Do not build gdbserver with -Werror by default if development=false
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2014 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include <string.h>
24 #include "bfd.h"
25 #include "symtab.h"
26 #include "symfile.h"
27 #include "objfiles.h"
28 #include "gdbtypes.h"
29 #include "expression.h"
30 #include "language.h"
31 #include "target.h"
32 #include "value.h"
33 #include "demangle.h"
34 #include "complaints.h"
35 #include "gdbcmd.h"
36 #include "cp-abi.h"
37 #include "gdb_assert.h"
38 #include "hashtab.h"
39 #include "exceptions.h"
40 #include "cp-support.h"
41 #include "bcache.h"
42 #include "dwarf2loc.h"
43 #include "gdbcore.h"
44
45 /* Initialize BADNESS constants. */
46
47 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
48
49 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
50 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
51
52 const struct rank EXACT_MATCH_BADNESS = {0,0};
53
54 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
55 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
56 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
57 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
58 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
60 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
61 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
62 const struct rank BASE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static int opaque_type_resolution = 1;
121
122 /* A flag to enable printing of debugging information of C++
123 overloading. */
124
125 unsigned int overload_debug = 0;
126
127 /* A flag to enable strict type checking. */
128
129 static int strict_type_checking = 1;
130
131 /* A function to show whether opaque types are resolved. */
132
133 static void
134 show_opaque_type_resolution (struct ui_file *file, int from_tty,
135 struct cmd_list_element *c,
136 const char *value)
137 {
138 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
139 "(if set before loading symbols) is %s.\n"),
140 value);
141 }
142
143 /* A function to show whether C++ overload debugging is enabled. */
144
145 static void
146 show_overload_debug (struct ui_file *file, int from_tty,
147 struct cmd_list_element *c, const char *value)
148 {
149 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
150 value);
151 }
152
153 /* A function to show the status of strict type checking. */
154
155 static void
156 show_strict_type_checking (struct ui_file *file, int from_tty,
157 struct cmd_list_element *c, const char *value)
158 {
159 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
160 }
161
162 \f
163 /* Allocate a new OBJFILE-associated type structure and fill it
164 with some defaults. Space for the type structure is allocated
165 on the objfile's objfile_obstack. */
166
167 struct type *
168 alloc_type (struct objfile *objfile)
169 {
170 struct type *type;
171
172 gdb_assert (objfile != NULL);
173
174 /* Alloc the structure and start off with all fields zeroed. */
175 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
176 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
177 struct main_type);
178 OBJSTAT (objfile, n_types++);
179
180 TYPE_OBJFILE_OWNED (type) = 1;
181 TYPE_OWNER (type).objfile = objfile;
182
183 /* Initialize the fields that might not be zero. */
184
185 TYPE_CODE (type) = TYPE_CODE_UNDEF;
186 TYPE_VPTR_FIELDNO (type) = -1;
187 TYPE_CHAIN (type) = type; /* Chain back to itself. */
188
189 return type;
190 }
191
192 /* Allocate a new GDBARCH-associated type structure and fill it
193 with some defaults. Space for the type structure is allocated
194 on the heap. */
195
196 struct type *
197 alloc_type_arch (struct gdbarch *gdbarch)
198 {
199 struct type *type;
200
201 gdb_assert (gdbarch != NULL);
202
203 /* Alloc the structure and start off with all fields zeroed. */
204
205 type = XCNEW (struct type);
206 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
207
208 TYPE_OBJFILE_OWNED (type) = 0;
209 TYPE_OWNER (type).gdbarch = gdbarch;
210
211 /* Initialize the fields that might not be zero. */
212
213 TYPE_CODE (type) = TYPE_CODE_UNDEF;
214 TYPE_VPTR_FIELDNO (type) = -1;
215 TYPE_CHAIN (type) = type; /* Chain back to itself. */
216
217 return type;
218 }
219
220 /* If TYPE is objfile-associated, allocate a new type structure
221 associated with the same objfile. If TYPE is gdbarch-associated,
222 allocate a new type structure associated with the same gdbarch. */
223
224 struct type *
225 alloc_type_copy (const struct type *type)
226 {
227 if (TYPE_OBJFILE_OWNED (type))
228 return alloc_type (TYPE_OWNER (type).objfile);
229 else
230 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
231 }
232
233 /* If TYPE is gdbarch-associated, return that architecture.
234 If TYPE is objfile-associated, return that objfile's architecture. */
235
236 struct gdbarch *
237 get_type_arch (const struct type *type)
238 {
239 if (TYPE_OBJFILE_OWNED (type))
240 return get_objfile_arch (TYPE_OWNER (type).objfile);
241 else
242 return TYPE_OWNER (type).gdbarch;
243 }
244
245 /* See gdbtypes.h. */
246
247 struct type *
248 get_target_type (struct type *type)
249 {
250 if (type != NULL)
251 {
252 type = TYPE_TARGET_TYPE (type);
253 if (type != NULL)
254 type = check_typedef (type);
255 }
256
257 return type;
258 }
259
260 /* Alloc a new type instance structure, fill it with some defaults,
261 and point it at OLDTYPE. Allocate the new type instance from the
262 same place as OLDTYPE. */
263
264 static struct type *
265 alloc_type_instance (struct type *oldtype)
266 {
267 struct type *type;
268
269 /* Allocate the structure. */
270
271 if (! TYPE_OBJFILE_OWNED (oldtype))
272 type = XCNEW (struct type);
273 else
274 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
275 struct type);
276
277 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
278
279 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
280
281 return type;
282 }
283
284 /* Clear all remnants of the previous type at TYPE, in preparation for
285 replacing it with something else. Preserve owner information. */
286
287 static void
288 smash_type (struct type *type)
289 {
290 int objfile_owned = TYPE_OBJFILE_OWNED (type);
291 union type_owner owner = TYPE_OWNER (type);
292
293 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
294
295 /* Restore owner information. */
296 TYPE_OBJFILE_OWNED (type) = objfile_owned;
297 TYPE_OWNER (type) = owner;
298
299 /* For now, delete the rings. */
300 TYPE_CHAIN (type) = type;
301
302 /* For now, leave the pointer/reference types alone. */
303 }
304
305 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
306 to a pointer to memory where the pointer type should be stored.
307 If *TYPEPTR is zero, update it to point to the pointer type we return.
308 We allocate new memory if needed. */
309
310 struct type *
311 make_pointer_type (struct type *type, struct type **typeptr)
312 {
313 struct type *ntype; /* New type */
314 struct type *chain;
315
316 ntype = TYPE_POINTER_TYPE (type);
317
318 if (ntype)
319 {
320 if (typeptr == 0)
321 return ntype; /* Don't care about alloc,
322 and have new type. */
323 else if (*typeptr == 0)
324 {
325 *typeptr = ntype; /* Tracking alloc, and have new type. */
326 return ntype;
327 }
328 }
329
330 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
331 {
332 ntype = alloc_type_copy (type);
333 if (typeptr)
334 *typeptr = ntype;
335 }
336 else /* We have storage, but need to reset it. */
337 {
338 ntype = *typeptr;
339 chain = TYPE_CHAIN (ntype);
340 smash_type (ntype);
341 TYPE_CHAIN (ntype) = chain;
342 }
343
344 TYPE_TARGET_TYPE (ntype) = type;
345 TYPE_POINTER_TYPE (type) = ntype;
346
347 /* FIXME! Assumes the machine has only one representation for pointers! */
348
349 TYPE_LENGTH (ntype)
350 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
351 TYPE_CODE (ntype) = TYPE_CODE_PTR;
352
353 /* Mark pointers as unsigned. The target converts between pointers
354 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
355 gdbarch_address_to_pointer. */
356 TYPE_UNSIGNED (ntype) = 1;
357
358 /* Update the length of all the other variants of this type. */
359 chain = TYPE_CHAIN (ntype);
360 while (chain != ntype)
361 {
362 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
363 chain = TYPE_CHAIN (chain);
364 }
365
366 return ntype;
367 }
368
369 /* Given a type TYPE, return a type of pointers to that type.
370 May need to construct such a type if this is the first use. */
371
372 struct type *
373 lookup_pointer_type (struct type *type)
374 {
375 return make_pointer_type (type, (struct type **) 0);
376 }
377
378 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
379 points to a pointer to memory where the reference type should be
380 stored. If *TYPEPTR is zero, update it to point to the reference
381 type we return. We allocate new memory if needed. */
382
383 struct type *
384 make_reference_type (struct type *type, struct type **typeptr)
385 {
386 struct type *ntype; /* New type */
387 struct type *chain;
388
389 ntype = TYPE_REFERENCE_TYPE (type);
390
391 if (ntype)
392 {
393 if (typeptr == 0)
394 return ntype; /* Don't care about alloc,
395 and have new type. */
396 else if (*typeptr == 0)
397 {
398 *typeptr = ntype; /* Tracking alloc, and have new type. */
399 return ntype;
400 }
401 }
402
403 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
404 {
405 ntype = alloc_type_copy (type);
406 if (typeptr)
407 *typeptr = ntype;
408 }
409 else /* We have storage, but need to reset it. */
410 {
411 ntype = *typeptr;
412 chain = TYPE_CHAIN (ntype);
413 smash_type (ntype);
414 TYPE_CHAIN (ntype) = chain;
415 }
416
417 TYPE_TARGET_TYPE (ntype) = type;
418 TYPE_REFERENCE_TYPE (type) = ntype;
419
420 /* FIXME! Assume the machine has only one representation for
421 references, and that it matches the (only) representation for
422 pointers! */
423
424 TYPE_LENGTH (ntype) =
425 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
426 TYPE_CODE (ntype) = TYPE_CODE_REF;
427
428 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
429 TYPE_REFERENCE_TYPE (type) = ntype;
430
431 /* Update the length of all the other variants of this type. */
432 chain = TYPE_CHAIN (ntype);
433 while (chain != ntype)
434 {
435 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
436 chain = TYPE_CHAIN (chain);
437 }
438
439 return ntype;
440 }
441
442 /* Same as above, but caller doesn't care about memory allocation
443 details. */
444
445 struct type *
446 lookup_reference_type (struct type *type)
447 {
448 return make_reference_type (type, (struct type **) 0);
449 }
450
451 /* Lookup a function type that returns type TYPE. TYPEPTR, if
452 nonzero, points to a pointer to memory where the function type
453 should be stored. If *TYPEPTR is zero, update it to point to the
454 function type we return. We allocate new memory if needed. */
455
456 struct type *
457 make_function_type (struct type *type, struct type **typeptr)
458 {
459 struct type *ntype; /* New type */
460
461 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
462 {
463 ntype = alloc_type_copy (type);
464 if (typeptr)
465 *typeptr = ntype;
466 }
467 else /* We have storage, but need to reset it. */
468 {
469 ntype = *typeptr;
470 smash_type (ntype);
471 }
472
473 TYPE_TARGET_TYPE (ntype) = type;
474
475 TYPE_LENGTH (ntype) = 1;
476 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
477
478 INIT_FUNC_SPECIFIC (ntype);
479
480 return ntype;
481 }
482
483 /* Given a type TYPE, return a type of functions that return that type.
484 May need to construct such a type if this is the first use. */
485
486 struct type *
487 lookup_function_type (struct type *type)
488 {
489 return make_function_type (type, (struct type **) 0);
490 }
491
492 /* Given a type TYPE and argument types, return the appropriate
493 function type. If the final type in PARAM_TYPES is NULL, make a
494 varargs function. */
495
496 struct type *
497 lookup_function_type_with_arguments (struct type *type,
498 int nparams,
499 struct type **param_types)
500 {
501 struct type *fn = make_function_type (type, (struct type **) 0);
502 int i;
503
504 if (nparams > 0)
505 {
506 if (param_types[nparams - 1] == NULL)
507 {
508 --nparams;
509 TYPE_VARARGS (fn) = 1;
510 }
511 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
512 == TYPE_CODE_VOID)
513 {
514 --nparams;
515 /* Caller should have ensured this. */
516 gdb_assert (nparams == 0);
517 TYPE_PROTOTYPED (fn) = 1;
518 }
519 }
520
521 TYPE_NFIELDS (fn) = nparams;
522 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
523 for (i = 0; i < nparams; ++i)
524 TYPE_FIELD_TYPE (fn, i) = param_types[i];
525
526 return fn;
527 }
528
529 /* Identify address space identifier by name --
530 return the integer flag defined in gdbtypes.h. */
531
532 int
533 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
534 {
535 int type_flags;
536
537 /* Check for known address space delimiters. */
538 if (!strcmp (space_identifier, "code"))
539 return TYPE_INSTANCE_FLAG_CODE_SPACE;
540 else if (!strcmp (space_identifier, "data"))
541 return TYPE_INSTANCE_FLAG_DATA_SPACE;
542 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
543 && gdbarch_address_class_name_to_type_flags (gdbarch,
544 space_identifier,
545 &type_flags))
546 return type_flags;
547 else
548 error (_("Unknown address space specifier: \"%s\""), space_identifier);
549 }
550
551 /* Identify address space identifier by integer flag as defined in
552 gdbtypes.h -- return the string version of the adress space name. */
553
554 const char *
555 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
556 {
557 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
558 return "code";
559 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
560 return "data";
561 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
562 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
563 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
564 else
565 return NULL;
566 }
567
568 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
569
570 If STORAGE is non-NULL, create the new type instance there.
571 STORAGE must be in the same obstack as TYPE. */
572
573 static struct type *
574 make_qualified_type (struct type *type, int new_flags,
575 struct type *storage)
576 {
577 struct type *ntype;
578
579 ntype = type;
580 do
581 {
582 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
583 return ntype;
584 ntype = TYPE_CHAIN (ntype);
585 }
586 while (ntype != type);
587
588 /* Create a new type instance. */
589 if (storage == NULL)
590 ntype = alloc_type_instance (type);
591 else
592 {
593 /* If STORAGE was provided, it had better be in the same objfile
594 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
595 if one objfile is freed and the other kept, we'd have
596 dangling pointers. */
597 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
598
599 ntype = storage;
600 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
601 TYPE_CHAIN (ntype) = ntype;
602 }
603
604 /* Pointers or references to the original type are not relevant to
605 the new type. */
606 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
607 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
608
609 /* Chain the new qualified type to the old type. */
610 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
611 TYPE_CHAIN (type) = ntype;
612
613 /* Now set the instance flags and return the new type. */
614 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
615
616 /* Set length of new type to that of the original type. */
617 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
618
619 return ntype;
620 }
621
622 /* Make an address-space-delimited variant of a type -- a type that
623 is identical to the one supplied except that it has an address
624 space attribute attached to it (such as "code" or "data").
625
626 The space attributes "code" and "data" are for Harvard
627 architectures. The address space attributes are for architectures
628 which have alternately sized pointers or pointers with alternate
629 representations. */
630
631 struct type *
632 make_type_with_address_space (struct type *type, int space_flag)
633 {
634 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
635 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
636 | TYPE_INSTANCE_FLAG_DATA_SPACE
637 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
638 | space_flag);
639
640 return make_qualified_type (type, new_flags, NULL);
641 }
642
643 /* Make a "c-v" variant of a type -- a type that is identical to the
644 one supplied except that it may have const or volatile attributes
645 CNST is a flag for setting the const attribute
646 VOLTL is a flag for setting the volatile attribute
647 TYPE is the base type whose variant we are creating.
648
649 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
650 storage to hold the new qualified type; *TYPEPTR and TYPE must be
651 in the same objfile. Otherwise, allocate fresh memory for the new
652 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
653 new type we construct. */
654
655 struct type *
656 make_cv_type (int cnst, int voltl,
657 struct type *type,
658 struct type **typeptr)
659 {
660 struct type *ntype; /* New type */
661
662 int new_flags = (TYPE_INSTANCE_FLAGS (type)
663 & ~(TYPE_INSTANCE_FLAG_CONST
664 | TYPE_INSTANCE_FLAG_VOLATILE));
665
666 if (cnst)
667 new_flags |= TYPE_INSTANCE_FLAG_CONST;
668
669 if (voltl)
670 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
671
672 if (typeptr && *typeptr != NULL)
673 {
674 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
675 a C-V variant chain that threads across objfiles: if one
676 objfile gets freed, then the other has a broken C-V chain.
677
678 This code used to try to copy over the main type from TYPE to
679 *TYPEPTR if they were in different objfiles, but that's
680 wrong, too: TYPE may have a field list or member function
681 lists, which refer to types of their own, etc. etc. The
682 whole shebang would need to be copied over recursively; you
683 can't have inter-objfile pointers. The only thing to do is
684 to leave stub types as stub types, and look them up afresh by
685 name each time you encounter them. */
686 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
687 }
688
689 ntype = make_qualified_type (type, new_flags,
690 typeptr ? *typeptr : NULL);
691
692 if (typeptr != NULL)
693 *typeptr = ntype;
694
695 return ntype;
696 }
697
698 /* Make a 'restrict'-qualified version of TYPE. */
699
700 struct type *
701 make_restrict_type (struct type *type)
702 {
703 return make_qualified_type (type,
704 (TYPE_INSTANCE_FLAGS (type)
705 | TYPE_INSTANCE_FLAG_RESTRICT),
706 NULL);
707 }
708
709 /* Replace the contents of ntype with the type *type. This changes the
710 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
711 the changes are propogated to all types in the TYPE_CHAIN.
712
713 In order to build recursive types, it's inevitable that we'll need
714 to update types in place --- but this sort of indiscriminate
715 smashing is ugly, and needs to be replaced with something more
716 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
717 clear if more steps are needed. */
718
719 void
720 replace_type (struct type *ntype, struct type *type)
721 {
722 struct type *chain;
723
724 /* These two types had better be in the same objfile. Otherwise,
725 the assignment of one type's main type structure to the other
726 will produce a type with references to objects (names; field
727 lists; etc.) allocated on an objfile other than its own. */
728 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
729
730 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
731
732 /* The type length is not a part of the main type. Update it for
733 each type on the variant chain. */
734 chain = ntype;
735 do
736 {
737 /* Assert that this element of the chain has no address-class bits
738 set in its flags. Such type variants might have type lengths
739 which are supposed to be different from the non-address-class
740 variants. This assertion shouldn't ever be triggered because
741 symbol readers which do construct address-class variants don't
742 call replace_type(). */
743 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
744
745 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
746 chain = TYPE_CHAIN (chain);
747 }
748 while (ntype != chain);
749
750 /* Assert that the two types have equivalent instance qualifiers.
751 This should be true for at least all of our debug readers. */
752 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
753 }
754
755 /* Implement direct support for MEMBER_TYPE in GNU C++.
756 May need to construct such a type if this is the first use.
757 The TYPE is the type of the member. The DOMAIN is the type
758 of the aggregate that the member belongs to. */
759
760 struct type *
761 lookup_memberptr_type (struct type *type, struct type *domain)
762 {
763 struct type *mtype;
764
765 mtype = alloc_type_copy (type);
766 smash_to_memberptr_type (mtype, domain, type);
767 return mtype;
768 }
769
770 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
771
772 struct type *
773 lookup_methodptr_type (struct type *to_type)
774 {
775 struct type *mtype;
776
777 mtype = alloc_type_copy (to_type);
778 smash_to_methodptr_type (mtype, to_type);
779 return mtype;
780 }
781
782 /* Allocate a stub method whose return type is TYPE. This apparently
783 happens for speed of symbol reading, since parsing out the
784 arguments to the method is cpu-intensive, the way we are doing it.
785 So, we will fill in arguments later. This always returns a fresh
786 type. */
787
788 struct type *
789 allocate_stub_method (struct type *type)
790 {
791 struct type *mtype;
792
793 mtype = alloc_type_copy (type);
794 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
795 TYPE_LENGTH (mtype) = 1;
796 TYPE_STUB (mtype) = 1;
797 TYPE_TARGET_TYPE (mtype) = type;
798 /* _DOMAIN_TYPE (mtype) = unknown yet */
799 return mtype;
800 }
801
802 /* Create a range type with a dynamic range from LOW_BOUND to
803 HIGH_BOUND, inclusive. See create_range_type for further details. */
804
805 struct type *
806 create_range_type (struct type *result_type, struct type *index_type,
807 const struct dynamic_prop *low_bound,
808 const struct dynamic_prop *high_bound)
809 {
810 if (result_type == NULL)
811 result_type = alloc_type_copy (index_type);
812 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
813 TYPE_TARGET_TYPE (result_type) = index_type;
814 if (TYPE_STUB (index_type))
815 TYPE_TARGET_STUB (result_type) = 1;
816 else
817 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
818
819 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
820 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
821 TYPE_RANGE_DATA (result_type)->low = *low_bound;
822 TYPE_RANGE_DATA (result_type)->high = *high_bound;
823
824 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
825 TYPE_UNSIGNED (result_type) = 1;
826
827 return result_type;
828 }
829
830 /* Create a range type using either a blank type supplied in
831 RESULT_TYPE, or creating a new type, inheriting the objfile from
832 INDEX_TYPE.
833
834 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
835 to HIGH_BOUND, inclusive.
836
837 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
838 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
839
840 struct type *
841 create_static_range_type (struct type *result_type, struct type *index_type,
842 LONGEST low_bound, LONGEST high_bound)
843 {
844 struct dynamic_prop low, high;
845
846 low.kind = PROP_CONST;
847 low.data.const_val = low_bound;
848
849 high.kind = PROP_CONST;
850 high.data.const_val = high_bound;
851
852 result_type = create_range_type (result_type, index_type, &low, &high);
853
854 return result_type;
855 }
856
857 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
858 are static, otherwise returns 0. */
859
860 static int
861 has_static_range (const struct range_bounds *bounds)
862 {
863 return (bounds->low.kind == PROP_CONST
864 && bounds->high.kind == PROP_CONST);
865 }
866
867
868 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
869 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
870 bounds will fit in LONGEST), or -1 otherwise. */
871
872 int
873 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
874 {
875 CHECK_TYPEDEF (type);
876 switch (TYPE_CODE (type))
877 {
878 case TYPE_CODE_RANGE:
879 *lowp = TYPE_LOW_BOUND (type);
880 *highp = TYPE_HIGH_BOUND (type);
881 return 1;
882 case TYPE_CODE_ENUM:
883 if (TYPE_NFIELDS (type) > 0)
884 {
885 /* The enums may not be sorted by value, so search all
886 entries. */
887 int i;
888
889 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
890 for (i = 0; i < TYPE_NFIELDS (type); i++)
891 {
892 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
893 *lowp = TYPE_FIELD_ENUMVAL (type, i);
894 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
895 *highp = TYPE_FIELD_ENUMVAL (type, i);
896 }
897
898 /* Set unsigned indicator if warranted. */
899 if (*lowp >= 0)
900 {
901 TYPE_UNSIGNED (type) = 1;
902 }
903 }
904 else
905 {
906 *lowp = 0;
907 *highp = -1;
908 }
909 return 0;
910 case TYPE_CODE_BOOL:
911 *lowp = 0;
912 *highp = 1;
913 return 0;
914 case TYPE_CODE_INT:
915 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
916 return -1;
917 if (!TYPE_UNSIGNED (type))
918 {
919 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
920 *highp = -*lowp - 1;
921 return 0;
922 }
923 /* ... fall through for unsigned ints ... */
924 case TYPE_CODE_CHAR:
925 *lowp = 0;
926 /* This round-about calculation is to avoid shifting by
927 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
928 if TYPE_LENGTH (type) == sizeof (LONGEST). */
929 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
930 *highp = (*highp - 1) | *highp;
931 return 0;
932 default:
933 return -1;
934 }
935 }
936
937 /* Assuming TYPE is a simple, non-empty array type, compute its upper
938 and lower bound. Save the low bound into LOW_BOUND if not NULL.
939 Save the high bound into HIGH_BOUND if not NULL.
940
941 Return 1 if the operation was successful. Return zero otherwise,
942 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
943
944 We now simply use get_discrete_bounds call to get the values
945 of the low and high bounds.
946 get_discrete_bounds can return three values:
947 1, meaning that index is a range,
948 0, meaning that index is a discrete type,
949 or -1 for failure. */
950
951 int
952 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
953 {
954 struct type *index = TYPE_INDEX_TYPE (type);
955 LONGEST low = 0;
956 LONGEST high = 0;
957 int res;
958
959 if (index == NULL)
960 return 0;
961
962 res = get_discrete_bounds (index, &low, &high);
963 if (res == -1)
964 return 0;
965
966 /* Check if the array bounds are undefined. */
967 if (res == 1
968 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
969 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
970 return 0;
971
972 if (low_bound)
973 *low_bound = low;
974
975 if (high_bound)
976 *high_bound = high;
977
978 return 1;
979 }
980
981 /* Create an array type using either a blank type supplied in
982 RESULT_TYPE, or creating a new type, inheriting the objfile from
983 RANGE_TYPE.
984
985 Elements will be of type ELEMENT_TYPE, the indices will be of type
986 RANGE_TYPE.
987
988 If BIT_STRIDE is not zero, build a packed array type whose element
989 size is BIT_STRIDE. Otherwise, ignore this parameter.
990
991 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
992 sure it is TYPE_CODE_UNDEF before we bash it into an array
993 type? */
994
995 struct type *
996 create_array_type_with_stride (struct type *result_type,
997 struct type *element_type,
998 struct type *range_type,
999 unsigned int bit_stride)
1000 {
1001 if (result_type == NULL)
1002 result_type = alloc_type_copy (range_type);
1003
1004 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1005 TYPE_TARGET_TYPE (result_type) = element_type;
1006 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1007 {
1008 LONGEST low_bound, high_bound;
1009
1010 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1011 low_bound = high_bound = 0;
1012 CHECK_TYPEDEF (element_type);
1013 /* Be careful when setting the array length. Ada arrays can be
1014 empty arrays with the high_bound being smaller than the low_bound.
1015 In such cases, the array length should be zero. */
1016 if (high_bound < low_bound)
1017 TYPE_LENGTH (result_type) = 0;
1018 else if (bit_stride > 0)
1019 TYPE_LENGTH (result_type) =
1020 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1021 else
1022 TYPE_LENGTH (result_type) =
1023 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1024 }
1025 else
1026 {
1027 /* This type is dynamic and its length needs to be computed
1028 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1029 undefined by setting it to zero. Although we are not expected
1030 to trust TYPE_LENGTH in this case, setting the size to zero
1031 allows us to avoid allocating objects of random sizes in case
1032 we accidently do. */
1033 TYPE_LENGTH (result_type) = 0;
1034 }
1035
1036 TYPE_NFIELDS (result_type) = 1;
1037 TYPE_FIELDS (result_type) =
1038 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1039 TYPE_INDEX_TYPE (result_type) = range_type;
1040 TYPE_VPTR_FIELDNO (result_type) = -1;
1041 if (bit_stride > 0)
1042 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1043
1044 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1045 if (TYPE_LENGTH (result_type) == 0)
1046 TYPE_TARGET_STUB (result_type) = 1;
1047
1048 return result_type;
1049 }
1050
1051 /* Same as create_array_type_with_stride but with no bit_stride
1052 (BIT_STRIDE = 0), thus building an unpacked array. */
1053
1054 struct type *
1055 create_array_type (struct type *result_type,
1056 struct type *element_type,
1057 struct type *range_type)
1058 {
1059 return create_array_type_with_stride (result_type, element_type,
1060 range_type, 0);
1061 }
1062
1063 struct type *
1064 lookup_array_range_type (struct type *element_type,
1065 LONGEST low_bound, LONGEST high_bound)
1066 {
1067 struct gdbarch *gdbarch = get_type_arch (element_type);
1068 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1069 struct type *range_type
1070 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1071
1072 return create_array_type (NULL, element_type, range_type);
1073 }
1074
1075 /* Create a string type using either a blank type supplied in
1076 RESULT_TYPE, or creating a new type. String types are similar
1077 enough to array of char types that we can use create_array_type to
1078 build the basic type and then bash it into a string type.
1079
1080 For fixed length strings, the range type contains 0 as the lower
1081 bound and the length of the string minus one as the upper bound.
1082
1083 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1084 sure it is TYPE_CODE_UNDEF before we bash it into a string
1085 type? */
1086
1087 struct type *
1088 create_string_type (struct type *result_type,
1089 struct type *string_char_type,
1090 struct type *range_type)
1091 {
1092 result_type = create_array_type (result_type,
1093 string_char_type,
1094 range_type);
1095 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1096 return result_type;
1097 }
1098
1099 struct type *
1100 lookup_string_range_type (struct type *string_char_type,
1101 LONGEST low_bound, LONGEST high_bound)
1102 {
1103 struct type *result_type;
1104
1105 result_type = lookup_array_range_type (string_char_type,
1106 low_bound, high_bound);
1107 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1108 return result_type;
1109 }
1110
1111 struct type *
1112 create_set_type (struct type *result_type, struct type *domain_type)
1113 {
1114 if (result_type == NULL)
1115 result_type = alloc_type_copy (domain_type);
1116
1117 TYPE_CODE (result_type) = TYPE_CODE_SET;
1118 TYPE_NFIELDS (result_type) = 1;
1119 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1120
1121 if (!TYPE_STUB (domain_type))
1122 {
1123 LONGEST low_bound, high_bound, bit_length;
1124
1125 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1126 low_bound = high_bound = 0;
1127 bit_length = high_bound - low_bound + 1;
1128 TYPE_LENGTH (result_type)
1129 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1130 if (low_bound >= 0)
1131 TYPE_UNSIGNED (result_type) = 1;
1132 }
1133 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1134
1135 return result_type;
1136 }
1137
1138 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1139 and any array types nested inside it. */
1140
1141 void
1142 make_vector_type (struct type *array_type)
1143 {
1144 struct type *inner_array, *elt_type;
1145 int flags;
1146
1147 /* Find the innermost array type, in case the array is
1148 multi-dimensional. */
1149 inner_array = array_type;
1150 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1151 inner_array = TYPE_TARGET_TYPE (inner_array);
1152
1153 elt_type = TYPE_TARGET_TYPE (inner_array);
1154 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1155 {
1156 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1157 elt_type = make_qualified_type (elt_type, flags, NULL);
1158 TYPE_TARGET_TYPE (inner_array) = elt_type;
1159 }
1160
1161 TYPE_VECTOR (array_type) = 1;
1162 }
1163
1164 struct type *
1165 init_vector_type (struct type *elt_type, int n)
1166 {
1167 struct type *array_type;
1168
1169 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1170 make_vector_type (array_type);
1171 return array_type;
1172 }
1173
1174 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1175 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1176 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1177 TYPE doesn't include the offset (that's the value of the MEMBER
1178 itself), but does include the structure type into which it points
1179 (for some reason).
1180
1181 When "smashing" the type, we preserve the objfile that the old type
1182 pointed to, since we aren't changing where the type is actually
1183 allocated. */
1184
1185 void
1186 smash_to_memberptr_type (struct type *type, struct type *domain,
1187 struct type *to_type)
1188 {
1189 smash_type (type);
1190 TYPE_TARGET_TYPE (type) = to_type;
1191 TYPE_DOMAIN_TYPE (type) = domain;
1192 /* Assume that a data member pointer is the same size as a normal
1193 pointer. */
1194 TYPE_LENGTH (type)
1195 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1196 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1197 }
1198
1199 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1200
1201 When "smashing" the type, we preserve the objfile that the old type
1202 pointed to, since we aren't changing where the type is actually
1203 allocated. */
1204
1205 void
1206 smash_to_methodptr_type (struct type *type, struct type *to_type)
1207 {
1208 smash_type (type);
1209 TYPE_TARGET_TYPE (type) = to_type;
1210 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1211 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1212 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1213 }
1214
1215 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1216 METHOD just means `function that gets an extra "this" argument'.
1217
1218 When "smashing" the type, we preserve the objfile that the old type
1219 pointed to, since we aren't changing where the type is actually
1220 allocated. */
1221
1222 void
1223 smash_to_method_type (struct type *type, struct type *domain,
1224 struct type *to_type, struct field *args,
1225 int nargs, int varargs)
1226 {
1227 smash_type (type);
1228 TYPE_TARGET_TYPE (type) = to_type;
1229 TYPE_DOMAIN_TYPE (type) = domain;
1230 TYPE_FIELDS (type) = args;
1231 TYPE_NFIELDS (type) = nargs;
1232 if (varargs)
1233 TYPE_VARARGS (type) = 1;
1234 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1235 TYPE_CODE (type) = TYPE_CODE_METHOD;
1236 }
1237
1238 /* Return a typename for a struct/union/enum type without "struct ",
1239 "union ", or "enum ". If the type has a NULL name, return NULL. */
1240
1241 const char *
1242 type_name_no_tag (const struct type *type)
1243 {
1244 if (TYPE_TAG_NAME (type) != NULL)
1245 return TYPE_TAG_NAME (type);
1246
1247 /* Is there code which expects this to return the name if there is
1248 no tag name? My guess is that this is mainly used for C++ in
1249 cases where the two will always be the same. */
1250 return TYPE_NAME (type);
1251 }
1252
1253 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1254 Since GCC PR debug/47510 DWARF provides associated information to detect the
1255 anonymous class linkage name from its typedef.
1256
1257 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1258 apply it itself. */
1259
1260 const char *
1261 type_name_no_tag_or_error (struct type *type)
1262 {
1263 struct type *saved_type = type;
1264 const char *name;
1265 struct objfile *objfile;
1266
1267 CHECK_TYPEDEF (type);
1268
1269 name = type_name_no_tag (type);
1270 if (name != NULL)
1271 return name;
1272
1273 name = type_name_no_tag (saved_type);
1274 objfile = TYPE_OBJFILE (saved_type);
1275 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1276 name ? name : "<anonymous>",
1277 objfile ? objfile_name (objfile) : "<arch>");
1278 }
1279
1280 /* Lookup a typedef or primitive type named NAME, visible in lexical
1281 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1282 suitably defined. */
1283
1284 struct type *
1285 lookup_typename (const struct language_defn *language,
1286 struct gdbarch *gdbarch, const char *name,
1287 const struct block *block, int noerr)
1288 {
1289 struct symbol *sym;
1290 struct type *type;
1291
1292 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1293 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1294 return SYMBOL_TYPE (sym);
1295
1296 type = language_lookup_primitive_type_by_name (language, gdbarch, name);
1297 if (type)
1298 return type;
1299
1300 if (noerr)
1301 return NULL;
1302 error (_("No type named %s."), name);
1303 }
1304
1305 struct type *
1306 lookup_unsigned_typename (const struct language_defn *language,
1307 struct gdbarch *gdbarch, const char *name)
1308 {
1309 char *uns = alloca (strlen (name) + 10);
1310
1311 strcpy (uns, "unsigned ");
1312 strcpy (uns + 9, name);
1313 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1314 }
1315
1316 struct type *
1317 lookup_signed_typename (const struct language_defn *language,
1318 struct gdbarch *gdbarch, const char *name)
1319 {
1320 struct type *t;
1321 char *uns = alloca (strlen (name) + 8);
1322
1323 strcpy (uns, "signed ");
1324 strcpy (uns + 7, name);
1325 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1326 /* If we don't find "signed FOO" just try again with plain "FOO". */
1327 if (t != NULL)
1328 return t;
1329 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1330 }
1331
1332 /* Lookup a structure type named "struct NAME",
1333 visible in lexical block BLOCK. */
1334
1335 struct type *
1336 lookup_struct (const char *name, const struct block *block)
1337 {
1338 struct symbol *sym;
1339
1340 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1341
1342 if (sym == NULL)
1343 {
1344 error (_("No struct type named %s."), name);
1345 }
1346 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1347 {
1348 error (_("This context has class, union or enum %s, not a struct."),
1349 name);
1350 }
1351 return (SYMBOL_TYPE (sym));
1352 }
1353
1354 /* Lookup a union type named "union NAME",
1355 visible in lexical block BLOCK. */
1356
1357 struct type *
1358 lookup_union (const char *name, const struct block *block)
1359 {
1360 struct symbol *sym;
1361 struct type *t;
1362
1363 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1364
1365 if (sym == NULL)
1366 error (_("No union type named %s."), name);
1367
1368 t = SYMBOL_TYPE (sym);
1369
1370 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1371 return t;
1372
1373 /* If we get here, it's not a union. */
1374 error (_("This context has class, struct or enum %s, not a union."),
1375 name);
1376 }
1377
1378 /* Lookup an enum type named "enum NAME",
1379 visible in lexical block BLOCK. */
1380
1381 struct type *
1382 lookup_enum (const char *name, const struct block *block)
1383 {
1384 struct symbol *sym;
1385
1386 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1387 if (sym == NULL)
1388 {
1389 error (_("No enum type named %s."), name);
1390 }
1391 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1392 {
1393 error (_("This context has class, struct or union %s, not an enum."),
1394 name);
1395 }
1396 return (SYMBOL_TYPE (sym));
1397 }
1398
1399 /* Lookup a template type named "template NAME<TYPE>",
1400 visible in lexical block BLOCK. */
1401
1402 struct type *
1403 lookup_template_type (char *name, struct type *type,
1404 const struct block *block)
1405 {
1406 struct symbol *sym;
1407 char *nam = (char *)
1408 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1409
1410 strcpy (nam, name);
1411 strcat (nam, "<");
1412 strcat (nam, TYPE_NAME (type));
1413 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1414
1415 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1416
1417 if (sym == NULL)
1418 {
1419 error (_("No template type named %s."), name);
1420 }
1421 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1422 {
1423 error (_("This context has class, union or enum %s, not a struct."),
1424 name);
1425 }
1426 return (SYMBOL_TYPE (sym));
1427 }
1428
1429 /* Given a type TYPE, lookup the type of the component of type named
1430 NAME.
1431
1432 TYPE can be either a struct or union, or a pointer or reference to
1433 a struct or union. If it is a pointer or reference, its target
1434 type is automatically used. Thus '.' and '->' are interchangable,
1435 as specified for the definitions of the expression element types
1436 STRUCTOP_STRUCT and STRUCTOP_PTR.
1437
1438 If NOERR is nonzero, return zero if NAME is not suitably defined.
1439 If NAME is the name of a baseclass type, return that type. */
1440
1441 struct type *
1442 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1443 {
1444 int i;
1445 char *typename;
1446
1447 for (;;)
1448 {
1449 CHECK_TYPEDEF (type);
1450 if (TYPE_CODE (type) != TYPE_CODE_PTR
1451 && TYPE_CODE (type) != TYPE_CODE_REF)
1452 break;
1453 type = TYPE_TARGET_TYPE (type);
1454 }
1455
1456 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1457 && TYPE_CODE (type) != TYPE_CODE_UNION)
1458 {
1459 typename = type_to_string (type);
1460 make_cleanup (xfree, typename);
1461 error (_("Type %s is not a structure or union type."), typename);
1462 }
1463
1464 #if 0
1465 /* FIXME: This change put in by Michael seems incorrect for the case
1466 where the structure tag name is the same as the member name.
1467 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1468 foo; } bell;" Disabled by fnf. */
1469 {
1470 char *typename;
1471
1472 typename = type_name_no_tag (type);
1473 if (typename != NULL && strcmp (typename, name) == 0)
1474 return type;
1475 }
1476 #endif
1477
1478 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1479 {
1480 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1481
1482 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1483 {
1484 return TYPE_FIELD_TYPE (type, i);
1485 }
1486 else if (!t_field_name || *t_field_name == '\0')
1487 {
1488 struct type *subtype
1489 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1490
1491 if (subtype != NULL)
1492 return subtype;
1493 }
1494 }
1495
1496 /* OK, it's not in this class. Recursively check the baseclasses. */
1497 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1498 {
1499 struct type *t;
1500
1501 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1502 if (t != NULL)
1503 {
1504 return t;
1505 }
1506 }
1507
1508 if (noerr)
1509 {
1510 return NULL;
1511 }
1512
1513 typename = type_to_string (type);
1514 make_cleanup (xfree, typename);
1515 error (_("Type %s has no component named %s."), typename, name);
1516 }
1517
1518 /* Store in *MAX the largest number representable by unsigned integer type
1519 TYPE. */
1520
1521 void
1522 get_unsigned_type_max (struct type *type, ULONGEST *max)
1523 {
1524 unsigned int n;
1525
1526 CHECK_TYPEDEF (type);
1527 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1528 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1529
1530 /* Written this way to avoid overflow. */
1531 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1532 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1533 }
1534
1535 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1536 signed integer type TYPE. */
1537
1538 void
1539 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1540 {
1541 unsigned int n;
1542
1543 CHECK_TYPEDEF (type);
1544 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1545 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1546
1547 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1548 *min = -((ULONGEST) 1 << (n - 1));
1549 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1550 }
1551
1552 /* Lookup the vptr basetype/fieldno values for TYPE.
1553 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1554 vptr_fieldno. Also, if found and basetype is from the same objfile,
1555 cache the results.
1556 If not found, return -1 and ignore BASETYPEP.
1557 Callers should be aware that in some cases (for example,
1558 the type or one of its baseclasses is a stub type and we are
1559 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1560 this function will not be able to find the
1561 virtual function table pointer, and vptr_fieldno will remain -1 and
1562 vptr_basetype will remain NULL or incomplete. */
1563
1564 int
1565 get_vptr_fieldno (struct type *type, struct type **basetypep)
1566 {
1567 CHECK_TYPEDEF (type);
1568
1569 if (TYPE_VPTR_FIELDNO (type) < 0)
1570 {
1571 int i;
1572
1573 /* We must start at zero in case the first (and only) baseclass
1574 is virtual (and hence we cannot share the table pointer). */
1575 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1576 {
1577 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1578 int fieldno;
1579 struct type *basetype;
1580
1581 fieldno = get_vptr_fieldno (baseclass, &basetype);
1582 if (fieldno >= 0)
1583 {
1584 /* If the type comes from a different objfile we can't cache
1585 it, it may have a different lifetime. PR 2384 */
1586 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1587 {
1588 TYPE_VPTR_FIELDNO (type) = fieldno;
1589 TYPE_VPTR_BASETYPE (type) = basetype;
1590 }
1591 if (basetypep)
1592 *basetypep = basetype;
1593 return fieldno;
1594 }
1595 }
1596
1597 /* Not found. */
1598 return -1;
1599 }
1600 else
1601 {
1602 if (basetypep)
1603 *basetypep = TYPE_VPTR_BASETYPE (type);
1604 return TYPE_VPTR_FIELDNO (type);
1605 }
1606 }
1607
1608 static void
1609 stub_noname_complaint (void)
1610 {
1611 complaint (&symfile_complaints, _("stub type has NULL name"));
1612 }
1613
1614 /* See gdbtypes.h. */
1615
1616 int
1617 is_dynamic_type (struct type *type)
1618 {
1619 type = check_typedef (type);
1620
1621 if (TYPE_CODE (type) == TYPE_CODE_REF)
1622 type = check_typedef (TYPE_TARGET_TYPE (type));
1623
1624 switch (TYPE_CODE (type))
1625 {
1626 case TYPE_CODE_RANGE:
1627 return !has_static_range (TYPE_RANGE_DATA (type));
1628 break;
1629
1630 case TYPE_CODE_ARRAY:
1631 {
1632 gdb_assert (TYPE_NFIELDS (type) == 1);
1633
1634 /* The array is dynamic if either the bounds are dynamic,
1635 or the elements it contains have a dynamic contents. */
1636 if (is_dynamic_type (TYPE_INDEX_TYPE (type)))
1637 return 1;
1638 else
1639 return is_dynamic_type (TYPE_TARGET_TYPE (type));
1640 break;
1641 }
1642 default:
1643 return 0;
1644 break;
1645 }
1646 }
1647
1648 static struct type *
1649 resolve_dynamic_range (struct type *dyn_range_type)
1650 {
1651 CORE_ADDR value;
1652 struct type *static_range_type;
1653 const struct dynamic_prop *prop;
1654 const struct dwarf2_locexpr_baton *baton;
1655 struct dynamic_prop low_bound, high_bound;
1656
1657 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1658
1659 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1660 if (dwarf2_evaluate_property (prop, &value))
1661 {
1662 low_bound.kind = PROP_CONST;
1663 low_bound.data.const_val = value;
1664 }
1665 else
1666 {
1667 low_bound.kind = PROP_UNDEFINED;
1668 low_bound.data.const_val = 0;
1669 }
1670
1671 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1672 if (dwarf2_evaluate_property (prop, &value))
1673 {
1674 high_bound.kind = PROP_CONST;
1675 high_bound.data.const_val = value;
1676
1677 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1678 high_bound.data.const_val
1679 = low_bound.data.const_val + high_bound.data.const_val - 1;
1680 }
1681 else
1682 {
1683 high_bound.kind = PROP_UNDEFINED;
1684 high_bound.data.const_val = 0;
1685 }
1686
1687 static_range_type = create_range_type (copy_type (dyn_range_type),
1688 TYPE_TARGET_TYPE (dyn_range_type),
1689 &low_bound, &high_bound);
1690 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1691 return static_range_type;
1692 }
1693
1694 /* Resolves dynamic bound values of an array type TYPE to static ones.
1695 ADDRESS might be needed to resolve the subrange bounds, it is the location
1696 of the associated array. */
1697
1698 static struct type *
1699 resolve_dynamic_array (struct type *type)
1700 {
1701 CORE_ADDR value;
1702 struct type *elt_type;
1703 struct type *range_type;
1704 struct type *ary_dim;
1705
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1707
1708 elt_type = type;
1709 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1710 range_type = resolve_dynamic_range (range_type);
1711
1712 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1713
1714 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1715 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type));
1716 else
1717 elt_type = TYPE_TARGET_TYPE (type);
1718
1719 return create_array_type (copy_type (type),
1720 elt_type,
1721 range_type);
1722 }
1723
1724 /* See gdbtypes.h */
1725
1726 struct type *
1727 resolve_dynamic_type (struct type *type, CORE_ADDR addr)
1728 {
1729 struct type *real_type = check_typedef (type);
1730 struct type *resolved_type = type;
1731
1732 if (!is_dynamic_type (real_type))
1733 return type;
1734
1735 switch (TYPE_CODE (type))
1736 {
1737 case TYPE_CODE_TYPEDEF:
1738 resolved_type = copy_type (type);
1739 TYPE_TARGET_TYPE (resolved_type)
1740 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), addr);
1741 break;
1742
1743 case TYPE_CODE_REF:
1744 {
1745 CORE_ADDR target_addr = read_memory_typed_address (addr, type);
1746
1747 resolved_type = copy_type (type);
1748 TYPE_TARGET_TYPE (resolved_type)
1749 = resolve_dynamic_type (TYPE_TARGET_TYPE (type), target_addr);
1750 break;
1751 }
1752
1753 case TYPE_CODE_ARRAY:
1754 resolved_type = resolve_dynamic_array (type);
1755 break;
1756
1757 case TYPE_CODE_RANGE:
1758 resolved_type = resolve_dynamic_range (type);
1759 break;
1760 }
1761
1762 return resolved_type;
1763 }
1764
1765 /* Find the real type of TYPE. This function returns the real type,
1766 after removing all layers of typedefs, and completing opaque or stub
1767 types. Completion changes the TYPE argument, but stripping of
1768 typedefs does not.
1769
1770 Instance flags (e.g. const/volatile) are preserved as typedefs are
1771 stripped. If necessary a new qualified form of the underlying type
1772 is created.
1773
1774 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1775 not been computed and we're either in the middle of reading symbols, or
1776 there was no name for the typedef in the debug info.
1777
1778 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
1779 QUITs in the symbol reading code can also throw.
1780 Thus this function can throw an exception.
1781
1782 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1783 the target type.
1784
1785 If this is a stubbed struct (i.e. declared as struct foo *), see if
1786 we can find a full definition in some other file. If so, copy this
1787 definition, so we can use it in future. There used to be a comment
1788 (but not any code) that if we don't find a full definition, we'd
1789 set a flag so we don't spend time in the future checking the same
1790 type. That would be a mistake, though--we might load in more
1791 symbols which contain a full definition for the type. */
1792
1793 struct type *
1794 check_typedef (struct type *type)
1795 {
1796 struct type *orig_type = type;
1797 /* While we're removing typedefs, we don't want to lose qualifiers.
1798 E.g., const/volatile. */
1799 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1800
1801 gdb_assert (type);
1802
1803 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1804 {
1805 if (!TYPE_TARGET_TYPE (type))
1806 {
1807 const char *name;
1808 struct symbol *sym;
1809
1810 /* It is dangerous to call lookup_symbol if we are currently
1811 reading a symtab. Infinite recursion is one danger. */
1812 if (currently_reading_symtab)
1813 return make_qualified_type (type, instance_flags, NULL);
1814
1815 name = type_name_no_tag (type);
1816 /* FIXME: shouldn't we separately check the TYPE_NAME and
1817 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1818 VAR_DOMAIN as appropriate? (this code was written before
1819 TYPE_NAME and TYPE_TAG_NAME were separate). */
1820 if (name == NULL)
1821 {
1822 stub_noname_complaint ();
1823 return make_qualified_type (type, instance_flags, NULL);
1824 }
1825 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1826 if (sym)
1827 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1828 else /* TYPE_CODE_UNDEF */
1829 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1830 }
1831 type = TYPE_TARGET_TYPE (type);
1832
1833 /* Preserve the instance flags as we traverse down the typedef chain.
1834
1835 Handling address spaces/classes is nasty, what do we do if there's a
1836 conflict?
1837 E.g., what if an outer typedef marks the type as class_1 and an inner
1838 typedef marks the type as class_2?
1839 This is the wrong place to do such error checking. We leave it to
1840 the code that created the typedef in the first place to flag the
1841 error. We just pick the outer address space (akin to letting the
1842 outer cast in a chain of casting win), instead of assuming
1843 "it can't happen". */
1844 {
1845 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1846 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1847 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1848 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1849
1850 /* Treat code vs data spaces and address classes separately. */
1851 if ((instance_flags & ALL_SPACES) != 0)
1852 new_instance_flags &= ~ALL_SPACES;
1853 if ((instance_flags & ALL_CLASSES) != 0)
1854 new_instance_flags &= ~ALL_CLASSES;
1855
1856 instance_flags |= new_instance_flags;
1857 }
1858 }
1859
1860 /* If this is a struct/class/union with no fields, then check
1861 whether a full definition exists somewhere else. This is for
1862 systems where a type definition with no fields is issued for such
1863 types, instead of identifying them as stub types in the first
1864 place. */
1865
1866 if (TYPE_IS_OPAQUE (type)
1867 && opaque_type_resolution
1868 && !currently_reading_symtab)
1869 {
1870 const char *name = type_name_no_tag (type);
1871 struct type *newtype;
1872
1873 if (name == NULL)
1874 {
1875 stub_noname_complaint ();
1876 return make_qualified_type (type, instance_flags, NULL);
1877 }
1878 newtype = lookup_transparent_type (name);
1879
1880 if (newtype)
1881 {
1882 /* If the resolved type and the stub are in the same
1883 objfile, then replace the stub type with the real deal.
1884 But if they're in separate objfiles, leave the stub
1885 alone; we'll just look up the transparent type every time
1886 we call check_typedef. We can't create pointers between
1887 types allocated to different objfiles, since they may
1888 have different lifetimes. Trying to copy NEWTYPE over to
1889 TYPE's objfile is pointless, too, since you'll have to
1890 move over any other types NEWTYPE refers to, which could
1891 be an unbounded amount of stuff. */
1892 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1893 type = make_qualified_type (newtype,
1894 TYPE_INSTANCE_FLAGS (type),
1895 type);
1896 else
1897 type = newtype;
1898 }
1899 }
1900 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1901 types. */
1902 else if (TYPE_STUB (type) && !currently_reading_symtab)
1903 {
1904 const char *name = type_name_no_tag (type);
1905 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1906 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1907 as appropriate? (this code was written before TYPE_NAME and
1908 TYPE_TAG_NAME were separate). */
1909 struct symbol *sym;
1910
1911 if (name == NULL)
1912 {
1913 stub_noname_complaint ();
1914 return make_qualified_type (type, instance_flags, NULL);
1915 }
1916 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1917 if (sym)
1918 {
1919 /* Same as above for opaque types, we can replace the stub
1920 with the complete type only if they are in the same
1921 objfile. */
1922 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1923 type = make_qualified_type (SYMBOL_TYPE (sym),
1924 TYPE_INSTANCE_FLAGS (type),
1925 type);
1926 else
1927 type = SYMBOL_TYPE (sym);
1928 }
1929 }
1930
1931 if (TYPE_TARGET_STUB (type))
1932 {
1933 struct type *range_type;
1934 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1935
1936 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1937 {
1938 /* Nothing we can do. */
1939 }
1940 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1941 {
1942 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1943 TYPE_TARGET_STUB (type) = 0;
1944 }
1945 }
1946
1947 type = make_qualified_type (type, instance_flags, NULL);
1948
1949 /* Cache TYPE_LENGTH for future use. */
1950 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1951
1952 return type;
1953 }
1954
1955 /* Parse a type expression in the string [P..P+LENGTH). If an error
1956 occurs, silently return a void type. */
1957
1958 static struct type *
1959 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1960 {
1961 struct ui_file *saved_gdb_stderr;
1962 struct type *type = NULL; /* Initialize to keep gcc happy. */
1963 volatile struct gdb_exception except;
1964
1965 /* Suppress error messages. */
1966 saved_gdb_stderr = gdb_stderr;
1967 gdb_stderr = ui_file_new ();
1968
1969 /* Call parse_and_eval_type() without fear of longjmp()s. */
1970 TRY_CATCH (except, RETURN_MASK_ERROR)
1971 {
1972 type = parse_and_eval_type (p, length);
1973 }
1974
1975 if (except.reason < 0)
1976 type = builtin_type (gdbarch)->builtin_void;
1977
1978 /* Stop suppressing error messages. */
1979 ui_file_delete (gdb_stderr);
1980 gdb_stderr = saved_gdb_stderr;
1981
1982 return type;
1983 }
1984
1985 /* Ugly hack to convert method stubs into method types.
1986
1987 He ain't kiddin'. This demangles the name of the method into a
1988 string including argument types, parses out each argument type,
1989 generates a string casting a zero to that type, evaluates the
1990 string, and stuffs the resulting type into an argtype vector!!!
1991 Then it knows the type of the whole function (including argument
1992 types for overloading), which info used to be in the stab's but was
1993 removed to hack back the space required for them. */
1994
1995 static void
1996 check_stub_method (struct type *type, int method_id, int signature_id)
1997 {
1998 struct gdbarch *gdbarch = get_type_arch (type);
1999 struct fn_field *f;
2000 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2001 char *demangled_name = gdb_demangle (mangled_name,
2002 DMGL_PARAMS | DMGL_ANSI);
2003 char *argtypetext, *p;
2004 int depth = 0, argcount = 1;
2005 struct field *argtypes;
2006 struct type *mtype;
2007
2008 /* Make sure we got back a function string that we can use. */
2009 if (demangled_name)
2010 p = strchr (demangled_name, '(');
2011 else
2012 p = NULL;
2013
2014 if (demangled_name == NULL || p == NULL)
2015 error (_("Internal: Cannot demangle mangled name `%s'."),
2016 mangled_name);
2017
2018 /* Now, read in the parameters that define this type. */
2019 p += 1;
2020 argtypetext = p;
2021 while (*p)
2022 {
2023 if (*p == '(' || *p == '<')
2024 {
2025 depth += 1;
2026 }
2027 else if (*p == ')' || *p == '>')
2028 {
2029 depth -= 1;
2030 }
2031 else if (*p == ',' && depth == 0)
2032 {
2033 argcount += 1;
2034 }
2035
2036 p += 1;
2037 }
2038
2039 /* If we read one argument and it was ``void'', don't count it. */
2040 if (strncmp (argtypetext, "(void)", 6) == 0)
2041 argcount -= 1;
2042
2043 /* We need one extra slot, for the THIS pointer. */
2044
2045 argtypes = (struct field *)
2046 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2047 p = argtypetext;
2048
2049 /* Add THIS pointer for non-static methods. */
2050 f = TYPE_FN_FIELDLIST1 (type, method_id);
2051 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2052 argcount = 0;
2053 else
2054 {
2055 argtypes[0].type = lookup_pointer_type (type);
2056 argcount = 1;
2057 }
2058
2059 if (*p != ')') /* () means no args, skip while. */
2060 {
2061 depth = 0;
2062 while (*p)
2063 {
2064 if (depth <= 0 && (*p == ',' || *p == ')'))
2065 {
2066 /* Avoid parsing of ellipsis, they will be handled below.
2067 Also avoid ``void'' as above. */
2068 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2069 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2070 {
2071 argtypes[argcount].type =
2072 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2073 argcount += 1;
2074 }
2075 argtypetext = p + 1;
2076 }
2077
2078 if (*p == '(' || *p == '<')
2079 {
2080 depth += 1;
2081 }
2082 else if (*p == ')' || *p == '>')
2083 {
2084 depth -= 1;
2085 }
2086
2087 p += 1;
2088 }
2089 }
2090
2091 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2092
2093 /* Now update the old "stub" type into a real type. */
2094 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2095 TYPE_DOMAIN_TYPE (mtype) = type;
2096 TYPE_FIELDS (mtype) = argtypes;
2097 TYPE_NFIELDS (mtype) = argcount;
2098 TYPE_STUB (mtype) = 0;
2099 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2100 if (p[-2] == '.')
2101 TYPE_VARARGS (mtype) = 1;
2102
2103 xfree (demangled_name);
2104 }
2105
2106 /* This is the external interface to check_stub_method, above. This
2107 function unstubs all of the signatures for TYPE's METHOD_ID method
2108 name. After calling this function TYPE_FN_FIELD_STUB will be
2109 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2110 correct.
2111
2112 This function unfortunately can not die until stabs do. */
2113
2114 void
2115 check_stub_method_group (struct type *type, int method_id)
2116 {
2117 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2118 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2119 int j, found_stub = 0;
2120
2121 for (j = 0; j < len; j++)
2122 if (TYPE_FN_FIELD_STUB (f, j))
2123 {
2124 found_stub = 1;
2125 check_stub_method (type, method_id, j);
2126 }
2127
2128 /* GNU v3 methods with incorrect names were corrected when we read
2129 in type information, because it was cheaper to do it then. The
2130 only GNU v2 methods with incorrect method names are operators and
2131 destructors; destructors were also corrected when we read in type
2132 information.
2133
2134 Therefore the only thing we need to handle here are v2 operator
2135 names. */
2136 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
2137 {
2138 int ret;
2139 char dem_opname[256];
2140
2141 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2142 method_id),
2143 dem_opname, DMGL_ANSI);
2144 if (!ret)
2145 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2146 method_id),
2147 dem_opname, 0);
2148 if (ret)
2149 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2150 }
2151 }
2152
2153 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2154 const struct cplus_struct_type cplus_struct_default = { };
2155
2156 void
2157 allocate_cplus_struct_type (struct type *type)
2158 {
2159 if (HAVE_CPLUS_STRUCT (type))
2160 /* Structure was already allocated. Nothing more to do. */
2161 return;
2162
2163 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2164 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2165 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2166 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2167 }
2168
2169 const struct gnat_aux_type gnat_aux_default =
2170 { NULL };
2171
2172 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2173 and allocate the associated gnat-specific data. The gnat-specific
2174 data is also initialized to gnat_aux_default. */
2175
2176 void
2177 allocate_gnat_aux_type (struct type *type)
2178 {
2179 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2180 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2181 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2182 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2183 }
2184
2185 /* Helper function to initialize the standard scalar types.
2186
2187 If NAME is non-NULL, then it is used to initialize the type name.
2188 Note that NAME is not copied; it is required to have a lifetime at
2189 least as long as OBJFILE. */
2190
2191 struct type *
2192 init_type (enum type_code code, int length, int flags,
2193 const char *name, struct objfile *objfile)
2194 {
2195 struct type *type;
2196
2197 type = alloc_type (objfile);
2198 TYPE_CODE (type) = code;
2199 TYPE_LENGTH (type) = length;
2200
2201 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2202 if (flags & TYPE_FLAG_UNSIGNED)
2203 TYPE_UNSIGNED (type) = 1;
2204 if (flags & TYPE_FLAG_NOSIGN)
2205 TYPE_NOSIGN (type) = 1;
2206 if (flags & TYPE_FLAG_STUB)
2207 TYPE_STUB (type) = 1;
2208 if (flags & TYPE_FLAG_TARGET_STUB)
2209 TYPE_TARGET_STUB (type) = 1;
2210 if (flags & TYPE_FLAG_STATIC)
2211 TYPE_STATIC (type) = 1;
2212 if (flags & TYPE_FLAG_PROTOTYPED)
2213 TYPE_PROTOTYPED (type) = 1;
2214 if (flags & TYPE_FLAG_INCOMPLETE)
2215 TYPE_INCOMPLETE (type) = 1;
2216 if (flags & TYPE_FLAG_VARARGS)
2217 TYPE_VARARGS (type) = 1;
2218 if (flags & TYPE_FLAG_VECTOR)
2219 TYPE_VECTOR (type) = 1;
2220 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2221 TYPE_STUB_SUPPORTED (type) = 1;
2222 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2223 TYPE_FIXED_INSTANCE (type) = 1;
2224 if (flags & TYPE_FLAG_GNU_IFUNC)
2225 TYPE_GNU_IFUNC (type) = 1;
2226
2227 TYPE_NAME (type) = name;
2228
2229 /* C++ fancies. */
2230
2231 if (name && strcmp (name, "char") == 0)
2232 TYPE_NOSIGN (type) = 1;
2233
2234 switch (code)
2235 {
2236 case TYPE_CODE_STRUCT:
2237 case TYPE_CODE_UNION:
2238 case TYPE_CODE_NAMESPACE:
2239 INIT_CPLUS_SPECIFIC (type);
2240 break;
2241 case TYPE_CODE_FLT:
2242 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2243 break;
2244 case TYPE_CODE_FUNC:
2245 INIT_FUNC_SPECIFIC (type);
2246 break;
2247 }
2248 return type;
2249 }
2250 \f
2251 /* Queries on types. */
2252
2253 int
2254 can_dereference (struct type *t)
2255 {
2256 /* FIXME: Should we return true for references as well as
2257 pointers? */
2258 CHECK_TYPEDEF (t);
2259 return
2260 (t != NULL
2261 && TYPE_CODE (t) == TYPE_CODE_PTR
2262 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2263 }
2264
2265 int
2266 is_integral_type (struct type *t)
2267 {
2268 CHECK_TYPEDEF (t);
2269 return
2270 ((t != NULL)
2271 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2272 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2273 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2274 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2275 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2276 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2277 }
2278
2279 /* Return true if TYPE is scalar. */
2280
2281 static int
2282 is_scalar_type (struct type *type)
2283 {
2284 CHECK_TYPEDEF (type);
2285
2286 switch (TYPE_CODE (type))
2287 {
2288 case TYPE_CODE_ARRAY:
2289 case TYPE_CODE_STRUCT:
2290 case TYPE_CODE_UNION:
2291 case TYPE_CODE_SET:
2292 case TYPE_CODE_STRING:
2293 return 0;
2294 default:
2295 return 1;
2296 }
2297 }
2298
2299 /* Return true if T is scalar, or a composite type which in practice has
2300 the memory layout of a scalar type. E.g., an array or struct with only
2301 one scalar element inside it, or a union with only scalar elements. */
2302
2303 int
2304 is_scalar_type_recursive (struct type *t)
2305 {
2306 CHECK_TYPEDEF (t);
2307
2308 if (is_scalar_type (t))
2309 return 1;
2310 /* Are we dealing with an array or string of known dimensions? */
2311 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2312 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2313 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2314 {
2315 LONGEST low_bound, high_bound;
2316 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2317
2318 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2319
2320 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2321 }
2322 /* Are we dealing with a struct with one element? */
2323 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2324 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2325 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2326 {
2327 int i, n = TYPE_NFIELDS (t);
2328
2329 /* If all elements of the union are scalar, then the union is scalar. */
2330 for (i = 0; i < n; i++)
2331 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2332 return 0;
2333
2334 return 1;
2335 }
2336
2337 return 0;
2338 }
2339
2340 /* A helper function which returns true if types A and B represent the
2341 "same" class type. This is true if the types have the same main
2342 type, or the same name. */
2343
2344 int
2345 class_types_same_p (const struct type *a, const struct type *b)
2346 {
2347 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2348 || (TYPE_NAME (a) && TYPE_NAME (b)
2349 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2350 }
2351
2352 /* If BASE is an ancestor of DCLASS return the distance between them.
2353 otherwise return -1;
2354 eg:
2355
2356 class A {};
2357 class B: public A {};
2358 class C: public B {};
2359 class D: C {};
2360
2361 distance_to_ancestor (A, A, 0) = 0
2362 distance_to_ancestor (A, B, 0) = 1
2363 distance_to_ancestor (A, C, 0) = 2
2364 distance_to_ancestor (A, D, 0) = 3
2365
2366 If PUBLIC is 1 then only public ancestors are considered,
2367 and the function returns the distance only if BASE is a public ancestor
2368 of DCLASS.
2369 Eg:
2370
2371 distance_to_ancestor (A, D, 1) = -1. */
2372
2373 static int
2374 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2375 {
2376 int i;
2377 int d;
2378
2379 CHECK_TYPEDEF (base);
2380 CHECK_TYPEDEF (dclass);
2381
2382 if (class_types_same_p (base, dclass))
2383 return 0;
2384
2385 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2386 {
2387 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2388 continue;
2389
2390 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2391 if (d >= 0)
2392 return 1 + d;
2393 }
2394
2395 return -1;
2396 }
2397
2398 /* Check whether BASE is an ancestor or base class or DCLASS
2399 Return 1 if so, and 0 if not.
2400 Note: If BASE and DCLASS are of the same type, this function
2401 will return 1. So for some class A, is_ancestor (A, A) will
2402 return 1. */
2403
2404 int
2405 is_ancestor (struct type *base, struct type *dclass)
2406 {
2407 return distance_to_ancestor (base, dclass, 0) >= 0;
2408 }
2409
2410 /* Like is_ancestor, but only returns true when BASE is a public
2411 ancestor of DCLASS. */
2412
2413 int
2414 is_public_ancestor (struct type *base, struct type *dclass)
2415 {
2416 return distance_to_ancestor (base, dclass, 1) >= 0;
2417 }
2418
2419 /* A helper function for is_unique_ancestor. */
2420
2421 static int
2422 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2423 int *offset,
2424 const gdb_byte *valaddr, int embedded_offset,
2425 CORE_ADDR address, struct value *val)
2426 {
2427 int i, count = 0;
2428
2429 CHECK_TYPEDEF (base);
2430 CHECK_TYPEDEF (dclass);
2431
2432 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2433 {
2434 struct type *iter;
2435 int this_offset;
2436
2437 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2438
2439 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2440 address, val);
2441
2442 if (class_types_same_p (base, iter))
2443 {
2444 /* If this is the first subclass, set *OFFSET and set count
2445 to 1. Otherwise, if this is at the same offset as
2446 previous instances, do nothing. Otherwise, increment
2447 count. */
2448 if (*offset == -1)
2449 {
2450 *offset = this_offset;
2451 count = 1;
2452 }
2453 else if (this_offset == *offset)
2454 {
2455 /* Nothing. */
2456 }
2457 else
2458 ++count;
2459 }
2460 else
2461 count += is_unique_ancestor_worker (base, iter, offset,
2462 valaddr,
2463 embedded_offset + this_offset,
2464 address, val);
2465 }
2466
2467 return count;
2468 }
2469
2470 /* Like is_ancestor, but only returns true if BASE is a unique base
2471 class of the type of VAL. */
2472
2473 int
2474 is_unique_ancestor (struct type *base, struct value *val)
2475 {
2476 int offset = -1;
2477
2478 return is_unique_ancestor_worker (base, value_type (val), &offset,
2479 value_contents_for_printing (val),
2480 value_embedded_offset (val),
2481 value_address (val), val) == 1;
2482 }
2483
2484 \f
2485 /* Overload resolution. */
2486
2487 /* Return the sum of the rank of A with the rank of B. */
2488
2489 struct rank
2490 sum_ranks (struct rank a, struct rank b)
2491 {
2492 struct rank c;
2493 c.rank = a.rank + b.rank;
2494 c.subrank = a.subrank + b.subrank;
2495 return c;
2496 }
2497
2498 /* Compare rank A and B and return:
2499 0 if a = b
2500 1 if a is better than b
2501 -1 if b is better than a. */
2502
2503 int
2504 compare_ranks (struct rank a, struct rank b)
2505 {
2506 if (a.rank == b.rank)
2507 {
2508 if (a.subrank == b.subrank)
2509 return 0;
2510 if (a.subrank < b.subrank)
2511 return 1;
2512 if (a.subrank > b.subrank)
2513 return -1;
2514 }
2515
2516 if (a.rank < b.rank)
2517 return 1;
2518
2519 /* a.rank > b.rank */
2520 return -1;
2521 }
2522
2523 /* Functions for overload resolution begin here. */
2524
2525 /* Compare two badness vectors A and B and return the result.
2526 0 => A and B are identical
2527 1 => A and B are incomparable
2528 2 => A is better than B
2529 3 => A is worse than B */
2530
2531 int
2532 compare_badness (struct badness_vector *a, struct badness_vector *b)
2533 {
2534 int i;
2535 int tmp;
2536 short found_pos = 0; /* any positives in c? */
2537 short found_neg = 0; /* any negatives in c? */
2538
2539 /* differing lengths => incomparable */
2540 if (a->length != b->length)
2541 return 1;
2542
2543 /* Subtract b from a */
2544 for (i = 0; i < a->length; i++)
2545 {
2546 tmp = compare_ranks (b->rank[i], a->rank[i]);
2547 if (tmp > 0)
2548 found_pos = 1;
2549 else if (tmp < 0)
2550 found_neg = 1;
2551 }
2552
2553 if (found_pos)
2554 {
2555 if (found_neg)
2556 return 1; /* incomparable */
2557 else
2558 return 3; /* A > B */
2559 }
2560 else
2561 /* no positives */
2562 {
2563 if (found_neg)
2564 return 2; /* A < B */
2565 else
2566 return 0; /* A == B */
2567 }
2568 }
2569
2570 /* Rank a function by comparing its parameter types (PARMS, length
2571 NPARMS), to the types of an argument list (ARGS, length NARGS).
2572 Return a pointer to a badness vector. This has NARGS + 1
2573 entries. */
2574
2575 struct badness_vector *
2576 rank_function (struct type **parms, int nparms,
2577 struct value **args, int nargs)
2578 {
2579 int i;
2580 struct badness_vector *bv;
2581 int min_len = nparms < nargs ? nparms : nargs;
2582
2583 bv = xmalloc (sizeof (struct badness_vector));
2584 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2585 bv->rank = XNEWVEC (struct rank, nargs + 1);
2586
2587 /* First compare the lengths of the supplied lists.
2588 If there is a mismatch, set it to a high value. */
2589
2590 /* pai/1997-06-03 FIXME: when we have debug info about default
2591 arguments and ellipsis parameter lists, we should consider those
2592 and rank the length-match more finely. */
2593
2594 LENGTH_MATCH (bv) = (nargs != nparms)
2595 ? LENGTH_MISMATCH_BADNESS
2596 : EXACT_MATCH_BADNESS;
2597
2598 /* Now rank all the parameters of the candidate function. */
2599 for (i = 1; i <= min_len; i++)
2600 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
2601 args[i - 1]);
2602
2603 /* If more arguments than parameters, add dummy entries. */
2604 for (i = min_len + 1; i <= nargs; i++)
2605 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2606
2607 return bv;
2608 }
2609
2610 /* Compare the names of two integer types, assuming that any sign
2611 qualifiers have been checked already. We do it this way because
2612 there may be an "int" in the name of one of the types. */
2613
2614 static int
2615 integer_types_same_name_p (const char *first, const char *second)
2616 {
2617 int first_p, second_p;
2618
2619 /* If both are shorts, return 1; if neither is a short, keep
2620 checking. */
2621 first_p = (strstr (first, "short") != NULL);
2622 second_p = (strstr (second, "short") != NULL);
2623 if (first_p && second_p)
2624 return 1;
2625 if (first_p || second_p)
2626 return 0;
2627
2628 /* Likewise for long. */
2629 first_p = (strstr (first, "long") != NULL);
2630 second_p = (strstr (second, "long") != NULL);
2631 if (first_p && second_p)
2632 return 1;
2633 if (first_p || second_p)
2634 return 0;
2635
2636 /* Likewise for char. */
2637 first_p = (strstr (first, "char") != NULL);
2638 second_p = (strstr (second, "char") != NULL);
2639 if (first_p && second_p)
2640 return 1;
2641 if (first_p || second_p)
2642 return 0;
2643
2644 /* They must both be ints. */
2645 return 1;
2646 }
2647
2648 /* Compares type A to type B returns 1 if the represent the same type
2649 0 otherwise. */
2650
2651 int
2652 types_equal (struct type *a, struct type *b)
2653 {
2654 /* Identical type pointers. */
2655 /* However, this still doesn't catch all cases of same type for b
2656 and a. The reason is that builtin types are different from
2657 the same ones constructed from the object. */
2658 if (a == b)
2659 return 1;
2660
2661 /* Resolve typedefs */
2662 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2663 a = check_typedef (a);
2664 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2665 b = check_typedef (b);
2666
2667 /* If after resolving typedefs a and b are not of the same type
2668 code then they are not equal. */
2669 if (TYPE_CODE (a) != TYPE_CODE (b))
2670 return 0;
2671
2672 /* If a and b are both pointers types or both reference types then
2673 they are equal of the same type iff the objects they refer to are
2674 of the same type. */
2675 if (TYPE_CODE (a) == TYPE_CODE_PTR
2676 || TYPE_CODE (a) == TYPE_CODE_REF)
2677 return types_equal (TYPE_TARGET_TYPE (a),
2678 TYPE_TARGET_TYPE (b));
2679
2680 /* Well, damnit, if the names are exactly the same, I'll say they
2681 are exactly the same. This happens when we generate method
2682 stubs. The types won't point to the same address, but they
2683 really are the same. */
2684
2685 if (TYPE_NAME (a) && TYPE_NAME (b)
2686 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2687 return 1;
2688
2689 /* Check if identical after resolving typedefs. */
2690 if (a == b)
2691 return 1;
2692
2693 /* Two function types are equal if their argument and return types
2694 are equal. */
2695 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
2696 {
2697 int i;
2698
2699 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
2700 return 0;
2701
2702 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
2703 return 0;
2704
2705 for (i = 0; i < TYPE_NFIELDS (a); ++i)
2706 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
2707 return 0;
2708
2709 return 1;
2710 }
2711
2712 return 0;
2713 }
2714 \f
2715 /* Deep comparison of types. */
2716
2717 /* An entry in the type-equality bcache. */
2718
2719 typedef struct type_equality_entry
2720 {
2721 struct type *type1, *type2;
2722 } type_equality_entry_d;
2723
2724 DEF_VEC_O (type_equality_entry_d);
2725
2726 /* A helper function to compare two strings. Returns 1 if they are
2727 the same, 0 otherwise. Handles NULLs properly. */
2728
2729 static int
2730 compare_maybe_null_strings (const char *s, const char *t)
2731 {
2732 if (s == NULL && t != NULL)
2733 return 0;
2734 else if (s != NULL && t == NULL)
2735 return 0;
2736 else if (s == NULL && t== NULL)
2737 return 1;
2738 return strcmp (s, t) == 0;
2739 }
2740
2741 /* A helper function for check_types_worklist that checks two types for
2742 "deep" equality. Returns non-zero if the types are considered the
2743 same, zero otherwise. */
2744
2745 static int
2746 check_types_equal (struct type *type1, struct type *type2,
2747 VEC (type_equality_entry_d) **worklist)
2748 {
2749 CHECK_TYPEDEF (type1);
2750 CHECK_TYPEDEF (type2);
2751
2752 if (type1 == type2)
2753 return 1;
2754
2755 if (TYPE_CODE (type1) != TYPE_CODE (type2)
2756 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
2757 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
2758 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
2759 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
2760 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
2761 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
2762 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
2763 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
2764 return 0;
2765
2766 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
2767 TYPE_TAG_NAME (type2)))
2768 return 0;
2769 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
2770 return 0;
2771
2772 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
2773 {
2774 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
2775 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
2776 return 0;
2777 }
2778 else
2779 {
2780 int i;
2781
2782 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
2783 {
2784 const struct field *field1 = &TYPE_FIELD (type1, i);
2785 const struct field *field2 = &TYPE_FIELD (type2, i);
2786 struct type_equality_entry entry;
2787
2788 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
2789 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
2790 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
2791 return 0;
2792 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
2793 FIELD_NAME (*field2)))
2794 return 0;
2795 switch (FIELD_LOC_KIND (*field1))
2796 {
2797 case FIELD_LOC_KIND_BITPOS:
2798 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
2799 return 0;
2800 break;
2801 case FIELD_LOC_KIND_ENUMVAL:
2802 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
2803 return 0;
2804 break;
2805 case FIELD_LOC_KIND_PHYSADDR:
2806 if (FIELD_STATIC_PHYSADDR (*field1)
2807 != FIELD_STATIC_PHYSADDR (*field2))
2808 return 0;
2809 break;
2810 case FIELD_LOC_KIND_PHYSNAME:
2811 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
2812 FIELD_STATIC_PHYSNAME (*field2)))
2813 return 0;
2814 break;
2815 case FIELD_LOC_KIND_DWARF_BLOCK:
2816 {
2817 struct dwarf2_locexpr_baton *block1, *block2;
2818
2819 block1 = FIELD_DWARF_BLOCK (*field1);
2820 block2 = FIELD_DWARF_BLOCK (*field2);
2821 if (block1->per_cu != block2->per_cu
2822 || block1->size != block2->size
2823 || memcmp (block1->data, block2->data, block1->size) != 0)
2824 return 0;
2825 }
2826 break;
2827 default:
2828 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
2829 "%d by check_types_equal"),
2830 FIELD_LOC_KIND (*field1));
2831 }
2832
2833 entry.type1 = FIELD_TYPE (*field1);
2834 entry.type2 = FIELD_TYPE (*field2);
2835 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2836 }
2837 }
2838
2839 if (TYPE_TARGET_TYPE (type1) != NULL)
2840 {
2841 struct type_equality_entry entry;
2842
2843 if (TYPE_TARGET_TYPE (type2) == NULL)
2844 return 0;
2845
2846 entry.type1 = TYPE_TARGET_TYPE (type1);
2847 entry.type2 = TYPE_TARGET_TYPE (type2);
2848 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
2849 }
2850 else if (TYPE_TARGET_TYPE (type2) != NULL)
2851 return 0;
2852
2853 return 1;
2854 }
2855
2856 /* Check types on a worklist for equality. Returns zero if any pair
2857 is not equal, non-zero if they are all considered equal. */
2858
2859 static int
2860 check_types_worklist (VEC (type_equality_entry_d) **worklist,
2861 struct bcache *cache)
2862 {
2863 while (!VEC_empty (type_equality_entry_d, *worklist))
2864 {
2865 struct type_equality_entry entry;
2866 int added;
2867
2868 entry = *VEC_last (type_equality_entry_d, *worklist);
2869 VEC_pop (type_equality_entry_d, *worklist);
2870
2871 /* If the type pair has already been visited, we know it is
2872 ok. */
2873 bcache_full (&entry, sizeof (entry), cache, &added);
2874 if (!added)
2875 continue;
2876
2877 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
2878 return 0;
2879 }
2880
2881 return 1;
2882 }
2883
2884 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
2885 "deep comparison". Otherwise return zero. */
2886
2887 int
2888 types_deeply_equal (struct type *type1, struct type *type2)
2889 {
2890 volatile struct gdb_exception except;
2891 int result = 0;
2892 struct bcache *cache;
2893 VEC (type_equality_entry_d) *worklist = NULL;
2894 struct type_equality_entry entry;
2895
2896 gdb_assert (type1 != NULL && type2 != NULL);
2897
2898 /* Early exit for the simple case. */
2899 if (type1 == type2)
2900 return 1;
2901
2902 cache = bcache_xmalloc (NULL, NULL);
2903
2904 entry.type1 = type1;
2905 entry.type2 = type2;
2906 VEC_safe_push (type_equality_entry_d, worklist, &entry);
2907
2908 TRY_CATCH (except, RETURN_MASK_ALL)
2909 {
2910 result = check_types_worklist (&worklist, cache);
2911 }
2912 /* check_types_worklist calls several nested helper functions,
2913 some of which can raise a GDB Exception, so we just check
2914 and rethrow here. If there is a GDB exception, a comparison
2915 is not capable (or trusted), so exit. */
2916 bcache_xfree (cache);
2917 VEC_free (type_equality_entry_d, worklist);
2918 /* Rethrow if there was a problem. */
2919 if (except.reason < 0)
2920 throw_exception (except);
2921
2922 return result;
2923 }
2924 \f
2925 /* Compare one type (PARM) for compatibility with another (ARG).
2926 * PARM is intended to be the parameter type of a function; and
2927 * ARG is the supplied argument's type. This function tests if
2928 * the latter can be converted to the former.
2929 * VALUE is the argument's value or NULL if none (or called recursively)
2930 *
2931 * Return 0 if they are identical types;
2932 * Otherwise, return an integer which corresponds to how compatible
2933 * PARM is to ARG. The higher the return value, the worse the match.
2934 * Generally the "bad" conversions are all uniformly assigned a 100. */
2935
2936 struct rank
2937 rank_one_type (struct type *parm, struct type *arg, struct value *value)
2938 {
2939 struct rank rank = {0,0};
2940
2941 if (types_equal (parm, arg))
2942 return EXACT_MATCH_BADNESS;
2943
2944 /* Resolve typedefs */
2945 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2946 parm = check_typedef (parm);
2947 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2948 arg = check_typedef (arg);
2949
2950 /* See through references, since we can almost make non-references
2951 references. */
2952 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2953 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
2954 REFERENCE_CONVERSION_BADNESS));
2955 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2956 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
2957 REFERENCE_CONVERSION_BADNESS));
2958 if (overload_debug)
2959 /* Debugging only. */
2960 fprintf_filtered (gdb_stderr,
2961 "------ Arg is %s [%d], parm is %s [%d]\n",
2962 TYPE_NAME (arg), TYPE_CODE (arg),
2963 TYPE_NAME (parm), TYPE_CODE (parm));
2964
2965 /* x -> y means arg of type x being supplied for parameter of type y. */
2966
2967 switch (TYPE_CODE (parm))
2968 {
2969 case TYPE_CODE_PTR:
2970 switch (TYPE_CODE (arg))
2971 {
2972 case TYPE_CODE_PTR:
2973
2974 /* Allowed pointer conversions are:
2975 (a) pointer to void-pointer conversion. */
2976 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2977 return VOID_PTR_CONVERSION_BADNESS;
2978
2979 /* (b) pointer to ancestor-pointer conversion. */
2980 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2981 TYPE_TARGET_TYPE (arg),
2982 0);
2983 if (rank.subrank >= 0)
2984 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2985
2986 return INCOMPATIBLE_TYPE_BADNESS;
2987 case TYPE_CODE_ARRAY:
2988 if (types_equal (TYPE_TARGET_TYPE (parm),
2989 TYPE_TARGET_TYPE (arg)))
2990 return EXACT_MATCH_BADNESS;
2991 return INCOMPATIBLE_TYPE_BADNESS;
2992 case TYPE_CODE_FUNC:
2993 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
2994 case TYPE_CODE_INT:
2995 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
2996 {
2997 if (value_as_long (value) == 0)
2998 {
2999 /* Null pointer conversion: allow it to be cast to a pointer.
3000 [4.10.1 of C++ standard draft n3290] */
3001 return NULL_POINTER_CONVERSION_BADNESS;
3002 }
3003 else
3004 {
3005 /* If type checking is disabled, allow the conversion. */
3006 if (!strict_type_checking)
3007 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3008 }
3009 }
3010 /* fall through */
3011 case TYPE_CODE_ENUM:
3012 case TYPE_CODE_FLAGS:
3013 case TYPE_CODE_CHAR:
3014 case TYPE_CODE_RANGE:
3015 case TYPE_CODE_BOOL:
3016 default:
3017 return INCOMPATIBLE_TYPE_BADNESS;
3018 }
3019 case TYPE_CODE_ARRAY:
3020 switch (TYPE_CODE (arg))
3021 {
3022 case TYPE_CODE_PTR:
3023 case TYPE_CODE_ARRAY:
3024 return rank_one_type (TYPE_TARGET_TYPE (parm),
3025 TYPE_TARGET_TYPE (arg), NULL);
3026 default:
3027 return INCOMPATIBLE_TYPE_BADNESS;
3028 }
3029 case TYPE_CODE_FUNC:
3030 switch (TYPE_CODE (arg))
3031 {
3032 case TYPE_CODE_PTR: /* funcptr -> func */
3033 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3034 default:
3035 return INCOMPATIBLE_TYPE_BADNESS;
3036 }
3037 case TYPE_CODE_INT:
3038 switch (TYPE_CODE (arg))
3039 {
3040 case TYPE_CODE_INT:
3041 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3042 {
3043 /* Deal with signed, unsigned, and plain chars and
3044 signed and unsigned ints. */
3045 if (TYPE_NOSIGN (parm))
3046 {
3047 /* This case only for character types. */
3048 if (TYPE_NOSIGN (arg))
3049 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3050 else /* signed/unsigned char -> plain char */
3051 return INTEGER_CONVERSION_BADNESS;
3052 }
3053 else if (TYPE_UNSIGNED (parm))
3054 {
3055 if (TYPE_UNSIGNED (arg))
3056 {
3057 /* unsigned int -> unsigned int, or
3058 unsigned long -> unsigned long */
3059 if (integer_types_same_name_p (TYPE_NAME (parm),
3060 TYPE_NAME (arg)))
3061 return EXACT_MATCH_BADNESS;
3062 else if (integer_types_same_name_p (TYPE_NAME (arg),
3063 "int")
3064 && integer_types_same_name_p (TYPE_NAME (parm),
3065 "long"))
3066 /* unsigned int -> unsigned long */
3067 return INTEGER_PROMOTION_BADNESS;
3068 else
3069 /* unsigned long -> unsigned int */
3070 return INTEGER_CONVERSION_BADNESS;
3071 }
3072 else
3073 {
3074 if (integer_types_same_name_p (TYPE_NAME (arg),
3075 "long")
3076 && integer_types_same_name_p (TYPE_NAME (parm),
3077 "int"))
3078 /* signed long -> unsigned int */
3079 return INTEGER_CONVERSION_BADNESS;
3080 else
3081 /* signed int/long -> unsigned int/long */
3082 return INTEGER_CONVERSION_BADNESS;
3083 }
3084 }
3085 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3086 {
3087 if (integer_types_same_name_p (TYPE_NAME (parm),
3088 TYPE_NAME (arg)))
3089 return EXACT_MATCH_BADNESS;
3090 else if (integer_types_same_name_p (TYPE_NAME (arg),
3091 "int")
3092 && integer_types_same_name_p (TYPE_NAME (parm),
3093 "long"))
3094 return INTEGER_PROMOTION_BADNESS;
3095 else
3096 return INTEGER_CONVERSION_BADNESS;
3097 }
3098 else
3099 return INTEGER_CONVERSION_BADNESS;
3100 }
3101 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3102 return INTEGER_PROMOTION_BADNESS;
3103 else
3104 return INTEGER_CONVERSION_BADNESS;
3105 case TYPE_CODE_ENUM:
3106 case TYPE_CODE_FLAGS:
3107 case TYPE_CODE_CHAR:
3108 case TYPE_CODE_RANGE:
3109 case TYPE_CODE_BOOL:
3110 if (TYPE_DECLARED_CLASS (arg))
3111 return INCOMPATIBLE_TYPE_BADNESS;
3112 return INTEGER_PROMOTION_BADNESS;
3113 case TYPE_CODE_FLT:
3114 return INT_FLOAT_CONVERSION_BADNESS;
3115 case TYPE_CODE_PTR:
3116 return NS_POINTER_CONVERSION_BADNESS;
3117 default:
3118 return INCOMPATIBLE_TYPE_BADNESS;
3119 }
3120 break;
3121 case TYPE_CODE_ENUM:
3122 switch (TYPE_CODE (arg))
3123 {
3124 case TYPE_CODE_INT:
3125 case TYPE_CODE_CHAR:
3126 case TYPE_CODE_RANGE:
3127 case TYPE_CODE_BOOL:
3128 case TYPE_CODE_ENUM:
3129 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3130 return INCOMPATIBLE_TYPE_BADNESS;
3131 return INTEGER_CONVERSION_BADNESS;
3132 case TYPE_CODE_FLT:
3133 return INT_FLOAT_CONVERSION_BADNESS;
3134 default:
3135 return INCOMPATIBLE_TYPE_BADNESS;
3136 }
3137 break;
3138 case TYPE_CODE_CHAR:
3139 switch (TYPE_CODE (arg))
3140 {
3141 case TYPE_CODE_RANGE:
3142 case TYPE_CODE_BOOL:
3143 case TYPE_CODE_ENUM:
3144 if (TYPE_DECLARED_CLASS (arg))
3145 return INCOMPATIBLE_TYPE_BADNESS;
3146 return INTEGER_CONVERSION_BADNESS;
3147 case TYPE_CODE_FLT:
3148 return INT_FLOAT_CONVERSION_BADNESS;
3149 case TYPE_CODE_INT:
3150 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3151 return INTEGER_CONVERSION_BADNESS;
3152 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3153 return INTEGER_PROMOTION_BADNESS;
3154 /* >>> !! else fall through !! <<< */
3155 case TYPE_CODE_CHAR:
3156 /* Deal with signed, unsigned, and plain chars for C++ and
3157 with int cases falling through from previous case. */
3158 if (TYPE_NOSIGN (parm))
3159 {
3160 if (TYPE_NOSIGN (arg))
3161 return EXACT_MATCH_BADNESS;
3162 else
3163 return INTEGER_CONVERSION_BADNESS;
3164 }
3165 else if (TYPE_UNSIGNED (parm))
3166 {
3167 if (TYPE_UNSIGNED (arg))
3168 return EXACT_MATCH_BADNESS;
3169 else
3170 return INTEGER_PROMOTION_BADNESS;
3171 }
3172 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3173 return EXACT_MATCH_BADNESS;
3174 else
3175 return INTEGER_CONVERSION_BADNESS;
3176 default:
3177 return INCOMPATIBLE_TYPE_BADNESS;
3178 }
3179 break;
3180 case TYPE_CODE_RANGE:
3181 switch (TYPE_CODE (arg))
3182 {
3183 case TYPE_CODE_INT:
3184 case TYPE_CODE_CHAR:
3185 case TYPE_CODE_RANGE:
3186 case TYPE_CODE_BOOL:
3187 case TYPE_CODE_ENUM:
3188 return INTEGER_CONVERSION_BADNESS;
3189 case TYPE_CODE_FLT:
3190 return INT_FLOAT_CONVERSION_BADNESS;
3191 default:
3192 return INCOMPATIBLE_TYPE_BADNESS;
3193 }
3194 break;
3195 case TYPE_CODE_BOOL:
3196 switch (TYPE_CODE (arg))
3197 {
3198 /* n3290 draft, section 4.12.1 (conv.bool):
3199
3200 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3201 pointer to member type can be converted to a prvalue of type
3202 bool. A zero value, null pointer value, or null member pointer
3203 value is converted to false; any other value is converted to
3204 true. A prvalue of type std::nullptr_t can be converted to a
3205 prvalue of type bool; the resulting value is false." */
3206 case TYPE_CODE_INT:
3207 case TYPE_CODE_CHAR:
3208 case TYPE_CODE_ENUM:
3209 case TYPE_CODE_FLT:
3210 case TYPE_CODE_MEMBERPTR:
3211 case TYPE_CODE_PTR:
3212 return BOOL_CONVERSION_BADNESS;
3213 case TYPE_CODE_RANGE:
3214 return INCOMPATIBLE_TYPE_BADNESS;
3215 case TYPE_CODE_BOOL:
3216 return EXACT_MATCH_BADNESS;
3217 default:
3218 return INCOMPATIBLE_TYPE_BADNESS;
3219 }
3220 break;
3221 case TYPE_CODE_FLT:
3222 switch (TYPE_CODE (arg))
3223 {
3224 case TYPE_CODE_FLT:
3225 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3226 return FLOAT_PROMOTION_BADNESS;
3227 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3228 return EXACT_MATCH_BADNESS;
3229 else
3230 return FLOAT_CONVERSION_BADNESS;
3231 case TYPE_CODE_INT:
3232 case TYPE_CODE_BOOL:
3233 case TYPE_CODE_ENUM:
3234 case TYPE_CODE_RANGE:
3235 case TYPE_CODE_CHAR:
3236 return INT_FLOAT_CONVERSION_BADNESS;
3237 default:
3238 return INCOMPATIBLE_TYPE_BADNESS;
3239 }
3240 break;
3241 case TYPE_CODE_COMPLEX:
3242 switch (TYPE_CODE (arg))
3243 { /* Strictly not needed for C++, but... */
3244 case TYPE_CODE_FLT:
3245 return FLOAT_PROMOTION_BADNESS;
3246 case TYPE_CODE_COMPLEX:
3247 return EXACT_MATCH_BADNESS;
3248 default:
3249 return INCOMPATIBLE_TYPE_BADNESS;
3250 }
3251 break;
3252 case TYPE_CODE_STRUCT:
3253 /* currently same as TYPE_CODE_CLASS. */
3254 switch (TYPE_CODE (arg))
3255 {
3256 case TYPE_CODE_STRUCT:
3257 /* Check for derivation */
3258 rank.subrank = distance_to_ancestor (parm, arg, 0);
3259 if (rank.subrank >= 0)
3260 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3261 /* else fall through */
3262 default:
3263 return INCOMPATIBLE_TYPE_BADNESS;
3264 }
3265 break;
3266 case TYPE_CODE_UNION:
3267 switch (TYPE_CODE (arg))
3268 {
3269 case TYPE_CODE_UNION:
3270 default:
3271 return INCOMPATIBLE_TYPE_BADNESS;
3272 }
3273 break;
3274 case TYPE_CODE_MEMBERPTR:
3275 switch (TYPE_CODE (arg))
3276 {
3277 default:
3278 return INCOMPATIBLE_TYPE_BADNESS;
3279 }
3280 break;
3281 case TYPE_CODE_METHOD:
3282 switch (TYPE_CODE (arg))
3283 {
3284
3285 default:
3286 return INCOMPATIBLE_TYPE_BADNESS;
3287 }
3288 break;
3289 case TYPE_CODE_REF:
3290 switch (TYPE_CODE (arg))
3291 {
3292
3293 default:
3294 return INCOMPATIBLE_TYPE_BADNESS;
3295 }
3296
3297 break;
3298 case TYPE_CODE_SET:
3299 switch (TYPE_CODE (arg))
3300 {
3301 /* Not in C++ */
3302 case TYPE_CODE_SET:
3303 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3304 TYPE_FIELD_TYPE (arg, 0), NULL);
3305 default:
3306 return INCOMPATIBLE_TYPE_BADNESS;
3307 }
3308 break;
3309 case TYPE_CODE_VOID:
3310 default:
3311 return INCOMPATIBLE_TYPE_BADNESS;
3312 } /* switch (TYPE_CODE (arg)) */
3313 }
3314
3315 /* End of functions for overload resolution. */
3316 \f
3317 /* Routines to pretty-print types. */
3318
3319 static void
3320 print_bit_vector (B_TYPE *bits, int nbits)
3321 {
3322 int bitno;
3323
3324 for (bitno = 0; bitno < nbits; bitno++)
3325 {
3326 if ((bitno % 8) == 0)
3327 {
3328 puts_filtered (" ");
3329 }
3330 if (B_TST (bits, bitno))
3331 printf_filtered (("1"));
3332 else
3333 printf_filtered (("0"));
3334 }
3335 }
3336
3337 /* Note the first arg should be the "this" pointer, we may not want to
3338 include it since we may get into a infinitely recursive
3339 situation. */
3340
3341 static void
3342 print_arg_types (struct field *args, int nargs, int spaces)
3343 {
3344 if (args != NULL)
3345 {
3346 int i;
3347
3348 for (i = 0; i < nargs; i++)
3349 recursive_dump_type (args[i].type, spaces + 2);
3350 }
3351 }
3352
3353 int
3354 field_is_static (struct field *f)
3355 {
3356 /* "static" fields are the fields whose location is not relative
3357 to the address of the enclosing struct. It would be nice to
3358 have a dedicated flag that would be set for static fields when
3359 the type is being created. But in practice, checking the field
3360 loc_kind should give us an accurate answer. */
3361 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3362 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3363 }
3364
3365 static void
3366 dump_fn_fieldlists (struct type *type, int spaces)
3367 {
3368 int method_idx;
3369 int overload_idx;
3370 struct fn_field *f;
3371
3372 printfi_filtered (spaces, "fn_fieldlists ");
3373 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3374 printf_filtered ("\n");
3375 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3376 {
3377 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3378 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3379 method_idx,
3380 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3381 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3382 gdb_stdout);
3383 printf_filtered (_(") length %d\n"),
3384 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3385 for (overload_idx = 0;
3386 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3387 overload_idx++)
3388 {
3389 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3390 overload_idx,
3391 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3392 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3393 gdb_stdout);
3394 printf_filtered (")\n");
3395 printfi_filtered (spaces + 8, "type ");
3396 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3397 gdb_stdout);
3398 printf_filtered ("\n");
3399
3400 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3401 spaces + 8 + 2);
3402
3403 printfi_filtered (spaces + 8, "args ");
3404 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3405 gdb_stdout);
3406 printf_filtered ("\n");
3407
3408 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
3409 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
3410 overload_idx)),
3411 spaces);
3412 printfi_filtered (spaces + 8, "fcontext ");
3413 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3414 gdb_stdout);
3415 printf_filtered ("\n");
3416
3417 printfi_filtered (spaces + 8, "is_const %d\n",
3418 TYPE_FN_FIELD_CONST (f, overload_idx));
3419 printfi_filtered (spaces + 8, "is_volatile %d\n",
3420 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3421 printfi_filtered (spaces + 8, "is_private %d\n",
3422 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3423 printfi_filtered (spaces + 8, "is_protected %d\n",
3424 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3425 printfi_filtered (spaces + 8, "is_stub %d\n",
3426 TYPE_FN_FIELD_STUB (f, overload_idx));
3427 printfi_filtered (spaces + 8, "voffset %u\n",
3428 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3429 }
3430 }
3431 }
3432
3433 static void
3434 print_cplus_stuff (struct type *type, int spaces)
3435 {
3436 printfi_filtered (spaces, "n_baseclasses %d\n",
3437 TYPE_N_BASECLASSES (type));
3438 printfi_filtered (spaces, "nfn_fields %d\n",
3439 TYPE_NFN_FIELDS (type));
3440 if (TYPE_N_BASECLASSES (type) > 0)
3441 {
3442 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3443 TYPE_N_BASECLASSES (type));
3444 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3445 gdb_stdout);
3446 printf_filtered (")");
3447
3448 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3449 TYPE_N_BASECLASSES (type));
3450 puts_filtered ("\n");
3451 }
3452 if (TYPE_NFIELDS (type) > 0)
3453 {
3454 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3455 {
3456 printfi_filtered (spaces,
3457 "private_field_bits (%d bits at *",
3458 TYPE_NFIELDS (type));
3459 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3460 gdb_stdout);
3461 printf_filtered (")");
3462 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3463 TYPE_NFIELDS (type));
3464 puts_filtered ("\n");
3465 }
3466 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3467 {
3468 printfi_filtered (spaces,
3469 "protected_field_bits (%d bits at *",
3470 TYPE_NFIELDS (type));
3471 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3472 gdb_stdout);
3473 printf_filtered (")");
3474 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3475 TYPE_NFIELDS (type));
3476 puts_filtered ("\n");
3477 }
3478 }
3479 if (TYPE_NFN_FIELDS (type) > 0)
3480 {
3481 dump_fn_fieldlists (type, spaces);
3482 }
3483 }
3484
3485 /* Print the contents of the TYPE's type_specific union, assuming that
3486 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3487
3488 static void
3489 print_gnat_stuff (struct type *type, int spaces)
3490 {
3491 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3492
3493 recursive_dump_type (descriptive_type, spaces + 2);
3494 }
3495
3496 static struct obstack dont_print_type_obstack;
3497
3498 void
3499 recursive_dump_type (struct type *type, int spaces)
3500 {
3501 int idx;
3502
3503 if (spaces == 0)
3504 obstack_begin (&dont_print_type_obstack, 0);
3505
3506 if (TYPE_NFIELDS (type) > 0
3507 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3508 {
3509 struct type **first_dont_print
3510 = (struct type **) obstack_base (&dont_print_type_obstack);
3511
3512 int i = (struct type **)
3513 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3514
3515 while (--i >= 0)
3516 {
3517 if (type == first_dont_print[i])
3518 {
3519 printfi_filtered (spaces, "type node ");
3520 gdb_print_host_address (type, gdb_stdout);
3521 printf_filtered (_(" <same as already seen type>\n"));
3522 return;
3523 }
3524 }
3525
3526 obstack_ptr_grow (&dont_print_type_obstack, type);
3527 }
3528
3529 printfi_filtered (spaces, "type node ");
3530 gdb_print_host_address (type, gdb_stdout);
3531 printf_filtered ("\n");
3532 printfi_filtered (spaces, "name '%s' (",
3533 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3534 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3535 printf_filtered (")\n");
3536 printfi_filtered (spaces, "tagname '%s' (",
3537 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3538 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3539 printf_filtered (")\n");
3540 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3541 switch (TYPE_CODE (type))
3542 {
3543 case TYPE_CODE_UNDEF:
3544 printf_filtered ("(TYPE_CODE_UNDEF)");
3545 break;
3546 case TYPE_CODE_PTR:
3547 printf_filtered ("(TYPE_CODE_PTR)");
3548 break;
3549 case TYPE_CODE_ARRAY:
3550 printf_filtered ("(TYPE_CODE_ARRAY)");
3551 break;
3552 case TYPE_CODE_STRUCT:
3553 printf_filtered ("(TYPE_CODE_STRUCT)");
3554 break;
3555 case TYPE_CODE_UNION:
3556 printf_filtered ("(TYPE_CODE_UNION)");
3557 break;
3558 case TYPE_CODE_ENUM:
3559 printf_filtered ("(TYPE_CODE_ENUM)");
3560 break;
3561 case TYPE_CODE_FLAGS:
3562 printf_filtered ("(TYPE_CODE_FLAGS)");
3563 break;
3564 case TYPE_CODE_FUNC:
3565 printf_filtered ("(TYPE_CODE_FUNC)");
3566 break;
3567 case TYPE_CODE_INT:
3568 printf_filtered ("(TYPE_CODE_INT)");
3569 break;
3570 case TYPE_CODE_FLT:
3571 printf_filtered ("(TYPE_CODE_FLT)");
3572 break;
3573 case TYPE_CODE_VOID:
3574 printf_filtered ("(TYPE_CODE_VOID)");
3575 break;
3576 case TYPE_CODE_SET:
3577 printf_filtered ("(TYPE_CODE_SET)");
3578 break;
3579 case TYPE_CODE_RANGE:
3580 printf_filtered ("(TYPE_CODE_RANGE)");
3581 break;
3582 case TYPE_CODE_STRING:
3583 printf_filtered ("(TYPE_CODE_STRING)");
3584 break;
3585 case TYPE_CODE_ERROR:
3586 printf_filtered ("(TYPE_CODE_ERROR)");
3587 break;
3588 case TYPE_CODE_MEMBERPTR:
3589 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3590 break;
3591 case TYPE_CODE_METHODPTR:
3592 printf_filtered ("(TYPE_CODE_METHODPTR)");
3593 break;
3594 case TYPE_CODE_METHOD:
3595 printf_filtered ("(TYPE_CODE_METHOD)");
3596 break;
3597 case TYPE_CODE_REF:
3598 printf_filtered ("(TYPE_CODE_REF)");
3599 break;
3600 case TYPE_CODE_CHAR:
3601 printf_filtered ("(TYPE_CODE_CHAR)");
3602 break;
3603 case TYPE_CODE_BOOL:
3604 printf_filtered ("(TYPE_CODE_BOOL)");
3605 break;
3606 case TYPE_CODE_COMPLEX:
3607 printf_filtered ("(TYPE_CODE_COMPLEX)");
3608 break;
3609 case TYPE_CODE_TYPEDEF:
3610 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3611 break;
3612 case TYPE_CODE_NAMESPACE:
3613 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3614 break;
3615 default:
3616 printf_filtered ("(UNKNOWN TYPE CODE)");
3617 break;
3618 }
3619 puts_filtered ("\n");
3620 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3621 if (TYPE_OBJFILE_OWNED (type))
3622 {
3623 printfi_filtered (spaces, "objfile ");
3624 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3625 }
3626 else
3627 {
3628 printfi_filtered (spaces, "gdbarch ");
3629 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3630 }
3631 printf_filtered ("\n");
3632 printfi_filtered (spaces, "target_type ");
3633 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3634 printf_filtered ("\n");
3635 if (TYPE_TARGET_TYPE (type) != NULL)
3636 {
3637 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3638 }
3639 printfi_filtered (spaces, "pointer_type ");
3640 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3641 printf_filtered ("\n");
3642 printfi_filtered (spaces, "reference_type ");
3643 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3644 printf_filtered ("\n");
3645 printfi_filtered (spaces, "type_chain ");
3646 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3647 printf_filtered ("\n");
3648 printfi_filtered (spaces, "instance_flags 0x%x",
3649 TYPE_INSTANCE_FLAGS (type));
3650 if (TYPE_CONST (type))
3651 {
3652 puts_filtered (" TYPE_FLAG_CONST");
3653 }
3654 if (TYPE_VOLATILE (type))
3655 {
3656 puts_filtered (" TYPE_FLAG_VOLATILE");
3657 }
3658 if (TYPE_CODE_SPACE (type))
3659 {
3660 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3661 }
3662 if (TYPE_DATA_SPACE (type))
3663 {
3664 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3665 }
3666 if (TYPE_ADDRESS_CLASS_1 (type))
3667 {
3668 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3669 }
3670 if (TYPE_ADDRESS_CLASS_2 (type))
3671 {
3672 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3673 }
3674 if (TYPE_RESTRICT (type))
3675 {
3676 puts_filtered (" TYPE_FLAG_RESTRICT");
3677 }
3678 puts_filtered ("\n");
3679
3680 printfi_filtered (spaces, "flags");
3681 if (TYPE_UNSIGNED (type))
3682 {
3683 puts_filtered (" TYPE_FLAG_UNSIGNED");
3684 }
3685 if (TYPE_NOSIGN (type))
3686 {
3687 puts_filtered (" TYPE_FLAG_NOSIGN");
3688 }
3689 if (TYPE_STUB (type))
3690 {
3691 puts_filtered (" TYPE_FLAG_STUB");
3692 }
3693 if (TYPE_TARGET_STUB (type))
3694 {
3695 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3696 }
3697 if (TYPE_STATIC (type))
3698 {
3699 puts_filtered (" TYPE_FLAG_STATIC");
3700 }
3701 if (TYPE_PROTOTYPED (type))
3702 {
3703 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3704 }
3705 if (TYPE_INCOMPLETE (type))
3706 {
3707 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3708 }
3709 if (TYPE_VARARGS (type))
3710 {
3711 puts_filtered (" TYPE_FLAG_VARARGS");
3712 }
3713 /* This is used for things like AltiVec registers on ppc. Gcc emits
3714 an attribute for the array type, which tells whether or not we
3715 have a vector, instead of a regular array. */
3716 if (TYPE_VECTOR (type))
3717 {
3718 puts_filtered (" TYPE_FLAG_VECTOR");
3719 }
3720 if (TYPE_FIXED_INSTANCE (type))
3721 {
3722 puts_filtered (" TYPE_FIXED_INSTANCE");
3723 }
3724 if (TYPE_STUB_SUPPORTED (type))
3725 {
3726 puts_filtered (" TYPE_STUB_SUPPORTED");
3727 }
3728 if (TYPE_NOTTEXT (type))
3729 {
3730 puts_filtered (" TYPE_NOTTEXT");
3731 }
3732 puts_filtered ("\n");
3733 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3734 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3735 puts_filtered ("\n");
3736 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3737 {
3738 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
3739 printfi_filtered (spaces + 2,
3740 "[%d] enumval %s type ",
3741 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
3742 else
3743 printfi_filtered (spaces + 2,
3744 "[%d] bitpos %d bitsize %d type ",
3745 idx, TYPE_FIELD_BITPOS (type, idx),
3746 TYPE_FIELD_BITSIZE (type, idx));
3747 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3748 printf_filtered (" name '%s' (",
3749 TYPE_FIELD_NAME (type, idx) != NULL
3750 ? TYPE_FIELD_NAME (type, idx)
3751 : "<NULL>");
3752 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3753 printf_filtered (")\n");
3754 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3755 {
3756 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3757 }
3758 }
3759 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3760 {
3761 printfi_filtered (spaces, "low %s%s high %s%s\n",
3762 plongest (TYPE_LOW_BOUND (type)),
3763 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3764 plongest (TYPE_HIGH_BOUND (type)),
3765 TYPE_HIGH_BOUND_UNDEFINED (type)
3766 ? " (undefined)" : "");
3767 }
3768 printfi_filtered (spaces, "vptr_basetype ");
3769 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3770 puts_filtered ("\n");
3771 if (TYPE_VPTR_BASETYPE (type) != NULL)
3772 {
3773 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3774 }
3775 printfi_filtered (spaces, "vptr_fieldno %d\n",
3776 TYPE_VPTR_FIELDNO (type));
3777
3778 switch (TYPE_SPECIFIC_FIELD (type))
3779 {
3780 case TYPE_SPECIFIC_CPLUS_STUFF:
3781 printfi_filtered (spaces, "cplus_stuff ");
3782 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3783 gdb_stdout);
3784 puts_filtered ("\n");
3785 print_cplus_stuff (type, spaces);
3786 break;
3787
3788 case TYPE_SPECIFIC_GNAT_STUFF:
3789 printfi_filtered (spaces, "gnat_stuff ");
3790 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3791 puts_filtered ("\n");
3792 print_gnat_stuff (type, spaces);
3793 break;
3794
3795 case TYPE_SPECIFIC_FLOATFORMAT:
3796 printfi_filtered (spaces, "floatformat ");
3797 if (TYPE_FLOATFORMAT (type) == NULL)
3798 puts_filtered ("(null)");
3799 else
3800 {
3801 puts_filtered ("{ ");
3802 if (TYPE_FLOATFORMAT (type)[0] == NULL
3803 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3804 puts_filtered ("(null)");
3805 else
3806 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3807
3808 puts_filtered (", ");
3809 if (TYPE_FLOATFORMAT (type)[1] == NULL
3810 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3811 puts_filtered ("(null)");
3812 else
3813 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3814
3815 puts_filtered (" }");
3816 }
3817 puts_filtered ("\n");
3818 break;
3819
3820 case TYPE_SPECIFIC_FUNC:
3821 printfi_filtered (spaces, "calling_convention %d\n",
3822 TYPE_CALLING_CONVENTION (type));
3823 /* tail_call_list is not printed. */
3824 break;
3825 }
3826
3827 if (spaces == 0)
3828 obstack_free (&dont_print_type_obstack, NULL);
3829 }
3830 \f
3831 /* Trivial helpers for the libiberty hash table, for mapping one
3832 type to another. */
3833
3834 struct type_pair
3835 {
3836 struct type *old, *new;
3837 };
3838
3839 static hashval_t
3840 type_pair_hash (const void *item)
3841 {
3842 const struct type_pair *pair = item;
3843
3844 return htab_hash_pointer (pair->old);
3845 }
3846
3847 static int
3848 type_pair_eq (const void *item_lhs, const void *item_rhs)
3849 {
3850 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3851
3852 return lhs->old == rhs->old;
3853 }
3854
3855 /* Allocate the hash table used by copy_type_recursive to walk
3856 types without duplicates. We use OBJFILE's obstack, because
3857 OBJFILE is about to be deleted. */
3858
3859 htab_t
3860 create_copied_types_hash (struct objfile *objfile)
3861 {
3862 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3863 NULL, &objfile->objfile_obstack,
3864 hashtab_obstack_allocate,
3865 dummy_obstack_deallocate);
3866 }
3867
3868 /* Recursively copy (deep copy) TYPE, if it is associated with
3869 OBJFILE. Return a new type allocated using malloc, a saved type if
3870 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3871 not associated with OBJFILE. */
3872
3873 struct type *
3874 copy_type_recursive (struct objfile *objfile,
3875 struct type *type,
3876 htab_t copied_types)
3877 {
3878 struct type_pair *stored, pair;
3879 void **slot;
3880 struct type *new_type;
3881
3882 if (! TYPE_OBJFILE_OWNED (type))
3883 return type;
3884
3885 /* This type shouldn't be pointing to any types in other objfiles;
3886 if it did, the type might disappear unexpectedly. */
3887 gdb_assert (TYPE_OBJFILE (type) == objfile);
3888
3889 pair.old = type;
3890 slot = htab_find_slot (copied_types, &pair, INSERT);
3891 if (*slot != NULL)
3892 return ((struct type_pair *) *slot)->new;
3893
3894 new_type = alloc_type_arch (get_type_arch (type));
3895
3896 /* We must add the new type to the hash table immediately, in case
3897 we encounter this type again during a recursive call below. */
3898 stored
3899 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3900 stored->old = type;
3901 stored->new = new_type;
3902 *slot = stored;
3903
3904 /* Copy the common fields of types. For the main type, we simply
3905 copy the entire thing and then update specific fields as needed. */
3906 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3907 TYPE_OBJFILE_OWNED (new_type) = 0;
3908 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3909
3910 if (TYPE_NAME (type))
3911 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3912 if (TYPE_TAG_NAME (type))
3913 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3914
3915 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3916 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3917
3918 /* Copy the fields. */
3919 if (TYPE_NFIELDS (type))
3920 {
3921 int i, nfields;
3922
3923 nfields = TYPE_NFIELDS (type);
3924 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
3925 for (i = 0; i < nfields; i++)
3926 {
3927 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3928 TYPE_FIELD_ARTIFICIAL (type, i);
3929 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3930 if (TYPE_FIELD_TYPE (type, i))
3931 TYPE_FIELD_TYPE (new_type, i)
3932 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3933 copied_types);
3934 if (TYPE_FIELD_NAME (type, i))
3935 TYPE_FIELD_NAME (new_type, i) =
3936 xstrdup (TYPE_FIELD_NAME (type, i));
3937 switch (TYPE_FIELD_LOC_KIND (type, i))
3938 {
3939 case FIELD_LOC_KIND_BITPOS:
3940 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3941 TYPE_FIELD_BITPOS (type, i));
3942 break;
3943 case FIELD_LOC_KIND_ENUMVAL:
3944 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
3945 TYPE_FIELD_ENUMVAL (type, i));
3946 break;
3947 case FIELD_LOC_KIND_PHYSADDR:
3948 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3949 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3950 break;
3951 case FIELD_LOC_KIND_PHYSNAME:
3952 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3953 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3954 i)));
3955 break;
3956 default:
3957 internal_error (__FILE__, __LINE__,
3958 _("Unexpected type field location kind: %d"),
3959 TYPE_FIELD_LOC_KIND (type, i));
3960 }
3961 }
3962 }
3963
3964 /* For range types, copy the bounds information. */
3965 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3966 {
3967 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3968 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3969 }
3970
3971 /* Copy pointers to other types. */
3972 if (TYPE_TARGET_TYPE (type))
3973 TYPE_TARGET_TYPE (new_type) =
3974 copy_type_recursive (objfile,
3975 TYPE_TARGET_TYPE (type),
3976 copied_types);
3977 if (TYPE_VPTR_BASETYPE (type))
3978 TYPE_VPTR_BASETYPE (new_type) =
3979 copy_type_recursive (objfile,
3980 TYPE_VPTR_BASETYPE (type),
3981 copied_types);
3982 /* Maybe copy the type_specific bits.
3983
3984 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3985 base classes and methods. There's no fundamental reason why we
3986 can't, but at the moment it is not needed. */
3987
3988 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3989 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3990 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3991 || TYPE_CODE (type) == TYPE_CODE_UNION
3992 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3993 INIT_CPLUS_SPECIFIC (new_type);
3994
3995 return new_type;
3996 }
3997
3998 /* Make a copy of the given TYPE, except that the pointer & reference
3999 types are not preserved.
4000
4001 This function assumes that the given type has an associated objfile.
4002 This objfile is used to allocate the new type. */
4003
4004 struct type *
4005 copy_type (const struct type *type)
4006 {
4007 struct type *new_type;
4008
4009 gdb_assert (TYPE_OBJFILE_OWNED (type));
4010
4011 new_type = alloc_type_copy (type);
4012 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4013 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4014 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4015 sizeof (struct main_type));
4016
4017 return new_type;
4018 }
4019 \f
4020 /* Helper functions to initialize architecture-specific types. */
4021
4022 /* Allocate a type structure associated with GDBARCH and set its
4023 CODE, LENGTH, and NAME fields. */
4024
4025 struct type *
4026 arch_type (struct gdbarch *gdbarch,
4027 enum type_code code, int length, char *name)
4028 {
4029 struct type *type;
4030
4031 type = alloc_type_arch (gdbarch);
4032 TYPE_CODE (type) = code;
4033 TYPE_LENGTH (type) = length;
4034
4035 if (name)
4036 TYPE_NAME (type) = xstrdup (name);
4037
4038 return type;
4039 }
4040
4041 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4042 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4043 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4044
4045 struct type *
4046 arch_integer_type (struct gdbarch *gdbarch,
4047 int bit, int unsigned_p, char *name)
4048 {
4049 struct type *t;
4050
4051 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4052 if (unsigned_p)
4053 TYPE_UNSIGNED (t) = 1;
4054 if (name && strcmp (name, "char") == 0)
4055 TYPE_NOSIGN (t) = 1;
4056
4057 return t;
4058 }
4059
4060 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4061 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4062 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4063
4064 struct type *
4065 arch_character_type (struct gdbarch *gdbarch,
4066 int bit, int unsigned_p, char *name)
4067 {
4068 struct type *t;
4069
4070 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4071 if (unsigned_p)
4072 TYPE_UNSIGNED (t) = 1;
4073
4074 return t;
4075 }
4076
4077 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4078 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4079 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4080
4081 struct type *
4082 arch_boolean_type (struct gdbarch *gdbarch,
4083 int bit, int unsigned_p, char *name)
4084 {
4085 struct type *t;
4086
4087 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4088 if (unsigned_p)
4089 TYPE_UNSIGNED (t) = 1;
4090
4091 return t;
4092 }
4093
4094 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4095 BIT is the type size in bits; if BIT equals -1, the size is
4096 determined by the floatformat. NAME is the type name. Set the
4097 TYPE_FLOATFORMAT from FLOATFORMATS. */
4098
4099 struct type *
4100 arch_float_type (struct gdbarch *gdbarch,
4101 int bit, char *name, const struct floatformat **floatformats)
4102 {
4103 struct type *t;
4104
4105 if (bit == -1)
4106 {
4107 gdb_assert (floatformats != NULL);
4108 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4109 bit = floatformats[0]->totalsize;
4110 }
4111 gdb_assert (bit >= 0);
4112
4113 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4114 TYPE_FLOATFORMAT (t) = floatformats;
4115 return t;
4116 }
4117
4118 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4119 NAME is the type name. TARGET_TYPE is the component float type. */
4120
4121 struct type *
4122 arch_complex_type (struct gdbarch *gdbarch,
4123 char *name, struct type *target_type)
4124 {
4125 struct type *t;
4126
4127 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4128 2 * TYPE_LENGTH (target_type), name);
4129 TYPE_TARGET_TYPE (t) = target_type;
4130 return t;
4131 }
4132
4133 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4134 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4135
4136 struct type *
4137 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4138 {
4139 int nfields = length * TARGET_CHAR_BIT;
4140 struct type *type;
4141
4142 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4143 TYPE_UNSIGNED (type) = 1;
4144 TYPE_NFIELDS (type) = nfields;
4145 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4146
4147 return type;
4148 }
4149
4150 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4151 position BITPOS is called NAME. */
4152
4153 void
4154 append_flags_type_flag (struct type *type, int bitpos, char *name)
4155 {
4156 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4157 gdb_assert (bitpos < TYPE_NFIELDS (type));
4158 gdb_assert (bitpos >= 0);
4159
4160 if (name)
4161 {
4162 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4163 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4164 }
4165 else
4166 {
4167 /* Don't show this field to the user. */
4168 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4169 }
4170 }
4171
4172 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4173 specified by CODE) associated with GDBARCH. NAME is the type name. */
4174
4175 struct type *
4176 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4177 {
4178 struct type *t;
4179
4180 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4181 t = arch_type (gdbarch, code, 0, NULL);
4182 TYPE_TAG_NAME (t) = name;
4183 INIT_CPLUS_SPECIFIC (t);
4184 return t;
4185 }
4186
4187 /* Add new field with name NAME and type FIELD to composite type T.
4188 Do not set the field's position or adjust the type's length;
4189 the caller should do so. Return the new field. */
4190
4191 struct field *
4192 append_composite_type_field_raw (struct type *t, char *name,
4193 struct type *field)
4194 {
4195 struct field *f;
4196
4197 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4198 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4199 sizeof (struct field) * TYPE_NFIELDS (t));
4200 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4201 memset (f, 0, sizeof f[0]);
4202 FIELD_TYPE (f[0]) = field;
4203 FIELD_NAME (f[0]) = name;
4204 return f;
4205 }
4206
4207 /* Add new field with name NAME and type FIELD to composite type T.
4208 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4209
4210 void
4211 append_composite_type_field_aligned (struct type *t, char *name,
4212 struct type *field, int alignment)
4213 {
4214 struct field *f = append_composite_type_field_raw (t, name, field);
4215
4216 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4217 {
4218 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4219 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4220 }
4221 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4222 {
4223 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4224 if (TYPE_NFIELDS (t) > 1)
4225 {
4226 SET_FIELD_BITPOS (f[0],
4227 (FIELD_BITPOS (f[-1])
4228 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4229 * TARGET_CHAR_BIT)));
4230
4231 if (alignment)
4232 {
4233 int left;
4234
4235 alignment *= TARGET_CHAR_BIT;
4236 left = FIELD_BITPOS (f[0]) % alignment;
4237
4238 if (left)
4239 {
4240 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4241 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4242 }
4243 }
4244 }
4245 }
4246 }
4247
4248 /* Add new field with name NAME and type FIELD to composite type T. */
4249
4250 void
4251 append_composite_type_field (struct type *t, char *name,
4252 struct type *field)
4253 {
4254 append_composite_type_field_aligned (t, name, field, 0);
4255 }
4256
4257 static struct gdbarch_data *gdbtypes_data;
4258
4259 const struct builtin_type *
4260 builtin_type (struct gdbarch *gdbarch)
4261 {
4262 return gdbarch_data (gdbarch, gdbtypes_data);
4263 }
4264
4265 static void *
4266 gdbtypes_post_init (struct gdbarch *gdbarch)
4267 {
4268 struct builtin_type *builtin_type
4269 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4270
4271 /* Basic types. */
4272 builtin_type->builtin_void
4273 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4274 builtin_type->builtin_char
4275 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4276 !gdbarch_char_signed (gdbarch), "char");
4277 builtin_type->builtin_signed_char
4278 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4279 0, "signed char");
4280 builtin_type->builtin_unsigned_char
4281 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4282 1, "unsigned char");
4283 builtin_type->builtin_short
4284 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4285 0, "short");
4286 builtin_type->builtin_unsigned_short
4287 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4288 1, "unsigned short");
4289 builtin_type->builtin_int
4290 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4291 0, "int");
4292 builtin_type->builtin_unsigned_int
4293 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4294 1, "unsigned int");
4295 builtin_type->builtin_long
4296 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4297 0, "long");
4298 builtin_type->builtin_unsigned_long
4299 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4300 1, "unsigned long");
4301 builtin_type->builtin_long_long
4302 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4303 0, "long long");
4304 builtin_type->builtin_unsigned_long_long
4305 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4306 1, "unsigned long long");
4307 builtin_type->builtin_float
4308 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4309 "float", gdbarch_float_format (gdbarch));
4310 builtin_type->builtin_double
4311 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4312 "double", gdbarch_double_format (gdbarch));
4313 builtin_type->builtin_long_double
4314 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4315 "long double", gdbarch_long_double_format (gdbarch));
4316 builtin_type->builtin_complex
4317 = arch_complex_type (gdbarch, "complex",
4318 builtin_type->builtin_float);
4319 builtin_type->builtin_double_complex
4320 = arch_complex_type (gdbarch, "double complex",
4321 builtin_type->builtin_double);
4322 builtin_type->builtin_string
4323 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4324 builtin_type->builtin_bool
4325 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4326
4327 /* The following three are about decimal floating point types, which
4328 are 32-bits, 64-bits and 128-bits respectively. */
4329 builtin_type->builtin_decfloat
4330 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4331 builtin_type->builtin_decdouble
4332 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4333 builtin_type->builtin_declong
4334 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4335
4336 /* "True" character types. */
4337 builtin_type->builtin_true_char
4338 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4339 builtin_type->builtin_true_unsigned_char
4340 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4341
4342 /* Fixed-size integer types. */
4343 builtin_type->builtin_int0
4344 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4345 builtin_type->builtin_int8
4346 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4347 builtin_type->builtin_uint8
4348 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4349 builtin_type->builtin_int16
4350 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4351 builtin_type->builtin_uint16
4352 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4353 builtin_type->builtin_int32
4354 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4355 builtin_type->builtin_uint32
4356 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4357 builtin_type->builtin_int64
4358 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4359 builtin_type->builtin_uint64
4360 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4361 builtin_type->builtin_int128
4362 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4363 builtin_type->builtin_uint128
4364 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4365 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4366 TYPE_INSTANCE_FLAG_NOTTEXT;
4367 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4368 TYPE_INSTANCE_FLAG_NOTTEXT;
4369
4370 /* Wide character types. */
4371 builtin_type->builtin_char16
4372 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4373 builtin_type->builtin_char32
4374 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4375
4376
4377 /* Default data/code pointer types. */
4378 builtin_type->builtin_data_ptr
4379 = lookup_pointer_type (builtin_type->builtin_void);
4380 builtin_type->builtin_func_ptr
4381 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4382 builtin_type->builtin_func_func
4383 = lookup_function_type (builtin_type->builtin_func_ptr);
4384
4385 /* This type represents a GDB internal function. */
4386 builtin_type->internal_fn
4387 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4388 "<internal function>");
4389
4390 return builtin_type;
4391 }
4392
4393 /* This set of objfile-based types is intended to be used by symbol
4394 readers as basic types. */
4395
4396 static const struct objfile_data *objfile_type_data;
4397
4398 const struct objfile_type *
4399 objfile_type (struct objfile *objfile)
4400 {
4401 struct gdbarch *gdbarch;
4402 struct objfile_type *objfile_type
4403 = objfile_data (objfile, objfile_type_data);
4404
4405 if (objfile_type)
4406 return objfile_type;
4407
4408 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4409 1, struct objfile_type);
4410
4411 /* Use the objfile architecture to determine basic type properties. */
4412 gdbarch = get_objfile_arch (objfile);
4413
4414 /* Basic types. */
4415 objfile_type->builtin_void
4416 = init_type (TYPE_CODE_VOID, 1,
4417 0,
4418 "void", objfile);
4419
4420 objfile_type->builtin_char
4421 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4422 (TYPE_FLAG_NOSIGN
4423 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4424 "char", objfile);
4425 objfile_type->builtin_signed_char
4426 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4427 0,
4428 "signed char", objfile);
4429 objfile_type->builtin_unsigned_char
4430 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4431 TYPE_FLAG_UNSIGNED,
4432 "unsigned char", objfile);
4433 objfile_type->builtin_short
4434 = init_type (TYPE_CODE_INT,
4435 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4436 0, "short", objfile);
4437 objfile_type->builtin_unsigned_short
4438 = init_type (TYPE_CODE_INT,
4439 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4440 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4441 objfile_type->builtin_int
4442 = init_type (TYPE_CODE_INT,
4443 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4444 0, "int", objfile);
4445 objfile_type->builtin_unsigned_int
4446 = init_type (TYPE_CODE_INT,
4447 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4448 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4449 objfile_type->builtin_long
4450 = init_type (TYPE_CODE_INT,
4451 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4452 0, "long", objfile);
4453 objfile_type->builtin_unsigned_long
4454 = init_type (TYPE_CODE_INT,
4455 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4456 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4457 objfile_type->builtin_long_long
4458 = init_type (TYPE_CODE_INT,
4459 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4460 0, "long long", objfile);
4461 objfile_type->builtin_unsigned_long_long
4462 = init_type (TYPE_CODE_INT,
4463 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4464 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4465
4466 objfile_type->builtin_float
4467 = init_type (TYPE_CODE_FLT,
4468 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4469 0, "float", objfile);
4470 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4471 = gdbarch_float_format (gdbarch);
4472 objfile_type->builtin_double
4473 = init_type (TYPE_CODE_FLT,
4474 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4475 0, "double", objfile);
4476 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4477 = gdbarch_double_format (gdbarch);
4478 objfile_type->builtin_long_double
4479 = init_type (TYPE_CODE_FLT,
4480 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4481 0, "long double", objfile);
4482 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4483 = gdbarch_long_double_format (gdbarch);
4484
4485 /* This type represents a type that was unrecognized in symbol read-in. */
4486 objfile_type->builtin_error
4487 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4488
4489 /* The following set of types is used for symbols with no
4490 debug information. */
4491 objfile_type->nodebug_text_symbol
4492 = init_type (TYPE_CODE_FUNC, 1, 0,
4493 "<text variable, no debug info>", objfile);
4494 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
4495 = objfile_type->builtin_int;
4496 objfile_type->nodebug_text_gnu_ifunc_symbol
4497 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
4498 "<text gnu-indirect-function variable, no debug info>",
4499 objfile);
4500 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
4501 = objfile_type->nodebug_text_symbol;
4502 objfile_type->nodebug_got_plt_symbol
4503 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
4504 "<text from jump slot in .got.plt, no debug info>",
4505 objfile);
4506 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
4507 = objfile_type->nodebug_text_symbol;
4508 objfile_type->nodebug_data_symbol
4509 = init_type (TYPE_CODE_INT,
4510 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4511 "<data variable, no debug info>", objfile);
4512 objfile_type->nodebug_unknown_symbol
4513 = init_type (TYPE_CODE_INT, 1, 0,
4514 "<variable (not text or data), no debug info>", objfile);
4515 objfile_type->nodebug_tls_symbol
4516 = init_type (TYPE_CODE_INT,
4517 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
4518 "<thread local variable, no debug info>", objfile);
4519
4520 /* NOTE: on some targets, addresses and pointers are not necessarily
4521 the same.
4522
4523 The upshot is:
4524 - gdb's `struct type' always describes the target's
4525 representation.
4526 - gdb's `struct value' objects should always hold values in
4527 target form.
4528 - gdb's CORE_ADDR values are addresses in the unified virtual
4529 address space that the assembler and linker work with. Thus,
4530 since target_read_memory takes a CORE_ADDR as an argument, it
4531 can access any memory on the target, even if the processor has
4532 separate code and data address spaces.
4533
4534 In this context, objfile_type->builtin_core_addr is a bit odd:
4535 it's a target type for a value the target will never see. It's
4536 only used to hold the values of (typeless) linker symbols, which
4537 are indeed in the unified virtual address space. */
4538
4539 objfile_type->builtin_core_addr
4540 = init_type (TYPE_CODE_INT,
4541 gdbarch_addr_bit (gdbarch) / 8,
4542 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
4543
4544 set_objfile_data (objfile, objfile_type_data, objfile_type);
4545 return objfile_type;
4546 }
4547
4548 extern initialize_file_ftype _initialize_gdbtypes;
4549
4550 void
4551 _initialize_gdbtypes (void)
4552 {
4553 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
4554 objfile_type_data = register_objfile_data ();
4555
4556 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
4557 _("Set debugging of C++ overloading."),
4558 _("Show debugging of C++ overloading."),
4559 _("When enabled, ranking of the "
4560 "functions is displayed."),
4561 NULL,
4562 show_overload_debug,
4563 &setdebuglist, &showdebuglist);
4564
4565 /* Add user knob for controlling resolution of opaque types. */
4566 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4567 &opaque_type_resolution,
4568 _("Set resolution of opaque struct/class/union"
4569 " types (if set before loading symbols)."),
4570 _("Show resolution of opaque struct/class/union"
4571 " types (if set before loading symbols)."),
4572 NULL, NULL,
4573 show_opaque_type_resolution,
4574 &setlist, &showlist);
4575
4576 /* Add an option to permit non-strict type checking. */
4577 add_setshow_boolean_cmd ("type", class_support,
4578 &strict_type_checking,
4579 _("Set strict type checking."),
4580 _("Show strict type checking."),
4581 NULL, NULL,
4582 show_strict_type_checking,
4583 &setchecklist, &showchecklist);
4584 }
This page took 0.200725 seconds and 4 git commands to generate.