2009-01-08 Kai Tietz <kai.tietz@onevision.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009 Free Software Foundation, Inc.
5
6 Contributed by Cygnus Support, using pieces from other GDB modules.
7
8 This file is part of GDB.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation; either version 3 of the License, or
13 (at your option) any later version.
14
15 This program is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 GNU General Public License for more details.
19
20 You should have received a copy of the GNU General Public License
21 along with this program. If not, see <http://www.gnu.org/licenses/>. */
22
23 #include "defs.h"
24 #include "gdb_string.h"
25 #include "bfd.h"
26 #include "symtab.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbtypes.h"
30 #include "expression.h"
31 #include "language.h"
32 #include "target.h"
33 #include "value.h"
34 #include "demangle.h"
35 #include "complaints.h"
36 #include "gdbcmd.h"
37 #include "wrapper.h"
38 #include "cp-abi.h"
39 #include "gdb_assert.h"
40 #include "hashtab.h"
41
42 /* These variables point to the objects
43 representing the predefined C data types. */
44
45 struct type *builtin_type_int0;
46 struct type *builtin_type_int8;
47 struct type *builtin_type_uint8;
48 struct type *builtin_type_int16;
49 struct type *builtin_type_uint16;
50 struct type *builtin_type_int32;
51 struct type *builtin_type_uint32;
52 struct type *builtin_type_int64;
53 struct type *builtin_type_uint64;
54 struct type *builtin_type_int128;
55 struct type *builtin_type_uint128;
56
57 /* Floatformat pairs. */
58 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
59 &floatformat_ieee_single_big,
60 &floatformat_ieee_single_little
61 };
62 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
63 &floatformat_ieee_double_big,
64 &floatformat_ieee_double_little
65 };
66 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_double_big,
68 &floatformat_ieee_double_littlebyte_bigword
69 };
70 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_i387_ext,
72 &floatformat_i387_ext
73 };
74 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_m68881_ext,
76 &floatformat_m68881_ext
77 };
78 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_arm_ext_big,
80 &floatformat_arm_ext_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_ia64_spill_big,
84 &floatformat_ia64_spill_little
85 };
86 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_ia64_quad_big,
88 &floatformat_ia64_quad_little
89 };
90 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_vax_f,
92 &floatformat_vax_f
93 };
94 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_vax_d,
96 &floatformat_vax_d
97 };
98 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ibm_long_double,
100 &floatformat_ibm_long_double
101 };
102
103 struct type *builtin_type_ieee_single;
104 struct type *builtin_type_ieee_double;
105 struct type *builtin_type_i387_ext;
106 struct type *builtin_type_m68881_ext;
107 struct type *builtin_type_arm_ext;
108 struct type *builtin_type_ia64_spill;
109 struct type *builtin_type_ia64_quad;
110
111 /* Platform-neutral void type. */
112 struct type *builtin_type_void;
113
114 /* Platform-neutral character types. */
115 struct type *builtin_type_true_char;
116 struct type *builtin_type_true_unsigned_char;
117
118
119 int opaque_type_resolution = 1;
120 static void
121 show_opaque_type_resolution (struct ui_file *file, int from_tty,
122 struct cmd_list_element *c,
123 const char *value)
124 {
125 fprintf_filtered (file, _("\
126 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
127 value);
128 }
129
130 int overload_debug = 0;
131 static void
132 show_overload_debug (struct ui_file *file, int from_tty,
133 struct cmd_list_element *c, const char *value)
134 {
135 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
136 value);
137 }
138
139 struct extra
140 {
141 char str[128];
142 int len;
143 }; /* Maximum extension is 128! FIXME */
144
145 static void print_bit_vector (B_TYPE *, int);
146 static void print_arg_types (struct field *, int, int);
147 static void dump_fn_fieldlists (struct type *, int);
148 static void print_cplus_stuff (struct type *, int);
149
150
151 /* Alloc a new type structure and fill it with some defaults. If
152 OBJFILE is non-NULL, then allocate the space for the type structure
153 in that objfile's objfile_obstack. Otherwise allocate the new type
154 structure by xmalloc () (for permanent types). */
155
156 struct type *
157 alloc_type (struct objfile *objfile)
158 {
159 struct type *type;
160
161 /* Alloc the structure and start off with all fields zeroed. */
162
163 if (objfile == NULL)
164 {
165 type = xmalloc (sizeof (struct type));
166 memset (type, 0, sizeof (struct type));
167 TYPE_MAIN_TYPE (type) = xmalloc (sizeof (struct main_type));
168 }
169 else
170 {
171 type = obstack_alloc (&objfile->objfile_obstack,
172 sizeof (struct type));
173 memset (type, 0, sizeof (struct type));
174 TYPE_MAIN_TYPE (type) = obstack_alloc (&objfile->objfile_obstack,
175 sizeof (struct main_type));
176 OBJSTAT (objfile, n_types++);
177 }
178 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_OBJFILE (type) = objfile;
184 TYPE_VPTR_FIELDNO (type) = -1;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return (type);
188 }
189
190 /* Alloc a new type instance structure, fill it with some defaults,
191 and point it at OLDTYPE. Allocate the new type instance from the
192 same place as OLDTYPE. */
193
194 static struct type *
195 alloc_type_instance (struct type *oldtype)
196 {
197 struct type *type;
198
199 /* Allocate the structure. */
200
201 if (TYPE_OBJFILE (oldtype) == NULL)
202 {
203 type = xmalloc (sizeof (struct type));
204 memset (type, 0, sizeof (struct type));
205 }
206 else
207 {
208 type = obstack_alloc (&TYPE_OBJFILE (oldtype)->objfile_obstack,
209 sizeof (struct type));
210 memset (type, 0, sizeof (struct type));
211 }
212 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
213
214 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
215
216 return (type);
217 }
218
219 /* Clear all remnants of the previous type at TYPE, in preparation for
220 replacing it with something else. */
221 static void
222 smash_type (struct type *type)
223 {
224 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
225
226 /* For now, delete the rings. */
227 TYPE_CHAIN (type) = type;
228
229 /* For now, leave the pointer/reference types alone. */
230 }
231
232 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
233 to a pointer to memory where the pointer type should be stored.
234 If *TYPEPTR is zero, update it to point to the pointer type we return.
235 We allocate new memory if needed. */
236
237 struct type *
238 make_pointer_type (struct type *type, struct type **typeptr)
239 {
240 struct type *ntype; /* New type */
241 struct objfile *objfile;
242 struct type *chain;
243
244 ntype = TYPE_POINTER_TYPE (type);
245
246 if (ntype)
247 {
248 if (typeptr == 0)
249 return ntype; /* Don't care about alloc,
250 and have new type. */
251 else if (*typeptr == 0)
252 {
253 *typeptr = ntype; /* Tracking alloc, and have new type. */
254 return ntype;
255 }
256 }
257
258 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
259 {
260 ntype = alloc_type (TYPE_OBJFILE (type));
261 if (typeptr)
262 *typeptr = ntype;
263 }
264 else /* We have storage, but need to reset it. */
265 {
266 ntype = *typeptr;
267 objfile = TYPE_OBJFILE (ntype);
268 chain = TYPE_CHAIN (ntype);
269 smash_type (ntype);
270 TYPE_CHAIN (ntype) = chain;
271 TYPE_OBJFILE (ntype) = objfile;
272 }
273
274 TYPE_TARGET_TYPE (ntype) = type;
275 TYPE_POINTER_TYPE (type) = ntype;
276
277 /* FIXME! Assume the machine has only one representation for
278 pointers! */
279
280 TYPE_LENGTH (ntype) =
281 gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
282 TYPE_CODE (ntype) = TYPE_CODE_PTR;
283
284 /* Mark pointers as unsigned. The target converts between pointers
285 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
286 gdbarch_address_to_pointer. */
287 TYPE_UNSIGNED (ntype) = 1;
288
289 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
290 TYPE_POINTER_TYPE (type) = ntype;
291
292 /* Update the length of all the other variants of this type. */
293 chain = TYPE_CHAIN (ntype);
294 while (chain != ntype)
295 {
296 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
297 chain = TYPE_CHAIN (chain);
298 }
299
300 return ntype;
301 }
302
303 /* Given a type TYPE, return a type of pointers to that type.
304 May need to construct such a type if this is the first use. */
305
306 struct type *
307 lookup_pointer_type (struct type *type)
308 {
309 return make_pointer_type (type, (struct type **) 0);
310 }
311
312 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
313 points to a pointer to memory where the reference type should be
314 stored. If *TYPEPTR is zero, update it to point to the reference
315 type we return. We allocate new memory if needed. */
316
317 struct type *
318 make_reference_type (struct type *type, struct type **typeptr)
319 {
320 struct type *ntype; /* New type */
321 struct objfile *objfile;
322 struct type *chain;
323
324 ntype = TYPE_REFERENCE_TYPE (type);
325
326 if (ntype)
327 {
328 if (typeptr == 0)
329 return ntype; /* Don't care about alloc,
330 and have new type. */
331 else if (*typeptr == 0)
332 {
333 *typeptr = ntype; /* Tracking alloc, and have new type. */
334 return ntype;
335 }
336 }
337
338 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
339 {
340 ntype = alloc_type (TYPE_OBJFILE (type));
341 if (typeptr)
342 *typeptr = ntype;
343 }
344 else /* We have storage, but need to reset it. */
345 {
346 ntype = *typeptr;
347 objfile = TYPE_OBJFILE (ntype);
348 chain = TYPE_CHAIN (ntype);
349 smash_type (ntype);
350 TYPE_CHAIN (ntype) = chain;
351 TYPE_OBJFILE (ntype) = objfile;
352 }
353
354 TYPE_TARGET_TYPE (ntype) = type;
355 TYPE_REFERENCE_TYPE (type) = ntype;
356
357 /* FIXME! Assume the machine has only one representation for
358 references, and that it matches the (only) representation for
359 pointers! */
360
361 TYPE_LENGTH (ntype) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
362 TYPE_CODE (ntype) = TYPE_CODE_REF;
363
364 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
365 TYPE_REFERENCE_TYPE (type) = ntype;
366
367 /* Update the length of all the other variants of this type. */
368 chain = TYPE_CHAIN (ntype);
369 while (chain != ntype)
370 {
371 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
372 chain = TYPE_CHAIN (chain);
373 }
374
375 return ntype;
376 }
377
378 /* Same as above, but caller doesn't care about memory allocation
379 details. */
380
381 struct type *
382 lookup_reference_type (struct type *type)
383 {
384 return make_reference_type (type, (struct type **) 0);
385 }
386
387 /* Lookup a function type that returns type TYPE. TYPEPTR, if
388 nonzero, points to a pointer to memory where the function type
389 should be stored. If *TYPEPTR is zero, update it to point to the
390 function type we return. We allocate new memory if needed. */
391
392 struct type *
393 make_function_type (struct type *type, struct type **typeptr)
394 {
395 struct type *ntype; /* New type */
396 struct objfile *objfile;
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type (TYPE_OBJFILE (type));
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 objfile = TYPE_OBJFILE (ntype);
408 smash_type (ntype);
409 TYPE_OBJFILE (ntype) = objfile;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413
414 TYPE_LENGTH (ntype) = 1;
415 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
416
417 return ntype;
418 }
419
420
421 /* Given a type TYPE, return a type of functions that return that type.
422 May need to construct such a type if this is the first use. */
423
424 struct type *
425 lookup_function_type (struct type *type)
426 {
427 return make_function_type (type, (struct type **) 0);
428 }
429
430 /* Identify address space identifier by name --
431 return the integer flag defined in gdbtypes.h. */
432 extern int
433 address_space_name_to_int (char *space_identifier)
434 {
435 struct gdbarch *gdbarch = current_gdbarch;
436 int type_flags;
437 /* Check for known address space delimiters. */
438 if (!strcmp (space_identifier, "code"))
439 return TYPE_INSTANCE_FLAG_CODE_SPACE;
440 else if (!strcmp (space_identifier, "data"))
441 return TYPE_INSTANCE_FLAG_DATA_SPACE;
442 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
443 && gdbarch_address_class_name_to_type_flags (gdbarch,
444 space_identifier,
445 &type_flags))
446 return type_flags;
447 else
448 error (_("Unknown address space specifier: \"%s\""), space_identifier);
449 }
450
451 /* Identify address space identifier by integer flag as defined in
452 gdbtypes.h -- return the string version of the adress space name. */
453
454 const char *
455 address_space_int_to_name (int space_flag)
456 {
457 struct gdbarch *gdbarch = current_gdbarch;
458 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
459 return "code";
460 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
461 return "data";
462 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
463 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
464 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
465 else
466 return NULL;
467 }
468
469 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
470
471 If STORAGE is non-NULL, create the new type instance there.
472 STORAGE must be in the same obstack as TYPE. */
473
474 static struct type *
475 make_qualified_type (struct type *type, int new_flags,
476 struct type *storage)
477 {
478 struct type *ntype;
479
480 ntype = type;
481 do {
482 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
483 return ntype;
484 ntype = TYPE_CHAIN (ntype);
485 } while (ntype != type);
486
487 /* Create a new type instance. */
488 if (storage == NULL)
489 ntype = alloc_type_instance (type);
490 else
491 {
492 /* If STORAGE was provided, it had better be in the same objfile
493 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
494 if one objfile is freed and the other kept, we'd have
495 dangling pointers. */
496 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
497
498 ntype = storage;
499 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
500 TYPE_CHAIN (ntype) = ntype;
501 }
502
503 /* Pointers or references to the original type are not relevant to
504 the new type. */
505 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
506 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
507
508 /* Chain the new qualified type to the old type. */
509 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
510 TYPE_CHAIN (type) = ntype;
511
512 /* Now set the instance flags and return the new type. */
513 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
514
515 /* Set length of new type to that of the original type. */
516 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
517
518 return ntype;
519 }
520
521 /* Make an address-space-delimited variant of a type -- a type that
522 is identical to the one supplied except that it has an address
523 space attribute attached to it (such as "code" or "data").
524
525 The space attributes "code" and "data" are for Harvard
526 architectures. The address space attributes are for architectures
527 which have alternately sized pointers or pointers with alternate
528 representations. */
529
530 struct type *
531 make_type_with_address_space (struct type *type, int space_flag)
532 {
533 struct type *ntype;
534 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
535 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
536 | TYPE_INSTANCE_FLAG_DATA_SPACE
537 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
538 | space_flag);
539
540 return make_qualified_type (type, new_flags, NULL);
541 }
542
543 /* Make a "c-v" variant of a type -- a type that is identical to the
544 one supplied except that it may have const or volatile attributes
545 CNST is a flag for setting the const attribute
546 VOLTL is a flag for setting the volatile attribute
547 TYPE is the base type whose variant we are creating.
548
549 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
550 storage to hold the new qualified type; *TYPEPTR and TYPE must be
551 in the same objfile. Otherwise, allocate fresh memory for the new
552 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
553 new type we construct. */
554 struct type *
555 make_cv_type (int cnst, int voltl,
556 struct type *type,
557 struct type **typeptr)
558 {
559 struct type *ntype; /* New type */
560 struct type *tmp_type = type; /* tmp type */
561 struct objfile *objfile;
562
563 int new_flags = (TYPE_INSTANCE_FLAGS (type)
564 & ~(TYPE_INSTANCE_FLAG_CONST | TYPE_INSTANCE_FLAG_VOLATILE));
565
566 if (cnst)
567 new_flags |= TYPE_INSTANCE_FLAG_CONST;
568
569 if (voltl)
570 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
571
572 if (typeptr && *typeptr != NULL)
573 {
574 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
575 a C-V variant chain that threads across objfiles: if one
576 objfile gets freed, then the other has a broken C-V chain.
577
578 This code used to try to copy over the main type from TYPE to
579 *TYPEPTR if they were in different objfiles, but that's
580 wrong, too: TYPE may have a field list or member function
581 lists, which refer to types of their own, etc. etc. The
582 whole shebang would need to be copied over recursively; you
583 can't have inter-objfile pointers. The only thing to do is
584 to leave stub types as stub types, and look them up afresh by
585 name each time you encounter them. */
586 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
587 }
588
589 ntype = make_qualified_type (type, new_flags,
590 typeptr ? *typeptr : NULL);
591
592 if (typeptr != NULL)
593 *typeptr = ntype;
594
595 return ntype;
596 }
597
598 /* Replace the contents of ntype with the type *type. This changes the
599 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
600 the changes are propogated to all types in the TYPE_CHAIN.
601
602 In order to build recursive types, it's inevitable that we'll need
603 to update types in place --- but this sort of indiscriminate
604 smashing is ugly, and needs to be replaced with something more
605 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
606 clear if more steps are needed. */
607 void
608 replace_type (struct type *ntype, struct type *type)
609 {
610 struct type *chain;
611
612 /* These two types had better be in the same objfile. Otherwise,
613 the assignment of one type's main type structure to the other
614 will produce a type with references to objects (names; field
615 lists; etc.) allocated on an objfile other than its own. */
616 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
617
618 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
619
620 /* The type length is not a part of the main type. Update it for
621 each type on the variant chain. */
622 chain = ntype;
623 do {
624 /* Assert that this element of the chain has no address-class bits
625 set in its flags. Such type variants might have type lengths
626 which are supposed to be different from the non-address-class
627 variants. This assertion shouldn't ever be triggered because
628 symbol readers which do construct address-class variants don't
629 call replace_type(). */
630 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
631
632 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
633 chain = TYPE_CHAIN (chain);
634 } while (ntype != chain);
635
636 /* Assert that the two types have equivalent instance qualifiers.
637 This should be true for at least all of our debug readers. */
638 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
639 }
640
641 /* Implement direct support for MEMBER_TYPE in GNU C++.
642 May need to construct such a type if this is the first use.
643 The TYPE is the type of the member. The DOMAIN is the type
644 of the aggregate that the member belongs to. */
645
646 struct type *
647 lookup_memberptr_type (struct type *type, struct type *domain)
648 {
649 struct type *mtype;
650
651 mtype = alloc_type (TYPE_OBJFILE (type));
652 smash_to_memberptr_type (mtype, domain, type);
653 return (mtype);
654 }
655
656 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
657
658 struct type *
659 lookup_methodptr_type (struct type *to_type)
660 {
661 struct type *mtype;
662
663 mtype = alloc_type (TYPE_OBJFILE (to_type));
664 TYPE_TARGET_TYPE (mtype) = to_type;
665 TYPE_DOMAIN_TYPE (mtype) = TYPE_DOMAIN_TYPE (to_type);
666 TYPE_LENGTH (mtype) = cplus_method_ptr_size (to_type);
667 TYPE_CODE (mtype) = TYPE_CODE_METHODPTR;
668 return mtype;
669 }
670
671 /* Allocate a stub method whose return type is TYPE. This apparently
672 happens for speed of symbol reading, since parsing out the
673 arguments to the method is cpu-intensive, the way we are doing it.
674 So, we will fill in arguments later. This always returns a fresh
675 type. */
676
677 struct type *
678 allocate_stub_method (struct type *type)
679 {
680 struct type *mtype;
681
682 mtype = init_type (TYPE_CODE_METHOD, 1, TYPE_FLAG_STUB, NULL,
683 TYPE_OBJFILE (type));
684 TYPE_TARGET_TYPE (mtype) = type;
685 /* _DOMAIN_TYPE (mtype) = unknown yet */
686 return (mtype);
687 }
688
689 /* Create a range type using either a blank type supplied in
690 RESULT_TYPE, or creating a new type, inheriting the objfile from
691 INDEX_TYPE.
692
693 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
694 to HIGH_BOUND, inclusive.
695
696 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
697 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
698
699 struct type *
700 create_range_type (struct type *result_type, struct type *index_type,
701 int low_bound, int high_bound)
702 {
703 if (result_type == NULL)
704 {
705 result_type = alloc_type (TYPE_OBJFILE (index_type));
706 }
707 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
708 TYPE_TARGET_TYPE (result_type) = index_type;
709 if (TYPE_STUB (index_type))
710 TYPE_TARGET_STUB (result_type) = 1;
711 else
712 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
713 TYPE_NFIELDS (result_type) = 2;
714 TYPE_FIELDS (result_type) = TYPE_ALLOC (result_type,
715 TYPE_NFIELDS (result_type)
716 * sizeof (struct field));
717 memset (TYPE_FIELDS (result_type), 0,
718 TYPE_NFIELDS (result_type) * sizeof (struct field));
719 TYPE_LOW_BOUND (result_type) = low_bound;
720 TYPE_HIGH_BOUND (result_type) = high_bound;
721
722 if (low_bound >= 0)
723 TYPE_UNSIGNED (result_type) = 1;
724
725 return result_type;
726 }
727
728 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
729 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
730 bounds will fit in LONGEST), or -1 otherwise. */
731
732 int
733 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
734 {
735 CHECK_TYPEDEF (type);
736 switch (TYPE_CODE (type))
737 {
738 case TYPE_CODE_RANGE:
739 *lowp = TYPE_LOW_BOUND (type);
740 *highp = TYPE_HIGH_BOUND (type);
741 return 1;
742 case TYPE_CODE_ENUM:
743 if (TYPE_NFIELDS (type) > 0)
744 {
745 /* The enums may not be sorted by value, so search all
746 entries */
747 int i;
748
749 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
750 for (i = 0; i < TYPE_NFIELDS (type); i++)
751 {
752 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
753 *lowp = TYPE_FIELD_BITPOS (type, i);
754 if (TYPE_FIELD_BITPOS (type, i) > *highp)
755 *highp = TYPE_FIELD_BITPOS (type, i);
756 }
757
758 /* Set unsigned indicator if warranted. */
759 if (*lowp >= 0)
760 {
761 TYPE_UNSIGNED (type) = 1;
762 }
763 }
764 else
765 {
766 *lowp = 0;
767 *highp = -1;
768 }
769 return 0;
770 case TYPE_CODE_BOOL:
771 *lowp = 0;
772 *highp = 1;
773 return 0;
774 case TYPE_CODE_INT:
775 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
776 return -1;
777 if (!TYPE_UNSIGNED (type))
778 {
779 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
780 *highp = -*lowp - 1;
781 return 0;
782 }
783 /* ... fall through for unsigned ints ... */
784 case TYPE_CODE_CHAR:
785 *lowp = 0;
786 /* This round-about calculation is to avoid shifting by
787 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
788 if TYPE_LENGTH (type) == sizeof (LONGEST). */
789 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
790 *highp = (*highp - 1) | *highp;
791 return 0;
792 default:
793 return -1;
794 }
795 }
796
797 /* Create an array type using either a blank type supplied in
798 RESULT_TYPE, or creating a new type, inheriting the objfile from
799 RANGE_TYPE.
800
801 Elements will be of type ELEMENT_TYPE, the indices will be of type
802 RANGE_TYPE.
803
804 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
805 sure it is TYPE_CODE_UNDEF before we bash it into an array
806 type? */
807
808 struct type *
809 create_array_type (struct type *result_type,
810 struct type *element_type,
811 struct type *range_type)
812 {
813 LONGEST low_bound, high_bound;
814
815 if (result_type == NULL)
816 {
817 result_type = alloc_type (TYPE_OBJFILE (range_type));
818 }
819 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
820 TYPE_TARGET_TYPE (result_type) = element_type;
821 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
822 low_bound = high_bound = 0;
823 CHECK_TYPEDEF (element_type);
824 /* Be careful when setting the array length. Ada arrays can be
825 empty arrays with the high_bound being smaller than the low_bound.
826 In such cases, the array length should be zero. */
827 if (high_bound < low_bound)
828 TYPE_LENGTH (result_type) = 0;
829 else
830 TYPE_LENGTH (result_type) =
831 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
832 TYPE_NFIELDS (result_type) = 1;
833 TYPE_FIELDS (result_type) =
834 (struct field *) TYPE_ALLOC (result_type, sizeof (struct field));
835 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
836 TYPE_INDEX_TYPE (result_type) = range_type;
837 TYPE_VPTR_FIELDNO (result_type) = -1;
838
839 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
840 if (TYPE_LENGTH (result_type) == 0)
841 TYPE_TARGET_STUB (result_type) = 1;
842
843 return (result_type);
844 }
845
846 /* Create a string type using either a blank type supplied in
847 RESULT_TYPE, or creating a new type. String types are similar
848 enough to array of char types that we can use create_array_type to
849 build the basic type and then bash it into a string type.
850
851 For fixed length strings, the range type contains 0 as the lower
852 bound and the length of the string minus one as the upper bound.
853
854 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
855 sure it is TYPE_CODE_UNDEF before we bash it into a string
856 type? */
857
858 struct type *
859 create_string_type (struct type *result_type,
860 struct type *range_type)
861 {
862 struct type *string_char_type;
863
864 string_char_type = language_string_char_type (current_language,
865 current_gdbarch);
866 result_type = create_array_type (result_type,
867 string_char_type,
868 range_type);
869 TYPE_CODE (result_type) = TYPE_CODE_STRING;
870 return (result_type);
871 }
872
873 struct type *
874 create_set_type (struct type *result_type, struct type *domain_type)
875 {
876 if (result_type == NULL)
877 {
878 result_type = alloc_type (TYPE_OBJFILE (domain_type));
879 }
880 TYPE_CODE (result_type) = TYPE_CODE_SET;
881 TYPE_NFIELDS (result_type) = 1;
882 TYPE_FIELDS (result_type) = (struct field *)
883 TYPE_ALLOC (result_type, 1 * sizeof (struct field));
884 memset (TYPE_FIELDS (result_type), 0, sizeof (struct field));
885
886 if (!TYPE_STUB (domain_type))
887 {
888 LONGEST low_bound, high_bound, bit_length;
889 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
890 low_bound = high_bound = 0;
891 bit_length = high_bound - low_bound + 1;
892 TYPE_LENGTH (result_type)
893 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
894 if (low_bound >= 0)
895 TYPE_UNSIGNED (result_type) = 1;
896 }
897 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
898
899 return (result_type);
900 }
901
902 void
903 append_flags_type_flag (struct type *type, int bitpos, char *name)
904 {
905 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
906 gdb_assert (bitpos < TYPE_NFIELDS (type));
907 gdb_assert (bitpos >= 0);
908
909 if (name)
910 {
911 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
912 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
913 }
914 else
915 {
916 /* Don't show this field to the user. */
917 TYPE_FIELD_BITPOS (type, bitpos) = -1;
918 }
919 }
920
921 struct type *
922 init_flags_type (char *name, int length)
923 {
924 int nfields = length * TARGET_CHAR_BIT;
925 struct type *type;
926
927 type = init_type (TYPE_CODE_FLAGS, length,
928 TYPE_FLAG_UNSIGNED, name, NULL);
929 TYPE_NFIELDS (type) = nfields;
930 TYPE_FIELDS (type) = TYPE_ALLOC (type,
931 nfields * sizeof (struct field));
932 memset (TYPE_FIELDS (type), 0, nfields * sizeof (struct field));
933
934 return type;
935 }
936
937 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
938 and any array types nested inside it. */
939
940 void
941 make_vector_type (struct type *array_type)
942 {
943 struct type *inner_array, *elt_type;
944 int flags;
945
946 /* Find the innermost array type, in case the array is
947 multi-dimensional. */
948 inner_array = array_type;
949 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
950 inner_array = TYPE_TARGET_TYPE (inner_array);
951
952 elt_type = TYPE_TARGET_TYPE (inner_array);
953 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
954 {
955 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
956 elt_type = make_qualified_type (elt_type, flags, NULL);
957 TYPE_TARGET_TYPE (inner_array) = elt_type;
958 }
959
960 TYPE_VECTOR (array_type) = 1;
961 }
962
963 struct type *
964 init_vector_type (struct type *elt_type, int n)
965 {
966 struct type *array_type;
967
968 array_type = create_array_type (0, elt_type,
969 create_range_type (0,
970 builtin_type_int32,
971 0, n-1));
972 make_vector_type (array_type);
973 return array_type;
974 }
975
976 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
977 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
978 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
979 TYPE doesn't include the offset (that's the value of the MEMBER
980 itself), but does include the structure type into which it points
981 (for some reason).
982
983 When "smashing" the type, we preserve the objfile that the old type
984 pointed to, since we aren't changing where the type is actually
985 allocated. */
986
987 void
988 smash_to_memberptr_type (struct type *type, struct type *domain,
989 struct type *to_type)
990 {
991 struct objfile *objfile;
992
993 objfile = TYPE_OBJFILE (type);
994
995 smash_type (type);
996 TYPE_OBJFILE (type) = objfile;
997 TYPE_TARGET_TYPE (type) = to_type;
998 TYPE_DOMAIN_TYPE (type) = domain;
999 /* Assume that a data member pointer is the same size as a normal
1000 pointer. */
1001 TYPE_LENGTH (type) = gdbarch_ptr_bit (current_gdbarch) / TARGET_CHAR_BIT;
1002 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1003 }
1004
1005 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1006 METHOD just means `function that gets an extra "this" argument'.
1007
1008 When "smashing" the type, we preserve the objfile that the old type
1009 pointed to, since we aren't changing where the type is actually
1010 allocated. */
1011
1012 void
1013 smash_to_method_type (struct type *type, struct type *domain,
1014 struct type *to_type, struct field *args,
1015 int nargs, int varargs)
1016 {
1017 struct objfile *objfile;
1018
1019 objfile = TYPE_OBJFILE (type);
1020
1021 smash_type (type);
1022 TYPE_OBJFILE (type) = objfile;
1023 TYPE_TARGET_TYPE (type) = to_type;
1024 TYPE_DOMAIN_TYPE (type) = domain;
1025 TYPE_FIELDS (type) = args;
1026 TYPE_NFIELDS (type) = nargs;
1027 if (varargs)
1028 TYPE_VARARGS (type) = 1;
1029 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1030 TYPE_CODE (type) = TYPE_CODE_METHOD;
1031 }
1032
1033 /* Return a typename for a struct/union/enum type without "struct ",
1034 "union ", or "enum ". If the type has a NULL name, return NULL. */
1035
1036 char *
1037 type_name_no_tag (const struct type *type)
1038 {
1039 if (TYPE_TAG_NAME (type) != NULL)
1040 return TYPE_TAG_NAME (type);
1041
1042 /* Is there code which expects this to return the name if there is
1043 no tag name? My guess is that this is mainly used for C++ in
1044 cases where the two will always be the same. */
1045 return TYPE_NAME (type);
1046 }
1047
1048 /* Lookup a typedef or primitive type named NAME, visible in lexical
1049 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1050 suitably defined. */
1051
1052 struct type *
1053 lookup_typename (char *name, struct block *block, int noerr)
1054 {
1055 struct symbol *sym;
1056 struct type *tmp;
1057
1058 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1059 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1060 {
1061 tmp = language_lookup_primitive_type_by_name (current_language,
1062 current_gdbarch,
1063 name);
1064 if (tmp)
1065 {
1066 return (tmp);
1067 }
1068 else if (!tmp && noerr)
1069 {
1070 return (NULL);
1071 }
1072 else
1073 {
1074 error (_("No type named %s."), name);
1075 }
1076 }
1077 return (SYMBOL_TYPE (sym));
1078 }
1079
1080 struct type *
1081 lookup_unsigned_typename (char *name)
1082 {
1083 char *uns = alloca (strlen (name) + 10);
1084
1085 strcpy (uns, "unsigned ");
1086 strcpy (uns + 9, name);
1087 return (lookup_typename (uns, (struct block *) NULL, 0));
1088 }
1089
1090 struct type *
1091 lookup_signed_typename (char *name)
1092 {
1093 struct type *t;
1094 char *uns = alloca (strlen (name) + 8);
1095
1096 strcpy (uns, "signed ");
1097 strcpy (uns + 7, name);
1098 t = lookup_typename (uns, (struct block *) NULL, 1);
1099 /* If we don't find "signed FOO" just try again with plain "FOO". */
1100 if (t != NULL)
1101 return t;
1102 return lookup_typename (name, (struct block *) NULL, 0);
1103 }
1104
1105 /* Lookup a structure type named "struct NAME",
1106 visible in lexical block BLOCK. */
1107
1108 struct type *
1109 lookup_struct (char *name, struct block *block)
1110 {
1111 struct symbol *sym;
1112
1113 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1114
1115 if (sym == NULL)
1116 {
1117 error (_("No struct type named %s."), name);
1118 }
1119 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1120 {
1121 error (_("This context has class, union or enum %s, not a struct."),
1122 name);
1123 }
1124 return (SYMBOL_TYPE (sym));
1125 }
1126
1127 /* Lookup a union type named "union NAME",
1128 visible in lexical block BLOCK. */
1129
1130 struct type *
1131 lookup_union (char *name, struct block *block)
1132 {
1133 struct symbol *sym;
1134 struct type *t;
1135
1136 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1137
1138 if (sym == NULL)
1139 error (_("No union type named %s."), name);
1140
1141 t = SYMBOL_TYPE (sym);
1142
1143 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1144 return (t);
1145
1146 /* C++ unions may come out with TYPE_CODE_CLASS, but we look at
1147 * a further "declared_type" field to discover it is really a union.
1148 */
1149 if (HAVE_CPLUS_STRUCT (t))
1150 if (TYPE_DECLARED_TYPE (t) == DECLARED_TYPE_UNION)
1151 return (t);
1152
1153 /* If we get here, it's not a union. */
1154 error (_("This context has class, struct or enum %s, not a union."),
1155 name);
1156 }
1157
1158
1159 /* Lookup an enum type named "enum NAME",
1160 visible in lexical block BLOCK. */
1161
1162 struct type *
1163 lookup_enum (char *name, struct block *block)
1164 {
1165 struct symbol *sym;
1166
1167 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1168 if (sym == NULL)
1169 {
1170 error (_("No enum type named %s."), name);
1171 }
1172 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1173 {
1174 error (_("This context has class, struct or union %s, not an enum."),
1175 name);
1176 }
1177 return (SYMBOL_TYPE (sym));
1178 }
1179
1180 /* Lookup a template type named "template NAME<TYPE>",
1181 visible in lexical block BLOCK. */
1182
1183 struct type *
1184 lookup_template_type (char *name, struct type *type,
1185 struct block *block)
1186 {
1187 struct symbol *sym;
1188 char *nam = (char *)
1189 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1190 strcpy (nam, name);
1191 strcat (nam, "<");
1192 strcat (nam, TYPE_NAME (type));
1193 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1194
1195 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1196
1197 if (sym == NULL)
1198 {
1199 error (_("No template type named %s."), name);
1200 }
1201 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1202 {
1203 error (_("This context has class, union or enum %s, not a struct."),
1204 name);
1205 }
1206 return (SYMBOL_TYPE (sym));
1207 }
1208
1209 /* Given a type TYPE, lookup the type of the component of type named
1210 NAME.
1211
1212 TYPE can be either a struct or union, or a pointer or reference to
1213 a struct or union. If it is a pointer or reference, its target
1214 type is automatically used. Thus '.' and '->' are interchangable,
1215 as specified for the definitions of the expression element types
1216 STRUCTOP_STRUCT and STRUCTOP_PTR.
1217
1218 If NOERR is nonzero, return zero if NAME is not suitably defined.
1219 If NAME is the name of a baseclass type, return that type. */
1220
1221 struct type *
1222 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1223 {
1224 int i;
1225
1226 for (;;)
1227 {
1228 CHECK_TYPEDEF (type);
1229 if (TYPE_CODE (type) != TYPE_CODE_PTR
1230 && TYPE_CODE (type) != TYPE_CODE_REF)
1231 break;
1232 type = TYPE_TARGET_TYPE (type);
1233 }
1234
1235 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1236 && TYPE_CODE (type) != TYPE_CODE_UNION)
1237 {
1238 target_terminal_ours ();
1239 gdb_flush (gdb_stdout);
1240 fprintf_unfiltered (gdb_stderr, "Type ");
1241 type_print (type, "", gdb_stderr, -1);
1242 error (_(" is not a structure or union type."));
1243 }
1244
1245 #if 0
1246 /* FIXME: This change put in by Michael seems incorrect for the case
1247 where the structure tag name is the same as the member name.
1248 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1249 foo; } bell;" Disabled by fnf. */
1250 {
1251 char *typename;
1252
1253 typename = type_name_no_tag (type);
1254 if (typename != NULL && strcmp (typename, name) == 0)
1255 return type;
1256 }
1257 #endif
1258
1259 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1260 {
1261 char *t_field_name = TYPE_FIELD_NAME (type, i);
1262
1263 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1264 {
1265 return TYPE_FIELD_TYPE (type, i);
1266 }
1267 }
1268
1269 /* OK, it's not in this class. Recursively check the baseclasses. */
1270 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1271 {
1272 struct type *t;
1273
1274 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1275 if (t != NULL)
1276 {
1277 return t;
1278 }
1279 }
1280
1281 if (noerr)
1282 {
1283 return NULL;
1284 }
1285
1286 target_terminal_ours ();
1287 gdb_flush (gdb_stdout);
1288 fprintf_unfiltered (gdb_stderr, "Type ");
1289 type_print (type, "", gdb_stderr, -1);
1290 fprintf_unfiltered (gdb_stderr, " has no component named ");
1291 fputs_filtered (name, gdb_stderr);
1292 error (("."));
1293 return (struct type *) -1; /* For lint */
1294 }
1295
1296 /* Lookup the vptr basetype/fieldno values for TYPE.
1297 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1298 vptr_fieldno. Also, if found and basetype is from the same objfile,
1299 cache the results.
1300 If not found, return -1 and ignore BASETYPEP.
1301 Callers should be aware that in some cases (for example,
1302 the type or one of its baseclasses is a stub type and we are
1303 debugging a .o file), this function will not be able to find the
1304 virtual function table pointer, and vptr_fieldno will remain -1 and
1305 vptr_basetype will remain NULL or incomplete. */
1306
1307 int
1308 get_vptr_fieldno (struct type *type, struct type **basetypep)
1309 {
1310 CHECK_TYPEDEF (type);
1311
1312 if (TYPE_VPTR_FIELDNO (type) < 0)
1313 {
1314 int i;
1315
1316 /* We must start at zero in case the first (and only) baseclass
1317 is virtual (and hence we cannot share the table pointer). */
1318 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1319 {
1320 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1321 int fieldno;
1322 struct type *basetype;
1323
1324 fieldno = get_vptr_fieldno (baseclass, &basetype);
1325 if (fieldno >= 0)
1326 {
1327 /* If the type comes from a different objfile we can't cache
1328 it, it may have a different lifetime. PR 2384 */
1329 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1330 {
1331 TYPE_VPTR_FIELDNO (type) = fieldno;
1332 TYPE_VPTR_BASETYPE (type) = basetype;
1333 }
1334 if (basetypep)
1335 *basetypep = basetype;
1336 return fieldno;
1337 }
1338 }
1339
1340 /* Not found. */
1341 return -1;
1342 }
1343 else
1344 {
1345 if (basetypep)
1346 *basetypep = TYPE_VPTR_BASETYPE (type);
1347 return TYPE_VPTR_FIELDNO (type);
1348 }
1349 }
1350
1351 /* Find the method and field indices for the destructor in class type T.
1352 Return 1 if the destructor was found, otherwise, return 0. */
1353
1354 int
1355 get_destructor_fn_field (struct type *t,
1356 int *method_indexp,
1357 int *field_indexp)
1358 {
1359 int i;
1360
1361 for (i = 0; i < TYPE_NFN_FIELDS (t); i++)
1362 {
1363 int j;
1364 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
1365
1366 for (j = 0; j < TYPE_FN_FIELDLIST_LENGTH (t, i); j++)
1367 {
1368 if (is_destructor_name (TYPE_FN_FIELD_PHYSNAME (f, j)) != 0)
1369 {
1370 *method_indexp = i;
1371 *field_indexp = j;
1372 return 1;
1373 }
1374 }
1375 }
1376 return 0;
1377 }
1378
1379 static void
1380 stub_noname_complaint (void)
1381 {
1382 complaint (&symfile_complaints, _("stub type has NULL name"));
1383 }
1384
1385 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1386
1387 If this is a stubbed struct (i.e. declared as struct foo *), see if
1388 we can find a full definition in some other file. If so, copy this
1389 definition, so we can use it in future. There used to be a comment
1390 (but not any code) that if we don't find a full definition, we'd
1391 set a flag so we don't spend time in the future checking the same
1392 type. That would be a mistake, though--we might load in more
1393 symbols which contain a full definition for the type.
1394
1395 This used to be coded as a macro, but I don't think it is called
1396 often enough to merit such treatment. */
1397
1398 /* Find the real type of TYPE. This function returns the real type,
1399 after removing all layers of typedefs and completing opaque or stub
1400 types. Completion changes the TYPE argument, but stripping of
1401 typedefs does not. */
1402
1403 struct type *
1404 check_typedef (struct type *type)
1405 {
1406 struct type *orig_type = type;
1407 int is_const, is_volatile;
1408
1409 gdb_assert (type);
1410
1411 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1412 {
1413 if (!TYPE_TARGET_TYPE (type))
1414 {
1415 char *name;
1416 struct symbol *sym;
1417
1418 /* It is dangerous to call lookup_symbol if we are currently
1419 reading a symtab. Infinite recursion is one danger. */
1420 if (currently_reading_symtab)
1421 return type;
1422
1423 name = type_name_no_tag (type);
1424 /* FIXME: shouldn't we separately check the TYPE_NAME and
1425 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1426 VAR_DOMAIN as appropriate? (this code was written before
1427 TYPE_NAME and TYPE_TAG_NAME were separate). */
1428 if (name == NULL)
1429 {
1430 stub_noname_complaint ();
1431 return type;
1432 }
1433 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1434 if (sym)
1435 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1436 else /* TYPE_CODE_UNDEF */
1437 TYPE_TARGET_TYPE (type) = alloc_type (NULL);
1438 }
1439 type = TYPE_TARGET_TYPE (type);
1440 }
1441
1442 is_const = TYPE_CONST (type);
1443 is_volatile = TYPE_VOLATILE (type);
1444
1445 /* If this is a struct/class/union with no fields, then check
1446 whether a full definition exists somewhere else. This is for
1447 systems where a type definition with no fields is issued for such
1448 types, instead of identifying them as stub types in the first
1449 place. */
1450
1451 if (TYPE_IS_OPAQUE (type)
1452 && opaque_type_resolution
1453 && !currently_reading_symtab)
1454 {
1455 char *name = type_name_no_tag (type);
1456 struct type *newtype;
1457 if (name == NULL)
1458 {
1459 stub_noname_complaint ();
1460 return type;
1461 }
1462 newtype = lookup_transparent_type (name);
1463
1464 if (newtype)
1465 {
1466 /* If the resolved type and the stub are in the same
1467 objfile, then replace the stub type with the real deal.
1468 But if they're in separate objfiles, leave the stub
1469 alone; we'll just look up the transparent type every time
1470 we call check_typedef. We can't create pointers between
1471 types allocated to different objfiles, since they may
1472 have different lifetimes. Trying to copy NEWTYPE over to
1473 TYPE's objfile is pointless, too, since you'll have to
1474 move over any other types NEWTYPE refers to, which could
1475 be an unbounded amount of stuff. */
1476 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1477 make_cv_type (is_const, is_volatile, newtype, &type);
1478 else
1479 type = newtype;
1480 }
1481 }
1482 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1483 types. */
1484 else if (TYPE_STUB (type) && !currently_reading_symtab)
1485 {
1486 char *name = type_name_no_tag (type);
1487 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1488 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1489 as appropriate? (this code was written before TYPE_NAME and
1490 TYPE_TAG_NAME were separate). */
1491 struct symbol *sym;
1492 if (name == NULL)
1493 {
1494 stub_noname_complaint ();
1495 return type;
1496 }
1497 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1498 if (sym)
1499 {
1500 /* Same as above for opaque types, we can replace the stub
1501 with the complete type only if they are int the same
1502 objfile. */
1503 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1504 make_cv_type (is_const, is_volatile,
1505 SYMBOL_TYPE (sym), &type);
1506 else
1507 type = SYMBOL_TYPE (sym);
1508 }
1509 }
1510
1511 if (TYPE_TARGET_STUB (type))
1512 {
1513 struct type *range_type;
1514 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1515
1516 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1517 {
1518 /* Empty. */
1519 }
1520 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1521 && TYPE_NFIELDS (type) == 1
1522 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1523 == TYPE_CODE_RANGE))
1524 {
1525 /* Now recompute the length of the array type, based on its
1526 number of elements and the target type's length.
1527 Watch out for Ada null Ada arrays where the high bound
1528 is smaller than the low bound. */
1529 const int low_bound = TYPE_LOW_BOUND (range_type);
1530 const int high_bound = TYPE_HIGH_BOUND (range_type);
1531 int nb_elements;
1532
1533 if (high_bound < low_bound)
1534 nb_elements = 0;
1535 else
1536 nb_elements = high_bound - low_bound + 1;
1537
1538 TYPE_LENGTH (type) = nb_elements * TYPE_LENGTH (target_type);
1539 TYPE_TARGET_STUB (type) = 0;
1540 }
1541 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1542 {
1543 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1544 TYPE_TARGET_STUB (type) = 0;
1545 }
1546 }
1547 /* Cache TYPE_LENGTH for future use. */
1548 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1549 return type;
1550 }
1551
1552 /* Parse a type expression in the string [P..P+LENGTH). If an error
1553 occurs, silently return builtin_type_void. */
1554
1555 static struct type *
1556 safe_parse_type (char *p, int length)
1557 {
1558 struct ui_file *saved_gdb_stderr;
1559 struct type *type;
1560
1561 /* Suppress error messages. */
1562 saved_gdb_stderr = gdb_stderr;
1563 gdb_stderr = ui_file_new ();
1564
1565 /* Call parse_and_eval_type() without fear of longjmp()s. */
1566 if (!gdb_parse_and_eval_type (p, length, &type))
1567 type = builtin_type_void;
1568
1569 /* Stop suppressing error messages. */
1570 ui_file_delete (gdb_stderr);
1571 gdb_stderr = saved_gdb_stderr;
1572
1573 return type;
1574 }
1575
1576 /* Ugly hack to convert method stubs into method types.
1577
1578 He ain't kiddin'. This demangles the name of the method into a
1579 string including argument types, parses out each argument type,
1580 generates a string casting a zero to that type, evaluates the
1581 string, and stuffs the resulting type into an argtype vector!!!
1582 Then it knows the type of the whole function (including argument
1583 types for overloading), which info used to be in the stab's but was
1584 removed to hack back the space required for them. */
1585
1586 static void
1587 check_stub_method (struct type *type, int method_id, int signature_id)
1588 {
1589 struct fn_field *f;
1590 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1591 char *demangled_name = cplus_demangle (mangled_name,
1592 DMGL_PARAMS | DMGL_ANSI);
1593 char *argtypetext, *p;
1594 int depth = 0, argcount = 1;
1595 struct field *argtypes;
1596 struct type *mtype;
1597
1598 /* Make sure we got back a function string that we can use. */
1599 if (demangled_name)
1600 p = strchr (demangled_name, '(');
1601 else
1602 p = NULL;
1603
1604 if (demangled_name == NULL || p == NULL)
1605 error (_("Internal: Cannot demangle mangled name `%s'."),
1606 mangled_name);
1607
1608 /* Now, read in the parameters that define this type. */
1609 p += 1;
1610 argtypetext = p;
1611 while (*p)
1612 {
1613 if (*p == '(' || *p == '<')
1614 {
1615 depth += 1;
1616 }
1617 else if (*p == ')' || *p == '>')
1618 {
1619 depth -= 1;
1620 }
1621 else if (*p == ',' && depth == 0)
1622 {
1623 argcount += 1;
1624 }
1625
1626 p += 1;
1627 }
1628
1629 /* If we read one argument and it was ``void'', don't count it. */
1630 if (strncmp (argtypetext, "(void)", 6) == 0)
1631 argcount -= 1;
1632
1633 /* We need one extra slot, for the THIS pointer. */
1634
1635 argtypes = (struct field *)
1636 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1637 p = argtypetext;
1638
1639 /* Add THIS pointer for non-static methods. */
1640 f = TYPE_FN_FIELDLIST1 (type, method_id);
1641 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1642 argcount = 0;
1643 else
1644 {
1645 argtypes[0].type = lookup_pointer_type (type);
1646 argcount = 1;
1647 }
1648
1649 if (*p != ')') /* () means no args, skip while */
1650 {
1651 depth = 0;
1652 while (*p)
1653 {
1654 if (depth <= 0 && (*p == ',' || *p == ')'))
1655 {
1656 /* Avoid parsing of ellipsis, they will be handled below.
1657 Also avoid ``void'' as above. */
1658 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1659 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1660 {
1661 argtypes[argcount].type =
1662 safe_parse_type (argtypetext, p - argtypetext);
1663 argcount += 1;
1664 }
1665 argtypetext = p + 1;
1666 }
1667
1668 if (*p == '(' || *p == '<')
1669 {
1670 depth += 1;
1671 }
1672 else if (*p == ')' || *p == '>')
1673 {
1674 depth -= 1;
1675 }
1676
1677 p += 1;
1678 }
1679 }
1680
1681 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1682
1683 /* Now update the old "stub" type into a real type. */
1684 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1685 TYPE_DOMAIN_TYPE (mtype) = type;
1686 TYPE_FIELDS (mtype) = argtypes;
1687 TYPE_NFIELDS (mtype) = argcount;
1688 TYPE_STUB (mtype) = 0;
1689 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1690 if (p[-2] == '.')
1691 TYPE_VARARGS (mtype) = 1;
1692
1693 xfree (demangled_name);
1694 }
1695
1696 /* This is the external interface to check_stub_method, above. This
1697 function unstubs all of the signatures for TYPE's METHOD_ID method
1698 name. After calling this function TYPE_FN_FIELD_STUB will be
1699 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1700 correct.
1701
1702 This function unfortunately can not die until stabs do. */
1703
1704 void
1705 check_stub_method_group (struct type *type, int method_id)
1706 {
1707 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1708 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1709 int j, found_stub = 0;
1710
1711 for (j = 0; j < len; j++)
1712 if (TYPE_FN_FIELD_STUB (f, j))
1713 {
1714 found_stub = 1;
1715 check_stub_method (type, method_id, j);
1716 }
1717
1718 /* GNU v3 methods with incorrect names were corrected when we read
1719 in type information, because it was cheaper to do it then. The
1720 only GNU v2 methods with incorrect method names are operators and
1721 destructors; destructors were also corrected when we read in type
1722 information.
1723
1724 Therefore the only thing we need to handle here are v2 operator
1725 names. */
1726 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1727 {
1728 int ret;
1729 char dem_opname[256];
1730
1731 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1732 method_id),
1733 dem_opname, DMGL_ANSI);
1734 if (!ret)
1735 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1736 method_id),
1737 dem_opname, 0);
1738 if (ret)
1739 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1740 }
1741 }
1742
1743 const struct cplus_struct_type cplus_struct_default;
1744
1745 void
1746 allocate_cplus_struct_type (struct type *type)
1747 {
1748 if (!HAVE_CPLUS_STRUCT (type))
1749 {
1750 TYPE_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1751 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1752 *(TYPE_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1753 }
1754 }
1755
1756 /* Helper function to initialize the standard scalar types.
1757
1758 If NAME is non-NULL and OBJFILE is non-NULL, then we make a copy of
1759 the string pointed to by name in the objfile_obstack for that
1760 objfile, and initialize the type name to that copy. There are
1761 places (mipsread.c in particular, where init_type is called with a
1762 NULL value for NAME). */
1763
1764 struct type *
1765 init_type (enum type_code code, int length, int flags,
1766 char *name, struct objfile *objfile)
1767 {
1768 struct type *type;
1769
1770 type = alloc_type (objfile);
1771 TYPE_CODE (type) = code;
1772 TYPE_LENGTH (type) = length;
1773
1774 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1775 if (flags & TYPE_FLAG_UNSIGNED)
1776 TYPE_UNSIGNED (type) = 1;
1777 if (flags & TYPE_FLAG_NOSIGN)
1778 TYPE_NOSIGN (type) = 1;
1779 if (flags & TYPE_FLAG_STUB)
1780 TYPE_STUB (type) = 1;
1781 if (flags & TYPE_FLAG_TARGET_STUB)
1782 TYPE_TARGET_STUB (type) = 1;
1783 if (flags & TYPE_FLAG_STATIC)
1784 TYPE_STATIC (type) = 1;
1785 if (flags & TYPE_FLAG_PROTOTYPED)
1786 TYPE_PROTOTYPED (type) = 1;
1787 if (flags & TYPE_FLAG_INCOMPLETE)
1788 TYPE_INCOMPLETE (type) = 1;
1789 if (flags & TYPE_FLAG_VARARGS)
1790 TYPE_VARARGS (type) = 1;
1791 if (flags & TYPE_FLAG_VECTOR)
1792 TYPE_VECTOR (type) = 1;
1793 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1794 TYPE_STUB_SUPPORTED (type) = 1;
1795 if (flags & TYPE_FLAG_NOTTEXT)
1796 TYPE_NOTTEXT (type) = 1;
1797 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1798 TYPE_FIXED_INSTANCE (type) = 1;
1799
1800 if ((name != NULL) && (objfile != NULL))
1801 {
1802 TYPE_NAME (type) = obsavestring (name, strlen (name),
1803 &objfile->objfile_obstack);
1804 }
1805 else
1806 {
1807 TYPE_NAME (type) = name;
1808 }
1809
1810 /* C++ fancies. */
1811
1812 if (name && strcmp (name, "char") == 0)
1813 TYPE_NOSIGN (type) = 1;
1814
1815 if (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION
1816 || code == TYPE_CODE_NAMESPACE)
1817 {
1818 INIT_CPLUS_SPECIFIC (type);
1819 }
1820 return (type);
1821 }
1822
1823 /* Helper function. Create an empty composite type. */
1824
1825 struct type *
1826 init_composite_type (char *name, enum type_code code)
1827 {
1828 struct type *t;
1829 gdb_assert (code == TYPE_CODE_STRUCT
1830 || code == TYPE_CODE_UNION);
1831 t = init_type (code, 0, 0, NULL, NULL);
1832 TYPE_TAG_NAME (t) = name;
1833 return t;
1834 }
1835
1836 /* Helper function. Append a field to a composite type. */
1837
1838 void
1839 append_composite_type_field (struct type *t, char *name,
1840 struct type *field)
1841 {
1842 struct field *f;
1843 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
1844 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
1845 sizeof (struct field) * TYPE_NFIELDS (t));
1846 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
1847 memset (f, 0, sizeof f[0]);
1848 FIELD_TYPE (f[0]) = field;
1849 FIELD_NAME (f[0]) = name;
1850 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1851 {
1852 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
1853 TYPE_LENGTH (t) = TYPE_LENGTH (field);
1854 }
1855 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
1856 {
1857 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
1858 if (TYPE_NFIELDS (t) > 1)
1859 {
1860 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
1861 + TYPE_LENGTH (field) * TARGET_CHAR_BIT);
1862 }
1863 }
1864 }
1865
1866 int
1867 can_dereference (struct type *t)
1868 {
1869 /* FIXME: Should we return true for references as well as
1870 pointers? */
1871 CHECK_TYPEDEF (t);
1872 return
1873 (t != NULL
1874 && TYPE_CODE (t) == TYPE_CODE_PTR
1875 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1876 }
1877
1878 int
1879 is_integral_type (struct type *t)
1880 {
1881 CHECK_TYPEDEF (t);
1882 return
1883 ((t != NULL)
1884 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1885 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1886 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1887 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1888 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1889 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1890 }
1891
1892 /* Check whether BASE is an ancestor or base class or DCLASS
1893 Return 1 if so, and 0 if not.
1894 Note: callers may want to check for identity of the types before
1895 calling this function -- identical types are considered to satisfy
1896 the ancestor relationship even if they're identical. */
1897
1898 int
1899 is_ancestor (struct type *base, struct type *dclass)
1900 {
1901 int i;
1902
1903 CHECK_TYPEDEF (base);
1904 CHECK_TYPEDEF (dclass);
1905
1906 if (base == dclass)
1907 return 1;
1908 if (TYPE_NAME (base) && TYPE_NAME (dclass)
1909 && !strcmp (TYPE_NAME (base), TYPE_NAME (dclass)))
1910 return 1;
1911
1912 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1913 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1914 return 1;
1915
1916 return 0;
1917 }
1918 \f
1919
1920
1921 /* Functions for overload resolution begin here */
1922
1923 /* Compare two badness vectors A and B and return the result.
1924 0 => A and B are identical
1925 1 => A and B are incomparable
1926 2 => A is better than B
1927 3 => A is worse than B */
1928
1929 int
1930 compare_badness (struct badness_vector *a, struct badness_vector *b)
1931 {
1932 int i;
1933 int tmp;
1934 short found_pos = 0; /* any positives in c? */
1935 short found_neg = 0; /* any negatives in c? */
1936
1937 /* differing lengths => incomparable */
1938 if (a->length != b->length)
1939 return 1;
1940
1941 /* Subtract b from a */
1942 for (i = 0; i < a->length; i++)
1943 {
1944 tmp = a->rank[i] - b->rank[i];
1945 if (tmp > 0)
1946 found_pos = 1;
1947 else if (tmp < 0)
1948 found_neg = 1;
1949 }
1950
1951 if (found_pos)
1952 {
1953 if (found_neg)
1954 return 1; /* incomparable */
1955 else
1956 return 3; /* A > B */
1957 }
1958 else
1959 /* no positives */
1960 {
1961 if (found_neg)
1962 return 2; /* A < B */
1963 else
1964 return 0; /* A == B */
1965 }
1966 }
1967
1968 /* Rank a function by comparing its parameter types (PARMS, length
1969 NPARMS), to the types of an argument list (ARGS, length NARGS).
1970 Return a pointer to a badness vector. This has NARGS + 1
1971 entries. */
1972
1973 struct badness_vector *
1974 rank_function (struct type **parms, int nparms,
1975 struct type **args, int nargs)
1976 {
1977 int i;
1978 struct badness_vector *bv;
1979 int min_len = nparms < nargs ? nparms : nargs;
1980
1981 bv = xmalloc (sizeof (struct badness_vector));
1982 bv->length = nargs + 1; /* add 1 for the length-match rank */
1983 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
1984
1985 /* First compare the lengths of the supplied lists.
1986 If there is a mismatch, set it to a high value. */
1987
1988 /* pai/1997-06-03 FIXME: when we have debug info about default
1989 arguments and ellipsis parameter lists, we should consider those
1990 and rank the length-match more finely. */
1991
1992 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
1993
1994 /* Now rank all the parameters of the candidate function */
1995 for (i = 1; i <= min_len; i++)
1996 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
1997
1998 /* If more arguments than parameters, add dummy entries */
1999 for (i = min_len + 1; i <= nargs; i++)
2000 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2001
2002 return bv;
2003 }
2004
2005 /* Compare the names of two integer types, assuming that any sign
2006 qualifiers have been checked already. We do it this way because
2007 there may be an "int" in the name of one of the types. */
2008
2009 static int
2010 integer_types_same_name_p (const char *first, const char *second)
2011 {
2012 int first_p, second_p;
2013
2014 /* If both are shorts, return 1; if neither is a short, keep
2015 checking. */
2016 first_p = (strstr (first, "short") != NULL);
2017 second_p = (strstr (second, "short") != NULL);
2018 if (first_p && second_p)
2019 return 1;
2020 if (first_p || second_p)
2021 return 0;
2022
2023 /* Likewise for long. */
2024 first_p = (strstr (first, "long") != NULL);
2025 second_p = (strstr (second, "long") != NULL);
2026 if (first_p && second_p)
2027 return 1;
2028 if (first_p || second_p)
2029 return 0;
2030
2031 /* Likewise for char. */
2032 first_p = (strstr (first, "char") != NULL);
2033 second_p = (strstr (second, "char") != NULL);
2034 if (first_p && second_p)
2035 return 1;
2036 if (first_p || second_p)
2037 return 0;
2038
2039 /* They must both be ints. */
2040 return 1;
2041 }
2042
2043 /* Compare one type (PARM) for compatibility with another (ARG).
2044 * PARM is intended to be the parameter type of a function; and
2045 * ARG is the supplied argument's type. This function tests if
2046 * the latter can be converted to the former.
2047 *
2048 * Return 0 if they are identical types;
2049 * Otherwise, return an integer which corresponds to how compatible
2050 * PARM is to ARG. The higher the return value, the worse the match.
2051 * Generally the "bad" conversions are all uniformly assigned a 100. */
2052
2053 int
2054 rank_one_type (struct type *parm, struct type *arg)
2055 {
2056 /* Identical type pointers. */
2057 /* However, this still doesn't catch all cases of same type for arg
2058 and param. The reason is that builtin types are different from
2059 the same ones constructed from the object. */
2060 if (parm == arg)
2061 return 0;
2062
2063 /* Resolve typedefs */
2064 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2065 parm = check_typedef (parm);
2066 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2067 arg = check_typedef (arg);
2068
2069 /*
2070 Well, damnit, if the names are exactly the same, I'll say they
2071 are exactly the same. This happens when we generate method
2072 stubs. The types won't point to the same address, but they
2073 really are the same.
2074 */
2075
2076 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2077 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2078 return 0;
2079
2080 /* Check if identical after resolving typedefs. */
2081 if (parm == arg)
2082 return 0;
2083
2084 /* See through references, since we can almost make non-references
2085 references. */
2086 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2087 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2088 + REFERENCE_CONVERSION_BADNESS);
2089 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2090 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2091 + REFERENCE_CONVERSION_BADNESS);
2092 if (overload_debug)
2093 /* Debugging only. */
2094 fprintf_filtered (gdb_stderr,
2095 "------ Arg is %s [%d], parm is %s [%d]\n",
2096 TYPE_NAME (arg), TYPE_CODE (arg),
2097 TYPE_NAME (parm), TYPE_CODE (parm));
2098
2099 /* x -> y means arg of type x being supplied for parameter of type y */
2100
2101 switch (TYPE_CODE (parm))
2102 {
2103 case TYPE_CODE_PTR:
2104 switch (TYPE_CODE (arg))
2105 {
2106 case TYPE_CODE_PTR:
2107 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2108 return VOID_PTR_CONVERSION_BADNESS;
2109 else
2110 return rank_one_type (TYPE_TARGET_TYPE (parm),
2111 TYPE_TARGET_TYPE (arg));
2112 case TYPE_CODE_ARRAY:
2113 return rank_one_type (TYPE_TARGET_TYPE (parm),
2114 TYPE_TARGET_TYPE (arg));
2115 case TYPE_CODE_FUNC:
2116 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2117 case TYPE_CODE_INT:
2118 case TYPE_CODE_ENUM:
2119 case TYPE_CODE_FLAGS:
2120 case TYPE_CODE_CHAR:
2121 case TYPE_CODE_RANGE:
2122 case TYPE_CODE_BOOL:
2123 return POINTER_CONVERSION_BADNESS;
2124 default:
2125 return INCOMPATIBLE_TYPE_BADNESS;
2126 }
2127 case TYPE_CODE_ARRAY:
2128 switch (TYPE_CODE (arg))
2129 {
2130 case TYPE_CODE_PTR:
2131 case TYPE_CODE_ARRAY:
2132 return rank_one_type (TYPE_TARGET_TYPE (parm),
2133 TYPE_TARGET_TYPE (arg));
2134 default:
2135 return INCOMPATIBLE_TYPE_BADNESS;
2136 }
2137 case TYPE_CODE_FUNC:
2138 switch (TYPE_CODE (arg))
2139 {
2140 case TYPE_CODE_PTR: /* funcptr -> func */
2141 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2142 default:
2143 return INCOMPATIBLE_TYPE_BADNESS;
2144 }
2145 case TYPE_CODE_INT:
2146 switch (TYPE_CODE (arg))
2147 {
2148 case TYPE_CODE_INT:
2149 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2150 {
2151 /* Deal with signed, unsigned, and plain chars and
2152 signed and unsigned ints. */
2153 if (TYPE_NOSIGN (parm))
2154 {
2155 /* This case only for character types */
2156 if (TYPE_NOSIGN (arg))
2157 return 0; /* plain char -> plain char */
2158 else /* signed/unsigned char -> plain char */
2159 return INTEGER_CONVERSION_BADNESS;
2160 }
2161 else if (TYPE_UNSIGNED (parm))
2162 {
2163 if (TYPE_UNSIGNED (arg))
2164 {
2165 /* unsigned int -> unsigned int, or
2166 unsigned long -> unsigned long */
2167 if (integer_types_same_name_p (TYPE_NAME (parm),
2168 TYPE_NAME (arg)))
2169 return 0;
2170 else if (integer_types_same_name_p (TYPE_NAME (arg),
2171 "int")
2172 && integer_types_same_name_p (TYPE_NAME (parm),
2173 "long"))
2174 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2175 else
2176 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2177 }
2178 else
2179 {
2180 if (integer_types_same_name_p (TYPE_NAME (arg),
2181 "long")
2182 && integer_types_same_name_p (TYPE_NAME (parm),
2183 "int"))
2184 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2185 else
2186 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2187 }
2188 }
2189 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2190 {
2191 if (integer_types_same_name_p (TYPE_NAME (parm),
2192 TYPE_NAME (arg)))
2193 return 0;
2194 else if (integer_types_same_name_p (TYPE_NAME (arg),
2195 "int")
2196 && integer_types_same_name_p (TYPE_NAME (parm),
2197 "long"))
2198 return INTEGER_PROMOTION_BADNESS;
2199 else
2200 return INTEGER_CONVERSION_BADNESS;
2201 }
2202 else
2203 return INTEGER_CONVERSION_BADNESS;
2204 }
2205 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2206 return INTEGER_PROMOTION_BADNESS;
2207 else
2208 return INTEGER_CONVERSION_BADNESS;
2209 case TYPE_CODE_ENUM:
2210 case TYPE_CODE_FLAGS:
2211 case TYPE_CODE_CHAR:
2212 case TYPE_CODE_RANGE:
2213 case TYPE_CODE_BOOL:
2214 return INTEGER_PROMOTION_BADNESS;
2215 case TYPE_CODE_FLT:
2216 return INT_FLOAT_CONVERSION_BADNESS;
2217 case TYPE_CODE_PTR:
2218 return NS_POINTER_CONVERSION_BADNESS;
2219 default:
2220 return INCOMPATIBLE_TYPE_BADNESS;
2221 }
2222 break;
2223 case TYPE_CODE_ENUM:
2224 switch (TYPE_CODE (arg))
2225 {
2226 case TYPE_CODE_INT:
2227 case TYPE_CODE_CHAR:
2228 case TYPE_CODE_RANGE:
2229 case TYPE_CODE_BOOL:
2230 case TYPE_CODE_ENUM:
2231 return INTEGER_CONVERSION_BADNESS;
2232 case TYPE_CODE_FLT:
2233 return INT_FLOAT_CONVERSION_BADNESS;
2234 default:
2235 return INCOMPATIBLE_TYPE_BADNESS;
2236 }
2237 break;
2238 case TYPE_CODE_CHAR:
2239 switch (TYPE_CODE (arg))
2240 {
2241 case TYPE_CODE_RANGE:
2242 case TYPE_CODE_BOOL:
2243 case TYPE_CODE_ENUM:
2244 return INTEGER_CONVERSION_BADNESS;
2245 case TYPE_CODE_FLT:
2246 return INT_FLOAT_CONVERSION_BADNESS;
2247 case TYPE_CODE_INT:
2248 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2249 return INTEGER_CONVERSION_BADNESS;
2250 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2251 return INTEGER_PROMOTION_BADNESS;
2252 /* >>> !! else fall through !! <<< */
2253 case TYPE_CODE_CHAR:
2254 /* Deal with signed, unsigned, and plain chars for C++ and
2255 with int cases falling through from previous case. */
2256 if (TYPE_NOSIGN (parm))
2257 {
2258 if (TYPE_NOSIGN (arg))
2259 return 0;
2260 else
2261 return INTEGER_CONVERSION_BADNESS;
2262 }
2263 else if (TYPE_UNSIGNED (parm))
2264 {
2265 if (TYPE_UNSIGNED (arg))
2266 return 0;
2267 else
2268 return INTEGER_PROMOTION_BADNESS;
2269 }
2270 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2271 return 0;
2272 else
2273 return INTEGER_CONVERSION_BADNESS;
2274 default:
2275 return INCOMPATIBLE_TYPE_BADNESS;
2276 }
2277 break;
2278 case TYPE_CODE_RANGE:
2279 switch (TYPE_CODE (arg))
2280 {
2281 case TYPE_CODE_INT:
2282 case TYPE_CODE_CHAR:
2283 case TYPE_CODE_RANGE:
2284 case TYPE_CODE_BOOL:
2285 case TYPE_CODE_ENUM:
2286 return INTEGER_CONVERSION_BADNESS;
2287 case TYPE_CODE_FLT:
2288 return INT_FLOAT_CONVERSION_BADNESS;
2289 default:
2290 return INCOMPATIBLE_TYPE_BADNESS;
2291 }
2292 break;
2293 case TYPE_CODE_BOOL:
2294 switch (TYPE_CODE (arg))
2295 {
2296 case TYPE_CODE_INT:
2297 case TYPE_CODE_CHAR:
2298 case TYPE_CODE_RANGE:
2299 case TYPE_CODE_ENUM:
2300 case TYPE_CODE_FLT:
2301 case TYPE_CODE_PTR:
2302 return BOOLEAN_CONVERSION_BADNESS;
2303 case TYPE_CODE_BOOL:
2304 return 0;
2305 default:
2306 return INCOMPATIBLE_TYPE_BADNESS;
2307 }
2308 break;
2309 case TYPE_CODE_FLT:
2310 switch (TYPE_CODE (arg))
2311 {
2312 case TYPE_CODE_FLT:
2313 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2314 return FLOAT_PROMOTION_BADNESS;
2315 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2316 return 0;
2317 else
2318 return FLOAT_CONVERSION_BADNESS;
2319 case TYPE_CODE_INT:
2320 case TYPE_CODE_BOOL:
2321 case TYPE_CODE_ENUM:
2322 case TYPE_CODE_RANGE:
2323 case TYPE_CODE_CHAR:
2324 return INT_FLOAT_CONVERSION_BADNESS;
2325 default:
2326 return INCOMPATIBLE_TYPE_BADNESS;
2327 }
2328 break;
2329 case TYPE_CODE_COMPLEX:
2330 switch (TYPE_CODE (arg))
2331 { /* Strictly not needed for C++, but... */
2332 case TYPE_CODE_FLT:
2333 return FLOAT_PROMOTION_BADNESS;
2334 case TYPE_CODE_COMPLEX:
2335 return 0;
2336 default:
2337 return INCOMPATIBLE_TYPE_BADNESS;
2338 }
2339 break;
2340 case TYPE_CODE_STRUCT:
2341 /* currently same as TYPE_CODE_CLASS */
2342 switch (TYPE_CODE (arg))
2343 {
2344 case TYPE_CODE_STRUCT:
2345 /* Check for derivation */
2346 if (is_ancestor (parm, arg))
2347 return BASE_CONVERSION_BADNESS;
2348 /* else fall through */
2349 default:
2350 return INCOMPATIBLE_TYPE_BADNESS;
2351 }
2352 break;
2353 case TYPE_CODE_UNION:
2354 switch (TYPE_CODE (arg))
2355 {
2356 case TYPE_CODE_UNION:
2357 default:
2358 return INCOMPATIBLE_TYPE_BADNESS;
2359 }
2360 break;
2361 case TYPE_CODE_MEMBERPTR:
2362 switch (TYPE_CODE (arg))
2363 {
2364 default:
2365 return INCOMPATIBLE_TYPE_BADNESS;
2366 }
2367 break;
2368 case TYPE_CODE_METHOD:
2369 switch (TYPE_CODE (arg))
2370 {
2371
2372 default:
2373 return INCOMPATIBLE_TYPE_BADNESS;
2374 }
2375 break;
2376 case TYPE_CODE_REF:
2377 switch (TYPE_CODE (arg))
2378 {
2379
2380 default:
2381 return INCOMPATIBLE_TYPE_BADNESS;
2382 }
2383
2384 break;
2385 case TYPE_CODE_SET:
2386 switch (TYPE_CODE (arg))
2387 {
2388 /* Not in C++ */
2389 case TYPE_CODE_SET:
2390 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2391 TYPE_FIELD_TYPE (arg, 0));
2392 default:
2393 return INCOMPATIBLE_TYPE_BADNESS;
2394 }
2395 break;
2396 case TYPE_CODE_VOID:
2397 default:
2398 return INCOMPATIBLE_TYPE_BADNESS;
2399 } /* switch (TYPE_CODE (arg)) */
2400 }
2401
2402
2403 /* End of functions for overload resolution */
2404
2405 static void
2406 print_bit_vector (B_TYPE *bits, int nbits)
2407 {
2408 int bitno;
2409
2410 for (bitno = 0; bitno < nbits; bitno++)
2411 {
2412 if ((bitno % 8) == 0)
2413 {
2414 puts_filtered (" ");
2415 }
2416 if (B_TST (bits, bitno))
2417 printf_filtered (("1"));
2418 else
2419 printf_filtered (("0"));
2420 }
2421 }
2422
2423 /* Note the first arg should be the "this" pointer, we may not want to
2424 include it since we may get into a infinitely recursive
2425 situation. */
2426
2427 static void
2428 print_arg_types (struct field *args, int nargs, int spaces)
2429 {
2430 if (args != NULL)
2431 {
2432 int i;
2433
2434 for (i = 0; i < nargs; i++)
2435 recursive_dump_type (args[i].type, spaces + 2);
2436 }
2437 }
2438
2439 int
2440 field_is_static (struct field *f)
2441 {
2442 /* "static" fields are the fields whose location is not relative
2443 to the address of the enclosing struct. It would be nice to
2444 have a dedicated flag that would be set for static fields when
2445 the type is being created. But in practice, checking the field
2446 loc_kind should give us an accurate answer (at least as long as
2447 we assume that DWARF block locations are not going to be used
2448 for static fields). FIXME? */
2449 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2450 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2451 }
2452
2453 static void
2454 dump_fn_fieldlists (struct type *type, int spaces)
2455 {
2456 int method_idx;
2457 int overload_idx;
2458 struct fn_field *f;
2459
2460 printfi_filtered (spaces, "fn_fieldlists ");
2461 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2462 printf_filtered ("\n");
2463 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2464 {
2465 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2466 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2467 method_idx,
2468 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2469 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2470 gdb_stdout);
2471 printf_filtered (_(") length %d\n"),
2472 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2473 for (overload_idx = 0;
2474 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2475 overload_idx++)
2476 {
2477 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2478 overload_idx,
2479 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2480 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2481 gdb_stdout);
2482 printf_filtered (")\n");
2483 printfi_filtered (spaces + 8, "type ");
2484 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2485 gdb_stdout);
2486 printf_filtered ("\n");
2487
2488 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2489 spaces + 8 + 2);
2490
2491 printfi_filtered (spaces + 8, "args ");
2492 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2493 gdb_stdout);
2494 printf_filtered ("\n");
2495
2496 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2497 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2498 overload_idx)),
2499 spaces);
2500 printfi_filtered (spaces + 8, "fcontext ");
2501 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2502 gdb_stdout);
2503 printf_filtered ("\n");
2504
2505 printfi_filtered (spaces + 8, "is_const %d\n",
2506 TYPE_FN_FIELD_CONST (f, overload_idx));
2507 printfi_filtered (spaces + 8, "is_volatile %d\n",
2508 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2509 printfi_filtered (spaces + 8, "is_private %d\n",
2510 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2511 printfi_filtered (spaces + 8, "is_protected %d\n",
2512 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2513 printfi_filtered (spaces + 8, "is_stub %d\n",
2514 TYPE_FN_FIELD_STUB (f, overload_idx));
2515 printfi_filtered (spaces + 8, "voffset %u\n",
2516 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2517 }
2518 }
2519 }
2520
2521 static void
2522 print_cplus_stuff (struct type *type, int spaces)
2523 {
2524 printfi_filtered (spaces, "n_baseclasses %d\n",
2525 TYPE_N_BASECLASSES (type));
2526 printfi_filtered (spaces, "nfn_fields %d\n",
2527 TYPE_NFN_FIELDS (type));
2528 printfi_filtered (spaces, "nfn_fields_total %d\n",
2529 TYPE_NFN_FIELDS_TOTAL (type));
2530 if (TYPE_N_BASECLASSES (type) > 0)
2531 {
2532 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2533 TYPE_N_BASECLASSES (type));
2534 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2535 gdb_stdout);
2536 printf_filtered (")");
2537
2538 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2539 TYPE_N_BASECLASSES (type));
2540 puts_filtered ("\n");
2541 }
2542 if (TYPE_NFIELDS (type) > 0)
2543 {
2544 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2545 {
2546 printfi_filtered (spaces,
2547 "private_field_bits (%d bits at *",
2548 TYPE_NFIELDS (type));
2549 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2550 gdb_stdout);
2551 printf_filtered (")");
2552 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2553 TYPE_NFIELDS (type));
2554 puts_filtered ("\n");
2555 }
2556 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2557 {
2558 printfi_filtered (spaces,
2559 "protected_field_bits (%d bits at *",
2560 TYPE_NFIELDS (type));
2561 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2562 gdb_stdout);
2563 printf_filtered (")");
2564 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2565 TYPE_NFIELDS (type));
2566 puts_filtered ("\n");
2567 }
2568 }
2569 if (TYPE_NFN_FIELDS (type) > 0)
2570 {
2571 dump_fn_fieldlists (type, spaces);
2572 }
2573 }
2574
2575 static struct obstack dont_print_type_obstack;
2576
2577 void
2578 recursive_dump_type (struct type *type, int spaces)
2579 {
2580 int idx;
2581
2582 if (spaces == 0)
2583 obstack_begin (&dont_print_type_obstack, 0);
2584
2585 if (TYPE_NFIELDS (type) > 0
2586 || (TYPE_CPLUS_SPECIFIC (type) && TYPE_NFN_FIELDS (type) > 0))
2587 {
2588 struct type **first_dont_print
2589 = (struct type **) obstack_base (&dont_print_type_obstack);
2590
2591 int i = (struct type **)
2592 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2593
2594 while (--i >= 0)
2595 {
2596 if (type == first_dont_print[i])
2597 {
2598 printfi_filtered (spaces, "type node ");
2599 gdb_print_host_address (type, gdb_stdout);
2600 printf_filtered (_(" <same as already seen type>\n"));
2601 return;
2602 }
2603 }
2604
2605 obstack_ptr_grow (&dont_print_type_obstack, type);
2606 }
2607
2608 printfi_filtered (spaces, "type node ");
2609 gdb_print_host_address (type, gdb_stdout);
2610 printf_filtered ("\n");
2611 printfi_filtered (spaces, "name '%s' (",
2612 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2613 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2614 printf_filtered (")\n");
2615 printfi_filtered (spaces, "tagname '%s' (",
2616 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2617 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2618 printf_filtered (")\n");
2619 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2620 switch (TYPE_CODE (type))
2621 {
2622 case TYPE_CODE_UNDEF:
2623 printf_filtered ("(TYPE_CODE_UNDEF)");
2624 break;
2625 case TYPE_CODE_PTR:
2626 printf_filtered ("(TYPE_CODE_PTR)");
2627 break;
2628 case TYPE_CODE_ARRAY:
2629 printf_filtered ("(TYPE_CODE_ARRAY)");
2630 break;
2631 case TYPE_CODE_STRUCT:
2632 printf_filtered ("(TYPE_CODE_STRUCT)");
2633 break;
2634 case TYPE_CODE_UNION:
2635 printf_filtered ("(TYPE_CODE_UNION)");
2636 break;
2637 case TYPE_CODE_ENUM:
2638 printf_filtered ("(TYPE_CODE_ENUM)");
2639 break;
2640 case TYPE_CODE_FLAGS:
2641 printf_filtered ("(TYPE_CODE_FLAGS)");
2642 break;
2643 case TYPE_CODE_FUNC:
2644 printf_filtered ("(TYPE_CODE_FUNC)");
2645 break;
2646 case TYPE_CODE_INT:
2647 printf_filtered ("(TYPE_CODE_INT)");
2648 break;
2649 case TYPE_CODE_FLT:
2650 printf_filtered ("(TYPE_CODE_FLT)");
2651 break;
2652 case TYPE_CODE_VOID:
2653 printf_filtered ("(TYPE_CODE_VOID)");
2654 break;
2655 case TYPE_CODE_SET:
2656 printf_filtered ("(TYPE_CODE_SET)");
2657 break;
2658 case TYPE_CODE_RANGE:
2659 printf_filtered ("(TYPE_CODE_RANGE)");
2660 break;
2661 case TYPE_CODE_STRING:
2662 printf_filtered ("(TYPE_CODE_STRING)");
2663 break;
2664 case TYPE_CODE_BITSTRING:
2665 printf_filtered ("(TYPE_CODE_BITSTRING)");
2666 break;
2667 case TYPE_CODE_ERROR:
2668 printf_filtered ("(TYPE_CODE_ERROR)");
2669 break;
2670 case TYPE_CODE_MEMBERPTR:
2671 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2672 break;
2673 case TYPE_CODE_METHODPTR:
2674 printf_filtered ("(TYPE_CODE_METHODPTR)");
2675 break;
2676 case TYPE_CODE_METHOD:
2677 printf_filtered ("(TYPE_CODE_METHOD)");
2678 break;
2679 case TYPE_CODE_REF:
2680 printf_filtered ("(TYPE_CODE_REF)");
2681 break;
2682 case TYPE_CODE_CHAR:
2683 printf_filtered ("(TYPE_CODE_CHAR)");
2684 break;
2685 case TYPE_CODE_BOOL:
2686 printf_filtered ("(TYPE_CODE_BOOL)");
2687 break;
2688 case TYPE_CODE_COMPLEX:
2689 printf_filtered ("(TYPE_CODE_COMPLEX)");
2690 break;
2691 case TYPE_CODE_TYPEDEF:
2692 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2693 break;
2694 case TYPE_CODE_TEMPLATE:
2695 printf_filtered ("(TYPE_CODE_TEMPLATE)");
2696 break;
2697 case TYPE_CODE_TEMPLATE_ARG:
2698 printf_filtered ("(TYPE_CODE_TEMPLATE_ARG)");
2699 break;
2700 case TYPE_CODE_NAMESPACE:
2701 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2702 break;
2703 default:
2704 printf_filtered ("(UNKNOWN TYPE CODE)");
2705 break;
2706 }
2707 puts_filtered ("\n");
2708 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2709 printfi_filtered (spaces, "objfile ");
2710 gdb_print_host_address (TYPE_OBJFILE (type), gdb_stdout);
2711 printf_filtered ("\n");
2712 printfi_filtered (spaces, "target_type ");
2713 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2714 printf_filtered ("\n");
2715 if (TYPE_TARGET_TYPE (type) != NULL)
2716 {
2717 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2718 }
2719 printfi_filtered (spaces, "pointer_type ");
2720 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2721 printf_filtered ("\n");
2722 printfi_filtered (spaces, "reference_type ");
2723 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2724 printf_filtered ("\n");
2725 printfi_filtered (spaces, "type_chain ");
2726 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2727 printf_filtered ("\n");
2728 printfi_filtered (spaces, "instance_flags 0x%x",
2729 TYPE_INSTANCE_FLAGS (type));
2730 if (TYPE_CONST (type))
2731 {
2732 puts_filtered (" TYPE_FLAG_CONST");
2733 }
2734 if (TYPE_VOLATILE (type))
2735 {
2736 puts_filtered (" TYPE_FLAG_VOLATILE");
2737 }
2738 if (TYPE_CODE_SPACE (type))
2739 {
2740 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2741 }
2742 if (TYPE_DATA_SPACE (type))
2743 {
2744 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2745 }
2746 if (TYPE_ADDRESS_CLASS_1 (type))
2747 {
2748 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2749 }
2750 if (TYPE_ADDRESS_CLASS_2 (type))
2751 {
2752 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2753 }
2754 puts_filtered ("\n");
2755
2756 printfi_filtered (spaces, "flags");
2757 if (TYPE_UNSIGNED (type))
2758 {
2759 puts_filtered (" TYPE_FLAG_UNSIGNED");
2760 }
2761 if (TYPE_NOSIGN (type))
2762 {
2763 puts_filtered (" TYPE_FLAG_NOSIGN");
2764 }
2765 if (TYPE_STUB (type))
2766 {
2767 puts_filtered (" TYPE_FLAG_STUB");
2768 }
2769 if (TYPE_TARGET_STUB (type))
2770 {
2771 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2772 }
2773 if (TYPE_STATIC (type))
2774 {
2775 puts_filtered (" TYPE_FLAG_STATIC");
2776 }
2777 if (TYPE_PROTOTYPED (type))
2778 {
2779 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2780 }
2781 if (TYPE_INCOMPLETE (type))
2782 {
2783 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2784 }
2785 if (TYPE_VARARGS (type))
2786 {
2787 puts_filtered (" TYPE_FLAG_VARARGS");
2788 }
2789 /* This is used for things like AltiVec registers on ppc. Gcc emits
2790 an attribute for the array type, which tells whether or not we
2791 have a vector, instead of a regular array. */
2792 if (TYPE_VECTOR (type))
2793 {
2794 puts_filtered (" TYPE_FLAG_VECTOR");
2795 }
2796 if (TYPE_FIXED_INSTANCE (type))
2797 {
2798 puts_filtered (" TYPE_FIXED_INSTANCE");
2799 }
2800 if (TYPE_STUB_SUPPORTED (type))
2801 {
2802 puts_filtered (" TYPE_STUB_SUPPORTED");
2803 }
2804 if (TYPE_NOTTEXT (type))
2805 {
2806 puts_filtered (" TYPE_NOTTEXT");
2807 }
2808 puts_filtered ("\n");
2809 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2810 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2811 puts_filtered ("\n");
2812 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2813 {
2814 printfi_filtered (spaces + 2,
2815 "[%d] bitpos %d bitsize %d type ",
2816 idx, TYPE_FIELD_BITPOS (type, idx),
2817 TYPE_FIELD_BITSIZE (type, idx));
2818 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2819 printf_filtered (" name '%s' (",
2820 TYPE_FIELD_NAME (type, idx) != NULL
2821 ? TYPE_FIELD_NAME (type, idx)
2822 : "<NULL>");
2823 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2824 printf_filtered (")\n");
2825 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2826 {
2827 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2828 }
2829 }
2830 printfi_filtered (spaces, "vptr_basetype ");
2831 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2832 puts_filtered ("\n");
2833 if (TYPE_VPTR_BASETYPE (type) != NULL)
2834 {
2835 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2836 }
2837 printfi_filtered (spaces, "vptr_fieldno %d\n",
2838 TYPE_VPTR_FIELDNO (type));
2839 switch (TYPE_CODE (type))
2840 {
2841 case TYPE_CODE_STRUCT:
2842 printfi_filtered (spaces, "cplus_stuff ");
2843 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2844 gdb_stdout);
2845 puts_filtered ("\n");
2846 print_cplus_stuff (type, spaces);
2847 break;
2848
2849 case TYPE_CODE_FLT:
2850 printfi_filtered (spaces, "floatformat ");
2851 if (TYPE_FLOATFORMAT (type) == NULL)
2852 puts_filtered ("(null)");
2853 else
2854 {
2855 puts_filtered ("{ ");
2856 if (TYPE_FLOATFORMAT (type)[0] == NULL
2857 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2858 puts_filtered ("(null)");
2859 else
2860 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2861
2862 puts_filtered (", ");
2863 if (TYPE_FLOATFORMAT (type)[1] == NULL
2864 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2865 puts_filtered ("(null)");
2866 else
2867 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2868
2869 puts_filtered (" }");
2870 }
2871 puts_filtered ("\n");
2872 break;
2873
2874 default:
2875 /* We have to pick one of the union types to be able print and
2876 test the value. Pick cplus_struct_type, even though we know
2877 it isn't any particular one. */
2878 printfi_filtered (spaces, "type_specific ");
2879 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type), gdb_stdout);
2880 if (TYPE_CPLUS_SPECIFIC (type) != NULL)
2881 {
2882 printf_filtered (_(" (unknown data form)"));
2883 }
2884 printf_filtered ("\n");
2885 break;
2886
2887 }
2888 if (spaces == 0)
2889 obstack_free (&dont_print_type_obstack, NULL);
2890 }
2891
2892 /* Trivial helpers for the libiberty hash table, for mapping one
2893 type to another. */
2894
2895 struct type_pair
2896 {
2897 struct type *old, *new;
2898 };
2899
2900 static hashval_t
2901 type_pair_hash (const void *item)
2902 {
2903 const struct type_pair *pair = item;
2904 return htab_hash_pointer (pair->old);
2905 }
2906
2907 static int
2908 type_pair_eq (const void *item_lhs, const void *item_rhs)
2909 {
2910 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
2911 return lhs->old == rhs->old;
2912 }
2913
2914 /* Allocate the hash table used by copy_type_recursive to walk
2915 types without duplicates. We use OBJFILE's obstack, because
2916 OBJFILE is about to be deleted. */
2917
2918 htab_t
2919 create_copied_types_hash (struct objfile *objfile)
2920 {
2921 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
2922 NULL, &objfile->objfile_obstack,
2923 hashtab_obstack_allocate,
2924 dummy_obstack_deallocate);
2925 }
2926
2927 /* Recursively copy (deep copy) TYPE, if it is associated with
2928 OBJFILE. Return a new type allocated using malloc, a saved type if
2929 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
2930 not associated with OBJFILE. */
2931
2932 struct type *
2933 copy_type_recursive (struct objfile *objfile,
2934 struct type *type,
2935 htab_t copied_types)
2936 {
2937 struct type_pair *stored, pair;
2938 void **slot;
2939 struct type *new_type;
2940
2941 if (TYPE_OBJFILE (type) == NULL)
2942 return type;
2943
2944 /* This type shouldn't be pointing to any types in other objfiles;
2945 if it did, the type might disappear unexpectedly. */
2946 gdb_assert (TYPE_OBJFILE (type) == objfile);
2947
2948 pair.old = type;
2949 slot = htab_find_slot (copied_types, &pair, INSERT);
2950 if (*slot != NULL)
2951 return ((struct type_pair *) *slot)->new;
2952
2953 new_type = alloc_type (NULL);
2954
2955 /* We must add the new type to the hash table immediately, in case
2956 we encounter this type again during a recursive call below. */
2957 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
2958 stored->old = type;
2959 stored->new = new_type;
2960 *slot = stored;
2961
2962 /* Copy the common fields of types. For the main type, we simply
2963 copy the entire thing and then update specific fields as needed. */
2964 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
2965 TYPE_OBJFILE (new_type) = NULL;
2966
2967 if (TYPE_NAME (type))
2968 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
2969 if (TYPE_TAG_NAME (type))
2970 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
2971
2972 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
2973 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
2974
2975 /* Copy the fields. */
2976 if (TYPE_NFIELDS (type))
2977 {
2978 int i, nfields;
2979
2980 nfields = TYPE_NFIELDS (type);
2981 TYPE_FIELDS (new_type) = xmalloc (sizeof (struct field) * nfields);
2982 memset (TYPE_FIELDS (new_type), 0, sizeof (struct field) * nfields);
2983 for (i = 0; i < nfields; i++)
2984 {
2985 TYPE_FIELD_ARTIFICIAL (new_type, i) =
2986 TYPE_FIELD_ARTIFICIAL (type, i);
2987 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
2988 if (TYPE_FIELD_TYPE (type, i))
2989 TYPE_FIELD_TYPE (new_type, i)
2990 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
2991 copied_types);
2992 if (TYPE_FIELD_NAME (type, i))
2993 TYPE_FIELD_NAME (new_type, i) =
2994 xstrdup (TYPE_FIELD_NAME (type, i));
2995 switch (TYPE_FIELD_LOC_KIND (type, i))
2996 {
2997 case FIELD_LOC_KIND_BITPOS:
2998 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
2999 TYPE_FIELD_BITPOS (type, i));
3000 break;
3001 case FIELD_LOC_KIND_PHYSADDR:
3002 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3003 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3004 break;
3005 case FIELD_LOC_KIND_PHYSNAME:
3006 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3007 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3008 i)));
3009 break;
3010 default:
3011 internal_error (__FILE__, __LINE__,
3012 _("Unexpected type field location kind: %d"),
3013 TYPE_FIELD_LOC_KIND (type, i));
3014 }
3015 }
3016 }
3017
3018 /* Copy pointers to other types. */
3019 if (TYPE_TARGET_TYPE (type))
3020 TYPE_TARGET_TYPE (new_type) =
3021 copy_type_recursive (objfile,
3022 TYPE_TARGET_TYPE (type),
3023 copied_types);
3024 if (TYPE_VPTR_BASETYPE (type))
3025 TYPE_VPTR_BASETYPE (new_type) =
3026 copy_type_recursive (objfile,
3027 TYPE_VPTR_BASETYPE (type),
3028 copied_types);
3029 /* Maybe copy the type_specific bits.
3030
3031 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3032 base classes and methods. There's no fundamental reason why we
3033 can't, but at the moment it is not needed. */
3034
3035 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3036 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3037 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3038 || TYPE_CODE (type) == TYPE_CODE_UNION
3039 || TYPE_CODE (type) == TYPE_CODE_TEMPLATE
3040 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3041 INIT_CPLUS_SPECIFIC (new_type);
3042
3043 return new_type;
3044 }
3045
3046 /* Make a copy of the given TYPE, except that the pointer & reference
3047 types are not preserved.
3048
3049 This function assumes that the given type has an associated objfile.
3050 This objfile is used to allocate the new type. */
3051
3052 struct type *
3053 copy_type (const struct type *type)
3054 {
3055 struct type *new_type;
3056
3057 gdb_assert (TYPE_OBJFILE (type) != NULL);
3058
3059 new_type = alloc_type (TYPE_OBJFILE (type));
3060 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3061 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3062 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3063 sizeof (struct main_type));
3064
3065 return new_type;
3066 }
3067
3068 static struct type *
3069 build_flt (int bit, char *name, const struct floatformat **floatformats)
3070 {
3071 struct type *t;
3072
3073 if (bit == -1)
3074 {
3075 gdb_assert (floatformats != NULL);
3076 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3077 bit = floatformats[0]->totalsize;
3078 }
3079 gdb_assert (bit >= 0);
3080
3081 t = init_type (TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, 0, name, NULL);
3082 TYPE_FLOATFORMAT (t) = floatformats;
3083 return t;
3084 }
3085
3086 static struct gdbarch_data *gdbtypes_data;
3087
3088 const struct builtin_type *
3089 builtin_type (struct gdbarch *gdbarch)
3090 {
3091 return gdbarch_data (gdbarch, gdbtypes_data);
3092 }
3093
3094
3095 static struct type *
3096 build_complex (int bit, char *name, struct type *target_type)
3097 {
3098 struct type *t;
3099 if (bit <= 0 || target_type == builtin_type_error)
3100 {
3101 gdb_assert (builtin_type_error != NULL);
3102 return builtin_type_error;
3103 }
3104 t = init_type (TYPE_CODE_COMPLEX, 2 * bit / TARGET_CHAR_BIT,
3105 0, name, (struct objfile *) NULL);
3106 TYPE_TARGET_TYPE (t) = target_type;
3107 return t;
3108 }
3109
3110 static void *
3111 gdbtypes_post_init (struct gdbarch *gdbarch)
3112 {
3113 struct builtin_type *builtin_type
3114 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3115
3116 builtin_type->builtin_void =
3117 init_type (TYPE_CODE_VOID, 1,
3118 0,
3119 "void", (struct objfile *) NULL);
3120 builtin_type->builtin_char =
3121 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3122 (TYPE_FLAG_NOSIGN
3123 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3124 "char", (struct objfile *) NULL);
3125 builtin_type->builtin_signed_char =
3126 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3127 0,
3128 "signed char", (struct objfile *) NULL);
3129 builtin_type->builtin_unsigned_char =
3130 init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3131 TYPE_FLAG_UNSIGNED,
3132 "unsigned char", (struct objfile *) NULL);
3133 builtin_type->builtin_short =
3134 init_type (TYPE_CODE_INT,
3135 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3136 0, "short", (struct objfile *) NULL);
3137 builtin_type->builtin_unsigned_short =
3138 init_type (TYPE_CODE_INT,
3139 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3140 TYPE_FLAG_UNSIGNED, "unsigned short",
3141 (struct objfile *) NULL);
3142 builtin_type->builtin_int =
3143 init_type (TYPE_CODE_INT,
3144 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3145 0, "int", (struct objfile *) NULL);
3146 builtin_type->builtin_unsigned_int =
3147 init_type (TYPE_CODE_INT,
3148 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3149 TYPE_FLAG_UNSIGNED, "unsigned int",
3150 (struct objfile *) NULL);
3151 builtin_type->builtin_long =
3152 init_type (TYPE_CODE_INT,
3153 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3154 0, "long", (struct objfile *) NULL);
3155 builtin_type->builtin_unsigned_long =
3156 init_type (TYPE_CODE_INT,
3157 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3158 TYPE_FLAG_UNSIGNED, "unsigned long",
3159 (struct objfile *) NULL);
3160 builtin_type->builtin_long_long =
3161 init_type (TYPE_CODE_INT,
3162 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3163 0, "long long", (struct objfile *) NULL);
3164 builtin_type->builtin_unsigned_long_long =
3165 init_type (TYPE_CODE_INT,
3166 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3167 TYPE_FLAG_UNSIGNED, "unsigned long long",
3168 (struct objfile *) NULL);
3169 builtin_type->builtin_float
3170 = build_flt (gdbarch_float_bit (gdbarch), "float",
3171 gdbarch_float_format (gdbarch));
3172 builtin_type->builtin_double
3173 = build_flt (gdbarch_double_bit (gdbarch), "double",
3174 gdbarch_double_format (gdbarch));
3175 builtin_type->builtin_long_double
3176 = build_flt (gdbarch_long_double_bit (gdbarch), "long double",
3177 gdbarch_long_double_format (gdbarch));
3178 builtin_type->builtin_complex
3179 = build_complex (gdbarch_float_bit (gdbarch), "complex",
3180 builtin_type->builtin_float);
3181 builtin_type->builtin_double_complex
3182 = build_complex (gdbarch_double_bit (gdbarch), "double complex",
3183 builtin_type->builtin_double);
3184 builtin_type->builtin_string =
3185 init_type (TYPE_CODE_STRING, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3186 0,
3187 "string", (struct objfile *) NULL);
3188 builtin_type->builtin_bool =
3189 init_type (TYPE_CODE_BOOL, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3190 0,
3191 "bool", (struct objfile *) NULL);
3192
3193 /* The following three are about decimal floating point types, which
3194 are 32-bits, 64-bits and 128-bits respectively. */
3195 builtin_type->builtin_decfloat
3196 = init_type (TYPE_CODE_DECFLOAT, 32 / 8,
3197 0,
3198 "_Decimal32", (struct objfile *) NULL);
3199 builtin_type->builtin_decdouble
3200 = init_type (TYPE_CODE_DECFLOAT, 64 / 8,
3201 0,
3202 "_Decimal64", (struct objfile *) NULL);
3203 builtin_type->builtin_declong
3204 = init_type (TYPE_CODE_DECFLOAT, 128 / 8,
3205 0,
3206 "_Decimal128", (struct objfile *) NULL);
3207
3208 /* Pointer/Address types. */
3209
3210 /* NOTE: on some targets, addresses and pointers are not necessarily
3211 the same --- for example, on the D10V, pointers are 16 bits long,
3212 but addresses are 32 bits long. See doc/gdbint.texinfo,
3213 ``Pointers Are Not Always Addresses''.
3214
3215 The upshot is:
3216 - gdb's `struct type' always describes the target's
3217 representation.
3218 - gdb's `struct value' objects should always hold values in
3219 target form.
3220 - gdb's CORE_ADDR values are addresses in the unified virtual
3221 address space that the assembler and linker work with. Thus,
3222 since target_read_memory takes a CORE_ADDR as an argument, it
3223 can access any memory on the target, even if the processor has
3224 separate code and data address spaces.
3225
3226 So, for example:
3227 - If v is a value holding a D10V code pointer, its contents are
3228 in target form: a big-endian address left-shifted two bits.
3229 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3230 sizeof (void *) == 2 on the target.
3231
3232 In this context, builtin_type->CORE_ADDR is a bit odd: it's a
3233 target type for a value the target will never see. It's only
3234 used to hold the values of (typeless) linker symbols, which are
3235 indeed in the unified virtual address space. */
3236
3237 builtin_type->builtin_data_ptr =
3238 make_pointer_type (builtin_type->builtin_void, NULL);
3239 builtin_type->builtin_func_ptr =
3240 lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3241 builtin_type->builtin_core_addr =
3242 init_type (TYPE_CODE_INT,
3243 gdbarch_addr_bit (gdbarch) / 8,
3244 TYPE_FLAG_UNSIGNED,
3245 "__CORE_ADDR", (struct objfile *) NULL);
3246
3247
3248 /* The following set of types is used for symbols with no
3249 debug information. */
3250 builtin_type->nodebug_text_symbol =
3251 init_type (TYPE_CODE_FUNC, 1, 0,
3252 "<text variable, no debug info>", NULL);
3253 TYPE_TARGET_TYPE (builtin_type->nodebug_text_symbol) =
3254 builtin_type->builtin_int;
3255 builtin_type->nodebug_data_symbol =
3256 init_type (TYPE_CODE_INT,
3257 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3258 "<data variable, no debug info>", NULL);
3259 builtin_type->nodebug_unknown_symbol =
3260 init_type (TYPE_CODE_INT, 1, 0,
3261 "<variable (not text or data), no debug info>", NULL);
3262 builtin_type->nodebug_tls_symbol =
3263 init_type (TYPE_CODE_INT,
3264 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3265 "<thread local variable, no debug info>", NULL);
3266
3267 return builtin_type;
3268 }
3269
3270 extern void _initialize_gdbtypes (void);
3271 void
3272 _initialize_gdbtypes (void)
3273 {
3274 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3275
3276 /* FIXME: The following types are architecture-neutral. However,
3277 they contain pointer_type and reference_type fields potentially
3278 caching pointer or reference types that *are* architecture
3279 dependent. */
3280
3281 builtin_type_int0 =
3282 init_type (TYPE_CODE_INT, 0 / 8,
3283 0,
3284 "int0_t", (struct objfile *) NULL);
3285 builtin_type_int8 =
3286 init_type (TYPE_CODE_INT, 8 / 8,
3287 TYPE_FLAG_NOTTEXT,
3288 "int8_t", (struct objfile *) NULL);
3289 builtin_type_uint8 =
3290 init_type (TYPE_CODE_INT, 8 / 8,
3291 TYPE_FLAG_UNSIGNED | TYPE_FLAG_NOTTEXT,
3292 "uint8_t", (struct objfile *) NULL);
3293 builtin_type_int16 =
3294 init_type (TYPE_CODE_INT, 16 / 8,
3295 0,
3296 "int16_t", (struct objfile *) NULL);
3297 builtin_type_uint16 =
3298 init_type (TYPE_CODE_INT, 16 / 8,
3299 TYPE_FLAG_UNSIGNED,
3300 "uint16_t", (struct objfile *) NULL);
3301 builtin_type_int32 =
3302 init_type (TYPE_CODE_INT, 32 / 8,
3303 0,
3304 "int32_t", (struct objfile *) NULL);
3305 builtin_type_uint32 =
3306 init_type (TYPE_CODE_INT, 32 / 8,
3307 TYPE_FLAG_UNSIGNED,
3308 "uint32_t", (struct objfile *) NULL);
3309 builtin_type_int64 =
3310 init_type (TYPE_CODE_INT, 64 / 8,
3311 0,
3312 "int64_t", (struct objfile *) NULL);
3313 builtin_type_uint64 =
3314 init_type (TYPE_CODE_INT, 64 / 8,
3315 TYPE_FLAG_UNSIGNED,
3316 "uint64_t", (struct objfile *) NULL);
3317 builtin_type_int128 =
3318 init_type (TYPE_CODE_INT, 128 / 8,
3319 0,
3320 "int128_t", (struct objfile *) NULL);
3321 builtin_type_uint128 =
3322 init_type (TYPE_CODE_INT, 128 / 8,
3323 TYPE_FLAG_UNSIGNED,
3324 "uint128_t", (struct objfile *) NULL);
3325
3326 builtin_type_ieee_single =
3327 build_flt (-1, "builtin_type_ieee_single", floatformats_ieee_single);
3328 builtin_type_ieee_double =
3329 build_flt (-1, "builtin_type_ieee_double", floatformats_ieee_double);
3330 builtin_type_i387_ext =
3331 build_flt (-1, "builtin_type_i387_ext", floatformats_i387_ext);
3332 builtin_type_m68881_ext =
3333 build_flt (-1, "builtin_type_m68881_ext", floatformats_m68881_ext);
3334 builtin_type_arm_ext =
3335 build_flt (-1, "builtin_type_arm_ext", floatformats_arm_ext);
3336 builtin_type_ia64_spill =
3337 build_flt (-1, "builtin_type_ia64_spill", floatformats_ia64_spill);
3338 builtin_type_ia64_quad =
3339 build_flt (-1, "builtin_type_ia64_quad", floatformats_ia64_quad);
3340
3341 builtin_type_void =
3342 init_type (TYPE_CODE_VOID, 1,
3343 0,
3344 "void", (struct objfile *) NULL);
3345 builtin_type_true_char =
3346 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3347 0,
3348 "true character", (struct objfile *) NULL);
3349 builtin_type_true_unsigned_char =
3350 init_type (TYPE_CODE_CHAR, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3351 TYPE_FLAG_UNSIGNED,
3352 "true character", (struct objfile *) NULL);
3353
3354 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3355 Set debugging of C++ overloading."), _("\
3356 Show debugging of C++ overloading."), _("\
3357 When enabled, ranking of the functions is displayed."),
3358 NULL,
3359 show_overload_debug,
3360 &setdebuglist, &showdebuglist);
3361
3362 /* Add user knob for controlling resolution of opaque types. */
3363 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3364 &opaque_type_resolution, _("\
3365 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3366 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3367 NULL,
3368 show_opaque_type_resolution,
3369 &setlist, &showlist);
3370 }
This page took 0.099298 seconds and 4 git commands to generate.