct_type (struct type *type)
1739 {
1740 if (HAVE_CPLUS_STRUCT (type))
1741 /* Structure was already allocated. Nothing more to do. */
1742 return;
1743
1744 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1745 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1746 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1747 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1748 }
1749
1750 const struct gnat_aux_type gnat_aux_default =
1751 { NULL };
1752
1753 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1754 and allocate the associated gnat-specific data. The gnat-specific
1755 data is also initialized to gnat_aux_default. */
1756 void
1757 allocate_gnat_aux_type (struct type *type)
1758 {
1759 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1760 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1761 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1762 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1763 }
1764
1765
1766 /* Helper function to initialize the standard scalar types.
1767
1768 If NAME is non-NULL, then we make a copy of the string pointed
1769 to by name in the objfile_obstack for that objfile, and initialize
1770 the type name to that copy. There are places (mipsread.c in particular),
1771 where init_type is called with a NULL value for NAME). */
1772
1773 struct type *
1774 init_type (enum type_code code, int length, int flags,
1775 char *name, struct objfile *objfile)
1776 {
1777 struct type *type;
1778
1779 type = alloc_type (objfile);
1780 TYPE_CODE (type) = code;
1781 TYPE_LENGTH (type) = length;
1782
1783 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1784 if (flags & TYPE_FLAG_UNSIGNED)
1785 TYPE_UNSIGNED (type) = 1;
1786 if (flags & TYPE_FLAG_NOSIGN)
1787 TYPE_NOSIGN (type) = 1;
1788 if (flags & TYPE_FLAG_STUB)
1789 TYPE_STUB (type) = 1;
1790 if (flags & TYPE_FLAG_TARGET_STUB)
1791 TYPE_TARGET_STUB (type) = 1;
1792 if (flags & TYPE_FLAG_STATIC)
1793 TYPE_STATIC (type) = 1;
1794 if (flags & TYPE_FLAG_PROTOTYPED)
1795 TYPE_PROTOTYPED (type) = 1;
1796 if (flags & TYPE_FLAG_INCOMPLETE)
1797 TYPE_INCOMPLETE (type) = 1;
1798 if (flags & TYPE_FLAG_VARARGS)
1799 TYPE_VARARGS (type) = 1;
1800 if (flags & TYPE_FLAG_VECTOR)
1801 TYPE_VECTOR (type) = 1;
1802 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1803 TYPE_STUB_SUPPORTED (type) = 1;
1804 if (flags & TYPE_FLAG_NOTTEXT)
1805 TYPE_NOTTEXT (type) = 1;
1806 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1807 TYPE_FIXED_INSTANCE (type) = 1;
1808
1809 if (name)
1810 TYPE_NAME (type) = obsavestring (name, strlen (name),
1811 &objfile->objfile_obstack);
1812
1813 /* C++ fancies. */
1814
1815 if (name && strcmp (name, "char") == 0)
1816 TYPE_NOSIGN (type) = 1;
1817
1818 switch (code)
1819 {
1820 case TYPE_CODE_STRUCT:
1821 case TYPE_CODE_UNION:
1822 case TYPE_CODE_NAMESPACE:
1823 INIT_CPLUS_SPECIFIC (type);
1824 break;
1825 case TYPE_CODE_FLT:
1826 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1827 break;
1828 case TYPE_CODE_FUNC:
1829 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1830 break;
1831 }
1832 return type;
1833 }
1834
1835 int
1836 can_dereference (struct type *t)
1837 {
1838 /* FIXME: Should we return true for references as well as
1839 pointers? */
1840 CHECK_TYPEDEF (t);
1841 return
1842 (t != NULL
1843 && TYPE_CODE (t) == TYPE_CODE_PTR
1844 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1845 }
1846
1847 int
1848 is_integral_type (struct type *t)
1849 {
1850 CHECK_TYPEDEF (t);
1851 return
1852 ((t != NULL)
1853 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1854 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1855 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1856 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1857 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1858 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1859 }
1860
1861 /* A helper function which returns true if types A and B represent the
1862 "same" class type. This is true if the types have the same main
1863 type, or the same name. */
1864
1865 int
1866 class_types_same_p (const struct type *a, const struct type *b)
1867 {
1868 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1869 || (TYPE_NAME (a) && TYPE_NAME (b)
1870 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1871 }
1872
1873 /* Check whether BASE is an ancestor or base class or DCLASS
1874 Return 1 if so, and 0 if not.
1875 Note: callers may want to check for identity of the types before
1876 calling this function -- identical types are considered to satisfy
1877 the ancestor relationship even if they're identical. */
1878
1879 int
1880 is_ancestor (struct type *base, struct type *dclass)
1881 {
1882 int i;
1883
1884 CHECK_TYPEDEF (base);
1885 CHECK_TYPEDEF (dclass);
1886
1887 if (class_types_same_p (base, dclass))
1888 return 1;
1889
1890 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1891 {
1892 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1893 return 1;
1894 }
1895
1896 return 0;
1897 }
1898
1899 /* Like is_ancestor, but only returns true when BASE is a public
1900 ancestor of DCLASS. */
1901
1902 int
1903 is_public_ancestor (struct type *base, struct type *dclass)
1904 {
1905 int i;
1906
1907 CHECK_TYPEDEF (base);
1908 CHECK_TYPEDEF (dclass);
1909
1910 if (class_types_same_p (base, dclass))
1911 return 1;
1912
1913 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1914 {
1915 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1916 continue;
1917 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1918 return 1;
1919 }
1920
1921 return 0;
1922 }
1923
1924 /* A helper function for is_unique_ancestor. */
1925
1926 static int
1927 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1928 int *offset,
1929 const bfd_byte *contents, CORE_ADDR address)
1930 {
1931 int i, count = 0;
1932
1933 CHECK_TYPEDEF (base);
1934 CHECK_TYPEDEF (dclass);
1935
1936 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1937 {
1938 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1939 int this_offset = baseclass_offset (dclass, i, contents, address);
1940
1941 if (this_offset == -1)
1942 error (_("virtual baseclass botch"));
1943
1944 if (class_types_same_p (base, iter))
1945 {
1946 /* If this is the first subclass, set *OFFSET and set count
1947 to 1. Otherwise, if this is at the same offset as
1948 previous instances, do nothing. Otherwise, increment
1949 count. */
1950 if (*offset == -1)
1951 {
1952 *offset = this_offset;
1953 count = 1;
1954 }
1955 else if (this_offset == *offset)
1956 {
1957 /* Nothing. */
1958 }
1959 else
1960 ++count;
1961 }
1962 else
1963 count += is_unique_ancestor_worker (base, iter, offset,
1964 contents + this_offset,
1965 address + this_offset);
1966 }
1967
1968 return count;
1969 }
1970
1971 /* Like is_ancestor, but only returns true if BASE is a unique base
1972 class of the type of VAL. */
1973
1974 int
1975 is_unique_ancestor (struct type *base, struct value *val)
1976 {
1977 int offset = -1;
1978
1979 return is_unique_ancestor_worker (base, value_type (val), &offset,
1980 value_contents (val),
1981 value_address (val)) == 1;
1982 }
1983
1984 \f
1985
1986
1987 /* Functions for overload resolution begin here */
1988
1989 /* Compare two badness vectors A and B and return the result.
1990 0 => A and B are identical
1991 1 => A and B are incomparable
1992 2 => A is better than B
1993 3 => A is worse than B */
1994
1995 int
1996 compare_badness (struct badness_vector *a, struct badness_vector *b)
1997 {
1998 int i;
1999 int tmp;
2000 short found_pos = 0; /* any positives in c? */
2001 short found_neg = 0; /* any negatives in c? */
2002
2003 /* differing lengths => incomparable */
2004 if (a->length != b->length)
2005 return 1;
2006
2007 /* Subtract b from a */
2008 for (i = 0; i < a->length; i++)
2009 {
2010 tmp = a->rank[i] - b->rank[i];
2011 if (tmp > 0)
2012 found_pos = 1;
2013 else if (tmp < 0)
2014 found_neg = 1;
2015 }
2016
2017 if (found_pos)
2018 {
2019 if (found_neg)
2020 return 1; /* incomparable */
2021 else
2022 return 3; /* A > B */
2023 }
2024 else
2025 /* no positives */
2026 {
2027 if (found_neg)
2028 return 2; /* A < B */
2029 else
2030 return 0; /* A == B */
2031 }
2032 }
2033
2034 /* Rank a function by comparing its parameter types (PARMS, length
2035 NPARMS), to the types of an argument list (ARGS, length NARGS).
2036 Return a pointer to a badness vector. This has NARGS + 1
2037 entries. */
2038
2039 struct badness_vector *
2040 rank_function (struct type **parms, int nparms,
2041 struct type **args, int nargs)
2042 {
2043 int i;
2044 struct badness_vector *bv;
2045 int min_len = nparms < nargs ? nparms : nargs;
2046
2047 bv = xmalloc (sizeof (struct badness_vector));
2048 bv->length = nargs + 1; /* add 1 for the length-match rank */
2049 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2050
2051 /* First compare the lengths of the supplied lists.
2052 If there is a mismatch, set it to a high value. */
2053
2054 /* pai/1997-06-03 FIXME: when we have debug info about default
2055 arguments and ellipsis parameter lists, we should consider those
2056 and rank the length-match more finely. */
2057
2058 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2059
2060 /* Now rank all the parameters of the candidate function */
2061 for (i = 1; i <= min_len; i++)
2062 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2063
2064 /* If more arguments than parameters, add dummy entries */
2065 for (i = min_len + 1; i <= nargs; i++)
2066 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2067
2068 return bv;
2069 }
2070
2071 /* Compare the names of two integer types, assuming that any sign
2072 qualifiers have been checked already. We do it this way because
2073 there may be an "int" in the name of one of the types. */
2074
2075 static int
2076 integer_types_same_name_p (const char *first, const char *second)
2077 {
2078 int first_p, second_p;
2079
2080 /* If both are shorts, return 1; if neither is a short, keep
2081 checking. */
2082 first_p = (strstr (first, "short") != NULL);
2083 second_p = (strstr (second, "short") != NULL);
2084 if (first_p && second_p)
2085 return 1;
2086 if (first_p || second_p)
2087 return 0;
2088
2089 /* Likewise for long. */
2090 first_p = (strstr (first, "long") != NULL);
2091 second_p = (strstr (second, "long") != NULL);
2092 if (first_p && second_p)
2093 return 1;
2094 if (first_p || second_p)
2095 return 0;
2096
2097 /* Likewise for char. */
2098 first_p = (strstr (first, "char") != NULL);
2099 second_p = (strstr (second, "char") != NULL);
2100 if (first_p && second_p)
2101 return 1;
2102 if (first_p || second_p)
2103 return 0;
2104
2105 /* They must both be ints. */
2106 return 1;
2107 }
2108
2109 /* Compare one type (PARM) for compatibility with another (ARG).
2110 * PARM is intended to be the parameter type of a function; and
2111 * ARG is the supplied argument's type. This function tests if
2112 * the latter can be converted to the former.
2113 *
2114 * Return 0 if they are identical types;
2115 * Otherwise, return an integer which corresponds to how compatible
2116 * PARM is to ARG. The higher the return value, the worse the match.
2117 * Generally the "bad" conversions are all uniformly assigned a 100. */
2118
2119 int
2120 rank_one_type (struct type *parm, struct type *arg)
2121 {
2122 /* Identical type pointers. */
2123 /* However, this still doesn't catch all cases of same type for arg
2124 and param. The reason is that builtin types are different from
2125 the same ones constructed from the object. */
2126 if (parm == arg)
2127 return 0;
2128
2129 /* Resolve typedefs */
2130 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2131 parm = check_typedef (parm);
2132 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2133 arg = check_typedef (arg);
2134
2135 /*
2136 Well, damnit, if the names are exactly the same, I'll say they
2137 are exactly the same. This happens when we generate method
2138 stubs. The types won't point to the same address, but they
2139 really are the same.
2140 */
2141
2142 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2143 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2144 return 0;
2145
2146 /* Check if identical after resolving typedefs. */
2147 if (parm == arg)
2148 return 0;
2149
2150 /* See through references, since we can almost make non-references
2151 references. */
2152 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2153 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2154 + REFERENCE_CONVERSION_BADNESS);
2155 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2156 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2157 + REFERENCE_CONVERSION_BADNESS);
2158 if (overload_debug)
2159 /* Debugging only. */
2160 fprintf_filtered (gdb_stderr,
2161 "------ Arg is %s [%d], parm is %s [%d]\n",
2162 TYPE_NAME (arg), TYPE_CODE (arg),
2163 TYPE_NAME (parm), TYPE_CODE (parm));
2164
2165 /* x -> y means arg of type x being supplied for parameter of type y */
2166
2167 switch (TYPE_CODE (parm))
2168 {
2169 case TYPE_CODE_PTR:
2170 switch (TYPE_CODE (arg))
2171 {
2172 case TYPE_CODE_PTR:
2173 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2174 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2175 return VOID_PTR_CONVERSION_BADNESS;
2176 else
2177 return rank_one_type (TYPE_TARGET_TYPE (parm),
2178 TYPE_TARGET_TYPE (arg));
2179 case TYPE_CODE_ARRAY:
2180 return rank_one_type (TYPE_TARGET_TYPE (parm),
2181 TYPE_TARGET_TYPE (arg));
2182 case TYPE_CODE_FUNC:
2183 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2184 case TYPE_CODE_INT:
2185 case TYPE_CODE_ENUM:
2186 case TYPE_CODE_FLAGS:
2187 case TYPE_CODE_CHAR:
2188 case TYPE_CODE_RANGE:
2189 case TYPE_CODE_BOOL:
2190 return POINTER_CONVERSION_BADNESS;
2191 default:
2192 return INCOMPATIBLE_TYPE_BADNESS;
2193 }
2194 case TYPE_CODE_ARRAY:
2195 switch (TYPE_CODE (arg))
2196 {
2197 case TYPE_CODE_PTR:
2198 case TYPE_CODE_ARRAY:
2199 return rank_one_type (TYPE_TARGET_TYPE (parm),
2200 TYPE_TARGET_TYPE (arg));
2201 default:
2202 return INCOMPATIBLE_TYPE_BADNESS;
2203 }
2204 case TYPE_CODE_FUNC:
2205 switch (TYPE_CODE (arg))
2206 {
2207 case TYPE_CODE_PTR: /* funcptr -> func */
2208 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2209 default:
2210 return INCOMPATIBLE_TYPE_BADNESS;
2211 }
2212 case TYPE_CODE_INT:
2213 switch (TYPE_CODE (arg))
2214 {
2215 case TYPE_CODE_INT:
2216 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2217 {
2218 /* Deal with signed, unsigned, and plain chars and
2219 signed and unsigned ints. */
2220 if (TYPE_NOSIGN (parm))
2221 {
2222 /* This case only for character types */
2223 if (TYPE_NOSIGN (arg))
2224 return 0; /* plain char -> plain char */
2225 else /* signed/unsigned char -> plain char */
2226 return INTEGER_CONVERSION_BADNESS;
2227 }
2228 else if (TYPE_UNSIGNED (parm))
2229 {
2230 if (TYPE_UNSIGNED (arg))
2231 {
2232 /* unsigned int -> unsigned int, or
2233 unsigned long -> unsigned long */
2234 if (integer_types_same_name_p (TYPE_NAME (parm),
2235 TYPE_NAME (arg)))
2236 return 0;
2237 else if (integer_types_same_name_p (TYPE_NAME (arg),
2238 "int")
2239 && integer_types_same_name_p (TYPE_NAME (parm),
2240 "long"))
2241 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2242 else
2243 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2244 }
2245 else
2246 {
2247 if (integer_types_same_name_p (TYPE_NAME (arg),
2248 "long")
2249 && integer_types_same_name_p (TYPE_NAME (parm),
2250 "int"))
2251 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2252 else
2253 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2254 }
2255 }
2256 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2257 {
2258 if (integer_types_same_name_p (TYPE_NAME (parm),
2259 TYPE_NAME (arg)))
2260 return 0;
2261 else if (integer_types_same_name_p (TYPE_NAME (arg),
2262 "int")
2263 && integer_types_same_name_p (TYPE_NAME (parm),
2264 "long"))
2265 return INTEGER_PROMOTION_BADNESS;
2266 else
2267 return INTEGER_CONVERSION_BADNESS;
2268 }
2269 else
2270 return INTEGER_CONVERSION_BADNESS;
2271 }
2272 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2273 return INTEGER_PROMOTION_BADNESS;
2274 else
2275 return INTEGER_CONVERSION_BADNESS;
2276 case TYPE_CODE_ENUM:
2277 case TYPE_CODE_FLAGS:
2278 case TYPE_CODE_CHAR:
2279 case TYPE_CODE_RANGE:
2280 case TYPE_CODE_BOOL:
2281 return INTEGER_PROMOTION_BADNESS;
2282 case TYPE_CODE_FLT:
2283 return INT_FLOAT_CONVERSION_BADNESS;
2284 case TYPE_CODE_PTR:
2285 return NS_POINTER_CONVERSION_BADNESS;
2286 default:
2287 return INCOMPATIBLE_TYPE_BADNESS;
2288 }
2289 break;
2290 case TYPE_CODE_ENUM:
2291 switch (TYPE_CODE (arg))
2292 {
2293 case TYPE_CODE_INT:
2294 case TYPE_CODE_CHAR:
2295 case TYPE_CODE_RANGE:
2296 case TYPE_CODE_BOOL:
2297 case TYPE_CODE_ENUM:
2298 return INTEGER_CONVERSION_BADNESS;
2299 case TYPE_CODE_FLT:
2300 return INT_FLOAT_CONVERSION_BADNESS;
2301 default:
2302 return INCOMPATIBLE_TYPE_BADNESS;
2303 }
2304 break;
2305 case TYPE_CODE_CHAR:
2306 switch (TYPE_CODE (arg))
2307 {
2308 case TYPE_CODE_RANGE:
2309 case TYPE_CODE_BOOL:
2310 case TYPE_CODE_ENUM:
2311 return INTEGER_CONVERSION_BADNESS;
2312 case TYPE_CODE_FLT:
2313 return INT_FLOAT_CONVERSION_BADNESS;
2314 case TYPE_CODE_INT:
2315 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2316 return INTEGER_CONVERSION_BADNESS;
2317 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2318 return INTEGER_PROMOTION_BADNESS;
2319 /* >>> !! else fall through !! <<< */
2320 case TYPE_CODE_CHAR:
2321 /* Deal with signed, unsigned, and plain chars for C++ and
2322 with int cases falling through from previous case. */
2323 if (TYPE_NOSIGN (parm))
2324 {
2325 if (TYPE_NOSIGN (arg))
2326 return 0;
2327 else
2328 return INTEGER_CONVERSION_BADNESS;
2329 }
2330 else if (TYPE_UNSIGNED (parm))
2331 {
2332 if (TYPE_UNSIGNED (arg))
2333 return 0;
2334 else
2335 return INTEGER_PROMOTION_BADNESS;
2336 }
2337 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2338 return 0;
2339 else
2340 return INTEGER_CONVERSION_BADNESS;
2341 default:
2342 return INCOMPATIBLE_TYPE_BADNESS;
2343 }
2344 break;
2345 case TYPE_CODE_RANGE:
2346 switch (TYPE_CODE (arg))
2347 {
2348 case TYPE_CODE_INT:
2349 case TYPE_CODE_CHAR:
2350 case TYPE_CODE_RANGE:
2351 case TYPE_CODE_BOOL:
2352 case TYPE_CODE_ENUM:
2353 return INTEGER_CONVERSION_BADNESS;
2354 case TYPE_CODE_FLT:
2355 return INT_FLOAT_CONVERSION_BADNESS;
2356 default:
2357 return INCOMPATIBLE_TYPE_BADNESS;
2358 }
2359 break;
2360 case TYPE_CODE_BOOL:
2361 switch (TYPE_CODE (arg))
2362 {
2363 case TYPE_CODE_INT:
2364 case TYPE_CODE_CHAR:
2365 case TYPE_CODE_RANGE:
2366 case TYPE_CODE_ENUM:
2367 case TYPE_CODE_FLT:
2368 case TYPE_CODE_PTR:
2369 return BOOLEAN_CONVERSION_BADNESS;
2370 case TYPE_CODE_BOOL:
2371 return 0;
2372 default:
2373 return INCOMPATIBLE_TYPE_BADNESS;
2374 }
2375 break;
2376 case TYPE_CODE_FLT:
2377 switch (TYPE_CODE (arg))
2378 {
2379 case TYPE_CODE_FLT:
2380 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2381 return FLOAT_PROMOTION_BADNESS;
2382 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2383 return 0;
2384 else
2385 return FLOAT_CONVERSION_BADNESS;
2386 case TYPE_CODE_INT:
2387 case TYPE_CODE_BOOL:
2388 case TYPE_CODE_ENUM:
2389 case TYPE_CODE_RANGE:
2390 case TYPE_CODE_CHAR:
2391 return INT_FLOAT_CONVERSION_BADNESS;
2392 default:
2393 return INCOMPATIBLE_TYPE_BADNESS;
2394 }
2395 break;
2396 case TYPE_CODE_COMPLEX:
2397 switch (TYPE_CODE (arg))
2398 { /* Strictly not needed for C++, but... */
2399 case TYPE_CODE_FLT:
2400 return FLOAT_PROMOTION_BADNESS;
2401 case TYPE_CODE_COMPLEX:
2402 return 0;
2403 default:
2404 return INCOMPATIBLE_TYPE_BADNESS;
2405 }
2406 break;
2407 case TYPE_CODE_STRUCT:
2408 /* currently same as TYPE_CODE_CLASS */
2409 switch (TYPE_CODE (arg))
2410 {
2411 case TYPE_CODE_STRUCT:
2412 /* Check for derivation */
2413 if (is_ancestor (parm, arg))
2414 return BASE_CONVERSION_BADNESS;
2415 /* else fall through */
2416 default:
2417 return INCOMPATIBLE_TYPE_BADNESS;
2418 }
2419 break;
2420 case TYPE_CODE_UNION:
2421 switch (TYPE_CODE (arg))
2422 {
2423 case TYPE_CODE_UNION:
2424 default:
2425 return INCOMPATIBLE_TYPE_BADNESS;
2426 }
2427 break;
2428 case TYPE_CODE_MEMBERPTR:
2429 switch (TYPE_CODE (arg))
2430 {
2431 default:
2432 return INCOMPATIBLE_TYPE_BADNESS;
2433 }
2434 break;
2435 case TYPE_CODE_METHOD:
2436 switch (TYPE_CODE (arg))
2437 {
2438
2439 default:
2440 return INCOMPATIBLE_TYPE_BADNESS;
2441 }
2442 break;
2443 case TYPE_CODE_REF:
2444 switch (TYPE_CODE (arg))
2445 {
2446
2447 default:
2448 return INCOMPATIBLE_TYPE_BADNESS;
2449 }
2450
2451 break;
2452 case TYPE_CODE_SET:
2453 switch (TYPE_CODE (arg))
2454 {
2455 /* Not in C++ */
2456 case TYPE_CODE_SET:
2457 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2458 TYPE_FIELD_TYPE (arg, 0));
2459 default:
2460 return INCOMPATIBLE_TYPE_BADNESS;
2461 }
2462 break;
2463 case TYPE_CODE_VOID:
2464 default:
2465 return INCOMPATIBLE_TYPE_BADNESS;
2466 } /* switch (TYPE_CODE (arg)) */
2467 }
2468
2469
2470 /* End of functions for overload resolution */
2471
2472 static void
2473 print_bit_vector (B_TYPE *bits, int nbits)
2474 {
2475 int bitno;
2476
2477 for (bitno = 0; bitno < nbits; bitno++)
2478 {
2479 if ((bitno % 8) == 0)
2480 {
2481 puts_filtered (" ");
2482 }
2483 if (B_TST (bits, bitno))
2484 printf_filtered (("1"));
2485 else
2486 printf_filtered (("0"));
2487 }
2488 }
2489
2490 /* Note the first arg should be the "this" pointer, we may not want to
2491 include it since we may get into a infinitely recursive
2492 situation. */
2493
2494 static void
2495 print_arg_types (struct field *args, int nargs, int spaces)
2496 {
2497 if (args != NULL)
2498 {
2499 int i;
2500
2501 for (i = 0; i < nargs; i++)
2502 recursive_dump_type (args[i].type, spaces + 2);
2503 }
2504 }
2505
2506 int
2507 field_is_static (struct field *f)
2508 {
2509 /* "static" fields are the fields whose location is not relative
2510 to the address of the enclosing struct. It would be nice to
2511 have a dedicated flag that would be set for static fields when
2512 the type is being created. But in practice, checking the field
2513 loc_kind should give us an accurate answer. */
2514 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2515 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2516 }
2517
2518 static void
2519 dump_fn_fieldlists (struct type *type, int spaces)
2520 {
2521 int method_idx;
2522 int overload_idx;
2523 struct fn_field *f;
2524
2525 printfi_filtered (spaces, "fn_fieldlists ");
2526 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2527 printf_filtered ("\n");
2528 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2529 {
2530 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2531 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2532 method_idx,
2533 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2534 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2535 gdb_stdout);
2536 printf_filtered (_(") length %d\n"),
2537 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2538 for (overload_idx = 0;
2539 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2540 overload_idx++)
2541 {
2542 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2543 overload_idx,
2544 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2545 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2546 gdb_stdout);
2547 printf_filtered (")\n");
2548 printfi_filtered (spaces + 8, "type ");
2549 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2550 gdb_stdout);
2551 printf_filtered ("\n");
2552
2553 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2554 spaces + 8 + 2);
2555
2556 printfi_filtered (spaces + 8, "args ");
2557 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2558 gdb_stdout);
2559 printf_filtered ("\n");
2560
2561 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2562 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2563 overload_idx)),
2564 spaces);
2565 printfi_filtered (spaces + 8, "fcontext ");
2566 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2567 gdb_stdout);
2568 printf_filtered ("\n");
2569
2570 printfi_filtered (spaces + 8, "is_const %d\n",
2571 TYPE_FN_FIELD_CONST (f, overload_idx));
2572 printfi_filtered (spaces + 8, "is_volatile %d\n",
2573 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2574 printfi_filtered (spaces + 8, "is_private %d\n",
2575 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2576 printfi_filtered (spaces + 8, "is_protected %d\n",
2577 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2578 printfi_filtered (spaces + 8, "is_stub %d\n",
2579 TYPE_FN_FIELD_STUB (f, overload_idx));
2580 printfi_filtered (spaces + 8, "voffset %u\n",
2581 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2582 }
2583 }
2584 }
2585
2586 static void
2587 print_cplus_stuff (struct type *type, int spaces)
2588 {
2589 printfi_filtered (spaces, "n_baseclasses %d\n",
2590 TYPE_N_BASECLASSES (type));
2591 printfi_filtered (spaces, "nfn_fields %d\n",
2592 TYPE_NFN_FIELDS (type));
2593 printfi_filtered (spaces, "nfn_fields_total %d\n",
2594 TYPE_NFN_FIELDS_TOTAL (type));
2595 if (TYPE_N_BASECLASSES (type) > 0)
2596 {
2597 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2598 TYPE_N_BASECLASSES (type));
2599 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2600 gdb_stdout);
2601 printf_filtered (")");
2602
2603 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2604 TYPE_N_BASECLASSES (type));
2605 puts_filtered ("\n");
2606 }
2607 if (TYPE_NFIELDS (type) > 0)
2608 {
2609 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2610 {
2611 printfi_filtered (spaces,
2612 "private_field_bits (%d bits at *",
2613 TYPE_NFIELDS (type));
2614 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2615 gdb_stdout);
2616 printf_filtered (")");
2617 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2618 TYPE_NFIELDS (type));
2619 puts_filtered ("\n");
2620 }
2621 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2622 {
2623 printfi_filtered (spaces,
2624 "protected_field_bits (%d bits at *",
2625 TYPE_NFIELDS (type));
2626 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2627 gdb_stdout);
2628 printf_filtered (")");
2629 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2630 TYPE_NFIELDS (type));
2631 puts_filtered ("\n");
2632 }
2633 }
2634 if (TYPE_NFN_FIELDS (type) > 0)
2635 {
2636 dump_fn_fieldlists (type, spaces);
2637 }
2638 }
2639
2640 /* Print the contents of the TYPE's type_specific union, assuming that
2641 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2642
2643 static void
2644 print_gnat_stuff (struct type *type, int spaces)
2645 {
2646 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2647
2648 recursive_dump_type (descriptive_type, spaces + 2);
2649 }
2650
2651 static struct obstack dont_print_type_obstack;
2652
2653 void
2654 recursive_dump_type (struct type *type, int spaces)
2655 {
2656 int idx;
2657
2658 if (spaces == 0)
2659 obstack_begin (&dont_print_type_obstack, 0);
2660
2661 if (TYPE_NFIELDS (type) > 0
2662 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2663 {
2664 struct type **first_dont_print
2665 = (struct type **) obstack_base (&dont_print_type_obstack);
2666
2667 int i = (struct type **)
2668 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2669
2670 while (--i >= 0)
2671 {
2672 if (type == first_dont_print[i])
2673 {
2674 printfi_filtered (spaces, "type node ");
2675 gdb_print_host_address (type, gdb_stdout);
2676 printf_filtered (_(" <same as already seen type>\n"));
2677 return;
2678 }
2679 }
2680
2681 obstack_ptr_grow (&dont_print_type_obstack, type);
2682 }
2683
2684 printfi_filtered (spaces, "type node ");
2685 gdb_print_host_address (type, gdb_stdout);
2686 printf_filtered ("\n");
2687 printfi_filtered (spaces, "name '%s' (",
2688 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2689 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2690 printf_filtered (")\n");
2691 printfi_filtered (spaces, "tagname '%s' (",
2692 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2693 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2694 printf_filtered (")\n");
2695 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2696 switch (TYPE_CODE (type))
2697 {
2698 case TYPE_CODE_UNDEF:
2699 printf_filtered ("(TYPE_CODE_UNDEF)");
2700 break;
2701 case TYPE_CODE_PTR:
2702 printf_filtered ("(TYPE_CODE_PTR)");
2703 break;
2704 case TYPE_CODE_ARRAY:
2705 printf_filtered ("(TYPE_CODE_ARRAY)");
2706 break;
2707 case TYPE_CODE_STRUCT:
2708 printf_filtered ("(TYPE_CODE_STRUCT)");
2709 break;
2710 case TYPE_CODE_UNION:
2711 printf_filtered ("(TYPE_CODE_UNION)");
2712 break;
2713 case TYPE_CODE_ENUM:
2714 printf_filtered ("(TYPE_CODE_ENUM)");
2715 break;
2716 case TYPE_CODE_FLAGS:
2717 printf_filtered ("(TYPE_CODE_FLAGS)");
2718 break;
2719 case TYPE_CODE_FUNC:
2720 printf_filtered ("(TYPE_CODE_FUNC)");
2721 break;
2722 case TYPE_CODE_INT:
2723 printf_filtered ("(TYPE_CODE_INT)");
2724 break;
2725 case TYPE_CODE_FLT:
2726 printf_filtered ("(TYPE_CODE_FLT)");
2727 break;
2728 case TYPE_CODE_VOID:
2729 printf_filtered ("(TYPE_CODE_VOID)");
2730 break;
2731 case TYPE_CODE_SET:
2732 printf_filtered ("(TYPE_CODE_SET)");
2733 break;
2734 case TYPE_CODE_RANGE:
2735 printf_filtered ("(TYPE_CODE_RANGE)");
2736 break;
2737 case TYPE_CODE_STRING:
2738 printf_filtered ("(TYPE_CODE_STRING)");
2739 break;
2740 case TYPE_CODE_BITSTRING:
2741 printf_filtered ("(TYPE_CODE_BITSTRING)");
2742 break;
2743 case TYPE_CODE_ERROR:
2744 printf_filtered ("(TYPE_CODE_ERROR)");
2745 break;
2746 case TYPE_CODE_MEMBERPTR:
2747 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2748 break;
2749 case TYPE_CODE_METHODPTR:
2750 printf_filtered ("(TYPE_CODE_METHODPTR)");
2751 break;
2752 case TYPE_CODE_METHOD:
2753 printf_filtered ("(TYPE_CODE_METHOD)");
2754 break;
2755 case TYPE_CODE_REF:
2756 printf_filtered ("(TYPE_CODE_REF)");
2757 break;
2758 case TYPE_CODE_CHAR:
2759 printf_filtered ("(TYPE_CODE_CHAR)");
2760 break;
2761 case TYPE_CODE_BOOL:
2762 printf_filtered ("(TYPE_CODE_BOOL)");
2763 break;
2764 case TYPE_CODE_COMPLEX:
2765 printf_filtered ("(TYPE_CODE_COMPLEX)");
2766 break;
2767 case TYPE_CODE_TYPEDEF:
2768 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2769 break;
2770 case TYPE_CODE_NAMESPACE:
2771 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2772 break;
2773 default:
2774 printf_filtered ("(UNKNOWN TYPE CODE)");
2775 break;
2776 }
2777 puts_filtered ("\n");
2778 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2779 if (TYPE_OBJFILE_OWNED (type))
2780 {
2781 printfi_filtered (spaces, "objfile ");
2782 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2783 }
2784 else
2785 {
2786 printfi_filtered (spaces, "gdbarch ");
2787 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2788 }
2789 printf_filtered ("\n");
2790 printfi_filtered (spaces, "target_type ");
2791 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2792 printf_filtered ("\n");
2793 if (TYPE_TARGET_TYPE (type) != NULL)
2794 {
2795 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2796 }
2797 printfi_filtered (spaces, "pointer_type ");
2798 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2799 printf_filtered ("\n");
2800 printfi_filtered (spaces, "reference_type ");
2801 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2802 printf_filtered ("\n");
2803 printfi_filtered (spaces, "type_chain ");
2804 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2805 printf_filtered ("\n");
2806 printfi_filtered (spaces, "instance_flags 0x%x",
2807 TYPE_INSTANCE_FLAGS (type));
2808 if (TYPE_CONST (type))
2809 {
2810 puts_filtered (" TYPE_FLAG_CONST");
2811 }
2812 if (TYPE_VOLATILE (type))
2813 {
2814 puts_filtered (" TYPE_FLAG_VOLATILE");
2815 }
2816 if (TYPE_CODE_SPACE (type))
2817 {
2818 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2819 }
2820 if (TYPE_DATA_SPACE (type))
2821 {
2822 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2823 }
2824 if (TYPE_ADDRESS_CLASS_1 (type))
2825 {
2826 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2827 }
2828 if (TYPE_ADDRESS_CLASS_2 (type))
2829 {
2830 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2831 }
2832 puts_filtered ("\n");
2833
2834 printfi_filtered (spaces, "flags");
2835 if (TYPE_UNSIGNED (type))
2836 {
2837 puts_filtered (" TYPE_FLAG_UNSIGNED");
2838 }
2839 if (TYPE_NOSIGN (type))
2840 {
2841 puts_filtered (" TYPE_FLAG_NOSIGN");
2842 }
2843 if (TYPE_STUB (type))
2844 {
2845 puts_filtered (" TYPE_FLAG_STUB");
2846 }
2847 if (TYPE_TARGET_STUB (type))
2848 {
2849 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2850 }
2851 if (TYPE_STATIC (type))
2852 {
2853 puts_filtered (" TYPE_FLAG_STATIC");
2854 }
2855 if (TYPE_PROTOTYPED (type))
2856 {
2857 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2858 }
2859 if (TYPE_INCOMPLETE (type))
2860 {
2861 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2862 }
2863 if (TYPE_VARARGS (type))
2864 {
2865 puts_filtered (" TYPE_FLAG_VARARGS");
2866 }
2867 /* This is used for things like AltiVec registers on ppc. Gcc emits
2868 an attribute for the array type, which tells whether or not we
2869 have a vector, instead of a regular array. */
2870 if (TYPE_VECTOR (type))
2871 {
2872 puts_filtered (" TYPE_FLAG_VECTOR");
2873 }
2874 if (TYPE_FIXED_INSTANCE (type))
2875 {
2876 puts_filtered (" TYPE_FIXED_INSTANCE");
2877 }
2878 if (TYPE_STUB_SUPPORTED (type))
2879 {
2880 puts_filtered (" TYPE_STUB_SUPPORTED");
2881 }
2882 if (TYPE_NOTTEXT (type))
2883 {
2884 puts_filtered (" TYPE_NOTTEXT");
2885 }
2886 puts_filtered ("\n");
2887 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2888 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2889 puts_filtered ("\n");
2890 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2891 {
2892 printfi_filtered (spaces + 2,
2893 "[%d] bitpos %d bitsize %d type ",
2894 idx, TYPE_FIELD_BITPOS (type, idx),
2895 TYPE_FIELD_BITSIZE (type, idx));
2896 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2897 printf_filtered (" name '%s' (",
2898 TYPE_FIELD_NAME (type, idx) != NULL
2899 ? TYPE_FIELD_NAME (type, idx)
2900 : "<NULL>");
2901 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2902 printf_filtered (")\n");
2903 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2904 {
2905 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2906 }
2907 }
2908 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2909 {
2910 printfi_filtered (spaces, "low %s%s high %s%s\n",
2911 plongest (TYPE_LOW_BOUND (type)),
2912 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2913 plongest (TYPE_HIGH_BOUND (type)),
2914 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2915 }
2916 printfi_filtered (spaces, "vptr_basetype ");
2917 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2918 puts_filtered ("\n");
2919 if (TYPE_VPTR_BASETYPE (type) != NULL)
2920 {
2921 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2922 }
2923 printfi_filtered (spaces, "vptr_fieldno %d\n",
2924 TYPE_VPTR_FIELDNO (type));
2925
2926 switch (TYPE_SPECIFIC_FIELD (type))
2927 {
2928 case TYPE_SPECIFIC_CPLUS_STUFF:
2929 printfi_filtered (spaces, "cplus_stuff ");
2930 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2931 gdb_stdout);
2932 puts_filtered ("\n");
2933 print_cplus_stuff (type, spaces);
2934 break;
2935
2936 case TYPE_SPECIFIC_GNAT_STUFF:
2937 printfi_filtered (spaces, "gnat_stuff ");
2938 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2939 puts_filtered ("\n");
2940 print_gnat_stuff (type, spaces);
2941 break;
2942
2943 case TYPE_SPECIFIC_FLOATFORMAT:
2944 printfi_filtered (spaces, "floatformat ");
2945 if (TYPE_FLOATFORMAT (type) == NULL)
2946 puts_filtered ("(null)");
2947 else
2948 {
2949 puts_filtered ("{ ");
2950 if (TYPE_FLOATFORMAT (type)[0] == NULL
2951 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2952 puts_filtered ("(null)");
2953 else
2954 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2955
2956 puts_filtered (", ");
2957 if (TYPE_FLOATFORMAT (type)[1] == NULL
2958 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2959 puts_filtered ("(null)");
2960 else
2961 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2962
2963 puts_filtered (" }");
2964 }
2965 puts_filtered ("\n");
2966 break;
2967
2968 case TYPE_SPECIFIC_CALLING_CONVENTION:
2969 printfi_filtered (spaces, "calling_convention %d\n",
2970 TYPE_CALLING_CONVENTION (type));
2971 break;
2972 }
2973
2974 if (spaces == 0)
2975 obstack_free (&dont_print_type_obstack, NULL);
2976 }
2977
2978 /* Trivial helpers for the libiberty hash table, for mapping one
2979 type to another. */
2980
2981 struct type_pair
2982 {
2983 struct type *old, *new;
2984 };
2985
2986 static hashval_t
2987 type_pair_hash (const void *item)
2988 {
2989 const struct type_pair *pair = item;
2990
2991 return htab_hash_pointer (pair->old);
2992 }
2993
2994 static int
2995 type_pair_eq (const void *item_lhs, const void *item_rhs)
2996 {
2997 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2998
2999 return lhs->old == rhs->old;
3000 }
3001
3002 /* Allocate the hash table used by copy_type_recursive to walk
3003 types without duplicates. We use OBJFILE's obstack, because
3004 OBJFILE is about to be deleted. */
3005
3006 htab_t
3007 create_copied_types_hash (struct objfile *objfile)
3008 {
3009 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3010 NULL, &objfile->objfile_obstack,
3011 hashtab_obstack_allocate,
3012 dummy_obstack_deallocate);
3013 }
3014
3015 /* Recursively copy (deep copy) TYPE, if it is associated with
3016 OBJFILE. Return a new type allocated using malloc, a saved type if
3017 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3018 not associated with OBJFILE. */
3019
3020 struct type *
3021 copy_type_recursive (struct objfile *objfile,
3022 struct type *type,
3023 htab_t copied_types)
3024 {
3025 struct type_pair *stored, pair;
3026 void **slot;
3027 struct type *new_type;
3028
3029 if (! TYPE_OBJFILE_OWNED (type))
3030 return type;
3031
3032 /* This type shouldn't be pointing to any types in other objfiles;
3033 if it did, the type might disappear unexpectedly. */
3034 gdb_assert (TYPE_OBJFILE (type) == objfile);
3035
3036 pair.old = type;
3037 slot = htab_find_slot (copied_types, &pair, INSERT);
3038 if (*slot != NULL)
3039 return ((struct type_pair *) *slot)->new;
3040
3041 new_type = alloc_type_arch (get_type_arch (type));
3042
3043 /* We must add the new type to the hash table immediately, in case
3044 we encounter this type again during a recursive call below. */
3045 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3046 stored->old = type;
3047 stored->new = new_type;
3048 *slot = stored;
3049
3050 /* Copy the common fields of types. For the main type, we simply
3051 copy the entire thing and then update specific fields as needed. */
3052 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3053 TYPE_OBJFILE_OWNED (new_type) = 0;
3054 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3055
3056 if (TYPE_NAME (type))
3057 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3058 if (TYPE_TAG_NAME (type))
3059 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3060
3061 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3062 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3063
3064 /* Copy the fields. */
3065 if (TYPE_NFIELDS (type))
3066 {
3067 int i, nfields;
3068
3069 nfields = TYPE_NFIELDS (type);
3070 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3071 for (i = 0; i < nfields; i++)
3072 {
3073 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3074 TYPE_FIELD_ARTIFICIAL (type, i);
3075 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3076 if (TYPE_FIELD_TYPE (type, i))
3077 TYPE_FIELD_TYPE (new_type, i)
3078 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3079 copied_types);
3080 if (TYPE_FIELD_NAME (type, i))
3081 TYPE_FIELD_NAME (new_type, i) =
3082 xstrdup (TYPE_FIELD_NAME (type, i));
3083 switch (TYPE_FIELD_LOC_KIND (type, i))
3084 {
3085 case FIELD_LOC_KIND_BITPOS:
3086 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3087 TYPE_FIELD_BITPOS (type, i));
3088 break;
3089 case FIELD_LOC_KIND_PHYSADDR:
3090 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3091 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3092 break;
3093 case FIELD_LOC_KIND_PHYSNAME:
3094 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3095 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3096 i)));
3097 break;
3098 default:
3099 internal_error (__FILE__, __LINE__,
3100 _("Unexpected type field location kind: %d"),
3101 TYPE_FIELD_LOC_KIND (type, i));
3102 }
3103 }
3104 }
3105
3106 /* For range types, copy the bounds information. */
3107 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3108 {
3109 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3110 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3111 }
3112
3113 /* Copy pointers to other types. */
3114 if (TYPE_TARGET_TYPE (type))
3115 TYPE_TARGET_TYPE (new_type) =
3116 copy_type_recursive (objfile,
3117 TYPE_TARGET_TYPE (type),
3118 copied_types);
3119 if (TYPE_VPTR_BASETYPE (type))
3120 TYPE_VPTR_BASETYPE (new_type) =
3121 copy_type_recursive (objfile,
3122 TYPE_VPTR_BASETYPE (type),
3123 copied_types);
3124 /* Maybe copy the type_specific bits.
3125
3126 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3127 base classes and methods. There's no fundamental reason why we
3128 can't, but at the moment it is not needed. */
3129
3130 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3131 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3132 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3133 || TYPE_CODE (type) == TYPE_CODE_UNION
3134 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3135 INIT_CPLUS_SPECIFIC (new_type);
3136
3137 return new_type;
3138 }
3139
3140 /* Make a copy of the given TYPE, except that the pointer & reference
3141 types are not preserved.
3142
3143 This function assumes that the given type has an associated objfile.
3144 This objfile is used to allocate the new type. */
3145
3146 struct type *
3147 copy_type (const struct type *type)
3148 {
3149 struct type *new_type;
3150
3151 gdb_assert (TYPE_OBJFILE_OWNED (type));
3152
3153 new_type = alloc_type_copy (type);
3154 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3155 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3156 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3157 sizeof (struct main_type));
3158
3159 return new_type;
3160 }
3161
3162
3163 /* Helper functions to initialize architecture-specific types. */
3164
3165 /* Allocate a type structure associated with GDBARCH and set its
3166 CODE, LENGTH, and NAME fields. */
3167 struct type *
3168 arch_type (struct gdbarch *gdbarch,
3169 enum type_code code, int length, char *name)
3170 {
3171 struct type *type;
3172
3173 type = alloc_type_arch (gdbarch);
3174 TYPE_CODE (type) = code;
3175 TYPE_LENGTH (type) = length;
3176
3177 if (name)
3178 TYPE_NAME (type) = xstrdup (name);
3179
3180 return type;
3181 }
3182
3183 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3184 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3185 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3186 struct type *
3187 arch_integer_type (struct gdbarch *gdbarch,
3188 int bit, int unsigned_p, char *name)
3189 {
3190 struct type *t;
3191
3192 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3193 if (unsigned_p)
3194 TYPE_UNSIGNED (t) = 1;
3195 if (name && strcmp (name, "char") == 0)
3196 TYPE_NOSIGN (t) = 1;
3197
3198 return t;
3199 }
3200
3201 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3202 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3203 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3204 struct type *
3205 arch_character_type (struct gdbarch *gdbarch,
3206 int bit, int unsigned_p, char *name)
3207 {
3208 struct type *t;
3209
3210 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3211 if (unsigned_p)
3212 TYPE_UNSIGNED (t) = 1;
3213
3214 return t;
3215 }
3216
3217 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3218 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3219 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3220 struct type *
3221 arch_boolean_type (struct gdbarch *gdbarch,
3222 int bit, int unsigned_p, char *name)
3223 {
3224 struct type *t;
3225
3226 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3227 if (unsigned_p)
3228 TYPE_UNSIGNED (t) = 1;
3229
3230 return t;
3231 }
3232
3233 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3234 BIT is the type size in bits; if BIT equals -1, the size is
3235 determined by the floatformat. NAME is the type name. Set the
3236 TYPE_FLOATFORMAT from FLOATFORMATS. */
3237 struct type *
3238 arch_float_type (struct gdbarch *gdbarch,
3239 int bit, char *name, const struct floatformat **floatformats)
3240 {
3241 struct type *t;
3242
3243 if (bit == -1)
3244 {
3245 gdb_assert (floatformats != NULL);
3246 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3247 bit = floatformats[0]->totalsize;
3248 }
3249 gdb_assert (bit >= 0);
3250
3251 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3252 TYPE_FLOATFORMAT (t) = floatformats;
3253 return t;
3254 }
3255
3256 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3257 NAME is the type name. TARGET_TYPE is the component float type. */
3258 struct type *
3259 arch_complex_type (struct gdbarch *gdbarch,
3260 char *name, struct type *target_type)
3261 {
3262 struct type *t;
3263
3264 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3265 2 * TYPE_LENGTH (target_type), name);
3266 TYPE_TARGET_TYPE (t) = target_type;
3267 return t;
3268 }
3269
3270 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3271 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3272 struct type *
3273 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3274 {
3275 int nfields = length * TARGET_CHAR_BIT;
3276 struct type *type;
3277
3278 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3279 TYPE_UNSIGNED (type) = 1;
3280 TYPE_NFIELDS (type) = nfields;
3281 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3282
3283 return type;
3284 }
3285
3286 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3287 position BITPOS is called NAME. */
3288 void
3289 append_flags_type_flag (struct type *type, int bitpos, char *name)
3290 {
3291 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3292 gdb_assert (bitpos < TYPE_NFIELDS (type));
3293 gdb_assert (bitpos >= 0);
3294
3295 if (name)
3296 {
3297 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3298 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3299 }
3300 else
3301 {
3302 /* Don't show this field to the user. */
3303 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3304 }
3305 }
3306
3307 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3308 specified by CODE) associated with GDBARCH. NAME is the type name. */
3309 struct type *
3310 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3311 {
3312 struct type *t;
3313
3314 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3315 t = arch_type (gdbarch, code, 0, NULL);
3316 TYPE_TAG_NAME (t) = name;
3317 INIT_CPLUS_SPECIFIC (t);
3318 return t;
3319 }
3320
3321 /* Add new field with name NAME and type FIELD to composite type T.
3322 Do not set the field's position or adjust the type's length;
3323 the caller should do so. Return the new field. */
3324 struct field *
3325 append_composite_type_field_raw (struct type *t, char *name,
3326 struct type *field)
3327 {
3328 struct field *f;
3329
3330 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3331 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3332 sizeof (struct field) * TYPE_NFIELDS (t));
3333 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3334 memset (f, 0, sizeof f[0]);
3335 FIELD_TYPE (f[0]) = field;
3336 FIELD_NAME (f[0]) = name;
3337 return f;
3338 }
3339
3340 /* Add new field with name NAME and type FIELD to composite type T.
3341 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3342 void
3343 append_composite_type_field_aligned (struct type *t, char *name,
3344 struct type *field, int alignment)
3345 {
3346 struct field *f = append_composite_type_field_raw (t, name, field);
3347
3348 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3349 {
3350 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3351 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3352 }
3353 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3354 {
3355 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3356 if (TYPE_NFIELDS (t) > 1)
3357 {
3358 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3359 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3360 * TARGET_CHAR_BIT));
3361
3362 if (alignment)
3363 {
3364 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3365
3366 if (left)
3367 {
3368 FIELD_BITPOS (f[0]) += left;
3369 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3370 }
3371 }
3372 }
3373 }
3374 }
3375
3376 /* Add new field with name NAME and type FIELD to composite type T. */
3377 void
3378 append_composite_type_field (struct type *t, char *name,
3379 struct type *field)
3380 {
3381 append_composite_type_field_aligned (t, name, field, 0);
3382 }
3383
3384
3385 static struct gdbarch_data *gdbtypes_data;
3386
3387 const struct builtin_type *
3388 builtin_type (struct gdbarch *gdbarch)
3389 {
3390 return gdbarch_data (gdbarch, gdbtypes_data);
3391 }
3392
3393 static void *
3394 gdbtypes_post_init (struct gdbarch *gdbarch)
3395 {
3396 struct builtin_type *builtin_type
3397 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3398
3399 /* Basic types. */
3400 builtin_type->builtin_void
3401 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3402 builtin_type->builtin_char
3403 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3404 !gdbarch_char_signed (gdbarch), "char");
3405 builtin_type->builtin_signed_char
3406 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3407 0, "signed char");
3408 builtin_type->builtin_unsigned_char
3409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3410 1, "unsigned char");
3411 builtin_type->builtin_short
3412 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3413 0, "short");
3414 builtin_type->builtin_unsigned_short
3415 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3416 1, "unsigned short");
3417 builtin_type->builtin_int
3418 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3419 0, "int");
3420 builtin_type->builtin_unsigned_int
3421 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3422 1, "unsigned int");
3423 builtin_type->builtin_long
3424 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3425 0, "long");
3426 builtin_type->builtin_unsigned_long
3427 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3428 1, "unsigned long");
3429 builtin_type->builtin_long_long
3430 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3431 0, "long long");
3432 builtin_type->builtin_unsigned_long_long
3433 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3434 1, "unsigned long long");
3435 builtin_type->builtin_float
3436 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3437 "float", gdbarch_float_format (gdbarch));
3438 builtin_type->builtin_double
3439 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3440 "double", gdbarch_double_format (gdbarch));
3441 builtin_type->builtin_long_double
3442 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3443 "long double", gdbarch_long_double_format (gdbarch));
3444 builtin_type->builtin_complex
3445 = arch_complex_type (gdbarch, "complex",
3446 builtin_type->builtin_float);
3447 builtin_type->builtin_double_complex
3448 = arch_complex_type (gdbarch, "double complex",
3449 builtin_type->builtin_double);
3450 builtin_type->builtin_string
3451 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3452 builtin_type->builtin_bool
3453 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3454
3455 /* The following three are about decimal floating point types, which
3456 are 32-bits, 64-bits and 128-bits respectively. */
3457 builtin_type->builtin_decfloat
3458 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3459 builtin_type->builtin_decdouble
3460 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3461 builtin_type->builtin_declong
3462 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3463
3464 /* "True" character types. */
3465 builtin_type->builtin_true_char
3466 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3467 builtin_type->builtin_true_unsigned_char
3468 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3469
3470 /* Fixed-size integer types. */
3471 builtin_type->builtin_int0
3472 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3473 builtin_type->builtin_int8
3474 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3475 builtin_type->builtin_uint8
3476 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3477 builtin_type->builtin_int16
3478 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3479 builtin_type->builtin_uint16
3480 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3481 builtin_type->builtin_int32
3482 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3483 builtin_type->builtin_uint32
3484 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3485 builtin_type->builtin_int64
3486 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3487 builtin_type->builtin_uint64
3488 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3489 builtin_type->builtin_int128
3490 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3491 builtin_type->builtin_uint128
3492 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3493 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3494 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
3495
3496 /* Wide character types. */
3497 builtin_type->builtin_char16
3498 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3499 builtin_type->builtin_char32
3500 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3501
3502
3503 /* Default data/code pointer types. */
3504 builtin_type->builtin_data_ptr
3505 = lookup_pointer_type (builtin_type->builtin_void);
3506 builtin_type->builtin_func_ptr
3507 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3508
3509 /* This type represents a GDB internal function. */
3510 builtin_type->internal_fn
3511 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3512 "<internal function>");
3513
3514 return builtin_type;
3515 }
3516
3517
3518 /* This set of objfile-based types is intended to be used by symbol
3519 readers as basic types. */
3520
3521 static const struct objfile_data *objfile_type_data;
3522
3523 const struct objfile_type *
3524 objfile_type (struct objfile *objfile)
3525 {
3526 struct gdbarch *gdbarch;
3527 struct objfile_type *objfile_type
3528 = objfile_data (objfile, objfile_type_data);
3529
3530 if (objfile_type)
3531 return objfile_type;
3532
3533 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3534 1, struct objfile_type);
3535
3536 /* Use the objfile architecture to determine basic type properties. */
3537 gdbarch = get_objfile_arch (objfile);
3538
3539 /* Basic types. */
3540 objfile_type->builtin_void
3541 = init_type (TYPE_CODE_VOID, 1,
3542 0,
3543 "void", objfile);
3544
3545 objfile_type->builtin_char
3546 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3547 (TYPE_FLAG_NOSIGN
3548 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3549 "char", objfile);
3550 objfile_type->builtin_signed_char
3551 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3552 0,
3553 "signed char", objfile);
3554 objfile_type->builtin_unsigned_char
3555 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3556 TYPE_FLAG_UNSIGNED,
3557 "unsigned char", objfile);
3558 objfile_type->builtin_short
3559 = init_type (TYPE_CODE_INT,
3560 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3561 0, "short", objfile);
3562 objfile_type->builtin_unsigned_short
3563 = init_type (TYPE_CODE_INT,
3564 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3565 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3566 objfile_type->builtin_int
3567 = init_type (TYPE_CODE_INT,
3568 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3569 0, "int", objfile);
3570 objfile_type->builtin_unsigned_int
3571 = init_type (TYPE_CODE_INT,
3572 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3573 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3574 objfile_type->builtin_long
3575 = init_type (TYPE_CODE_INT,
3576 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3577 0, "long", objfile);
3578 objfile_type->builtin_unsigned_long
3579 = init_type (TYPE_CODE_INT,
3580 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3581 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3582 objfile_type->builtin_long_long
3583 = init_type (TYPE_CODE_INT,
3584 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3585 0, "long long", objfile);
3586 objfile_type->builtin_unsigned_long_long
3587 = init_type (TYPE_CODE_INT,
3588 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3589 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3590
3591 objfile_type->builtin_float
3592 = init_type (TYPE_CODE_FLT,
3593 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3594 0, "float", objfile);
3595 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3596 = gdbarch_float_format (gdbarch);
3597 objfile_type->builtin_double
3598 = init_type (TYPE_CODE_FLT,
3599 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3600 0, "double", objfile);
3601 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3602 = gdbarch_double_format (gdbarch);
3603 objfile_type->builtin_long_double
3604 = init_type (TYPE_CODE_FLT,
3605 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3606 0, "long double", objfile);
3607 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3608 = gdbarch_long_double_format (gdbarch);
3609
3610 /* This type represents a type that was unrecognized in symbol read-in. */
3611 objfile_type->builtin_error
3612 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3613
3614 /* The following set of types is used for symbols with no
3615 debug information. */
3616 objfile_type->nodebug_text_symbol
3617 = init_type (TYPE_CODE_FUNC, 1, 0,
3618 "<text variable, no debug info>", objfile);
3619 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3620 = objfile_type->builtin_int;
3621 objfile_type->nodebug_data_symbol
3622 = init_type (TYPE_CODE_INT,
3623 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3624 "<data variable, no debug info>", objfile);
3625 objfile_type->nodebug_unknown_symbol
3626 = init_type (TYPE_CODE_INT, 1, 0,
3627 "<variable (not text or data), no debug info>", objfile);
3628 objfile_type->nodebug_tls_symbol
3629 = init_type (TYPE_CODE_INT,
3630 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3631 "<thread local variable, no debug info>", objfile);
3632
3633 /* NOTE: on some targets, addresses and pointers are not necessarily
3634 the same --- for example, on the D10V, pointers are 16 bits long,
3635 but addresses are 32 bits long. See doc/gdbint.texinfo,
3636 ``Pointers Are Not Always Addresses''.
3637
3638 The upshot is:
3639 - gdb's `struct type' always describes the target's
3640 representation.
3641 - gdb's `struct value' objects should always hold values in
3642 target form.
3643 - gdb's CORE_ADDR values are addresses in the unified virtual
3644 address space that the assembler and linker work with. Thus,
3645 since target_read_memory takes a CORE_ADDR as an argument, it
3646 can access any memory on the target, even if the processor has
3647 separate code and data address spaces.
3648
3649 So, for example:
3650 - If v is a value holding a D10V code pointer, its contents are
3651 in target form: a big-endian address left-shifted two bits.
3652 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3653 sizeof (void *) == 2 on the target.
3654
3655 In this context, objfile_type->builtin_core_addr is a bit odd:
3656 it's a target type for a value the target will never see. It's
3657 only used to hold the values of (typeless) linker symbols, which
3658 are indeed in the unified virtual address space. */
3659
3660 objfile_type->builtin_core_addr
3661 = init_type (TYPE_CODE_INT,
3662 gdbarch_addr_bit (gdbarch) / 8,
3663 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3664
3665 set_objfile_data (objfile, objfile_type_data, objfile_type);
3666 return objfile_type;
3667 }
3668
3669
3670 extern void _initialize_gdbtypes (void);
3671 void
3672 _initialize_gdbtypes (void)
3673 {
3674 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3675 objfile_type_data = register_objfile_data ();
3676
3677 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3678 Set debugging of C++ overloading."), _("\
3679 Show debugging of C++ overloading."), _("\
3680 When enabled, ranking of the functions is displayed."),
3681 NULL,
3682 show_overload_debug,
3683 &setdebuglist, &showdebuglist);
3684
3685 /* Add user knob for controlling resolution of opaque types. */
3686 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3687 &opaque_type_resolution, _("\
3688 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3689 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3690 NULL,
3691 show_opaque_type_resolution,
3692 &setlist, &showlist);
3693 }
This page took 0.401357 seconds and 4 git commands to generate.