* c-exp.y (DOTDOTDOT): New token.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-1996, 1998-2012 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40
41 /* Initialize BADNESS constants. */
42
43 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
44
45 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
46 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
47
48 const struct rank EXACT_MATCH_BADNESS = {0,0};
49
50 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
51 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
52 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
53 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
54 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
55 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
57 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
58 const struct rank BASE_CONVERSION_BADNESS = {2,0};
59 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
60 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
61 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
62
63 /* Floatformat pairs. */
64 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
65 &floatformat_ieee_half_big,
66 &floatformat_ieee_half_little
67 };
68 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_single_big,
70 &floatformat_ieee_single_little
71 };
72 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_double_big,
74 &floatformat_ieee_double_little
75 };
76 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_littlebyte_bigword
79 };
80 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_i387_ext,
82 &floatformat_i387_ext
83 };
84 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_m68881_ext,
86 &floatformat_m68881_ext
87 };
88 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_arm_ext_big,
90 &floatformat_arm_ext_littlebyte_bigword
91 };
92 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_ia64_spill_big,
94 &floatformat_ia64_spill_little
95 };
96 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_quad_big,
98 &floatformat_ia64_quad_little
99 };
100 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_vax_f,
102 &floatformat_vax_f
103 };
104 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_d,
106 &floatformat_vax_d
107 };
108 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_ibm_long_double,
110 &floatformat_ibm_long_double
111 };
112
113
114 int opaque_type_resolution = 1;
115 static void
116 show_opaque_type_resolution (struct ui_file *file, int from_tty,
117 struct cmd_list_element *c,
118 const char *value)
119 {
120 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
121 "(if set before loading symbols) is %s.\n"),
122 value);
123 }
124
125 int overload_debug = 0;
126 static void
127 show_overload_debug (struct ui_file *file, int from_tty,
128 struct cmd_list_element *c, const char *value)
129 {
130 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
131 value);
132 }
133
134 struct extra
135 {
136 char str[128];
137 int len;
138 }; /* Maximum extension is 128! FIXME */
139
140 static void print_bit_vector (B_TYPE *, int);
141 static void print_arg_types (struct field *, int, int);
142 static void dump_fn_fieldlists (struct type *, int);
143 static void print_cplus_stuff (struct type *, int);
144
145
146 /* Allocate a new OBJFILE-associated type structure and fill it
147 with some defaults. Space for the type structure is allocated
148 on the objfile's objfile_obstack. */
149
150 struct type *
151 alloc_type (struct objfile *objfile)
152 {
153 struct type *type;
154
155 gdb_assert (objfile != NULL);
156
157 /* Alloc the structure and start off with all fields zeroed. */
158 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
159 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
160 struct main_type);
161 OBJSTAT (objfile, n_types++);
162
163 TYPE_OBJFILE_OWNED (type) = 1;
164 TYPE_OWNER (type).objfile = objfile;
165
166 /* Initialize the fields that might not be zero. */
167
168 TYPE_CODE (type) = TYPE_CODE_UNDEF;
169 TYPE_VPTR_FIELDNO (type) = -1;
170 TYPE_CHAIN (type) = type; /* Chain back to itself. */
171
172 return type;
173 }
174
175 /* Allocate a new GDBARCH-associated type structure and fill it
176 with some defaults. Space for the type structure is allocated
177 on the heap. */
178
179 struct type *
180 alloc_type_arch (struct gdbarch *gdbarch)
181 {
182 struct type *type;
183
184 gdb_assert (gdbarch != NULL);
185
186 /* Alloc the structure and start off with all fields zeroed. */
187
188 type = XZALLOC (struct type);
189 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
190
191 TYPE_OBJFILE_OWNED (type) = 0;
192 TYPE_OWNER (type).gdbarch = gdbarch;
193
194 /* Initialize the fields that might not be zero. */
195
196 TYPE_CODE (type) = TYPE_CODE_UNDEF;
197 TYPE_VPTR_FIELDNO (type) = -1;
198 TYPE_CHAIN (type) = type; /* Chain back to itself. */
199
200 return type;
201 }
202
203 /* If TYPE is objfile-associated, allocate a new type structure
204 associated with the same objfile. If TYPE is gdbarch-associated,
205 allocate a new type structure associated with the same gdbarch. */
206
207 struct type *
208 alloc_type_copy (const struct type *type)
209 {
210 if (TYPE_OBJFILE_OWNED (type))
211 return alloc_type (TYPE_OWNER (type).objfile);
212 else
213 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
214 }
215
216 /* If TYPE is gdbarch-associated, return that architecture.
217 If TYPE is objfile-associated, return that objfile's architecture. */
218
219 struct gdbarch *
220 get_type_arch (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return get_objfile_arch (TYPE_OWNER (type).objfile);
224 else
225 return TYPE_OWNER (type).gdbarch;
226 }
227
228
229 /* Alloc a new type instance structure, fill it with some defaults,
230 and point it at OLDTYPE. Allocate the new type instance from the
231 same place as OLDTYPE. */
232
233 static struct type *
234 alloc_type_instance (struct type *oldtype)
235 {
236 struct type *type;
237
238 /* Allocate the structure. */
239
240 if (! TYPE_OBJFILE_OWNED (oldtype))
241 type = XZALLOC (struct type);
242 else
243 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
244 struct type);
245
246 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
247
248 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
249
250 return type;
251 }
252
253 /* Clear all remnants of the previous type at TYPE, in preparation for
254 replacing it with something else. Preserve owner information. */
255 static void
256 smash_type (struct type *type)
257 {
258 int objfile_owned = TYPE_OBJFILE_OWNED (type);
259 union type_owner owner = TYPE_OWNER (type);
260
261 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
262
263 /* Restore owner information. */
264 TYPE_OBJFILE_OWNED (type) = objfile_owned;
265 TYPE_OWNER (type) = owner;
266
267 /* For now, delete the rings. */
268 TYPE_CHAIN (type) = type;
269
270 /* For now, leave the pointer/reference types alone. */
271 }
272
273 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
274 to a pointer to memory where the pointer type should be stored.
275 If *TYPEPTR is zero, update it to point to the pointer type we return.
276 We allocate new memory if needed. */
277
278 struct type *
279 make_pointer_type (struct type *type, struct type **typeptr)
280 {
281 struct type *ntype; /* New type */
282 struct type *chain;
283
284 ntype = TYPE_POINTER_TYPE (type);
285
286 if (ntype)
287 {
288 if (typeptr == 0)
289 return ntype; /* Don't care about alloc,
290 and have new type. */
291 else if (*typeptr == 0)
292 {
293 *typeptr = ntype; /* Tracking alloc, and have new type. */
294 return ntype;
295 }
296 }
297
298 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
299 {
300 ntype = alloc_type_copy (type);
301 if (typeptr)
302 *typeptr = ntype;
303 }
304 else /* We have storage, but need to reset it. */
305 {
306 ntype = *typeptr;
307 chain = TYPE_CHAIN (ntype);
308 smash_type (ntype);
309 TYPE_CHAIN (ntype) = chain;
310 }
311
312 TYPE_TARGET_TYPE (ntype) = type;
313 TYPE_POINTER_TYPE (type) = ntype;
314
315 /* FIXME! Assume the machine has only one representation for
316 pointers! */
317
318 TYPE_LENGTH (ntype)
319 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
320 TYPE_CODE (ntype) = TYPE_CODE_PTR;
321
322 /* Mark pointers as unsigned. The target converts between pointers
323 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
324 gdbarch_address_to_pointer. */
325 TYPE_UNSIGNED (ntype) = 1;
326
327 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
328 TYPE_POINTER_TYPE (type) = ntype;
329
330 /* Update the length of all the other variants of this type. */
331 chain = TYPE_CHAIN (ntype);
332 while (chain != ntype)
333 {
334 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
335 chain = TYPE_CHAIN (chain);
336 }
337
338 return ntype;
339 }
340
341 /* Given a type TYPE, return a type of pointers to that type.
342 May need to construct such a type if this is the first use. */
343
344 struct type *
345 lookup_pointer_type (struct type *type)
346 {
347 return make_pointer_type (type, (struct type **) 0);
348 }
349
350 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
351 points to a pointer to memory where the reference type should be
352 stored. If *TYPEPTR is zero, update it to point to the reference
353 type we return. We allocate new memory if needed. */
354
355 struct type *
356 make_reference_type (struct type *type, struct type **typeptr)
357 {
358 struct type *ntype; /* New type */
359 struct type *chain;
360
361 ntype = TYPE_REFERENCE_TYPE (type);
362
363 if (ntype)
364 {
365 if (typeptr == 0)
366 return ntype; /* Don't care about alloc,
367 and have new type. */
368 else if (*typeptr == 0)
369 {
370 *typeptr = ntype; /* Tracking alloc, and have new type. */
371 return ntype;
372 }
373 }
374
375 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
376 {
377 ntype = alloc_type_copy (type);
378 if (typeptr)
379 *typeptr = ntype;
380 }
381 else /* We have storage, but need to reset it. */
382 {
383 ntype = *typeptr;
384 chain = TYPE_CHAIN (ntype);
385 smash_type (ntype);
386 TYPE_CHAIN (ntype) = chain;
387 }
388
389 TYPE_TARGET_TYPE (ntype) = type;
390 TYPE_REFERENCE_TYPE (type) = ntype;
391
392 /* FIXME! Assume the machine has only one representation for
393 references, and that it matches the (only) representation for
394 pointers! */
395
396 TYPE_LENGTH (ntype) =
397 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
398 TYPE_CODE (ntype) = TYPE_CODE_REF;
399
400 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
401 TYPE_REFERENCE_TYPE (type) = ntype;
402
403 /* Update the length of all the other variants of this type. */
404 chain = TYPE_CHAIN (ntype);
405 while (chain != ntype)
406 {
407 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
408 chain = TYPE_CHAIN (chain);
409 }
410
411 return ntype;
412 }
413
414 /* Same as above, but caller doesn't care about memory allocation
415 details. */
416
417 struct type *
418 lookup_reference_type (struct type *type)
419 {
420 return make_reference_type (type, (struct type **) 0);
421 }
422
423 /* Lookup a function type that returns type TYPE. TYPEPTR, if
424 nonzero, points to a pointer to memory where the function type
425 should be stored. If *TYPEPTR is zero, update it to point to the
426 function type we return. We allocate new memory if needed. */
427
428 struct type *
429 make_function_type (struct type *type, struct type **typeptr)
430 {
431 struct type *ntype; /* New type */
432
433 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
434 {
435 ntype = alloc_type_copy (type);
436 if (typeptr)
437 *typeptr = ntype;
438 }
439 else /* We have storage, but need to reset it. */
440 {
441 ntype = *typeptr;
442 smash_type (ntype);
443 }
444
445 TYPE_TARGET_TYPE (ntype) = type;
446
447 TYPE_LENGTH (ntype) = 1;
448 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
449
450 INIT_FUNC_SPECIFIC (ntype);
451
452 return ntype;
453 }
454
455
456 /* Given a type TYPE, return a type of functions that return that type.
457 May need to construct such a type if this is the first use. */
458
459 struct type *
460 lookup_function_type (struct type *type)
461 {
462 return make_function_type (type, (struct type **) 0);
463 }
464
465 /* Given a type TYPE and argument types, return the appropriate
466 function type. If the final type in PARAM_TYPES is NULL, make a
467 varargs function. */
468
469 struct type *
470 lookup_function_type_with_arguments (struct type *type,
471 int nparams,
472 struct type **param_types)
473 {
474 struct type *fn = make_function_type (type, (struct type **) 0);
475 int i;
476
477 if (nparams > 0 && param_types[nparams - 1] == NULL)
478 {
479 --nparams;
480 TYPE_VARARGS (fn) = 1;
481 }
482
483 TYPE_NFIELDS (fn) = nparams;
484 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
485 for (i = 0; i < nparams; ++i)
486 TYPE_FIELD_TYPE (fn, i) = param_types[i];
487
488 return fn;
489 }
490
491 /* Identify address space identifier by name --
492 return the integer flag defined in gdbtypes.h. */
493 extern int
494 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
495 {
496 int type_flags;
497
498 /* Check for known address space delimiters. */
499 if (!strcmp (space_identifier, "code"))
500 return TYPE_INSTANCE_FLAG_CODE_SPACE;
501 else if (!strcmp (space_identifier, "data"))
502 return TYPE_INSTANCE_FLAG_DATA_SPACE;
503 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
504 && gdbarch_address_class_name_to_type_flags (gdbarch,
505 space_identifier,
506 &type_flags))
507 return type_flags;
508 else
509 error (_("Unknown address space specifier: \"%s\""), space_identifier);
510 }
511
512 /* Identify address space identifier by integer flag as defined in
513 gdbtypes.h -- return the string version of the adress space name. */
514
515 const char *
516 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
517 {
518 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
519 return "code";
520 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
521 return "data";
522 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
523 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
524 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
525 else
526 return NULL;
527 }
528
529 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
530
531 If STORAGE is non-NULL, create the new type instance there.
532 STORAGE must be in the same obstack as TYPE. */
533
534 static struct type *
535 make_qualified_type (struct type *type, int new_flags,
536 struct type *storage)
537 {
538 struct type *ntype;
539
540 ntype = type;
541 do
542 {
543 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
544 return ntype;
545 ntype = TYPE_CHAIN (ntype);
546 }
547 while (ntype != type);
548
549 /* Create a new type instance. */
550 if (storage == NULL)
551 ntype = alloc_type_instance (type);
552 else
553 {
554 /* If STORAGE was provided, it had better be in the same objfile
555 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
556 if one objfile is freed and the other kept, we'd have
557 dangling pointers. */
558 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
559
560 ntype = storage;
561 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
562 TYPE_CHAIN (ntype) = ntype;
563 }
564
565 /* Pointers or references to the original type are not relevant to
566 the new type. */
567 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
568 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
569
570 /* Chain the new qualified type to the old type. */
571 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
572 TYPE_CHAIN (type) = ntype;
573
574 /* Now set the instance flags and return the new type. */
575 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
576
577 /* Set length of new type to that of the original type. */
578 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
579
580 return ntype;
581 }
582
583 /* Make an address-space-delimited variant of a type -- a type that
584 is identical to the one supplied except that it has an address
585 space attribute attached to it (such as "code" or "data").
586
587 The space attributes "code" and "data" are for Harvard
588 architectures. The address space attributes are for architectures
589 which have alternately sized pointers or pointers with alternate
590 representations. */
591
592 struct type *
593 make_type_with_address_space (struct type *type, int space_flag)
594 {
595 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
596 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
597 | TYPE_INSTANCE_FLAG_DATA_SPACE
598 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
599 | space_flag);
600
601 return make_qualified_type (type, new_flags, NULL);
602 }
603
604 /* Make a "c-v" variant of a type -- a type that is identical to the
605 one supplied except that it may have const or volatile attributes
606 CNST is a flag for setting the const attribute
607 VOLTL is a flag for setting the volatile attribute
608 TYPE is the base type whose variant we are creating.
609
610 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
611 storage to hold the new qualified type; *TYPEPTR and TYPE must be
612 in the same objfile. Otherwise, allocate fresh memory for the new
613 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
614 new type we construct. */
615 struct type *
616 make_cv_type (int cnst, int voltl,
617 struct type *type,
618 struct type **typeptr)
619 {
620 struct type *ntype; /* New type */
621
622 int new_flags = (TYPE_INSTANCE_FLAGS (type)
623 & ~(TYPE_INSTANCE_FLAG_CONST
624 | TYPE_INSTANCE_FLAG_VOLATILE));
625
626 if (cnst)
627 new_flags |= TYPE_INSTANCE_FLAG_CONST;
628
629 if (voltl)
630 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
631
632 if (typeptr && *typeptr != NULL)
633 {
634 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
635 a C-V variant chain that threads across objfiles: if one
636 objfile gets freed, then the other has a broken C-V chain.
637
638 This code used to try to copy over the main type from TYPE to
639 *TYPEPTR if they were in different objfiles, but that's
640 wrong, too: TYPE may have a field list or member function
641 lists, which refer to types of their own, etc. etc. The
642 whole shebang would need to be copied over recursively; you
643 can't have inter-objfile pointers. The only thing to do is
644 to leave stub types as stub types, and look them up afresh by
645 name each time you encounter them. */
646 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
647 }
648
649 ntype = make_qualified_type (type, new_flags,
650 typeptr ? *typeptr : NULL);
651
652 if (typeptr != NULL)
653 *typeptr = ntype;
654
655 return ntype;
656 }
657
658 /* Replace the contents of ntype with the type *type. This changes the
659 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
660 the changes are propogated to all types in the TYPE_CHAIN.
661
662 In order to build recursive types, it's inevitable that we'll need
663 to update types in place --- but this sort of indiscriminate
664 smashing is ugly, and needs to be replaced with something more
665 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
666 clear if more steps are needed. */
667 void
668 replace_type (struct type *ntype, struct type *type)
669 {
670 struct type *chain;
671
672 /* These two types had better be in the same objfile. Otherwise,
673 the assignment of one type's main type structure to the other
674 will produce a type with references to objects (names; field
675 lists; etc.) allocated on an objfile other than its own. */
676 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
677
678 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
679
680 /* The type length is not a part of the main type. Update it for
681 each type on the variant chain. */
682 chain = ntype;
683 do
684 {
685 /* Assert that this element of the chain has no address-class bits
686 set in its flags. Such type variants might have type lengths
687 which are supposed to be different from the non-address-class
688 variants. This assertion shouldn't ever be triggered because
689 symbol readers which do construct address-class variants don't
690 call replace_type(). */
691 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
692
693 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
694 chain = TYPE_CHAIN (chain);
695 }
696 while (ntype != chain);
697
698 /* Assert that the two types have equivalent instance qualifiers.
699 This should be true for at least all of our debug readers. */
700 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
701 }
702
703 /* Implement direct support for MEMBER_TYPE in GNU C++.
704 May need to construct such a type if this is the first use.
705 The TYPE is the type of the member. The DOMAIN is the type
706 of the aggregate that the member belongs to. */
707
708 struct type *
709 lookup_memberptr_type (struct type *type, struct type *domain)
710 {
711 struct type *mtype;
712
713 mtype = alloc_type_copy (type);
714 smash_to_memberptr_type (mtype, domain, type);
715 return mtype;
716 }
717
718 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
719
720 struct type *
721 lookup_methodptr_type (struct type *to_type)
722 {
723 struct type *mtype;
724
725 mtype = alloc_type_copy (to_type);
726 smash_to_methodptr_type (mtype, to_type);
727 return mtype;
728 }
729
730 /* Allocate a stub method whose return type is TYPE. This apparently
731 happens for speed of symbol reading, since parsing out the
732 arguments to the method is cpu-intensive, the way we are doing it.
733 So, we will fill in arguments later. This always returns a fresh
734 type. */
735
736 struct type *
737 allocate_stub_method (struct type *type)
738 {
739 struct type *mtype;
740
741 mtype = alloc_type_copy (type);
742 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
743 TYPE_LENGTH (mtype) = 1;
744 TYPE_STUB (mtype) = 1;
745 TYPE_TARGET_TYPE (mtype) = type;
746 /* _DOMAIN_TYPE (mtype) = unknown yet */
747 return mtype;
748 }
749
750 /* Create a range type using either a blank type supplied in
751 RESULT_TYPE, or creating a new type, inheriting the objfile from
752 INDEX_TYPE.
753
754 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
755 to HIGH_BOUND, inclusive.
756
757 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
758 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
759
760 struct type *
761 create_range_type (struct type *result_type, struct type *index_type,
762 LONGEST low_bound, LONGEST high_bound)
763 {
764 if (result_type == NULL)
765 result_type = alloc_type_copy (index_type);
766 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
767 TYPE_TARGET_TYPE (result_type) = index_type;
768 if (TYPE_STUB (index_type))
769 TYPE_TARGET_STUB (result_type) = 1;
770 else
771 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
772 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
773 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
774 TYPE_LOW_BOUND (result_type) = low_bound;
775 TYPE_HIGH_BOUND (result_type) = high_bound;
776
777 if (low_bound >= 0)
778 TYPE_UNSIGNED (result_type) = 1;
779
780 return result_type;
781 }
782
783 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
784 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
785 bounds will fit in LONGEST), or -1 otherwise. */
786
787 int
788 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
789 {
790 CHECK_TYPEDEF (type);
791 switch (TYPE_CODE (type))
792 {
793 case TYPE_CODE_RANGE:
794 *lowp = TYPE_LOW_BOUND (type);
795 *highp = TYPE_HIGH_BOUND (type);
796 return 1;
797 case TYPE_CODE_ENUM:
798 if (TYPE_NFIELDS (type) > 0)
799 {
800 /* The enums may not be sorted by value, so search all
801 entries. */
802 int i;
803
804 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
805 for (i = 0; i < TYPE_NFIELDS (type); i++)
806 {
807 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
808 *lowp = TYPE_FIELD_ENUMVAL (type, i);
809 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
810 *highp = TYPE_FIELD_ENUMVAL (type, i);
811 }
812
813 /* Set unsigned indicator if warranted. */
814 if (*lowp >= 0)
815 {
816 TYPE_UNSIGNED (type) = 1;
817 }
818 }
819 else
820 {
821 *lowp = 0;
822 *highp = -1;
823 }
824 return 0;
825 case TYPE_CODE_BOOL:
826 *lowp = 0;
827 *highp = 1;
828 return 0;
829 case TYPE_CODE_INT:
830 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
831 return -1;
832 if (!TYPE_UNSIGNED (type))
833 {
834 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
835 *highp = -*lowp - 1;
836 return 0;
837 }
838 /* ... fall through for unsigned ints ... */
839 case TYPE_CODE_CHAR:
840 *lowp = 0;
841 /* This round-about calculation is to avoid shifting by
842 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
843 if TYPE_LENGTH (type) == sizeof (LONGEST). */
844 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
845 *highp = (*highp - 1) | *highp;
846 return 0;
847 default:
848 return -1;
849 }
850 }
851
852 /* Assuming TYPE is a simple, non-empty array type, compute its upper
853 and lower bound. Save the low bound into LOW_BOUND if not NULL.
854 Save the high bound into HIGH_BOUND if not NULL.
855
856 Return 1 if the operation was successful. Return zero otherwise,
857 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
858
859 We now simply use get_discrete_bounds call to get the values
860 of the low and high bounds.
861 get_discrete_bounds can return three values:
862 1, meaning that index is a range,
863 0, meaning that index is a discrete type,
864 or -1 for failure. */
865
866 int
867 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
868 {
869 struct type *index = TYPE_INDEX_TYPE (type);
870 LONGEST low = 0;
871 LONGEST high = 0;
872 int res;
873
874 if (index == NULL)
875 return 0;
876
877 res = get_discrete_bounds (index, &low, &high);
878 if (res == -1)
879 return 0;
880
881 /* Check if the array bounds are undefined. */
882 if (res == 1
883 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
884 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
885 return 0;
886
887 if (low_bound)
888 *low_bound = low;
889
890 if (high_bound)
891 *high_bound = high;
892
893 return 1;
894 }
895
896 /* Create an array type using either a blank type supplied in
897 RESULT_TYPE, or creating a new type, inheriting the objfile from
898 RANGE_TYPE.
899
900 Elements will be of type ELEMENT_TYPE, the indices will be of type
901 RANGE_TYPE.
902
903 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
904 sure it is TYPE_CODE_UNDEF before we bash it into an array
905 type? */
906
907 struct type *
908 create_array_type (struct type *result_type,
909 struct type *element_type,
910 struct type *range_type)
911 {
912 LONGEST low_bound, high_bound;
913
914 if (result_type == NULL)
915 result_type = alloc_type_copy (range_type);
916
917 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
918 TYPE_TARGET_TYPE (result_type) = element_type;
919 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
920 low_bound = high_bound = 0;
921 CHECK_TYPEDEF (element_type);
922 /* Be careful when setting the array length. Ada arrays can be
923 empty arrays with the high_bound being smaller than the low_bound.
924 In such cases, the array length should be zero. */
925 if (high_bound < low_bound)
926 TYPE_LENGTH (result_type) = 0;
927 else
928 TYPE_LENGTH (result_type) =
929 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
930 TYPE_NFIELDS (result_type) = 1;
931 TYPE_FIELDS (result_type) =
932 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
933 TYPE_INDEX_TYPE (result_type) = range_type;
934 TYPE_VPTR_FIELDNO (result_type) = -1;
935
936 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
937 if (TYPE_LENGTH (result_type) == 0)
938 TYPE_TARGET_STUB (result_type) = 1;
939
940 return result_type;
941 }
942
943 struct type *
944 lookup_array_range_type (struct type *element_type,
945 int low_bound, int high_bound)
946 {
947 struct gdbarch *gdbarch = get_type_arch (element_type);
948 struct type *index_type = builtin_type (gdbarch)->builtin_int;
949 struct type *range_type
950 = create_range_type (NULL, index_type, low_bound, high_bound);
951
952 return create_array_type (NULL, element_type, range_type);
953 }
954
955 /* Create a string type using either a blank type supplied in
956 RESULT_TYPE, or creating a new type. String types are similar
957 enough to array of char types that we can use create_array_type to
958 build the basic type and then bash it into a string type.
959
960 For fixed length strings, the range type contains 0 as the lower
961 bound and the length of the string minus one as the upper bound.
962
963 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
964 sure it is TYPE_CODE_UNDEF before we bash it into a string
965 type? */
966
967 struct type *
968 create_string_type (struct type *result_type,
969 struct type *string_char_type,
970 struct type *range_type)
971 {
972 result_type = create_array_type (result_type,
973 string_char_type,
974 range_type);
975 TYPE_CODE (result_type) = TYPE_CODE_STRING;
976 return result_type;
977 }
978
979 struct type *
980 lookup_string_range_type (struct type *string_char_type,
981 int low_bound, int high_bound)
982 {
983 struct type *result_type;
984
985 result_type = lookup_array_range_type (string_char_type,
986 low_bound, high_bound);
987 TYPE_CODE (result_type) = TYPE_CODE_STRING;
988 return result_type;
989 }
990
991 struct type *
992 create_set_type (struct type *result_type, struct type *domain_type)
993 {
994 if (result_type == NULL)
995 result_type = alloc_type_copy (domain_type);
996
997 TYPE_CODE (result_type) = TYPE_CODE_SET;
998 TYPE_NFIELDS (result_type) = 1;
999 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1000
1001 if (!TYPE_STUB (domain_type))
1002 {
1003 LONGEST low_bound, high_bound, bit_length;
1004
1005 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1006 low_bound = high_bound = 0;
1007 bit_length = high_bound - low_bound + 1;
1008 TYPE_LENGTH (result_type)
1009 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1010 if (low_bound >= 0)
1011 TYPE_UNSIGNED (result_type) = 1;
1012 }
1013 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1014
1015 return result_type;
1016 }
1017
1018 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1019 and any array types nested inside it. */
1020
1021 void
1022 make_vector_type (struct type *array_type)
1023 {
1024 struct type *inner_array, *elt_type;
1025 int flags;
1026
1027 /* Find the innermost array type, in case the array is
1028 multi-dimensional. */
1029 inner_array = array_type;
1030 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1031 inner_array = TYPE_TARGET_TYPE (inner_array);
1032
1033 elt_type = TYPE_TARGET_TYPE (inner_array);
1034 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1035 {
1036 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1037 elt_type = make_qualified_type (elt_type, flags, NULL);
1038 TYPE_TARGET_TYPE (inner_array) = elt_type;
1039 }
1040
1041 TYPE_VECTOR (array_type) = 1;
1042 }
1043
1044 struct type *
1045 init_vector_type (struct type *elt_type, int n)
1046 {
1047 struct type *array_type;
1048
1049 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1050 make_vector_type (array_type);
1051 return array_type;
1052 }
1053
1054 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1055 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1056 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1057 TYPE doesn't include the offset (that's the value of the MEMBER
1058 itself), but does include the structure type into which it points
1059 (for some reason).
1060
1061 When "smashing" the type, we preserve the objfile that the old type
1062 pointed to, since we aren't changing where the type is actually
1063 allocated. */
1064
1065 void
1066 smash_to_memberptr_type (struct type *type, struct type *domain,
1067 struct type *to_type)
1068 {
1069 smash_type (type);
1070 TYPE_TARGET_TYPE (type) = to_type;
1071 TYPE_DOMAIN_TYPE (type) = domain;
1072 /* Assume that a data member pointer is the same size as a normal
1073 pointer. */
1074 TYPE_LENGTH (type)
1075 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1076 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1077 }
1078
1079 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1080
1081 When "smashing" the type, we preserve the objfile that the old type
1082 pointed to, since we aren't changing where the type is actually
1083 allocated. */
1084
1085 void
1086 smash_to_methodptr_type (struct type *type, struct type *to_type)
1087 {
1088 smash_type (type);
1089 TYPE_TARGET_TYPE (type) = to_type;
1090 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1091 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1092 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1093 }
1094
1095 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1096 METHOD just means `function that gets an extra "this" argument'.
1097
1098 When "smashing" the type, we preserve the objfile that the old type
1099 pointed to, since we aren't changing where the type is actually
1100 allocated. */
1101
1102 void
1103 smash_to_method_type (struct type *type, struct type *domain,
1104 struct type *to_type, struct field *args,
1105 int nargs, int varargs)
1106 {
1107 smash_type (type);
1108 TYPE_TARGET_TYPE (type) = to_type;
1109 TYPE_DOMAIN_TYPE (type) = domain;
1110 TYPE_FIELDS (type) = args;
1111 TYPE_NFIELDS (type) = nargs;
1112 if (varargs)
1113 TYPE_VARARGS (type) = 1;
1114 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1115 TYPE_CODE (type) = TYPE_CODE_METHOD;
1116 }
1117
1118 /* Return a typename for a struct/union/enum type without "struct ",
1119 "union ", or "enum ". If the type has a NULL name, return NULL. */
1120
1121 const char *
1122 type_name_no_tag (const struct type *type)
1123 {
1124 if (TYPE_TAG_NAME (type) != NULL)
1125 return TYPE_TAG_NAME (type);
1126
1127 /* Is there code which expects this to return the name if there is
1128 no tag name? My guess is that this is mainly used for C++ in
1129 cases where the two will always be the same. */
1130 return TYPE_NAME (type);
1131 }
1132
1133 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1134 Since GCC PR debug/47510 DWARF provides associated information to detect the
1135 anonymous class linkage name from its typedef.
1136
1137 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1138 apply it itself. */
1139
1140 const char *
1141 type_name_no_tag_or_error (struct type *type)
1142 {
1143 struct type *saved_type = type;
1144 const char *name;
1145 struct objfile *objfile;
1146
1147 CHECK_TYPEDEF (type);
1148
1149 name = type_name_no_tag (type);
1150 if (name != NULL)
1151 return name;
1152
1153 name = type_name_no_tag (saved_type);
1154 objfile = TYPE_OBJFILE (saved_type);
1155 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1156 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1157 }
1158
1159 /* Lookup a typedef or primitive type named NAME, visible in lexical
1160 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1161 suitably defined. */
1162
1163 struct type *
1164 lookup_typename (const struct language_defn *language,
1165 struct gdbarch *gdbarch, const char *name,
1166 const struct block *block, int noerr)
1167 {
1168 struct symbol *sym;
1169 struct type *type;
1170
1171 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1172 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1173 return SYMBOL_TYPE (sym);
1174
1175 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1176 if (type)
1177 return type;
1178
1179 if (noerr)
1180 return NULL;
1181 error (_("No type named %s."), name);
1182 }
1183
1184 struct type *
1185 lookup_unsigned_typename (const struct language_defn *language,
1186 struct gdbarch *gdbarch, const char *name)
1187 {
1188 char *uns = alloca (strlen (name) + 10);
1189
1190 strcpy (uns, "unsigned ");
1191 strcpy (uns + 9, name);
1192 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1193 }
1194
1195 struct type *
1196 lookup_signed_typename (const struct language_defn *language,
1197 struct gdbarch *gdbarch, const char *name)
1198 {
1199 struct type *t;
1200 char *uns = alloca (strlen (name) + 8);
1201
1202 strcpy (uns, "signed ");
1203 strcpy (uns + 7, name);
1204 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1205 /* If we don't find "signed FOO" just try again with plain "FOO". */
1206 if (t != NULL)
1207 return t;
1208 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1209 }
1210
1211 /* Lookup a structure type named "struct NAME",
1212 visible in lexical block BLOCK. */
1213
1214 struct type *
1215 lookup_struct (const char *name, struct block *block)
1216 {
1217 struct symbol *sym;
1218
1219 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1220
1221 if (sym == NULL)
1222 {
1223 error (_("No struct type named %s."), name);
1224 }
1225 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1226 {
1227 error (_("This context has class, union or enum %s, not a struct."),
1228 name);
1229 }
1230 return (SYMBOL_TYPE (sym));
1231 }
1232
1233 /* Lookup a union type named "union NAME",
1234 visible in lexical block BLOCK. */
1235
1236 struct type *
1237 lookup_union (const char *name, struct block *block)
1238 {
1239 struct symbol *sym;
1240 struct type *t;
1241
1242 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1243
1244 if (sym == NULL)
1245 error (_("No union type named %s."), name);
1246
1247 t = SYMBOL_TYPE (sym);
1248
1249 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1250 return t;
1251
1252 /* If we get here, it's not a union. */
1253 error (_("This context has class, struct or enum %s, not a union."),
1254 name);
1255 }
1256
1257
1258 /* Lookup an enum type named "enum NAME",
1259 visible in lexical block BLOCK. */
1260
1261 struct type *
1262 lookup_enum (const char *name, struct block *block)
1263 {
1264 struct symbol *sym;
1265
1266 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1267 if (sym == NULL)
1268 {
1269 error (_("No enum type named %s."), name);
1270 }
1271 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1272 {
1273 error (_("This context has class, struct or union %s, not an enum."),
1274 name);
1275 }
1276 return (SYMBOL_TYPE (sym));
1277 }
1278
1279 /* Lookup a template type named "template NAME<TYPE>",
1280 visible in lexical block BLOCK. */
1281
1282 struct type *
1283 lookup_template_type (char *name, struct type *type,
1284 struct block *block)
1285 {
1286 struct symbol *sym;
1287 char *nam = (char *)
1288 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1289
1290 strcpy (nam, name);
1291 strcat (nam, "<");
1292 strcat (nam, TYPE_NAME (type));
1293 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1294
1295 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1296
1297 if (sym == NULL)
1298 {
1299 error (_("No template type named %s."), name);
1300 }
1301 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1302 {
1303 error (_("This context has class, union or enum %s, not a struct."),
1304 name);
1305 }
1306 return (SYMBOL_TYPE (sym));
1307 }
1308
1309 /* Given a type TYPE, lookup the type of the component of type named
1310 NAME.
1311
1312 TYPE can be either a struct or union, or a pointer or reference to
1313 a struct or union. If it is a pointer or reference, its target
1314 type is automatically used. Thus '.' and '->' are interchangable,
1315 as specified for the definitions of the expression element types
1316 STRUCTOP_STRUCT and STRUCTOP_PTR.
1317
1318 If NOERR is nonzero, return zero if NAME is not suitably defined.
1319 If NAME is the name of a baseclass type, return that type. */
1320
1321 struct type *
1322 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1323 {
1324 int i;
1325 char *typename;
1326
1327 for (;;)
1328 {
1329 CHECK_TYPEDEF (type);
1330 if (TYPE_CODE (type) != TYPE_CODE_PTR
1331 && TYPE_CODE (type) != TYPE_CODE_REF)
1332 break;
1333 type = TYPE_TARGET_TYPE (type);
1334 }
1335
1336 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1337 && TYPE_CODE (type) != TYPE_CODE_UNION)
1338 {
1339 typename = type_to_string (type);
1340 make_cleanup (xfree, typename);
1341 error (_("Type %s is not a structure or union type."), typename);
1342 }
1343
1344 #if 0
1345 /* FIXME: This change put in by Michael seems incorrect for the case
1346 where the structure tag name is the same as the member name.
1347 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1348 foo; } bell;" Disabled by fnf. */
1349 {
1350 char *typename;
1351
1352 typename = type_name_no_tag (type);
1353 if (typename != NULL && strcmp (typename, name) == 0)
1354 return type;
1355 }
1356 #endif
1357
1358 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1359 {
1360 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1361
1362 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1363 {
1364 return TYPE_FIELD_TYPE (type, i);
1365 }
1366 else if (!t_field_name || *t_field_name == '\0')
1367 {
1368 struct type *subtype
1369 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1370
1371 if (subtype != NULL)
1372 return subtype;
1373 }
1374 }
1375
1376 /* OK, it's not in this class. Recursively check the baseclasses. */
1377 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1378 {
1379 struct type *t;
1380
1381 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1382 if (t != NULL)
1383 {
1384 return t;
1385 }
1386 }
1387
1388 if (noerr)
1389 {
1390 return NULL;
1391 }
1392
1393 typename = type_to_string (type);
1394 make_cleanup (xfree, typename);
1395 error (_("Type %s has no component named %s."), typename, name);
1396 }
1397
1398 /* Lookup the vptr basetype/fieldno values for TYPE.
1399 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1400 vptr_fieldno. Also, if found and basetype is from the same objfile,
1401 cache the results.
1402 If not found, return -1 and ignore BASETYPEP.
1403 Callers should be aware that in some cases (for example,
1404 the type or one of its baseclasses is a stub type and we are
1405 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1406 this function will not be able to find the
1407 virtual function table pointer, and vptr_fieldno will remain -1 and
1408 vptr_basetype will remain NULL or incomplete. */
1409
1410 int
1411 get_vptr_fieldno (struct type *type, struct type **basetypep)
1412 {
1413 CHECK_TYPEDEF (type);
1414
1415 if (TYPE_VPTR_FIELDNO (type) < 0)
1416 {
1417 int i;
1418
1419 /* We must start at zero in case the first (and only) baseclass
1420 is virtual (and hence we cannot share the table pointer). */
1421 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1422 {
1423 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1424 int fieldno;
1425 struct type *basetype;
1426
1427 fieldno = get_vptr_fieldno (baseclass, &basetype);
1428 if (fieldno >= 0)
1429 {
1430 /* If the type comes from a different objfile we can't cache
1431 it, it may have a different lifetime. PR 2384 */
1432 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1433 {
1434 TYPE_VPTR_FIELDNO (type) = fieldno;
1435 TYPE_VPTR_BASETYPE (type) = basetype;
1436 }
1437 if (basetypep)
1438 *basetypep = basetype;
1439 return fieldno;
1440 }
1441 }
1442
1443 /* Not found. */
1444 return -1;
1445 }
1446 else
1447 {
1448 if (basetypep)
1449 *basetypep = TYPE_VPTR_BASETYPE (type);
1450 return TYPE_VPTR_FIELDNO (type);
1451 }
1452 }
1453
1454 static void
1455 stub_noname_complaint (void)
1456 {
1457 complaint (&symfile_complaints, _("stub type has NULL name"));
1458 }
1459
1460 /* Find the real type of TYPE. This function returns the real type,
1461 after removing all layers of typedefs, and completing opaque or stub
1462 types. Completion changes the TYPE argument, but stripping of
1463 typedefs does not.
1464
1465 Instance flags (e.g. const/volatile) are preserved as typedefs are
1466 stripped. If necessary a new qualified form of the underlying type
1467 is created.
1468
1469 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1470 not been computed and we're either in the middle of reading symbols, or
1471 there was no name for the typedef in the debug info.
1472
1473 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1474 QUITs in the symbol reading code can also throw.
1475 Thus this function can throw an exception.
1476
1477 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1478 the target type.
1479
1480 If this is a stubbed struct (i.e. declared as struct foo *), see if
1481 we can find a full definition in some other file. If so, copy this
1482 definition, so we can use it in future. There used to be a comment
1483 (but not any code) that if we don't find a full definition, we'd
1484 set a flag so we don't spend time in the future checking the same
1485 type. That would be a mistake, though--we might load in more
1486 symbols which contain a full definition for the type. */
1487
1488 struct type *
1489 check_typedef (struct type *type)
1490 {
1491 struct type *orig_type = type;
1492 /* While we're removing typedefs, we don't want to lose qualifiers.
1493 E.g., const/volatile. */
1494 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1495
1496 gdb_assert (type);
1497
1498 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1499 {
1500 if (!TYPE_TARGET_TYPE (type))
1501 {
1502 const char *name;
1503 struct symbol *sym;
1504
1505 /* It is dangerous to call lookup_symbol if we are currently
1506 reading a symtab. Infinite recursion is one danger. */
1507 if (currently_reading_symtab)
1508 return make_qualified_type (type, instance_flags, NULL);
1509
1510 name = type_name_no_tag (type);
1511 /* FIXME: shouldn't we separately check the TYPE_NAME and
1512 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1513 VAR_DOMAIN as appropriate? (this code was written before
1514 TYPE_NAME and TYPE_TAG_NAME were separate). */
1515 if (name == NULL)
1516 {
1517 stub_noname_complaint ();
1518 return make_qualified_type (type, instance_flags, NULL);
1519 }
1520 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1521 if (sym)
1522 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1523 else /* TYPE_CODE_UNDEF */
1524 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1525 }
1526 type = TYPE_TARGET_TYPE (type);
1527
1528 /* Preserve the instance flags as we traverse down the typedef chain.
1529
1530 Handling address spaces/classes is nasty, what do we do if there's a
1531 conflict?
1532 E.g., what if an outer typedef marks the type as class_1 and an inner
1533 typedef marks the type as class_2?
1534 This is the wrong place to do such error checking. We leave it to
1535 the code that created the typedef in the first place to flag the
1536 error. We just pick the outer address space (akin to letting the
1537 outer cast in a chain of casting win), instead of assuming
1538 "it can't happen". */
1539 {
1540 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1541 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1542 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1543 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1544
1545 /* Treat code vs data spaces and address classes separately. */
1546 if ((instance_flags & ALL_SPACES) != 0)
1547 new_instance_flags &= ~ALL_SPACES;
1548 if ((instance_flags & ALL_CLASSES) != 0)
1549 new_instance_flags &= ~ALL_CLASSES;
1550
1551 instance_flags |= new_instance_flags;
1552 }
1553 }
1554
1555 /* If this is a struct/class/union with no fields, then check
1556 whether a full definition exists somewhere else. This is for
1557 systems where a type definition with no fields is issued for such
1558 types, instead of identifying them as stub types in the first
1559 place. */
1560
1561 if (TYPE_IS_OPAQUE (type)
1562 && opaque_type_resolution
1563 && !currently_reading_symtab)
1564 {
1565 const char *name = type_name_no_tag (type);
1566 struct type *newtype;
1567
1568 if (name == NULL)
1569 {
1570 stub_noname_complaint ();
1571 return make_qualified_type (type, instance_flags, NULL);
1572 }
1573 newtype = lookup_transparent_type (name);
1574
1575 if (newtype)
1576 {
1577 /* If the resolved type and the stub are in the same
1578 objfile, then replace the stub type with the real deal.
1579 But if they're in separate objfiles, leave the stub
1580 alone; we'll just look up the transparent type every time
1581 we call check_typedef. We can't create pointers between
1582 types allocated to different objfiles, since they may
1583 have different lifetimes. Trying to copy NEWTYPE over to
1584 TYPE's objfile is pointless, too, since you'll have to
1585 move over any other types NEWTYPE refers to, which could
1586 be an unbounded amount of stuff. */
1587 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1588 type = make_qualified_type (newtype,
1589 TYPE_INSTANCE_FLAGS (type),
1590 type);
1591 else
1592 type = newtype;
1593 }
1594 }
1595 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1596 types. */
1597 else if (TYPE_STUB (type) && !currently_reading_symtab)
1598 {
1599 const char *name = type_name_no_tag (type);
1600 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1601 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1602 as appropriate? (this code was written before TYPE_NAME and
1603 TYPE_TAG_NAME were separate). */
1604 struct symbol *sym;
1605
1606 if (name == NULL)
1607 {
1608 stub_noname_complaint ();
1609 return make_qualified_type (type, instance_flags, NULL);
1610 }
1611 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1612 if (sym)
1613 {
1614 /* Same as above for opaque types, we can replace the stub
1615 with the complete type only if they are in the same
1616 objfile. */
1617 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1618 type = make_qualified_type (SYMBOL_TYPE (sym),
1619 TYPE_INSTANCE_FLAGS (type),
1620 type);
1621 else
1622 type = SYMBOL_TYPE (sym);
1623 }
1624 }
1625
1626 if (TYPE_TARGET_STUB (type))
1627 {
1628 struct type *range_type;
1629 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1630
1631 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1632 {
1633 /* Nothing we can do. */
1634 }
1635 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1636 && TYPE_NFIELDS (type) == 1
1637 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1638 == TYPE_CODE_RANGE))
1639 {
1640 /* Now recompute the length of the array type, based on its
1641 number of elements and the target type's length.
1642 Watch out for Ada null Ada arrays where the high bound
1643 is smaller than the low bound. */
1644 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1645 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1646 ULONGEST len;
1647
1648 if (high_bound < low_bound)
1649 len = 0;
1650 else
1651 {
1652 /* For now, we conservatively take the array length to be 0
1653 if its length exceeds UINT_MAX. The code below assumes
1654 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1655 which is technically not guaranteed by C, but is usually true
1656 (because it would be true if x were unsigned with its
1657 high-order bit on). It uses the fact that
1658 high_bound-low_bound is always representable in
1659 ULONGEST and that if high_bound-low_bound+1 overflows,
1660 it overflows to 0. We must change these tests if we
1661 decide to increase the representation of TYPE_LENGTH
1662 from unsigned int to ULONGEST. */
1663 ULONGEST ulow = low_bound, uhigh = high_bound;
1664 ULONGEST tlen = TYPE_LENGTH (target_type);
1665
1666 len = tlen * (uhigh - ulow + 1);
1667 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1668 || len > UINT_MAX)
1669 len = 0;
1670 }
1671 TYPE_LENGTH (type) = len;
1672 TYPE_TARGET_STUB (type) = 0;
1673 }
1674 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1675 {
1676 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1677 TYPE_TARGET_STUB (type) = 0;
1678 }
1679 }
1680
1681 type = make_qualified_type (type, instance_flags, NULL);
1682
1683 /* Cache TYPE_LENGTH for future use. */
1684 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1685
1686 return type;
1687 }
1688
1689 /* Parse a type expression in the string [P..P+LENGTH). If an error
1690 occurs, silently return a void type. */
1691
1692 static struct type *
1693 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1694 {
1695 struct ui_file *saved_gdb_stderr;
1696 struct type *type = NULL; /* Initialize to keep gcc happy. */
1697 volatile struct gdb_exception except;
1698
1699 /* Suppress error messages. */
1700 saved_gdb_stderr = gdb_stderr;
1701 gdb_stderr = ui_file_new ();
1702
1703 /* Call parse_and_eval_type() without fear of longjmp()s. */
1704 TRY_CATCH (except, RETURN_MASK_ERROR)
1705 {
1706 type = parse_and_eval_type (p, length);
1707 }
1708
1709 if (except.reason < 0)
1710 type = builtin_type (gdbarch)->builtin_void;
1711
1712 /* Stop suppressing error messages. */
1713 ui_file_delete (gdb_stderr);
1714 gdb_stderr = saved_gdb_stderr;
1715
1716 return type;
1717 }
1718
1719 /* Ugly hack to convert method stubs into method types.
1720
1721 He ain't kiddin'. This demangles the name of the method into a
1722 string including argument types, parses out each argument type,
1723 generates a string casting a zero to that type, evaluates the
1724 string, and stuffs the resulting type into an argtype vector!!!
1725 Then it knows the type of the whole function (including argument
1726 types for overloading), which info used to be in the stab's but was
1727 removed to hack back the space required for them. */
1728
1729 static void
1730 check_stub_method (struct type *type, int method_id, int signature_id)
1731 {
1732 struct gdbarch *gdbarch = get_type_arch (type);
1733 struct fn_field *f;
1734 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1735 char *demangled_name = cplus_demangle (mangled_name,
1736 DMGL_PARAMS | DMGL_ANSI);
1737 char *argtypetext, *p;
1738 int depth = 0, argcount = 1;
1739 struct field *argtypes;
1740 struct type *mtype;
1741
1742 /* Make sure we got back a function string that we can use. */
1743 if (demangled_name)
1744 p = strchr (demangled_name, '(');
1745 else
1746 p = NULL;
1747
1748 if (demangled_name == NULL || p == NULL)
1749 error (_("Internal: Cannot demangle mangled name `%s'."),
1750 mangled_name);
1751
1752 /* Now, read in the parameters that define this type. */
1753 p += 1;
1754 argtypetext = p;
1755 while (*p)
1756 {
1757 if (*p == '(' || *p == '<')
1758 {
1759 depth += 1;
1760 }
1761 else if (*p == ')' || *p == '>')
1762 {
1763 depth -= 1;
1764 }
1765 else if (*p == ',' && depth == 0)
1766 {
1767 argcount += 1;
1768 }
1769
1770 p += 1;
1771 }
1772
1773 /* If we read one argument and it was ``void'', don't count it. */
1774 if (strncmp (argtypetext, "(void)", 6) == 0)
1775 argcount -= 1;
1776
1777 /* We need one extra slot, for the THIS pointer. */
1778
1779 argtypes = (struct field *)
1780 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1781 p = argtypetext;
1782
1783 /* Add THIS pointer for non-static methods. */
1784 f = TYPE_FN_FIELDLIST1 (type, method_id);
1785 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1786 argcount = 0;
1787 else
1788 {
1789 argtypes[0].type = lookup_pointer_type (type);
1790 argcount = 1;
1791 }
1792
1793 if (*p != ')') /* () means no args, skip while. */
1794 {
1795 depth = 0;
1796 while (*p)
1797 {
1798 if (depth <= 0 && (*p == ',' || *p == ')'))
1799 {
1800 /* Avoid parsing of ellipsis, they will be handled below.
1801 Also avoid ``void'' as above. */
1802 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1803 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1804 {
1805 argtypes[argcount].type =
1806 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1807 argcount += 1;
1808 }
1809 argtypetext = p + 1;
1810 }
1811
1812 if (*p == '(' || *p == '<')
1813 {
1814 depth += 1;
1815 }
1816 else if (*p == ')' || *p == '>')
1817 {
1818 depth -= 1;
1819 }
1820
1821 p += 1;
1822 }
1823 }
1824
1825 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1826
1827 /* Now update the old "stub" type into a real type. */
1828 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1829 TYPE_DOMAIN_TYPE (mtype) = type;
1830 TYPE_FIELDS (mtype) = argtypes;
1831 TYPE_NFIELDS (mtype) = argcount;
1832 TYPE_STUB (mtype) = 0;
1833 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1834 if (p[-2] == '.')
1835 TYPE_VARARGS (mtype) = 1;
1836
1837 xfree (demangled_name);
1838 }
1839
1840 /* This is the external interface to check_stub_method, above. This
1841 function unstubs all of the signatures for TYPE's METHOD_ID method
1842 name. After calling this function TYPE_FN_FIELD_STUB will be
1843 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1844 correct.
1845
1846 This function unfortunately can not die until stabs do. */
1847
1848 void
1849 check_stub_method_group (struct type *type, int method_id)
1850 {
1851 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1852 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1853 int j, found_stub = 0;
1854
1855 for (j = 0; j < len; j++)
1856 if (TYPE_FN_FIELD_STUB (f, j))
1857 {
1858 found_stub = 1;
1859 check_stub_method (type, method_id, j);
1860 }
1861
1862 /* GNU v3 methods with incorrect names were corrected when we read
1863 in type information, because it was cheaper to do it then. The
1864 only GNU v2 methods with incorrect method names are operators and
1865 destructors; destructors were also corrected when we read in type
1866 information.
1867
1868 Therefore the only thing we need to handle here are v2 operator
1869 names. */
1870 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1871 {
1872 int ret;
1873 char dem_opname[256];
1874
1875 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1876 method_id),
1877 dem_opname, DMGL_ANSI);
1878 if (!ret)
1879 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1880 method_id),
1881 dem_opname, 0);
1882 if (ret)
1883 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1884 }
1885 }
1886
1887 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1888 const struct cplus_struct_type cplus_struct_default = { };
1889
1890 void
1891 allocate_cplus_struct_type (struct type *type)
1892 {
1893 if (HAVE_CPLUS_STRUCT (type))
1894 /* Structure was already allocated. Nothing more to do. */
1895 return;
1896
1897 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1898 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1899 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1900 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1901 }
1902
1903 const struct gnat_aux_type gnat_aux_default =
1904 { NULL };
1905
1906 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1907 and allocate the associated gnat-specific data. The gnat-specific
1908 data is also initialized to gnat_aux_default. */
1909 void
1910 allocate_gnat_aux_type (struct type *type)
1911 {
1912 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1913 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1914 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1915 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1916 }
1917
1918
1919 /* Helper function to initialize the standard scalar types.
1920
1921 If NAME is non-NULL, then we make a copy of the string pointed
1922 to by name in the objfile_obstack for that objfile, and initialize
1923 the type name to that copy. There are places (mipsread.c in particular),
1924 where init_type is called with a NULL value for NAME). */
1925
1926 struct type *
1927 init_type (enum type_code code, int length, int flags,
1928 char *name, struct objfile *objfile)
1929 {
1930 struct type *type;
1931
1932 type = alloc_type (objfile);
1933 TYPE_CODE (type) = code;
1934 TYPE_LENGTH (type) = length;
1935
1936 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1937 if (flags & TYPE_FLAG_UNSIGNED)
1938 TYPE_UNSIGNED (type) = 1;
1939 if (flags & TYPE_FLAG_NOSIGN)
1940 TYPE_NOSIGN (type) = 1;
1941 if (flags & TYPE_FLAG_STUB)
1942 TYPE_STUB (type) = 1;
1943 if (flags & TYPE_FLAG_TARGET_STUB)
1944 TYPE_TARGET_STUB (type) = 1;
1945 if (flags & TYPE_FLAG_STATIC)
1946 TYPE_STATIC (type) = 1;
1947 if (flags & TYPE_FLAG_PROTOTYPED)
1948 TYPE_PROTOTYPED (type) = 1;
1949 if (flags & TYPE_FLAG_INCOMPLETE)
1950 TYPE_INCOMPLETE (type) = 1;
1951 if (flags & TYPE_FLAG_VARARGS)
1952 TYPE_VARARGS (type) = 1;
1953 if (flags & TYPE_FLAG_VECTOR)
1954 TYPE_VECTOR (type) = 1;
1955 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1956 TYPE_STUB_SUPPORTED (type) = 1;
1957 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1958 TYPE_FIXED_INSTANCE (type) = 1;
1959 if (flags & TYPE_FLAG_GNU_IFUNC)
1960 TYPE_GNU_IFUNC (type) = 1;
1961
1962 if (name)
1963 TYPE_NAME (type) = obsavestring (name, strlen (name),
1964 &objfile->objfile_obstack);
1965
1966 /* C++ fancies. */
1967
1968 if (name && strcmp (name, "char") == 0)
1969 TYPE_NOSIGN (type) = 1;
1970
1971 switch (code)
1972 {
1973 case TYPE_CODE_STRUCT:
1974 case TYPE_CODE_UNION:
1975 case TYPE_CODE_NAMESPACE:
1976 INIT_CPLUS_SPECIFIC (type);
1977 break;
1978 case TYPE_CODE_FLT:
1979 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1980 break;
1981 case TYPE_CODE_FUNC:
1982 INIT_FUNC_SPECIFIC (type);
1983 break;
1984 }
1985 return type;
1986 }
1987
1988 int
1989 can_dereference (struct type *t)
1990 {
1991 /* FIXME: Should we return true for references as well as
1992 pointers? */
1993 CHECK_TYPEDEF (t);
1994 return
1995 (t != NULL
1996 && TYPE_CODE (t) == TYPE_CODE_PTR
1997 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1998 }
1999
2000 int
2001 is_integral_type (struct type *t)
2002 {
2003 CHECK_TYPEDEF (t);
2004 return
2005 ((t != NULL)
2006 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2007 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2008 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2009 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2010 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2011 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2012 }
2013
2014 /* Return true if TYPE is scalar. */
2015
2016 static int
2017 is_scalar_type (struct type *type)
2018 {
2019 CHECK_TYPEDEF (type);
2020
2021 switch (TYPE_CODE (type))
2022 {
2023 case TYPE_CODE_ARRAY:
2024 case TYPE_CODE_STRUCT:
2025 case TYPE_CODE_UNION:
2026 case TYPE_CODE_SET:
2027 case TYPE_CODE_STRING:
2028 case TYPE_CODE_BITSTRING:
2029 return 0;
2030 default:
2031 return 1;
2032 }
2033 }
2034
2035 /* Return true if T is scalar, or a composite type which in practice has
2036 the memory layout of a scalar type. E.g., an array or struct with only
2037 one scalar element inside it, or a union with only scalar elements. */
2038
2039 int
2040 is_scalar_type_recursive (struct type *t)
2041 {
2042 CHECK_TYPEDEF (t);
2043
2044 if (is_scalar_type (t))
2045 return 1;
2046 /* Are we dealing with an array or string of known dimensions? */
2047 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2048 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2049 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2050 {
2051 LONGEST low_bound, high_bound;
2052 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2053
2054 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2055
2056 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2057 }
2058 /* Are we dealing with a struct with one element? */
2059 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2060 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2061 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2062 {
2063 int i, n = TYPE_NFIELDS (t);
2064
2065 /* If all elements of the union are scalar, then the union is scalar. */
2066 for (i = 0; i < n; i++)
2067 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2068 return 0;
2069
2070 return 1;
2071 }
2072
2073 return 0;
2074 }
2075
2076 /* A helper function which returns true if types A and B represent the
2077 "same" class type. This is true if the types have the same main
2078 type, or the same name. */
2079
2080 int
2081 class_types_same_p (const struct type *a, const struct type *b)
2082 {
2083 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2084 || (TYPE_NAME (a) && TYPE_NAME (b)
2085 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2086 }
2087
2088 /* If BASE is an ancestor of DCLASS return the distance between them.
2089 otherwise return -1;
2090 eg:
2091
2092 class A {};
2093 class B: public A {};
2094 class C: public B {};
2095 class D: C {};
2096
2097 distance_to_ancestor (A, A, 0) = 0
2098 distance_to_ancestor (A, B, 0) = 1
2099 distance_to_ancestor (A, C, 0) = 2
2100 distance_to_ancestor (A, D, 0) = 3
2101
2102 If PUBLIC is 1 then only public ancestors are considered,
2103 and the function returns the distance only if BASE is a public ancestor
2104 of DCLASS.
2105 Eg:
2106
2107 distance_to_ancestor (A, D, 1) = -1. */
2108
2109 static int
2110 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2111 {
2112 int i;
2113 int d;
2114
2115 CHECK_TYPEDEF (base);
2116 CHECK_TYPEDEF (dclass);
2117
2118 if (class_types_same_p (base, dclass))
2119 return 0;
2120
2121 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2122 {
2123 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2124 continue;
2125
2126 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2127 if (d >= 0)
2128 return 1 + d;
2129 }
2130
2131 return -1;
2132 }
2133
2134 /* Check whether BASE is an ancestor or base class or DCLASS
2135 Return 1 if so, and 0 if not.
2136 Note: If BASE and DCLASS are of the same type, this function
2137 will return 1. So for some class A, is_ancestor (A, A) will
2138 return 1. */
2139
2140 int
2141 is_ancestor (struct type *base, struct type *dclass)
2142 {
2143 return distance_to_ancestor (base, dclass, 0) >= 0;
2144 }
2145
2146 /* Like is_ancestor, but only returns true when BASE is a public
2147 ancestor of DCLASS. */
2148
2149 int
2150 is_public_ancestor (struct type *base, struct type *dclass)
2151 {
2152 return distance_to_ancestor (base, dclass, 1) >= 0;
2153 }
2154
2155 /* A helper function for is_unique_ancestor. */
2156
2157 static int
2158 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2159 int *offset,
2160 const gdb_byte *valaddr, int embedded_offset,
2161 CORE_ADDR address, struct value *val)
2162 {
2163 int i, count = 0;
2164
2165 CHECK_TYPEDEF (base);
2166 CHECK_TYPEDEF (dclass);
2167
2168 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2169 {
2170 struct type *iter;
2171 int this_offset;
2172
2173 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2174
2175 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2176 address, val);
2177
2178 if (class_types_same_p (base, iter))
2179 {
2180 /* If this is the first subclass, set *OFFSET and set count
2181 to 1. Otherwise, if this is at the same offset as
2182 previous instances, do nothing. Otherwise, increment
2183 count. */
2184 if (*offset == -1)
2185 {
2186 *offset = this_offset;
2187 count = 1;
2188 }
2189 else if (this_offset == *offset)
2190 {
2191 /* Nothing. */
2192 }
2193 else
2194 ++count;
2195 }
2196 else
2197 count += is_unique_ancestor_worker (base, iter, offset,
2198 valaddr,
2199 embedded_offset + this_offset,
2200 address, val);
2201 }
2202
2203 return count;
2204 }
2205
2206 /* Like is_ancestor, but only returns true if BASE is a unique base
2207 class of the type of VAL. */
2208
2209 int
2210 is_unique_ancestor (struct type *base, struct value *val)
2211 {
2212 int offset = -1;
2213
2214 return is_unique_ancestor_worker (base, value_type (val), &offset,
2215 value_contents_for_printing (val),
2216 value_embedded_offset (val),
2217 value_address (val), val) == 1;
2218 }
2219
2220 \f
2221
2222 /* Return the sum of the rank of A with the rank of B. */
2223
2224 struct rank
2225 sum_ranks (struct rank a, struct rank b)
2226 {
2227 struct rank c;
2228 c.rank = a.rank + b.rank;
2229 c.subrank = a.subrank + b.subrank;
2230 return c;
2231 }
2232
2233 /* Compare rank A and B and return:
2234 0 if a = b
2235 1 if a is better than b
2236 -1 if b is better than a. */
2237
2238 int
2239 compare_ranks (struct rank a, struct rank b)
2240 {
2241 if (a.rank == b.rank)
2242 {
2243 if (a.subrank == b.subrank)
2244 return 0;
2245 if (a.subrank < b.subrank)
2246 return 1;
2247 if (a.subrank > b.subrank)
2248 return -1;
2249 }
2250
2251 if (a.rank < b.rank)
2252 return 1;
2253
2254 /* a.rank > b.rank */
2255 return -1;
2256 }
2257
2258 /* Functions for overload resolution begin here. */
2259
2260 /* Compare two badness vectors A and B and return the result.
2261 0 => A and B are identical
2262 1 => A and B are incomparable
2263 2 => A is better than B
2264 3 => A is worse than B */
2265
2266 int
2267 compare_badness (struct badness_vector *a, struct badness_vector *b)
2268 {
2269 int i;
2270 int tmp;
2271 short found_pos = 0; /* any positives in c? */
2272 short found_neg = 0; /* any negatives in c? */
2273
2274 /* differing lengths => incomparable */
2275 if (a->length != b->length)
2276 return 1;
2277
2278 /* Subtract b from a */
2279 for (i = 0; i < a->length; i++)
2280 {
2281 tmp = compare_ranks (b->rank[i], a->rank[i]);
2282 if (tmp > 0)
2283 found_pos = 1;
2284 else if (tmp < 0)
2285 found_neg = 1;
2286 }
2287
2288 if (found_pos)
2289 {
2290 if (found_neg)
2291 return 1; /* incomparable */
2292 else
2293 return 3; /* A > B */
2294 }
2295 else
2296 /* no positives */
2297 {
2298 if (found_neg)
2299 return 2; /* A < B */
2300 else
2301 return 0; /* A == B */
2302 }
2303 }
2304
2305 /* Rank a function by comparing its parameter types (PARMS, length
2306 NPARMS), to the types of an argument list (ARGS, length NARGS).
2307 Return a pointer to a badness vector. This has NARGS + 1
2308 entries. */
2309
2310 struct badness_vector *
2311 rank_function (struct type **parms, int nparms,
2312 struct value **args, int nargs)
2313 {
2314 int i;
2315 struct badness_vector *bv;
2316 int min_len = nparms < nargs ? nparms : nargs;
2317
2318 bv = xmalloc (sizeof (struct badness_vector));
2319 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2320 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2321
2322 /* First compare the lengths of the supplied lists.
2323 If there is a mismatch, set it to a high value. */
2324
2325 /* pai/1997-06-03 FIXME: when we have debug info about default
2326 arguments and ellipsis parameter lists, we should consider those
2327 and rank the length-match more finely. */
2328
2329 LENGTH_MATCH (bv) = (nargs != nparms)
2330 ? LENGTH_MISMATCH_BADNESS
2331 : EXACT_MATCH_BADNESS;
2332
2333 /* Now rank all the parameters of the candidate function. */
2334 for (i = 1; i <= min_len; i++)
2335 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2336 args[i - 1]);
2337
2338 /* If more arguments than parameters, add dummy entries. */
2339 for (i = min_len + 1; i <= nargs; i++)
2340 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2341
2342 return bv;
2343 }
2344
2345 /* Compare the names of two integer types, assuming that any sign
2346 qualifiers have been checked already. We do it this way because
2347 there may be an "int" in the name of one of the types. */
2348
2349 static int
2350 integer_types_same_name_p (const char *first, const char *second)
2351 {
2352 int first_p, second_p;
2353
2354 /* If both are shorts, return 1; if neither is a short, keep
2355 checking. */
2356 first_p = (strstr (first, "short") != NULL);
2357 second_p = (strstr (second, "short") != NULL);
2358 if (first_p && second_p)
2359 return 1;
2360 if (first_p || second_p)
2361 return 0;
2362
2363 /* Likewise for long. */
2364 first_p = (strstr (first, "long") != NULL);
2365 second_p = (strstr (second, "long") != NULL);
2366 if (first_p && second_p)
2367 return 1;
2368 if (first_p || second_p)
2369 return 0;
2370
2371 /* Likewise for char. */
2372 first_p = (strstr (first, "char") != NULL);
2373 second_p = (strstr (second, "char") != NULL);
2374 if (first_p && second_p)
2375 return 1;
2376 if (first_p || second_p)
2377 return 0;
2378
2379 /* They must both be ints. */
2380 return 1;
2381 }
2382
2383 /* Compares type A to type B returns 1 if the represent the same type
2384 0 otherwise. */
2385
2386 static int
2387 types_equal (struct type *a, struct type *b)
2388 {
2389 /* Identical type pointers. */
2390 /* However, this still doesn't catch all cases of same type for b
2391 and a. The reason is that builtin types are different from
2392 the same ones constructed from the object. */
2393 if (a == b)
2394 return 1;
2395
2396 /* Resolve typedefs */
2397 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2398 a = check_typedef (a);
2399 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2400 b = check_typedef (b);
2401
2402 /* If after resolving typedefs a and b are not of the same type
2403 code then they are not equal. */
2404 if (TYPE_CODE (a) != TYPE_CODE (b))
2405 return 0;
2406
2407 /* If a and b are both pointers types or both reference types then
2408 they are equal of the same type iff the objects they refer to are
2409 of the same type. */
2410 if (TYPE_CODE (a) == TYPE_CODE_PTR
2411 || TYPE_CODE (a) == TYPE_CODE_REF)
2412 return types_equal (TYPE_TARGET_TYPE (a),
2413 TYPE_TARGET_TYPE (b));
2414
2415 /* Well, damnit, if the names are exactly the same, I'll say they
2416 are exactly the same. This happens when we generate method
2417 stubs. The types won't point to the same address, but they
2418 really are the same. */
2419
2420 if (TYPE_NAME (a) && TYPE_NAME (b)
2421 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2422 return 1;
2423
2424 /* Check if identical after resolving typedefs. */
2425 if (a == b)
2426 return 1;
2427
2428 return 0;
2429 }
2430
2431 /* Compare one type (PARM) for compatibility with another (ARG).
2432 * PARM is intended to be the parameter type of a function; and
2433 * ARG is the supplied argument's type. This function tests if
2434 * the latter can be converted to the former.
2435 * VALUE is the argument's value or NULL if none (or called recursively)
2436 *
2437 * Return 0 if they are identical types;
2438 * Otherwise, return an integer which corresponds to how compatible
2439 * PARM is to ARG. The higher the return value, the worse the match.
2440 * Generally the "bad" conversions are all uniformly assigned a 100. */
2441
2442 struct rank
2443 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2444 {
2445 struct rank rank = {0,0};
2446
2447 if (types_equal (parm, arg))
2448 return EXACT_MATCH_BADNESS;
2449
2450 /* Resolve typedefs */
2451 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2452 parm = check_typedef (parm);
2453 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2454 arg = check_typedef (arg);
2455
2456 /* See through references, since we can almost make non-references
2457 references. */
2458 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2459 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2460 REFERENCE_CONVERSION_BADNESS));
2461 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2462 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2463 REFERENCE_CONVERSION_BADNESS));
2464 if (overload_debug)
2465 /* Debugging only. */
2466 fprintf_filtered (gdb_stderr,
2467 "------ Arg is %s [%d], parm is %s [%d]\n",
2468 TYPE_NAME (arg), TYPE_CODE (arg),
2469 TYPE_NAME (parm), TYPE_CODE (parm));
2470
2471 /* x -> y means arg of type x being supplied for parameter of type y. */
2472
2473 switch (TYPE_CODE (parm))
2474 {
2475 case TYPE_CODE_PTR:
2476 switch (TYPE_CODE (arg))
2477 {
2478 case TYPE_CODE_PTR:
2479
2480 /* Allowed pointer conversions are:
2481 (a) pointer to void-pointer conversion. */
2482 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2483 return VOID_PTR_CONVERSION_BADNESS;
2484
2485 /* (b) pointer to ancestor-pointer conversion. */
2486 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2487 TYPE_TARGET_TYPE (arg),
2488 0);
2489 if (rank.subrank >= 0)
2490 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2491
2492 return INCOMPATIBLE_TYPE_BADNESS;
2493 case TYPE_CODE_ARRAY:
2494 if (types_equal (TYPE_TARGET_TYPE (parm),
2495 TYPE_TARGET_TYPE (arg)))
2496 return EXACT_MATCH_BADNESS;
2497 return INCOMPATIBLE_TYPE_BADNESS;
2498 case TYPE_CODE_FUNC:
2499 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2500 case TYPE_CODE_INT:
2501 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT
2502 && value_as_long (value) == 0)
2503 {
2504 /* Null pointer conversion: allow it to be cast to a pointer.
2505 [4.10.1 of C++ standard draft n3290] */
2506 return NULL_POINTER_CONVERSION_BADNESS;
2507 }
2508 /* fall through */
2509 case TYPE_CODE_ENUM:
2510 case TYPE_CODE_FLAGS:
2511 case TYPE_CODE_CHAR:
2512 case TYPE_CODE_RANGE:
2513 case TYPE_CODE_BOOL:
2514 default:
2515 return INCOMPATIBLE_TYPE_BADNESS;
2516 }
2517 case TYPE_CODE_ARRAY:
2518 switch (TYPE_CODE (arg))
2519 {
2520 case TYPE_CODE_PTR:
2521 case TYPE_CODE_ARRAY:
2522 return rank_one_type (TYPE_TARGET_TYPE (parm),
2523 TYPE_TARGET_TYPE (arg), NULL);
2524 default:
2525 return INCOMPATIBLE_TYPE_BADNESS;
2526 }
2527 case TYPE_CODE_FUNC:
2528 switch (TYPE_CODE (arg))
2529 {
2530 case TYPE_CODE_PTR: /* funcptr -> func */
2531 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2532 default:
2533 return INCOMPATIBLE_TYPE_BADNESS;
2534 }
2535 case TYPE_CODE_INT:
2536 switch (TYPE_CODE (arg))
2537 {
2538 case TYPE_CODE_INT:
2539 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2540 {
2541 /* Deal with signed, unsigned, and plain chars and
2542 signed and unsigned ints. */
2543 if (TYPE_NOSIGN (parm))
2544 {
2545 /* This case only for character types. */
2546 if (TYPE_NOSIGN (arg))
2547 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2548 else /* signed/unsigned char -> plain char */
2549 return INTEGER_CONVERSION_BADNESS;
2550 }
2551 else if (TYPE_UNSIGNED (parm))
2552 {
2553 if (TYPE_UNSIGNED (arg))
2554 {
2555 /* unsigned int -> unsigned int, or
2556 unsigned long -> unsigned long */
2557 if (integer_types_same_name_p (TYPE_NAME (parm),
2558 TYPE_NAME (arg)))
2559 return EXACT_MATCH_BADNESS;
2560 else if (integer_types_same_name_p (TYPE_NAME (arg),
2561 "int")
2562 && integer_types_same_name_p (TYPE_NAME (parm),
2563 "long"))
2564 /* unsigned int -> unsigned long */
2565 return INTEGER_PROMOTION_BADNESS;
2566 else
2567 /* unsigned long -> unsigned int */
2568 return INTEGER_CONVERSION_BADNESS;
2569 }
2570 else
2571 {
2572 if (integer_types_same_name_p (TYPE_NAME (arg),
2573 "long")
2574 && integer_types_same_name_p (TYPE_NAME (parm),
2575 "int"))
2576 /* signed long -> unsigned int */
2577 return INTEGER_CONVERSION_BADNESS;
2578 else
2579 /* signed int/long -> unsigned int/long */
2580 return INTEGER_CONVERSION_BADNESS;
2581 }
2582 }
2583 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2584 {
2585 if (integer_types_same_name_p (TYPE_NAME (parm),
2586 TYPE_NAME (arg)))
2587 return EXACT_MATCH_BADNESS;
2588 else if (integer_types_same_name_p (TYPE_NAME (arg),
2589 "int")
2590 && integer_types_same_name_p (TYPE_NAME (parm),
2591 "long"))
2592 return INTEGER_PROMOTION_BADNESS;
2593 else
2594 return INTEGER_CONVERSION_BADNESS;
2595 }
2596 else
2597 return INTEGER_CONVERSION_BADNESS;
2598 }
2599 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2600 return INTEGER_PROMOTION_BADNESS;
2601 else
2602 return INTEGER_CONVERSION_BADNESS;
2603 case TYPE_CODE_ENUM:
2604 case TYPE_CODE_FLAGS:
2605 case TYPE_CODE_CHAR:
2606 case TYPE_CODE_RANGE:
2607 case TYPE_CODE_BOOL:
2608 return INTEGER_PROMOTION_BADNESS;
2609 case TYPE_CODE_FLT:
2610 return INT_FLOAT_CONVERSION_BADNESS;
2611 case TYPE_CODE_PTR:
2612 return NS_POINTER_CONVERSION_BADNESS;
2613 default:
2614 return INCOMPATIBLE_TYPE_BADNESS;
2615 }
2616 break;
2617 case TYPE_CODE_ENUM:
2618 switch (TYPE_CODE (arg))
2619 {
2620 case TYPE_CODE_INT:
2621 case TYPE_CODE_CHAR:
2622 case TYPE_CODE_RANGE:
2623 case TYPE_CODE_BOOL:
2624 case TYPE_CODE_ENUM:
2625 return INTEGER_CONVERSION_BADNESS;
2626 case TYPE_CODE_FLT:
2627 return INT_FLOAT_CONVERSION_BADNESS;
2628 default:
2629 return INCOMPATIBLE_TYPE_BADNESS;
2630 }
2631 break;
2632 case TYPE_CODE_CHAR:
2633 switch (TYPE_CODE (arg))
2634 {
2635 case TYPE_CODE_RANGE:
2636 case TYPE_CODE_BOOL:
2637 case TYPE_CODE_ENUM:
2638 return INTEGER_CONVERSION_BADNESS;
2639 case TYPE_CODE_FLT:
2640 return INT_FLOAT_CONVERSION_BADNESS;
2641 case TYPE_CODE_INT:
2642 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2643 return INTEGER_CONVERSION_BADNESS;
2644 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2645 return INTEGER_PROMOTION_BADNESS;
2646 /* >>> !! else fall through !! <<< */
2647 case TYPE_CODE_CHAR:
2648 /* Deal with signed, unsigned, and plain chars for C++ and
2649 with int cases falling through from previous case. */
2650 if (TYPE_NOSIGN (parm))
2651 {
2652 if (TYPE_NOSIGN (arg))
2653 return EXACT_MATCH_BADNESS;
2654 else
2655 return INTEGER_CONVERSION_BADNESS;
2656 }
2657 else if (TYPE_UNSIGNED (parm))
2658 {
2659 if (TYPE_UNSIGNED (arg))
2660 return EXACT_MATCH_BADNESS;
2661 else
2662 return INTEGER_PROMOTION_BADNESS;
2663 }
2664 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2665 return EXACT_MATCH_BADNESS;
2666 else
2667 return INTEGER_CONVERSION_BADNESS;
2668 default:
2669 return INCOMPATIBLE_TYPE_BADNESS;
2670 }
2671 break;
2672 case TYPE_CODE_RANGE:
2673 switch (TYPE_CODE (arg))
2674 {
2675 case TYPE_CODE_INT:
2676 case TYPE_CODE_CHAR:
2677 case TYPE_CODE_RANGE:
2678 case TYPE_CODE_BOOL:
2679 case TYPE_CODE_ENUM:
2680 return INTEGER_CONVERSION_BADNESS;
2681 case TYPE_CODE_FLT:
2682 return INT_FLOAT_CONVERSION_BADNESS;
2683 default:
2684 return INCOMPATIBLE_TYPE_BADNESS;
2685 }
2686 break;
2687 case TYPE_CODE_BOOL:
2688 switch (TYPE_CODE (arg))
2689 {
2690 case TYPE_CODE_INT:
2691 case TYPE_CODE_CHAR:
2692 case TYPE_CODE_RANGE:
2693 case TYPE_CODE_ENUM:
2694 case TYPE_CODE_FLT:
2695 return INCOMPATIBLE_TYPE_BADNESS;
2696 case TYPE_CODE_PTR:
2697 return BOOL_PTR_CONVERSION_BADNESS;
2698 case TYPE_CODE_BOOL:
2699 return EXACT_MATCH_BADNESS;
2700 default:
2701 return INCOMPATIBLE_TYPE_BADNESS;
2702 }
2703 break;
2704 case TYPE_CODE_FLT:
2705 switch (TYPE_CODE (arg))
2706 {
2707 case TYPE_CODE_FLT:
2708 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2709 return FLOAT_PROMOTION_BADNESS;
2710 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2711 return EXACT_MATCH_BADNESS;
2712 else
2713 return FLOAT_CONVERSION_BADNESS;
2714 case TYPE_CODE_INT:
2715 case TYPE_CODE_BOOL:
2716 case TYPE_CODE_ENUM:
2717 case TYPE_CODE_RANGE:
2718 case TYPE_CODE_CHAR:
2719 return INT_FLOAT_CONVERSION_BADNESS;
2720 default:
2721 return INCOMPATIBLE_TYPE_BADNESS;
2722 }
2723 break;
2724 case TYPE_CODE_COMPLEX:
2725 switch (TYPE_CODE (arg))
2726 { /* Strictly not needed for C++, but... */
2727 case TYPE_CODE_FLT:
2728 return FLOAT_PROMOTION_BADNESS;
2729 case TYPE_CODE_COMPLEX:
2730 return EXACT_MATCH_BADNESS;
2731 default:
2732 return INCOMPATIBLE_TYPE_BADNESS;
2733 }
2734 break;
2735 case TYPE_CODE_STRUCT:
2736 /* currently same as TYPE_CODE_CLASS. */
2737 switch (TYPE_CODE (arg))
2738 {
2739 case TYPE_CODE_STRUCT:
2740 /* Check for derivation */
2741 rank.subrank = distance_to_ancestor (parm, arg, 0);
2742 if (rank.subrank >= 0)
2743 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2744 /* else fall through */
2745 default:
2746 return INCOMPATIBLE_TYPE_BADNESS;
2747 }
2748 break;
2749 case TYPE_CODE_UNION:
2750 switch (TYPE_CODE (arg))
2751 {
2752 case TYPE_CODE_UNION:
2753 default:
2754 return INCOMPATIBLE_TYPE_BADNESS;
2755 }
2756 break;
2757 case TYPE_CODE_MEMBERPTR:
2758 switch (TYPE_CODE (arg))
2759 {
2760 default:
2761 return INCOMPATIBLE_TYPE_BADNESS;
2762 }
2763 break;
2764 case TYPE_CODE_METHOD:
2765 switch (TYPE_CODE (arg))
2766 {
2767
2768 default:
2769 return INCOMPATIBLE_TYPE_BADNESS;
2770 }
2771 break;
2772 case TYPE_CODE_REF:
2773 switch (TYPE_CODE (arg))
2774 {
2775
2776 default:
2777 return INCOMPATIBLE_TYPE_BADNESS;
2778 }
2779
2780 break;
2781 case TYPE_CODE_SET:
2782 switch (TYPE_CODE (arg))
2783 {
2784 /* Not in C++ */
2785 case TYPE_CODE_SET:
2786 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2787 TYPE_FIELD_TYPE (arg, 0), NULL);
2788 default:
2789 return INCOMPATIBLE_TYPE_BADNESS;
2790 }
2791 break;
2792 case TYPE_CODE_VOID:
2793 default:
2794 return INCOMPATIBLE_TYPE_BADNESS;
2795 } /* switch (TYPE_CODE (arg)) */
2796 }
2797
2798
2799 /* End of functions for overload resolution. */
2800
2801 static void
2802 print_bit_vector (B_TYPE *bits, int nbits)
2803 {
2804 int bitno;
2805
2806 for (bitno = 0; bitno < nbits; bitno++)
2807 {
2808 if ((bitno % 8) == 0)
2809 {
2810 puts_filtered (" ");
2811 }
2812 if (B_TST (bits, bitno))
2813 printf_filtered (("1"));
2814 else
2815 printf_filtered (("0"));
2816 }
2817 }
2818
2819 /* Note the first arg should be the "this" pointer, we may not want to
2820 include it since we may get into a infinitely recursive
2821 situation. */
2822
2823 static void
2824 print_arg_types (struct field *args, int nargs, int spaces)
2825 {
2826 if (args != NULL)
2827 {
2828 int i;
2829
2830 for (i = 0; i < nargs; i++)
2831 recursive_dump_type (args[i].type, spaces + 2);
2832 }
2833 }
2834
2835 int
2836 field_is_static (struct field *f)
2837 {
2838 /* "static" fields are the fields whose location is not relative
2839 to the address of the enclosing struct. It would be nice to
2840 have a dedicated flag that would be set for static fields when
2841 the type is being created. But in practice, checking the field
2842 loc_kind should give us an accurate answer. */
2843 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2844 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2845 }
2846
2847 static void
2848 dump_fn_fieldlists (struct type *type, int spaces)
2849 {
2850 int method_idx;
2851 int overload_idx;
2852 struct fn_field *f;
2853
2854 printfi_filtered (spaces, "fn_fieldlists ");
2855 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2856 printf_filtered ("\n");
2857 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2858 {
2859 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2860 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2861 method_idx,
2862 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2863 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2864 gdb_stdout);
2865 printf_filtered (_(") length %d\n"),
2866 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2867 for (overload_idx = 0;
2868 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2869 overload_idx++)
2870 {
2871 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2872 overload_idx,
2873 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2874 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2875 gdb_stdout);
2876 printf_filtered (")\n");
2877 printfi_filtered (spaces + 8, "type ");
2878 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2879 gdb_stdout);
2880 printf_filtered ("\n");
2881
2882 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2883 spaces + 8 + 2);
2884
2885 printfi_filtered (spaces + 8, "args ");
2886 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2887 gdb_stdout);
2888 printf_filtered ("\n");
2889
2890 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2891 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2892 overload_idx)),
2893 spaces);
2894 printfi_filtered (spaces + 8, "fcontext ");
2895 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2896 gdb_stdout);
2897 printf_filtered ("\n");
2898
2899 printfi_filtered (spaces + 8, "is_const %d\n",
2900 TYPE_FN_FIELD_CONST (f, overload_idx));
2901 printfi_filtered (spaces + 8, "is_volatile %d\n",
2902 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2903 printfi_filtered (spaces + 8, "is_private %d\n",
2904 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2905 printfi_filtered (spaces + 8, "is_protected %d\n",
2906 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2907 printfi_filtered (spaces + 8, "is_stub %d\n",
2908 TYPE_FN_FIELD_STUB (f, overload_idx));
2909 printfi_filtered (spaces + 8, "voffset %u\n",
2910 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2911 }
2912 }
2913 }
2914
2915 static void
2916 print_cplus_stuff (struct type *type, int spaces)
2917 {
2918 printfi_filtered (spaces, "n_baseclasses %d\n",
2919 TYPE_N_BASECLASSES (type));
2920 printfi_filtered (spaces, "nfn_fields %d\n",
2921 TYPE_NFN_FIELDS (type));
2922 if (TYPE_N_BASECLASSES (type) > 0)
2923 {
2924 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2925 TYPE_N_BASECLASSES (type));
2926 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2927 gdb_stdout);
2928 printf_filtered (")");
2929
2930 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2931 TYPE_N_BASECLASSES (type));
2932 puts_filtered ("\n");
2933 }
2934 if (TYPE_NFIELDS (type) > 0)
2935 {
2936 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2937 {
2938 printfi_filtered (spaces,
2939 "private_field_bits (%d bits at *",
2940 TYPE_NFIELDS (type));
2941 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2942 gdb_stdout);
2943 printf_filtered (")");
2944 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2945 TYPE_NFIELDS (type));
2946 puts_filtered ("\n");
2947 }
2948 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2949 {
2950 printfi_filtered (spaces,
2951 "protected_field_bits (%d bits at *",
2952 TYPE_NFIELDS (type));
2953 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2954 gdb_stdout);
2955 printf_filtered (")");
2956 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2957 TYPE_NFIELDS (type));
2958 puts_filtered ("\n");
2959 }
2960 }
2961 if (TYPE_NFN_FIELDS (type) > 0)
2962 {
2963 dump_fn_fieldlists (type, spaces);
2964 }
2965 }
2966
2967 /* Print the contents of the TYPE's type_specific union, assuming that
2968 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2969
2970 static void
2971 print_gnat_stuff (struct type *type, int spaces)
2972 {
2973 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2974
2975 recursive_dump_type (descriptive_type, spaces + 2);
2976 }
2977
2978 static struct obstack dont_print_type_obstack;
2979
2980 void
2981 recursive_dump_type (struct type *type, int spaces)
2982 {
2983 int idx;
2984
2985 if (spaces == 0)
2986 obstack_begin (&dont_print_type_obstack, 0);
2987
2988 if (TYPE_NFIELDS (type) > 0
2989 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2990 {
2991 struct type **first_dont_print
2992 = (struct type **) obstack_base (&dont_print_type_obstack);
2993
2994 int i = (struct type **)
2995 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2996
2997 while (--i >= 0)
2998 {
2999 if (type == first_dont_print[i])
3000 {
3001 printfi_filtered (spaces, "type node ");
3002 gdb_print_host_address (type, gdb_stdout);
3003 printf_filtered (_(" <same as already seen type>\n"));
3004 return;
3005 }
3006 }
3007
3008 obstack_ptr_grow (&dont_print_type_obstack, type);
3009 }
3010
3011 printfi_filtered (spaces, "type node ");
3012 gdb_print_host_address (type, gdb_stdout);
3013 printf_filtered ("\n");
3014 printfi_filtered (spaces, "name '%s' (",
3015 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3016 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3017 printf_filtered (")\n");
3018 printfi_filtered (spaces, "tagname '%s' (",
3019 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3020 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3021 printf_filtered (")\n");
3022 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3023 switch (TYPE_CODE (type))
3024 {
3025 case TYPE_CODE_UNDEF:
3026 printf_filtered ("(TYPE_CODE_UNDEF)");
3027 break;
3028 case TYPE_CODE_PTR:
3029 printf_filtered ("(TYPE_CODE_PTR)");
3030 break;
3031 case TYPE_CODE_ARRAY:
3032 printf_filtered ("(TYPE_CODE_ARRAY)");
3033 break;
3034 case TYPE_CODE_STRUCT:
3035 printf_filtered ("(TYPE_CODE_STRUCT)");
3036 break;
3037 case TYPE_CODE_UNION:
3038 printf_filtered ("(TYPE_CODE_UNION)");
3039 break;
3040 case TYPE_CODE_ENUM:
3041 printf_filtered ("(TYPE_CODE_ENUM)");
3042 break;
3043 case TYPE_CODE_FLAGS:
3044 printf_filtered ("(TYPE_CODE_FLAGS)");
3045 break;
3046 case TYPE_CODE_FUNC:
3047 printf_filtered ("(TYPE_CODE_FUNC)");
3048 break;
3049 case TYPE_CODE_INT:
3050 printf_filtered ("(TYPE_CODE_INT)");
3051 break;
3052 case TYPE_CODE_FLT:
3053 printf_filtered ("(TYPE_CODE_FLT)");
3054 break;
3055 case TYPE_CODE_VOID:
3056 printf_filtered ("(TYPE_CODE_VOID)");
3057 break;
3058 case TYPE_CODE_SET:
3059 printf_filtered ("(TYPE_CODE_SET)");
3060 break;
3061 case TYPE_CODE_RANGE:
3062 printf_filtered ("(TYPE_CODE_RANGE)");
3063 break;
3064 case TYPE_CODE_STRING:
3065 printf_filtered ("(TYPE_CODE_STRING)");
3066 break;
3067 case TYPE_CODE_BITSTRING:
3068 printf_filtered ("(TYPE_CODE_BITSTRING)");
3069 break;
3070 case TYPE_CODE_ERROR:
3071 printf_filtered ("(TYPE_CODE_ERROR)");
3072 break;
3073 case TYPE_CODE_MEMBERPTR:
3074 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3075 break;
3076 case TYPE_CODE_METHODPTR:
3077 printf_filtered ("(TYPE_CODE_METHODPTR)");
3078 break;
3079 case TYPE_CODE_METHOD:
3080 printf_filtered ("(TYPE_CODE_METHOD)");
3081 break;
3082 case TYPE_CODE_REF:
3083 printf_filtered ("(TYPE_CODE_REF)");
3084 break;
3085 case TYPE_CODE_CHAR:
3086 printf_filtered ("(TYPE_CODE_CHAR)");
3087 break;
3088 case TYPE_CODE_BOOL:
3089 printf_filtered ("(TYPE_CODE_BOOL)");
3090 break;
3091 case TYPE_CODE_COMPLEX:
3092 printf_filtered ("(TYPE_CODE_COMPLEX)");
3093 break;
3094 case TYPE_CODE_TYPEDEF:
3095 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3096 break;
3097 case TYPE_CODE_NAMESPACE:
3098 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3099 break;
3100 default:
3101 printf_filtered ("(UNKNOWN TYPE CODE)");
3102 break;
3103 }
3104 puts_filtered ("\n");
3105 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3106 if (TYPE_OBJFILE_OWNED (type))
3107 {
3108 printfi_filtered (spaces, "objfile ");
3109 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3110 }
3111 else
3112 {
3113 printfi_filtered (spaces, "gdbarch ");
3114 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3115 }
3116 printf_filtered ("\n");
3117 printfi_filtered (spaces, "target_type ");
3118 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3119 printf_filtered ("\n");
3120 if (TYPE_TARGET_TYPE (type) != NULL)
3121 {
3122 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3123 }
3124 printfi_filtered (spaces, "pointer_type ");
3125 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3126 printf_filtered ("\n");
3127 printfi_filtered (spaces, "reference_type ");
3128 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3129 printf_filtered ("\n");
3130 printfi_filtered (spaces, "type_chain ");
3131 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3132 printf_filtered ("\n");
3133 printfi_filtered (spaces, "instance_flags 0x%x",
3134 TYPE_INSTANCE_FLAGS (type));
3135 if (TYPE_CONST (type))
3136 {
3137 puts_filtered (" TYPE_FLAG_CONST");
3138 }
3139 if (TYPE_VOLATILE (type))
3140 {
3141 puts_filtered (" TYPE_FLAG_VOLATILE");
3142 }
3143 if (TYPE_CODE_SPACE (type))
3144 {
3145 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3146 }
3147 if (TYPE_DATA_SPACE (type))
3148 {
3149 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3150 }
3151 if (TYPE_ADDRESS_CLASS_1 (type))
3152 {
3153 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3154 }
3155 if (TYPE_ADDRESS_CLASS_2 (type))
3156 {
3157 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3158 }
3159 puts_filtered ("\n");
3160
3161 printfi_filtered (spaces, "flags");
3162 if (TYPE_UNSIGNED (type))
3163 {
3164 puts_filtered (" TYPE_FLAG_UNSIGNED");
3165 }
3166 if (TYPE_NOSIGN (type))
3167 {
3168 puts_filtered (" TYPE_FLAG_NOSIGN");
3169 }
3170 if (TYPE_STUB (type))
3171 {
3172 puts_filtered (" TYPE_FLAG_STUB");
3173 }
3174 if (TYPE_TARGET_STUB (type))
3175 {
3176 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3177 }
3178 if (TYPE_STATIC (type))
3179 {
3180 puts_filtered (" TYPE_FLAG_STATIC");
3181 }
3182 if (TYPE_PROTOTYPED (type))
3183 {
3184 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3185 }
3186 if (TYPE_INCOMPLETE (type))
3187 {
3188 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3189 }
3190 if (TYPE_VARARGS (type))
3191 {
3192 puts_filtered (" TYPE_FLAG_VARARGS");
3193 }
3194 /* This is used for things like AltiVec registers on ppc. Gcc emits
3195 an attribute for the array type, which tells whether or not we
3196 have a vector, instead of a regular array. */
3197 if (TYPE_VECTOR (type))
3198 {
3199 puts_filtered (" TYPE_FLAG_VECTOR");
3200 }
3201 if (TYPE_FIXED_INSTANCE (type))
3202 {
3203 puts_filtered (" TYPE_FIXED_INSTANCE");
3204 }
3205 if (TYPE_STUB_SUPPORTED (type))
3206 {
3207 puts_filtered (" TYPE_STUB_SUPPORTED");
3208 }
3209 if (TYPE_NOTTEXT (type))
3210 {
3211 puts_filtered (" TYPE_NOTTEXT");
3212 }
3213 puts_filtered ("\n");
3214 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3215 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3216 puts_filtered ("\n");
3217 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3218 {
3219 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3220 printfi_filtered (spaces + 2,
3221 "[%d] enumval %s type ",
3222 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3223 else
3224 printfi_filtered (spaces + 2,
3225 "[%d] bitpos %d bitsize %d type ",
3226 idx, TYPE_FIELD_BITPOS (type, idx),
3227 TYPE_FIELD_BITSIZE (type, idx));
3228 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3229 printf_filtered (" name '%s' (",
3230 TYPE_FIELD_NAME (type, idx) != NULL
3231 ? TYPE_FIELD_NAME (type, idx)
3232 : "<NULL>");
3233 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3234 printf_filtered (")\n");
3235 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3236 {
3237 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3238 }
3239 }
3240 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3241 {
3242 printfi_filtered (spaces, "low %s%s high %s%s\n",
3243 plongest (TYPE_LOW_BOUND (type)),
3244 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3245 plongest (TYPE_HIGH_BOUND (type)),
3246 TYPE_HIGH_BOUND_UNDEFINED (type)
3247 ? " (undefined)" : "");
3248 }
3249 printfi_filtered (spaces, "vptr_basetype ");
3250 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3251 puts_filtered ("\n");
3252 if (TYPE_VPTR_BASETYPE (type) != NULL)
3253 {
3254 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3255 }
3256 printfi_filtered (spaces, "vptr_fieldno %d\n",
3257 TYPE_VPTR_FIELDNO (type));
3258
3259 switch (TYPE_SPECIFIC_FIELD (type))
3260 {
3261 case TYPE_SPECIFIC_CPLUS_STUFF:
3262 printfi_filtered (spaces, "cplus_stuff ");
3263 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3264 gdb_stdout);
3265 puts_filtered ("\n");
3266 print_cplus_stuff (type, spaces);
3267 break;
3268
3269 case TYPE_SPECIFIC_GNAT_STUFF:
3270 printfi_filtered (spaces, "gnat_stuff ");
3271 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3272 puts_filtered ("\n");
3273 print_gnat_stuff (type, spaces);
3274 break;
3275
3276 case TYPE_SPECIFIC_FLOATFORMAT:
3277 printfi_filtered (spaces, "floatformat ");
3278 if (TYPE_FLOATFORMAT (type) == NULL)
3279 puts_filtered ("(null)");
3280 else
3281 {
3282 puts_filtered ("{ ");
3283 if (TYPE_FLOATFORMAT (type)[0] == NULL
3284 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3285 puts_filtered ("(null)");
3286 else
3287 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3288
3289 puts_filtered (", ");
3290 if (TYPE_FLOATFORMAT (type)[1] == NULL
3291 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3292 puts_filtered ("(null)");
3293 else
3294 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3295
3296 puts_filtered (" }");
3297 }
3298 puts_filtered ("\n");
3299 break;
3300
3301 case TYPE_SPECIFIC_FUNC:
3302 printfi_filtered (spaces, "calling_convention %d\n",
3303 TYPE_CALLING_CONVENTION (type));
3304 /* tail_call_list is not printed. */
3305 break;
3306 }
3307
3308 if (spaces == 0)
3309 obstack_free (&dont_print_type_obstack, NULL);
3310 }
3311
3312 /* Trivial helpers for the libiberty hash table, for mapping one
3313 type to another. */
3314
3315 struct type_pair
3316 {
3317 struct type *old, *new;
3318 };
3319
3320 static hashval_t
3321 type_pair_hash (const void *item)
3322 {
3323 const struct type_pair *pair = item;
3324
3325 return htab_hash_pointer (pair->old);
3326 }
3327
3328 static int
3329 type_pair_eq (const void *item_lhs, const void *item_rhs)
3330 {
3331 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3332
3333 return lhs->old == rhs->old;
3334 }
3335
3336 /* Allocate the hash table used by copy_type_recursive to walk
3337 types without duplicates. We use OBJFILE's obstack, because
3338 OBJFILE is about to be deleted. */
3339
3340 htab_t
3341 create_copied_types_hash (struct objfile *objfile)
3342 {
3343 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3344 NULL, &objfile->objfile_obstack,
3345 hashtab_obstack_allocate,
3346 dummy_obstack_deallocate);
3347 }
3348
3349 /* Recursively copy (deep copy) TYPE, if it is associated with
3350 OBJFILE. Return a new type allocated using malloc, a saved type if
3351 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3352 not associated with OBJFILE. */
3353
3354 struct type *
3355 copy_type_recursive (struct objfile *objfile,
3356 struct type *type,
3357 htab_t copied_types)
3358 {
3359 struct type_pair *stored, pair;
3360 void **slot;
3361 struct type *new_type;
3362
3363 if (! TYPE_OBJFILE_OWNED (type))
3364 return type;
3365
3366 /* This type shouldn't be pointing to any types in other objfiles;
3367 if it did, the type might disappear unexpectedly. */
3368 gdb_assert (TYPE_OBJFILE (type) == objfile);
3369
3370 pair.old = type;
3371 slot = htab_find_slot (copied_types, &pair, INSERT);
3372 if (*slot != NULL)
3373 return ((struct type_pair *) *slot)->new;
3374
3375 new_type = alloc_type_arch (get_type_arch (type));
3376
3377 /* We must add the new type to the hash table immediately, in case
3378 we encounter this type again during a recursive call below. */
3379 stored
3380 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3381 stored->old = type;
3382 stored->new = new_type;
3383 *slot = stored;
3384
3385 /* Copy the common fields of types. For the main type, we simply
3386 copy the entire thing and then update specific fields as needed. */
3387 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3388 TYPE_OBJFILE_OWNED (new_type) = 0;
3389 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3390
3391 if (TYPE_NAME (type))
3392 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3393 if (TYPE_TAG_NAME (type))
3394 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3395
3396 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3397 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3398
3399 /* Copy the fields. */
3400 if (TYPE_NFIELDS (type))
3401 {
3402 int i, nfields;
3403
3404 nfields = TYPE_NFIELDS (type);
3405 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3406 for (i = 0; i < nfields; i++)
3407 {
3408 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3409 TYPE_FIELD_ARTIFICIAL (type, i);
3410 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3411 if (TYPE_FIELD_TYPE (type, i))
3412 TYPE_FIELD_TYPE (new_type, i)
3413 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3414 copied_types);
3415 if (TYPE_FIELD_NAME (type, i))
3416 TYPE_FIELD_NAME (new_type, i) =
3417 xstrdup (TYPE_FIELD_NAME (type, i));
3418 switch (TYPE_FIELD_LOC_KIND (type, i))
3419 {
3420 case FIELD_LOC_KIND_BITPOS:
3421 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3422 TYPE_FIELD_BITPOS (type, i));
3423 break;
3424 case FIELD_LOC_KIND_ENUMVAL:
3425 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3426 TYPE_FIELD_ENUMVAL (type, i));
3427 break;
3428 case FIELD_LOC_KIND_PHYSADDR:
3429 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3430 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3431 break;
3432 case FIELD_LOC_KIND_PHYSNAME:
3433 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3434 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3435 i)));
3436 break;
3437 default:
3438 internal_error (__FILE__, __LINE__,
3439 _("Unexpected type field location kind: %d"),
3440 TYPE_FIELD_LOC_KIND (type, i));
3441 }
3442 }
3443 }
3444
3445 /* For range types, copy the bounds information. */
3446 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3447 {
3448 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3449 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3450 }
3451
3452 /* Copy pointers to other types. */
3453 if (TYPE_TARGET_TYPE (type))
3454 TYPE_TARGET_TYPE (new_type) =
3455 copy_type_recursive (objfile,
3456 TYPE_TARGET_TYPE (type),
3457 copied_types);
3458 if (TYPE_VPTR_BASETYPE (type))
3459 TYPE_VPTR_BASETYPE (new_type) =
3460 copy_type_recursive (objfile,
3461 TYPE_VPTR_BASETYPE (type),
3462 copied_types);
3463 /* Maybe copy the type_specific bits.
3464
3465 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3466 base classes and methods. There's no fundamental reason why we
3467 can't, but at the moment it is not needed. */
3468
3469 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3470 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3471 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3472 || TYPE_CODE (type) == TYPE_CODE_UNION
3473 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3474 INIT_CPLUS_SPECIFIC (new_type);
3475
3476 return new_type;
3477 }
3478
3479 /* Make a copy of the given TYPE, except that the pointer & reference
3480 types are not preserved.
3481
3482 This function assumes that the given type has an associated objfile.
3483 This objfile is used to allocate the new type. */
3484
3485 struct type *
3486 copy_type (const struct type *type)
3487 {
3488 struct type *new_type;
3489
3490 gdb_assert (TYPE_OBJFILE_OWNED (type));
3491
3492 new_type = alloc_type_copy (type);
3493 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3494 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3495 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3496 sizeof (struct main_type));
3497
3498 return new_type;
3499 }
3500
3501
3502 /* Helper functions to initialize architecture-specific types. */
3503
3504 /* Allocate a type structure associated with GDBARCH and set its
3505 CODE, LENGTH, and NAME fields. */
3506 struct type *
3507 arch_type (struct gdbarch *gdbarch,
3508 enum type_code code, int length, char *name)
3509 {
3510 struct type *type;
3511
3512 type = alloc_type_arch (gdbarch);
3513 TYPE_CODE (type) = code;
3514 TYPE_LENGTH (type) = length;
3515
3516 if (name)
3517 TYPE_NAME (type) = xstrdup (name);
3518
3519 return type;
3520 }
3521
3522 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3523 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3524 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3525 struct type *
3526 arch_integer_type (struct gdbarch *gdbarch,
3527 int bit, int unsigned_p, char *name)
3528 {
3529 struct type *t;
3530
3531 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3532 if (unsigned_p)
3533 TYPE_UNSIGNED (t) = 1;
3534 if (name && strcmp (name, "char") == 0)
3535 TYPE_NOSIGN (t) = 1;
3536
3537 return t;
3538 }
3539
3540 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3541 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3542 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3543 struct type *
3544 arch_character_type (struct gdbarch *gdbarch,
3545 int bit, int unsigned_p, char *name)
3546 {
3547 struct type *t;
3548
3549 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3550 if (unsigned_p)
3551 TYPE_UNSIGNED (t) = 1;
3552
3553 return t;
3554 }
3555
3556 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3557 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3558 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3559 struct type *
3560 arch_boolean_type (struct gdbarch *gdbarch,
3561 int bit, int unsigned_p, char *name)
3562 {
3563 struct type *t;
3564
3565 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3566 if (unsigned_p)
3567 TYPE_UNSIGNED (t) = 1;
3568
3569 return t;
3570 }
3571
3572 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3573 BIT is the type size in bits; if BIT equals -1, the size is
3574 determined by the floatformat. NAME is the type name. Set the
3575 TYPE_FLOATFORMAT from FLOATFORMATS. */
3576 struct type *
3577 arch_float_type (struct gdbarch *gdbarch,
3578 int bit, char *name, const struct floatformat **floatformats)
3579 {
3580 struct type *t;
3581
3582 if (bit == -1)
3583 {
3584 gdb_assert (floatformats != NULL);
3585 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3586 bit = floatformats[0]->totalsize;
3587 }
3588 gdb_assert (bit >= 0);
3589
3590 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3591 TYPE_FLOATFORMAT (t) = floatformats;
3592 return t;
3593 }
3594
3595 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3596 NAME is the type name. TARGET_TYPE is the component float type. */
3597 struct type *
3598 arch_complex_type (struct gdbarch *gdbarch,
3599 char *name, struct type *target_type)
3600 {
3601 struct type *t;
3602
3603 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3604 2 * TYPE_LENGTH (target_type), name);
3605 TYPE_TARGET_TYPE (t) = target_type;
3606 return t;
3607 }
3608
3609 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3610 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3611 struct type *
3612 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3613 {
3614 int nfields = length * TARGET_CHAR_BIT;
3615 struct type *type;
3616
3617 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3618 TYPE_UNSIGNED (type) = 1;
3619 TYPE_NFIELDS (type) = nfields;
3620 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3621
3622 return type;
3623 }
3624
3625 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3626 position BITPOS is called NAME. */
3627 void
3628 append_flags_type_flag (struct type *type, int bitpos, char *name)
3629 {
3630 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3631 gdb_assert (bitpos < TYPE_NFIELDS (type));
3632 gdb_assert (bitpos >= 0);
3633
3634 if (name)
3635 {
3636 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3637 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3638 }
3639 else
3640 {
3641 /* Don't show this field to the user. */
3642 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3643 }
3644 }
3645
3646 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3647 specified by CODE) associated with GDBARCH. NAME is the type name. */
3648 struct type *
3649 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3650 {
3651 struct type *t;
3652
3653 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3654 t = arch_type (gdbarch, code, 0, NULL);
3655 TYPE_TAG_NAME (t) = name;
3656 INIT_CPLUS_SPECIFIC (t);
3657 return t;
3658 }
3659
3660 /* Add new field with name NAME and type FIELD to composite type T.
3661 Do not set the field's position or adjust the type's length;
3662 the caller should do so. Return the new field. */
3663 struct field *
3664 append_composite_type_field_raw (struct type *t, char *name,
3665 struct type *field)
3666 {
3667 struct field *f;
3668
3669 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3670 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3671 sizeof (struct field) * TYPE_NFIELDS (t));
3672 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3673 memset (f, 0, sizeof f[0]);
3674 FIELD_TYPE (f[0]) = field;
3675 FIELD_NAME (f[0]) = name;
3676 return f;
3677 }
3678
3679 /* Add new field with name NAME and type FIELD to composite type T.
3680 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3681 void
3682 append_composite_type_field_aligned (struct type *t, char *name,
3683 struct type *field, int alignment)
3684 {
3685 struct field *f = append_composite_type_field_raw (t, name, field);
3686
3687 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3688 {
3689 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3690 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3691 }
3692 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3693 {
3694 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3695 if (TYPE_NFIELDS (t) > 1)
3696 {
3697 SET_FIELD_BITPOS (f[0],
3698 (FIELD_BITPOS (f[-1])
3699 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3700 * TARGET_CHAR_BIT)));
3701
3702 if (alignment)
3703 {
3704 int left;
3705
3706 alignment *= TARGET_CHAR_BIT;
3707 left = FIELD_BITPOS (f[0]) % alignment;
3708
3709 if (left)
3710 {
3711 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
3712 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3713 }
3714 }
3715 }
3716 }
3717 }
3718
3719 /* Add new field with name NAME and type FIELD to composite type T. */
3720 void
3721 append_composite_type_field (struct type *t, char *name,
3722 struct type *field)
3723 {
3724 append_composite_type_field_aligned (t, name, field, 0);
3725 }
3726
3727
3728 static struct gdbarch_data *gdbtypes_data;
3729
3730 const struct builtin_type *
3731 builtin_type (struct gdbarch *gdbarch)
3732 {
3733 return gdbarch_data (gdbarch, gdbtypes_data);
3734 }
3735
3736 static void *
3737 gdbtypes_post_init (struct gdbarch *gdbarch)
3738 {
3739 struct builtin_type *builtin_type
3740 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3741
3742 /* Basic types. */
3743 builtin_type->builtin_void
3744 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3745 builtin_type->builtin_char
3746 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3747 !gdbarch_char_signed (gdbarch), "char");
3748 builtin_type->builtin_signed_char
3749 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3750 0, "signed char");
3751 builtin_type->builtin_unsigned_char
3752 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3753 1, "unsigned char");
3754 builtin_type->builtin_short
3755 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3756 0, "short");
3757 builtin_type->builtin_unsigned_short
3758 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3759 1, "unsigned short");
3760 builtin_type->builtin_int
3761 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3762 0, "int");
3763 builtin_type->builtin_unsigned_int
3764 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3765 1, "unsigned int");
3766 builtin_type->builtin_long
3767 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3768 0, "long");
3769 builtin_type->builtin_unsigned_long
3770 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3771 1, "unsigned long");
3772 builtin_type->builtin_long_long
3773 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3774 0, "long long");
3775 builtin_type->builtin_unsigned_long_long
3776 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3777 1, "unsigned long long");
3778 builtin_type->builtin_float
3779 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3780 "float", gdbarch_float_format (gdbarch));
3781 builtin_type->builtin_double
3782 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3783 "double", gdbarch_double_format (gdbarch));
3784 builtin_type->builtin_long_double
3785 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3786 "long double", gdbarch_long_double_format (gdbarch));
3787 builtin_type->builtin_complex
3788 = arch_complex_type (gdbarch, "complex",
3789 builtin_type->builtin_float);
3790 builtin_type->builtin_double_complex
3791 = arch_complex_type (gdbarch, "double complex",
3792 builtin_type->builtin_double);
3793 builtin_type->builtin_string
3794 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3795 builtin_type->builtin_bool
3796 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3797
3798 /* The following three are about decimal floating point types, which
3799 are 32-bits, 64-bits and 128-bits respectively. */
3800 builtin_type->builtin_decfloat
3801 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3802 builtin_type->builtin_decdouble
3803 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3804 builtin_type->builtin_declong
3805 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3806
3807 /* "True" character types. */
3808 builtin_type->builtin_true_char
3809 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3810 builtin_type->builtin_true_unsigned_char
3811 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3812
3813 /* Fixed-size integer types. */
3814 builtin_type->builtin_int0
3815 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3816 builtin_type->builtin_int8
3817 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3818 builtin_type->builtin_uint8
3819 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3820 builtin_type->builtin_int16
3821 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3822 builtin_type->builtin_uint16
3823 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3824 builtin_type->builtin_int32
3825 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3826 builtin_type->builtin_uint32
3827 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3828 builtin_type->builtin_int64
3829 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3830 builtin_type->builtin_uint64
3831 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3832 builtin_type->builtin_int128
3833 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3834 builtin_type->builtin_uint128
3835 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3836 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3837 TYPE_INSTANCE_FLAG_NOTTEXT;
3838 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3839 TYPE_INSTANCE_FLAG_NOTTEXT;
3840
3841 /* Wide character types. */
3842 builtin_type->builtin_char16
3843 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3844 builtin_type->builtin_char32
3845 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3846
3847
3848 /* Default data/code pointer types. */
3849 builtin_type->builtin_data_ptr
3850 = lookup_pointer_type (builtin_type->builtin_void);
3851 builtin_type->builtin_func_ptr
3852 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3853 builtin_type->builtin_func_func
3854 = lookup_function_type (builtin_type->builtin_func_ptr);
3855
3856 /* This type represents a GDB internal function. */
3857 builtin_type->internal_fn
3858 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3859 "<internal function>");
3860
3861 return builtin_type;
3862 }
3863
3864
3865 /* This set of objfile-based types is intended to be used by symbol
3866 readers as basic types. */
3867
3868 static const struct objfile_data *objfile_type_data;
3869
3870 const struct objfile_type *
3871 objfile_type (struct objfile *objfile)
3872 {
3873 struct gdbarch *gdbarch;
3874 struct objfile_type *objfile_type
3875 = objfile_data (objfile, objfile_type_data);
3876
3877 if (objfile_type)
3878 return objfile_type;
3879
3880 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3881 1, struct objfile_type);
3882
3883 /* Use the objfile architecture to determine basic type properties. */
3884 gdbarch = get_objfile_arch (objfile);
3885
3886 /* Basic types. */
3887 objfile_type->builtin_void
3888 = init_type (TYPE_CODE_VOID, 1,
3889 0,
3890 "void", objfile);
3891
3892 objfile_type->builtin_char
3893 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3894 (TYPE_FLAG_NOSIGN
3895 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3896 "char", objfile);
3897 objfile_type->builtin_signed_char
3898 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3899 0,
3900 "signed char", objfile);
3901 objfile_type->builtin_unsigned_char
3902 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3903 TYPE_FLAG_UNSIGNED,
3904 "unsigned char", objfile);
3905 objfile_type->builtin_short
3906 = init_type (TYPE_CODE_INT,
3907 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3908 0, "short", objfile);
3909 objfile_type->builtin_unsigned_short
3910 = init_type (TYPE_CODE_INT,
3911 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3912 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3913 objfile_type->builtin_int
3914 = init_type (TYPE_CODE_INT,
3915 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3916 0, "int", objfile);
3917 objfile_type->builtin_unsigned_int
3918 = init_type (TYPE_CODE_INT,
3919 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3920 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3921 objfile_type->builtin_long
3922 = init_type (TYPE_CODE_INT,
3923 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3924 0, "long", objfile);
3925 objfile_type->builtin_unsigned_long
3926 = init_type (TYPE_CODE_INT,
3927 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3928 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3929 objfile_type->builtin_long_long
3930 = init_type (TYPE_CODE_INT,
3931 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3932 0, "long long", objfile);
3933 objfile_type->builtin_unsigned_long_long
3934 = init_type (TYPE_CODE_INT,
3935 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3936 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3937
3938 objfile_type->builtin_float
3939 = init_type (TYPE_CODE_FLT,
3940 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3941 0, "float", objfile);
3942 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3943 = gdbarch_float_format (gdbarch);
3944 objfile_type->builtin_double
3945 = init_type (TYPE_CODE_FLT,
3946 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3947 0, "double", objfile);
3948 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3949 = gdbarch_double_format (gdbarch);
3950 objfile_type->builtin_long_double
3951 = init_type (TYPE_CODE_FLT,
3952 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3953 0, "long double", objfile);
3954 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3955 = gdbarch_long_double_format (gdbarch);
3956
3957 /* This type represents a type that was unrecognized in symbol read-in. */
3958 objfile_type->builtin_error
3959 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3960
3961 /* The following set of types is used for symbols with no
3962 debug information. */
3963 objfile_type->nodebug_text_symbol
3964 = init_type (TYPE_CODE_FUNC, 1, 0,
3965 "<text variable, no debug info>", objfile);
3966 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3967 = objfile_type->builtin_int;
3968 objfile_type->nodebug_text_gnu_ifunc_symbol
3969 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3970 "<text gnu-indirect-function variable, no debug info>",
3971 objfile);
3972 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3973 = objfile_type->nodebug_text_symbol;
3974 objfile_type->nodebug_got_plt_symbol
3975 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3976 "<text from jump slot in .got.plt, no debug info>",
3977 objfile);
3978 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3979 = objfile_type->nodebug_text_symbol;
3980 objfile_type->nodebug_data_symbol
3981 = init_type (TYPE_CODE_INT,
3982 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3983 "<data variable, no debug info>", objfile);
3984 objfile_type->nodebug_unknown_symbol
3985 = init_type (TYPE_CODE_INT, 1, 0,
3986 "<variable (not text or data), no debug info>", objfile);
3987 objfile_type->nodebug_tls_symbol
3988 = init_type (TYPE_CODE_INT,
3989 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3990 "<thread local variable, no debug info>", objfile);
3991
3992 /* NOTE: on some targets, addresses and pointers are not necessarily
3993 the same --- for example, on the D10V, pointers are 16 bits long,
3994 but addresses are 32 bits long. See doc/gdbint.texinfo,
3995 ``Pointers Are Not Always Addresses''.
3996
3997 The upshot is:
3998 - gdb's `struct type' always describes the target's
3999 representation.
4000 - gdb's `struct value' objects should always hold values in
4001 target form.
4002 - gdb's CORE_ADDR values are addresses in the unified virtual
4003 address space that the assembler and linker work with. Thus,
4004 since target_read_memory takes a CORE_ADDR as an argument, it
4005 can access any memory on the target, even if the processor has
4006 separate code and data address spaces.
4007
4008 So, for example:
4009 - If v is a value holding a D10V code pointer, its contents are
4010 in target form: a big-endian address left-shifted two bits.
4011 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4012 sizeof (void *) == 2 on the target.
4013
4014 In this context, objfile_type->builtin_core_addr is a bit odd:
4015 it's a target type for a value the target will never see. It's
4016 only used to hold the values of (typeless) linker symbols, which
4017 are indeed in the unified virtual address space. */
4018
4019 objfile_type->builtin_core_addr
4020 = init_type (TYPE_CODE_INT,
4021 gdbarch_addr_bit (gdbarch) / 8,
4022 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4023
4024 set_objfile_data (objfile, objfile_type_data, objfile_type);
4025 return objfile_type;
4026 }
4027
4028
4029 extern void _initialize_gdbtypes (void);
4030 void
4031 _initialize_gdbtypes (void)
4032 {
4033 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4034 objfile_type_data = register_objfile_data ();
4035
4036 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
4037 _("Set debugging of C++ overloading."),
4038 _("Show debugging of C++ overloading."),
4039 _("When enabled, ranking of the "
4040 "functions is displayed."),
4041 NULL,
4042 show_overload_debug,
4043 &setdebuglist, &showdebuglist);
4044
4045 /* Add user knob for controlling resolution of opaque types. */
4046 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4047 &opaque_type_resolution,
4048 _("Set resolution of opaque struct/class/union"
4049 " types (if set before loading symbols)."),
4050 _("Show resolution of opaque struct/class/union"
4051 " types (if set before loading symbols)."),
4052 NULL, NULL,
4053 show_opaque_type_resolution,
4054 &setlist, &showlist);
4055 }
This page took 0.246891 seconds and 4 git commands to generate.