* mips-linux-tdep.c: Adjust formatting throughout.
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2013 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "gdb_string.h"
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double,
112 &floatformat_ibm_long_double
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_VPTR_FIELDNO (type) = -1;
184 TYPE_CHAIN (type) = type; /* Chain back to itself. */
185
186 return type;
187 }
188
189 /* Allocate a new GDBARCH-associated type structure and fill it
190 with some defaults. Space for the type structure is allocated
191 on the heap. */
192
193 struct type *
194 alloc_type_arch (struct gdbarch *gdbarch)
195 {
196 struct type *type;
197
198 gdb_assert (gdbarch != NULL);
199
200 /* Alloc the structure and start off with all fields zeroed. */
201
202 type = XZALLOC (struct type);
203 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
204
205 TYPE_OBJFILE_OWNED (type) = 0;
206 TYPE_OWNER (type).gdbarch = gdbarch;
207
208 /* Initialize the fields that might not be zero. */
209
210 TYPE_CODE (type) = TYPE_CODE_UNDEF;
211 TYPE_VPTR_FIELDNO (type) = -1;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 if (TYPE_OBJFILE_OWNED (type))
237 return get_objfile_arch (TYPE_OWNER (type).objfile);
238 else
239 return TYPE_OWNER (type).gdbarch;
240 }
241
242 /* Alloc a new type instance structure, fill it with some defaults,
243 and point it at OLDTYPE. Allocate the new type instance from the
244 same place as OLDTYPE. */
245
246 static struct type *
247 alloc_type_instance (struct type *oldtype)
248 {
249 struct type *type;
250
251 /* Allocate the structure. */
252
253 if (! TYPE_OBJFILE_OWNED (oldtype))
254 type = XZALLOC (struct type);
255 else
256 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
257 struct type);
258
259 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
260
261 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
262
263 return type;
264 }
265
266 /* Clear all remnants of the previous type at TYPE, in preparation for
267 replacing it with something else. Preserve owner information. */
268
269 static void
270 smash_type (struct type *type)
271 {
272 int objfile_owned = TYPE_OBJFILE_OWNED (type);
273 union type_owner owner = TYPE_OWNER (type);
274
275 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
276
277 /* Restore owner information. */
278 TYPE_OBJFILE_OWNED (type) = objfile_owned;
279 TYPE_OWNER (type) = owner;
280
281 /* For now, delete the rings. */
282 TYPE_CHAIN (type) = type;
283
284 /* For now, leave the pointer/reference types alone. */
285 }
286
287 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
288 to a pointer to memory where the pointer type should be stored.
289 If *TYPEPTR is zero, update it to point to the pointer type we return.
290 We allocate new memory if needed. */
291
292 struct type *
293 make_pointer_type (struct type *type, struct type **typeptr)
294 {
295 struct type *ntype; /* New type */
296 struct type *chain;
297
298 ntype = TYPE_POINTER_TYPE (type);
299
300 if (ntype)
301 {
302 if (typeptr == 0)
303 return ntype; /* Don't care about alloc,
304 and have new type. */
305 else if (*typeptr == 0)
306 {
307 *typeptr = ntype; /* Tracking alloc, and have new type. */
308 return ntype;
309 }
310 }
311
312 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
313 {
314 ntype = alloc_type_copy (type);
315 if (typeptr)
316 *typeptr = ntype;
317 }
318 else /* We have storage, but need to reset it. */
319 {
320 ntype = *typeptr;
321 chain = TYPE_CHAIN (ntype);
322 smash_type (ntype);
323 TYPE_CHAIN (ntype) = chain;
324 }
325
326 TYPE_TARGET_TYPE (ntype) = type;
327 TYPE_POINTER_TYPE (type) = ntype;
328
329 /* FIXME! Assumes the machine has only one representation for pointers! */
330
331 TYPE_LENGTH (ntype)
332 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
333 TYPE_CODE (ntype) = TYPE_CODE_PTR;
334
335 /* Mark pointers as unsigned. The target converts between pointers
336 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
337 gdbarch_address_to_pointer. */
338 TYPE_UNSIGNED (ntype) = 1;
339
340 /* Update the length of all the other variants of this type. */
341 chain = TYPE_CHAIN (ntype);
342 while (chain != ntype)
343 {
344 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
345 chain = TYPE_CHAIN (chain);
346 }
347
348 return ntype;
349 }
350
351 /* Given a type TYPE, return a type of pointers to that type.
352 May need to construct such a type if this is the first use. */
353
354 struct type *
355 lookup_pointer_type (struct type *type)
356 {
357 return make_pointer_type (type, (struct type **) 0);
358 }
359
360 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
361 points to a pointer to memory where the reference type should be
362 stored. If *TYPEPTR is zero, update it to point to the reference
363 type we return. We allocate new memory if needed. */
364
365 struct type *
366 make_reference_type (struct type *type, struct type **typeptr)
367 {
368 struct type *ntype; /* New type */
369 struct type *chain;
370
371 ntype = TYPE_REFERENCE_TYPE (type);
372
373 if (ntype)
374 {
375 if (typeptr == 0)
376 return ntype; /* Don't care about alloc,
377 and have new type. */
378 else if (*typeptr == 0)
379 {
380 *typeptr = ntype; /* Tracking alloc, and have new type. */
381 return ntype;
382 }
383 }
384
385 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
386 {
387 ntype = alloc_type_copy (type);
388 if (typeptr)
389 *typeptr = ntype;
390 }
391 else /* We have storage, but need to reset it. */
392 {
393 ntype = *typeptr;
394 chain = TYPE_CHAIN (ntype);
395 smash_type (ntype);
396 TYPE_CHAIN (ntype) = chain;
397 }
398
399 TYPE_TARGET_TYPE (ntype) = type;
400 TYPE_REFERENCE_TYPE (type) = ntype;
401
402 /* FIXME! Assume the machine has only one representation for
403 references, and that it matches the (only) representation for
404 pointers! */
405
406 TYPE_LENGTH (ntype) =
407 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
408 TYPE_CODE (ntype) = TYPE_CODE_REF;
409
410 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
411 TYPE_REFERENCE_TYPE (type) = ntype;
412
413 /* Update the length of all the other variants of this type. */
414 chain = TYPE_CHAIN (ntype);
415 while (chain != ntype)
416 {
417 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
418 chain = TYPE_CHAIN (chain);
419 }
420
421 return ntype;
422 }
423
424 /* Same as above, but caller doesn't care about memory allocation
425 details. */
426
427 struct type *
428 lookup_reference_type (struct type *type)
429 {
430 return make_reference_type (type, (struct type **) 0);
431 }
432
433 /* Lookup a function type that returns type TYPE. TYPEPTR, if
434 nonzero, points to a pointer to memory where the function type
435 should be stored. If *TYPEPTR is zero, update it to point to the
436 function type we return. We allocate new memory if needed. */
437
438 struct type *
439 make_function_type (struct type *type, struct type **typeptr)
440 {
441 struct type *ntype; /* New type */
442
443 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
444 {
445 ntype = alloc_type_copy (type);
446 if (typeptr)
447 *typeptr = ntype;
448 }
449 else /* We have storage, but need to reset it. */
450 {
451 ntype = *typeptr;
452 smash_type (ntype);
453 }
454
455 TYPE_TARGET_TYPE (ntype) = type;
456
457 TYPE_LENGTH (ntype) = 1;
458 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
459
460 INIT_FUNC_SPECIFIC (ntype);
461
462 return ntype;
463 }
464
465 /* Given a type TYPE, return a type of functions that return that type.
466 May need to construct such a type if this is the first use. */
467
468 struct type *
469 lookup_function_type (struct type *type)
470 {
471 return make_function_type (type, (struct type **) 0);
472 }
473
474 /* Given a type TYPE and argument types, return the appropriate
475 function type. If the final type in PARAM_TYPES is NULL, make a
476 varargs function. */
477
478 struct type *
479 lookup_function_type_with_arguments (struct type *type,
480 int nparams,
481 struct type **param_types)
482 {
483 struct type *fn = make_function_type (type, (struct type **) 0);
484 int i;
485
486 if (nparams > 0)
487 {
488 if (param_types[nparams - 1] == NULL)
489 {
490 --nparams;
491 TYPE_VARARGS (fn) = 1;
492 }
493 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
494 == TYPE_CODE_VOID)
495 {
496 --nparams;
497 /* Caller should have ensured this. */
498 gdb_assert (nparams == 0);
499 TYPE_PROTOTYPED (fn) = 1;
500 }
501 }
502
503 TYPE_NFIELDS (fn) = nparams;
504 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
505 for (i = 0; i < nparams; ++i)
506 TYPE_FIELD_TYPE (fn, i) = param_types[i];
507
508 return fn;
509 }
510
511 /* Identify address space identifier by name --
512 return the integer flag defined in gdbtypes.h. */
513
514 int
515 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
516 {
517 int type_flags;
518
519 /* Check for known address space delimiters. */
520 if (!strcmp (space_identifier, "code"))
521 return TYPE_INSTANCE_FLAG_CODE_SPACE;
522 else if (!strcmp (space_identifier, "data"))
523 return TYPE_INSTANCE_FLAG_DATA_SPACE;
524 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
525 && gdbarch_address_class_name_to_type_flags (gdbarch,
526 space_identifier,
527 &type_flags))
528 return type_flags;
529 else
530 error (_("Unknown address space specifier: \"%s\""), space_identifier);
531 }
532
533 /* Identify address space identifier by integer flag as defined in
534 gdbtypes.h -- return the string version of the adress space name. */
535
536 const char *
537 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
538 {
539 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
540 return "code";
541 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
542 return "data";
543 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
544 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
545 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
546 else
547 return NULL;
548 }
549
550 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
551
552 If STORAGE is non-NULL, create the new type instance there.
553 STORAGE must be in the same obstack as TYPE. */
554
555 static struct type *
556 make_qualified_type (struct type *type, int new_flags,
557 struct type *storage)
558 {
559 struct type *ntype;
560
561 ntype = type;
562 do
563 {
564 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
565 return ntype;
566 ntype = TYPE_CHAIN (ntype);
567 }
568 while (ntype != type);
569
570 /* Create a new type instance. */
571 if (storage == NULL)
572 ntype = alloc_type_instance (type);
573 else
574 {
575 /* If STORAGE was provided, it had better be in the same objfile
576 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
577 if one objfile is freed and the other kept, we'd have
578 dangling pointers. */
579 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
580
581 ntype = storage;
582 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
583 TYPE_CHAIN (ntype) = ntype;
584 }
585
586 /* Pointers or references to the original type are not relevant to
587 the new type. */
588 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
589 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
590
591 /* Chain the new qualified type to the old type. */
592 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
593 TYPE_CHAIN (type) = ntype;
594
595 /* Now set the instance flags and return the new type. */
596 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
597
598 /* Set length of new type to that of the original type. */
599 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
600
601 return ntype;
602 }
603
604 /* Make an address-space-delimited variant of a type -- a type that
605 is identical to the one supplied except that it has an address
606 space attribute attached to it (such as "code" or "data").
607
608 The space attributes "code" and "data" are for Harvard
609 architectures. The address space attributes are for architectures
610 which have alternately sized pointers or pointers with alternate
611 representations. */
612
613 struct type *
614 make_type_with_address_space (struct type *type, int space_flag)
615 {
616 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
617 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
618 | TYPE_INSTANCE_FLAG_DATA_SPACE
619 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
620 | space_flag);
621
622 return make_qualified_type (type, new_flags, NULL);
623 }
624
625 /* Make a "c-v" variant of a type -- a type that is identical to the
626 one supplied except that it may have const or volatile attributes
627 CNST is a flag for setting the const attribute
628 VOLTL is a flag for setting the volatile attribute
629 TYPE is the base type whose variant we are creating.
630
631 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
632 storage to hold the new qualified type; *TYPEPTR and TYPE must be
633 in the same objfile. Otherwise, allocate fresh memory for the new
634 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
635 new type we construct. */
636
637 struct type *
638 make_cv_type (int cnst, int voltl,
639 struct type *type,
640 struct type **typeptr)
641 {
642 struct type *ntype; /* New type */
643
644 int new_flags = (TYPE_INSTANCE_FLAGS (type)
645 & ~(TYPE_INSTANCE_FLAG_CONST
646 | TYPE_INSTANCE_FLAG_VOLATILE));
647
648 if (cnst)
649 new_flags |= TYPE_INSTANCE_FLAG_CONST;
650
651 if (voltl)
652 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
653
654 if (typeptr && *typeptr != NULL)
655 {
656 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
657 a C-V variant chain that threads across objfiles: if one
658 objfile gets freed, then the other has a broken C-V chain.
659
660 This code used to try to copy over the main type from TYPE to
661 *TYPEPTR if they were in different objfiles, but that's
662 wrong, too: TYPE may have a field list or member function
663 lists, which refer to types of their own, etc. etc. The
664 whole shebang would need to be copied over recursively; you
665 can't have inter-objfile pointers. The only thing to do is
666 to leave stub types as stub types, and look them up afresh by
667 name each time you encounter them. */
668 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
669 }
670
671 ntype = make_qualified_type (type, new_flags,
672 typeptr ? *typeptr : NULL);
673
674 if (typeptr != NULL)
675 *typeptr = ntype;
676
677 return ntype;
678 }
679
680 /* Make a 'restrict'-qualified version of TYPE. */
681
682 struct type *
683 make_restrict_type (struct type *type)
684 {
685 return make_qualified_type (type,
686 (TYPE_INSTANCE_FLAGS (type)
687 | TYPE_INSTANCE_FLAG_RESTRICT),
688 NULL);
689 }
690
691 /* Replace the contents of ntype with the type *type. This changes the
692 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
693 the changes are propogated to all types in the TYPE_CHAIN.
694
695 In order to build recursive types, it's inevitable that we'll need
696 to update types in place --- but this sort of indiscriminate
697 smashing is ugly, and needs to be replaced with something more
698 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
699 clear if more steps are needed. */
700
701 void
702 replace_type (struct type *ntype, struct type *type)
703 {
704 struct type *chain;
705
706 /* These two types had better be in the same objfile. Otherwise,
707 the assignment of one type's main type structure to the other
708 will produce a type with references to objects (names; field
709 lists; etc.) allocated on an objfile other than its own. */
710 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
711
712 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
713
714 /* The type length is not a part of the main type. Update it for
715 each type on the variant chain. */
716 chain = ntype;
717 do
718 {
719 /* Assert that this element of the chain has no address-class bits
720 set in its flags. Such type variants might have type lengths
721 which are supposed to be different from the non-address-class
722 variants. This assertion shouldn't ever be triggered because
723 symbol readers which do construct address-class variants don't
724 call replace_type(). */
725 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
726
727 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
728 chain = TYPE_CHAIN (chain);
729 }
730 while (ntype != chain);
731
732 /* Assert that the two types have equivalent instance qualifiers.
733 This should be true for at least all of our debug readers. */
734 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
735 }
736
737 /* Implement direct support for MEMBER_TYPE in GNU C++.
738 May need to construct such a type if this is the first use.
739 The TYPE is the type of the member. The DOMAIN is the type
740 of the aggregate that the member belongs to. */
741
742 struct type *
743 lookup_memberptr_type (struct type *type, struct type *domain)
744 {
745 struct type *mtype;
746
747 mtype = alloc_type_copy (type);
748 smash_to_memberptr_type (mtype, domain, type);
749 return mtype;
750 }
751
752 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
753
754 struct type *
755 lookup_methodptr_type (struct type *to_type)
756 {
757 struct type *mtype;
758
759 mtype = alloc_type_copy (to_type);
760 smash_to_methodptr_type (mtype, to_type);
761 return mtype;
762 }
763
764 /* Allocate a stub method whose return type is TYPE. This apparently
765 happens for speed of symbol reading, since parsing out the
766 arguments to the method is cpu-intensive, the way we are doing it.
767 So, we will fill in arguments later. This always returns a fresh
768 type. */
769
770 struct type *
771 allocate_stub_method (struct type *type)
772 {
773 struct type *mtype;
774
775 mtype = alloc_type_copy (type);
776 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
777 TYPE_LENGTH (mtype) = 1;
778 TYPE_STUB (mtype) = 1;
779 TYPE_TARGET_TYPE (mtype) = type;
780 /* _DOMAIN_TYPE (mtype) = unknown yet */
781 return mtype;
782 }
783
784 /* Create a range type using either a blank type supplied in
785 RESULT_TYPE, or creating a new type, inheriting the objfile from
786 INDEX_TYPE.
787
788 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
789 to HIGH_BOUND, inclusive.
790
791 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
792 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
793
794 struct type *
795 create_range_type (struct type *result_type, struct type *index_type,
796 LONGEST low_bound, LONGEST high_bound)
797 {
798 if (result_type == NULL)
799 result_type = alloc_type_copy (index_type);
800 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
801 TYPE_TARGET_TYPE (result_type) = index_type;
802 if (TYPE_STUB (index_type))
803 TYPE_TARGET_STUB (result_type) = 1;
804 else
805 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
806 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
807 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
808 TYPE_LOW_BOUND (result_type) = low_bound;
809 TYPE_HIGH_BOUND (result_type) = high_bound;
810
811 if (low_bound >= 0)
812 TYPE_UNSIGNED (result_type) = 1;
813
814 return result_type;
815 }
816
817 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
818 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
819 bounds will fit in LONGEST), or -1 otherwise. */
820
821 int
822 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
823 {
824 CHECK_TYPEDEF (type);
825 switch (TYPE_CODE (type))
826 {
827 case TYPE_CODE_RANGE:
828 *lowp = TYPE_LOW_BOUND (type);
829 *highp = TYPE_HIGH_BOUND (type);
830 return 1;
831 case TYPE_CODE_ENUM:
832 if (TYPE_NFIELDS (type) > 0)
833 {
834 /* The enums may not be sorted by value, so search all
835 entries. */
836 int i;
837
838 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
839 for (i = 0; i < TYPE_NFIELDS (type); i++)
840 {
841 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
842 *lowp = TYPE_FIELD_ENUMVAL (type, i);
843 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
844 *highp = TYPE_FIELD_ENUMVAL (type, i);
845 }
846
847 /* Set unsigned indicator if warranted. */
848 if (*lowp >= 0)
849 {
850 TYPE_UNSIGNED (type) = 1;
851 }
852 }
853 else
854 {
855 *lowp = 0;
856 *highp = -1;
857 }
858 return 0;
859 case TYPE_CODE_BOOL:
860 *lowp = 0;
861 *highp = 1;
862 return 0;
863 case TYPE_CODE_INT:
864 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
865 return -1;
866 if (!TYPE_UNSIGNED (type))
867 {
868 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
869 *highp = -*lowp - 1;
870 return 0;
871 }
872 /* ... fall through for unsigned ints ... */
873 case TYPE_CODE_CHAR:
874 *lowp = 0;
875 /* This round-about calculation is to avoid shifting by
876 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
877 if TYPE_LENGTH (type) == sizeof (LONGEST). */
878 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
879 *highp = (*highp - 1) | *highp;
880 return 0;
881 default:
882 return -1;
883 }
884 }
885
886 /* Assuming TYPE is a simple, non-empty array type, compute its upper
887 and lower bound. Save the low bound into LOW_BOUND if not NULL.
888 Save the high bound into HIGH_BOUND if not NULL.
889
890 Return 1 if the operation was successful. Return zero otherwise,
891 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
892
893 We now simply use get_discrete_bounds call to get the values
894 of the low and high bounds.
895 get_discrete_bounds can return three values:
896 1, meaning that index is a range,
897 0, meaning that index is a discrete type,
898 or -1 for failure. */
899
900 int
901 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
902 {
903 struct type *index = TYPE_INDEX_TYPE (type);
904 LONGEST low = 0;
905 LONGEST high = 0;
906 int res;
907
908 if (index == NULL)
909 return 0;
910
911 res = get_discrete_bounds (index, &low, &high);
912 if (res == -1)
913 return 0;
914
915 /* Check if the array bounds are undefined. */
916 if (res == 1
917 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
918 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
919 return 0;
920
921 if (low_bound)
922 *low_bound = low;
923
924 if (high_bound)
925 *high_bound = high;
926
927 return 1;
928 }
929
930 /* Create an array type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type, inheriting the objfile from
932 RANGE_TYPE.
933
934 Elements will be of type ELEMENT_TYPE, the indices will be of type
935 RANGE_TYPE.
936
937 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
938 sure it is TYPE_CODE_UNDEF before we bash it into an array
939 type? */
940
941 struct type *
942 create_array_type (struct type *result_type,
943 struct type *element_type,
944 struct type *range_type)
945 {
946 LONGEST low_bound, high_bound;
947
948 if (result_type == NULL)
949 result_type = alloc_type_copy (range_type);
950
951 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
952 TYPE_TARGET_TYPE (result_type) = element_type;
953 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
954 low_bound = high_bound = 0;
955 CHECK_TYPEDEF (element_type);
956 /* Be careful when setting the array length. Ada arrays can be
957 empty arrays with the high_bound being smaller than the low_bound.
958 In such cases, the array length should be zero. */
959 if (high_bound < low_bound)
960 TYPE_LENGTH (result_type) = 0;
961 else
962 TYPE_LENGTH (result_type) =
963 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
964 TYPE_NFIELDS (result_type) = 1;
965 TYPE_FIELDS (result_type) =
966 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
967 TYPE_INDEX_TYPE (result_type) = range_type;
968 TYPE_VPTR_FIELDNO (result_type) = -1;
969
970 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
971 if (TYPE_LENGTH (result_type) == 0)
972 TYPE_TARGET_STUB (result_type) = 1;
973
974 return result_type;
975 }
976
977 struct type *
978 lookup_array_range_type (struct type *element_type,
979 LONGEST low_bound, LONGEST high_bound)
980 {
981 struct gdbarch *gdbarch = get_type_arch (element_type);
982 struct type *index_type = builtin_type (gdbarch)->builtin_int;
983 struct type *range_type
984 = create_range_type (NULL, index_type, low_bound, high_bound);
985
986 return create_array_type (NULL, element_type, range_type);
987 }
988
989 /* Create a string type using either a blank type supplied in
990 RESULT_TYPE, or creating a new type. String types are similar
991 enough to array of char types that we can use create_array_type to
992 build the basic type and then bash it into a string type.
993
994 For fixed length strings, the range type contains 0 as the lower
995 bound and the length of the string minus one as the upper bound.
996
997 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
998 sure it is TYPE_CODE_UNDEF before we bash it into a string
999 type? */
1000
1001 struct type *
1002 create_string_type (struct type *result_type,
1003 struct type *string_char_type,
1004 struct type *range_type)
1005 {
1006 result_type = create_array_type (result_type,
1007 string_char_type,
1008 range_type);
1009 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1010 return result_type;
1011 }
1012
1013 struct type *
1014 lookup_string_range_type (struct type *string_char_type,
1015 LONGEST low_bound, LONGEST high_bound)
1016 {
1017 struct type *result_type;
1018
1019 result_type = lookup_array_range_type (string_char_type,
1020 low_bound, high_bound);
1021 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1022 return result_type;
1023 }
1024
1025 struct type *
1026 create_set_type (struct type *result_type, struct type *domain_type)
1027 {
1028 if (result_type == NULL)
1029 result_type = alloc_type_copy (domain_type);
1030
1031 TYPE_CODE (result_type) = TYPE_CODE_SET;
1032 TYPE_NFIELDS (result_type) = 1;
1033 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1034
1035 if (!TYPE_STUB (domain_type))
1036 {
1037 LONGEST low_bound, high_bound, bit_length;
1038
1039 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1040 low_bound = high_bound = 0;
1041 bit_length = high_bound - low_bound + 1;
1042 TYPE_LENGTH (result_type)
1043 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1044 if (low_bound >= 0)
1045 TYPE_UNSIGNED (result_type) = 1;
1046 }
1047 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1048
1049 return result_type;
1050 }
1051
1052 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1053 and any array types nested inside it. */
1054
1055 void
1056 make_vector_type (struct type *array_type)
1057 {
1058 struct type *inner_array, *elt_type;
1059 int flags;
1060
1061 /* Find the innermost array type, in case the array is
1062 multi-dimensional. */
1063 inner_array = array_type;
1064 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1065 inner_array = TYPE_TARGET_TYPE (inner_array);
1066
1067 elt_type = TYPE_TARGET_TYPE (inner_array);
1068 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1069 {
1070 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1071 elt_type = make_qualified_type (elt_type, flags, NULL);
1072 TYPE_TARGET_TYPE (inner_array) = elt_type;
1073 }
1074
1075 TYPE_VECTOR (array_type) = 1;
1076 }
1077
1078 struct type *
1079 init_vector_type (struct type *elt_type, int n)
1080 {
1081 struct type *array_type;
1082
1083 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1084 make_vector_type (array_type);
1085 return array_type;
1086 }
1087
1088 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1089 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1090 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1091 TYPE doesn't include the offset (that's the value of the MEMBER
1092 itself), but does include the structure type into which it points
1093 (for some reason).
1094
1095 When "smashing" the type, we preserve the objfile that the old type
1096 pointed to, since we aren't changing where the type is actually
1097 allocated. */
1098
1099 void
1100 smash_to_memberptr_type (struct type *type, struct type *domain,
1101 struct type *to_type)
1102 {
1103 smash_type (type);
1104 TYPE_TARGET_TYPE (type) = to_type;
1105 TYPE_DOMAIN_TYPE (type) = domain;
1106 /* Assume that a data member pointer is the same size as a normal
1107 pointer. */
1108 TYPE_LENGTH (type)
1109 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1110 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1111 }
1112
1113 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1114
1115 When "smashing" the type, we preserve the objfile that the old type
1116 pointed to, since we aren't changing where the type is actually
1117 allocated. */
1118
1119 void
1120 smash_to_methodptr_type (struct type *type, struct type *to_type)
1121 {
1122 smash_type (type);
1123 TYPE_TARGET_TYPE (type) = to_type;
1124 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1125 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1126 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1127 }
1128
1129 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1130 METHOD just means `function that gets an extra "this" argument'.
1131
1132 When "smashing" the type, we preserve the objfile that the old type
1133 pointed to, since we aren't changing where the type is actually
1134 allocated. */
1135
1136 void
1137 smash_to_method_type (struct type *type, struct type *domain,
1138 struct type *to_type, struct field *args,
1139 int nargs, int varargs)
1140 {
1141 smash_type (type);
1142 TYPE_TARGET_TYPE (type) = to_type;
1143 TYPE_DOMAIN_TYPE (type) = domain;
1144 TYPE_FIELDS (type) = args;
1145 TYPE_NFIELDS (type) = nargs;
1146 if (varargs)
1147 TYPE_VARARGS (type) = 1;
1148 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1149 TYPE_CODE (type) = TYPE_CODE_METHOD;
1150 }
1151
1152 /* Return a typename for a struct/union/enum type without "struct ",
1153 "union ", or "enum ". If the type has a NULL name, return NULL. */
1154
1155 const char *
1156 type_name_no_tag (const struct type *type)
1157 {
1158 if (TYPE_TAG_NAME (type) != NULL)
1159 return TYPE_TAG_NAME (type);
1160
1161 /* Is there code which expects this to return the name if there is
1162 no tag name? My guess is that this is mainly used for C++ in
1163 cases where the two will always be the same. */
1164 return TYPE_NAME (type);
1165 }
1166
1167 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1168 Since GCC PR debug/47510 DWARF provides associated information to detect the
1169 anonymous class linkage name from its typedef.
1170
1171 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1172 apply it itself. */
1173
1174 const char *
1175 type_name_no_tag_or_error (struct type *type)
1176 {
1177 struct type *saved_type = type;
1178 const char *name;
1179 struct objfile *objfile;
1180
1181 CHECK_TYPEDEF (type);
1182
1183 name = type_name_no_tag (type);
1184 if (name != NULL)
1185 return name;
1186
1187 name = type_name_no_tag (saved_type);
1188 objfile = TYPE_OBJFILE (saved_type);
1189 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1190 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1191 }
1192
1193 /* Lookup a typedef or primitive type named NAME, visible in lexical
1194 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1195 suitably defined. */
1196
1197 struct type *
1198 lookup_typename (const struct language_defn *language,
1199 struct gdbarch *gdbarch, const char *name,
1200 const struct block *block, int noerr)
1201 {
1202 struct symbol *sym;
1203 struct type *type;
1204
1205 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1206 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1207 return SYMBOL_TYPE (sym);
1208
1209 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1210 if (type)
1211 return type;
1212
1213 if (noerr)
1214 return NULL;
1215 error (_("No type named %s."), name);
1216 }
1217
1218 struct type *
1219 lookup_unsigned_typename (const struct language_defn *language,
1220 struct gdbarch *gdbarch, const char *name)
1221 {
1222 char *uns = alloca (strlen (name) + 10);
1223
1224 strcpy (uns, "unsigned ");
1225 strcpy (uns + 9, name);
1226 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1227 }
1228
1229 struct type *
1230 lookup_signed_typename (const struct language_defn *language,
1231 struct gdbarch *gdbarch, const char *name)
1232 {
1233 struct type *t;
1234 char *uns = alloca (strlen (name) + 8);
1235
1236 strcpy (uns, "signed ");
1237 strcpy (uns + 7, name);
1238 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1239 /* If we don't find "signed FOO" just try again with plain "FOO". */
1240 if (t != NULL)
1241 return t;
1242 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1243 }
1244
1245 /* Lookup a structure type named "struct NAME",
1246 visible in lexical block BLOCK. */
1247
1248 struct type *
1249 lookup_struct (const char *name, const struct block *block)
1250 {
1251 struct symbol *sym;
1252
1253 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1254
1255 if (sym == NULL)
1256 {
1257 error (_("No struct type named %s."), name);
1258 }
1259 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1260 {
1261 error (_("This context has class, union or enum %s, not a struct."),
1262 name);
1263 }
1264 return (SYMBOL_TYPE (sym));
1265 }
1266
1267 /* Lookup a union type named "union NAME",
1268 visible in lexical block BLOCK. */
1269
1270 struct type *
1271 lookup_union (const char *name, const struct block *block)
1272 {
1273 struct symbol *sym;
1274 struct type *t;
1275
1276 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1277
1278 if (sym == NULL)
1279 error (_("No union type named %s."), name);
1280
1281 t = SYMBOL_TYPE (sym);
1282
1283 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1284 return t;
1285
1286 /* If we get here, it's not a union. */
1287 error (_("This context has class, struct or enum %s, not a union."),
1288 name);
1289 }
1290
1291 /* Lookup an enum type named "enum NAME",
1292 visible in lexical block BLOCK. */
1293
1294 struct type *
1295 lookup_enum (const char *name, const struct block *block)
1296 {
1297 struct symbol *sym;
1298
1299 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1300 if (sym == NULL)
1301 {
1302 error (_("No enum type named %s."), name);
1303 }
1304 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1305 {
1306 error (_("This context has class, struct or union %s, not an enum."),
1307 name);
1308 }
1309 return (SYMBOL_TYPE (sym));
1310 }
1311
1312 /* Lookup a template type named "template NAME<TYPE>",
1313 visible in lexical block BLOCK. */
1314
1315 struct type *
1316 lookup_template_type (char *name, struct type *type,
1317 const struct block *block)
1318 {
1319 struct symbol *sym;
1320 char *nam = (char *)
1321 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1322
1323 strcpy (nam, name);
1324 strcat (nam, "<");
1325 strcat (nam, TYPE_NAME (type));
1326 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1327
1328 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1329
1330 if (sym == NULL)
1331 {
1332 error (_("No template type named %s."), name);
1333 }
1334 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1335 {
1336 error (_("This context has class, union or enum %s, not a struct."),
1337 name);
1338 }
1339 return (SYMBOL_TYPE (sym));
1340 }
1341
1342 /* Given a type TYPE, lookup the type of the component of type named
1343 NAME.
1344
1345 TYPE can be either a struct or union, or a pointer or reference to
1346 a struct or union. If it is a pointer or reference, its target
1347 type is automatically used. Thus '.' and '->' are interchangable,
1348 as specified for the definitions of the expression element types
1349 STRUCTOP_STRUCT and STRUCTOP_PTR.
1350
1351 If NOERR is nonzero, return zero if NAME is not suitably defined.
1352 If NAME is the name of a baseclass type, return that type. */
1353
1354 struct type *
1355 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1356 {
1357 int i;
1358 char *typename;
1359
1360 for (;;)
1361 {
1362 CHECK_TYPEDEF (type);
1363 if (TYPE_CODE (type) != TYPE_CODE_PTR
1364 && TYPE_CODE (type) != TYPE_CODE_REF)
1365 break;
1366 type = TYPE_TARGET_TYPE (type);
1367 }
1368
1369 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1370 && TYPE_CODE (type) != TYPE_CODE_UNION)
1371 {
1372 typename = type_to_string (type);
1373 make_cleanup (xfree, typename);
1374 error (_("Type %s is not a structure or union type."), typename);
1375 }
1376
1377 #if 0
1378 /* FIXME: This change put in by Michael seems incorrect for the case
1379 where the structure tag name is the same as the member name.
1380 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1381 foo; } bell;" Disabled by fnf. */
1382 {
1383 char *typename;
1384
1385 typename = type_name_no_tag (type);
1386 if (typename != NULL && strcmp (typename, name) == 0)
1387 return type;
1388 }
1389 #endif
1390
1391 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1392 {
1393 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1394
1395 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1396 {
1397 return TYPE_FIELD_TYPE (type, i);
1398 }
1399 else if (!t_field_name || *t_field_name == '\0')
1400 {
1401 struct type *subtype
1402 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1403
1404 if (subtype != NULL)
1405 return subtype;
1406 }
1407 }
1408
1409 /* OK, it's not in this class. Recursively check the baseclasses. */
1410 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1411 {
1412 struct type *t;
1413
1414 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1415 if (t != NULL)
1416 {
1417 return t;
1418 }
1419 }
1420
1421 if (noerr)
1422 {
1423 return NULL;
1424 }
1425
1426 typename = type_to_string (type);
1427 make_cleanup (xfree, typename);
1428 error (_("Type %s has no component named %s."), typename, name);
1429 }
1430
1431 /* Lookup the vptr basetype/fieldno values for TYPE.
1432 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1433 vptr_fieldno. Also, if found and basetype is from the same objfile,
1434 cache the results.
1435 If not found, return -1 and ignore BASETYPEP.
1436 Callers should be aware that in some cases (for example,
1437 the type or one of its baseclasses is a stub type and we are
1438 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1439 this function will not be able to find the
1440 virtual function table pointer, and vptr_fieldno will remain -1 and
1441 vptr_basetype will remain NULL or incomplete. */
1442
1443 int
1444 get_vptr_fieldno (struct type *type, struct type **basetypep)
1445 {
1446 CHECK_TYPEDEF (type);
1447
1448 if (TYPE_VPTR_FIELDNO (type) < 0)
1449 {
1450 int i;
1451
1452 /* We must start at zero in case the first (and only) baseclass
1453 is virtual (and hence we cannot share the table pointer). */
1454 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1455 {
1456 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1457 int fieldno;
1458 struct type *basetype;
1459
1460 fieldno = get_vptr_fieldno (baseclass, &basetype);
1461 if (fieldno >= 0)
1462 {
1463 /* If the type comes from a different objfile we can't cache
1464 it, it may have a different lifetime. PR 2384 */
1465 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1466 {
1467 TYPE_VPTR_FIELDNO (type) = fieldno;
1468 TYPE_VPTR_BASETYPE (type) = basetype;
1469 }
1470 if (basetypep)
1471 *basetypep = basetype;
1472 return fieldno;
1473 }
1474 }
1475
1476 /* Not found. */
1477 return -1;
1478 }
1479 else
1480 {
1481 if (basetypep)
1482 *basetypep = TYPE_VPTR_BASETYPE (type);
1483 return TYPE_VPTR_FIELDNO (type);
1484 }
1485 }
1486
1487 static void
1488 stub_noname_complaint (void)
1489 {
1490 complaint (&symfile_complaints, _("stub type has NULL name"));
1491 }
1492
1493 /* Find the real type of TYPE. This function returns the real type,
1494 after removing all layers of typedefs, and completing opaque or stub
1495 types. Completion changes the TYPE argument, but stripping of
1496 typedefs does not.
1497
1498 Instance flags (e.g. const/volatile) are preserved as typedefs are
1499 stripped. If necessary a new qualified form of the underlying type
1500 is created.
1501
1502 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1503 not been computed and we're either in the middle of reading symbols, or
1504 there was no name for the typedef in the debug info.
1505
1506 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1507 QUITs in the symbol reading code can also throw.
1508 Thus this function can throw an exception.
1509
1510 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1511 the target type.
1512
1513 If this is a stubbed struct (i.e. declared as struct foo *), see if
1514 we can find a full definition in some other file. If so, copy this
1515 definition, so we can use it in future. There used to be a comment
1516 (but not any code) that if we don't find a full definition, we'd
1517 set a flag so we don't spend time in the future checking the same
1518 type. That would be a mistake, though--we might load in more
1519 symbols which contain a full definition for the type. */
1520
1521 struct type *
1522 check_typedef (struct type *type)
1523 {
1524 struct type *orig_type = type;
1525 /* While we're removing typedefs, we don't want to lose qualifiers.
1526 E.g., const/volatile. */
1527 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1528
1529 gdb_assert (type);
1530
1531 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1532 {
1533 if (!TYPE_TARGET_TYPE (type))
1534 {
1535 const char *name;
1536 struct symbol *sym;
1537
1538 /* It is dangerous to call lookup_symbol if we are currently
1539 reading a symtab. Infinite recursion is one danger. */
1540 if (currently_reading_symtab)
1541 return make_qualified_type (type, instance_flags, NULL);
1542
1543 name = type_name_no_tag (type);
1544 /* FIXME: shouldn't we separately check the TYPE_NAME and
1545 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1546 VAR_DOMAIN as appropriate? (this code was written before
1547 TYPE_NAME and TYPE_TAG_NAME were separate). */
1548 if (name == NULL)
1549 {
1550 stub_noname_complaint ();
1551 return make_qualified_type (type, instance_flags, NULL);
1552 }
1553 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1554 if (sym)
1555 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1556 else /* TYPE_CODE_UNDEF */
1557 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1558 }
1559 type = TYPE_TARGET_TYPE (type);
1560
1561 /* Preserve the instance flags as we traverse down the typedef chain.
1562
1563 Handling address spaces/classes is nasty, what do we do if there's a
1564 conflict?
1565 E.g., what if an outer typedef marks the type as class_1 and an inner
1566 typedef marks the type as class_2?
1567 This is the wrong place to do such error checking. We leave it to
1568 the code that created the typedef in the first place to flag the
1569 error. We just pick the outer address space (akin to letting the
1570 outer cast in a chain of casting win), instead of assuming
1571 "it can't happen". */
1572 {
1573 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1574 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1575 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1576 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1577
1578 /* Treat code vs data spaces and address classes separately. */
1579 if ((instance_flags & ALL_SPACES) != 0)
1580 new_instance_flags &= ~ALL_SPACES;
1581 if ((instance_flags & ALL_CLASSES) != 0)
1582 new_instance_flags &= ~ALL_CLASSES;
1583
1584 instance_flags |= new_instance_flags;
1585 }
1586 }
1587
1588 /* If this is a struct/class/union with no fields, then check
1589 whether a full definition exists somewhere else. This is for
1590 systems where a type definition with no fields is issued for such
1591 types, instead of identifying them as stub types in the first
1592 place. */
1593
1594 if (TYPE_IS_OPAQUE (type)
1595 && opaque_type_resolution
1596 && !currently_reading_symtab)
1597 {
1598 const char *name = type_name_no_tag (type);
1599 struct type *newtype;
1600
1601 if (name == NULL)
1602 {
1603 stub_noname_complaint ();
1604 return make_qualified_type (type, instance_flags, NULL);
1605 }
1606 newtype = lookup_transparent_type (name);
1607
1608 if (newtype)
1609 {
1610 /* If the resolved type and the stub are in the same
1611 objfile, then replace the stub type with the real deal.
1612 But if they're in separate objfiles, leave the stub
1613 alone; we'll just look up the transparent type every time
1614 we call check_typedef. We can't create pointers between
1615 types allocated to different objfiles, since they may
1616 have different lifetimes. Trying to copy NEWTYPE over to
1617 TYPE's objfile is pointless, too, since you'll have to
1618 move over any other types NEWTYPE refers to, which could
1619 be an unbounded amount of stuff. */
1620 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1621 type = make_qualified_type (newtype,
1622 TYPE_INSTANCE_FLAGS (type),
1623 type);
1624 else
1625 type = newtype;
1626 }
1627 }
1628 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1629 types. */
1630 else if (TYPE_STUB (type) && !currently_reading_symtab)
1631 {
1632 const char *name = type_name_no_tag (type);
1633 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1634 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1635 as appropriate? (this code was written before TYPE_NAME and
1636 TYPE_TAG_NAME were separate). */
1637 struct symbol *sym;
1638
1639 if (name == NULL)
1640 {
1641 stub_noname_complaint ();
1642 return make_qualified_type (type, instance_flags, NULL);
1643 }
1644 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1645 if (sym)
1646 {
1647 /* Same as above for opaque types, we can replace the stub
1648 with the complete type only if they are in the same
1649 objfile. */
1650 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1651 type = make_qualified_type (SYMBOL_TYPE (sym),
1652 TYPE_INSTANCE_FLAGS (type),
1653 type);
1654 else
1655 type = SYMBOL_TYPE (sym);
1656 }
1657 }
1658
1659 if (TYPE_TARGET_STUB (type))
1660 {
1661 struct type *range_type;
1662 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1663
1664 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1665 {
1666 /* Nothing we can do. */
1667 }
1668 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1669 && TYPE_NFIELDS (type) == 1
1670 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1671 == TYPE_CODE_RANGE))
1672 {
1673 /* Now recompute the length of the array type, based on its
1674 number of elements and the target type's length.
1675 Watch out for Ada null Ada arrays where the high bound
1676 is smaller than the low bound. */
1677 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1678 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1679 ULONGEST len;
1680
1681 if (high_bound < low_bound)
1682 len = 0;
1683 else
1684 {
1685 /* For now, we conservatively take the array length to be 0
1686 if its length exceeds UINT_MAX. The code below assumes
1687 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1688 which is technically not guaranteed by C, but is usually true
1689 (because it would be true if x were unsigned with its
1690 high-order bit on). It uses the fact that
1691 high_bound-low_bound is always representable in
1692 ULONGEST and that if high_bound-low_bound+1 overflows,
1693 it overflows to 0. We must change these tests if we
1694 decide to increase the representation of TYPE_LENGTH
1695 from unsigned int to ULONGEST. */
1696 ULONGEST ulow = low_bound, uhigh = high_bound;
1697 ULONGEST tlen = TYPE_LENGTH (target_type);
1698
1699 len = tlen * (uhigh - ulow + 1);
1700 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1701 || len > UINT_MAX)
1702 len = 0;
1703 }
1704 TYPE_LENGTH (type) = len;
1705 TYPE_TARGET_STUB (type) = 0;
1706 }
1707 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1708 {
1709 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1710 TYPE_TARGET_STUB (type) = 0;
1711 }
1712 }
1713
1714 type = make_qualified_type (type, instance_flags, NULL);
1715
1716 /* Cache TYPE_LENGTH for future use. */
1717 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1718
1719 return type;
1720 }
1721
1722 /* Parse a type expression in the string [P..P+LENGTH). If an error
1723 occurs, silently return a void type. */
1724
1725 static struct type *
1726 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1727 {
1728 struct ui_file *saved_gdb_stderr;
1729 struct type *type = NULL; /* Initialize to keep gcc happy. */
1730 volatile struct gdb_exception except;
1731
1732 /* Suppress error messages. */
1733 saved_gdb_stderr = gdb_stderr;
1734 gdb_stderr = ui_file_new ();
1735
1736 /* Call parse_and_eval_type() without fear of longjmp()s. */
1737 TRY_CATCH (except, RETURN_MASK_ERROR)
1738 {
1739 type = parse_and_eval_type (p, length);
1740 }
1741
1742 if (except.reason < 0)
1743 type = builtin_type (gdbarch)->builtin_void;
1744
1745 /* Stop suppressing error messages. */
1746 ui_file_delete (gdb_stderr);
1747 gdb_stderr = saved_gdb_stderr;
1748
1749 return type;
1750 }
1751
1752 /* Ugly hack to convert method stubs into method types.
1753
1754 He ain't kiddin'. This demangles the name of the method into a
1755 string including argument types, parses out each argument type,
1756 generates a string casting a zero to that type, evaluates the
1757 string, and stuffs the resulting type into an argtype vector!!!
1758 Then it knows the type of the whole function (including argument
1759 types for overloading), which info used to be in the stab's but was
1760 removed to hack back the space required for them. */
1761
1762 static void
1763 check_stub_method (struct type *type, int method_id, int signature_id)
1764 {
1765 struct gdbarch *gdbarch = get_type_arch (type);
1766 struct fn_field *f;
1767 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1768 char *demangled_name = gdb_demangle (mangled_name,
1769 DMGL_PARAMS | DMGL_ANSI);
1770 char *argtypetext, *p;
1771 int depth = 0, argcount = 1;
1772 struct field *argtypes;
1773 struct type *mtype;
1774
1775 /* Make sure we got back a function string that we can use. */
1776 if (demangled_name)
1777 p = strchr (demangled_name, '(');
1778 else
1779 p = NULL;
1780
1781 if (demangled_name == NULL || p == NULL)
1782 error (_("Internal: Cannot demangle mangled name `%s'."),
1783 mangled_name);
1784
1785 /* Now, read in the parameters that define this type. */
1786 p += 1;
1787 argtypetext = p;
1788 while (*p)
1789 {
1790 if (*p == '(' || *p == '<')
1791 {
1792 depth += 1;
1793 }
1794 else if (*p == ')' || *p == '>')
1795 {
1796 depth -= 1;
1797 }
1798 else if (*p == ',' && depth == 0)
1799 {
1800 argcount += 1;
1801 }
1802
1803 p += 1;
1804 }
1805
1806 /* If we read one argument and it was ``void'', don't count it. */
1807 if (strncmp (argtypetext, "(void)", 6) == 0)
1808 argcount -= 1;
1809
1810 /* We need one extra slot, for the THIS pointer. */
1811
1812 argtypes = (struct field *)
1813 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1814 p = argtypetext;
1815
1816 /* Add THIS pointer for non-static methods. */
1817 f = TYPE_FN_FIELDLIST1 (type, method_id);
1818 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1819 argcount = 0;
1820 else
1821 {
1822 argtypes[0].type = lookup_pointer_type (type);
1823 argcount = 1;
1824 }
1825
1826 if (*p != ')') /* () means no args, skip while. */
1827 {
1828 depth = 0;
1829 while (*p)
1830 {
1831 if (depth <= 0 && (*p == ',' || *p == ')'))
1832 {
1833 /* Avoid parsing of ellipsis, they will be handled below.
1834 Also avoid ``void'' as above. */
1835 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1836 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1837 {
1838 argtypes[argcount].type =
1839 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1840 argcount += 1;
1841 }
1842 argtypetext = p + 1;
1843 }
1844
1845 if (*p == '(' || *p == '<')
1846 {
1847 depth += 1;
1848 }
1849 else if (*p == ')' || *p == '>')
1850 {
1851 depth -= 1;
1852 }
1853
1854 p += 1;
1855 }
1856 }
1857
1858 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1859
1860 /* Now update the old "stub" type into a real type. */
1861 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1862 TYPE_DOMAIN_TYPE (mtype) = type;
1863 TYPE_FIELDS (mtype) = argtypes;
1864 TYPE_NFIELDS (mtype) = argcount;
1865 TYPE_STUB (mtype) = 0;
1866 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1867 if (p[-2] == '.')
1868 TYPE_VARARGS (mtype) = 1;
1869
1870 xfree (demangled_name);
1871 }
1872
1873 /* This is the external interface to check_stub_method, above. This
1874 function unstubs all of the signatures for TYPE's METHOD_ID method
1875 name. After calling this function TYPE_FN_FIELD_STUB will be
1876 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1877 correct.
1878
1879 This function unfortunately can not die until stabs do. */
1880
1881 void
1882 check_stub_method_group (struct type *type, int method_id)
1883 {
1884 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1885 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1886 int j, found_stub = 0;
1887
1888 for (j = 0; j < len; j++)
1889 if (TYPE_FN_FIELD_STUB (f, j))
1890 {
1891 found_stub = 1;
1892 check_stub_method (type, method_id, j);
1893 }
1894
1895 /* GNU v3 methods with incorrect names were corrected when we read
1896 in type information, because it was cheaper to do it then. The
1897 only GNU v2 methods with incorrect method names are operators and
1898 destructors; destructors were also corrected when we read in type
1899 information.
1900
1901 Therefore the only thing we need to handle here are v2 operator
1902 names. */
1903 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1904 {
1905 int ret;
1906 char dem_opname[256];
1907
1908 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1909 method_id),
1910 dem_opname, DMGL_ANSI);
1911 if (!ret)
1912 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1913 method_id),
1914 dem_opname, 0);
1915 if (ret)
1916 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1917 }
1918 }
1919
1920 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1921 const struct cplus_struct_type cplus_struct_default = { };
1922
1923 void
1924 allocate_cplus_struct_type (struct type *type)
1925 {
1926 if (HAVE_CPLUS_STRUCT (type))
1927 /* Structure was already allocated. Nothing more to do. */
1928 return;
1929
1930 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1931 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1932 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1933 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1934 }
1935
1936 const struct gnat_aux_type gnat_aux_default =
1937 { NULL };
1938
1939 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1940 and allocate the associated gnat-specific data. The gnat-specific
1941 data is also initialized to gnat_aux_default. */
1942
1943 void
1944 allocate_gnat_aux_type (struct type *type)
1945 {
1946 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1947 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1948 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1949 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1950 }
1951
1952 /* Helper function to initialize the standard scalar types.
1953
1954 If NAME is non-NULL, then it is used to initialize the type name.
1955 Note that NAME is not copied; it is required to have a lifetime at
1956 least as long as OBJFILE. */
1957
1958 struct type *
1959 init_type (enum type_code code, int length, int flags,
1960 const char *name, struct objfile *objfile)
1961 {
1962 struct type *type;
1963
1964 type = alloc_type (objfile);
1965 TYPE_CODE (type) = code;
1966 TYPE_LENGTH (type) = length;
1967
1968 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1969 if (flags & TYPE_FLAG_UNSIGNED)
1970 TYPE_UNSIGNED (type) = 1;
1971 if (flags & TYPE_FLAG_NOSIGN)
1972 TYPE_NOSIGN (type) = 1;
1973 if (flags & TYPE_FLAG_STUB)
1974 TYPE_STUB (type) = 1;
1975 if (flags & TYPE_FLAG_TARGET_STUB)
1976 TYPE_TARGET_STUB (type) = 1;
1977 if (flags & TYPE_FLAG_STATIC)
1978 TYPE_STATIC (type) = 1;
1979 if (flags & TYPE_FLAG_PROTOTYPED)
1980 TYPE_PROTOTYPED (type) = 1;
1981 if (flags & TYPE_FLAG_INCOMPLETE)
1982 TYPE_INCOMPLETE (type) = 1;
1983 if (flags & TYPE_FLAG_VARARGS)
1984 TYPE_VARARGS (type) = 1;
1985 if (flags & TYPE_FLAG_VECTOR)
1986 TYPE_VECTOR (type) = 1;
1987 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1988 TYPE_STUB_SUPPORTED (type) = 1;
1989 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1990 TYPE_FIXED_INSTANCE (type) = 1;
1991 if (flags & TYPE_FLAG_GNU_IFUNC)
1992 TYPE_GNU_IFUNC (type) = 1;
1993
1994 TYPE_NAME (type) = name;
1995
1996 /* C++ fancies. */
1997
1998 if (name && strcmp (name, "char") == 0)
1999 TYPE_NOSIGN (type) = 1;
2000
2001 switch (code)
2002 {
2003 case TYPE_CODE_STRUCT:
2004 case TYPE_CODE_UNION:
2005 case TYPE_CODE_NAMESPACE:
2006 INIT_CPLUS_SPECIFIC (type);
2007 break;
2008 case TYPE_CODE_FLT:
2009 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2010 break;
2011 case TYPE_CODE_FUNC:
2012 INIT_FUNC_SPECIFIC (type);
2013 break;
2014 }
2015 return type;
2016 }
2017 \f
2018 /* Queries on types. */
2019
2020 int
2021 can_dereference (struct type *t)
2022 {
2023 /* FIXME: Should we return true for references as well as
2024 pointers? */
2025 CHECK_TYPEDEF (t);
2026 return
2027 (t != NULL
2028 && TYPE_CODE (t) == TYPE_CODE_PTR
2029 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2030 }
2031
2032 int
2033 is_integral_type (struct type *t)
2034 {
2035 CHECK_TYPEDEF (t);
2036 return
2037 ((t != NULL)
2038 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2039 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2040 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2041 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2042 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2043 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2044 }
2045
2046 /* Return true if TYPE is scalar. */
2047
2048 static int
2049 is_scalar_type (struct type *type)
2050 {
2051 CHECK_TYPEDEF (type);
2052
2053 switch (TYPE_CODE (type))
2054 {
2055 case TYPE_CODE_ARRAY:
2056 case TYPE_CODE_STRUCT:
2057 case TYPE_CODE_UNION:
2058 case TYPE_CODE_SET:
2059 case TYPE_CODE_STRING:
2060 return 0;
2061 default:
2062 return 1;
2063 }
2064 }
2065
2066 /* Return true if T is scalar, or a composite type which in practice has
2067 the memory layout of a scalar type. E.g., an array or struct with only
2068 one scalar element inside it, or a union with only scalar elements. */
2069
2070 int
2071 is_scalar_type_recursive (struct type *t)
2072 {
2073 CHECK_TYPEDEF (t);
2074
2075 if (is_scalar_type (t))
2076 return 1;
2077 /* Are we dealing with an array or string of known dimensions? */
2078 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2079 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2080 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2081 {
2082 LONGEST low_bound, high_bound;
2083 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2084
2085 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2086
2087 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2088 }
2089 /* Are we dealing with a struct with one element? */
2090 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2091 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2092 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2093 {
2094 int i, n = TYPE_NFIELDS (t);
2095
2096 /* If all elements of the union are scalar, then the union is scalar. */
2097 for (i = 0; i < n; i++)
2098 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2099 return 0;
2100
2101 return 1;
2102 }
2103
2104 return 0;
2105 }
2106
2107 /* A helper function which returns true if types A and B represent the
2108 "same" class type. This is true if the types have the same main
2109 type, or the same name. */
2110
2111 int
2112 class_types_same_p (const struct type *a, const struct type *b)
2113 {
2114 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2115 || (TYPE_NAME (a) && TYPE_NAME (b)
2116 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2117 }
2118
2119 /* If BASE is an ancestor of DCLASS return the distance between them.
2120 otherwise return -1;
2121 eg:
2122
2123 class A {};
2124 class B: public A {};
2125 class C: public B {};
2126 class D: C {};
2127
2128 distance_to_ancestor (A, A, 0) = 0
2129 distance_to_ancestor (A, B, 0) = 1
2130 distance_to_ancestor (A, C, 0) = 2
2131 distance_to_ancestor (A, D, 0) = 3
2132
2133 If PUBLIC is 1 then only public ancestors are considered,
2134 and the function returns the distance only if BASE is a public ancestor
2135 of DCLASS.
2136 Eg:
2137
2138 distance_to_ancestor (A, D, 1) = -1. */
2139
2140 static int
2141 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2142 {
2143 int i;
2144 int d;
2145
2146 CHECK_TYPEDEF (base);
2147 CHECK_TYPEDEF (dclass);
2148
2149 if (class_types_same_p (base, dclass))
2150 return 0;
2151
2152 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2153 {
2154 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2155 continue;
2156
2157 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2158 if (d >= 0)
2159 return 1 + d;
2160 }
2161
2162 return -1;
2163 }
2164
2165 /* Check whether BASE is an ancestor or base class or DCLASS
2166 Return 1 if so, and 0 if not.
2167 Note: If BASE and DCLASS are of the same type, this function
2168 will return 1. So for some class A, is_ancestor (A, A) will
2169 return 1. */
2170
2171 int
2172 is_ancestor (struct type *base, struct type *dclass)
2173 {
2174 return distance_to_ancestor (base, dclass, 0) >= 0;
2175 }
2176
2177 /* Like is_ancestor, but only returns true when BASE is a public
2178 ancestor of DCLASS. */
2179
2180 int
2181 is_public_ancestor (struct type *base, struct type *dclass)
2182 {
2183 return distance_to_ancestor (base, dclass, 1) >= 0;
2184 }
2185
2186 /* A helper function for is_unique_ancestor. */
2187
2188 static int
2189 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2190 int *offset,
2191 const gdb_byte *valaddr, int embedded_offset,
2192 CORE_ADDR address, struct value *val)
2193 {
2194 int i, count = 0;
2195
2196 CHECK_TYPEDEF (base);
2197 CHECK_TYPEDEF (dclass);
2198
2199 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2200 {
2201 struct type *iter;
2202 int this_offset;
2203
2204 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2205
2206 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2207 address, val);
2208
2209 if (class_types_same_p (base, iter))
2210 {
2211 /* If this is the first subclass, set *OFFSET and set count
2212 to 1. Otherwise, if this is at the same offset as
2213 previous instances, do nothing. Otherwise, increment
2214 count. */
2215 if (*offset == -1)
2216 {
2217 *offset = this_offset;
2218 count = 1;
2219 }
2220 else if (this_offset == *offset)
2221 {
2222 /* Nothing. */
2223 }
2224 else
2225 ++count;
2226 }
2227 else
2228 count += is_unique_ancestor_worker (base, iter, offset,
2229 valaddr,
2230 embedded_offset + this_offset,
2231 address, val);
2232 }
2233
2234 return count;
2235 }
2236
2237 /* Like is_ancestor, but only returns true if BASE is a unique base
2238 class of the type of VAL. */
2239
2240 int
2241 is_unique_ancestor (struct type *base, struct value *val)
2242 {
2243 int offset = -1;
2244
2245 return is_unique_ancestor_worker (base, value_type (val), &offset,
2246 value_contents_for_printing (val),
2247 value_embedded_offset (val),
2248 value_address (val), val) == 1;
2249 }
2250
2251 \f
2252 /* Overload resolution. */
2253
2254 /* Return the sum of the rank of A with the rank of B. */
2255
2256 struct rank
2257 sum_ranks (struct rank a, struct rank b)
2258 {
2259 struct rank c;
2260 c.rank = a.rank + b.rank;
2261 c.subrank = a.subrank + b.subrank;
2262 return c;
2263 }
2264
2265 /* Compare rank A and B and return:
2266 0 if a = b
2267 1 if a is better than b
2268 -1 if b is better than a. */
2269
2270 int
2271 compare_ranks (struct rank a, struct rank b)
2272 {
2273 if (a.rank == b.rank)
2274 {
2275 if (a.subrank == b.subrank)
2276 return 0;
2277 if (a.subrank < b.subrank)
2278 return 1;
2279 if (a.subrank > b.subrank)
2280 return -1;
2281 }
2282
2283 if (a.rank < b.rank)
2284 return 1;
2285
2286 /* a.rank > b.rank */
2287 return -1;
2288 }
2289
2290 /* Functions for overload resolution begin here. */
2291
2292 /* Compare two badness vectors A and B and return the result.
2293 0 => A and B are identical
2294 1 => A and B are incomparable
2295 2 => A is better than B
2296 3 => A is worse than B */
2297
2298 int
2299 compare_badness (struct badness_vector *a, struct badness_vector *b)
2300 {
2301 int i;
2302 int tmp;
2303 short found_pos = 0; /* any positives in c? */
2304 short found_neg = 0; /* any negatives in c? */
2305
2306 /* differing lengths => incomparable */
2307 if (a->length != b->length)
2308 return 1;
2309
2310 /* Subtract b from a */
2311 for (i = 0; i < a->length; i++)
2312 {
2313 tmp = compare_ranks (b->rank[i], a->rank[i]);
2314 if (tmp > 0)
2315 found_pos = 1;
2316 else if (tmp < 0)
2317 found_neg = 1;
2318 }
2319
2320 if (found_pos)
2321 {
2322 if (found_neg)
2323 return 1; /* incomparable */
2324 else
2325 return 3; /* A > B */
2326 }
2327 else
2328 /* no positives */
2329 {
2330 if (found_neg)
2331 return 2; /* A < B */
2332 else
2333 return 0; /* A == B */
2334 }
2335 }
2336
2337 /* Rank a function by comparing its parameter types (PARMS, length
2338 NPARMS), to the types of an argument list (ARGS, length NARGS).
2339 Return a pointer to a badness vector. This has NARGS + 1
2340 entries. */
2341
2342 struct badness_vector *
2343 rank_function (struct type **parms, int nparms,
2344 struct value **args, int nargs)
2345 {
2346 int i;
2347 struct badness_vector *bv;
2348 int min_len = nparms < nargs ? nparms : nargs;
2349
2350 bv = xmalloc (sizeof (struct badness_vector));
2351 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2352 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2353
2354 /* First compare the lengths of the supplied lists.
2355 If there is a mismatch, set it to a high value. */
2356
2357 /* pai/1997-06-03 FIXME: when we have debug info about default
2358 arguments and ellipsis parameter lists, we should consider those
2359 and rank the length-match more finely. */
2360
2361 LENGTH_MATCH (bv) = (nargs != nparms)
2362 ? LENGTH_MISMATCH_BADNESS
2363 : EXACT_MATCH_BADNESS;
2364
2365 /* Now rank all the parameters of the candidate function. */
2366 for (i = 1; i <= min_len; i++)
2367 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2368 args[i - 1]);
2369
2370 /* If more arguments than parameters, add dummy entries. */
2371 for (i = min_len + 1; i <= nargs; i++)
2372 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2373
2374 return bv;
2375 }
2376
2377 /* Compare the names of two integer types, assuming that any sign
2378 qualifiers have been checked already. We do it this way because
2379 there may be an "int" in the name of one of the types. */
2380
2381 static int
2382 integer_types_same_name_p (const char *first, const char *second)
2383 {
2384 int first_p, second_p;
2385
2386 /* If both are shorts, return 1; if neither is a short, keep
2387 checking. */
2388 first_p = (strstr (first, "short") != NULL);
2389 second_p = (strstr (second, "short") != NULL);
2390 if (first_p && second_p)
2391 return 1;
2392 if (first_p || second_p)
2393 return 0;
2394
2395 /* Likewise for long. */
2396 first_p = (strstr (first, "long") != NULL);
2397 second_p = (strstr (second, "long") != NULL);
2398 if (first_p && second_p)
2399 return 1;
2400 if (first_p || second_p)
2401 return 0;
2402
2403 /* Likewise for char. */
2404 first_p = (strstr (first, "char") != NULL);
2405 second_p = (strstr (second, "char") != NULL);
2406 if (first_p && second_p)
2407 return 1;
2408 if (first_p || second_p)
2409 return 0;
2410
2411 /* They must both be ints. */
2412 return 1;
2413 }
2414
2415 /* Compares type A to type B returns 1 if the represent the same type
2416 0 otherwise. */
2417
2418 int
2419 types_equal (struct type *a, struct type *b)
2420 {
2421 /* Identical type pointers. */
2422 /* However, this still doesn't catch all cases of same type for b
2423 and a. The reason is that builtin types are different from
2424 the same ones constructed from the object. */
2425 if (a == b)
2426 return 1;
2427
2428 /* Resolve typedefs */
2429 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2430 a = check_typedef (a);
2431 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2432 b = check_typedef (b);
2433
2434 /* If after resolving typedefs a and b are not of the same type
2435 code then they are not equal. */
2436 if (TYPE_CODE (a) != TYPE_CODE (b))
2437 return 0;
2438
2439 /* If a and b are both pointers types or both reference types then
2440 they are equal of the same type iff the objects they refer to are
2441 of the same type. */
2442 if (TYPE_CODE (a) == TYPE_CODE_PTR
2443 || TYPE_CODE (a) == TYPE_CODE_REF)
2444 return types_equal (TYPE_TARGET_TYPE (a),
2445 TYPE_TARGET_TYPE (b));
2446
2447 /* Well, damnit, if the names are exactly the same, I'll say they
2448 are exactly the same. This happens when we generate method
2449 stubs. The types won't point to the same address, but they
2450 really are the same. */
2451
2452 if (TYPE_NAME (a) && TYPE_NAME (b)
2453 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2454 return 1;
2455
2456 /* Check if identical after resolving typedefs. */
2457 if (a == b)
2458 return 1;
2459
2460 /* Two function types are equal if their argument and return types
2461 are equal. */
2462 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2463 {
2464 int i;
2465
2466 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2467 return 0;
2468
2469 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2470 return 0;
2471
2472 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2473 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2474 return 0;
2475
2476 return 1;
2477 }
2478
2479 return 0;
2480 }
2481
2482 /* Compare one type (PARM) for compatibility with another (ARG).
2483 * PARM is intended to be the parameter type of a function; and
2484 * ARG is the supplied argument's type. This function tests if
2485 * the latter can be converted to the former.
2486 * VALUE is the argument's value or NULL if none (or called recursively)
2487 *
2488 * Return 0 if they are identical types;
2489 * Otherwise, return an integer which corresponds to how compatible
2490 * PARM is to ARG. The higher the return value, the worse the match.
2491 * Generally the "bad" conversions are all uniformly assigned a 100. */
2492
2493 struct rank
2494 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2495 {
2496 struct rank rank = {0,0};
2497
2498 if (types_equal (parm, arg))
2499 return EXACT_MATCH_BADNESS;
2500
2501 /* Resolve typedefs */
2502 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2503 parm = check_typedef (parm);
2504 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2505 arg = check_typedef (arg);
2506
2507 /* See through references, since we can almost make non-references
2508 references. */
2509 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2510 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2511 REFERENCE_CONVERSION_BADNESS));
2512 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2513 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2514 REFERENCE_CONVERSION_BADNESS));
2515 if (overload_debug)
2516 /* Debugging only. */
2517 fprintf_filtered (gdb_stderr,
2518 "------ Arg is %s [%d], parm is %s [%d]\n",
2519 TYPE_NAME (arg), TYPE_CODE (arg),
2520 TYPE_NAME (parm), TYPE_CODE (parm));
2521
2522 /* x -> y means arg of type x being supplied for parameter of type y. */
2523
2524 switch (TYPE_CODE (parm))
2525 {
2526 case TYPE_CODE_PTR:
2527 switch (TYPE_CODE (arg))
2528 {
2529 case TYPE_CODE_PTR:
2530
2531 /* Allowed pointer conversions are:
2532 (a) pointer to void-pointer conversion. */
2533 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2534 return VOID_PTR_CONVERSION_BADNESS;
2535
2536 /* (b) pointer to ancestor-pointer conversion. */
2537 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2538 TYPE_TARGET_TYPE (arg),
2539 0);
2540 if (rank.subrank >= 0)
2541 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2542
2543 return INCOMPATIBLE_TYPE_BADNESS;
2544 case TYPE_CODE_ARRAY:
2545 if (types_equal (TYPE_TARGET_TYPE (parm),
2546 TYPE_TARGET_TYPE (arg)))
2547 return EXACT_MATCH_BADNESS;
2548 return INCOMPATIBLE_TYPE_BADNESS;
2549 case TYPE_CODE_FUNC:
2550 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2551 case TYPE_CODE_INT:
2552 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2553 {
2554 if (value_as_long (value) == 0)
2555 {
2556 /* Null pointer conversion: allow it to be cast to a pointer.
2557 [4.10.1 of C++ standard draft n3290] */
2558 return NULL_POINTER_CONVERSION_BADNESS;
2559 }
2560 else
2561 {
2562 /* If type checking is disabled, allow the conversion. */
2563 if (!strict_type_checking)
2564 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
2565 }
2566 }
2567 /* fall through */
2568 case TYPE_CODE_ENUM:
2569 case TYPE_CODE_FLAGS:
2570 case TYPE_CODE_CHAR:
2571 case TYPE_CODE_RANGE:
2572 case TYPE_CODE_BOOL:
2573 default:
2574 return INCOMPATIBLE_TYPE_BADNESS;
2575 }
2576 case TYPE_CODE_ARRAY:
2577 switch (TYPE_CODE (arg))
2578 {
2579 case TYPE_CODE_PTR:
2580 case TYPE_CODE_ARRAY:
2581 return rank_one_type (TYPE_TARGET_TYPE (parm),
2582 TYPE_TARGET_TYPE (arg), NULL);
2583 default:
2584 return INCOMPATIBLE_TYPE_BADNESS;
2585 }
2586 case TYPE_CODE_FUNC:
2587 switch (TYPE_CODE (arg))
2588 {
2589 case TYPE_CODE_PTR: /* funcptr -> func */
2590 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
2591 default:
2592 return INCOMPATIBLE_TYPE_BADNESS;
2593 }
2594 case TYPE_CODE_INT:
2595 switch (TYPE_CODE (arg))
2596 {
2597 case TYPE_CODE_INT:
2598 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2599 {
2600 /* Deal with signed, unsigned, and plain chars and
2601 signed and unsigned ints. */
2602 if (TYPE_NOSIGN (parm))
2603 {
2604 /* This case only for character types. */
2605 if (TYPE_NOSIGN (arg))
2606 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2607 else /* signed/unsigned char -> plain char */
2608 return INTEGER_CONVERSION_BADNESS;
2609 }
2610 else if (TYPE_UNSIGNED (parm))
2611 {
2612 if (TYPE_UNSIGNED (arg))
2613 {
2614 /* unsigned int -> unsigned int, or
2615 unsigned long -> unsigned long */
2616 if (integer_types_same_name_p (TYPE_NAME (parm),
2617 TYPE_NAME (arg)))
2618 return EXACT_MATCH_BADNESS;
2619 else if (integer_types_same_name_p (TYPE_NAME (arg),
2620 "int")
2621 && integer_types_same_name_p (TYPE_NAME (parm),
2622 "long"))
2623 /* unsigned int -> unsigned long */
2624 return INTEGER_PROMOTION_BADNESS;
2625 else
2626 /* unsigned long -> unsigned int */
2627 return INTEGER_CONVERSION_BADNESS;
2628 }
2629 else
2630 {
2631 if (integer_types_same_name_p (TYPE_NAME (arg),
2632 "long")
2633 && integer_types_same_name_p (TYPE_NAME (parm),
2634 "int"))
2635 /* signed long -> unsigned int */
2636 return INTEGER_CONVERSION_BADNESS;
2637 else
2638 /* signed int/long -> unsigned int/long */
2639 return INTEGER_CONVERSION_BADNESS;
2640 }
2641 }
2642 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2643 {
2644 if (integer_types_same_name_p (TYPE_NAME (parm),
2645 TYPE_NAME (arg)))
2646 return EXACT_MATCH_BADNESS;
2647 else if (integer_types_same_name_p (TYPE_NAME (arg),
2648 "int")
2649 && integer_types_same_name_p (TYPE_NAME (parm),
2650 "long"))
2651 return INTEGER_PROMOTION_BADNESS;
2652 else
2653 return INTEGER_CONVERSION_BADNESS;
2654 }
2655 else
2656 return INTEGER_CONVERSION_BADNESS;
2657 }
2658 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2659 return INTEGER_PROMOTION_BADNESS;
2660 else
2661 return INTEGER_CONVERSION_BADNESS;
2662 case TYPE_CODE_ENUM:
2663 case TYPE_CODE_FLAGS:
2664 case TYPE_CODE_CHAR:
2665 case TYPE_CODE_RANGE:
2666 case TYPE_CODE_BOOL:
2667 return INTEGER_PROMOTION_BADNESS;
2668 case TYPE_CODE_FLT:
2669 return INT_FLOAT_CONVERSION_BADNESS;
2670 case TYPE_CODE_PTR:
2671 return NS_POINTER_CONVERSION_BADNESS;
2672 default:
2673 return INCOMPATIBLE_TYPE_BADNESS;
2674 }
2675 break;
2676 case TYPE_CODE_ENUM:
2677 switch (TYPE_CODE (arg))
2678 {
2679 case TYPE_CODE_INT:
2680 case TYPE_CODE_CHAR:
2681 case TYPE_CODE_RANGE:
2682 case TYPE_CODE_BOOL:
2683 case TYPE_CODE_ENUM:
2684 return INTEGER_CONVERSION_BADNESS;
2685 case TYPE_CODE_FLT:
2686 return INT_FLOAT_CONVERSION_BADNESS;
2687 default:
2688 return INCOMPATIBLE_TYPE_BADNESS;
2689 }
2690 break;
2691 case TYPE_CODE_CHAR:
2692 switch (TYPE_CODE (arg))
2693 {
2694 case TYPE_CODE_RANGE:
2695 case TYPE_CODE_BOOL:
2696 case TYPE_CODE_ENUM:
2697 return INTEGER_CONVERSION_BADNESS;
2698 case TYPE_CODE_FLT:
2699 return INT_FLOAT_CONVERSION_BADNESS;
2700 case TYPE_CODE_INT:
2701 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2702 return INTEGER_CONVERSION_BADNESS;
2703 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2704 return INTEGER_PROMOTION_BADNESS;
2705 /* >>> !! else fall through !! <<< */
2706 case TYPE_CODE_CHAR:
2707 /* Deal with signed, unsigned, and plain chars for C++ and
2708 with int cases falling through from previous case. */
2709 if (TYPE_NOSIGN (parm))
2710 {
2711 if (TYPE_NOSIGN (arg))
2712 return EXACT_MATCH_BADNESS;
2713 else
2714 return INTEGER_CONVERSION_BADNESS;
2715 }
2716 else if (TYPE_UNSIGNED (parm))
2717 {
2718 if (TYPE_UNSIGNED (arg))
2719 return EXACT_MATCH_BADNESS;
2720 else
2721 return INTEGER_PROMOTION_BADNESS;
2722 }
2723 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2724 return EXACT_MATCH_BADNESS;
2725 else
2726 return INTEGER_CONVERSION_BADNESS;
2727 default:
2728 return INCOMPATIBLE_TYPE_BADNESS;
2729 }
2730 break;
2731 case TYPE_CODE_RANGE:
2732 switch (TYPE_CODE (arg))
2733 {
2734 case TYPE_CODE_INT:
2735 case TYPE_CODE_CHAR:
2736 case TYPE_CODE_RANGE:
2737 case TYPE_CODE_BOOL:
2738 case TYPE_CODE_ENUM:
2739 return INTEGER_CONVERSION_BADNESS;
2740 case TYPE_CODE_FLT:
2741 return INT_FLOAT_CONVERSION_BADNESS;
2742 default:
2743 return INCOMPATIBLE_TYPE_BADNESS;
2744 }
2745 break;
2746 case TYPE_CODE_BOOL:
2747 switch (TYPE_CODE (arg))
2748 {
2749 /* n3290 draft, section 4.12.1 (conv.bool):
2750
2751 "A prvalue of arithmetic, unscoped enumeration, pointer, or
2752 pointer to member type can be converted to a prvalue of type
2753 bool. A zero value, null pointer value, or null member pointer
2754 value is converted to false; any other value is converted to
2755 true. A prvalue of type std::nullptr_t can be converted to a
2756 prvalue of type bool; the resulting value is false." */
2757 case TYPE_CODE_INT:
2758 case TYPE_CODE_CHAR:
2759 case TYPE_CODE_ENUM:
2760 case TYPE_CODE_FLT:
2761 case TYPE_CODE_MEMBERPTR:
2762 case TYPE_CODE_PTR:
2763 return BOOL_CONVERSION_BADNESS;
2764 case TYPE_CODE_RANGE:
2765 return INCOMPATIBLE_TYPE_BADNESS;
2766 case TYPE_CODE_BOOL:
2767 return EXACT_MATCH_BADNESS;
2768 default:
2769 return INCOMPATIBLE_TYPE_BADNESS;
2770 }
2771 break;
2772 case TYPE_CODE_FLT:
2773 switch (TYPE_CODE (arg))
2774 {
2775 case TYPE_CODE_FLT:
2776 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2777 return FLOAT_PROMOTION_BADNESS;
2778 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2779 return EXACT_MATCH_BADNESS;
2780 else
2781 return FLOAT_CONVERSION_BADNESS;
2782 case TYPE_CODE_INT:
2783 case TYPE_CODE_BOOL:
2784 case TYPE_CODE_ENUM:
2785 case TYPE_CODE_RANGE:
2786 case TYPE_CODE_CHAR:
2787 return INT_FLOAT_CONVERSION_BADNESS;
2788 default:
2789 return INCOMPATIBLE_TYPE_BADNESS;
2790 }
2791 break;
2792 case TYPE_CODE_COMPLEX:
2793 switch (TYPE_CODE (arg))
2794 { /* Strictly not needed for C++, but... */
2795 case TYPE_CODE_FLT:
2796 return FLOAT_PROMOTION_BADNESS;
2797 case TYPE_CODE_COMPLEX:
2798 return EXACT_MATCH_BADNESS;
2799 default:
2800 return INCOMPATIBLE_TYPE_BADNESS;
2801 }
2802 break;
2803 case TYPE_CODE_STRUCT:
2804 /* currently same as TYPE_CODE_CLASS. */
2805 switch (TYPE_CODE (arg))
2806 {
2807 case TYPE_CODE_STRUCT:
2808 /* Check for derivation */
2809 rank.subrank = distance_to_ancestor (parm, arg, 0);
2810 if (rank.subrank >= 0)
2811 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2812 /* else fall through */
2813 default:
2814 return INCOMPATIBLE_TYPE_BADNESS;
2815 }
2816 break;
2817 case TYPE_CODE_UNION:
2818 switch (TYPE_CODE (arg))
2819 {
2820 case TYPE_CODE_UNION:
2821 default:
2822 return INCOMPATIBLE_TYPE_BADNESS;
2823 }
2824 break;
2825 case TYPE_CODE_MEMBERPTR:
2826 switch (TYPE_CODE (arg))
2827 {
2828 default:
2829 return INCOMPATIBLE_TYPE_BADNESS;
2830 }
2831 break;
2832 case TYPE_CODE_METHOD:
2833 switch (TYPE_CODE (arg))
2834 {
2835
2836 default:
2837 return INCOMPATIBLE_TYPE_BADNESS;
2838 }
2839 break;
2840 case TYPE_CODE_REF:
2841 switch (TYPE_CODE (arg))
2842 {
2843
2844 default:
2845 return INCOMPATIBLE_TYPE_BADNESS;
2846 }
2847
2848 break;
2849 case TYPE_CODE_SET:
2850 switch (TYPE_CODE (arg))
2851 {
2852 /* Not in C++ */
2853 case TYPE_CODE_SET:
2854 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2855 TYPE_FIELD_TYPE (arg, 0), NULL);
2856 default:
2857 return INCOMPATIBLE_TYPE_BADNESS;
2858 }
2859 break;
2860 case TYPE_CODE_VOID:
2861 default:
2862 return INCOMPATIBLE_TYPE_BADNESS;
2863 } /* switch (TYPE_CODE (arg)) */
2864 }
2865
2866 /* End of functions for overload resolution. */
2867 \f
2868 /* Routines to pretty-print types. */
2869
2870 static void
2871 print_bit_vector (B_TYPE *bits, int nbits)
2872 {
2873 int bitno;
2874
2875 for (bitno = 0; bitno < nbits; bitno++)
2876 {
2877 if ((bitno % 8) == 0)
2878 {
2879 puts_filtered (" ");
2880 }
2881 if (B_TST (bits, bitno))
2882 printf_filtered (("1"));
2883 else
2884 printf_filtered (("0"));
2885 }
2886 }
2887
2888 /* Note the first arg should be the "this" pointer, we may not want to
2889 include it since we may get into a infinitely recursive
2890 situation. */
2891
2892 static void
2893 print_arg_types (struct field *args, int nargs, int spaces)
2894 {
2895 if (args != NULL)
2896 {
2897 int i;
2898
2899 for (i = 0; i < nargs; i++)
2900 recursive_dump_type (args[i].type, spaces + 2);
2901 }
2902 }
2903
2904 int
2905 field_is_static (struct field *f)
2906 {
2907 /* "static" fields are the fields whose location is not relative
2908 to the address of the enclosing struct. It would be nice to
2909 have a dedicated flag that would be set for static fields when
2910 the type is being created. But in practice, checking the field
2911 loc_kind should give us an accurate answer. */
2912 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2913 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2914 }
2915
2916 static void
2917 dump_fn_fieldlists (struct type *type, int spaces)
2918 {
2919 int method_idx;
2920 int overload_idx;
2921 struct fn_field *f;
2922
2923 printfi_filtered (spaces, "fn_fieldlists ");
2924 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2925 printf_filtered ("\n");
2926 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2927 {
2928 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2929 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2930 method_idx,
2931 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2932 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2933 gdb_stdout);
2934 printf_filtered (_(") length %d\n"),
2935 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2936 for (overload_idx = 0;
2937 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2938 overload_idx++)
2939 {
2940 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2941 overload_idx,
2942 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2943 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2944 gdb_stdout);
2945 printf_filtered (")\n");
2946 printfi_filtered (spaces + 8, "type ");
2947 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2948 gdb_stdout);
2949 printf_filtered ("\n");
2950
2951 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2952 spaces + 8 + 2);
2953
2954 printfi_filtered (spaces + 8, "args ");
2955 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2956 gdb_stdout);
2957 printf_filtered ("\n");
2958
2959 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2960 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2961 overload_idx)),
2962 spaces);
2963 printfi_filtered (spaces + 8, "fcontext ");
2964 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2965 gdb_stdout);
2966 printf_filtered ("\n");
2967
2968 printfi_filtered (spaces + 8, "is_const %d\n",
2969 TYPE_FN_FIELD_CONST (f, overload_idx));
2970 printfi_filtered (spaces + 8, "is_volatile %d\n",
2971 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2972 printfi_filtered (spaces + 8, "is_private %d\n",
2973 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2974 printfi_filtered (spaces + 8, "is_protected %d\n",
2975 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2976 printfi_filtered (spaces + 8, "is_stub %d\n",
2977 TYPE_FN_FIELD_STUB (f, overload_idx));
2978 printfi_filtered (spaces + 8, "voffset %u\n",
2979 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2980 }
2981 }
2982 }
2983
2984 static void
2985 print_cplus_stuff (struct type *type, int spaces)
2986 {
2987 printfi_filtered (spaces, "n_baseclasses %d\n",
2988 TYPE_N_BASECLASSES (type));
2989 printfi_filtered (spaces, "nfn_fields %d\n",
2990 TYPE_NFN_FIELDS (type));
2991 if (TYPE_N_BASECLASSES (type) > 0)
2992 {
2993 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2994 TYPE_N_BASECLASSES (type));
2995 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2996 gdb_stdout);
2997 printf_filtered (")");
2998
2999 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3000 TYPE_N_BASECLASSES (type));
3001 puts_filtered ("\n");
3002 }
3003 if (TYPE_NFIELDS (type) > 0)
3004 {
3005 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3006 {
3007 printfi_filtered (spaces,
3008 "private_field_bits (%d bits at *",
3009 TYPE_NFIELDS (type));
3010 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3011 gdb_stdout);
3012 printf_filtered (")");
3013 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3014 TYPE_NFIELDS (type));
3015 puts_filtered ("\n");
3016 }
3017 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3018 {
3019 printfi_filtered (spaces,
3020 "protected_field_bits (%d bits at *",
3021 TYPE_NFIELDS (type));
3022 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3023 gdb_stdout);
3024 printf_filtered (")");
3025 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3026 TYPE_NFIELDS (type));
3027 puts_filtered ("\n");
3028 }
3029 }
3030 if (TYPE_NFN_FIELDS (type) > 0)
3031 {
3032 dump_fn_fieldlists (type, spaces);
3033 }
3034 }
3035
3036 /* Print the contents of the TYPE's type_specific union, assuming that
3037 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3038
3039 static void
3040 print_gnat_stuff (struct type *type, int spaces)
3041 {
3042 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3043
3044 recursive_dump_type (descriptive_type, spaces + 2);
3045 }
3046
3047 static struct obstack dont_print_type_obstack;
3048
3049 void
3050 recursive_dump_type (struct type *type, int spaces)
3051 {
3052 int idx;
3053
3054 if (spaces == 0)
3055 obstack_begin (&dont_print_type_obstack, 0);
3056
3057 if (TYPE_NFIELDS (type) > 0
3058 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3059 {
3060 struct type **first_dont_print
3061 = (struct type **) obstack_base (&dont_print_type_obstack);
3062
3063 int i = (struct type **)
3064 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3065
3066 while (--i >= 0)
3067 {
3068 if (type == first_dont_print[i])
3069 {
3070 printfi_filtered (spaces, "type node ");
3071 gdb_print_host_address (type, gdb_stdout);
3072 printf_filtered (_(" <same as already seen type>\n"));
3073 return;
3074 }
3075 }
3076
3077 obstack_ptr_grow (&dont_print_type_obstack, type);
3078 }
3079
3080 printfi_filtered (spaces, "type node ");
3081 gdb_print_host_address (type, gdb_stdout);
3082 printf_filtered ("\n");
3083 printfi_filtered (spaces, "name '%s' (",
3084 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3085 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3086 printf_filtered (")\n");
3087 printfi_filtered (spaces, "tagname '%s' (",
3088 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3089 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3090 printf_filtered (")\n");
3091 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3092 switch (TYPE_CODE (type))
3093 {
3094 case TYPE_CODE_UNDEF:
3095 printf_filtered ("(TYPE_CODE_UNDEF)");
3096 break;
3097 case TYPE_CODE_PTR:
3098 printf_filtered ("(TYPE_CODE_PTR)");
3099 break;
3100 case TYPE_CODE_ARRAY:
3101 printf_filtered ("(TYPE_CODE_ARRAY)");
3102 break;
3103 case TYPE_CODE_STRUCT:
3104 printf_filtered ("(TYPE_CODE_STRUCT)");
3105 break;
3106 case TYPE_CODE_UNION:
3107 printf_filtered ("(TYPE_CODE_UNION)");
3108 break;
3109 case TYPE_CODE_ENUM:
3110 printf_filtered ("(TYPE_CODE_ENUM)");
3111 break;
3112 case TYPE_CODE_FLAGS:
3113 printf_filtered ("(TYPE_CODE_FLAGS)");
3114 break;
3115 case TYPE_CODE_FUNC:
3116 printf_filtered ("(TYPE_CODE_FUNC)");
3117 break;
3118 case TYPE_CODE_INT:
3119 printf_filtered ("(TYPE_CODE_INT)");
3120 break;
3121 case TYPE_CODE_FLT:
3122 printf_filtered ("(TYPE_CODE_FLT)");
3123 break;
3124 case TYPE_CODE_VOID:
3125 printf_filtered ("(TYPE_CODE_VOID)");
3126 break;
3127 case TYPE_CODE_SET:
3128 printf_filtered ("(TYPE_CODE_SET)");
3129 break;
3130 case TYPE_CODE_RANGE:
3131 printf_filtered ("(TYPE_CODE_RANGE)");
3132 break;
3133 case TYPE_CODE_STRING:
3134 printf_filtered ("(TYPE_CODE_STRING)");
3135 break;
3136 case TYPE_CODE_ERROR:
3137 printf_filtered ("(TYPE_CODE_ERROR)");
3138 break;
3139 case TYPE_CODE_MEMBERPTR:
3140 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3141 break;
3142 case TYPE_CODE_METHODPTR:
3143 printf_filtered ("(TYPE_CODE_METHODPTR)");
3144 break;
3145 case TYPE_CODE_METHOD:
3146 printf_filtered ("(TYPE_CODE_METHOD)");
3147 break;
3148 case TYPE_CODE_REF:
3149 printf_filtered ("(TYPE_CODE_REF)");
3150 break;
3151 case TYPE_CODE_CHAR:
3152 printf_filtered ("(TYPE_CODE_CHAR)");
3153 break;
3154 case TYPE_CODE_BOOL:
3155 printf_filtered ("(TYPE_CODE_BOOL)");
3156 break;
3157 case TYPE_CODE_COMPLEX:
3158 printf_filtered ("(TYPE_CODE_COMPLEX)");
3159 break;
3160 case TYPE_CODE_TYPEDEF:
3161 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3162 break;
3163 case TYPE_CODE_NAMESPACE:
3164 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3165 break;
3166 default:
3167 printf_filtered ("(UNKNOWN TYPE CODE)");
3168 break;
3169 }
3170 puts_filtered ("\n");
3171 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3172 if (TYPE_OBJFILE_OWNED (type))
3173 {
3174 printfi_filtered (spaces, "objfile ");
3175 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3176 }
3177 else
3178 {
3179 printfi_filtered (spaces, "gdbarch ");
3180 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3181 }
3182 printf_filtered ("\n");
3183 printfi_filtered (spaces, "target_type ");
3184 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3185 printf_filtered ("\n");
3186 if (TYPE_TARGET_TYPE (type) != NULL)
3187 {
3188 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3189 }
3190 printfi_filtered (spaces, "pointer_type ");
3191 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3192 printf_filtered ("\n");
3193 printfi_filtered (spaces, "reference_type ");
3194 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3195 printf_filtered ("\n");
3196 printfi_filtered (spaces, "type_chain ");
3197 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3198 printf_filtered ("\n");
3199 printfi_filtered (spaces, "instance_flags 0x%x",
3200 TYPE_INSTANCE_FLAGS (type));
3201 if (TYPE_CONST (type))
3202 {
3203 puts_filtered (" TYPE_FLAG_CONST");
3204 }
3205 if (TYPE_VOLATILE (type))
3206 {
3207 puts_filtered (" TYPE_FLAG_VOLATILE");
3208 }
3209 if (TYPE_CODE_SPACE (type))
3210 {
3211 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3212 }
3213 if (TYPE_DATA_SPACE (type))
3214 {
3215 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3216 }
3217 if (TYPE_ADDRESS_CLASS_1 (type))
3218 {
3219 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3220 }
3221 if (TYPE_ADDRESS_CLASS_2 (type))
3222 {
3223 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3224 }
3225 if (TYPE_RESTRICT (type))
3226 {
3227 puts_filtered (" TYPE_FLAG_RESTRICT");
3228 }
3229 puts_filtered ("\n");
3230
3231 printfi_filtered (spaces, "flags");
3232 if (TYPE_UNSIGNED (type))
3233 {
3234 puts_filtered (" TYPE_FLAG_UNSIGNED");
3235 }
3236 if (TYPE_NOSIGN (type))
3237 {
3238 puts_filtered (" TYPE_FLAG_NOSIGN");
3239 }
3240 if (TYPE_STUB (type))
3241 {
3242 puts_filtered (" TYPE_FLAG_STUB");
3243 }
3244 if (TYPE_TARGET_STUB (type))
3245 {
3246 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3247 }
3248 if (TYPE_STATIC (type))
3249 {
3250 puts_filtered (" TYPE_FLAG_STATIC");
3251 }
3252 if (TYPE_PROTOTYPED (type))
3253 {
3254 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3255 }
3256 if (TYPE_INCOMPLETE (type))
3257 {
3258 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3259 }
3260 if (TYPE_VARARGS (type))
3261 {
3262 puts_filtered (" TYPE_FLAG_VARARGS");
3263 }
3264 /* This is used for things like AltiVec registers on ppc. Gcc emits
3265 an attribute for the array type, which tells whether or not we
3266 have a vector, instead of a regular array. */
3267 if (TYPE_VECTOR (type))
3268 {
3269 puts_filtered (" TYPE_FLAG_VECTOR");
3270 }
3271 if (TYPE_FIXED_INSTANCE (type))
3272 {
3273 puts_filtered (" TYPE_FIXED_INSTANCE");
3274 }
3275 if (TYPE_STUB_SUPPORTED (type))
3276 {
3277 puts_filtered (" TYPE_STUB_SUPPORTED");
3278 }
3279 if (TYPE_NOTTEXT (type))
3280 {
3281 puts_filtered (" TYPE_NOTTEXT");
3282 }
3283 puts_filtered ("\n");
3284 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3285 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3286 puts_filtered ("\n");
3287 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3288 {
3289 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3290 printfi_filtered (spaces + 2,
3291 "[%d] enumval %s type ",
3292 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3293 else
3294 printfi_filtered (spaces + 2,
3295 "[%d] bitpos %d bitsize %d type ",
3296 idx, TYPE_FIELD_BITPOS (type, idx),
3297 TYPE_FIELD_BITSIZE (type, idx));
3298 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3299 printf_filtered (" name '%s' (",
3300 TYPE_FIELD_NAME (type, idx) != NULL
3301 ? TYPE_FIELD_NAME (type, idx)
3302 : "<NULL>");
3303 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3304 printf_filtered (")\n");
3305 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3306 {
3307 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3308 }
3309 }
3310 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3311 {
3312 printfi_filtered (spaces, "low %s%s high %s%s\n",
3313 plongest (TYPE_LOW_BOUND (type)),
3314 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3315 plongest (TYPE_HIGH_BOUND (type)),
3316 TYPE_HIGH_BOUND_UNDEFINED (type)
3317 ? " (undefined)" : "");
3318 }
3319 printfi_filtered (spaces, "vptr_basetype ");
3320 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3321 puts_filtered ("\n");
3322 if (TYPE_VPTR_BASETYPE (type) != NULL)
3323 {
3324 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3325 }
3326 printfi_filtered (spaces, "vptr_fieldno %d\n",
3327 TYPE_VPTR_FIELDNO (type));
3328
3329 switch (TYPE_SPECIFIC_FIELD (type))
3330 {
3331 case TYPE_SPECIFIC_CPLUS_STUFF:
3332 printfi_filtered (spaces, "cplus_stuff ");
3333 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3334 gdb_stdout);
3335 puts_filtered ("\n");
3336 print_cplus_stuff (type, spaces);
3337 break;
3338
3339 case TYPE_SPECIFIC_GNAT_STUFF:
3340 printfi_filtered (spaces, "gnat_stuff ");
3341 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3342 puts_filtered ("\n");
3343 print_gnat_stuff (type, spaces);
3344 break;
3345
3346 case TYPE_SPECIFIC_FLOATFORMAT:
3347 printfi_filtered (spaces, "floatformat ");
3348 if (TYPE_FLOATFORMAT (type) == NULL)
3349 puts_filtered ("(null)");
3350 else
3351 {
3352 puts_filtered ("{ ");
3353 if (TYPE_FLOATFORMAT (type)[0] == NULL
3354 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3355 puts_filtered ("(null)");
3356 else
3357 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3358
3359 puts_filtered (", ");
3360 if (TYPE_FLOATFORMAT (type)[1] == NULL
3361 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3362 puts_filtered ("(null)");
3363 else
3364 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3365
3366 puts_filtered (" }");
3367 }
3368 puts_filtered ("\n");
3369 break;
3370
3371 case TYPE_SPECIFIC_FUNC:
3372 printfi_filtered (spaces, "calling_convention %d\n",
3373 TYPE_CALLING_CONVENTION (type));
3374 /* tail_call_list is not printed. */
3375 break;
3376 }
3377
3378 if (spaces == 0)
3379 obstack_free (&dont_print_type_obstack, NULL);
3380 }
3381 \f
3382 /* Trivial helpers for the libiberty hash table, for mapping one
3383 type to another. */
3384
3385 struct type_pair
3386 {
3387 struct type *old, *new;
3388 };
3389
3390 static hashval_t
3391 type_pair_hash (const void *item)
3392 {
3393 const struct type_pair *pair = item;
3394
3395 return htab_hash_pointer (pair->old);
3396 }
3397
3398 static int
3399 type_pair_eq (const void *item_lhs, const void *item_rhs)
3400 {
3401 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3402
3403 return lhs->old == rhs->old;
3404 }
3405
3406 /* Allocate the hash table used by copy_type_recursive to walk
3407 types without duplicates. We use OBJFILE's obstack, because
3408 OBJFILE is about to be deleted. */
3409
3410 htab_t
3411 create_copied_types_hash (struct objfile *objfile)
3412 {
3413 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3414 NULL, &objfile->objfile_obstack,
3415 hashtab_obstack_allocate,
3416 dummy_obstack_deallocate);
3417 }
3418
3419 /* Recursively copy (deep copy) TYPE, if it is associated with
3420 OBJFILE. Return a new type allocated using malloc, a saved type if
3421 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3422 not associated with OBJFILE. */
3423
3424 struct type *
3425 copy_type_recursive (struct objfile *objfile,
3426 struct type *type,
3427 htab_t copied_types)
3428 {
3429 struct type_pair *stored, pair;
3430 void **slot;
3431 struct type *new_type;
3432
3433 if (! TYPE_OBJFILE_OWNED (type))
3434 return type;
3435
3436 /* This type shouldn't be pointing to any types in other objfiles;
3437 if it did, the type might disappear unexpectedly. */
3438 gdb_assert (TYPE_OBJFILE (type) == objfile);
3439
3440 pair.old = type;
3441 slot = htab_find_slot (copied_types, &pair, INSERT);
3442 if (*slot != NULL)
3443 return ((struct type_pair *) *slot)->new;
3444
3445 new_type = alloc_type_arch (get_type_arch (type));
3446
3447 /* We must add the new type to the hash table immediately, in case
3448 we encounter this type again during a recursive call below. */
3449 stored
3450 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3451 stored->old = type;
3452 stored->new = new_type;
3453 *slot = stored;
3454
3455 /* Copy the common fields of types. For the main type, we simply
3456 copy the entire thing and then update specific fields as needed. */
3457 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3458 TYPE_OBJFILE_OWNED (new_type) = 0;
3459 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3460
3461 if (TYPE_NAME (type))
3462 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3463 if (TYPE_TAG_NAME (type))
3464 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3465
3466 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3467 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3468
3469 /* Copy the fields. */
3470 if (TYPE_NFIELDS (type))
3471 {
3472 int i, nfields;
3473
3474 nfields = TYPE_NFIELDS (type);
3475 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3476 for (i = 0; i < nfields; i++)
3477 {
3478 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3479 TYPE_FIELD_ARTIFICIAL (type, i);
3480 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3481 if (TYPE_FIELD_TYPE (type, i))
3482 TYPE_FIELD_TYPE (new_type, i)
3483 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3484 copied_types);
3485 if (TYPE_FIELD_NAME (type, i))
3486 TYPE_FIELD_NAME (new_type, i) =
3487 xstrdup (TYPE_FIELD_NAME (type, i));
3488 switch (TYPE_FIELD_LOC_KIND (type, i))
3489 {
3490 case FIELD_LOC_KIND_BITPOS:
3491 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3492 TYPE_FIELD_BITPOS (type, i));
3493 break;
3494 case FIELD_LOC_KIND_ENUMVAL:
3495 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3496 TYPE_FIELD_ENUMVAL (type, i));
3497 break;
3498 case FIELD_LOC_KIND_PHYSADDR:
3499 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3500 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3501 break;
3502 case FIELD_LOC_KIND_PHYSNAME:
3503 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3504 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3505 i)));
3506 break;
3507 default:
3508 internal_error (__FILE__, __LINE__,
3509 _("Unexpected type field location kind: %d"),
3510 TYPE_FIELD_LOC_KIND (type, i));
3511 }
3512 }
3513 }
3514
3515 /* For range types, copy the bounds information. */
3516 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3517 {
3518 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3519 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3520 }
3521
3522 /* Copy pointers to other types. */
3523 if (TYPE_TARGET_TYPE (type))
3524 TYPE_TARGET_TYPE (new_type) =
3525 copy_type_recursive (objfile,
3526 TYPE_TARGET_TYPE (type),
3527 copied_types);
3528 if (TYPE_VPTR_BASETYPE (type))
3529 TYPE_VPTR_BASETYPE (new_type) =
3530 copy_type_recursive (objfile,
3531 TYPE_VPTR_BASETYPE (type),
3532 copied_types);
3533 /* Maybe copy the type_specific bits.
3534
3535 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3536 base classes and methods. There's no fundamental reason why we
3537 can't, but at the moment it is not needed. */
3538
3539 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3540 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3541 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3542 || TYPE_CODE (type) == TYPE_CODE_UNION
3543 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3544 INIT_CPLUS_SPECIFIC (new_type);
3545
3546 return new_type;
3547 }
3548
3549 /* Make a copy of the given TYPE, except that the pointer & reference
3550 types are not preserved.
3551
3552 This function assumes that the given type has an associated objfile.
3553 This objfile is used to allocate the new type. */
3554
3555 struct type *
3556 copy_type (const struct type *type)
3557 {
3558 struct type *new_type;
3559
3560 gdb_assert (TYPE_OBJFILE_OWNED (type));
3561
3562 new_type = alloc_type_copy (type);
3563 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3564 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3565 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3566 sizeof (struct main_type));
3567
3568 return new_type;
3569 }
3570 \f
3571 /* Helper functions to initialize architecture-specific types. */
3572
3573 /* Allocate a type structure associated with GDBARCH and set its
3574 CODE, LENGTH, and NAME fields. */
3575
3576 struct type *
3577 arch_type (struct gdbarch *gdbarch,
3578 enum type_code code, int length, char *name)
3579 {
3580 struct type *type;
3581
3582 type = alloc_type_arch (gdbarch);
3583 TYPE_CODE (type) = code;
3584 TYPE_LENGTH (type) = length;
3585
3586 if (name)
3587 TYPE_NAME (type) = xstrdup (name);
3588
3589 return type;
3590 }
3591
3592 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3593 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3594 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3595
3596 struct type *
3597 arch_integer_type (struct gdbarch *gdbarch,
3598 int bit, int unsigned_p, char *name)
3599 {
3600 struct type *t;
3601
3602 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3603 if (unsigned_p)
3604 TYPE_UNSIGNED (t) = 1;
3605 if (name && strcmp (name, "char") == 0)
3606 TYPE_NOSIGN (t) = 1;
3607
3608 return t;
3609 }
3610
3611 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3612 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3613 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3614
3615 struct type *
3616 arch_character_type (struct gdbarch *gdbarch,
3617 int bit, int unsigned_p, char *name)
3618 {
3619 struct type *t;
3620
3621 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3622 if (unsigned_p)
3623 TYPE_UNSIGNED (t) = 1;
3624
3625 return t;
3626 }
3627
3628 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3629 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3630 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3631
3632 struct type *
3633 arch_boolean_type (struct gdbarch *gdbarch,
3634 int bit, int unsigned_p, char *name)
3635 {
3636 struct type *t;
3637
3638 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3639 if (unsigned_p)
3640 TYPE_UNSIGNED (t) = 1;
3641
3642 return t;
3643 }
3644
3645 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3646 BIT is the type size in bits; if BIT equals -1, the size is
3647 determined by the floatformat. NAME is the type name. Set the
3648 TYPE_FLOATFORMAT from FLOATFORMATS. */
3649
3650 struct type *
3651 arch_float_type (struct gdbarch *gdbarch,
3652 int bit, char *name, const struct floatformat **floatformats)
3653 {
3654 struct type *t;
3655
3656 if (bit == -1)
3657 {
3658 gdb_assert (floatformats != NULL);
3659 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3660 bit = floatformats[0]->totalsize;
3661 }
3662 gdb_assert (bit >= 0);
3663
3664 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3665 TYPE_FLOATFORMAT (t) = floatformats;
3666 return t;
3667 }
3668
3669 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3670 NAME is the type name. TARGET_TYPE is the component float type. */
3671
3672 struct type *
3673 arch_complex_type (struct gdbarch *gdbarch,
3674 char *name, struct type *target_type)
3675 {
3676 struct type *t;
3677
3678 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3679 2 * TYPE_LENGTH (target_type), name);
3680 TYPE_TARGET_TYPE (t) = target_type;
3681 return t;
3682 }
3683
3684 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3685 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3686
3687 struct type *
3688 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3689 {
3690 int nfields = length * TARGET_CHAR_BIT;
3691 struct type *type;
3692
3693 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3694 TYPE_UNSIGNED (type) = 1;
3695 TYPE_NFIELDS (type) = nfields;
3696 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3697
3698 return type;
3699 }
3700
3701 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3702 position BITPOS is called NAME. */
3703
3704 void
3705 append_flags_type_flag (struct type *type, int bitpos, char *name)
3706 {
3707 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3708 gdb_assert (bitpos < TYPE_NFIELDS (type));
3709 gdb_assert (bitpos >= 0);
3710
3711 if (name)
3712 {
3713 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3714 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
3715 }
3716 else
3717 {
3718 /* Don't show this field to the user. */
3719 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
3720 }
3721 }
3722
3723 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3724 specified by CODE) associated with GDBARCH. NAME is the type name. */
3725
3726 struct type *
3727 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3728 {
3729 struct type *t;
3730
3731 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3732 t = arch_type (gdbarch, code, 0, NULL);
3733 TYPE_TAG_NAME (t) = name;
3734 INIT_CPLUS_SPECIFIC (t);
3735 return t;
3736 }
3737
3738 /* Add new field with name NAME and type FIELD to composite type T.
3739 Do not set the field's position or adjust the type's length;
3740 the caller should do so. Return the new field. */
3741
3742 struct field *
3743 append_composite_type_field_raw (struct type *t, char *name,
3744 struct type *field)
3745 {
3746 struct field *f;
3747
3748 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3749 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3750 sizeof (struct field) * TYPE_NFIELDS (t));
3751 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3752 memset (f, 0, sizeof f[0]);
3753 FIELD_TYPE (f[0]) = field;
3754 FIELD_NAME (f[0]) = name;
3755 return f;
3756 }
3757
3758 /* Add new field with name NAME and type FIELD to composite type T.
3759 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3760
3761 void
3762 append_composite_type_field_aligned (struct type *t, char *name,
3763 struct type *field, int alignment)
3764 {
3765 struct field *f = append_composite_type_field_raw (t, name, field);
3766
3767 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3768 {
3769 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3770 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3771 }
3772 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3773 {
3774 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3775 if (TYPE_NFIELDS (t) > 1)
3776 {
3777 SET_FIELD_BITPOS (f[0],
3778 (FIELD_BITPOS (f[-1])
3779 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3780 * TARGET_CHAR_BIT)));
3781
3782 if (alignment)
3783 {
3784 int left;
3785
3786 alignment *= TARGET_CHAR_BIT;
3787 left = FIELD_BITPOS (f[0]) % alignment;
3788
3789 if (left)
3790 {
3791 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
3792 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3793 }
3794 }
3795 }
3796 }
3797 }
3798
3799 /* Add new field with name NAME and type FIELD to composite type T. */
3800
3801 void
3802 append_composite_type_field (struct type *t, char *name,
3803 struct type *field)
3804 {
3805 append_composite_type_field_aligned (t, name, field, 0);
3806 }
3807
3808 static struct gdbarch_data *gdbtypes_data;
3809
3810 const struct builtin_type *
3811 builtin_type (struct gdbarch *gdbarch)
3812 {
3813 return gdbarch_data (gdbarch, gdbtypes_data);
3814 }
3815
3816 static void *
3817 gdbtypes_post_init (struct gdbarch *gdbarch)
3818 {
3819 struct builtin_type *builtin_type
3820 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3821
3822 /* Basic types. */
3823 builtin_type->builtin_void
3824 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3825 builtin_type->builtin_char
3826 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3827 !gdbarch_char_signed (gdbarch), "char");
3828 builtin_type->builtin_signed_char
3829 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3830 0, "signed char");
3831 builtin_type->builtin_unsigned_char
3832 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3833 1, "unsigned char");
3834 builtin_type->builtin_short
3835 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3836 0, "short");
3837 builtin_type->builtin_unsigned_short
3838 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3839 1, "unsigned short");
3840 builtin_type->builtin_int
3841 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3842 0, "int");
3843 builtin_type->builtin_unsigned_int
3844 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3845 1, "unsigned int");
3846 builtin_type->builtin_long
3847 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3848 0, "long");
3849 builtin_type->builtin_unsigned_long
3850 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3851 1, "unsigned long");
3852 builtin_type->builtin_long_long
3853 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3854 0, "long long");
3855 builtin_type->builtin_unsigned_long_long
3856 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3857 1, "unsigned long long");
3858 builtin_type->builtin_float
3859 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3860 "float", gdbarch_float_format (gdbarch));
3861 builtin_type->builtin_double
3862 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3863 "double", gdbarch_double_format (gdbarch));
3864 builtin_type->builtin_long_double
3865 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3866 "long double", gdbarch_long_double_format (gdbarch));
3867 builtin_type->builtin_complex
3868 = arch_complex_type (gdbarch, "complex",
3869 builtin_type->builtin_float);
3870 builtin_type->builtin_double_complex
3871 = arch_complex_type (gdbarch, "double complex",
3872 builtin_type->builtin_double);
3873 builtin_type->builtin_string
3874 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3875 builtin_type->builtin_bool
3876 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3877
3878 /* The following three are about decimal floating point types, which
3879 are 32-bits, 64-bits and 128-bits respectively. */
3880 builtin_type->builtin_decfloat
3881 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3882 builtin_type->builtin_decdouble
3883 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3884 builtin_type->builtin_declong
3885 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3886
3887 /* "True" character types. */
3888 builtin_type->builtin_true_char
3889 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3890 builtin_type->builtin_true_unsigned_char
3891 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3892
3893 /* Fixed-size integer types. */
3894 builtin_type->builtin_int0
3895 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3896 builtin_type->builtin_int8
3897 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3898 builtin_type->builtin_uint8
3899 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3900 builtin_type->builtin_int16
3901 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3902 builtin_type->builtin_uint16
3903 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3904 builtin_type->builtin_int32
3905 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3906 builtin_type->builtin_uint32
3907 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3908 builtin_type->builtin_int64
3909 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3910 builtin_type->builtin_uint64
3911 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3912 builtin_type->builtin_int128
3913 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3914 builtin_type->builtin_uint128
3915 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3916 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3917 TYPE_INSTANCE_FLAG_NOTTEXT;
3918 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3919 TYPE_INSTANCE_FLAG_NOTTEXT;
3920
3921 /* Wide character types. */
3922 builtin_type->builtin_char16
3923 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3924 builtin_type->builtin_char32
3925 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3926
3927
3928 /* Default data/code pointer types. */
3929 builtin_type->builtin_data_ptr
3930 = lookup_pointer_type (builtin_type->builtin_void);
3931 builtin_type->builtin_func_ptr
3932 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3933 builtin_type->builtin_func_func
3934 = lookup_function_type (builtin_type->builtin_func_ptr);
3935
3936 /* This type represents a GDB internal function. */
3937 builtin_type->internal_fn
3938 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3939 "<internal function>");
3940
3941 return builtin_type;
3942 }
3943
3944 /* This set of objfile-based types is intended to be used by symbol
3945 readers as basic types. */
3946
3947 static const struct objfile_data *objfile_type_data;
3948
3949 const struct objfile_type *
3950 objfile_type (struct objfile *objfile)
3951 {
3952 struct gdbarch *gdbarch;
3953 struct objfile_type *objfile_type
3954 = objfile_data (objfile, objfile_type_data);
3955
3956 if (objfile_type)
3957 return objfile_type;
3958
3959 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3960 1, struct objfile_type);
3961
3962 /* Use the objfile architecture to determine basic type properties. */
3963 gdbarch = get_objfile_arch (objfile);
3964
3965 /* Basic types. */
3966 objfile_type->builtin_void
3967 = init_type (TYPE_CODE_VOID, 1,
3968 0,
3969 "void", objfile);
3970
3971 objfile_type->builtin_char
3972 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3973 (TYPE_FLAG_NOSIGN
3974 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3975 "char", objfile);
3976 objfile_type->builtin_signed_char
3977 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3978 0,
3979 "signed char", objfile);
3980 objfile_type->builtin_unsigned_char
3981 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3982 TYPE_FLAG_UNSIGNED,
3983 "unsigned char", objfile);
3984 objfile_type->builtin_short
3985 = init_type (TYPE_CODE_INT,
3986 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3987 0, "short", objfile);
3988 objfile_type->builtin_unsigned_short
3989 = init_type (TYPE_CODE_INT,
3990 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3991 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3992 objfile_type->builtin_int
3993 = init_type (TYPE_CODE_INT,
3994 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3995 0, "int", objfile);
3996 objfile_type->builtin_unsigned_int
3997 = init_type (TYPE_CODE_INT,
3998 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3999 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4000 objfile_type->builtin_long
4001 = init_type (TYPE_CODE_INT,
4002 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4003 0, "long", objfile);
4004 objfile_type->builtin_unsigned_long
4005 = init_type (TYPE_CODE_INT,
4006 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4007 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4008 objfile_type->builtin_long_long
4009 = init_type (TYPE_CODE_INT,
4010 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4011 0, "long long", objfile);
4012 objfile_type->builtin_unsigned_long_long
4013 = init_type (TYPE_CODE_INT,
4014 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4015 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4016
4017 objfile_type->builtin_float
4018 = init_type (TYPE_CODE_FLT,
4019 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4020 0, "float", objfile);
4021 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4022 = gdbarch_float_format (gdbarch);
4023 objfile_type->builtin_double
4024 = init_type (TYPE_CODE_FLT,
4025 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4026 0, "double", objfile);
4027 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4028 = gdbarch_double_format (gdbarch);
4029 objfile_type->builtin_long_double
4030 = init_type (TYPE_CODE_FLT,
4031 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4032 0, "long double", objfile);
4033 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4034 = gdbarch_long_double_format (gdbarch);
4035
4036 /* This type represents a type that was unrecognized in symbol read-in. */
4037 objfile_type->builtin_error
4038 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4039
4040 /* The following set of types is used for symbols with no
4041 debug information. */
4042 objfile_type->nodebug_text_symbol
4043 = init_type (TYPE_CODE_FUNC, 1, 0,
4044 "<text variable, no debug info>", objfile);
4045 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4046 = objfile_type->builtin_int;
4047 objfile_type->nodebug_text_gnu_ifunc_symbol
4048 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4049 "<text gnu-indirect-function variable, no debug info>",
4050 objfile);
4051 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4052 = objfile_type->nodebug_text_symbol;
4053 objfile_type->nodebug_got_plt_symbol
4054 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4055 "<text from jump slot in .got.plt, no debug info>",
4056 objfile);
4057 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4058 = objfile_type->nodebug_text_symbol;
4059 objfile_type->nodebug_data_symbol
4060 = init_type (TYPE_CODE_INT,
4061 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4062 "<data variable, no debug info>", objfile);
4063 objfile_type->nodebug_unknown_symbol
4064 = init_type (TYPE_CODE_INT, 1, 0,
4065 "<variable (not text or data), no debug info>", objfile);
4066 objfile_type->nodebug_tls_symbol
4067 = init_type (TYPE_CODE_INT,
4068 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4069 "<thread local variable, no debug info>", objfile);
4070
4071 /* NOTE: on some targets, addresses and pointers are not necessarily
4072 the same --- for example, on the D10V, pointers are 16 bits long,
4073 but addresses are 32 bits long. See doc/gdbint.texinfo,
4074 ``Pointers Are Not Always Addresses''.
4075
4076 The upshot is:
4077 - gdb's `struct type' always describes the target's
4078 representation.
4079 - gdb's `struct value' objects should always hold values in
4080 target form.
4081 - gdb's CORE_ADDR values are addresses in the unified virtual
4082 address space that the assembler and linker work with. Thus,
4083 since target_read_memory takes a CORE_ADDR as an argument, it
4084 can access any memory on the target, even if the processor has
4085 separate code and data address spaces.
4086
4087 So, for example:
4088 - If v is a value holding a D10V code pointer, its contents are
4089 in target form: a big-endian address left-shifted two bits.
4090 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
4091 sizeof (void *) == 2 on the target.
4092
4093 In this context, objfile_type->builtin_core_addr is a bit odd:
4094 it's a target type for a value the target will never see. It's
4095 only used to hold the values of (typeless) linker symbols, which
4096 are indeed in the unified virtual address space. */
4097
4098 objfile_type->builtin_core_addr
4099 = init_type (TYPE_CODE_INT,
4100 gdbarch_addr_bit (gdbarch) / 8,
4101 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4102
4103 set_objfile_data (objfile, objfile_type_data, objfile_type);
4104 return objfile_type;
4105 }
4106
4107 extern initialize_file_ftype _initialize_gdbtypes;
4108
4109 void
4110 _initialize_gdbtypes (void)
4111 {
4112 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4113 objfile_type_data = register_objfile_data ();
4114
4115 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4116 _("Set debugging of C++ overloading."),
4117 _("Show debugging of C++ overloading."),
4118 _("When enabled, ranking of the "
4119 "functions is displayed."),
4120 NULL,
4121 show_overload_debug,
4122 &setdebuglist, &showdebuglist);
4123
4124 /* Add user knob for controlling resolution of opaque types. */
4125 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4126 &opaque_type_resolution,
4127 _("Set resolution of opaque struct/class/union"
4128 " types (if set before loading symbols)."),
4129 _("Show resolution of opaque struct/class/union"
4130 " types (if set before loading symbols)."),
4131 NULL, NULL,
4132 show_opaque_type_resolution,
4133 &setlist, &showlist);
4134
4135 /* Add an option to permit non-strict type checking. */
4136 add_setshow_boolean_cmd ("type", class_support,
4137 &strict_type_checking,
4138 _("Set strict type checking."),
4139 _("Show strict type checking."),
4140 NULL, NULL,
4141 show_strict_type_checking,
4142 &setchecklist, &showchecklist);
4143 }
This page took 0.209865 seconds and 4 git commands to generate.