Use forward_scope_exit for scoped_finish_thread_state
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
66
67 /* Floatformat pairs. */
68 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
69 &floatformat_ieee_half_big,
70 &floatformat_ieee_half_little
71 };
72 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
73 &floatformat_ieee_single_big,
74 &floatformat_ieee_single_little
75 };
76 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
77 &floatformat_ieee_double_big,
78 &floatformat_ieee_double_little
79 };
80 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
81 &floatformat_ieee_double_big,
82 &floatformat_ieee_double_littlebyte_bigword
83 };
84 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
85 &floatformat_i387_ext,
86 &floatformat_i387_ext
87 };
88 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
89 &floatformat_m68881_ext,
90 &floatformat_m68881_ext
91 };
92 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
93 &floatformat_arm_ext_big,
94 &floatformat_arm_ext_littlebyte_bigword
95 };
96 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
97 &floatformat_ia64_spill_big,
98 &floatformat_ia64_spill_little
99 };
100 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
101 &floatformat_ia64_quad_big,
102 &floatformat_ia64_quad_little
103 };
104 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
105 &floatformat_vax_f,
106 &floatformat_vax_f
107 };
108 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
109 &floatformat_vax_d,
110 &floatformat_vax_d
111 };
112 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
113 &floatformat_ibm_long_double_big,
114 &floatformat_ibm_long_double_little
115 };
116
117 /* Should opaque types be resolved? */
118
119 static int opaque_type_resolution = 1;
120
121 /* A flag to enable printing of debugging information of C++
122 overloading. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static int strict_type_checking = 1;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
578 {
579 int type_flags;
580
581 /* Check for known address space delimiters. */
582 if (!strcmp (space_identifier, "code"))
583 return TYPE_INSTANCE_FLAG_CODE_SPACE;
584 else if (!strcmp (space_identifier, "data"))
585 return TYPE_INSTANCE_FLAG_DATA_SPACE;
586 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
587 && gdbarch_address_class_name_to_type_flags (gdbarch,
588 space_identifier,
589 &type_flags))
590 return type_flags;
591 else
592 error (_("Unknown address space specifier: \"%s\""), space_identifier);
593 }
594
595 /* Identify address space identifier by integer flag as defined in
596 gdbtypes.h -- return the string version of the adress space name. */
597
598 const char *
599 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
600 {
601 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
602 return "code";
603 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
604 return "data";
605 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
606 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
607 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
608 else
609 return NULL;
610 }
611
612 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
613
614 If STORAGE is non-NULL, create the new type instance there.
615 STORAGE must be in the same obstack as TYPE. */
616
617 static struct type *
618 make_qualified_type (struct type *type, int new_flags,
619 struct type *storage)
620 {
621 struct type *ntype;
622
623 ntype = type;
624 do
625 {
626 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
627 return ntype;
628 ntype = TYPE_CHAIN (ntype);
629 }
630 while (ntype != type);
631
632 /* Create a new type instance. */
633 if (storage == NULL)
634 ntype = alloc_type_instance (type);
635 else
636 {
637 /* If STORAGE was provided, it had better be in the same objfile
638 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
639 if one objfile is freed and the other kept, we'd have
640 dangling pointers. */
641 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
642
643 ntype = storage;
644 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
645 TYPE_CHAIN (ntype) = ntype;
646 }
647
648 /* Pointers or references to the original type are not relevant to
649 the new type. */
650 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
651 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
652
653 /* Chain the new qualified type to the old type. */
654 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
655 TYPE_CHAIN (type) = ntype;
656
657 /* Now set the instance flags and return the new type. */
658 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
659
660 /* Set length of new type to that of the original type. */
661 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
662
663 return ntype;
664 }
665
666 /* Make an address-space-delimited variant of a type -- a type that
667 is identical to the one supplied except that it has an address
668 space attribute attached to it (such as "code" or "data").
669
670 The space attributes "code" and "data" are for Harvard
671 architectures. The address space attributes are for architectures
672 which have alternately sized pointers or pointers with alternate
673 representations. */
674
675 struct type *
676 make_type_with_address_space (struct type *type, int space_flag)
677 {
678 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
679 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
680 | TYPE_INSTANCE_FLAG_DATA_SPACE
681 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
682 | space_flag);
683
684 return make_qualified_type (type, new_flags, NULL);
685 }
686
687 /* Make a "c-v" variant of a type -- a type that is identical to the
688 one supplied except that it may have const or volatile attributes
689 CNST is a flag for setting the const attribute
690 VOLTL is a flag for setting the volatile attribute
691 TYPE is the base type whose variant we are creating.
692
693 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
694 storage to hold the new qualified type; *TYPEPTR and TYPE must be
695 in the same objfile. Otherwise, allocate fresh memory for the new
696 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
697 new type we construct. */
698
699 struct type *
700 make_cv_type (int cnst, int voltl,
701 struct type *type,
702 struct type **typeptr)
703 {
704 struct type *ntype; /* New type */
705
706 int new_flags = (TYPE_INSTANCE_FLAGS (type)
707 & ~(TYPE_INSTANCE_FLAG_CONST
708 | TYPE_INSTANCE_FLAG_VOLATILE));
709
710 if (cnst)
711 new_flags |= TYPE_INSTANCE_FLAG_CONST;
712
713 if (voltl)
714 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
715
716 if (typeptr && *typeptr != NULL)
717 {
718 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
719 a C-V variant chain that threads across objfiles: if one
720 objfile gets freed, then the other has a broken C-V chain.
721
722 This code used to try to copy over the main type from TYPE to
723 *TYPEPTR if they were in different objfiles, but that's
724 wrong, too: TYPE may have a field list or member function
725 lists, which refer to types of their own, etc. etc. The
726 whole shebang would need to be copied over recursively; you
727 can't have inter-objfile pointers. The only thing to do is
728 to leave stub types as stub types, and look them up afresh by
729 name each time you encounter them. */
730 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
731 }
732
733 ntype = make_qualified_type (type, new_flags,
734 typeptr ? *typeptr : NULL);
735
736 if (typeptr != NULL)
737 *typeptr = ntype;
738
739 return ntype;
740 }
741
742 /* Make a 'restrict'-qualified version of TYPE. */
743
744 struct type *
745 make_restrict_type (struct type *type)
746 {
747 return make_qualified_type (type,
748 (TYPE_INSTANCE_FLAGS (type)
749 | TYPE_INSTANCE_FLAG_RESTRICT),
750 NULL);
751 }
752
753 /* Make a type without const, volatile, or restrict. */
754
755 struct type *
756 make_unqualified_type (struct type *type)
757 {
758 return make_qualified_type (type,
759 (TYPE_INSTANCE_FLAGS (type)
760 & ~(TYPE_INSTANCE_FLAG_CONST
761 | TYPE_INSTANCE_FLAG_VOLATILE
762 | TYPE_INSTANCE_FLAG_RESTRICT)),
763 NULL);
764 }
765
766 /* Make a '_Atomic'-qualified version of TYPE. */
767
768 struct type *
769 make_atomic_type (struct type *type)
770 {
771 return make_qualified_type (type,
772 (TYPE_INSTANCE_FLAGS (type)
773 | TYPE_INSTANCE_FLAG_ATOMIC),
774 NULL);
775 }
776
777 /* Replace the contents of ntype with the type *type. This changes the
778 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
779 the changes are propogated to all types in the TYPE_CHAIN.
780
781 In order to build recursive types, it's inevitable that we'll need
782 to update types in place --- but this sort of indiscriminate
783 smashing is ugly, and needs to be replaced with something more
784 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
785 clear if more steps are needed. */
786
787 void
788 replace_type (struct type *ntype, struct type *type)
789 {
790 struct type *chain;
791
792 /* These two types had better be in the same objfile. Otherwise,
793 the assignment of one type's main type structure to the other
794 will produce a type with references to objects (names; field
795 lists; etc.) allocated on an objfile other than its own. */
796 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
797
798 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
799
800 /* The type length is not a part of the main type. Update it for
801 each type on the variant chain. */
802 chain = ntype;
803 do
804 {
805 /* Assert that this element of the chain has no address-class bits
806 set in its flags. Such type variants might have type lengths
807 which are supposed to be different from the non-address-class
808 variants. This assertion shouldn't ever be triggered because
809 symbol readers which do construct address-class variants don't
810 call replace_type(). */
811 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
812
813 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
814 chain = TYPE_CHAIN (chain);
815 }
816 while (ntype != chain);
817
818 /* Assert that the two types have equivalent instance qualifiers.
819 This should be true for at least all of our debug readers. */
820 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
821 }
822
823 /* Implement direct support for MEMBER_TYPE in GNU C++.
824 May need to construct such a type if this is the first use.
825 The TYPE is the type of the member. The DOMAIN is the type
826 of the aggregate that the member belongs to. */
827
828 struct type *
829 lookup_memberptr_type (struct type *type, struct type *domain)
830 {
831 struct type *mtype;
832
833 mtype = alloc_type_copy (type);
834 smash_to_memberptr_type (mtype, domain, type);
835 return mtype;
836 }
837
838 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
839
840 struct type *
841 lookup_methodptr_type (struct type *to_type)
842 {
843 struct type *mtype;
844
845 mtype = alloc_type_copy (to_type);
846 smash_to_methodptr_type (mtype, to_type);
847 return mtype;
848 }
849
850 /* Allocate a stub method whose return type is TYPE. This apparently
851 happens for speed of symbol reading, since parsing out the
852 arguments to the method is cpu-intensive, the way we are doing it.
853 So, we will fill in arguments later. This always returns a fresh
854 type. */
855
856 struct type *
857 allocate_stub_method (struct type *type)
858 {
859 struct type *mtype;
860
861 mtype = alloc_type_copy (type);
862 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
863 TYPE_LENGTH (mtype) = 1;
864 TYPE_STUB (mtype) = 1;
865 TYPE_TARGET_TYPE (mtype) = type;
866 /* TYPE_SELF_TYPE (mtype) = unknown yet */
867 return mtype;
868 }
869
870 /* See gdbtypes.h. */
871
872 bool
873 operator== (const dynamic_prop &l, const dynamic_prop &r)
874 {
875 if (l.kind != r.kind)
876 return false;
877
878 switch (l.kind)
879 {
880 case PROP_UNDEFINED:
881 return true;
882 case PROP_CONST:
883 return l.data.const_val == r.data.const_val;
884 case PROP_ADDR_OFFSET:
885 case PROP_LOCEXPR:
886 case PROP_LOCLIST:
887 return l.data.baton == r.data.baton;
888 }
889
890 gdb_assert_not_reached ("unhandled dynamic_prop kind");
891 }
892
893 /* See gdbtypes.h. */
894
895 bool
896 operator== (const range_bounds &l, const range_bounds &r)
897 {
898 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
899
900 return (FIELD_EQ (low)
901 && FIELD_EQ (high)
902 && FIELD_EQ (flag_upper_bound_is_count)
903 && FIELD_EQ (flag_bound_evaluated));
904
905 #undef FIELD_EQ
906 }
907
908 /* Create a range type with a dynamic range from LOW_BOUND to
909 HIGH_BOUND, inclusive. See create_range_type for further details. */
910
911 struct type *
912 create_range_type (struct type *result_type, struct type *index_type,
913 const struct dynamic_prop *low_bound,
914 const struct dynamic_prop *high_bound)
915 {
916 if (result_type == NULL)
917 result_type = alloc_type_copy (index_type);
918 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
919 TYPE_TARGET_TYPE (result_type) = index_type;
920 if (TYPE_STUB (index_type))
921 TYPE_TARGET_STUB (result_type) = 1;
922 else
923 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
924
925 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
926 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
927 TYPE_RANGE_DATA (result_type)->low = *low_bound;
928 TYPE_RANGE_DATA (result_type)->high = *high_bound;
929
930 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
931 TYPE_UNSIGNED (result_type) = 1;
932
933 /* Ada allows the declaration of range types whose upper bound is
934 less than the lower bound, so checking the lower bound is not
935 enough. Make sure we do not mark a range type whose upper bound
936 is negative as unsigned. */
937 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
938 TYPE_UNSIGNED (result_type) = 0;
939
940 return result_type;
941 }
942
943 /* Create a range type using either a blank type supplied in
944 RESULT_TYPE, or creating a new type, inheriting the objfile from
945 INDEX_TYPE.
946
947 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
948 to HIGH_BOUND, inclusive.
949
950 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
951 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
952
953 struct type *
954 create_static_range_type (struct type *result_type, struct type *index_type,
955 LONGEST low_bound, LONGEST high_bound)
956 {
957 struct dynamic_prop low, high;
958
959 low.kind = PROP_CONST;
960 low.data.const_val = low_bound;
961
962 high.kind = PROP_CONST;
963 high.data.const_val = high_bound;
964
965 result_type = create_range_type (result_type, index_type, &low, &high);
966
967 return result_type;
968 }
969
970 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
971 are static, otherwise returns 0. */
972
973 static int
974 has_static_range (const struct range_bounds *bounds)
975 {
976 return (bounds->low.kind == PROP_CONST
977 && bounds->high.kind == PROP_CONST);
978 }
979
980
981 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
982 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
983 bounds will fit in LONGEST), or -1 otherwise. */
984
985 int
986 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
987 {
988 type = check_typedef (type);
989 switch (TYPE_CODE (type))
990 {
991 case TYPE_CODE_RANGE:
992 *lowp = TYPE_LOW_BOUND (type);
993 *highp = TYPE_HIGH_BOUND (type);
994 return 1;
995 case TYPE_CODE_ENUM:
996 if (TYPE_NFIELDS (type) > 0)
997 {
998 /* The enums may not be sorted by value, so search all
999 entries. */
1000 int i;
1001
1002 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1003 for (i = 0; i < TYPE_NFIELDS (type); i++)
1004 {
1005 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1006 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1007 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1008 *highp = TYPE_FIELD_ENUMVAL (type, i);
1009 }
1010
1011 /* Set unsigned indicator if warranted. */
1012 if (*lowp >= 0)
1013 {
1014 TYPE_UNSIGNED (type) = 1;
1015 }
1016 }
1017 else
1018 {
1019 *lowp = 0;
1020 *highp = -1;
1021 }
1022 return 0;
1023 case TYPE_CODE_BOOL:
1024 *lowp = 0;
1025 *highp = 1;
1026 return 0;
1027 case TYPE_CODE_INT:
1028 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1029 return -1;
1030 if (!TYPE_UNSIGNED (type))
1031 {
1032 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1033 *highp = -*lowp - 1;
1034 return 0;
1035 }
1036 /* fall through */
1037 case TYPE_CODE_CHAR:
1038 *lowp = 0;
1039 /* This round-about calculation is to avoid shifting by
1040 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1041 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1042 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1043 *highp = (*highp - 1) | *highp;
1044 return 0;
1045 default:
1046 return -1;
1047 }
1048 }
1049
1050 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1051 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1052 Save the high bound into HIGH_BOUND if not NULL.
1053
1054 Return 1 if the operation was successful. Return zero otherwise,
1055 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1056
1057 We now simply use get_discrete_bounds call to get the values
1058 of the low and high bounds.
1059 get_discrete_bounds can return three values:
1060 1, meaning that index is a range,
1061 0, meaning that index is a discrete type,
1062 or -1 for failure. */
1063
1064 int
1065 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1066 {
1067 struct type *index = TYPE_INDEX_TYPE (type);
1068 LONGEST low = 0;
1069 LONGEST high = 0;
1070 int res;
1071
1072 if (index == NULL)
1073 return 0;
1074
1075 res = get_discrete_bounds (index, &low, &high);
1076 if (res == -1)
1077 return 0;
1078
1079 /* Check if the array bounds are undefined. */
1080 if (res == 1
1081 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1082 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1083 return 0;
1084
1085 if (low_bound)
1086 *low_bound = low;
1087
1088 if (high_bound)
1089 *high_bound = high;
1090
1091 return 1;
1092 }
1093
1094 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1095 representation of a value of this type, save the corresponding
1096 position number in POS.
1097
1098 Its differs from VAL only in the case of enumeration types. In
1099 this case, the position number of the value of the first listed
1100 enumeration literal is zero; the position number of the value of
1101 each subsequent enumeration literal is one more than that of its
1102 predecessor in the list.
1103
1104 Return 1 if the operation was successful. Return zero otherwise,
1105 in which case the value of POS is unmodified.
1106 */
1107
1108 int
1109 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1110 {
1111 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1112 {
1113 int i;
1114
1115 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1116 {
1117 if (val == TYPE_FIELD_ENUMVAL (type, i))
1118 {
1119 *pos = i;
1120 return 1;
1121 }
1122 }
1123 /* Invalid enumeration value. */
1124 return 0;
1125 }
1126 else
1127 {
1128 *pos = val;
1129 return 1;
1130 }
1131 }
1132
1133 /* Create an array type using either a blank type supplied in
1134 RESULT_TYPE, or creating a new type, inheriting the objfile from
1135 RANGE_TYPE.
1136
1137 Elements will be of type ELEMENT_TYPE, the indices will be of type
1138 RANGE_TYPE.
1139
1140 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1141 This byte stride property is added to the resulting array type
1142 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1143 argument can only be used to create types that are objfile-owned
1144 (see add_dyn_prop), meaning that either this function must be called
1145 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1146
1147 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1148 If BIT_STRIDE is not zero, build a packed array type whose element
1149 size is BIT_STRIDE. Otherwise, ignore this parameter.
1150
1151 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1152 sure it is TYPE_CODE_UNDEF before we bash it into an array
1153 type? */
1154
1155 struct type *
1156 create_array_type_with_stride (struct type *result_type,
1157 struct type *element_type,
1158 struct type *range_type,
1159 struct dynamic_prop *byte_stride_prop,
1160 unsigned int bit_stride)
1161 {
1162 if (byte_stride_prop != NULL
1163 && byte_stride_prop->kind == PROP_CONST)
1164 {
1165 /* The byte stride is actually not dynamic. Pretend we were
1166 called with bit_stride set instead of byte_stride_prop.
1167 This will give us the same result type, while avoiding
1168 the need to handle this as a special case. */
1169 bit_stride = byte_stride_prop->data.const_val * 8;
1170 byte_stride_prop = NULL;
1171 }
1172
1173 if (result_type == NULL)
1174 result_type = alloc_type_copy (range_type);
1175
1176 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1177 TYPE_TARGET_TYPE (result_type) = element_type;
1178 if (byte_stride_prop == NULL
1179 && has_static_range (TYPE_RANGE_DATA (range_type))
1180 && (!type_not_associated (result_type)
1181 && !type_not_allocated (result_type)))
1182 {
1183 LONGEST low_bound, high_bound;
1184
1185 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1186 low_bound = high_bound = 0;
1187 element_type = check_typedef (element_type);
1188 /* Be careful when setting the array length. Ada arrays can be
1189 empty arrays with the high_bound being smaller than the low_bound.
1190 In such cases, the array length should be zero. */
1191 if (high_bound < low_bound)
1192 TYPE_LENGTH (result_type) = 0;
1193 else if (bit_stride > 0)
1194 TYPE_LENGTH (result_type) =
1195 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1196 else
1197 TYPE_LENGTH (result_type) =
1198 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1199 }
1200 else
1201 {
1202 /* This type is dynamic and its length needs to be computed
1203 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1204 undefined by setting it to zero. Although we are not expected
1205 to trust TYPE_LENGTH in this case, setting the size to zero
1206 allows us to avoid allocating objects of random sizes in case
1207 we accidently do. */
1208 TYPE_LENGTH (result_type) = 0;
1209 }
1210
1211 TYPE_NFIELDS (result_type) = 1;
1212 TYPE_FIELDS (result_type) =
1213 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1214 TYPE_INDEX_TYPE (result_type) = range_type;
1215 if (byte_stride_prop != NULL)
1216 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1217 else if (bit_stride > 0)
1218 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1219
1220 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1221 if (TYPE_LENGTH (result_type) == 0)
1222 TYPE_TARGET_STUB (result_type) = 1;
1223
1224 return result_type;
1225 }
1226
1227 /* Same as create_array_type_with_stride but with no bit_stride
1228 (BIT_STRIDE = 0), thus building an unpacked array. */
1229
1230 struct type *
1231 create_array_type (struct type *result_type,
1232 struct type *element_type,
1233 struct type *range_type)
1234 {
1235 return create_array_type_with_stride (result_type, element_type,
1236 range_type, NULL, 0);
1237 }
1238
1239 struct type *
1240 lookup_array_range_type (struct type *element_type,
1241 LONGEST low_bound, LONGEST high_bound)
1242 {
1243 struct type *index_type;
1244 struct type *range_type;
1245
1246 if (TYPE_OBJFILE_OWNED (element_type))
1247 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1248 else
1249 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1250 range_type = create_static_range_type (NULL, index_type,
1251 low_bound, high_bound);
1252
1253 return create_array_type (NULL, element_type, range_type);
1254 }
1255
1256 /* Create a string type using either a blank type supplied in
1257 RESULT_TYPE, or creating a new type. String types are similar
1258 enough to array of char types that we can use create_array_type to
1259 build the basic type and then bash it into a string type.
1260
1261 For fixed length strings, the range type contains 0 as the lower
1262 bound and the length of the string minus one as the upper bound.
1263
1264 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1265 sure it is TYPE_CODE_UNDEF before we bash it into a string
1266 type? */
1267
1268 struct type *
1269 create_string_type (struct type *result_type,
1270 struct type *string_char_type,
1271 struct type *range_type)
1272 {
1273 result_type = create_array_type (result_type,
1274 string_char_type,
1275 range_type);
1276 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1277 return result_type;
1278 }
1279
1280 struct type *
1281 lookup_string_range_type (struct type *string_char_type,
1282 LONGEST low_bound, LONGEST high_bound)
1283 {
1284 struct type *result_type;
1285
1286 result_type = lookup_array_range_type (string_char_type,
1287 low_bound, high_bound);
1288 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1289 return result_type;
1290 }
1291
1292 struct type *
1293 create_set_type (struct type *result_type, struct type *domain_type)
1294 {
1295 if (result_type == NULL)
1296 result_type = alloc_type_copy (domain_type);
1297
1298 TYPE_CODE (result_type) = TYPE_CODE_SET;
1299 TYPE_NFIELDS (result_type) = 1;
1300 TYPE_FIELDS (result_type)
1301 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1302
1303 if (!TYPE_STUB (domain_type))
1304 {
1305 LONGEST low_bound, high_bound, bit_length;
1306
1307 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1308 low_bound = high_bound = 0;
1309 bit_length = high_bound - low_bound + 1;
1310 TYPE_LENGTH (result_type)
1311 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1312 if (low_bound >= 0)
1313 TYPE_UNSIGNED (result_type) = 1;
1314 }
1315 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1316
1317 return result_type;
1318 }
1319
1320 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1321 and any array types nested inside it. */
1322
1323 void
1324 make_vector_type (struct type *array_type)
1325 {
1326 struct type *inner_array, *elt_type;
1327 int flags;
1328
1329 /* Find the innermost array type, in case the array is
1330 multi-dimensional. */
1331 inner_array = array_type;
1332 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1333 inner_array = TYPE_TARGET_TYPE (inner_array);
1334
1335 elt_type = TYPE_TARGET_TYPE (inner_array);
1336 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1337 {
1338 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1339 elt_type = make_qualified_type (elt_type, flags, NULL);
1340 TYPE_TARGET_TYPE (inner_array) = elt_type;
1341 }
1342
1343 TYPE_VECTOR (array_type) = 1;
1344 }
1345
1346 struct type *
1347 init_vector_type (struct type *elt_type, int n)
1348 {
1349 struct type *array_type;
1350
1351 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1352 make_vector_type (array_type);
1353 return array_type;
1354 }
1355
1356 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1357 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1358 confusing. "self" is a common enough replacement for "this".
1359 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1360 TYPE_CODE_METHOD. */
1361
1362 struct type *
1363 internal_type_self_type (struct type *type)
1364 {
1365 switch (TYPE_CODE (type))
1366 {
1367 case TYPE_CODE_METHODPTR:
1368 case TYPE_CODE_MEMBERPTR:
1369 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1370 return NULL;
1371 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1372 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1373 case TYPE_CODE_METHOD:
1374 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1375 return NULL;
1376 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1377 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1378 default:
1379 gdb_assert_not_reached ("bad type");
1380 }
1381 }
1382
1383 /* Set the type of the class that TYPE belongs to.
1384 In c++ this is the class of "this".
1385 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1386 TYPE_CODE_METHOD. */
1387
1388 void
1389 set_type_self_type (struct type *type, struct type *self_type)
1390 {
1391 switch (TYPE_CODE (type))
1392 {
1393 case TYPE_CODE_METHODPTR:
1394 case TYPE_CODE_MEMBERPTR:
1395 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1396 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1397 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1398 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1399 break;
1400 case TYPE_CODE_METHOD:
1401 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1402 INIT_FUNC_SPECIFIC (type);
1403 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1404 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1405 break;
1406 default:
1407 gdb_assert_not_reached ("bad type");
1408 }
1409 }
1410
1411 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1412 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1413 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1414 TYPE doesn't include the offset (that's the value of the MEMBER
1415 itself), but does include the structure type into which it points
1416 (for some reason).
1417
1418 When "smashing" the type, we preserve the objfile that the old type
1419 pointed to, since we aren't changing where the type is actually
1420 allocated. */
1421
1422 void
1423 smash_to_memberptr_type (struct type *type, struct type *self_type,
1424 struct type *to_type)
1425 {
1426 smash_type (type);
1427 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1428 TYPE_TARGET_TYPE (type) = to_type;
1429 set_type_self_type (type, self_type);
1430 /* Assume that a data member pointer is the same size as a normal
1431 pointer. */
1432 TYPE_LENGTH (type)
1433 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1434 }
1435
1436 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1437
1438 When "smashing" the type, we preserve the objfile that the old type
1439 pointed to, since we aren't changing where the type is actually
1440 allocated. */
1441
1442 void
1443 smash_to_methodptr_type (struct type *type, struct type *to_type)
1444 {
1445 smash_type (type);
1446 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1447 TYPE_TARGET_TYPE (type) = to_type;
1448 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1449 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1450 }
1451
1452 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1453 METHOD just means `function that gets an extra "this" argument'.
1454
1455 When "smashing" the type, we preserve the objfile that the old type
1456 pointed to, since we aren't changing where the type is actually
1457 allocated. */
1458
1459 void
1460 smash_to_method_type (struct type *type, struct type *self_type,
1461 struct type *to_type, struct field *args,
1462 int nargs, int varargs)
1463 {
1464 smash_type (type);
1465 TYPE_CODE (type) = TYPE_CODE_METHOD;
1466 TYPE_TARGET_TYPE (type) = to_type;
1467 set_type_self_type (type, self_type);
1468 TYPE_FIELDS (type) = args;
1469 TYPE_NFIELDS (type) = nargs;
1470 if (varargs)
1471 TYPE_VARARGS (type) = 1;
1472 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1473 }
1474
1475 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1476 Since GCC PR debug/47510 DWARF provides associated information to detect the
1477 anonymous class linkage name from its typedef.
1478
1479 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1480 apply it itself. */
1481
1482 const char *
1483 type_name_or_error (struct type *type)
1484 {
1485 struct type *saved_type = type;
1486 const char *name;
1487 struct objfile *objfile;
1488
1489 type = check_typedef (type);
1490
1491 name = TYPE_NAME (type);
1492 if (name != NULL)
1493 return name;
1494
1495 name = TYPE_NAME (saved_type);
1496 objfile = TYPE_OBJFILE (saved_type);
1497 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1498 name ? name : "<anonymous>",
1499 objfile ? objfile_name (objfile) : "<arch>");
1500 }
1501
1502 /* Lookup a typedef or primitive type named NAME, visible in lexical
1503 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1504 suitably defined. */
1505
1506 struct type *
1507 lookup_typename (const struct language_defn *language,
1508 struct gdbarch *gdbarch, const char *name,
1509 const struct block *block, int noerr)
1510 {
1511 struct symbol *sym;
1512
1513 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1514 language->la_language, NULL).symbol;
1515 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1516 return SYMBOL_TYPE (sym);
1517
1518 if (noerr)
1519 return NULL;
1520 error (_("No type named %s."), name);
1521 }
1522
1523 struct type *
1524 lookup_unsigned_typename (const struct language_defn *language,
1525 struct gdbarch *gdbarch, const char *name)
1526 {
1527 char *uns = (char *) alloca (strlen (name) + 10);
1528
1529 strcpy (uns, "unsigned ");
1530 strcpy (uns + 9, name);
1531 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1532 }
1533
1534 struct type *
1535 lookup_signed_typename (const struct language_defn *language,
1536 struct gdbarch *gdbarch, const char *name)
1537 {
1538 struct type *t;
1539 char *uns = (char *) alloca (strlen (name) + 8);
1540
1541 strcpy (uns, "signed ");
1542 strcpy (uns + 7, name);
1543 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1544 /* If we don't find "signed FOO" just try again with plain "FOO". */
1545 if (t != NULL)
1546 return t;
1547 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1548 }
1549
1550 /* Lookup a structure type named "struct NAME",
1551 visible in lexical block BLOCK. */
1552
1553 struct type *
1554 lookup_struct (const char *name, const struct block *block)
1555 {
1556 struct symbol *sym;
1557
1558 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1559
1560 if (sym == NULL)
1561 {
1562 error (_("No struct type named %s."), name);
1563 }
1564 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1565 {
1566 error (_("This context has class, union or enum %s, not a struct."),
1567 name);
1568 }
1569 return (SYMBOL_TYPE (sym));
1570 }
1571
1572 /* Lookup a union type named "union NAME",
1573 visible in lexical block BLOCK. */
1574
1575 struct type *
1576 lookup_union (const char *name, const struct block *block)
1577 {
1578 struct symbol *sym;
1579 struct type *t;
1580
1581 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1582
1583 if (sym == NULL)
1584 error (_("No union type named %s."), name);
1585
1586 t = SYMBOL_TYPE (sym);
1587
1588 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1589 return t;
1590
1591 /* If we get here, it's not a union. */
1592 error (_("This context has class, struct or enum %s, not a union."),
1593 name);
1594 }
1595
1596 /* Lookup an enum type named "enum NAME",
1597 visible in lexical block BLOCK. */
1598
1599 struct type *
1600 lookup_enum (const char *name, const struct block *block)
1601 {
1602 struct symbol *sym;
1603
1604 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1605 if (sym == NULL)
1606 {
1607 error (_("No enum type named %s."), name);
1608 }
1609 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1610 {
1611 error (_("This context has class, struct or union %s, not an enum."),
1612 name);
1613 }
1614 return (SYMBOL_TYPE (sym));
1615 }
1616
1617 /* Lookup a template type named "template NAME<TYPE>",
1618 visible in lexical block BLOCK. */
1619
1620 struct type *
1621 lookup_template_type (char *name, struct type *type,
1622 const struct block *block)
1623 {
1624 struct symbol *sym;
1625 char *nam = (char *)
1626 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1627
1628 strcpy (nam, name);
1629 strcat (nam, "<");
1630 strcat (nam, TYPE_NAME (type));
1631 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1632
1633 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1634
1635 if (sym == NULL)
1636 {
1637 error (_("No template type named %s."), name);
1638 }
1639 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1640 {
1641 error (_("This context has class, union or enum %s, not a struct."),
1642 name);
1643 }
1644 return (SYMBOL_TYPE (sym));
1645 }
1646
1647 /* Given a type TYPE, lookup the type of the component of type named
1648 NAME.
1649
1650 TYPE can be either a struct or union, or a pointer or reference to
1651 a struct or union. If it is a pointer or reference, its target
1652 type is automatically used. Thus '.' and '->' are interchangable,
1653 as specified for the definitions of the expression element types
1654 STRUCTOP_STRUCT and STRUCTOP_PTR.
1655
1656 If NOERR is nonzero, return zero if NAME is not suitably defined.
1657 If NAME is the name of a baseclass type, return that type. */
1658
1659 struct type *
1660 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1661 {
1662 int i;
1663
1664 for (;;)
1665 {
1666 type = check_typedef (type);
1667 if (TYPE_CODE (type) != TYPE_CODE_PTR
1668 && TYPE_CODE (type) != TYPE_CODE_REF)
1669 break;
1670 type = TYPE_TARGET_TYPE (type);
1671 }
1672
1673 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1674 && TYPE_CODE (type) != TYPE_CODE_UNION)
1675 {
1676 std::string type_name = type_to_string (type);
1677 error (_("Type %s is not a structure or union type."),
1678 type_name.c_str ());
1679 }
1680
1681 #if 0
1682 /* FIXME: This change put in by Michael seems incorrect for the case
1683 where the structure tag name is the same as the member name.
1684 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1685 foo; } bell;" Disabled by fnf. */
1686 {
1687 char *type_name;
1688
1689 type_name = TYPE_NAME (type);
1690 if (type_name != NULL && strcmp (type_name, name) == 0)
1691 return type;
1692 }
1693 #endif
1694
1695 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1696 {
1697 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1698
1699 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1700 {
1701 return TYPE_FIELD_TYPE (type, i);
1702 }
1703 else if (!t_field_name || *t_field_name == '\0')
1704 {
1705 struct type *subtype
1706 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1707
1708 if (subtype != NULL)
1709 return subtype;
1710 }
1711 }
1712
1713 /* OK, it's not in this class. Recursively check the baseclasses. */
1714 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1715 {
1716 struct type *t;
1717
1718 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1719 if (t != NULL)
1720 {
1721 return t;
1722 }
1723 }
1724
1725 if (noerr)
1726 {
1727 return NULL;
1728 }
1729
1730 std::string type_name = type_to_string (type);
1731 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1732 }
1733
1734 /* Store in *MAX the largest number representable by unsigned integer type
1735 TYPE. */
1736
1737 void
1738 get_unsigned_type_max (struct type *type, ULONGEST *max)
1739 {
1740 unsigned int n;
1741
1742 type = check_typedef (type);
1743 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1744 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1745
1746 /* Written this way to avoid overflow. */
1747 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1748 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1749 }
1750
1751 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1752 signed integer type TYPE. */
1753
1754 void
1755 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1756 {
1757 unsigned int n;
1758
1759 type = check_typedef (type);
1760 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1761 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1762
1763 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1764 *min = -((ULONGEST) 1 << (n - 1));
1765 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1766 }
1767
1768 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1769 cplus_stuff.vptr_fieldno.
1770
1771 cplus_stuff is initialized to cplus_struct_default which does not
1772 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1773 designated initializers). We cope with that here. */
1774
1775 int
1776 internal_type_vptr_fieldno (struct type *type)
1777 {
1778 type = check_typedef (type);
1779 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1780 || TYPE_CODE (type) == TYPE_CODE_UNION);
1781 if (!HAVE_CPLUS_STRUCT (type))
1782 return -1;
1783 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1784 }
1785
1786 /* Set the value of cplus_stuff.vptr_fieldno. */
1787
1788 void
1789 set_type_vptr_fieldno (struct type *type, int fieldno)
1790 {
1791 type = check_typedef (type);
1792 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1793 || TYPE_CODE (type) == TYPE_CODE_UNION);
1794 if (!HAVE_CPLUS_STRUCT (type))
1795 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1796 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1797 }
1798
1799 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1800 cplus_stuff.vptr_basetype. */
1801
1802 struct type *
1803 internal_type_vptr_basetype (struct type *type)
1804 {
1805 type = check_typedef (type);
1806 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1807 || TYPE_CODE (type) == TYPE_CODE_UNION);
1808 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1809 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1810 }
1811
1812 /* Set the value of cplus_stuff.vptr_basetype. */
1813
1814 void
1815 set_type_vptr_basetype (struct type *type, struct type *basetype)
1816 {
1817 type = check_typedef (type);
1818 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1819 || TYPE_CODE (type) == TYPE_CODE_UNION);
1820 if (!HAVE_CPLUS_STRUCT (type))
1821 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1822 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1823 }
1824
1825 /* Lookup the vptr basetype/fieldno values for TYPE.
1826 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1827 vptr_fieldno. Also, if found and basetype is from the same objfile,
1828 cache the results.
1829 If not found, return -1 and ignore BASETYPEP.
1830 Callers should be aware that in some cases (for example,
1831 the type or one of its baseclasses is a stub type and we are
1832 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1833 this function will not be able to find the
1834 virtual function table pointer, and vptr_fieldno will remain -1 and
1835 vptr_basetype will remain NULL or incomplete. */
1836
1837 int
1838 get_vptr_fieldno (struct type *type, struct type **basetypep)
1839 {
1840 type = check_typedef (type);
1841
1842 if (TYPE_VPTR_FIELDNO (type) < 0)
1843 {
1844 int i;
1845
1846 /* We must start at zero in case the first (and only) baseclass
1847 is virtual (and hence we cannot share the table pointer). */
1848 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1849 {
1850 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1851 int fieldno;
1852 struct type *basetype;
1853
1854 fieldno = get_vptr_fieldno (baseclass, &basetype);
1855 if (fieldno >= 0)
1856 {
1857 /* If the type comes from a different objfile we can't cache
1858 it, it may have a different lifetime. PR 2384 */
1859 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1860 {
1861 set_type_vptr_fieldno (type, fieldno);
1862 set_type_vptr_basetype (type, basetype);
1863 }
1864 if (basetypep)
1865 *basetypep = basetype;
1866 return fieldno;
1867 }
1868 }
1869
1870 /* Not found. */
1871 return -1;
1872 }
1873 else
1874 {
1875 if (basetypep)
1876 *basetypep = TYPE_VPTR_BASETYPE (type);
1877 return TYPE_VPTR_FIELDNO (type);
1878 }
1879 }
1880
1881 static void
1882 stub_noname_complaint (void)
1883 {
1884 complaint (_("stub type has NULL name"));
1885 }
1886
1887 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1888 attached to it, and that property has a non-constant value. */
1889
1890 static int
1891 array_type_has_dynamic_stride (struct type *type)
1892 {
1893 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1894
1895 return (prop != NULL && prop->kind != PROP_CONST);
1896 }
1897
1898 /* Worker for is_dynamic_type. */
1899
1900 static int
1901 is_dynamic_type_internal (struct type *type, int top_level)
1902 {
1903 type = check_typedef (type);
1904
1905 /* We only want to recognize references at the outermost level. */
1906 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1907 type = check_typedef (TYPE_TARGET_TYPE (type));
1908
1909 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1910 dynamic, even if the type itself is statically defined.
1911 From a user's point of view, this may appear counter-intuitive;
1912 but it makes sense in this context, because the point is to determine
1913 whether any part of the type needs to be resolved before it can
1914 be exploited. */
1915 if (TYPE_DATA_LOCATION (type) != NULL
1916 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1917 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1918 return 1;
1919
1920 if (TYPE_ASSOCIATED_PROP (type))
1921 return 1;
1922
1923 if (TYPE_ALLOCATED_PROP (type))
1924 return 1;
1925
1926 switch (TYPE_CODE (type))
1927 {
1928 case TYPE_CODE_RANGE:
1929 {
1930 /* A range type is obviously dynamic if it has at least one
1931 dynamic bound. But also consider the range type to be
1932 dynamic when its subtype is dynamic, even if the bounds
1933 of the range type are static. It allows us to assume that
1934 the subtype of a static range type is also static. */
1935 return (!has_static_range (TYPE_RANGE_DATA (type))
1936 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1937 }
1938
1939 case TYPE_CODE_ARRAY:
1940 {
1941 gdb_assert (TYPE_NFIELDS (type) == 1);
1942
1943 /* The array is dynamic if either the bounds are dynamic... */
1944 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1945 return 1;
1946 /* ... or the elements it contains have a dynamic contents... */
1947 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1948 return 1;
1949 /* ... or if it has a dynamic stride... */
1950 if (array_type_has_dynamic_stride (type))
1951 return 1;
1952 return 0;
1953 }
1954
1955 case TYPE_CODE_STRUCT:
1956 case TYPE_CODE_UNION:
1957 {
1958 int i;
1959
1960 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1961 if (!field_is_static (&TYPE_FIELD (type, i))
1962 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1963 return 1;
1964 }
1965 break;
1966 }
1967
1968 return 0;
1969 }
1970
1971 /* See gdbtypes.h. */
1972
1973 int
1974 is_dynamic_type (struct type *type)
1975 {
1976 return is_dynamic_type_internal (type, 1);
1977 }
1978
1979 static struct type *resolve_dynamic_type_internal
1980 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1981
1982 /* Given a dynamic range type (dyn_range_type) and a stack of
1983 struct property_addr_info elements, return a static version
1984 of that type. */
1985
1986 static struct type *
1987 resolve_dynamic_range (struct type *dyn_range_type,
1988 struct property_addr_info *addr_stack)
1989 {
1990 CORE_ADDR value;
1991 struct type *static_range_type, *static_target_type;
1992 const struct dynamic_prop *prop;
1993 struct dynamic_prop low_bound, high_bound;
1994
1995 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1996
1997 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1998 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
1999 {
2000 low_bound.kind = PROP_CONST;
2001 low_bound.data.const_val = value;
2002 }
2003 else
2004 {
2005 low_bound.kind = PROP_UNDEFINED;
2006 low_bound.data.const_val = 0;
2007 }
2008
2009 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2010 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2011 {
2012 high_bound.kind = PROP_CONST;
2013 high_bound.data.const_val = value;
2014
2015 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2016 high_bound.data.const_val
2017 = low_bound.data.const_val + high_bound.data.const_val - 1;
2018 }
2019 else
2020 {
2021 high_bound.kind = PROP_UNDEFINED;
2022 high_bound.data.const_val = 0;
2023 }
2024
2025 static_target_type
2026 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2027 addr_stack, 0);
2028 static_range_type = create_range_type (copy_type (dyn_range_type),
2029 static_target_type,
2030 &low_bound, &high_bound);
2031 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2032 return static_range_type;
2033 }
2034
2035 /* Resolves dynamic bound values of an array type TYPE to static ones.
2036 ADDR_STACK is a stack of struct property_addr_info to be used
2037 if needed during the dynamic resolution. */
2038
2039 static struct type *
2040 resolve_dynamic_array (struct type *type,
2041 struct property_addr_info *addr_stack)
2042 {
2043 CORE_ADDR value;
2044 struct type *elt_type;
2045 struct type *range_type;
2046 struct type *ary_dim;
2047 struct dynamic_prop *prop;
2048 unsigned int bit_stride = 0;
2049
2050 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
2051
2052 type = copy_type (type);
2053
2054 elt_type = type;
2055 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2056 range_type = resolve_dynamic_range (range_type, addr_stack);
2057
2058 /* Resolve allocated/associated here before creating a new array type, which
2059 will update the length of the array accordingly. */
2060 prop = TYPE_ALLOCATED_PROP (type);
2061 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2062 {
2063 TYPE_DYN_PROP_ADDR (prop) = value;
2064 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2065 }
2066 prop = TYPE_ASSOCIATED_PROP (type);
2067 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2068 {
2069 TYPE_DYN_PROP_ADDR (prop) = value;
2070 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2071 }
2072
2073 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2074
2075 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2076 elt_type = resolve_dynamic_array (ary_dim, addr_stack);
2077 else
2078 elt_type = TYPE_TARGET_TYPE (type);
2079
2080 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2081 if (prop != NULL)
2082 {
2083 int prop_eval_ok
2084 = dwarf2_evaluate_property (prop, NULL, addr_stack, &value);
2085
2086 if (prop_eval_ok)
2087 {
2088 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2089 bit_stride = (unsigned int) (value * 8);
2090 }
2091 else
2092 {
2093 /* Could be a bug in our code, but it could also happen
2094 if the DWARF info is not correct. Issue a warning,
2095 and assume no byte/bit stride (leave bit_stride = 0). */
2096 warning (_("cannot determine array stride for type %s"),
2097 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2098 }
2099 }
2100 else
2101 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2102
2103 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2104 bit_stride);
2105 }
2106
2107 /* Resolve dynamic bounds of members of the union TYPE to static
2108 bounds. ADDR_STACK is a stack of struct property_addr_info
2109 to be used if needed during the dynamic resolution. */
2110
2111 static struct type *
2112 resolve_dynamic_union (struct type *type,
2113 struct property_addr_info *addr_stack)
2114 {
2115 struct type *resolved_type;
2116 int i;
2117 unsigned int max_len = 0;
2118
2119 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2120
2121 resolved_type = copy_type (type);
2122 TYPE_FIELDS (resolved_type)
2123 = (struct field *) TYPE_ALLOC (resolved_type,
2124 TYPE_NFIELDS (resolved_type)
2125 * sizeof (struct field));
2126 memcpy (TYPE_FIELDS (resolved_type),
2127 TYPE_FIELDS (type),
2128 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2129 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2130 {
2131 struct type *t;
2132
2133 if (field_is_static (&TYPE_FIELD (type, i)))
2134 continue;
2135
2136 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2137 addr_stack, 0);
2138 TYPE_FIELD_TYPE (resolved_type, i) = t;
2139 if (TYPE_LENGTH (t) > max_len)
2140 max_len = TYPE_LENGTH (t);
2141 }
2142
2143 TYPE_LENGTH (resolved_type) = max_len;
2144 return resolved_type;
2145 }
2146
2147 /* Resolve dynamic bounds of members of the struct TYPE to static
2148 bounds. ADDR_STACK is a stack of struct property_addr_info to
2149 be used if needed during the dynamic resolution. */
2150
2151 static struct type *
2152 resolve_dynamic_struct (struct type *type,
2153 struct property_addr_info *addr_stack)
2154 {
2155 struct type *resolved_type;
2156 int i;
2157 unsigned resolved_type_bit_length = 0;
2158
2159 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2160 gdb_assert (TYPE_NFIELDS (type) > 0);
2161
2162 resolved_type = copy_type (type);
2163 TYPE_FIELDS (resolved_type)
2164 = (struct field *) TYPE_ALLOC (resolved_type,
2165 TYPE_NFIELDS (resolved_type)
2166 * sizeof (struct field));
2167 memcpy (TYPE_FIELDS (resolved_type),
2168 TYPE_FIELDS (type),
2169 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2170 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2171 {
2172 unsigned new_bit_length;
2173 struct property_addr_info pinfo;
2174
2175 if (field_is_static (&TYPE_FIELD (type, i)))
2176 continue;
2177
2178 /* As we know this field is not a static field, the field's
2179 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2180 this is the case, but only trigger a simple error rather
2181 than an internal error if that fails. While failing
2182 that verification indicates a bug in our code, the error
2183 is not severe enough to suggest to the user he stops
2184 his debugging session because of it. */
2185 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2186 error (_("Cannot determine struct field location"
2187 " (invalid location kind)"));
2188
2189 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2190 pinfo.valaddr = addr_stack->valaddr;
2191 pinfo.addr
2192 = (addr_stack->addr
2193 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2194 pinfo.next = addr_stack;
2195
2196 TYPE_FIELD_TYPE (resolved_type, i)
2197 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2198 &pinfo, 0);
2199 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2200 == FIELD_LOC_KIND_BITPOS);
2201
2202 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2203 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2204 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2205 else
2206 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2207 * TARGET_CHAR_BIT);
2208
2209 /* Normally, we would use the position and size of the last field
2210 to determine the size of the enclosing structure. But GCC seems
2211 to be encoding the position of some fields incorrectly when
2212 the struct contains a dynamic field that is not placed last.
2213 So we compute the struct size based on the field that has
2214 the highest position + size - probably the best we can do. */
2215 if (new_bit_length > resolved_type_bit_length)
2216 resolved_type_bit_length = new_bit_length;
2217 }
2218
2219 /* The length of a type won't change for fortran, but it does for C and Ada.
2220 For fortran the size of dynamic fields might change over time but not the
2221 type length of the structure. If we adapt it, we run into problems
2222 when calculating the element offset for arrays of structs. */
2223 if (current_language->la_language != language_fortran)
2224 TYPE_LENGTH (resolved_type)
2225 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2226
2227 /* The Ada language uses this field as a cache for static fixed types: reset
2228 it as RESOLVED_TYPE must have its own static fixed type. */
2229 TYPE_TARGET_TYPE (resolved_type) = NULL;
2230
2231 return resolved_type;
2232 }
2233
2234 /* Worker for resolved_dynamic_type. */
2235
2236 static struct type *
2237 resolve_dynamic_type_internal (struct type *type,
2238 struct property_addr_info *addr_stack,
2239 int top_level)
2240 {
2241 struct type *real_type = check_typedef (type);
2242 struct type *resolved_type = type;
2243 struct dynamic_prop *prop;
2244 CORE_ADDR value;
2245
2246 if (!is_dynamic_type_internal (real_type, top_level))
2247 return type;
2248
2249 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2250 {
2251 resolved_type = copy_type (type);
2252 TYPE_TARGET_TYPE (resolved_type)
2253 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2254 top_level);
2255 }
2256 else
2257 {
2258 /* Before trying to resolve TYPE, make sure it is not a stub. */
2259 type = real_type;
2260
2261 switch (TYPE_CODE (type))
2262 {
2263 case TYPE_CODE_REF:
2264 {
2265 struct property_addr_info pinfo;
2266
2267 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2268 pinfo.valaddr = NULL;
2269 if (addr_stack->valaddr != NULL)
2270 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2271 else
2272 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2273 pinfo.next = addr_stack;
2274
2275 resolved_type = copy_type (type);
2276 TYPE_TARGET_TYPE (resolved_type)
2277 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2278 &pinfo, top_level);
2279 break;
2280 }
2281
2282 case TYPE_CODE_ARRAY:
2283 resolved_type = resolve_dynamic_array (type, addr_stack);
2284 break;
2285
2286 case TYPE_CODE_RANGE:
2287 resolved_type = resolve_dynamic_range (type, addr_stack);
2288 break;
2289
2290 case TYPE_CODE_UNION:
2291 resolved_type = resolve_dynamic_union (type, addr_stack);
2292 break;
2293
2294 case TYPE_CODE_STRUCT:
2295 resolved_type = resolve_dynamic_struct (type, addr_stack);
2296 break;
2297 }
2298 }
2299
2300 /* Resolve data_location attribute. */
2301 prop = TYPE_DATA_LOCATION (resolved_type);
2302 if (prop != NULL
2303 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2304 {
2305 TYPE_DYN_PROP_ADDR (prop) = value;
2306 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2307 }
2308
2309 return resolved_type;
2310 }
2311
2312 /* See gdbtypes.h */
2313
2314 struct type *
2315 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2316 CORE_ADDR addr)
2317 {
2318 struct property_addr_info pinfo
2319 = {check_typedef (type), valaddr, addr, NULL};
2320
2321 return resolve_dynamic_type_internal (type, &pinfo, 1);
2322 }
2323
2324 /* See gdbtypes.h */
2325
2326 struct dynamic_prop *
2327 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2328 {
2329 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2330
2331 while (node != NULL)
2332 {
2333 if (node->prop_kind == prop_kind)
2334 return &node->prop;
2335 node = node->next;
2336 }
2337 return NULL;
2338 }
2339
2340 /* See gdbtypes.h */
2341
2342 void
2343 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2344 struct type *type)
2345 {
2346 struct dynamic_prop_list *temp;
2347
2348 gdb_assert (TYPE_OBJFILE_OWNED (type));
2349
2350 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2351 struct dynamic_prop_list);
2352 temp->prop_kind = prop_kind;
2353 temp->prop = prop;
2354 temp->next = TYPE_DYN_PROP_LIST (type);
2355
2356 TYPE_DYN_PROP_LIST (type) = temp;
2357 }
2358
2359 /* Remove dynamic property from TYPE in case it exists. */
2360
2361 void
2362 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2363 struct type *type)
2364 {
2365 struct dynamic_prop_list *prev_node, *curr_node;
2366
2367 curr_node = TYPE_DYN_PROP_LIST (type);
2368 prev_node = NULL;
2369
2370 while (NULL != curr_node)
2371 {
2372 if (curr_node->prop_kind == prop_kind)
2373 {
2374 /* Update the linked list but don't free anything.
2375 The property was allocated on objstack and it is not known
2376 if we are on top of it. Nevertheless, everything is released
2377 when the complete objstack is freed. */
2378 if (NULL == prev_node)
2379 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2380 else
2381 prev_node->next = curr_node->next;
2382
2383 return;
2384 }
2385
2386 prev_node = curr_node;
2387 curr_node = curr_node->next;
2388 }
2389 }
2390
2391 /* Find the real type of TYPE. This function returns the real type,
2392 after removing all layers of typedefs, and completing opaque or stub
2393 types. Completion changes the TYPE argument, but stripping of
2394 typedefs does not.
2395
2396 Instance flags (e.g. const/volatile) are preserved as typedefs are
2397 stripped. If necessary a new qualified form of the underlying type
2398 is created.
2399
2400 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2401 not been computed and we're either in the middle of reading symbols, or
2402 there was no name for the typedef in the debug info.
2403
2404 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2405 QUITs in the symbol reading code can also throw.
2406 Thus this function can throw an exception.
2407
2408 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2409 the target type.
2410
2411 If this is a stubbed struct (i.e. declared as struct foo *), see if
2412 we can find a full definition in some other file. If so, copy this
2413 definition, so we can use it in future. There used to be a comment
2414 (but not any code) that if we don't find a full definition, we'd
2415 set a flag so we don't spend time in the future checking the same
2416 type. That would be a mistake, though--we might load in more
2417 symbols which contain a full definition for the type. */
2418
2419 struct type *
2420 check_typedef (struct type *type)
2421 {
2422 struct type *orig_type = type;
2423 /* While we're removing typedefs, we don't want to lose qualifiers.
2424 E.g., const/volatile. */
2425 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2426
2427 gdb_assert (type);
2428
2429 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2430 {
2431 if (!TYPE_TARGET_TYPE (type))
2432 {
2433 const char *name;
2434 struct symbol *sym;
2435
2436 /* It is dangerous to call lookup_symbol if we are currently
2437 reading a symtab. Infinite recursion is one danger. */
2438 if (currently_reading_symtab)
2439 return make_qualified_type (type, instance_flags, NULL);
2440
2441 name = TYPE_NAME (type);
2442 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2443 VAR_DOMAIN as appropriate? */
2444 if (name == NULL)
2445 {
2446 stub_noname_complaint ();
2447 return make_qualified_type (type, instance_flags, NULL);
2448 }
2449 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2450 if (sym)
2451 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2452 else /* TYPE_CODE_UNDEF */
2453 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2454 }
2455 type = TYPE_TARGET_TYPE (type);
2456
2457 /* Preserve the instance flags as we traverse down the typedef chain.
2458
2459 Handling address spaces/classes is nasty, what do we do if there's a
2460 conflict?
2461 E.g., what if an outer typedef marks the type as class_1 and an inner
2462 typedef marks the type as class_2?
2463 This is the wrong place to do such error checking. We leave it to
2464 the code that created the typedef in the first place to flag the
2465 error. We just pick the outer address space (akin to letting the
2466 outer cast in a chain of casting win), instead of assuming
2467 "it can't happen". */
2468 {
2469 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2470 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2471 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2472 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2473
2474 /* Treat code vs data spaces and address classes separately. */
2475 if ((instance_flags & ALL_SPACES) != 0)
2476 new_instance_flags &= ~ALL_SPACES;
2477 if ((instance_flags & ALL_CLASSES) != 0)
2478 new_instance_flags &= ~ALL_CLASSES;
2479
2480 instance_flags |= new_instance_flags;
2481 }
2482 }
2483
2484 /* If this is a struct/class/union with no fields, then check
2485 whether a full definition exists somewhere else. This is for
2486 systems where a type definition with no fields is issued for such
2487 types, instead of identifying them as stub types in the first
2488 place. */
2489
2490 if (TYPE_IS_OPAQUE (type)
2491 && opaque_type_resolution
2492 && !currently_reading_symtab)
2493 {
2494 const char *name = TYPE_NAME (type);
2495 struct type *newtype;
2496
2497 if (name == NULL)
2498 {
2499 stub_noname_complaint ();
2500 return make_qualified_type (type, instance_flags, NULL);
2501 }
2502 newtype = lookup_transparent_type (name);
2503
2504 if (newtype)
2505 {
2506 /* If the resolved type and the stub are in the same
2507 objfile, then replace the stub type with the real deal.
2508 But if they're in separate objfiles, leave the stub
2509 alone; we'll just look up the transparent type every time
2510 we call check_typedef. We can't create pointers between
2511 types allocated to different objfiles, since they may
2512 have different lifetimes. Trying to copy NEWTYPE over to
2513 TYPE's objfile is pointless, too, since you'll have to
2514 move over any other types NEWTYPE refers to, which could
2515 be an unbounded amount of stuff. */
2516 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2517 type = make_qualified_type (newtype,
2518 TYPE_INSTANCE_FLAGS (type),
2519 type);
2520 else
2521 type = newtype;
2522 }
2523 }
2524 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2525 types. */
2526 else if (TYPE_STUB (type) && !currently_reading_symtab)
2527 {
2528 const char *name = TYPE_NAME (type);
2529 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2530 as appropriate? */
2531 struct symbol *sym;
2532
2533 if (name == NULL)
2534 {
2535 stub_noname_complaint ();
2536 return make_qualified_type (type, instance_flags, NULL);
2537 }
2538 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2539 if (sym)
2540 {
2541 /* Same as above for opaque types, we can replace the stub
2542 with the complete type only if they are in the same
2543 objfile. */
2544 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2545 type = make_qualified_type (SYMBOL_TYPE (sym),
2546 TYPE_INSTANCE_FLAGS (type),
2547 type);
2548 else
2549 type = SYMBOL_TYPE (sym);
2550 }
2551 }
2552
2553 if (TYPE_TARGET_STUB (type))
2554 {
2555 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2556
2557 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2558 {
2559 /* Nothing we can do. */
2560 }
2561 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2562 {
2563 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2564 TYPE_TARGET_STUB (type) = 0;
2565 }
2566 }
2567
2568 type = make_qualified_type (type, instance_flags, NULL);
2569
2570 /* Cache TYPE_LENGTH for future use. */
2571 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2572
2573 return type;
2574 }
2575
2576 /* Parse a type expression in the string [P..P+LENGTH). If an error
2577 occurs, silently return a void type. */
2578
2579 static struct type *
2580 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2581 {
2582 struct ui_file *saved_gdb_stderr;
2583 struct type *type = NULL; /* Initialize to keep gcc happy. */
2584
2585 /* Suppress error messages. */
2586 saved_gdb_stderr = gdb_stderr;
2587 gdb_stderr = &null_stream;
2588
2589 /* Call parse_and_eval_type() without fear of longjmp()s. */
2590 TRY
2591 {
2592 type = parse_and_eval_type (p, length);
2593 }
2594 CATCH (except, RETURN_MASK_ERROR)
2595 {
2596 type = builtin_type (gdbarch)->builtin_void;
2597 }
2598 END_CATCH
2599
2600 /* Stop suppressing error messages. */
2601 gdb_stderr = saved_gdb_stderr;
2602
2603 return type;
2604 }
2605
2606 /* Ugly hack to convert method stubs into method types.
2607
2608 He ain't kiddin'. This demangles the name of the method into a
2609 string including argument types, parses out each argument type,
2610 generates a string casting a zero to that type, evaluates the
2611 string, and stuffs the resulting type into an argtype vector!!!
2612 Then it knows the type of the whole function (including argument
2613 types for overloading), which info used to be in the stab's but was
2614 removed to hack back the space required for them. */
2615
2616 static void
2617 check_stub_method (struct type *type, int method_id, int signature_id)
2618 {
2619 struct gdbarch *gdbarch = get_type_arch (type);
2620 struct fn_field *f;
2621 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2622 char *demangled_name = gdb_demangle (mangled_name,
2623 DMGL_PARAMS | DMGL_ANSI);
2624 char *argtypetext, *p;
2625 int depth = 0, argcount = 1;
2626 struct field *argtypes;
2627 struct type *mtype;
2628
2629 /* Make sure we got back a function string that we can use. */
2630 if (demangled_name)
2631 p = strchr (demangled_name, '(');
2632 else
2633 p = NULL;
2634
2635 if (demangled_name == NULL || p == NULL)
2636 error (_("Internal: Cannot demangle mangled name `%s'."),
2637 mangled_name);
2638
2639 /* Now, read in the parameters that define this type. */
2640 p += 1;
2641 argtypetext = p;
2642 while (*p)
2643 {
2644 if (*p == '(' || *p == '<')
2645 {
2646 depth += 1;
2647 }
2648 else if (*p == ')' || *p == '>')
2649 {
2650 depth -= 1;
2651 }
2652 else if (*p == ',' && depth == 0)
2653 {
2654 argcount += 1;
2655 }
2656
2657 p += 1;
2658 }
2659
2660 /* If we read one argument and it was ``void'', don't count it. */
2661 if (startswith (argtypetext, "(void)"))
2662 argcount -= 1;
2663
2664 /* We need one extra slot, for the THIS pointer. */
2665
2666 argtypes = (struct field *)
2667 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2668 p = argtypetext;
2669
2670 /* Add THIS pointer for non-static methods. */
2671 f = TYPE_FN_FIELDLIST1 (type, method_id);
2672 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2673 argcount = 0;
2674 else
2675 {
2676 argtypes[0].type = lookup_pointer_type (type);
2677 argcount = 1;
2678 }
2679
2680 if (*p != ')') /* () means no args, skip while. */
2681 {
2682 depth = 0;
2683 while (*p)
2684 {
2685 if (depth <= 0 && (*p == ',' || *p == ')'))
2686 {
2687 /* Avoid parsing of ellipsis, they will be handled below.
2688 Also avoid ``void'' as above. */
2689 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2690 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2691 {
2692 argtypes[argcount].type =
2693 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2694 argcount += 1;
2695 }
2696 argtypetext = p + 1;
2697 }
2698
2699 if (*p == '(' || *p == '<')
2700 {
2701 depth += 1;
2702 }
2703 else if (*p == ')' || *p == '>')
2704 {
2705 depth -= 1;
2706 }
2707
2708 p += 1;
2709 }
2710 }
2711
2712 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2713
2714 /* Now update the old "stub" type into a real type. */
2715 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2716 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2717 We want a method (TYPE_CODE_METHOD). */
2718 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2719 argtypes, argcount, p[-2] == '.');
2720 TYPE_STUB (mtype) = 0;
2721 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2722
2723 xfree (demangled_name);
2724 }
2725
2726 /* This is the external interface to check_stub_method, above. This
2727 function unstubs all of the signatures for TYPE's METHOD_ID method
2728 name. After calling this function TYPE_FN_FIELD_STUB will be
2729 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2730 correct.
2731
2732 This function unfortunately can not die until stabs do. */
2733
2734 void
2735 check_stub_method_group (struct type *type, int method_id)
2736 {
2737 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2738 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2739
2740 for (int j = 0; j < len; j++)
2741 {
2742 if (TYPE_FN_FIELD_STUB (f, j))
2743 check_stub_method (type, method_id, j);
2744 }
2745 }
2746
2747 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2748 const struct cplus_struct_type cplus_struct_default = { };
2749
2750 void
2751 allocate_cplus_struct_type (struct type *type)
2752 {
2753 if (HAVE_CPLUS_STRUCT (type))
2754 /* Structure was already allocated. Nothing more to do. */
2755 return;
2756
2757 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2758 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2759 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2760 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2761 set_type_vptr_fieldno (type, -1);
2762 }
2763
2764 const struct gnat_aux_type gnat_aux_default =
2765 { NULL };
2766
2767 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2768 and allocate the associated gnat-specific data. The gnat-specific
2769 data is also initialized to gnat_aux_default. */
2770
2771 void
2772 allocate_gnat_aux_type (struct type *type)
2773 {
2774 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2775 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2776 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2777 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2778 }
2779
2780 /* Helper function to initialize a newly allocated type. Set type code
2781 to CODE and initialize the type-specific fields accordingly. */
2782
2783 static void
2784 set_type_code (struct type *type, enum type_code code)
2785 {
2786 TYPE_CODE (type) = code;
2787
2788 switch (code)
2789 {
2790 case TYPE_CODE_STRUCT:
2791 case TYPE_CODE_UNION:
2792 case TYPE_CODE_NAMESPACE:
2793 INIT_CPLUS_SPECIFIC (type);
2794 break;
2795 case TYPE_CODE_FLT:
2796 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2797 break;
2798 case TYPE_CODE_FUNC:
2799 INIT_FUNC_SPECIFIC (type);
2800 break;
2801 }
2802 }
2803
2804 /* Helper function to verify floating-point format and size.
2805 BIT is the type size in bits; if BIT equals -1, the size is
2806 determined by the floatformat. Returns size to be used. */
2807
2808 static int
2809 verify_floatformat (int bit, const struct floatformat *floatformat)
2810 {
2811 gdb_assert (floatformat != NULL);
2812
2813 if (bit == -1)
2814 bit = floatformat->totalsize;
2815
2816 gdb_assert (bit >= 0);
2817 gdb_assert (bit >= floatformat->totalsize);
2818
2819 return bit;
2820 }
2821
2822 /* Return the floating-point format for a floating-point variable of
2823 type TYPE. */
2824
2825 const struct floatformat *
2826 floatformat_from_type (const struct type *type)
2827 {
2828 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2829 gdb_assert (TYPE_FLOATFORMAT (type));
2830 return TYPE_FLOATFORMAT (type);
2831 }
2832
2833 /* Helper function to initialize the standard scalar types.
2834
2835 If NAME is non-NULL, then it is used to initialize the type name.
2836 Note that NAME is not copied; it is required to have a lifetime at
2837 least as long as OBJFILE. */
2838
2839 struct type *
2840 init_type (struct objfile *objfile, enum type_code code, int bit,
2841 const char *name)
2842 {
2843 struct type *type;
2844
2845 type = alloc_type (objfile);
2846 set_type_code (type, code);
2847 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2848 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2849 TYPE_NAME (type) = name;
2850
2851 return type;
2852 }
2853
2854 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2855 to use with variables that have no debug info. NAME is the type
2856 name. */
2857
2858 static struct type *
2859 init_nodebug_var_type (struct objfile *objfile, const char *name)
2860 {
2861 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2862 }
2863
2864 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2865 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2866 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2867
2868 struct type *
2869 init_integer_type (struct objfile *objfile,
2870 int bit, int unsigned_p, const char *name)
2871 {
2872 struct type *t;
2873
2874 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2875 if (unsigned_p)
2876 TYPE_UNSIGNED (t) = 1;
2877
2878 return t;
2879 }
2880
2881 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2882 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2883 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2884
2885 struct type *
2886 init_character_type (struct objfile *objfile,
2887 int bit, int unsigned_p, const char *name)
2888 {
2889 struct type *t;
2890
2891 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2892 if (unsigned_p)
2893 TYPE_UNSIGNED (t) = 1;
2894
2895 return t;
2896 }
2897
2898 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2899 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2900 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2901
2902 struct type *
2903 init_boolean_type (struct objfile *objfile,
2904 int bit, int unsigned_p, const char *name)
2905 {
2906 struct type *t;
2907
2908 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2909 if (unsigned_p)
2910 TYPE_UNSIGNED (t) = 1;
2911
2912 return t;
2913 }
2914
2915 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2916 BIT is the type size in bits; if BIT equals -1, the size is
2917 determined by the floatformat. NAME is the type name. Set the
2918 TYPE_FLOATFORMAT from FLOATFORMATS. */
2919
2920 struct type *
2921 init_float_type (struct objfile *objfile,
2922 int bit, const char *name,
2923 const struct floatformat **floatformats)
2924 {
2925 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2926 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
2927 struct type *t;
2928
2929 bit = verify_floatformat (bit, fmt);
2930 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
2931 TYPE_FLOATFORMAT (t) = fmt;
2932
2933 return t;
2934 }
2935
2936 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
2937 BIT is the type size in bits. NAME is the type name. */
2938
2939 struct type *
2940 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
2941 {
2942 struct type *t;
2943
2944 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
2945 return t;
2946 }
2947
2948 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
2949 NAME is the type name. TARGET_TYPE is the component float type. */
2950
2951 struct type *
2952 init_complex_type (struct objfile *objfile,
2953 const char *name, struct type *target_type)
2954 {
2955 struct type *t;
2956
2957 t = init_type (objfile, TYPE_CODE_COMPLEX,
2958 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
2959 TYPE_TARGET_TYPE (t) = target_type;
2960 return t;
2961 }
2962
2963 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
2964 BIT is the pointer type size in bits. NAME is the type name.
2965 TARGET_TYPE is the pointer target type. Always sets the pointer type's
2966 TYPE_UNSIGNED flag. */
2967
2968 struct type *
2969 init_pointer_type (struct objfile *objfile,
2970 int bit, const char *name, struct type *target_type)
2971 {
2972 struct type *t;
2973
2974 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
2975 TYPE_TARGET_TYPE (t) = target_type;
2976 TYPE_UNSIGNED (t) = 1;
2977 return t;
2978 }
2979
2980 /* See gdbtypes.h. */
2981
2982 unsigned
2983 type_raw_align (struct type *type)
2984 {
2985 if (type->align_log2 != 0)
2986 return 1 << (type->align_log2 - 1);
2987 return 0;
2988 }
2989
2990 /* See gdbtypes.h. */
2991
2992 unsigned
2993 type_align (struct type *type)
2994 {
2995 unsigned raw_align = type_raw_align (type);
2996 if (raw_align != 0)
2997 return raw_align;
2998
2999 ULONGEST align = 0;
3000 switch (TYPE_CODE (type))
3001 {
3002 case TYPE_CODE_PTR:
3003 case TYPE_CODE_FUNC:
3004 case TYPE_CODE_FLAGS:
3005 case TYPE_CODE_INT:
3006 case TYPE_CODE_FLT:
3007 case TYPE_CODE_ENUM:
3008 case TYPE_CODE_REF:
3009 case TYPE_CODE_RVALUE_REF:
3010 case TYPE_CODE_CHAR:
3011 case TYPE_CODE_BOOL:
3012 case TYPE_CODE_DECFLOAT:
3013 {
3014 struct gdbarch *arch = get_type_arch (type);
3015 align = gdbarch_type_align (arch, type);
3016 }
3017 break;
3018
3019 case TYPE_CODE_ARRAY:
3020 case TYPE_CODE_COMPLEX:
3021 case TYPE_CODE_TYPEDEF:
3022 align = type_align (TYPE_TARGET_TYPE (type));
3023 break;
3024
3025 case TYPE_CODE_STRUCT:
3026 case TYPE_CODE_UNION:
3027 {
3028 if (TYPE_NFIELDS (type) == 0)
3029 {
3030 /* An empty struct has alignment 1. */
3031 align = 1;
3032 break;
3033 }
3034 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3035 {
3036 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3037 if (f_align == 0)
3038 {
3039 /* Don't pretend we know something we don't. */
3040 align = 0;
3041 break;
3042 }
3043 if (f_align > align)
3044 align = f_align;
3045 }
3046 }
3047 break;
3048
3049 case TYPE_CODE_SET:
3050 case TYPE_CODE_RANGE:
3051 case TYPE_CODE_STRING:
3052 /* Not sure what to do here, and these can't appear in C or C++
3053 anyway. */
3054 break;
3055
3056 case TYPE_CODE_METHODPTR:
3057 case TYPE_CODE_MEMBERPTR:
3058 align = type_length_units (type);
3059 break;
3060
3061 case TYPE_CODE_VOID:
3062 align = 1;
3063 break;
3064
3065 case TYPE_CODE_ERROR:
3066 case TYPE_CODE_METHOD:
3067 default:
3068 break;
3069 }
3070
3071 if ((align & (align - 1)) != 0)
3072 {
3073 /* Not a power of 2, so pass. */
3074 align = 0;
3075 }
3076
3077 return align;
3078 }
3079
3080 /* See gdbtypes.h. */
3081
3082 bool
3083 set_type_align (struct type *type, ULONGEST align)
3084 {
3085 /* Must be a power of 2. Zero is ok. */
3086 gdb_assert ((align & (align - 1)) == 0);
3087
3088 unsigned result = 0;
3089 while (align != 0)
3090 {
3091 ++result;
3092 align >>= 1;
3093 }
3094
3095 if (result >= (1 << TYPE_ALIGN_BITS))
3096 return false;
3097
3098 type->align_log2 = result;
3099 return true;
3100 }
3101
3102 \f
3103 /* Queries on types. */
3104
3105 int
3106 can_dereference (struct type *t)
3107 {
3108 /* FIXME: Should we return true for references as well as
3109 pointers? */
3110 t = check_typedef (t);
3111 return
3112 (t != NULL
3113 && TYPE_CODE (t) == TYPE_CODE_PTR
3114 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3115 }
3116
3117 int
3118 is_integral_type (struct type *t)
3119 {
3120 t = check_typedef (t);
3121 return
3122 ((t != NULL)
3123 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3124 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3125 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3126 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3127 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3128 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3129 }
3130
3131 int
3132 is_floating_type (struct type *t)
3133 {
3134 t = check_typedef (t);
3135 return
3136 ((t != NULL)
3137 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3138 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3139 }
3140
3141 /* Return true if TYPE is scalar. */
3142
3143 int
3144 is_scalar_type (struct type *type)
3145 {
3146 type = check_typedef (type);
3147
3148 switch (TYPE_CODE (type))
3149 {
3150 case TYPE_CODE_ARRAY:
3151 case TYPE_CODE_STRUCT:
3152 case TYPE_CODE_UNION:
3153 case TYPE_CODE_SET:
3154 case TYPE_CODE_STRING:
3155 return 0;
3156 default:
3157 return 1;
3158 }
3159 }
3160
3161 /* Return true if T is scalar, or a composite type which in practice has
3162 the memory layout of a scalar type. E.g., an array or struct with only
3163 one scalar element inside it, or a union with only scalar elements. */
3164
3165 int
3166 is_scalar_type_recursive (struct type *t)
3167 {
3168 t = check_typedef (t);
3169
3170 if (is_scalar_type (t))
3171 return 1;
3172 /* Are we dealing with an array or string of known dimensions? */
3173 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3174 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3175 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3176 {
3177 LONGEST low_bound, high_bound;
3178 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3179
3180 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3181
3182 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3183 }
3184 /* Are we dealing with a struct with one element? */
3185 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3186 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3187 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3188 {
3189 int i, n = TYPE_NFIELDS (t);
3190
3191 /* If all elements of the union are scalar, then the union is scalar. */
3192 for (i = 0; i < n; i++)
3193 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3194 return 0;
3195
3196 return 1;
3197 }
3198
3199 return 0;
3200 }
3201
3202 /* Return true is T is a class or a union. False otherwise. */
3203
3204 int
3205 class_or_union_p (const struct type *t)
3206 {
3207 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3208 || TYPE_CODE (t) == TYPE_CODE_UNION);
3209 }
3210
3211 /* A helper function which returns true if types A and B represent the
3212 "same" class type. This is true if the types have the same main
3213 type, or the same name. */
3214
3215 int
3216 class_types_same_p (const struct type *a, const struct type *b)
3217 {
3218 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3219 || (TYPE_NAME (a) && TYPE_NAME (b)
3220 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3221 }
3222
3223 /* If BASE is an ancestor of DCLASS return the distance between them.
3224 otherwise return -1;
3225 eg:
3226
3227 class A {};
3228 class B: public A {};
3229 class C: public B {};
3230 class D: C {};
3231
3232 distance_to_ancestor (A, A, 0) = 0
3233 distance_to_ancestor (A, B, 0) = 1
3234 distance_to_ancestor (A, C, 0) = 2
3235 distance_to_ancestor (A, D, 0) = 3
3236
3237 If PUBLIC is 1 then only public ancestors are considered,
3238 and the function returns the distance only if BASE is a public ancestor
3239 of DCLASS.
3240 Eg:
3241
3242 distance_to_ancestor (A, D, 1) = -1. */
3243
3244 static int
3245 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3246 {
3247 int i;
3248 int d;
3249
3250 base = check_typedef (base);
3251 dclass = check_typedef (dclass);
3252
3253 if (class_types_same_p (base, dclass))
3254 return 0;
3255
3256 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3257 {
3258 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3259 continue;
3260
3261 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3262 if (d >= 0)
3263 return 1 + d;
3264 }
3265
3266 return -1;
3267 }
3268
3269 /* Check whether BASE is an ancestor or base class or DCLASS
3270 Return 1 if so, and 0 if not.
3271 Note: If BASE and DCLASS are of the same type, this function
3272 will return 1. So for some class A, is_ancestor (A, A) will
3273 return 1. */
3274
3275 int
3276 is_ancestor (struct type *base, struct type *dclass)
3277 {
3278 return distance_to_ancestor (base, dclass, 0) >= 0;
3279 }
3280
3281 /* Like is_ancestor, but only returns true when BASE is a public
3282 ancestor of DCLASS. */
3283
3284 int
3285 is_public_ancestor (struct type *base, struct type *dclass)
3286 {
3287 return distance_to_ancestor (base, dclass, 1) >= 0;
3288 }
3289
3290 /* A helper function for is_unique_ancestor. */
3291
3292 static int
3293 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3294 int *offset,
3295 const gdb_byte *valaddr, int embedded_offset,
3296 CORE_ADDR address, struct value *val)
3297 {
3298 int i, count = 0;
3299
3300 base = check_typedef (base);
3301 dclass = check_typedef (dclass);
3302
3303 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3304 {
3305 struct type *iter;
3306 int this_offset;
3307
3308 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3309
3310 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3311 address, val);
3312
3313 if (class_types_same_p (base, iter))
3314 {
3315 /* If this is the first subclass, set *OFFSET and set count
3316 to 1. Otherwise, if this is at the same offset as
3317 previous instances, do nothing. Otherwise, increment
3318 count. */
3319 if (*offset == -1)
3320 {
3321 *offset = this_offset;
3322 count = 1;
3323 }
3324 else if (this_offset == *offset)
3325 {
3326 /* Nothing. */
3327 }
3328 else
3329 ++count;
3330 }
3331 else
3332 count += is_unique_ancestor_worker (base, iter, offset,
3333 valaddr,
3334 embedded_offset + this_offset,
3335 address, val);
3336 }
3337
3338 return count;
3339 }
3340
3341 /* Like is_ancestor, but only returns true if BASE is a unique base
3342 class of the type of VAL. */
3343
3344 int
3345 is_unique_ancestor (struct type *base, struct value *val)
3346 {
3347 int offset = -1;
3348
3349 return is_unique_ancestor_worker (base, value_type (val), &offset,
3350 value_contents_for_printing (val),
3351 value_embedded_offset (val),
3352 value_address (val), val) == 1;
3353 }
3354
3355 \f
3356 /* Overload resolution. */
3357
3358 /* Return the sum of the rank of A with the rank of B. */
3359
3360 struct rank
3361 sum_ranks (struct rank a, struct rank b)
3362 {
3363 struct rank c;
3364 c.rank = a.rank + b.rank;
3365 c.subrank = a.subrank + b.subrank;
3366 return c;
3367 }
3368
3369 /* Compare rank A and B and return:
3370 0 if a = b
3371 1 if a is better than b
3372 -1 if b is better than a. */
3373
3374 int
3375 compare_ranks (struct rank a, struct rank b)
3376 {
3377 if (a.rank == b.rank)
3378 {
3379 if (a.subrank == b.subrank)
3380 return 0;
3381 if (a.subrank < b.subrank)
3382 return 1;
3383 if (a.subrank > b.subrank)
3384 return -1;
3385 }
3386
3387 if (a.rank < b.rank)
3388 return 1;
3389
3390 /* a.rank > b.rank */
3391 return -1;
3392 }
3393
3394 /* Functions for overload resolution begin here. */
3395
3396 /* Compare two badness vectors A and B and return the result.
3397 0 => A and B are identical
3398 1 => A and B are incomparable
3399 2 => A is better than B
3400 3 => A is worse than B */
3401
3402 int
3403 compare_badness (const badness_vector &a, const badness_vector &b)
3404 {
3405 int i;
3406 int tmp;
3407 short found_pos = 0; /* any positives in c? */
3408 short found_neg = 0; /* any negatives in c? */
3409
3410 /* differing sizes => incomparable */
3411 if (a.size () != b.size ())
3412 return 1;
3413
3414 /* Subtract b from a */
3415 for (i = 0; i < a.size (); i++)
3416 {
3417 tmp = compare_ranks (b[i], a[i]);
3418 if (tmp > 0)
3419 found_pos = 1;
3420 else if (tmp < 0)
3421 found_neg = 1;
3422 }
3423
3424 if (found_pos)
3425 {
3426 if (found_neg)
3427 return 1; /* incomparable */
3428 else
3429 return 3; /* A > B */
3430 }
3431 else
3432 /* no positives */
3433 {
3434 if (found_neg)
3435 return 2; /* A < B */
3436 else
3437 return 0; /* A == B */
3438 }
3439 }
3440
3441 /* Rank a function by comparing its parameter types (PARMS), to the
3442 types of an argument list (ARGS). Return the badness vector. This
3443 has ARGS.size() + 1 entries. */
3444
3445 badness_vector
3446 rank_function (gdb::array_view<type *> parms,
3447 gdb::array_view<value *> args)
3448 {
3449 /* add 1 for the length-match rank. */
3450 badness_vector bv;
3451 bv.reserve (1 + args.size ());
3452
3453 /* First compare the lengths of the supplied lists.
3454 If there is a mismatch, set it to a high value. */
3455
3456 /* pai/1997-06-03 FIXME: when we have debug info about default
3457 arguments and ellipsis parameter lists, we should consider those
3458 and rank the length-match more finely. */
3459
3460 bv.push_back ((args.size () != parms.size ())
3461 ? LENGTH_MISMATCH_BADNESS
3462 : EXACT_MATCH_BADNESS);
3463
3464 /* Now rank all the parameters of the candidate function. */
3465 size_t min_len = std::min (parms.size (), args.size ());
3466
3467 for (size_t i = 0; i < min_len; i++)
3468 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3469 args[i]));
3470
3471 /* If more arguments than parameters, add dummy entries. */
3472 for (size_t i = min_len; i < args.size (); i++)
3473 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3474
3475 return bv;
3476 }
3477
3478 /* Compare the names of two integer types, assuming that any sign
3479 qualifiers have been checked already. We do it this way because
3480 there may be an "int" in the name of one of the types. */
3481
3482 static int
3483 integer_types_same_name_p (const char *first, const char *second)
3484 {
3485 int first_p, second_p;
3486
3487 /* If both are shorts, return 1; if neither is a short, keep
3488 checking. */
3489 first_p = (strstr (first, "short") != NULL);
3490 second_p = (strstr (second, "short") != NULL);
3491 if (first_p && second_p)
3492 return 1;
3493 if (first_p || second_p)
3494 return 0;
3495
3496 /* Likewise for long. */
3497 first_p = (strstr (first, "long") != NULL);
3498 second_p = (strstr (second, "long") != NULL);
3499 if (first_p && second_p)
3500 return 1;
3501 if (first_p || second_p)
3502 return 0;
3503
3504 /* Likewise for char. */
3505 first_p = (strstr (first, "char") != NULL);
3506 second_p = (strstr (second, "char") != NULL);
3507 if (first_p && second_p)
3508 return 1;
3509 if (first_p || second_p)
3510 return 0;
3511
3512 /* They must both be ints. */
3513 return 1;
3514 }
3515
3516 /* Compares type A to type B. Returns true if they represent the same
3517 type, false otherwise. */
3518
3519 bool
3520 types_equal (struct type *a, struct type *b)
3521 {
3522 /* Identical type pointers. */
3523 /* However, this still doesn't catch all cases of same type for b
3524 and a. The reason is that builtin types are different from
3525 the same ones constructed from the object. */
3526 if (a == b)
3527 return true;
3528
3529 /* Resolve typedefs */
3530 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3531 a = check_typedef (a);
3532 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3533 b = check_typedef (b);
3534
3535 /* If after resolving typedefs a and b are not of the same type
3536 code then they are not equal. */
3537 if (TYPE_CODE (a) != TYPE_CODE (b))
3538 return false;
3539
3540 /* If a and b are both pointers types or both reference types then
3541 they are equal of the same type iff the objects they refer to are
3542 of the same type. */
3543 if (TYPE_CODE (a) == TYPE_CODE_PTR
3544 || TYPE_CODE (a) == TYPE_CODE_REF)
3545 return types_equal (TYPE_TARGET_TYPE (a),
3546 TYPE_TARGET_TYPE (b));
3547
3548 /* Well, damnit, if the names are exactly the same, I'll say they
3549 are exactly the same. This happens when we generate method
3550 stubs. The types won't point to the same address, but they
3551 really are the same. */
3552
3553 if (TYPE_NAME (a) && TYPE_NAME (b)
3554 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3555 return true;
3556
3557 /* Check if identical after resolving typedefs. */
3558 if (a == b)
3559 return true;
3560
3561 /* Two function types are equal if their argument and return types
3562 are equal. */
3563 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3564 {
3565 int i;
3566
3567 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3568 return false;
3569
3570 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3571 return false;
3572
3573 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3574 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3575 return false;
3576
3577 return true;
3578 }
3579
3580 return false;
3581 }
3582 \f
3583 /* Deep comparison of types. */
3584
3585 /* An entry in the type-equality bcache. */
3586
3587 struct type_equality_entry
3588 {
3589 type_equality_entry (struct type *t1, struct type *t2)
3590 : type1 (t1),
3591 type2 (t2)
3592 {
3593 }
3594
3595 struct type *type1, *type2;
3596 };
3597
3598 /* A helper function to compare two strings. Returns true if they are
3599 the same, false otherwise. Handles NULLs properly. */
3600
3601 static bool
3602 compare_maybe_null_strings (const char *s, const char *t)
3603 {
3604 if (s == NULL || t == NULL)
3605 return s == t;
3606 return strcmp (s, t) == 0;
3607 }
3608
3609 /* A helper function for check_types_worklist that checks two types for
3610 "deep" equality. Returns true if the types are considered the
3611 same, false otherwise. */
3612
3613 static bool
3614 check_types_equal (struct type *type1, struct type *type2,
3615 std::vector<type_equality_entry> *worklist)
3616 {
3617 type1 = check_typedef (type1);
3618 type2 = check_typedef (type2);
3619
3620 if (type1 == type2)
3621 return true;
3622
3623 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3624 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3625 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3626 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3627 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3628 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3629 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3630 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3631 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3632 return false;
3633
3634 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3635 return false;
3636 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3637 return false;
3638
3639 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3640 {
3641 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3642 return false;
3643 }
3644 else
3645 {
3646 int i;
3647
3648 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3649 {
3650 const struct field *field1 = &TYPE_FIELD (type1, i);
3651 const struct field *field2 = &TYPE_FIELD (type2, i);
3652
3653 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3654 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3655 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3656 return false;
3657 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3658 FIELD_NAME (*field2)))
3659 return false;
3660 switch (FIELD_LOC_KIND (*field1))
3661 {
3662 case FIELD_LOC_KIND_BITPOS:
3663 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3664 return false;
3665 break;
3666 case FIELD_LOC_KIND_ENUMVAL:
3667 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3668 return false;
3669 break;
3670 case FIELD_LOC_KIND_PHYSADDR:
3671 if (FIELD_STATIC_PHYSADDR (*field1)
3672 != FIELD_STATIC_PHYSADDR (*field2))
3673 return false;
3674 break;
3675 case FIELD_LOC_KIND_PHYSNAME:
3676 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3677 FIELD_STATIC_PHYSNAME (*field2)))
3678 return false;
3679 break;
3680 case FIELD_LOC_KIND_DWARF_BLOCK:
3681 {
3682 struct dwarf2_locexpr_baton *block1, *block2;
3683
3684 block1 = FIELD_DWARF_BLOCK (*field1);
3685 block2 = FIELD_DWARF_BLOCK (*field2);
3686 if (block1->per_cu != block2->per_cu
3687 || block1->size != block2->size
3688 || memcmp (block1->data, block2->data, block1->size) != 0)
3689 return false;
3690 }
3691 break;
3692 default:
3693 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3694 "%d by check_types_equal"),
3695 FIELD_LOC_KIND (*field1));
3696 }
3697
3698 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3699 }
3700 }
3701
3702 if (TYPE_TARGET_TYPE (type1) != NULL)
3703 {
3704 if (TYPE_TARGET_TYPE (type2) == NULL)
3705 return false;
3706
3707 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3708 TYPE_TARGET_TYPE (type2));
3709 }
3710 else if (TYPE_TARGET_TYPE (type2) != NULL)
3711 return false;
3712
3713 return true;
3714 }
3715
3716 /* Check types on a worklist for equality. Returns false if any pair
3717 is not equal, true if they are all considered equal. */
3718
3719 static bool
3720 check_types_worklist (std::vector<type_equality_entry> *worklist,
3721 struct bcache *cache)
3722 {
3723 while (!worklist->empty ())
3724 {
3725 int added;
3726
3727 struct type_equality_entry entry = std::move (worklist->back ());
3728 worklist->pop_back ();
3729
3730 /* If the type pair has already been visited, we know it is
3731 ok. */
3732 bcache_full (&entry, sizeof (entry), cache, &added);
3733 if (!added)
3734 continue;
3735
3736 if (!check_types_equal (entry.type1, entry.type2, worklist))
3737 return false;
3738 }
3739
3740 return true;
3741 }
3742
3743 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3744 "deep comparison". Otherwise return false. */
3745
3746 bool
3747 types_deeply_equal (struct type *type1, struct type *type2)
3748 {
3749 struct gdb_exception except = exception_none;
3750 bool result = false;
3751 struct bcache *cache;
3752 std::vector<type_equality_entry> worklist;
3753
3754 gdb_assert (type1 != NULL && type2 != NULL);
3755
3756 /* Early exit for the simple case. */
3757 if (type1 == type2)
3758 return true;
3759
3760 cache = bcache_xmalloc (NULL, NULL);
3761
3762 worklist.emplace_back (type1, type2);
3763
3764 /* check_types_worklist calls several nested helper functions, some
3765 of which can raise a GDB exception, so we just check and rethrow
3766 here. If there is a GDB exception, a comparison is not capable
3767 (or trusted), so exit. */
3768 TRY
3769 {
3770 result = check_types_worklist (&worklist, cache);
3771 }
3772 CATCH (ex, RETURN_MASK_ALL)
3773 {
3774 except = ex;
3775 }
3776 END_CATCH
3777
3778 bcache_xfree (cache);
3779
3780 /* Rethrow if there was a problem. */
3781 if (except.reason < 0)
3782 throw_exception (except);
3783
3784 return result;
3785 }
3786
3787 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3788 Otherwise return one. */
3789
3790 int
3791 type_not_allocated (const struct type *type)
3792 {
3793 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3794
3795 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3796 && !TYPE_DYN_PROP_ADDR (prop));
3797 }
3798
3799 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3800 Otherwise return one. */
3801
3802 int
3803 type_not_associated (const struct type *type)
3804 {
3805 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3806
3807 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3808 && !TYPE_DYN_PROP_ADDR (prop));
3809 }
3810 \f
3811 /* Compare one type (PARM) for compatibility with another (ARG).
3812 * PARM is intended to be the parameter type of a function; and
3813 * ARG is the supplied argument's type. This function tests if
3814 * the latter can be converted to the former.
3815 * VALUE is the argument's value or NULL if none (or called recursively)
3816 *
3817 * Return 0 if they are identical types;
3818 * Otherwise, return an integer which corresponds to how compatible
3819 * PARM is to ARG. The higher the return value, the worse the match.
3820 * Generally the "bad" conversions are all uniformly assigned a 100. */
3821
3822 struct rank
3823 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3824 {
3825 struct rank rank = {0,0};
3826
3827 /* Resolve typedefs */
3828 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3829 parm = check_typedef (parm);
3830 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3831 arg = check_typedef (arg);
3832
3833 if (TYPE_IS_REFERENCE (parm) && value != NULL)
3834 {
3835 if (VALUE_LVAL (value) == not_lval)
3836 {
3837 /* Rvalues should preferably bind to rvalue references or const
3838 lvalue references. */
3839 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3840 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3841 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
3842 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
3843 else
3844 return INCOMPATIBLE_TYPE_BADNESS;
3845 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3846 }
3847 else
3848 {
3849 /* Lvalues should prefer lvalue overloads. */
3850 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
3851 {
3852 rank.subrank = REFERENCE_CONVERSION_RVALUE;
3853 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
3854 }
3855 }
3856 }
3857
3858 if (types_equal (parm, arg))
3859 {
3860 struct type *t1 = parm;
3861 struct type *t2 = arg;
3862
3863 /* For pointers and references, compare target type. */
3864 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
3865 {
3866 t1 = TYPE_TARGET_TYPE (parm);
3867 t2 = TYPE_TARGET_TYPE (arg);
3868 }
3869
3870 /* Make sure they are CV equal, too. */
3871 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3872 rank.subrank |= CV_CONVERSION_CONST;
3873 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3874 rank.subrank |= CV_CONVERSION_VOLATILE;
3875 if (rank.subrank != 0)
3876 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3877 return EXACT_MATCH_BADNESS;
3878 }
3879
3880 /* See through references, since we can almost make non-references
3881 references. */
3882
3883 if (TYPE_IS_REFERENCE (arg))
3884 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3885 REFERENCE_CONVERSION_BADNESS));
3886 if (TYPE_IS_REFERENCE (parm))
3887 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3888 REFERENCE_CONVERSION_BADNESS));
3889 if (overload_debug)
3890 /* Debugging only. */
3891 fprintf_filtered (gdb_stderr,
3892 "------ Arg is %s [%d], parm is %s [%d]\n",
3893 TYPE_NAME (arg), TYPE_CODE (arg),
3894 TYPE_NAME (parm), TYPE_CODE (parm));
3895
3896 /* x -> y means arg of type x being supplied for parameter of type y. */
3897
3898 switch (TYPE_CODE (parm))
3899 {
3900 case TYPE_CODE_PTR:
3901 switch (TYPE_CODE (arg))
3902 {
3903 case TYPE_CODE_PTR:
3904
3905 /* Allowed pointer conversions are:
3906 (a) pointer to void-pointer conversion. */
3907 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3908 return VOID_PTR_CONVERSION_BADNESS;
3909
3910 /* (b) pointer to ancestor-pointer conversion. */
3911 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3912 TYPE_TARGET_TYPE (arg),
3913 0);
3914 if (rank.subrank >= 0)
3915 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3916
3917 return INCOMPATIBLE_TYPE_BADNESS;
3918 case TYPE_CODE_ARRAY:
3919 {
3920 struct type *t1 = TYPE_TARGET_TYPE (parm);
3921 struct type *t2 = TYPE_TARGET_TYPE (arg);
3922
3923 if (types_equal (t1, t2))
3924 {
3925 /* Make sure they are CV equal. */
3926 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3927 rank.subrank |= CV_CONVERSION_CONST;
3928 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3929 rank.subrank |= CV_CONVERSION_VOLATILE;
3930 if (rank.subrank != 0)
3931 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3932 return EXACT_MATCH_BADNESS;
3933 }
3934 return INCOMPATIBLE_TYPE_BADNESS;
3935 }
3936 case TYPE_CODE_FUNC:
3937 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3938 case TYPE_CODE_INT:
3939 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3940 {
3941 if (value_as_long (value) == 0)
3942 {
3943 /* Null pointer conversion: allow it to be cast to a pointer.
3944 [4.10.1 of C++ standard draft n3290] */
3945 return NULL_POINTER_CONVERSION_BADNESS;
3946 }
3947 else
3948 {
3949 /* If type checking is disabled, allow the conversion. */
3950 if (!strict_type_checking)
3951 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3952 }
3953 }
3954 /* fall through */
3955 case TYPE_CODE_ENUM:
3956 case TYPE_CODE_FLAGS:
3957 case TYPE_CODE_CHAR:
3958 case TYPE_CODE_RANGE:
3959 case TYPE_CODE_BOOL:
3960 default:
3961 return INCOMPATIBLE_TYPE_BADNESS;
3962 }
3963 case TYPE_CODE_ARRAY:
3964 switch (TYPE_CODE (arg))
3965 {
3966 case TYPE_CODE_PTR:
3967 case TYPE_CODE_ARRAY:
3968 return rank_one_type (TYPE_TARGET_TYPE (parm),
3969 TYPE_TARGET_TYPE (arg), NULL);
3970 default:
3971 return INCOMPATIBLE_TYPE_BADNESS;
3972 }
3973 case TYPE_CODE_FUNC:
3974 switch (TYPE_CODE (arg))
3975 {
3976 case TYPE_CODE_PTR: /* funcptr -> func */
3977 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3978 default:
3979 return INCOMPATIBLE_TYPE_BADNESS;
3980 }
3981 case TYPE_CODE_INT:
3982 switch (TYPE_CODE (arg))
3983 {
3984 case TYPE_CODE_INT:
3985 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3986 {
3987 /* Deal with signed, unsigned, and plain chars and
3988 signed and unsigned ints. */
3989 if (TYPE_NOSIGN (parm))
3990 {
3991 /* This case only for character types. */
3992 if (TYPE_NOSIGN (arg))
3993 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3994 else /* signed/unsigned char -> plain char */
3995 return INTEGER_CONVERSION_BADNESS;
3996 }
3997 else if (TYPE_UNSIGNED (parm))
3998 {
3999 if (TYPE_UNSIGNED (arg))
4000 {
4001 /* unsigned int -> unsigned int, or
4002 unsigned long -> unsigned long */
4003 if (integer_types_same_name_p (TYPE_NAME (parm),
4004 TYPE_NAME (arg)))
4005 return EXACT_MATCH_BADNESS;
4006 else if (integer_types_same_name_p (TYPE_NAME (arg),
4007 "int")
4008 && integer_types_same_name_p (TYPE_NAME (parm),
4009 "long"))
4010 /* unsigned int -> unsigned long */
4011 return INTEGER_PROMOTION_BADNESS;
4012 else
4013 /* unsigned long -> unsigned int */
4014 return INTEGER_CONVERSION_BADNESS;
4015 }
4016 else
4017 {
4018 if (integer_types_same_name_p (TYPE_NAME (arg),
4019 "long")
4020 && integer_types_same_name_p (TYPE_NAME (parm),
4021 "int"))
4022 /* signed long -> unsigned int */
4023 return INTEGER_CONVERSION_BADNESS;
4024 else
4025 /* signed int/long -> unsigned int/long */
4026 return INTEGER_CONVERSION_BADNESS;
4027 }
4028 }
4029 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4030 {
4031 if (integer_types_same_name_p (TYPE_NAME (parm),
4032 TYPE_NAME (arg)))
4033 return EXACT_MATCH_BADNESS;
4034 else if (integer_types_same_name_p (TYPE_NAME (arg),
4035 "int")
4036 && integer_types_same_name_p (TYPE_NAME (parm),
4037 "long"))
4038 return INTEGER_PROMOTION_BADNESS;
4039 else
4040 return INTEGER_CONVERSION_BADNESS;
4041 }
4042 else
4043 return INTEGER_CONVERSION_BADNESS;
4044 }
4045 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4046 return INTEGER_PROMOTION_BADNESS;
4047 else
4048 return INTEGER_CONVERSION_BADNESS;
4049 case TYPE_CODE_ENUM:
4050 case TYPE_CODE_FLAGS:
4051 case TYPE_CODE_CHAR:
4052 case TYPE_CODE_RANGE:
4053 case TYPE_CODE_BOOL:
4054 if (TYPE_DECLARED_CLASS (arg))
4055 return INCOMPATIBLE_TYPE_BADNESS;
4056 return INTEGER_PROMOTION_BADNESS;
4057 case TYPE_CODE_FLT:
4058 return INT_FLOAT_CONVERSION_BADNESS;
4059 case TYPE_CODE_PTR:
4060 return NS_POINTER_CONVERSION_BADNESS;
4061 default:
4062 return INCOMPATIBLE_TYPE_BADNESS;
4063 }
4064 break;
4065 case TYPE_CODE_ENUM:
4066 switch (TYPE_CODE (arg))
4067 {
4068 case TYPE_CODE_INT:
4069 case TYPE_CODE_CHAR:
4070 case TYPE_CODE_RANGE:
4071 case TYPE_CODE_BOOL:
4072 case TYPE_CODE_ENUM:
4073 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4074 return INCOMPATIBLE_TYPE_BADNESS;
4075 return INTEGER_CONVERSION_BADNESS;
4076 case TYPE_CODE_FLT:
4077 return INT_FLOAT_CONVERSION_BADNESS;
4078 default:
4079 return INCOMPATIBLE_TYPE_BADNESS;
4080 }
4081 break;
4082 case TYPE_CODE_CHAR:
4083 switch (TYPE_CODE (arg))
4084 {
4085 case TYPE_CODE_RANGE:
4086 case TYPE_CODE_BOOL:
4087 case TYPE_CODE_ENUM:
4088 if (TYPE_DECLARED_CLASS (arg))
4089 return INCOMPATIBLE_TYPE_BADNESS;
4090 return INTEGER_CONVERSION_BADNESS;
4091 case TYPE_CODE_FLT:
4092 return INT_FLOAT_CONVERSION_BADNESS;
4093 case TYPE_CODE_INT:
4094 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4095 return INTEGER_CONVERSION_BADNESS;
4096 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4097 return INTEGER_PROMOTION_BADNESS;
4098 /* fall through */
4099 case TYPE_CODE_CHAR:
4100 /* Deal with signed, unsigned, and plain chars for C++ and
4101 with int cases falling through from previous case. */
4102 if (TYPE_NOSIGN (parm))
4103 {
4104 if (TYPE_NOSIGN (arg))
4105 return EXACT_MATCH_BADNESS;
4106 else
4107 return INTEGER_CONVERSION_BADNESS;
4108 }
4109 else if (TYPE_UNSIGNED (parm))
4110 {
4111 if (TYPE_UNSIGNED (arg))
4112 return EXACT_MATCH_BADNESS;
4113 else
4114 return INTEGER_PROMOTION_BADNESS;
4115 }
4116 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4117 return EXACT_MATCH_BADNESS;
4118 else
4119 return INTEGER_CONVERSION_BADNESS;
4120 default:
4121 return INCOMPATIBLE_TYPE_BADNESS;
4122 }
4123 break;
4124 case TYPE_CODE_RANGE:
4125 switch (TYPE_CODE (arg))
4126 {
4127 case TYPE_CODE_INT:
4128 case TYPE_CODE_CHAR:
4129 case TYPE_CODE_RANGE:
4130 case TYPE_CODE_BOOL:
4131 case TYPE_CODE_ENUM:
4132 return INTEGER_CONVERSION_BADNESS;
4133 case TYPE_CODE_FLT:
4134 return INT_FLOAT_CONVERSION_BADNESS;
4135 default:
4136 return INCOMPATIBLE_TYPE_BADNESS;
4137 }
4138 break;
4139 case TYPE_CODE_BOOL:
4140 switch (TYPE_CODE (arg))
4141 {
4142 /* n3290 draft, section 4.12.1 (conv.bool):
4143
4144 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4145 pointer to member type can be converted to a prvalue of type
4146 bool. A zero value, null pointer value, or null member pointer
4147 value is converted to false; any other value is converted to
4148 true. A prvalue of type std::nullptr_t can be converted to a
4149 prvalue of type bool; the resulting value is false." */
4150 case TYPE_CODE_INT:
4151 case TYPE_CODE_CHAR:
4152 case TYPE_CODE_ENUM:
4153 case TYPE_CODE_FLT:
4154 case TYPE_CODE_MEMBERPTR:
4155 case TYPE_CODE_PTR:
4156 return BOOL_CONVERSION_BADNESS;
4157 case TYPE_CODE_RANGE:
4158 return INCOMPATIBLE_TYPE_BADNESS;
4159 case TYPE_CODE_BOOL:
4160 return EXACT_MATCH_BADNESS;
4161 default:
4162 return INCOMPATIBLE_TYPE_BADNESS;
4163 }
4164 break;
4165 case TYPE_CODE_FLT:
4166 switch (TYPE_CODE (arg))
4167 {
4168 case TYPE_CODE_FLT:
4169 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4170 return FLOAT_PROMOTION_BADNESS;
4171 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4172 return EXACT_MATCH_BADNESS;
4173 else
4174 return FLOAT_CONVERSION_BADNESS;
4175 case TYPE_CODE_INT:
4176 case TYPE_CODE_BOOL:
4177 case TYPE_CODE_ENUM:
4178 case TYPE_CODE_RANGE:
4179 case TYPE_CODE_CHAR:
4180 return INT_FLOAT_CONVERSION_BADNESS;
4181 default:
4182 return INCOMPATIBLE_TYPE_BADNESS;
4183 }
4184 break;
4185 case TYPE_CODE_COMPLEX:
4186 switch (TYPE_CODE (arg))
4187 { /* Strictly not needed for C++, but... */
4188 case TYPE_CODE_FLT:
4189 return FLOAT_PROMOTION_BADNESS;
4190 case TYPE_CODE_COMPLEX:
4191 return EXACT_MATCH_BADNESS;
4192 default:
4193 return INCOMPATIBLE_TYPE_BADNESS;
4194 }
4195 break;
4196 case TYPE_CODE_STRUCT:
4197 switch (TYPE_CODE (arg))
4198 {
4199 case TYPE_CODE_STRUCT:
4200 /* Check for derivation */
4201 rank.subrank = distance_to_ancestor (parm, arg, 0);
4202 if (rank.subrank >= 0)
4203 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4204 /* fall through */
4205 default:
4206 return INCOMPATIBLE_TYPE_BADNESS;
4207 }
4208 break;
4209 case TYPE_CODE_UNION:
4210 switch (TYPE_CODE (arg))
4211 {
4212 case TYPE_CODE_UNION:
4213 default:
4214 return INCOMPATIBLE_TYPE_BADNESS;
4215 }
4216 break;
4217 case TYPE_CODE_MEMBERPTR:
4218 switch (TYPE_CODE (arg))
4219 {
4220 default:
4221 return INCOMPATIBLE_TYPE_BADNESS;
4222 }
4223 break;
4224 case TYPE_CODE_METHOD:
4225 switch (TYPE_CODE (arg))
4226 {
4227
4228 default:
4229 return INCOMPATIBLE_TYPE_BADNESS;
4230 }
4231 break;
4232 case TYPE_CODE_REF:
4233 switch (TYPE_CODE (arg))
4234 {
4235
4236 default:
4237 return INCOMPATIBLE_TYPE_BADNESS;
4238 }
4239
4240 break;
4241 case TYPE_CODE_SET:
4242 switch (TYPE_CODE (arg))
4243 {
4244 /* Not in C++ */
4245 case TYPE_CODE_SET:
4246 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4247 TYPE_FIELD_TYPE (arg, 0), NULL);
4248 default:
4249 return INCOMPATIBLE_TYPE_BADNESS;
4250 }
4251 break;
4252 case TYPE_CODE_VOID:
4253 default:
4254 return INCOMPATIBLE_TYPE_BADNESS;
4255 } /* switch (TYPE_CODE (arg)) */
4256 }
4257
4258 /* End of functions for overload resolution. */
4259 \f
4260 /* Routines to pretty-print types. */
4261
4262 static void
4263 print_bit_vector (B_TYPE *bits, int nbits)
4264 {
4265 int bitno;
4266
4267 for (bitno = 0; bitno < nbits; bitno++)
4268 {
4269 if ((bitno % 8) == 0)
4270 {
4271 puts_filtered (" ");
4272 }
4273 if (B_TST (bits, bitno))
4274 printf_filtered (("1"));
4275 else
4276 printf_filtered (("0"));
4277 }
4278 }
4279
4280 /* Note the first arg should be the "this" pointer, we may not want to
4281 include it since we may get into a infinitely recursive
4282 situation. */
4283
4284 static void
4285 print_args (struct field *args, int nargs, int spaces)
4286 {
4287 if (args != NULL)
4288 {
4289 int i;
4290
4291 for (i = 0; i < nargs; i++)
4292 {
4293 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4294 args[i].name != NULL ? args[i].name : "<NULL>");
4295 recursive_dump_type (args[i].type, spaces + 2);
4296 }
4297 }
4298 }
4299
4300 int
4301 field_is_static (struct field *f)
4302 {
4303 /* "static" fields are the fields whose location is not relative
4304 to the address of the enclosing struct. It would be nice to
4305 have a dedicated flag that would be set for static fields when
4306 the type is being created. But in practice, checking the field
4307 loc_kind should give us an accurate answer. */
4308 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4309 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4310 }
4311
4312 static void
4313 dump_fn_fieldlists (struct type *type, int spaces)
4314 {
4315 int method_idx;
4316 int overload_idx;
4317 struct fn_field *f;
4318
4319 printfi_filtered (spaces, "fn_fieldlists ");
4320 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4321 printf_filtered ("\n");
4322 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4323 {
4324 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4325 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4326 method_idx,
4327 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4328 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4329 gdb_stdout);
4330 printf_filtered (_(") length %d\n"),
4331 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4332 for (overload_idx = 0;
4333 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4334 overload_idx++)
4335 {
4336 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4337 overload_idx,
4338 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4339 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4340 gdb_stdout);
4341 printf_filtered (")\n");
4342 printfi_filtered (spaces + 8, "type ");
4343 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4344 gdb_stdout);
4345 printf_filtered ("\n");
4346
4347 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4348 spaces + 8 + 2);
4349
4350 printfi_filtered (spaces + 8, "args ");
4351 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4352 gdb_stdout);
4353 printf_filtered ("\n");
4354 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4355 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4356 spaces + 8 + 2);
4357 printfi_filtered (spaces + 8, "fcontext ");
4358 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4359 gdb_stdout);
4360 printf_filtered ("\n");
4361
4362 printfi_filtered (spaces + 8, "is_const %d\n",
4363 TYPE_FN_FIELD_CONST (f, overload_idx));
4364 printfi_filtered (spaces + 8, "is_volatile %d\n",
4365 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4366 printfi_filtered (spaces + 8, "is_private %d\n",
4367 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4368 printfi_filtered (spaces + 8, "is_protected %d\n",
4369 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4370 printfi_filtered (spaces + 8, "is_stub %d\n",
4371 TYPE_FN_FIELD_STUB (f, overload_idx));
4372 printfi_filtered (spaces + 8, "voffset %u\n",
4373 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4374 }
4375 }
4376 }
4377
4378 static void
4379 print_cplus_stuff (struct type *type, int spaces)
4380 {
4381 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4382 printfi_filtered (spaces, "vptr_basetype ");
4383 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4384 puts_filtered ("\n");
4385 if (TYPE_VPTR_BASETYPE (type) != NULL)
4386 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4387
4388 printfi_filtered (spaces, "n_baseclasses %d\n",
4389 TYPE_N_BASECLASSES (type));
4390 printfi_filtered (spaces, "nfn_fields %d\n",
4391 TYPE_NFN_FIELDS (type));
4392 if (TYPE_N_BASECLASSES (type) > 0)
4393 {
4394 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4395 TYPE_N_BASECLASSES (type));
4396 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4397 gdb_stdout);
4398 printf_filtered (")");
4399
4400 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4401 TYPE_N_BASECLASSES (type));
4402 puts_filtered ("\n");
4403 }
4404 if (TYPE_NFIELDS (type) > 0)
4405 {
4406 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4407 {
4408 printfi_filtered (spaces,
4409 "private_field_bits (%d bits at *",
4410 TYPE_NFIELDS (type));
4411 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4412 gdb_stdout);
4413 printf_filtered (")");
4414 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4415 TYPE_NFIELDS (type));
4416 puts_filtered ("\n");
4417 }
4418 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4419 {
4420 printfi_filtered (spaces,
4421 "protected_field_bits (%d bits at *",
4422 TYPE_NFIELDS (type));
4423 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4424 gdb_stdout);
4425 printf_filtered (")");
4426 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4427 TYPE_NFIELDS (type));
4428 puts_filtered ("\n");
4429 }
4430 }
4431 if (TYPE_NFN_FIELDS (type) > 0)
4432 {
4433 dump_fn_fieldlists (type, spaces);
4434 }
4435 }
4436
4437 /* Print the contents of the TYPE's type_specific union, assuming that
4438 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4439
4440 static void
4441 print_gnat_stuff (struct type *type, int spaces)
4442 {
4443 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4444
4445 if (descriptive_type == NULL)
4446 printfi_filtered (spaces + 2, "no descriptive type\n");
4447 else
4448 {
4449 printfi_filtered (spaces + 2, "descriptive type\n");
4450 recursive_dump_type (descriptive_type, spaces + 4);
4451 }
4452 }
4453
4454 static struct obstack dont_print_type_obstack;
4455
4456 void
4457 recursive_dump_type (struct type *type, int spaces)
4458 {
4459 int idx;
4460
4461 if (spaces == 0)
4462 obstack_begin (&dont_print_type_obstack, 0);
4463
4464 if (TYPE_NFIELDS (type) > 0
4465 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4466 {
4467 struct type **first_dont_print
4468 = (struct type **) obstack_base (&dont_print_type_obstack);
4469
4470 int i = (struct type **)
4471 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4472
4473 while (--i >= 0)
4474 {
4475 if (type == first_dont_print[i])
4476 {
4477 printfi_filtered (spaces, "type node ");
4478 gdb_print_host_address (type, gdb_stdout);
4479 printf_filtered (_(" <same as already seen type>\n"));
4480 return;
4481 }
4482 }
4483
4484 obstack_ptr_grow (&dont_print_type_obstack, type);
4485 }
4486
4487 printfi_filtered (spaces, "type node ");
4488 gdb_print_host_address (type, gdb_stdout);
4489 printf_filtered ("\n");
4490 printfi_filtered (spaces, "name '%s' (",
4491 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4492 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4493 printf_filtered (")\n");
4494 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4495 switch (TYPE_CODE (type))
4496 {
4497 case TYPE_CODE_UNDEF:
4498 printf_filtered ("(TYPE_CODE_UNDEF)");
4499 break;
4500 case TYPE_CODE_PTR:
4501 printf_filtered ("(TYPE_CODE_PTR)");
4502 break;
4503 case TYPE_CODE_ARRAY:
4504 printf_filtered ("(TYPE_CODE_ARRAY)");
4505 break;
4506 case TYPE_CODE_STRUCT:
4507 printf_filtered ("(TYPE_CODE_STRUCT)");
4508 break;
4509 case TYPE_CODE_UNION:
4510 printf_filtered ("(TYPE_CODE_UNION)");
4511 break;
4512 case TYPE_CODE_ENUM:
4513 printf_filtered ("(TYPE_CODE_ENUM)");
4514 break;
4515 case TYPE_CODE_FLAGS:
4516 printf_filtered ("(TYPE_CODE_FLAGS)");
4517 break;
4518 case TYPE_CODE_FUNC:
4519 printf_filtered ("(TYPE_CODE_FUNC)");
4520 break;
4521 case TYPE_CODE_INT:
4522 printf_filtered ("(TYPE_CODE_INT)");
4523 break;
4524 case TYPE_CODE_FLT:
4525 printf_filtered ("(TYPE_CODE_FLT)");
4526 break;
4527 case TYPE_CODE_VOID:
4528 printf_filtered ("(TYPE_CODE_VOID)");
4529 break;
4530 case TYPE_CODE_SET:
4531 printf_filtered ("(TYPE_CODE_SET)");
4532 break;
4533 case TYPE_CODE_RANGE:
4534 printf_filtered ("(TYPE_CODE_RANGE)");
4535 break;
4536 case TYPE_CODE_STRING:
4537 printf_filtered ("(TYPE_CODE_STRING)");
4538 break;
4539 case TYPE_CODE_ERROR:
4540 printf_filtered ("(TYPE_CODE_ERROR)");
4541 break;
4542 case TYPE_CODE_MEMBERPTR:
4543 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4544 break;
4545 case TYPE_CODE_METHODPTR:
4546 printf_filtered ("(TYPE_CODE_METHODPTR)");
4547 break;
4548 case TYPE_CODE_METHOD:
4549 printf_filtered ("(TYPE_CODE_METHOD)");
4550 break;
4551 case TYPE_CODE_REF:
4552 printf_filtered ("(TYPE_CODE_REF)");
4553 break;
4554 case TYPE_CODE_CHAR:
4555 printf_filtered ("(TYPE_CODE_CHAR)");
4556 break;
4557 case TYPE_CODE_BOOL:
4558 printf_filtered ("(TYPE_CODE_BOOL)");
4559 break;
4560 case TYPE_CODE_COMPLEX:
4561 printf_filtered ("(TYPE_CODE_COMPLEX)");
4562 break;
4563 case TYPE_CODE_TYPEDEF:
4564 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4565 break;
4566 case TYPE_CODE_NAMESPACE:
4567 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4568 break;
4569 default:
4570 printf_filtered ("(UNKNOWN TYPE CODE)");
4571 break;
4572 }
4573 puts_filtered ("\n");
4574 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4575 if (TYPE_OBJFILE_OWNED (type))
4576 {
4577 printfi_filtered (spaces, "objfile ");
4578 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4579 }
4580 else
4581 {
4582 printfi_filtered (spaces, "gdbarch ");
4583 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4584 }
4585 printf_filtered ("\n");
4586 printfi_filtered (spaces, "target_type ");
4587 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4588 printf_filtered ("\n");
4589 if (TYPE_TARGET_TYPE (type) != NULL)
4590 {
4591 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4592 }
4593 printfi_filtered (spaces, "pointer_type ");
4594 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4595 printf_filtered ("\n");
4596 printfi_filtered (spaces, "reference_type ");
4597 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4598 printf_filtered ("\n");
4599 printfi_filtered (spaces, "type_chain ");
4600 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4601 printf_filtered ("\n");
4602 printfi_filtered (spaces, "instance_flags 0x%x",
4603 TYPE_INSTANCE_FLAGS (type));
4604 if (TYPE_CONST (type))
4605 {
4606 puts_filtered (" TYPE_CONST");
4607 }
4608 if (TYPE_VOLATILE (type))
4609 {
4610 puts_filtered (" TYPE_VOLATILE");
4611 }
4612 if (TYPE_CODE_SPACE (type))
4613 {
4614 puts_filtered (" TYPE_CODE_SPACE");
4615 }
4616 if (TYPE_DATA_SPACE (type))
4617 {
4618 puts_filtered (" TYPE_DATA_SPACE");
4619 }
4620 if (TYPE_ADDRESS_CLASS_1 (type))
4621 {
4622 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4623 }
4624 if (TYPE_ADDRESS_CLASS_2 (type))
4625 {
4626 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4627 }
4628 if (TYPE_RESTRICT (type))
4629 {
4630 puts_filtered (" TYPE_RESTRICT");
4631 }
4632 if (TYPE_ATOMIC (type))
4633 {
4634 puts_filtered (" TYPE_ATOMIC");
4635 }
4636 puts_filtered ("\n");
4637
4638 printfi_filtered (spaces, "flags");
4639 if (TYPE_UNSIGNED (type))
4640 {
4641 puts_filtered (" TYPE_UNSIGNED");
4642 }
4643 if (TYPE_NOSIGN (type))
4644 {
4645 puts_filtered (" TYPE_NOSIGN");
4646 }
4647 if (TYPE_STUB (type))
4648 {
4649 puts_filtered (" TYPE_STUB");
4650 }
4651 if (TYPE_TARGET_STUB (type))
4652 {
4653 puts_filtered (" TYPE_TARGET_STUB");
4654 }
4655 if (TYPE_PROTOTYPED (type))
4656 {
4657 puts_filtered (" TYPE_PROTOTYPED");
4658 }
4659 if (TYPE_INCOMPLETE (type))
4660 {
4661 puts_filtered (" TYPE_INCOMPLETE");
4662 }
4663 if (TYPE_VARARGS (type))
4664 {
4665 puts_filtered (" TYPE_VARARGS");
4666 }
4667 /* This is used for things like AltiVec registers on ppc. Gcc emits
4668 an attribute for the array type, which tells whether or not we
4669 have a vector, instead of a regular array. */
4670 if (TYPE_VECTOR (type))
4671 {
4672 puts_filtered (" TYPE_VECTOR");
4673 }
4674 if (TYPE_FIXED_INSTANCE (type))
4675 {
4676 puts_filtered (" TYPE_FIXED_INSTANCE");
4677 }
4678 if (TYPE_STUB_SUPPORTED (type))
4679 {
4680 puts_filtered (" TYPE_STUB_SUPPORTED");
4681 }
4682 if (TYPE_NOTTEXT (type))
4683 {
4684 puts_filtered (" TYPE_NOTTEXT");
4685 }
4686 puts_filtered ("\n");
4687 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4688 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4689 puts_filtered ("\n");
4690 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4691 {
4692 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4693 printfi_filtered (spaces + 2,
4694 "[%d] enumval %s type ",
4695 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4696 else
4697 printfi_filtered (spaces + 2,
4698 "[%d] bitpos %s bitsize %d type ",
4699 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4700 TYPE_FIELD_BITSIZE (type, idx));
4701 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4702 printf_filtered (" name '%s' (",
4703 TYPE_FIELD_NAME (type, idx) != NULL
4704 ? TYPE_FIELD_NAME (type, idx)
4705 : "<NULL>");
4706 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4707 printf_filtered (")\n");
4708 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4709 {
4710 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4711 }
4712 }
4713 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4714 {
4715 printfi_filtered (spaces, "low %s%s high %s%s\n",
4716 plongest (TYPE_LOW_BOUND (type)),
4717 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4718 plongest (TYPE_HIGH_BOUND (type)),
4719 TYPE_HIGH_BOUND_UNDEFINED (type)
4720 ? " (undefined)" : "");
4721 }
4722
4723 switch (TYPE_SPECIFIC_FIELD (type))
4724 {
4725 case TYPE_SPECIFIC_CPLUS_STUFF:
4726 printfi_filtered (spaces, "cplus_stuff ");
4727 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4728 gdb_stdout);
4729 puts_filtered ("\n");
4730 print_cplus_stuff (type, spaces);
4731 break;
4732
4733 case TYPE_SPECIFIC_GNAT_STUFF:
4734 printfi_filtered (spaces, "gnat_stuff ");
4735 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4736 puts_filtered ("\n");
4737 print_gnat_stuff (type, spaces);
4738 break;
4739
4740 case TYPE_SPECIFIC_FLOATFORMAT:
4741 printfi_filtered (spaces, "floatformat ");
4742 if (TYPE_FLOATFORMAT (type) == NULL
4743 || TYPE_FLOATFORMAT (type)->name == NULL)
4744 puts_filtered ("(null)");
4745 else
4746 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4747 puts_filtered ("\n");
4748 break;
4749
4750 case TYPE_SPECIFIC_FUNC:
4751 printfi_filtered (spaces, "calling_convention %d\n",
4752 TYPE_CALLING_CONVENTION (type));
4753 /* tail_call_list is not printed. */
4754 break;
4755
4756 case TYPE_SPECIFIC_SELF_TYPE:
4757 printfi_filtered (spaces, "self_type ");
4758 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4759 puts_filtered ("\n");
4760 break;
4761 }
4762
4763 if (spaces == 0)
4764 obstack_free (&dont_print_type_obstack, NULL);
4765 }
4766 \f
4767 /* Trivial helpers for the libiberty hash table, for mapping one
4768 type to another. */
4769
4770 struct type_pair : public allocate_on_obstack
4771 {
4772 type_pair (struct type *old_, struct type *newobj_)
4773 : old (old_), newobj (newobj_)
4774 {}
4775
4776 struct type * const old, * const newobj;
4777 };
4778
4779 static hashval_t
4780 type_pair_hash (const void *item)
4781 {
4782 const struct type_pair *pair = (const struct type_pair *) item;
4783
4784 return htab_hash_pointer (pair->old);
4785 }
4786
4787 static int
4788 type_pair_eq (const void *item_lhs, const void *item_rhs)
4789 {
4790 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4791 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4792
4793 return lhs->old == rhs->old;
4794 }
4795
4796 /* Allocate the hash table used by copy_type_recursive to walk
4797 types without duplicates. We use OBJFILE's obstack, because
4798 OBJFILE is about to be deleted. */
4799
4800 htab_t
4801 create_copied_types_hash (struct objfile *objfile)
4802 {
4803 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4804 NULL, &objfile->objfile_obstack,
4805 hashtab_obstack_allocate,
4806 dummy_obstack_deallocate);
4807 }
4808
4809 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4810
4811 static struct dynamic_prop_list *
4812 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4813 struct dynamic_prop_list *list)
4814 {
4815 struct dynamic_prop_list *copy = list;
4816 struct dynamic_prop_list **node_ptr = &copy;
4817
4818 while (*node_ptr != NULL)
4819 {
4820 struct dynamic_prop_list *node_copy;
4821
4822 node_copy = ((struct dynamic_prop_list *)
4823 obstack_copy (objfile_obstack, *node_ptr,
4824 sizeof (struct dynamic_prop_list)));
4825 node_copy->prop = (*node_ptr)->prop;
4826 *node_ptr = node_copy;
4827
4828 node_ptr = &node_copy->next;
4829 }
4830
4831 return copy;
4832 }
4833
4834 /* Recursively copy (deep copy) TYPE, if it is associated with
4835 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4836 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4837 it is not associated with OBJFILE. */
4838
4839 struct type *
4840 copy_type_recursive (struct objfile *objfile,
4841 struct type *type,
4842 htab_t copied_types)
4843 {
4844 void **slot;
4845 struct type *new_type;
4846
4847 if (! TYPE_OBJFILE_OWNED (type))
4848 return type;
4849
4850 /* This type shouldn't be pointing to any types in other objfiles;
4851 if it did, the type might disappear unexpectedly. */
4852 gdb_assert (TYPE_OBJFILE (type) == objfile);
4853
4854 struct type_pair pair (type, nullptr);
4855
4856 slot = htab_find_slot (copied_types, &pair, INSERT);
4857 if (*slot != NULL)
4858 return ((struct type_pair *) *slot)->newobj;
4859
4860 new_type = alloc_type_arch (get_type_arch (type));
4861
4862 /* We must add the new type to the hash table immediately, in case
4863 we encounter this type again during a recursive call below. */
4864 struct type_pair *stored
4865 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
4866
4867 *slot = stored;
4868
4869 /* Copy the common fields of types. For the main type, we simply
4870 copy the entire thing and then update specific fields as needed. */
4871 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4872 TYPE_OBJFILE_OWNED (new_type) = 0;
4873 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4874
4875 if (TYPE_NAME (type))
4876 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4877
4878 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4879 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4880
4881 /* Copy the fields. */
4882 if (TYPE_NFIELDS (type))
4883 {
4884 int i, nfields;
4885
4886 nfields = TYPE_NFIELDS (type);
4887 TYPE_FIELDS (new_type) = (struct field *)
4888 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
4889 for (i = 0; i < nfields; i++)
4890 {
4891 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4892 TYPE_FIELD_ARTIFICIAL (type, i);
4893 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4894 if (TYPE_FIELD_TYPE (type, i))
4895 TYPE_FIELD_TYPE (new_type, i)
4896 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4897 copied_types);
4898 if (TYPE_FIELD_NAME (type, i))
4899 TYPE_FIELD_NAME (new_type, i) =
4900 xstrdup (TYPE_FIELD_NAME (type, i));
4901 switch (TYPE_FIELD_LOC_KIND (type, i))
4902 {
4903 case FIELD_LOC_KIND_BITPOS:
4904 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4905 TYPE_FIELD_BITPOS (type, i));
4906 break;
4907 case FIELD_LOC_KIND_ENUMVAL:
4908 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4909 TYPE_FIELD_ENUMVAL (type, i));
4910 break;
4911 case FIELD_LOC_KIND_PHYSADDR:
4912 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4913 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4914 break;
4915 case FIELD_LOC_KIND_PHYSNAME:
4916 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4917 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4918 i)));
4919 break;
4920 default:
4921 internal_error (__FILE__, __LINE__,
4922 _("Unexpected type field location kind: %d"),
4923 TYPE_FIELD_LOC_KIND (type, i));
4924 }
4925 }
4926 }
4927
4928 /* For range types, copy the bounds information. */
4929 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4930 {
4931 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
4932 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
4933 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4934 }
4935
4936 if (TYPE_DYN_PROP_LIST (type) != NULL)
4937 TYPE_DYN_PROP_LIST (new_type)
4938 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4939 TYPE_DYN_PROP_LIST (type));
4940
4941
4942 /* Copy pointers to other types. */
4943 if (TYPE_TARGET_TYPE (type))
4944 TYPE_TARGET_TYPE (new_type) =
4945 copy_type_recursive (objfile,
4946 TYPE_TARGET_TYPE (type),
4947 copied_types);
4948
4949 /* Maybe copy the type_specific bits.
4950
4951 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4952 base classes and methods. There's no fundamental reason why we
4953 can't, but at the moment it is not needed. */
4954
4955 switch (TYPE_SPECIFIC_FIELD (type))
4956 {
4957 case TYPE_SPECIFIC_NONE:
4958 break;
4959 case TYPE_SPECIFIC_FUNC:
4960 INIT_FUNC_SPECIFIC (new_type);
4961 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4962 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4963 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4964 break;
4965 case TYPE_SPECIFIC_FLOATFORMAT:
4966 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4967 break;
4968 case TYPE_SPECIFIC_CPLUS_STUFF:
4969 INIT_CPLUS_SPECIFIC (new_type);
4970 break;
4971 case TYPE_SPECIFIC_GNAT_STUFF:
4972 INIT_GNAT_SPECIFIC (new_type);
4973 break;
4974 case TYPE_SPECIFIC_SELF_TYPE:
4975 set_type_self_type (new_type,
4976 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4977 copied_types));
4978 break;
4979 default:
4980 gdb_assert_not_reached ("bad type_specific_kind");
4981 }
4982
4983 return new_type;
4984 }
4985
4986 /* Make a copy of the given TYPE, except that the pointer & reference
4987 types are not preserved.
4988
4989 This function assumes that the given type has an associated objfile.
4990 This objfile is used to allocate the new type. */
4991
4992 struct type *
4993 copy_type (const struct type *type)
4994 {
4995 struct type *new_type;
4996
4997 gdb_assert (TYPE_OBJFILE_OWNED (type));
4998
4999 new_type = alloc_type_copy (type);
5000 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5001 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5002 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5003 sizeof (struct main_type));
5004 if (TYPE_DYN_PROP_LIST (type) != NULL)
5005 TYPE_DYN_PROP_LIST (new_type)
5006 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5007 TYPE_DYN_PROP_LIST (type));
5008
5009 return new_type;
5010 }
5011 \f
5012 /* Helper functions to initialize architecture-specific types. */
5013
5014 /* Allocate a type structure associated with GDBARCH and set its
5015 CODE, LENGTH, and NAME fields. */
5016
5017 struct type *
5018 arch_type (struct gdbarch *gdbarch,
5019 enum type_code code, int bit, const char *name)
5020 {
5021 struct type *type;
5022
5023 type = alloc_type_arch (gdbarch);
5024 set_type_code (type, code);
5025 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5026 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5027
5028 if (name)
5029 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5030
5031 return type;
5032 }
5033
5034 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5035 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5036 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5037
5038 struct type *
5039 arch_integer_type (struct gdbarch *gdbarch,
5040 int bit, int unsigned_p, const char *name)
5041 {
5042 struct type *t;
5043
5044 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5045 if (unsigned_p)
5046 TYPE_UNSIGNED (t) = 1;
5047
5048 return t;
5049 }
5050
5051 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5052 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5053 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5054
5055 struct type *
5056 arch_character_type (struct gdbarch *gdbarch,
5057 int bit, int unsigned_p, const char *name)
5058 {
5059 struct type *t;
5060
5061 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5062 if (unsigned_p)
5063 TYPE_UNSIGNED (t) = 1;
5064
5065 return t;
5066 }
5067
5068 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5069 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5070 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5071
5072 struct type *
5073 arch_boolean_type (struct gdbarch *gdbarch,
5074 int bit, int unsigned_p, const char *name)
5075 {
5076 struct type *t;
5077
5078 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5079 if (unsigned_p)
5080 TYPE_UNSIGNED (t) = 1;
5081
5082 return t;
5083 }
5084
5085 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5086 BIT is the type size in bits; if BIT equals -1, the size is
5087 determined by the floatformat. NAME is the type name. Set the
5088 TYPE_FLOATFORMAT from FLOATFORMATS. */
5089
5090 struct type *
5091 arch_float_type (struct gdbarch *gdbarch,
5092 int bit, const char *name,
5093 const struct floatformat **floatformats)
5094 {
5095 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5096 struct type *t;
5097
5098 bit = verify_floatformat (bit, fmt);
5099 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5100 TYPE_FLOATFORMAT (t) = fmt;
5101
5102 return t;
5103 }
5104
5105 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5106 BIT is the type size in bits. NAME is the type name. */
5107
5108 struct type *
5109 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5110 {
5111 struct type *t;
5112
5113 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5114 return t;
5115 }
5116
5117 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5118 NAME is the type name. TARGET_TYPE is the component float type. */
5119
5120 struct type *
5121 arch_complex_type (struct gdbarch *gdbarch,
5122 const char *name, struct type *target_type)
5123 {
5124 struct type *t;
5125
5126 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5127 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5128 TYPE_TARGET_TYPE (t) = target_type;
5129 return t;
5130 }
5131
5132 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5133 BIT is the pointer type size in bits. NAME is the type name.
5134 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5135 TYPE_UNSIGNED flag. */
5136
5137 struct type *
5138 arch_pointer_type (struct gdbarch *gdbarch,
5139 int bit, const char *name, struct type *target_type)
5140 {
5141 struct type *t;
5142
5143 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5144 TYPE_TARGET_TYPE (t) = target_type;
5145 TYPE_UNSIGNED (t) = 1;
5146 return t;
5147 }
5148
5149 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5150 NAME is the type name. BIT is the size of the flag word in bits. */
5151
5152 struct type *
5153 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5154 {
5155 struct type *type;
5156
5157 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5158 TYPE_UNSIGNED (type) = 1;
5159 TYPE_NFIELDS (type) = 0;
5160 /* Pre-allocate enough space assuming every field is one bit. */
5161 TYPE_FIELDS (type)
5162 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5163
5164 return type;
5165 }
5166
5167 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5168 position BITPOS is called NAME. Pass NAME as "" for fields that
5169 should not be printed. */
5170
5171 void
5172 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5173 struct type *field_type, const char *name)
5174 {
5175 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5176 int field_nr = TYPE_NFIELDS (type);
5177
5178 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5179 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5180 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5181 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5182 gdb_assert (name != NULL);
5183
5184 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5185 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5186 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5187 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5188 ++TYPE_NFIELDS (type);
5189 }
5190
5191 /* Special version of append_flags_type_field to add a flag field.
5192 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5193 position BITPOS is called NAME. */
5194
5195 void
5196 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5197 {
5198 struct gdbarch *gdbarch = get_type_arch (type);
5199
5200 append_flags_type_field (type, bitpos, 1,
5201 builtin_type (gdbarch)->builtin_bool,
5202 name);
5203 }
5204
5205 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5206 specified by CODE) associated with GDBARCH. NAME is the type name. */
5207
5208 struct type *
5209 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5210 enum type_code code)
5211 {
5212 struct type *t;
5213
5214 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5215 t = arch_type (gdbarch, code, 0, NULL);
5216 TYPE_NAME (t) = name;
5217 INIT_CPLUS_SPECIFIC (t);
5218 return t;
5219 }
5220
5221 /* Add new field with name NAME and type FIELD to composite type T.
5222 Do not set the field's position or adjust the type's length;
5223 the caller should do so. Return the new field. */
5224
5225 struct field *
5226 append_composite_type_field_raw (struct type *t, const char *name,
5227 struct type *field)
5228 {
5229 struct field *f;
5230
5231 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5232 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5233 TYPE_NFIELDS (t));
5234 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5235 memset (f, 0, sizeof f[0]);
5236 FIELD_TYPE (f[0]) = field;
5237 FIELD_NAME (f[0]) = name;
5238 return f;
5239 }
5240
5241 /* Add new field with name NAME and type FIELD to composite type T.
5242 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5243
5244 void
5245 append_composite_type_field_aligned (struct type *t, const char *name,
5246 struct type *field, int alignment)
5247 {
5248 struct field *f = append_composite_type_field_raw (t, name, field);
5249
5250 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5251 {
5252 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5253 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5254 }
5255 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5256 {
5257 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5258 if (TYPE_NFIELDS (t) > 1)
5259 {
5260 SET_FIELD_BITPOS (f[0],
5261 (FIELD_BITPOS (f[-1])
5262 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5263 * TARGET_CHAR_BIT)));
5264
5265 if (alignment)
5266 {
5267 int left;
5268
5269 alignment *= TARGET_CHAR_BIT;
5270 left = FIELD_BITPOS (f[0]) % alignment;
5271
5272 if (left)
5273 {
5274 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5275 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5276 }
5277 }
5278 }
5279 }
5280 }
5281
5282 /* Add new field with name NAME and type FIELD to composite type T. */
5283
5284 void
5285 append_composite_type_field (struct type *t, const char *name,
5286 struct type *field)
5287 {
5288 append_composite_type_field_aligned (t, name, field, 0);
5289 }
5290
5291 static struct gdbarch_data *gdbtypes_data;
5292
5293 const struct builtin_type *
5294 builtin_type (struct gdbarch *gdbarch)
5295 {
5296 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5297 }
5298
5299 static void *
5300 gdbtypes_post_init (struct gdbarch *gdbarch)
5301 {
5302 struct builtin_type *builtin_type
5303 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5304
5305 /* Basic types. */
5306 builtin_type->builtin_void
5307 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5308 builtin_type->builtin_char
5309 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5310 !gdbarch_char_signed (gdbarch), "char");
5311 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5312 builtin_type->builtin_signed_char
5313 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5314 0, "signed char");
5315 builtin_type->builtin_unsigned_char
5316 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5317 1, "unsigned char");
5318 builtin_type->builtin_short
5319 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5320 0, "short");
5321 builtin_type->builtin_unsigned_short
5322 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5323 1, "unsigned short");
5324 builtin_type->builtin_int
5325 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5326 0, "int");
5327 builtin_type->builtin_unsigned_int
5328 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5329 1, "unsigned int");
5330 builtin_type->builtin_long
5331 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5332 0, "long");
5333 builtin_type->builtin_unsigned_long
5334 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5335 1, "unsigned long");
5336 builtin_type->builtin_long_long
5337 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5338 0, "long long");
5339 builtin_type->builtin_unsigned_long_long
5340 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5341 1, "unsigned long long");
5342 builtin_type->builtin_float
5343 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5344 "float", gdbarch_float_format (gdbarch));
5345 builtin_type->builtin_double
5346 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5347 "double", gdbarch_double_format (gdbarch));
5348 builtin_type->builtin_long_double
5349 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5350 "long double", gdbarch_long_double_format (gdbarch));
5351 builtin_type->builtin_complex
5352 = arch_complex_type (gdbarch, "complex",
5353 builtin_type->builtin_float);
5354 builtin_type->builtin_double_complex
5355 = arch_complex_type (gdbarch, "double complex",
5356 builtin_type->builtin_double);
5357 builtin_type->builtin_string
5358 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5359 builtin_type->builtin_bool
5360 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5361
5362 /* The following three are about decimal floating point types, which
5363 are 32-bits, 64-bits and 128-bits respectively. */
5364 builtin_type->builtin_decfloat
5365 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5366 builtin_type->builtin_decdouble
5367 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5368 builtin_type->builtin_declong
5369 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5370
5371 /* "True" character types. */
5372 builtin_type->builtin_true_char
5373 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5374 builtin_type->builtin_true_unsigned_char
5375 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5376
5377 /* Fixed-size integer types. */
5378 builtin_type->builtin_int0
5379 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5380 builtin_type->builtin_int8
5381 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5382 builtin_type->builtin_uint8
5383 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5384 builtin_type->builtin_int16
5385 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5386 builtin_type->builtin_uint16
5387 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5388 builtin_type->builtin_int24
5389 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5390 builtin_type->builtin_uint24
5391 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5392 builtin_type->builtin_int32
5393 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5394 builtin_type->builtin_uint32
5395 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5396 builtin_type->builtin_int64
5397 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5398 builtin_type->builtin_uint64
5399 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5400 builtin_type->builtin_int128
5401 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5402 builtin_type->builtin_uint128
5403 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5404 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5405 TYPE_INSTANCE_FLAG_NOTTEXT;
5406 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5407 TYPE_INSTANCE_FLAG_NOTTEXT;
5408
5409 /* Wide character types. */
5410 builtin_type->builtin_char16
5411 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5412 builtin_type->builtin_char32
5413 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5414 builtin_type->builtin_wchar
5415 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5416 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5417
5418 /* Default data/code pointer types. */
5419 builtin_type->builtin_data_ptr
5420 = lookup_pointer_type (builtin_type->builtin_void);
5421 builtin_type->builtin_func_ptr
5422 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5423 builtin_type->builtin_func_func
5424 = lookup_function_type (builtin_type->builtin_func_ptr);
5425
5426 /* This type represents a GDB internal function. */
5427 builtin_type->internal_fn
5428 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5429 "<internal function>");
5430
5431 /* This type represents an xmethod. */
5432 builtin_type->xmethod
5433 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5434
5435 return builtin_type;
5436 }
5437
5438 /* This set of objfile-based types is intended to be used by symbol
5439 readers as basic types. */
5440
5441 static const struct objfile_data *objfile_type_data;
5442
5443 const struct objfile_type *
5444 objfile_type (struct objfile *objfile)
5445 {
5446 struct gdbarch *gdbarch;
5447 struct objfile_type *objfile_type
5448 = (struct objfile_type *) objfile_data (objfile, objfile_type_data);
5449
5450 if (objfile_type)
5451 return objfile_type;
5452
5453 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5454 1, struct objfile_type);
5455
5456 /* Use the objfile architecture to determine basic type properties. */
5457 gdbarch = get_objfile_arch (objfile);
5458
5459 /* Basic types. */
5460 objfile_type->builtin_void
5461 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5462 objfile_type->builtin_char
5463 = init_integer_type (objfile, TARGET_CHAR_BIT,
5464 !gdbarch_char_signed (gdbarch), "char");
5465 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5466 objfile_type->builtin_signed_char
5467 = init_integer_type (objfile, TARGET_CHAR_BIT,
5468 0, "signed char");
5469 objfile_type->builtin_unsigned_char
5470 = init_integer_type (objfile, TARGET_CHAR_BIT,
5471 1, "unsigned char");
5472 objfile_type->builtin_short
5473 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5474 0, "short");
5475 objfile_type->builtin_unsigned_short
5476 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5477 1, "unsigned short");
5478 objfile_type->builtin_int
5479 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5480 0, "int");
5481 objfile_type->builtin_unsigned_int
5482 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5483 1, "unsigned int");
5484 objfile_type->builtin_long
5485 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5486 0, "long");
5487 objfile_type->builtin_unsigned_long
5488 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5489 1, "unsigned long");
5490 objfile_type->builtin_long_long
5491 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5492 0, "long long");
5493 objfile_type->builtin_unsigned_long_long
5494 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5495 1, "unsigned long long");
5496 objfile_type->builtin_float
5497 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5498 "float", gdbarch_float_format (gdbarch));
5499 objfile_type->builtin_double
5500 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5501 "double", gdbarch_double_format (gdbarch));
5502 objfile_type->builtin_long_double
5503 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5504 "long double", gdbarch_long_double_format (gdbarch));
5505
5506 /* This type represents a type that was unrecognized in symbol read-in. */
5507 objfile_type->builtin_error
5508 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5509
5510 /* The following set of types is used for symbols with no
5511 debug information. */
5512 objfile_type->nodebug_text_symbol
5513 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5514 "<text variable, no debug info>");
5515 objfile_type->nodebug_text_gnu_ifunc_symbol
5516 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5517 "<text gnu-indirect-function variable, no debug info>");
5518 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5519 objfile_type->nodebug_got_plt_symbol
5520 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5521 "<text from jump slot in .got.plt, no debug info>",
5522 objfile_type->nodebug_text_symbol);
5523 objfile_type->nodebug_data_symbol
5524 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5525 objfile_type->nodebug_unknown_symbol
5526 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5527 objfile_type->nodebug_tls_symbol
5528 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5529
5530 /* NOTE: on some targets, addresses and pointers are not necessarily
5531 the same.
5532
5533 The upshot is:
5534 - gdb's `struct type' always describes the target's
5535 representation.
5536 - gdb's `struct value' objects should always hold values in
5537 target form.
5538 - gdb's CORE_ADDR values are addresses in the unified virtual
5539 address space that the assembler and linker work with. Thus,
5540 since target_read_memory takes a CORE_ADDR as an argument, it
5541 can access any memory on the target, even if the processor has
5542 separate code and data address spaces.
5543
5544 In this context, objfile_type->builtin_core_addr is a bit odd:
5545 it's a target type for a value the target will never see. It's
5546 only used to hold the values of (typeless) linker symbols, which
5547 are indeed in the unified virtual address space. */
5548
5549 objfile_type->builtin_core_addr
5550 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5551 "__CORE_ADDR");
5552
5553 set_objfile_data (objfile, objfile_type_data, objfile_type);
5554 return objfile_type;
5555 }
5556
5557 void
5558 _initialize_gdbtypes (void)
5559 {
5560 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5561 objfile_type_data = register_objfile_data ();
5562
5563 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5564 _("Set debugging of C++ overloading."),
5565 _("Show debugging of C++ overloading."),
5566 _("When enabled, ranking of the "
5567 "functions is displayed."),
5568 NULL,
5569 show_overload_debug,
5570 &setdebuglist, &showdebuglist);
5571
5572 /* Add user knob for controlling resolution of opaque types. */
5573 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5574 &opaque_type_resolution,
5575 _("Set resolution of opaque struct/class/union"
5576 " types (if set before loading symbols)."),
5577 _("Show resolution of opaque struct/class/union"
5578 " types (if set before loading symbols)."),
5579 NULL, NULL,
5580 show_opaque_type_resolution,
5581 &setlist, &showlist);
5582
5583 /* Add an option to permit non-strict type checking. */
5584 add_setshow_boolean_cmd ("type", class_support,
5585 &strict_type_checking,
5586 _("Set strict type checking."),
5587 _("Show strict type checking."),
5588 NULL, NULL,
5589 show_strict_type_checking,
5590 &setchecklist, &showchecklist);
5591 }
This page took 0.149633 seconds and 4 git commands to generate.