Automatic date update in version.in
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2/loc.h"
40 #include "gdbcore.h"
41 #include "floatformat.h"
42
43 /* Initialize BADNESS constants. */
44
45 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
46
47 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
48 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
49
50 const struct rank EXACT_MATCH_BADNESS = {0,0};
51
52 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
53 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
54 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
55 const struct rank CV_CONVERSION_BADNESS = {1, 0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63 const struct rank REFERENCE_SEE_THROUGH_BADNESS = {0,1};
64 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
65 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
66 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
67
68 /* Floatformat pairs. */
69 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_ieee_half_big,
71 &floatformat_ieee_half_little
72 };
73 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ieee_single_big,
75 &floatformat_ieee_single_little
76 };
77 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ieee_double_big,
79 &floatformat_ieee_double_little
80 };
81 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_ieee_double_big,
83 &floatformat_ieee_double_littlebyte_bigword
84 };
85 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_i387_ext,
87 &floatformat_i387_ext
88 };
89 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_m68881_ext,
91 &floatformat_m68881_ext
92 };
93 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
94 &floatformat_arm_ext_big,
95 &floatformat_arm_ext_littlebyte_bigword
96 };
97 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
98 &floatformat_ia64_spill_big,
99 &floatformat_ia64_spill_little
100 };
101 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
102 &floatformat_ia64_quad_big,
103 &floatformat_ia64_quad_little
104 };
105 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
106 &floatformat_vax_f,
107 &floatformat_vax_f
108 };
109 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
110 &floatformat_vax_d,
111 &floatformat_vax_d
112 };
113 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
114 &floatformat_ibm_long_double_big,
115 &floatformat_ibm_long_double_little
116 };
117
118 /* Should opaque types be resolved? */
119
120 static bool opaque_type_resolution = true;
121
122 /* See gdbtypes.h. */
123
124 unsigned int overload_debug = 0;
125
126 /* A flag to enable strict type checking. */
127
128 static bool strict_type_checking = true;
129
130 /* A function to show whether opaque types are resolved. */
131
132 static void
133 show_opaque_type_resolution (struct ui_file *file, int from_tty,
134 struct cmd_list_element *c,
135 const char *value)
136 {
137 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
138 "(if set before loading symbols) is %s.\n"),
139 value);
140 }
141
142 /* A function to show whether C++ overload debugging is enabled. */
143
144 static void
145 show_overload_debug (struct ui_file *file, int from_tty,
146 struct cmd_list_element *c, const char *value)
147 {
148 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
149 value);
150 }
151
152 /* A function to show the status of strict type checking. */
153
154 static void
155 show_strict_type_checking (struct ui_file *file, int from_tty,
156 struct cmd_list_element *c, const char *value)
157 {
158 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
159 }
160
161 \f
162 /* Allocate a new OBJFILE-associated type structure and fill it
163 with some defaults. Space for the type structure is allocated
164 on the objfile's objfile_obstack. */
165
166 struct type *
167 alloc_type (struct objfile *objfile)
168 {
169 struct type *type;
170
171 gdb_assert (objfile != NULL);
172
173 /* Alloc the structure and start off with all fields zeroed. */
174 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
175 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
176 struct main_type);
177 OBJSTAT (objfile, n_types++);
178
179 TYPE_OBJFILE_OWNED (type) = 1;
180 TYPE_OWNER (type).objfile = objfile;
181
182 /* Initialize the fields that might not be zero. */
183
184 TYPE_CODE (type) = TYPE_CODE_UNDEF;
185 TYPE_CHAIN (type) = type; /* Chain back to itself. */
186
187 return type;
188 }
189
190 /* Allocate a new GDBARCH-associated type structure and fill it
191 with some defaults. Space for the type structure is allocated
192 on the obstack associated with GDBARCH. */
193
194 struct type *
195 alloc_type_arch (struct gdbarch *gdbarch)
196 {
197 struct type *type;
198
199 gdb_assert (gdbarch != NULL);
200
201 /* Alloc the structure and start off with all fields zeroed. */
202
203 type = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct type);
204 TYPE_MAIN_TYPE (type) = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct main_type);
205
206 TYPE_OBJFILE_OWNED (type) = 0;
207 TYPE_OWNER (type).gdbarch = gdbarch;
208
209 /* Initialize the fields that might not be zero. */
210
211 TYPE_CODE (type) = TYPE_CODE_UNDEF;
212 TYPE_CHAIN (type) = type; /* Chain back to itself. */
213
214 return type;
215 }
216
217 /* If TYPE is objfile-associated, allocate a new type structure
218 associated with the same objfile. If TYPE is gdbarch-associated,
219 allocate a new type structure associated with the same gdbarch. */
220
221 struct type *
222 alloc_type_copy (const struct type *type)
223 {
224 if (TYPE_OBJFILE_OWNED (type))
225 return alloc_type (TYPE_OWNER (type).objfile);
226 else
227 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
228 }
229
230 /* If TYPE is gdbarch-associated, return that architecture.
231 If TYPE is objfile-associated, return that objfile's architecture. */
232
233 struct gdbarch *
234 get_type_arch (const struct type *type)
235 {
236 struct gdbarch *arch;
237
238 if (TYPE_OBJFILE_OWNED (type))
239 arch = get_objfile_arch (TYPE_OWNER (type).objfile);
240 else
241 arch = TYPE_OWNER (type).gdbarch;
242
243 /* The ARCH can be NULL if TYPE is associated with neither an objfile nor
244 a gdbarch, however, this is very rare, and even then, in most cases
245 that get_type_arch is called, we assume that a non-NULL value is
246 returned. */
247 gdb_assert (arch != NULL);
248 return arch;
249 }
250
251 /* See gdbtypes.h. */
252
253 struct type *
254 get_target_type (struct type *type)
255 {
256 if (type != NULL)
257 {
258 type = TYPE_TARGET_TYPE (type);
259 if (type != NULL)
260 type = check_typedef (type);
261 }
262
263 return type;
264 }
265
266 /* See gdbtypes.h. */
267
268 unsigned int
269 type_length_units (struct type *type)
270 {
271 struct gdbarch *arch = get_type_arch (type);
272 int unit_size = gdbarch_addressable_memory_unit_size (arch);
273
274 return TYPE_LENGTH (type) / unit_size;
275 }
276
277 /* Alloc a new type instance structure, fill it with some defaults,
278 and point it at OLDTYPE. Allocate the new type instance from the
279 same place as OLDTYPE. */
280
281 static struct type *
282 alloc_type_instance (struct type *oldtype)
283 {
284 struct type *type;
285
286 /* Allocate the structure. */
287
288 if (! TYPE_OBJFILE_OWNED (oldtype))
289 type = GDBARCH_OBSTACK_ZALLOC (get_type_arch (oldtype), struct type);
290 else
291 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
292 struct type);
293
294 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
295
296 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
297
298 return type;
299 }
300
301 /* Clear all remnants of the previous type at TYPE, in preparation for
302 replacing it with something else. Preserve owner information. */
303
304 static void
305 smash_type (struct type *type)
306 {
307 int objfile_owned = TYPE_OBJFILE_OWNED (type);
308 union type_owner owner = TYPE_OWNER (type);
309
310 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
311
312 /* Restore owner information. */
313 TYPE_OBJFILE_OWNED (type) = objfile_owned;
314 TYPE_OWNER (type) = owner;
315
316 /* For now, delete the rings. */
317 TYPE_CHAIN (type) = type;
318
319 /* For now, leave the pointer/reference types alone. */
320 }
321
322 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
323 to a pointer to memory where the pointer type should be stored.
324 If *TYPEPTR is zero, update it to point to the pointer type we return.
325 We allocate new memory if needed. */
326
327 struct type *
328 make_pointer_type (struct type *type, struct type **typeptr)
329 {
330 struct type *ntype; /* New type */
331 struct type *chain;
332
333 ntype = TYPE_POINTER_TYPE (type);
334
335 if (ntype)
336 {
337 if (typeptr == 0)
338 return ntype; /* Don't care about alloc,
339 and have new type. */
340 else if (*typeptr == 0)
341 {
342 *typeptr = ntype; /* Tracking alloc, and have new type. */
343 return ntype;
344 }
345 }
346
347 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
348 {
349 ntype = alloc_type_copy (type);
350 if (typeptr)
351 *typeptr = ntype;
352 }
353 else /* We have storage, but need to reset it. */
354 {
355 ntype = *typeptr;
356 chain = TYPE_CHAIN (ntype);
357 smash_type (ntype);
358 TYPE_CHAIN (ntype) = chain;
359 }
360
361 TYPE_TARGET_TYPE (ntype) = type;
362 TYPE_POINTER_TYPE (type) = ntype;
363
364 /* FIXME! Assumes the machine has only one representation for pointers! */
365
366 TYPE_LENGTH (ntype)
367 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
368 TYPE_CODE (ntype) = TYPE_CODE_PTR;
369
370 /* Mark pointers as unsigned. The target converts between pointers
371 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
372 gdbarch_address_to_pointer. */
373 TYPE_UNSIGNED (ntype) = 1;
374
375 /* Update the length of all the other variants of this type. */
376 chain = TYPE_CHAIN (ntype);
377 while (chain != ntype)
378 {
379 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
380 chain = TYPE_CHAIN (chain);
381 }
382
383 return ntype;
384 }
385
386 /* Given a type TYPE, return a type of pointers to that type.
387 May need to construct such a type if this is the first use. */
388
389 struct type *
390 lookup_pointer_type (struct type *type)
391 {
392 return make_pointer_type (type, (struct type **) 0);
393 }
394
395 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
396 points to a pointer to memory where the reference type should be
397 stored. If *TYPEPTR is zero, update it to point to the reference
398 type we return. We allocate new memory if needed. REFCODE denotes
399 the kind of reference type to lookup (lvalue or rvalue reference). */
400
401 struct type *
402 make_reference_type (struct type *type, struct type **typeptr,
403 enum type_code refcode)
404 {
405 struct type *ntype; /* New type */
406 struct type **reftype;
407 struct type *chain;
408
409 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
410
411 ntype = (refcode == TYPE_CODE_REF ? TYPE_REFERENCE_TYPE (type)
412 : TYPE_RVALUE_REFERENCE_TYPE (type));
413
414 if (ntype)
415 {
416 if (typeptr == 0)
417 return ntype; /* Don't care about alloc,
418 and have new type. */
419 else if (*typeptr == 0)
420 {
421 *typeptr = ntype; /* Tracking alloc, and have new type. */
422 return ntype;
423 }
424 }
425
426 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
427 {
428 ntype = alloc_type_copy (type);
429 if (typeptr)
430 *typeptr = ntype;
431 }
432 else /* We have storage, but need to reset it. */
433 {
434 ntype = *typeptr;
435 chain = TYPE_CHAIN (ntype);
436 smash_type (ntype);
437 TYPE_CHAIN (ntype) = chain;
438 }
439
440 TYPE_TARGET_TYPE (ntype) = type;
441 reftype = (refcode == TYPE_CODE_REF ? &TYPE_REFERENCE_TYPE (type)
442 : &TYPE_RVALUE_REFERENCE_TYPE (type));
443
444 *reftype = ntype;
445
446 /* FIXME! Assume the machine has only one representation for
447 references, and that it matches the (only) representation for
448 pointers! */
449
450 TYPE_LENGTH (ntype) =
451 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
452 TYPE_CODE (ntype) = refcode;
453
454 *reftype = ntype;
455
456 /* Update the length of all the other variants of this type. */
457 chain = TYPE_CHAIN (ntype);
458 while (chain != ntype)
459 {
460 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
461 chain = TYPE_CHAIN (chain);
462 }
463
464 return ntype;
465 }
466
467 /* Same as above, but caller doesn't care about memory allocation
468 details. */
469
470 struct type *
471 lookup_reference_type (struct type *type, enum type_code refcode)
472 {
473 return make_reference_type (type, (struct type **) 0, refcode);
474 }
475
476 /* Lookup the lvalue reference type for the type TYPE. */
477
478 struct type *
479 lookup_lvalue_reference_type (struct type *type)
480 {
481 return lookup_reference_type (type, TYPE_CODE_REF);
482 }
483
484 /* Lookup the rvalue reference type for the type TYPE. */
485
486 struct type *
487 lookup_rvalue_reference_type (struct type *type)
488 {
489 return lookup_reference_type (type, TYPE_CODE_RVALUE_REF);
490 }
491
492 /* Lookup a function type that returns type TYPE. TYPEPTR, if
493 nonzero, points to a pointer to memory where the function type
494 should be stored. If *TYPEPTR is zero, update it to point to the
495 function type we return. We allocate new memory if needed. */
496
497 struct type *
498 make_function_type (struct type *type, struct type **typeptr)
499 {
500 struct type *ntype; /* New type */
501
502 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
503 {
504 ntype = alloc_type_copy (type);
505 if (typeptr)
506 *typeptr = ntype;
507 }
508 else /* We have storage, but need to reset it. */
509 {
510 ntype = *typeptr;
511 smash_type (ntype);
512 }
513
514 TYPE_TARGET_TYPE (ntype) = type;
515
516 TYPE_LENGTH (ntype) = 1;
517 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
518
519 INIT_FUNC_SPECIFIC (ntype);
520
521 return ntype;
522 }
523
524 /* Given a type TYPE, return a type of functions that return that type.
525 May need to construct such a type if this is the first use. */
526
527 struct type *
528 lookup_function_type (struct type *type)
529 {
530 return make_function_type (type, (struct type **) 0);
531 }
532
533 /* Given a type TYPE and argument types, return the appropriate
534 function type. If the final type in PARAM_TYPES is NULL, make a
535 varargs function. */
536
537 struct type *
538 lookup_function_type_with_arguments (struct type *type,
539 int nparams,
540 struct type **param_types)
541 {
542 struct type *fn = make_function_type (type, (struct type **) 0);
543 int i;
544
545 if (nparams > 0)
546 {
547 if (param_types[nparams - 1] == NULL)
548 {
549 --nparams;
550 TYPE_VARARGS (fn) = 1;
551 }
552 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
553 == TYPE_CODE_VOID)
554 {
555 --nparams;
556 /* Caller should have ensured this. */
557 gdb_assert (nparams == 0);
558 TYPE_PROTOTYPED (fn) = 1;
559 }
560 else
561 TYPE_PROTOTYPED (fn) = 1;
562 }
563
564 TYPE_NFIELDS (fn) = nparams;
565 TYPE_FIELDS (fn)
566 = (struct field *) TYPE_ZALLOC (fn, nparams * sizeof (struct field));
567 for (i = 0; i < nparams; ++i)
568 TYPE_FIELD_TYPE (fn, i) = param_types[i];
569
570 return fn;
571 }
572
573 /* Identify address space identifier by name --
574 return the integer flag defined in gdbtypes.h. */
575
576 int
577 address_space_name_to_int (struct gdbarch *gdbarch,
578 const char *space_identifier)
579 {
580 int type_flags;
581
582 /* Check for known address space delimiters. */
583 if (!strcmp (space_identifier, "code"))
584 return TYPE_INSTANCE_FLAG_CODE_SPACE;
585 else if (!strcmp (space_identifier, "data"))
586 return TYPE_INSTANCE_FLAG_DATA_SPACE;
587 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
588 && gdbarch_address_class_name_to_type_flags (gdbarch,
589 space_identifier,
590 &type_flags))
591 return type_flags;
592 else
593 error (_("Unknown address space specifier: \"%s\""), space_identifier);
594 }
595
596 /* Identify address space identifier by integer flag as defined in
597 gdbtypes.h -- return the string version of the adress space name. */
598
599 const char *
600 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
601 {
602 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
603 return "code";
604 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
605 return "data";
606 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
607 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
608 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
609 else
610 return NULL;
611 }
612
613 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
614
615 If STORAGE is non-NULL, create the new type instance there.
616 STORAGE must be in the same obstack as TYPE. */
617
618 static struct type *
619 make_qualified_type (struct type *type, int new_flags,
620 struct type *storage)
621 {
622 struct type *ntype;
623
624 ntype = type;
625 do
626 {
627 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
628 return ntype;
629 ntype = TYPE_CHAIN (ntype);
630 }
631 while (ntype != type);
632
633 /* Create a new type instance. */
634 if (storage == NULL)
635 ntype = alloc_type_instance (type);
636 else
637 {
638 /* If STORAGE was provided, it had better be in the same objfile
639 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
640 if one objfile is freed and the other kept, we'd have
641 dangling pointers. */
642 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
643
644 ntype = storage;
645 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
646 TYPE_CHAIN (ntype) = ntype;
647 }
648
649 /* Pointers or references to the original type are not relevant to
650 the new type. */
651 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
652 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
653
654 /* Chain the new qualified type to the old type. */
655 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
656 TYPE_CHAIN (type) = ntype;
657
658 /* Now set the instance flags and return the new type. */
659 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
660
661 /* Set length of new type to that of the original type. */
662 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
663
664 return ntype;
665 }
666
667 /* Make an address-space-delimited variant of a type -- a type that
668 is identical to the one supplied except that it has an address
669 space attribute attached to it (such as "code" or "data").
670
671 The space attributes "code" and "data" are for Harvard
672 architectures. The address space attributes are for architectures
673 which have alternately sized pointers or pointers with alternate
674 representations. */
675
676 struct type *
677 make_type_with_address_space (struct type *type, int space_flag)
678 {
679 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
680 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
681 | TYPE_INSTANCE_FLAG_DATA_SPACE
682 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
683 | space_flag);
684
685 return make_qualified_type (type, new_flags, NULL);
686 }
687
688 /* Make a "c-v" variant of a type -- a type that is identical to the
689 one supplied except that it may have const or volatile attributes
690 CNST is a flag for setting the const attribute
691 VOLTL is a flag for setting the volatile attribute
692 TYPE is the base type whose variant we are creating.
693
694 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
695 storage to hold the new qualified type; *TYPEPTR and TYPE must be
696 in the same objfile. Otherwise, allocate fresh memory for the new
697 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
698 new type we construct. */
699
700 struct type *
701 make_cv_type (int cnst, int voltl,
702 struct type *type,
703 struct type **typeptr)
704 {
705 struct type *ntype; /* New type */
706
707 int new_flags = (TYPE_INSTANCE_FLAGS (type)
708 & ~(TYPE_INSTANCE_FLAG_CONST
709 | TYPE_INSTANCE_FLAG_VOLATILE));
710
711 if (cnst)
712 new_flags |= TYPE_INSTANCE_FLAG_CONST;
713
714 if (voltl)
715 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
716
717 if (typeptr && *typeptr != NULL)
718 {
719 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
720 a C-V variant chain that threads across objfiles: if one
721 objfile gets freed, then the other has a broken C-V chain.
722
723 This code used to try to copy over the main type from TYPE to
724 *TYPEPTR if they were in different objfiles, but that's
725 wrong, too: TYPE may have a field list or member function
726 lists, which refer to types of their own, etc. etc. The
727 whole shebang would need to be copied over recursively; you
728 can't have inter-objfile pointers. The only thing to do is
729 to leave stub types as stub types, and look them up afresh by
730 name each time you encounter them. */
731 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
732 }
733
734 ntype = make_qualified_type (type, new_flags,
735 typeptr ? *typeptr : NULL);
736
737 if (typeptr != NULL)
738 *typeptr = ntype;
739
740 return ntype;
741 }
742
743 /* Make a 'restrict'-qualified version of TYPE. */
744
745 struct type *
746 make_restrict_type (struct type *type)
747 {
748 return make_qualified_type (type,
749 (TYPE_INSTANCE_FLAGS (type)
750 | TYPE_INSTANCE_FLAG_RESTRICT),
751 NULL);
752 }
753
754 /* Make a type without const, volatile, or restrict. */
755
756 struct type *
757 make_unqualified_type (struct type *type)
758 {
759 return make_qualified_type (type,
760 (TYPE_INSTANCE_FLAGS (type)
761 & ~(TYPE_INSTANCE_FLAG_CONST
762 | TYPE_INSTANCE_FLAG_VOLATILE
763 | TYPE_INSTANCE_FLAG_RESTRICT)),
764 NULL);
765 }
766
767 /* Make a '_Atomic'-qualified version of TYPE. */
768
769 struct type *
770 make_atomic_type (struct type *type)
771 {
772 return make_qualified_type (type,
773 (TYPE_INSTANCE_FLAGS (type)
774 | TYPE_INSTANCE_FLAG_ATOMIC),
775 NULL);
776 }
777
778 /* Replace the contents of ntype with the type *type. This changes the
779 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
780 the changes are propogated to all types in the TYPE_CHAIN.
781
782 In order to build recursive types, it's inevitable that we'll need
783 to update types in place --- but this sort of indiscriminate
784 smashing is ugly, and needs to be replaced with something more
785 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
786 clear if more steps are needed. */
787
788 void
789 replace_type (struct type *ntype, struct type *type)
790 {
791 struct type *chain;
792
793 /* These two types had better be in the same objfile. Otherwise,
794 the assignment of one type's main type structure to the other
795 will produce a type with references to objects (names; field
796 lists; etc.) allocated on an objfile other than its own. */
797 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (type));
798
799 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
800
801 /* The type length is not a part of the main type. Update it for
802 each type on the variant chain. */
803 chain = ntype;
804 do
805 {
806 /* Assert that this element of the chain has no address-class bits
807 set in its flags. Such type variants might have type lengths
808 which are supposed to be different from the non-address-class
809 variants. This assertion shouldn't ever be triggered because
810 symbol readers which do construct address-class variants don't
811 call replace_type(). */
812 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
813
814 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
815 chain = TYPE_CHAIN (chain);
816 }
817 while (ntype != chain);
818
819 /* Assert that the two types have equivalent instance qualifiers.
820 This should be true for at least all of our debug readers. */
821 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
822 }
823
824 /* Implement direct support for MEMBER_TYPE in GNU C++.
825 May need to construct such a type if this is the first use.
826 The TYPE is the type of the member. The DOMAIN is the type
827 of the aggregate that the member belongs to. */
828
829 struct type *
830 lookup_memberptr_type (struct type *type, struct type *domain)
831 {
832 struct type *mtype;
833
834 mtype = alloc_type_copy (type);
835 smash_to_memberptr_type (mtype, domain, type);
836 return mtype;
837 }
838
839 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
840
841 struct type *
842 lookup_methodptr_type (struct type *to_type)
843 {
844 struct type *mtype;
845
846 mtype = alloc_type_copy (to_type);
847 smash_to_methodptr_type (mtype, to_type);
848 return mtype;
849 }
850
851 /* Allocate a stub method whose return type is TYPE. This apparently
852 happens for speed of symbol reading, since parsing out the
853 arguments to the method is cpu-intensive, the way we are doing it.
854 So, we will fill in arguments later. This always returns a fresh
855 type. */
856
857 struct type *
858 allocate_stub_method (struct type *type)
859 {
860 struct type *mtype;
861
862 mtype = alloc_type_copy (type);
863 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
864 TYPE_LENGTH (mtype) = 1;
865 TYPE_STUB (mtype) = 1;
866 TYPE_TARGET_TYPE (mtype) = type;
867 /* TYPE_SELF_TYPE (mtype) = unknown yet */
868 return mtype;
869 }
870
871 /* See gdbtypes.h. */
872
873 bool
874 operator== (const dynamic_prop &l, const dynamic_prop &r)
875 {
876 if (l.kind != r.kind)
877 return false;
878
879 switch (l.kind)
880 {
881 case PROP_UNDEFINED:
882 return true;
883 case PROP_CONST:
884 return l.data.const_val == r.data.const_val;
885 case PROP_ADDR_OFFSET:
886 case PROP_LOCEXPR:
887 case PROP_LOCLIST:
888 return l.data.baton == r.data.baton;
889 }
890
891 gdb_assert_not_reached ("unhandled dynamic_prop kind");
892 }
893
894 /* See gdbtypes.h. */
895
896 bool
897 operator== (const range_bounds &l, const range_bounds &r)
898 {
899 #define FIELD_EQ(FIELD) (l.FIELD == r.FIELD)
900
901 return (FIELD_EQ (low)
902 && FIELD_EQ (high)
903 && FIELD_EQ (flag_upper_bound_is_count)
904 && FIELD_EQ (flag_bound_evaluated)
905 && FIELD_EQ (bias));
906
907 #undef FIELD_EQ
908 }
909
910 /* Create a range type with a dynamic range from LOW_BOUND to
911 HIGH_BOUND, inclusive. See create_range_type for further details. */
912
913 struct type *
914 create_range_type (struct type *result_type, struct type *index_type,
915 const struct dynamic_prop *low_bound,
916 const struct dynamic_prop *high_bound,
917 LONGEST bias)
918 {
919 /* The INDEX_TYPE should be a type capable of holding the upper and lower
920 bounds, as such a zero sized, or void type makes no sense. */
921 gdb_assert (TYPE_CODE (index_type) != TYPE_CODE_VOID);
922 gdb_assert (TYPE_LENGTH (index_type) > 0);
923
924 if (result_type == NULL)
925 result_type = alloc_type_copy (index_type);
926 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
927 TYPE_TARGET_TYPE (result_type) = index_type;
928 if (TYPE_STUB (index_type))
929 TYPE_TARGET_STUB (result_type) = 1;
930 else
931 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
932
933 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
934 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
935 TYPE_RANGE_DATA (result_type)->low = *low_bound;
936 TYPE_RANGE_DATA (result_type)->high = *high_bound;
937 TYPE_RANGE_DATA (result_type)->bias = bias;
938
939 /* Initialize the stride to be a constant, the value will already be zero
940 thanks to the use of TYPE_ZALLOC above. */
941 TYPE_RANGE_DATA (result_type)->stride.kind = PROP_CONST;
942
943 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
944 TYPE_UNSIGNED (result_type) = 1;
945
946 /* Ada allows the declaration of range types whose upper bound is
947 less than the lower bound, so checking the lower bound is not
948 enough. Make sure we do not mark a range type whose upper bound
949 is negative as unsigned. */
950 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
951 TYPE_UNSIGNED (result_type) = 0;
952
953 TYPE_ENDIANITY_NOT_DEFAULT (result_type)
954 = TYPE_ENDIANITY_NOT_DEFAULT (index_type);
955
956 return result_type;
957 }
958
959 /* See gdbtypes.h. */
960
961 struct type *
962 create_range_type_with_stride (struct type *result_type,
963 struct type *index_type,
964 const struct dynamic_prop *low_bound,
965 const struct dynamic_prop *high_bound,
966 LONGEST bias,
967 const struct dynamic_prop *stride,
968 bool byte_stride_p)
969 {
970 result_type = create_range_type (result_type, index_type, low_bound,
971 high_bound, bias);
972
973 gdb_assert (stride != nullptr);
974 TYPE_RANGE_DATA (result_type)->stride = *stride;
975 TYPE_RANGE_DATA (result_type)->flag_is_byte_stride = byte_stride_p;
976
977 return result_type;
978 }
979
980
981
982 /* Create a range type using either a blank type supplied in
983 RESULT_TYPE, or creating a new type, inheriting the objfile from
984 INDEX_TYPE.
985
986 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
987 to HIGH_BOUND, inclusive.
988
989 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
990 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
991
992 struct type *
993 create_static_range_type (struct type *result_type, struct type *index_type,
994 LONGEST low_bound, LONGEST high_bound)
995 {
996 struct dynamic_prop low, high;
997
998 low.kind = PROP_CONST;
999 low.data.const_val = low_bound;
1000
1001 high.kind = PROP_CONST;
1002 high.data.const_val = high_bound;
1003
1004 result_type = create_range_type (result_type, index_type, &low, &high, 0);
1005
1006 return result_type;
1007 }
1008
1009 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
1010 are static, otherwise returns 0. */
1011
1012 static bool
1013 has_static_range (const struct range_bounds *bounds)
1014 {
1015 /* If the range doesn't have a defined stride then its stride field will
1016 be initialized to the constant 0. */
1017 return (bounds->low.kind == PROP_CONST
1018 && bounds->high.kind == PROP_CONST
1019 && bounds->stride.kind == PROP_CONST);
1020 }
1021
1022
1023 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
1024 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
1025 bounds will fit in LONGEST), or -1 otherwise. */
1026
1027 int
1028 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
1029 {
1030 type = check_typedef (type);
1031 switch (TYPE_CODE (type))
1032 {
1033 case TYPE_CODE_RANGE:
1034 *lowp = TYPE_LOW_BOUND (type);
1035 *highp = TYPE_HIGH_BOUND (type);
1036 return 1;
1037 case TYPE_CODE_ENUM:
1038 if (TYPE_NFIELDS (type) > 0)
1039 {
1040 /* The enums may not be sorted by value, so search all
1041 entries. */
1042 int i;
1043
1044 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
1045 for (i = 0; i < TYPE_NFIELDS (type); i++)
1046 {
1047 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
1048 *lowp = TYPE_FIELD_ENUMVAL (type, i);
1049 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
1050 *highp = TYPE_FIELD_ENUMVAL (type, i);
1051 }
1052
1053 /* Set unsigned indicator if warranted. */
1054 if (*lowp >= 0)
1055 {
1056 TYPE_UNSIGNED (type) = 1;
1057 }
1058 }
1059 else
1060 {
1061 *lowp = 0;
1062 *highp = -1;
1063 }
1064 return 0;
1065 case TYPE_CODE_BOOL:
1066 *lowp = 0;
1067 *highp = 1;
1068 return 0;
1069 case TYPE_CODE_INT:
1070 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
1071 return -1;
1072 if (!TYPE_UNSIGNED (type))
1073 {
1074 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
1075 *highp = -*lowp - 1;
1076 return 0;
1077 }
1078 /* fall through */
1079 case TYPE_CODE_CHAR:
1080 *lowp = 0;
1081 /* This round-about calculation is to avoid shifting by
1082 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
1083 if TYPE_LENGTH (type) == sizeof (LONGEST). */
1084 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
1085 *highp = (*highp - 1) | *highp;
1086 return 0;
1087 default:
1088 return -1;
1089 }
1090 }
1091
1092 /* Assuming TYPE is a simple, non-empty array type, compute its upper
1093 and lower bound. Save the low bound into LOW_BOUND if not NULL.
1094 Save the high bound into HIGH_BOUND if not NULL.
1095
1096 Return 1 if the operation was successful. Return zero otherwise,
1097 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
1098
1099 We now simply use get_discrete_bounds call to get the values
1100 of the low and high bounds.
1101 get_discrete_bounds can return three values:
1102 1, meaning that index is a range,
1103 0, meaning that index is a discrete type,
1104 or -1 for failure. */
1105
1106 int
1107 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
1108 {
1109 struct type *index = TYPE_INDEX_TYPE (type);
1110 LONGEST low = 0;
1111 LONGEST high = 0;
1112 int res;
1113
1114 if (index == NULL)
1115 return 0;
1116
1117 res = get_discrete_bounds (index, &low, &high);
1118 if (res == -1)
1119 return 0;
1120
1121 /* Check if the array bounds are undefined. */
1122 if (res == 1
1123 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
1124 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
1125 return 0;
1126
1127 if (low_bound)
1128 *low_bound = low;
1129
1130 if (high_bound)
1131 *high_bound = high;
1132
1133 return 1;
1134 }
1135
1136 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1137 representation of a value of this type, save the corresponding
1138 position number in POS.
1139
1140 Its differs from VAL only in the case of enumeration types. In
1141 this case, the position number of the value of the first listed
1142 enumeration literal is zero; the position number of the value of
1143 each subsequent enumeration literal is one more than that of its
1144 predecessor in the list.
1145
1146 Return 1 if the operation was successful. Return zero otherwise,
1147 in which case the value of POS is unmodified.
1148 */
1149
1150 int
1151 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1152 {
1153 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1154 {
1155 int i;
1156
1157 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1158 {
1159 if (val == TYPE_FIELD_ENUMVAL (type, i))
1160 {
1161 *pos = i;
1162 return 1;
1163 }
1164 }
1165 /* Invalid enumeration value. */
1166 return 0;
1167 }
1168 else
1169 {
1170 *pos = val;
1171 return 1;
1172 }
1173 }
1174
1175 /* Create an array type using either a blank type supplied in
1176 RESULT_TYPE, or creating a new type, inheriting the objfile from
1177 RANGE_TYPE.
1178
1179 Elements will be of type ELEMENT_TYPE, the indices will be of type
1180 RANGE_TYPE.
1181
1182 BYTE_STRIDE_PROP, when not NULL, provides the array's byte stride.
1183 This byte stride property is added to the resulting array type
1184 as a DYN_PROP_BYTE_STRIDE. As a consequence, the BYTE_STRIDE_PROP
1185 argument can only be used to create types that are objfile-owned
1186 (see add_dyn_prop), meaning that either this function must be called
1187 with an objfile-owned RESULT_TYPE, or an objfile-owned RANGE_TYPE.
1188
1189 BIT_STRIDE is taken into account only when BYTE_STRIDE_PROP is NULL.
1190 If BIT_STRIDE is not zero, build a packed array type whose element
1191 size is BIT_STRIDE. Otherwise, ignore this parameter.
1192
1193 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1194 sure it is TYPE_CODE_UNDEF before we bash it into an array
1195 type? */
1196
1197 struct type *
1198 create_array_type_with_stride (struct type *result_type,
1199 struct type *element_type,
1200 struct type *range_type,
1201 struct dynamic_prop *byte_stride_prop,
1202 unsigned int bit_stride)
1203 {
1204 if (byte_stride_prop != NULL
1205 && byte_stride_prop->kind == PROP_CONST)
1206 {
1207 /* The byte stride is actually not dynamic. Pretend we were
1208 called with bit_stride set instead of byte_stride_prop.
1209 This will give us the same result type, while avoiding
1210 the need to handle this as a special case. */
1211 bit_stride = byte_stride_prop->data.const_val * 8;
1212 byte_stride_prop = NULL;
1213 }
1214
1215 if (result_type == NULL)
1216 result_type = alloc_type_copy (range_type);
1217
1218 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1219 TYPE_TARGET_TYPE (result_type) = element_type;
1220 if (byte_stride_prop == NULL
1221 && has_static_range (TYPE_RANGE_DATA (range_type))
1222 && (!type_not_associated (result_type)
1223 && !type_not_allocated (result_type)))
1224 {
1225 LONGEST low_bound, high_bound;
1226 int stride;
1227
1228 /* If the array itself doesn't provide a stride value then take
1229 whatever stride the range provides. Don't update BIT_STRIDE as
1230 we don't want to place the stride value from the range into this
1231 arrays bit size field. */
1232 stride = bit_stride;
1233 if (stride == 0)
1234 stride = TYPE_BIT_STRIDE (range_type);
1235
1236 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1237 low_bound = high_bound = 0;
1238 element_type = check_typedef (element_type);
1239 /* Be careful when setting the array length. Ada arrays can be
1240 empty arrays with the high_bound being smaller than the low_bound.
1241 In such cases, the array length should be zero. */
1242 if (high_bound < low_bound)
1243 TYPE_LENGTH (result_type) = 0;
1244 else if (stride != 0)
1245 {
1246 /* Ensure that the type length is always positive, even in the
1247 case where (for example in Fortran) we have a negative
1248 stride. It is possible to have a single element array with a
1249 negative stride in Fortran (this doesn't mean anything
1250 special, it's still just a single element array) so do
1251 consider that case when touching this code. */
1252 LONGEST element_count = std::abs (high_bound - low_bound + 1);
1253 TYPE_LENGTH (result_type)
1254 = ((std::abs (stride) * element_count) + 7) / 8;
1255 }
1256 else
1257 TYPE_LENGTH (result_type) =
1258 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1259 }
1260 else
1261 {
1262 /* This type is dynamic and its length needs to be computed
1263 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1264 undefined by setting it to zero. Although we are not expected
1265 to trust TYPE_LENGTH in this case, setting the size to zero
1266 allows us to avoid allocating objects of random sizes in case
1267 we accidently do. */
1268 TYPE_LENGTH (result_type) = 0;
1269 }
1270
1271 TYPE_NFIELDS (result_type) = 1;
1272 TYPE_FIELDS (result_type) =
1273 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1274 TYPE_INDEX_TYPE (result_type) = range_type;
1275 if (byte_stride_prop != NULL)
1276 add_dyn_prop (DYN_PROP_BYTE_STRIDE, *byte_stride_prop, result_type);
1277 else if (bit_stride > 0)
1278 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1279
1280 /* TYPE_TARGET_STUB will take care of zero length arrays. */
1281 if (TYPE_LENGTH (result_type) == 0)
1282 TYPE_TARGET_STUB (result_type) = 1;
1283
1284 return result_type;
1285 }
1286
1287 /* Same as create_array_type_with_stride but with no bit_stride
1288 (BIT_STRIDE = 0), thus building an unpacked array. */
1289
1290 struct type *
1291 create_array_type (struct type *result_type,
1292 struct type *element_type,
1293 struct type *range_type)
1294 {
1295 return create_array_type_with_stride (result_type, element_type,
1296 range_type, NULL, 0);
1297 }
1298
1299 struct type *
1300 lookup_array_range_type (struct type *element_type,
1301 LONGEST low_bound, LONGEST high_bound)
1302 {
1303 struct type *index_type;
1304 struct type *range_type;
1305
1306 if (TYPE_OBJFILE_OWNED (element_type))
1307 index_type = objfile_type (TYPE_OWNER (element_type).objfile)->builtin_int;
1308 else
1309 index_type = builtin_type (get_type_arch (element_type))->builtin_int;
1310 range_type = create_static_range_type (NULL, index_type,
1311 low_bound, high_bound);
1312
1313 return create_array_type (NULL, element_type, range_type);
1314 }
1315
1316 /* Create a string type using either a blank type supplied in
1317 RESULT_TYPE, or creating a new type. String types are similar
1318 enough to array of char types that we can use create_array_type to
1319 build the basic type and then bash it into a string type.
1320
1321 For fixed length strings, the range type contains 0 as the lower
1322 bound and the length of the string minus one as the upper bound.
1323
1324 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1325 sure it is TYPE_CODE_UNDEF before we bash it into a string
1326 type? */
1327
1328 struct type *
1329 create_string_type (struct type *result_type,
1330 struct type *string_char_type,
1331 struct type *range_type)
1332 {
1333 result_type = create_array_type (result_type,
1334 string_char_type,
1335 range_type);
1336 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1337 return result_type;
1338 }
1339
1340 struct type *
1341 lookup_string_range_type (struct type *string_char_type,
1342 LONGEST low_bound, LONGEST high_bound)
1343 {
1344 struct type *result_type;
1345
1346 result_type = lookup_array_range_type (string_char_type,
1347 low_bound, high_bound);
1348 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1349 return result_type;
1350 }
1351
1352 struct type *
1353 create_set_type (struct type *result_type, struct type *domain_type)
1354 {
1355 if (result_type == NULL)
1356 result_type = alloc_type_copy (domain_type);
1357
1358 TYPE_CODE (result_type) = TYPE_CODE_SET;
1359 TYPE_NFIELDS (result_type) = 1;
1360 TYPE_FIELDS (result_type)
1361 = (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1362
1363 if (!TYPE_STUB (domain_type))
1364 {
1365 LONGEST low_bound, high_bound, bit_length;
1366
1367 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1368 low_bound = high_bound = 0;
1369 bit_length = high_bound - low_bound + 1;
1370 TYPE_LENGTH (result_type)
1371 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1372 if (low_bound >= 0)
1373 TYPE_UNSIGNED (result_type) = 1;
1374 }
1375 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1376
1377 return result_type;
1378 }
1379
1380 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1381 and any array types nested inside it. */
1382
1383 void
1384 make_vector_type (struct type *array_type)
1385 {
1386 struct type *inner_array, *elt_type;
1387 int flags;
1388
1389 /* Find the innermost array type, in case the array is
1390 multi-dimensional. */
1391 inner_array = array_type;
1392 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1393 inner_array = TYPE_TARGET_TYPE (inner_array);
1394
1395 elt_type = TYPE_TARGET_TYPE (inner_array);
1396 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1397 {
1398 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1399 elt_type = make_qualified_type (elt_type, flags, NULL);
1400 TYPE_TARGET_TYPE (inner_array) = elt_type;
1401 }
1402
1403 TYPE_VECTOR (array_type) = 1;
1404 }
1405
1406 struct type *
1407 init_vector_type (struct type *elt_type, int n)
1408 {
1409 struct type *array_type;
1410
1411 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1412 make_vector_type (array_type);
1413 return array_type;
1414 }
1415
1416 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1417 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1418 confusing. "self" is a common enough replacement for "this".
1419 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1420 TYPE_CODE_METHOD. */
1421
1422 struct type *
1423 internal_type_self_type (struct type *type)
1424 {
1425 switch (TYPE_CODE (type))
1426 {
1427 case TYPE_CODE_METHODPTR:
1428 case TYPE_CODE_MEMBERPTR:
1429 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1430 return NULL;
1431 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1432 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1433 case TYPE_CODE_METHOD:
1434 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1435 return NULL;
1436 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1437 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1438 default:
1439 gdb_assert_not_reached ("bad type");
1440 }
1441 }
1442
1443 /* Set the type of the class that TYPE belongs to.
1444 In c++ this is the class of "this".
1445 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1446 TYPE_CODE_METHOD. */
1447
1448 void
1449 set_type_self_type (struct type *type, struct type *self_type)
1450 {
1451 switch (TYPE_CODE (type))
1452 {
1453 case TYPE_CODE_METHODPTR:
1454 case TYPE_CODE_MEMBERPTR:
1455 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1456 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1457 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1458 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1459 break;
1460 case TYPE_CODE_METHOD:
1461 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1462 INIT_FUNC_SPECIFIC (type);
1463 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1464 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1465 break;
1466 default:
1467 gdb_assert_not_reached ("bad type");
1468 }
1469 }
1470
1471 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1472 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1473 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1474 TYPE doesn't include the offset (that's the value of the MEMBER
1475 itself), but does include the structure type into which it points
1476 (for some reason).
1477
1478 When "smashing" the type, we preserve the objfile that the old type
1479 pointed to, since we aren't changing where the type is actually
1480 allocated. */
1481
1482 void
1483 smash_to_memberptr_type (struct type *type, struct type *self_type,
1484 struct type *to_type)
1485 {
1486 smash_type (type);
1487 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1488 TYPE_TARGET_TYPE (type) = to_type;
1489 set_type_self_type (type, self_type);
1490 /* Assume that a data member pointer is the same size as a normal
1491 pointer. */
1492 TYPE_LENGTH (type)
1493 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1494 }
1495
1496 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1497
1498 When "smashing" the type, we preserve the objfile that the old type
1499 pointed to, since we aren't changing where the type is actually
1500 allocated. */
1501
1502 void
1503 smash_to_methodptr_type (struct type *type, struct type *to_type)
1504 {
1505 smash_type (type);
1506 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1507 TYPE_TARGET_TYPE (type) = to_type;
1508 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1509 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1510 }
1511
1512 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1513 METHOD just means `function that gets an extra "this" argument'.
1514
1515 When "smashing" the type, we preserve the objfile that the old type
1516 pointed to, since we aren't changing where the type is actually
1517 allocated. */
1518
1519 void
1520 smash_to_method_type (struct type *type, struct type *self_type,
1521 struct type *to_type, struct field *args,
1522 int nargs, int varargs)
1523 {
1524 smash_type (type);
1525 TYPE_CODE (type) = TYPE_CODE_METHOD;
1526 TYPE_TARGET_TYPE (type) = to_type;
1527 set_type_self_type (type, self_type);
1528 TYPE_FIELDS (type) = args;
1529 TYPE_NFIELDS (type) = nargs;
1530 if (varargs)
1531 TYPE_VARARGS (type) = 1;
1532 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1533 }
1534
1535 /* A wrapper of TYPE_NAME which calls error if the type is anonymous.
1536 Since GCC PR debug/47510 DWARF provides associated information to detect the
1537 anonymous class linkage name from its typedef.
1538
1539 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1540 apply it itself. */
1541
1542 const char *
1543 type_name_or_error (struct type *type)
1544 {
1545 struct type *saved_type = type;
1546 const char *name;
1547 struct objfile *objfile;
1548
1549 type = check_typedef (type);
1550
1551 name = TYPE_NAME (type);
1552 if (name != NULL)
1553 return name;
1554
1555 name = TYPE_NAME (saved_type);
1556 objfile = TYPE_OBJFILE (saved_type);
1557 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1558 name ? name : "<anonymous>",
1559 objfile ? objfile_name (objfile) : "<arch>");
1560 }
1561
1562 /* Lookup a typedef or primitive type named NAME, visible in lexical
1563 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1564 suitably defined. */
1565
1566 struct type *
1567 lookup_typename (const struct language_defn *language,
1568 const char *name,
1569 const struct block *block, int noerr)
1570 {
1571 struct symbol *sym;
1572
1573 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1574 language->la_language, NULL).symbol;
1575 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1576 return SYMBOL_TYPE (sym);
1577
1578 if (noerr)
1579 return NULL;
1580 error (_("No type named %s."), name);
1581 }
1582
1583 struct type *
1584 lookup_unsigned_typename (const struct language_defn *language,
1585 const char *name)
1586 {
1587 char *uns = (char *) alloca (strlen (name) + 10);
1588
1589 strcpy (uns, "unsigned ");
1590 strcpy (uns + 9, name);
1591 return lookup_typename (language, uns, NULL, 0);
1592 }
1593
1594 struct type *
1595 lookup_signed_typename (const struct language_defn *language, const char *name)
1596 {
1597 struct type *t;
1598 char *uns = (char *) alloca (strlen (name) + 8);
1599
1600 strcpy (uns, "signed ");
1601 strcpy (uns + 7, name);
1602 t = lookup_typename (language, uns, NULL, 1);
1603 /* If we don't find "signed FOO" just try again with plain "FOO". */
1604 if (t != NULL)
1605 return t;
1606 return lookup_typename (language, name, NULL, 0);
1607 }
1608
1609 /* Lookup a structure type named "struct NAME",
1610 visible in lexical block BLOCK. */
1611
1612 struct type *
1613 lookup_struct (const char *name, const struct block *block)
1614 {
1615 struct symbol *sym;
1616
1617 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1618
1619 if (sym == NULL)
1620 {
1621 error (_("No struct type named %s."), name);
1622 }
1623 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1624 {
1625 error (_("This context has class, union or enum %s, not a struct."),
1626 name);
1627 }
1628 return (SYMBOL_TYPE (sym));
1629 }
1630
1631 /* Lookup a union type named "union NAME",
1632 visible in lexical block BLOCK. */
1633
1634 struct type *
1635 lookup_union (const char *name, const struct block *block)
1636 {
1637 struct symbol *sym;
1638 struct type *t;
1639
1640 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1641
1642 if (sym == NULL)
1643 error (_("No union type named %s."), name);
1644
1645 t = SYMBOL_TYPE (sym);
1646
1647 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1648 return t;
1649
1650 /* If we get here, it's not a union. */
1651 error (_("This context has class, struct or enum %s, not a union."),
1652 name);
1653 }
1654
1655 /* Lookup an enum type named "enum NAME",
1656 visible in lexical block BLOCK. */
1657
1658 struct type *
1659 lookup_enum (const char *name, const struct block *block)
1660 {
1661 struct symbol *sym;
1662
1663 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0).symbol;
1664 if (sym == NULL)
1665 {
1666 error (_("No enum type named %s."), name);
1667 }
1668 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1669 {
1670 error (_("This context has class, struct or union %s, not an enum."),
1671 name);
1672 }
1673 return (SYMBOL_TYPE (sym));
1674 }
1675
1676 /* Lookup a template type named "template NAME<TYPE>",
1677 visible in lexical block BLOCK. */
1678
1679 struct type *
1680 lookup_template_type (const char *name, struct type *type,
1681 const struct block *block)
1682 {
1683 struct symbol *sym;
1684 char *nam = (char *)
1685 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1686
1687 strcpy (nam, name);
1688 strcat (nam, "<");
1689 strcat (nam, TYPE_NAME (type));
1690 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1691
1692 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0).symbol;
1693
1694 if (sym == NULL)
1695 {
1696 error (_("No template type named %s."), name);
1697 }
1698 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1699 {
1700 error (_("This context has class, union or enum %s, not a struct."),
1701 name);
1702 }
1703 return (SYMBOL_TYPE (sym));
1704 }
1705
1706 /* See gdbtypes.h. */
1707
1708 struct_elt
1709 lookup_struct_elt (struct type *type, const char *name, int noerr)
1710 {
1711 int i;
1712
1713 for (;;)
1714 {
1715 type = check_typedef (type);
1716 if (TYPE_CODE (type) != TYPE_CODE_PTR
1717 && TYPE_CODE (type) != TYPE_CODE_REF)
1718 break;
1719 type = TYPE_TARGET_TYPE (type);
1720 }
1721
1722 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1723 && TYPE_CODE (type) != TYPE_CODE_UNION)
1724 {
1725 std::string type_name = type_to_string (type);
1726 error (_("Type %s is not a structure or union type."),
1727 type_name.c_str ());
1728 }
1729
1730 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1731 {
1732 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1733
1734 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1735 {
1736 return {&TYPE_FIELD (type, i), TYPE_FIELD_BITPOS (type, i)};
1737 }
1738 else if (!t_field_name || *t_field_name == '\0')
1739 {
1740 struct_elt elt
1741 = lookup_struct_elt (TYPE_FIELD_TYPE (type, i), name, 1);
1742 if (elt.field != NULL)
1743 {
1744 elt.offset += TYPE_FIELD_BITPOS (type, i);
1745 return elt;
1746 }
1747 }
1748 }
1749
1750 /* OK, it's not in this class. Recursively check the baseclasses. */
1751 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1752 {
1753 struct_elt elt = lookup_struct_elt (TYPE_BASECLASS (type, i), name, 1);
1754 if (elt.field != NULL)
1755 return elt;
1756 }
1757
1758 if (noerr)
1759 return {nullptr, 0};
1760
1761 std::string type_name = type_to_string (type);
1762 error (_("Type %s has no component named %s."), type_name.c_str (), name);
1763 }
1764
1765 /* See gdbtypes.h. */
1766
1767 struct type *
1768 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1769 {
1770 struct_elt elt = lookup_struct_elt (type, name, noerr);
1771 if (elt.field != NULL)
1772 return FIELD_TYPE (*elt.field);
1773 else
1774 return NULL;
1775 }
1776
1777 /* Store in *MAX the largest number representable by unsigned integer type
1778 TYPE. */
1779
1780 void
1781 get_unsigned_type_max (struct type *type, ULONGEST *max)
1782 {
1783 unsigned int n;
1784
1785 type = check_typedef (type);
1786 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1787 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1788
1789 /* Written this way to avoid overflow. */
1790 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1791 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1792 }
1793
1794 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1795 signed integer type TYPE. */
1796
1797 void
1798 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1799 {
1800 unsigned int n;
1801
1802 type = check_typedef (type);
1803 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1804 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1805
1806 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1807 *min = -((ULONGEST) 1 << (n - 1));
1808 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1809 }
1810
1811 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1812 cplus_stuff.vptr_fieldno.
1813
1814 cplus_stuff is initialized to cplus_struct_default which does not
1815 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1816 designated initializers). We cope with that here. */
1817
1818 int
1819 internal_type_vptr_fieldno (struct type *type)
1820 {
1821 type = check_typedef (type);
1822 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1823 || TYPE_CODE (type) == TYPE_CODE_UNION);
1824 if (!HAVE_CPLUS_STRUCT (type))
1825 return -1;
1826 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1827 }
1828
1829 /* Set the value of cplus_stuff.vptr_fieldno. */
1830
1831 void
1832 set_type_vptr_fieldno (struct type *type, int fieldno)
1833 {
1834 type = check_typedef (type);
1835 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1836 || TYPE_CODE (type) == TYPE_CODE_UNION);
1837 if (!HAVE_CPLUS_STRUCT (type))
1838 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1839 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1840 }
1841
1842 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1843 cplus_stuff.vptr_basetype. */
1844
1845 struct type *
1846 internal_type_vptr_basetype (struct type *type)
1847 {
1848 type = check_typedef (type);
1849 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1850 || TYPE_CODE (type) == TYPE_CODE_UNION);
1851 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1852 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1853 }
1854
1855 /* Set the value of cplus_stuff.vptr_basetype. */
1856
1857 void
1858 set_type_vptr_basetype (struct type *type, struct type *basetype)
1859 {
1860 type = check_typedef (type);
1861 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1862 || TYPE_CODE (type) == TYPE_CODE_UNION);
1863 if (!HAVE_CPLUS_STRUCT (type))
1864 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1865 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1866 }
1867
1868 /* Lookup the vptr basetype/fieldno values for TYPE.
1869 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1870 vptr_fieldno. Also, if found and basetype is from the same objfile,
1871 cache the results.
1872 If not found, return -1 and ignore BASETYPEP.
1873 Callers should be aware that in some cases (for example,
1874 the type or one of its baseclasses is a stub type and we are
1875 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1876 this function will not be able to find the
1877 virtual function table pointer, and vptr_fieldno will remain -1 and
1878 vptr_basetype will remain NULL or incomplete. */
1879
1880 int
1881 get_vptr_fieldno (struct type *type, struct type **basetypep)
1882 {
1883 type = check_typedef (type);
1884
1885 if (TYPE_VPTR_FIELDNO (type) < 0)
1886 {
1887 int i;
1888
1889 /* We must start at zero in case the first (and only) baseclass
1890 is virtual (and hence we cannot share the table pointer). */
1891 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1892 {
1893 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1894 int fieldno;
1895 struct type *basetype;
1896
1897 fieldno = get_vptr_fieldno (baseclass, &basetype);
1898 if (fieldno >= 0)
1899 {
1900 /* If the type comes from a different objfile we can't cache
1901 it, it may have a different lifetime. PR 2384 */
1902 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1903 {
1904 set_type_vptr_fieldno (type, fieldno);
1905 set_type_vptr_basetype (type, basetype);
1906 }
1907 if (basetypep)
1908 *basetypep = basetype;
1909 return fieldno;
1910 }
1911 }
1912
1913 /* Not found. */
1914 return -1;
1915 }
1916 else
1917 {
1918 if (basetypep)
1919 *basetypep = TYPE_VPTR_BASETYPE (type);
1920 return TYPE_VPTR_FIELDNO (type);
1921 }
1922 }
1923
1924 static void
1925 stub_noname_complaint (void)
1926 {
1927 complaint (_("stub type has NULL name"));
1928 }
1929
1930 /* Return nonzero if TYPE has a DYN_PROP_BYTE_STRIDE dynamic property
1931 attached to it, and that property has a non-constant value. */
1932
1933 static int
1934 array_type_has_dynamic_stride (struct type *type)
1935 {
1936 struct dynamic_prop *prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
1937
1938 return (prop != NULL && prop->kind != PROP_CONST);
1939 }
1940
1941 /* Worker for is_dynamic_type. */
1942
1943 static int
1944 is_dynamic_type_internal (struct type *type, int top_level)
1945 {
1946 type = check_typedef (type);
1947
1948 /* We only want to recognize references at the outermost level. */
1949 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1950 type = check_typedef (TYPE_TARGET_TYPE (type));
1951
1952 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1953 dynamic, even if the type itself is statically defined.
1954 From a user's point of view, this may appear counter-intuitive;
1955 but it makes sense in this context, because the point is to determine
1956 whether any part of the type needs to be resolved before it can
1957 be exploited. */
1958 if (TYPE_DATA_LOCATION (type) != NULL
1959 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1960 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1961 return 1;
1962
1963 if (TYPE_ASSOCIATED_PROP (type))
1964 return 1;
1965
1966 if (TYPE_ALLOCATED_PROP (type))
1967 return 1;
1968
1969 switch (TYPE_CODE (type))
1970 {
1971 case TYPE_CODE_RANGE:
1972 {
1973 /* A range type is obviously dynamic if it has at least one
1974 dynamic bound. But also consider the range type to be
1975 dynamic when its subtype is dynamic, even if the bounds
1976 of the range type are static. It allows us to assume that
1977 the subtype of a static range type is also static. */
1978 return (!has_static_range (TYPE_RANGE_DATA (type))
1979 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1980 }
1981
1982 case TYPE_CODE_STRING:
1983 /* Strings are very much like an array of characters, and can be
1984 treated as one here. */
1985 case TYPE_CODE_ARRAY:
1986 {
1987 gdb_assert (TYPE_NFIELDS (type) == 1);
1988
1989 /* The array is dynamic if either the bounds are dynamic... */
1990 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1991 return 1;
1992 /* ... or the elements it contains have a dynamic contents... */
1993 if (is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0))
1994 return 1;
1995 /* ... or if it has a dynamic stride... */
1996 if (array_type_has_dynamic_stride (type))
1997 return 1;
1998 return 0;
1999 }
2000
2001 case TYPE_CODE_STRUCT:
2002 case TYPE_CODE_UNION:
2003 {
2004 int i;
2005
2006 for (i = 0; i < TYPE_NFIELDS (type); ++i)
2007 if (!field_is_static (&TYPE_FIELD (type, i))
2008 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
2009 return 1;
2010 }
2011 break;
2012 }
2013
2014 return 0;
2015 }
2016
2017 /* See gdbtypes.h. */
2018
2019 int
2020 is_dynamic_type (struct type *type)
2021 {
2022 return is_dynamic_type_internal (type, 1);
2023 }
2024
2025 static struct type *resolve_dynamic_type_internal
2026 (struct type *type, struct property_addr_info *addr_stack, int top_level);
2027
2028 /* Given a dynamic range type (dyn_range_type) and a stack of
2029 struct property_addr_info elements, return a static version
2030 of that type. */
2031
2032 static struct type *
2033 resolve_dynamic_range (struct type *dyn_range_type,
2034 struct property_addr_info *addr_stack)
2035 {
2036 CORE_ADDR value;
2037 struct type *static_range_type, *static_target_type;
2038 const struct dynamic_prop *prop;
2039 struct dynamic_prop low_bound, high_bound, stride;
2040
2041 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
2042
2043 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
2044 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2045 {
2046 low_bound.kind = PROP_CONST;
2047 low_bound.data.const_val = value;
2048 }
2049 else
2050 {
2051 low_bound.kind = PROP_UNDEFINED;
2052 low_bound.data.const_val = 0;
2053 }
2054
2055 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
2056 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2057 {
2058 high_bound.kind = PROP_CONST;
2059 high_bound.data.const_val = value;
2060
2061 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
2062 high_bound.data.const_val
2063 = low_bound.data.const_val + high_bound.data.const_val - 1;
2064 }
2065 else
2066 {
2067 high_bound.kind = PROP_UNDEFINED;
2068 high_bound.data.const_val = 0;
2069 }
2070
2071 bool byte_stride_p = TYPE_RANGE_DATA (dyn_range_type)->flag_is_byte_stride;
2072 prop = &TYPE_RANGE_DATA (dyn_range_type)->stride;
2073 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2074 {
2075 stride.kind = PROP_CONST;
2076 stride.data.const_val = value;
2077
2078 /* If we have a bit stride that is not an exact number of bytes then
2079 I really don't think this is going to work with current GDB, the
2080 array indexing code in GDB seems to be pretty heavily tied to byte
2081 offsets right now. Assuming 8 bits in a byte. */
2082 struct gdbarch *gdbarch = get_type_arch (dyn_range_type);
2083 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
2084 if (!byte_stride_p && (value % (unit_size * 8)) != 0)
2085 error (_("bit strides that are not a multiple of the byte size "
2086 "are currently not supported"));
2087 }
2088 else
2089 {
2090 stride.kind = PROP_UNDEFINED;
2091 stride.data.const_val = 0;
2092 byte_stride_p = true;
2093 }
2094
2095 static_target_type
2096 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
2097 addr_stack, 0);
2098 LONGEST bias = TYPE_RANGE_DATA (dyn_range_type)->bias;
2099 static_range_type = create_range_type_with_stride
2100 (copy_type (dyn_range_type), static_target_type,
2101 &low_bound, &high_bound, bias, &stride, byte_stride_p);
2102 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
2103 return static_range_type;
2104 }
2105
2106 /* Resolves dynamic bound values of an array or string type TYPE to static
2107 ones. ADDR_STACK is a stack of struct property_addr_info to be used if
2108 needed during the dynamic resolution. */
2109
2110 static struct type *
2111 resolve_dynamic_array_or_string (struct type *type,
2112 struct property_addr_info *addr_stack)
2113 {
2114 CORE_ADDR value;
2115 struct type *elt_type;
2116 struct type *range_type;
2117 struct type *ary_dim;
2118 struct dynamic_prop *prop;
2119 unsigned int bit_stride = 0;
2120
2121 /* For dynamic type resolution strings can be treated like arrays of
2122 characters. */
2123 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY
2124 || TYPE_CODE (type) == TYPE_CODE_STRING);
2125
2126 type = copy_type (type);
2127
2128 elt_type = type;
2129 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
2130 range_type = resolve_dynamic_range (range_type, addr_stack);
2131
2132 /* Resolve allocated/associated here before creating a new array type, which
2133 will update the length of the array accordingly. */
2134 prop = TYPE_ALLOCATED_PROP (type);
2135 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2136 {
2137 TYPE_DYN_PROP_ADDR (prop) = value;
2138 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2139 }
2140 prop = TYPE_ASSOCIATED_PROP (type);
2141 if (prop != NULL && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2142 {
2143 TYPE_DYN_PROP_ADDR (prop) = value;
2144 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2145 }
2146
2147 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
2148
2149 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
2150 elt_type = resolve_dynamic_array_or_string (ary_dim, addr_stack);
2151 else
2152 elt_type = TYPE_TARGET_TYPE (type);
2153
2154 prop = get_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2155 if (prop != NULL)
2156 {
2157 if (dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2158 {
2159 remove_dyn_prop (DYN_PROP_BYTE_STRIDE, type);
2160 bit_stride = (unsigned int) (value * 8);
2161 }
2162 else
2163 {
2164 /* Could be a bug in our code, but it could also happen
2165 if the DWARF info is not correct. Issue a warning,
2166 and assume no byte/bit stride (leave bit_stride = 0). */
2167 warning (_("cannot determine array stride for type %s"),
2168 TYPE_NAME (type) ? TYPE_NAME (type) : "<no name>");
2169 }
2170 }
2171 else
2172 bit_stride = TYPE_FIELD_BITSIZE (type, 0);
2173
2174 return create_array_type_with_stride (type, elt_type, range_type, NULL,
2175 bit_stride);
2176 }
2177
2178 /* Resolve dynamic bounds of members of the union TYPE to static
2179 bounds. ADDR_STACK is a stack of struct property_addr_info
2180 to be used if needed during the dynamic resolution. */
2181
2182 static struct type *
2183 resolve_dynamic_union (struct type *type,
2184 struct property_addr_info *addr_stack)
2185 {
2186 struct type *resolved_type;
2187 int i;
2188 unsigned int max_len = 0;
2189
2190 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
2191
2192 resolved_type = copy_type (type);
2193 TYPE_FIELDS (resolved_type)
2194 = (struct field *) TYPE_ALLOC (resolved_type,
2195 TYPE_NFIELDS (resolved_type)
2196 * sizeof (struct field));
2197 memcpy (TYPE_FIELDS (resolved_type),
2198 TYPE_FIELDS (type),
2199 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2200 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2201 {
2202 struct type *t;
2203
2204 if (field_is_static (&TYPE_FIELD (type, i)))
2205 continue;
2206
2207 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2208 addr_stack, 0);
2209 TYPE_FIELD_TYPE (resolved_type, i) = t;
2210 if (TYPE_LENGTH (t) > max_len)
2211 max_len = TYPE_LENGTH (t);
2212 }
2213
2214 TYPE_LENGTH (resolved_type) = max_len;
2215 return resolved_type;
2216 }
2217
2218 /* Resolve dynamic bounds of members of the struct TYPE to static
2219 bounds. ADDR_STACK is a stack of struct property_addr_info to
2220 be used if needed during the dynamic resolution. */
2221
2222 static struct type *
2223 resolve_dynamic_struct (struct type *type,
2224 struct property_addr_info *addr_stack)
2225 {
2226 struct type *resolved_type;
2227 int i;
2228 unsigned resolved_type_bit_length = 0;
2229
2230 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
2231 gdb_assert (TYPE_NFIELDS (type) > 0);
2232
2233 resolved_type = copy_type (type);
2234 TYPE_FIELDS (resolved_type)
2235 = (struct field *) TYPE_ALLOC (resolved_type,
2236 TYPE_NFIELDS (resolved_type)
2237 * sizeof (struct field));
2238 memcpy (TYPE_FIELDS (resolved_type),
2239 TYPE_FIELDS (type),
2240 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2241 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2242 {
2243 unsigned new_bit_length;
2244 struct property_addr_info pinfo;
2245
2246 if (field_is_static (&TYPE_FIELD (type, i)))
2247 continue;
2248
2249 /* As we know this field is not a static field, the field's
2250 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2251 this is the case, but only trigger a simple error rather
2252 than an internal error if that fails. While failing
2253 that verification indicates a bug in our code, the error
2254 is not severe enough to suggest to the user he stops
2255 his debugging session because of it. */
2256 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2257 error (_("Cannot determine struct field location"
2258 " (invalid location kind)"));
2259
2260 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2261 pinfo.valaddr = addr_stack->valaddr;
2262 pinfo.addr
2263 = (addr_stack->addr
2264 + (TYPE_FIELD_BITPOS (resolved_type, i) / TARGET_CHAR_BIT));
2265 pinfo.next = addr_stack;
2266
2267 TYPE_FIELD_TYPE (resolved_type, i)
2268 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2269 &pinfo, 0);
2270 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2271 == FIELD_LOC_KIND_BITPOS);
2272
2273 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2274 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2275 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2276 else
2277 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2278 * TARGET_CHAR_BIT);
2279
2280 /* Normally, we would use the position and size of the last field
2281 to determine the size of the enclosing structure. But GCC seems
2282 to be encoding the position of some fields incorrectly when
2283 the struct contains a dynamic field that is not placed last.
2284 So we compute the struct size based on the field that has
2285 the highest position + size - probably the best we can do. */
2286 if (new_bit_length > resolved_type_bit_length)
2287 resolved_type_bit_length = new_bit_length;
2288 }
2289
2290 /* The length of a type won't change for fortran, but it does for C and Ada.
2291 For fortran the size of dynamic fields might change over time but not the
2292 type length of the structure. If we adapt it, we run into problems
2293 when calculating the element offset for arrays of structs. */
2294 if (current_language->la_language != language_fortran)
2295 TYPE_LENGTH (resolved_type)
2296 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2297
2298 /* The Ada language uses this field as a cache for static fixed types: reset
2299 it as RESOLVED_TYPE must have its own static fixed type. */
2300 TYPE_TARGET_TYPE (resolved_type) = NULL;
2301
2302 return resolved_type;
2303 }
2304
2305 /* Worker for resolved_dynamic_type. */
2306
2307 static struct type *
2308 resolve_dynamic_type_internal (struct type *type,
2309 struct property_addr_info *addr_stack,
2310 int top_level)
2311 {
2312 struct type *real_type = check_typedef (type);
2313 struct type *resolved_type = type;
2314 struct dynamic_prop *prop;
2315 CORE_ADDR value;
2316
2317 if (!is_dynamic_type_internal (real_type, top_level))
2318 return type;
2319
2320 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2321 {
2322 resolved_type = copy_type (type);
2323 TYPE_TARGET_TYPE (resolved_type)
2324 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2325 top_level);
2326 }
2327 else
2328 {
2329 /* Before trying to resolve TYPE, make sure it is not a stub. */
2330 type = real_type;
2331
2332 switch (TYPE_CODE (type))
2333 {
2334 case TYPE_CODE_REF:
2335 {
2336 struct property_addr_info pinfo;
2337
2338 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2339 pinfo.valaddr = NULL;
2340 if (addr_stack->valaddr != NULL)
2341 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2342 else
2343 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2344 pinfo.next = addr_stack;
2345
2346 resolved_type = copy_type (type);
2347 TYPE_TARGET_TYPE (resolved_type)
2348 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2349 &pinfo, top_level);
2350 break;
2351 }
2352
2353 case TYPE_CODE_STRING:
2354 /* Strings are very much like an array of characters, and can be
2355 treated as one here. */
2356 case TYPE_CODE_ARRAY:
2357 resolved_type = resolve_dynamic_array_or_string (type, addr_stack);
2358 break;
2359
2360 case TYPE_CODE_RANGE:
2361 resolved_type = resolve_dynamic_range (type, addr_stack);
2362 break;
2363
2364 case TYPE_CODE_UNION:
2365 resolved_type = resolve_dynamic_union (type, addr_stack);
2366 break;
2367
2368 case TYPE_CODE_STRUCT:
2369 resolved_type = resolve_dynamic_struct (type, addr_stack);
2370 break;
2371 }
2372 }
2373
2374 /* Resolve data_location attribute. */
2375 prop = TYPE_DATA_LOCATION (resolved_type);
2376 if (prop != NULL
2377 && dwarf2_evaluate_property (prop, NULL, addr_stack, &value))
2378 {
2379 TYPE_DYN_PROP_ADDR (prop) = value;
2380 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2381 }
2382
2383 return resolved_type;
2384 }
2385
2386 /* See gdbtypes.h */
2387
2388 struct type *
2389 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2390 CORE_ADDR addr)
2391 {
2392 struct property_addr_info pinfo
2393 = {check_typedef (type), valaddr, addr, NULL};
2394
2395 return resolve_dynamic_type_internal (type, &pinfo, 1);
2396 }
2397
2398 /* See gdbtypes.h */
2399
2400 struct dynamic_prop *
2401 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2402 {
2403 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2404
2405 while (node != NULL)
2406 {
2407 if (node->prop_kind == prop_kind)
2408 return &node->prop;
2409 node = node->next;
2410 }
2411 return NULL;
2412 }
2413
2414 /* See gdbtypes.h */
2415
2416 void
2417 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2418 struct type *type)
2419 {
2420 struct dynamic_prop_list *temp;
2421
2422 gdb_assert (TYPE_OBJFILE_OWNED (type));
2423
2424 temp = XOBNEW (&TYPE_OBJFILE (type)->objfile_obstack,
2425 struct dynamic_prop_list);
2426 temp->prop_kind = prop_kind;
2427 temp->prop = prop;
2428 temp->next = TYPE_DYN_PROP_LIST (type);
2429
2430 TYPE_DYN_PROP_LIST (type) = temp;
2431 }
2432
2433 /* Remove dynamic property from TYPE in case it exists. */
2434
2435 void
2436 remove_dyn_prop (enum dynamic_prop_node_kind prop_kind,
2437 struct type *type)
2438 {
2439 struct dynamic_prop_list *prev_node, *curr_node;
2440
2441 curr_node = TYPE_DYN_PROP_LIST (type);
2442 prev_node = NULL;
2443
2444 while (NULL != curr_node)
2445 {
2446 if (curr_node->prop_kind == prop_kind)
2447 {
2448 /* Update the linked list but don't free anything.
2449 The property was allocated on objstack and it is not known
2450 if we are on top of it. Nevertheless, everything is released
2451 when the complete objstack is freed. */
2452 if (NULL == prev_node)
2453 TYPE_DYN_PROP_LIST (type) = curr_node->next;
2454 else
2455 prev_node->next = curr_node->next;
2456
2457 return;
2458 }
2459
2460 prev_node = curr_node;
2461 curr_node = curr_node->next;
2462 }
2463 }
2464
2465 /* Find the real type of TYPE. This function returns the real type,
2466 after removing all layers of typedefs, and completing opaque or stub
2467 types. Completion changes the TYPE argument, but stripping of
2468 typedefs does not.
2469
2470 Instance flags (e.g. const/volatile) are preserved as typedefs are
2471 stripped. If necessary a new qualified form of the underlying type
2472 is created.
2473
2474 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2475 not been computed and we're either in the middle of reading symbols, or
2476 there was no name for the typedef in the debug info.
2477
2478 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2479 QUITs in the symbol reading code can also throw.
2480 Thus this function can throw an exception.
2481
2482 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2483 the target type.
2484
2485 If this is a stubbed struct (i.e. declared as struct foo *), see if
2486 we can find a full definition in some other file. If so, copy this
2487 definition, so we can use it in future. There used to be a comment
2488 (but not any code) that if we don't find a full definition, we'd
2489 set a flag so we don't spend time in the future checking the same
2490 type. That would be a mistake, though--we might load in more
2491 symbols which contain a full definition for the type. */
2492
2493 struct type *
2494 check_typedef (struct type *type)
2495 {
2496 struct type *orig_type = type;
2497 /* While we're removing typedefs, we don't want to lose qualifiers.
2498 E.g., const/volatile. */
2499 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2500
2501 gdb_assert (type);
2502
2503 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2504 {
2505 if (!TYPE_TARGET_TYPE (type))
2506 {
2507 const char *name;
2508 struct symbol *sym;
2509
2510 /* It is dangerous to call lookup_symbol if we are currently
2511 reading a symtab. Infinite recursion is one danger. */
2512 if (currently_reading_symtab)
2513 return make_qualified_type (type, instance_flags, NULL);
2514
2515 name = TYPE_NAME (type);
2516 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or
2517 VAR_DOMAIN as appropriate? */
2518 if (name == NULL)
2519 {
2520 stub_noname_complaint ();
2521 return make_qualified_type (type, instance_flags, NULL);
2522 }
2523 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2524 if (sym)
2525 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2526 else /* TYPE_CODE_UNDEF */
2527 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2528 }
2529 type = TYPE_TARGET_TYPE (type);
2530
2531 /* Preserve the instance flags as we traverse down the typedef chain.
2532
2533 Handling address spaces/classes is nasty, what do we do if there's a
2534 conflict?
2535 E.g., what if an outer typedef marks the type as class_1 and an inner
2536 typedef marks the type as class_2?
2537 This is the wrong place to do such error checking. We leave it to
2538 the code that created the typedef in the first place to flag the
2539 error. We just pick the outer address space (akin to letting the
2540 outer cast in a chain of casting win), instead of assuming
2541 "it can't happen". */
2542 {
2543 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2544 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2545 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2546 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2547
2548 /* Treat code vs data spaces and address classes separately. */
2549 if ((instance_flags & ALL_SPACES) != 0)
2550 new_instance_flags &= ~ALL_SPACES;
2551 if ((instance_flags & ALL_CLASSES) != 0)
2552 new_instance_flags &= ~ALL_CLASSES;
2553
2554 instance_flags |= new_instance_flags;
2555 }
2556 }
2557
2558 /* If this is a struct/class/union with no fields, then check
2559 whether a full definition exists somewhere else. This is for
2560 systems where a type definition with no fields is issued for such
2561 types, instead of identifying them as stub types in the first
2562 place. */
2563
2564 if (TYPE_IS_OPAQUE (type)
2565 && opaque_type_resolution
2566 && !currently_reading_symtab)
2567 {
2568 const char *name = TYPE_NAME (type);
2569 struct type *newtype;
2570
2571 if (name == NULL)
2572 {
2573 stub_noname_complaint ();
2574 return make_qualified_type (type, instance_flags, NULL);
2575 }
2576 newtype = lookup_transparent_type (name);
2577
2578 if (newtype)
2579 {
2580 /* If the resolved type and the stub are in the same
2581 objfile, then replace the stub type with the real deal.
2582 But if they're in separate objfiles, leave the stub
2583 alone; we'll just look up the transparent type every time
2584 we call check_typedef. We can't create pointers between
2585 types allocated to different objfiles, since they may
2586 have different lifetimes. Trying to copy NEWTYPE over to
2587 TYPE's objfile is pointless, too, since you'll have to
2588 move over any other types NEWTYPE refers to, which could
2589 be an unbounded amount of stuff. */
2590 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2591 type = make_qualified_type (newtype,
2592 TYPE_INSTANCE_FLAGS (type),
2593 type);
2594 else
2595 type = newtype;
2596 }
2597 }
2598 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2599 types. */
2600 else if (TYPE_STUB (type) && !currently_reading_symtab)
2601 {
2602 const char *name = TYPE_NAME (type);
2603 /* FIXME: shouldn't we look in STRUCT_DOMAIN and/or VAR_DOMAIN
2604 as appropriate? */
2605 struct symbol *sym;
2606
2607 if (name == NULL)
2608 {
2609 stub_noname_complaint ();
2610 return make_qualified_type (type, instance_flags, NULL);
2611 }
2612 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0).symbol;
2613 if (sym)
2614 {
2615 /* Same as above for opaque types, we can replace the stub
2616 with the complete type only if they are in the same
2617 objfile. */
2618 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2619 type = make_qualified_type (SYMBOL_TYPE (sym),
2620 TYPE_INSTANCE_FLAGS (type),
2621 type);
2622 else
2623 type = SYMBOL_TYPE (sym);
2624 }
2625 }
2626
2627 if (TYPE_TARGET_STUB (type))
2628 {
2629 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2630
2631 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2632 {
2633 /* Nothing we can do. */
2634 }
2635 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2636 {
2637 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2638 TYPE_TARGET_STUB (type) = 0;
2639 }
2640 }
2641
2642 type = make_qualified_type (type, instance_flags, NULL);
2643
2644 /* Cache TYPE_LENGTH for future use. */
2645 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2646
2647 return type;
2648 }
2649
2650 /* Parse a type expression in the string [P..P+LENGTH). If an error
2651 occurs, silently return a void type. */
2652
2653 static struct type *
2654 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2655 {
2656 struct ui_file *saved_gdb_stderr;
2657 struct type *type = NULL; /* Initialize to keep gcc happy. */
2658
2659 /* Suppress error messages. */
2660 saved_gdb_stderr = gdb_stderr;
2661 gdb_stderr = &null_stream;
2662
2663 /* Call parse_and_eval_type() without fear of longjmp()s. */
2664 try
2665 {
2666 type = parse_and_eval_type (p, length);
2667 }
2668 catch (const gdb_exception_error &except)
2669 {
2670 type = builtin_type (gdbarch)->builtin_void;
2671 }
2672
2673 /* Stop suppressing error messages. */
2674 gdb_stderr = saved_gdb_stderr;
2675
2676 return type;
2677 }
2678
2679 /* Ugly hack to convert method stubs into method types.
2680
2681 He ain't kiddin'. This demangles the name of the method into a
2682 string including argument types, parses out each argument type,
2683 generates a string casting a zero to that type, evaluates the
2684 string, and stuffs the resulting type into an argtype vector!!!
2685 Then it knows the type of the whole function (including argument
2686 types for overloading), which info used to be in the stab's but was
2687 removed to hack back the space required for them. */
2688
2689 static void
2690 check_stub_method (struct type *type, int method_id, int signature_id)
2691 {
2692 struct gdbarch *gdbarch = get_type_arch (type);
2693 struct fn_field *f;
2694 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2695 char *demangled_name = gdb_demangle (mangled_name,
2696 DMGL_PARAMS | DMGL_ANSI);
2697 char *argtypetext, *p;
2698 int depth = 0, argcount = 1;
2699 struct field *argtypes;
2700 struct type *mtype;
2701
2702 /* Make sure we got back a function string that we can use. */
2703 if (demangled_name)
2704 p = strchr (demangled_name, '(');
2705 else
2706 p = NULL;
2707
2708 if (demangled_name == NULL || p == NULL)
2709 error (_("Internal: Cannot demangle mangled name `%s'."),
2710 mangled_name);
2711
2712 /* Now, read in the parameters that define this type. */
2713 p += 1;
2714 argtypetext = p;
2715 while (*p)
2716 {
2717 if (*p == '(' || *p == '<')
2718 {
2719 depth += 1;
2720 }
2721 else if (*p == ')' || *p == '>')
2722 {
2723 depth -= 1;
2724 }
2725 else if (*p == ',' && depth == 0)
2726 {
2727 argcount += 1;
2728 }
2729
2730 p += 1;
2731 }
2732
2733 /* If we read one argument and it was ``void'', don't count it. */
2734 if (startswith (argtypetext, "(void)"))
2735 argcount -= 1;
2736
2737 /* We need one extra slot, for the THIS pointer. */
2738
2739 argtypes = (struct field *)
2740 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2741 p = argtypetext;
2742
2743 /* Add THIS pointer for non-static methods. */
2744 f = TYPE_FN_FIELDLIST1 (type, method_id);
2745 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2746 argcount = 0;
2747 else
2748 {
2749 argtypes[0].type = lookup_pointer_type (type);
2750 argcount = 1;
2751 }
2752
2753 if (*p != ')') /* () means no args, skip while. */
2754 {
2755 depth = 0;
2756 while (*p)
2757 {
2758 if (depth <= 0 && (*p == ',' || *p == ')'))
2759 {
2760 /* Avoid parsing of ellipsis, they will be handled below.
2761 Also avoid ``void'' as above. */
2762 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2763 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2764 {
2765 argtypes[argcount].type =
2766 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2767 argcount += 1;
2768 }
2769 argtypetext = p + 1;
2770 }
2771
2772 if (*p == '(' || *p == '<')
2773 {
2774 depth += 1;
2775 }
2776 else if (*p == ')' || *p == '>')
2777 {
2778 depth -= 1;
2779 }
2780
2781 p += 1;
2782 }
2783 }
2784
2785 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2786
2787 /* Now update the old "stub" type into a real type. */
2788 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2789 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2790 We want a method (TYPE_CODE_METHOD). */
2791 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2792 argtypes, argcount, p[-2] == '.');
2793 TYPE_STUB (mtype) = 0;
2794 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2795
2796 xfree (demangled_name);
2797 }
2798
2799 /* This is the external interface to check_stub_method, above. This
2800 function unstubs all of the signatures for TYPE's METHOD_ID method
2801 name. After calling this function TYPE_FN_FIELD_STUB will be
2802 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2803 correct.
2804
2805 This function unfortunately can not die until stabs do. */
2806
2807 void
2808 check_stub_method_group (struct type *type, int method_id)
2809 {
2810 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2811 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2812
2813 for (int j = 0; j < len; j++)
2814 {
2815 if (TYPE_FN_FIELD_STUB (f, j))
2816 check_stub_method (type, method_id, j);
2817 }
2818 }
2819
2820 /* Ensure it is in .rodata (if available) by working around GCC PR 44690. */
2821 const struct cplus_struct_type cplus_struct_default = { };
2822
2823 void
2824 allocate_cplus_struct_type (struct type *type)
2825 {
2826 if (HAVE_CPLUS_STRUCT (type))
2827 /* Structure was already allocated. Nothing more to do. */
2828 return;
2829
2830 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2831 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2832 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2833 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2834 set_type_vptr_fieldno (type, -1);
2835 }
2836
2837 const struct gnat_aux_type gnat_aux_default =
2838 { NULL };
2839
2840 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2841 and allocate the associated gnat-specific data. The gnat-specific
2842 data is also initialized to gnat_aux_default. */
2843
2844 void
2845 allocate_gnat_aux_type (struct type *type)
2846 {
2847 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2848 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2849 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2850 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2851 }
2852
2853 /* Helper function to initialize a newly allocated type. Set type code
2854 to CODE and initialize the type-specific fields accordingly. */
2855
2856 static void
2857 set_type_code (struct type *type, enum type_code code)
2858 {
2859 TYPE_CODE (type) = code;
2860
2861 switch (code)
2862 {
2863 case TYPE_CODE_STRUCT:
2864 case TYPE_CODE_UNION:
2865 case TYPE_CODE_NAMESPACE:
2866 INIT_CPLUS_SPECIFIC (type);
2867 break;
2868 case TYPE_CODE_FLT:
2869 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2870 break;
2871 case TYPE_CODE_FUNC:
2872 INIT_FUNC_SPECIFIC (type);
2873 break;
2874 }
2875 }
2876
2877 /* Helper function to verify floating-point format and size.
2878 BIT is the type size in bits; if BIT equals -1, the size is
2879 determined by the floatformat. Returns size to be used. */
2880
2881 static int
2882 verify_floatformat (int bit, const struct floatformat *floatformat)
2883 {
2884 gdb_assert (floatformat != NULL);
2885
2886 if (bit == -1)
2887 bit = floatformat->totalsize;
2888
2889 gdb_assert (bit >= 0);
2890 gdb_assert (bit >= floatformat->totalsize);
2891
2892 return bit;
2893 }
2894
2895 /* Return the floating-point format for a floating-point variable of
2896 type TYPE. */
2897
2898 const struct floatformat *
2899 floatformat_from_type (const struct type *type)
2900 {
2901 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLT);
2902 gdb_assert (TYPE_FLOATFORMAT (type));
2903 return TYPE_FLOATFORMAT (type);
2904 }
2905
2906 /* Helper function to initialize the standard scalar types.
2907
2908 If NAME is non-NULL, then it is used to initialize the type name.
2909 Note that NAME is not copied; it is required to have a lifetime at
2910 least as long as OBJFILE. */
2911
2912 struct type *
2913 init_type (struct objfile *objfile, enum type_code code, int bit,
2914 const char *name)
2915 {
2916 struct type *type;
2917
2918 type = alloc_type (objfile);
2919 set_type_code (type, code);
2920 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
2921 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
2922 TYPE_NAME (type) = name;
2923
2924 return type;
2925 }
2926
2927 /* Allocate a TYPE_CODE_ERROR type structure associated with OBJFILE,
2928 to use with variables that have no debug info. NAME is the type
2929 name. */
2930
2931 static struct type *
2932 init_nodebug_var_type (struct objfile *objfile, const char *name)
2933 {
2934 return init_type (objfile, TYPE_CODE_ERROR, 0, name);
2935 }
2936
2937 /* Allocate a TYPE_CODE_INT type structure associated with OBJFILE.
2938 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2939 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2940
2941 struct type *
2942 init_integer_type (struct objfile *objfile,
2943 int bit, int unsigned_p, const char *name)
2944 {
2945 struct type *t;
2946
2947 t = init_type (objfile, TYPE_CODE_INT, bit, name);
2948 if (unsigned_p)
2949 TYPE_UNSIGNED (t) = 1;
2950
2951 return t;
2952 }
2953
2954 /* Allocate a TYPE_CODE_CHAR type structure associated with OBJFILE.
2955 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2956 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2957
2958 struct type *
2959 init_character_type (struct objfile *objfile,
2960 int bit, int unsigned_p, const char *name)
2961 {
2962 struct type *t;
2963
2964 t = init_type (objfile, TYPE_CODE_CHAR, bit, name);
2965 if (unsigned_p)
2966 TYPE_UNSIGNED (t) = 1;
2967
2968 return t;
2969 }
2970
2971 /* Allocate a TYPE_CODE_BOOL type structure associated with OBJFILE.
2972 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
2973 the type's TYPE_UNSIGNED flag. NAME is the type name. */
2974
2975 struct type *
2976 init_boolean_type (struct objfile *objfile,
2977 int bit, int unsigned_p, const char *name)
2978 {
2979 struct type *t;
2980
2981 t = init_type (objfile, TYPE_CODE_BOOL, bit, name);
2982 if (unsigned_p)
2983 TYPE_UNSIGNED (t) = 1;
2984
2985 return t;
2986 }
2987
2988 /* Allocate a TYPE_CODE_FLT type structure associated with OBJFILE.
2989 BIT is the type size in bits; if BIT equals -1, the size is
2990 determined by the floatformat. NAME is the type name. Set the
2991 TYPE_FLOATFORMAT from FLOATFORMATS. BYTE_ORDER is the byte order
2992 to use. If it is BFD_ENDIAN_UNKNOWN (the default), then the byte
2993 order of the objfile's architecture is used. */
2994
2995 struct type *
2996 init_float_type (struct objfile *objfile,
2997 int bit, const char *name,
2998 const struct floatformat **floatformats,
2999 enum bfd_endian byte_order)
3000 {
3001 if (byte_order == BFD_ENDIAN_UNKNOWN)
3002 {
3003 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3004 byte_order = gdbarch_byte_order (gdbarch);
3005 }
3006 const struct floatformat *fmt = floatformats[byte_order];
3007 struct type *t;
3008
3009 bit = verify_floatformat (bit, fmt);
3010 t = init_type (objfile, TYPE_CODE_FLT, bit, name);
3011 TYPE_FLOATFORMAT (t) = fmt;
3012
3013 return t;
3014 }
3015
3016 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with OBJFILE.
3017 BIT is the type size in bits. NAME is the type name. */
3018
3019 struct type *
3020 init_decfloat_type (struct objfile *objfile, int bit, const char *name)
3021 {
3022 struct type *t;
3023
3024 t = init_type (objfile, TYPE_CODE_DECFLOAT, bit, name);
3025 return t;
3026 }
3027
3028 /* Allocate a TYPE_CODE_COMPLEX type structure associated with OBJFILE.
3029 NAME is the type name. TARGET_TYPE is the component float type. */
3030
3031 struct type *
3032 init_complex_type (struct objfile *objfile,
3033 const char *name, struct type *target_type)
3034 {
3035 struct type *t;
3036
3037 t = init_type (objfile, TYPE_CODE_COMPLEX,
3038 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
3039 TYPE_TARGET_TYPE (t) = target_type;
3040 return t;
3041 }
3042
3043 /* Allocate a TYPE_CODE_PTR type structure associated with OBJFILE.
3044 BIT is the pointer type size in bits. NAME is the type name.
3045 TARGET_TYPE is the pointer target type. Always sets the pointer type's
3046 TYPE_UNSIGNED flag. */
3047
3048 struct type *
3049 init_pointer_type (struct objfile *objfile,
3050 int bit, const char *name, struct type *target_type)
3051 {
3052 struct type *t;
3053
3054 t = init_type (objfile, TYPE_CODE_PTR, bit, name);
3055 TYPE_TARGET_TYPE (t) = target_type;
3056 TYPE_UNSIGNED (t) = 1;
3057 return t;
3058 }
3059
3060 /* See gdbtypes.h. */
3061
3062 unsigned
3063 type_raw_align (struct type *type)
3064 {
3065 if (type->align_log2 != 0)
3066 return 1 << (type->align_log2 - 1);
3067 return 0;
3068 }
3069
3070 /* See gdbtypes.h. */
3071
3072 unsigned
3073 type_align (struct type *type)
3074 {
3075 /* Check alignment provided in the debug information. */
3076 unsigned raw_align = type_raw_align (type);
3077 if (raw_align != 0)
3078 return raw_align;
3079
3080 /* Allow the architecture to provide an alignment. */
3081 struct gdbarch *arch = get_type_arch (type);
3082 ULONGEST align = gdbarch_type_align (arch, type);
3083 if (align != 0)
3084 return align;
3085
3086 switch (TYPE_CODE (type))
3087 {
3088 case TYPE_CODE_PTR:
3089 case TYPE_CODE_FUNC:
3090 case TYPE_CODE_FLAGS:
3091 case TYPE_CODE_INT:
3092 case TYPE_CODE_RANGE:
3093 case TYPE_CODE_FLT:
3094 case TYPE_CODE_ENUM:
3095 case TYPE_CODE_REF:
3096 case TYPE_CODE_RVALUE_REF:
3097 case TYPE_CODE_CHAR:
3098 case TYPE_CODE_BOOL:
3099 case TYPE_CODE_DECFLOAT:
3100 case TYPE_CODE_METHODPTR:
3101 case TYPE_CODE_MEMBERPTR:
3102 align = type_length_units (check_typedef (type));
3103 break;
3104
3105 case TYPE_CODE_ARRAY:
3106 case TYPE_CODE_COMPLEX:
3107 case TYPE_CODE_TYPEDEF:
3108 align = type_align (TYPE_TARGET_TYPE (type));
3109 break;
3110
3111 case TYPE_CODE_STRUCT:
3112 case TYPE_CODE_UNION:
3113 {
3114 int number_of_non_static_fields = 0;
3115 for (unsigned i = 0; i < TYPE_NFIELDS (type); ++i)
3116 {
3117 if (!field_is_static (&TYPE_FIELD (type, i)))
3118 {
3119 number_of_non_static_fields++;
3120 ULONGEST f_align = type_align (TYPE_FIELD_TYPE (type, i));
3121 if (f_align == 0)
3122 {
3123 /* Don't pretend we know something we don't. */
3124 align = 0;
3125 break;
3126 }
3127 if (f_align > align)
3128 align = f_align;
3129 }
3130 }
3131 /* A struct with no fields, or with only static fields has an
3132 alignment of 1. */
3133 if (number_of_non_static_fields == 0)
3134 align = 1;
3135 }
3136 break;
3137
3138 case TYPE_CODE_SET:
3139 case TYPE_CODE_STRING:
3140 /* Not sure what to do here, and these can't appear in C or C++
3141 anyway. */
3142 break;
3143
3144 case TYPE_CODE_VOID:
3145 align = 1;
3146 break;
3147
3148 case TYPE_CODE_ERROR:
3149 case TYPE_CODE_METHOD:
3150 default:
3151 break;
3152 }
3153
3154 if ((align & (align - 1)) != 0)
3155 {
3156 /* Not a power of 2, so pass. */
3157 align = 0;
3158 }
3159
3160 return align;
3161 }
3162
3163 /* See gdbtypes.h. */
3164
3165 bool
3166 set_type_align (struct type *type, ULONGEST align)
3167 {
3168 /* Must be a power of 2. Zero is ok. */
3169 gdb_assert ((align & (align - 1)) == 0);
3170
3171 unsigned result = 0;
3172 while (align != 0)
3173 {
3174 ++result;
3175 align >>= 1;
3176 }
3177
3178 if (result >= (1 << TYPE_ALIGN_BITS))
3179 return false;
3180
3181 type->align_log2 = result;
3182 return true;
3183 }
3184
3185 \f
3186 /* Queries on types. */
3187
3188 int
3189 can_dereference (struct type *t)
3190 {
3191 /* FIXME: Should we return true for references as well as
3192 pointers? */
3193 t = check_typedef (t);
3194 return
3195 (t != NULL
3196 && TYPE_CODE (t) == TYPE_CODE_PTR
3197 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
3198 }
3199
3200 int
3201 is_integral_type (struct type *t)
3202 {
3203 t = check_typedef (t);
3204 return
3205 ((t != NULL)
3206 && ((TYPE_CODE (t) == TYPE_CODE_INT)
3207 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
3208 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
3209 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
3210 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
3211 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
3212 }
3213
3214 int
3215 is_floating_type (struct type *t)
3216 {
3217 t = check_typedef (t);
3218 return
3219 ((t != NULL)
3220 && ((TYPE_CODE (t) == TYPE_CODE_FLT)
3221 || (TYPE_CODE (t) == TYPE_CODE_DECFLOAT)));
3222 }
3223
3224 /* Return true if TYPE is scalar. */
3225
3226 int
3227 is_scalar_type (struct type *type)
3228 {
3229 type = check_typedef (type);
3230
3231 switch (TYPE_CODE (type))
3232 {
3233 case TYPE_CODE_ARRAY:
3234 case TYPE_CODE_STRUCT:
3235 case TYPE_CODE_UNION:
3236 case TYPE_CODE_SET:
3237 case TYPE_CODE_STRING:
3238 return 0;
3239 default:
3240 return 1;
3241 }
3242 }
3243
3244 /* Return true if T is scalar, or a composite type which in practice has
3245 the memory layout of a scalar type. E.g., an array or struct with only
3246 one scalar element inside it, or a union with only scalar elements. */
3247
3248 int
3249 is_scalar_type_recursive (struct type *t)
3250 {
3251 t = check_typedef (t);
3252
3253 if (is_scalar_type (t))
3254 return 1;
3255 /* Are we dealing with an array or string of known dimensions? */
3256 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
3257 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
3258 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
3259 {
3260 LONGEST low_bound, high_bound;
3261 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
3262
3263 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
3264
3265 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
3266 }
3267 /* Are we dealing with a struct with one element? */
3268 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
3269 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
3270 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
3271 {
3272 int i, n = TYPE_NFIELDS (t);
3273
3274 /* If all elements of the union are scalar, then the union is scalar. */
3275 for (i = 0; i < n; i++)
3276 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
3277 return 0;
3278
3279 return 1;
3280 }
3281
3282 return 0;
3283 }
3284
3285 /* Return true is T is a class or a union. False otherwise. */
3286
3287 int
3288 class_or_union_p (const struct type *t)
3289 {
3290 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
3291 || TYPE_CODE (t) == TYPE_CODE_UNION);
3292 }
3293
3294 /* A helper function which returns true if types A and B represent the
3295 "same" class type. This is true if the types have the same main
3296 type, or the same name. */
3297
3298 int
3299 class_types_same_p (const struct type *a, const struct type *b)
3300 {
3301 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
3302 || (TYPE_NAME (a) && TYPE_NAME (b)
3303 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
3304 }
3305
3306 /* If BASE is an ancestor of DCLASS return the distance between them.
3307 otherwise return -1;
3308 eg:
3309
3310 class A {};
3311 class B: public A {};
3312 class C: public B {};
3313 class D: C {};
3314
3315 distance_to_ancestor (A, A, 0) = 0
3316 distance_to_ancestor (A, B, 0) = 1
3317 distance_to_ancestor (A, C, 0) = 2
3318 distance_to_ancestor (A, D, 0) = 3
3319
3320 If PUBLIC is 1 then only public ancestors are considered,
3321 and the function returns the distance only if BASE is a public ancestor
3322 of DCLASS.
3323 Eg:
3324
3325 distance_to_ancestor (A, D, 1) = -1. */
3326
3327 static int
3328 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
3329 {
3330 int i;
3331 int d;
3332
3333 base = check_typedef (base);
3334 dclass = check_typedef (dclass);
3335
3336 if (class_types_same_p (base, dclass))
3337 return 0;
3338
3339 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
3340 {
3341 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
3342 continue;
3343
3344 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
3345 if (d >= 0)
3346 return 1 + d;
3347 }
3348
3349 return -1;
3350 }
3351
3352 /* Check whether BASE is an ancestor or base class or DCLASS
3353 Return 1 if so, and 0 if not.
3354 Note: If BASE and DCLASS are of the same type, this function
3355 will return 1. So for some class A, is_ancestor (A, A) will
3356 return 1. */
3357
3358 int
3359 is_ancestor (struct type *base, struct type *dclass)
3360 {
3361 return distance_to_ancestor (base, dclass, 0) >= 0;
3362 }
3363
3364 /* Like is_ancestor, but only returns true when BASE is a public
3365 ancestor of DCLASS. */
3366
3367 int
3368 is_public_ancestor (struct type *base, struct type *dclass)
3369 {
3370 return distance_to_ancestor (base, dclass, 1) >= 0;
3371 }
3372
3373 /* A helper function for is_unique_ancestor. */
3374
3375 static int
3376 is_unique_ancestor_worker (struct type *base, struct type *dclass,
3377 int *offset,
3378 const gdb_byte *valaddr, int embedded_offset,
3379 CORE_ADDR address, struct value *val)
3380 {
3381 int i, count = 0;
3382
3383 base = check_typedef (base);
3384 dclass = check_typedef (dclass);
3385
3386 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
3387 {
3388 struct type *iter;
3389 int this_offset;
3390
3391 iter = check_typedef (TYPE_BASECLASS (dclass, i));
3392
3393 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
3394 address, val);
3395
3396 if (class_types_same_p (base, iter))
3397 {
3398 /* If this is the first subclass, set *OFFSET and set count
3399 to 1. Otherwise, if this is at the same offset as
3400 previous instances, do nothing. Otherwise, increment
3401 count. */
3402 if (*offset == -1)
3403 {
3404 *offset = this_offset;
3405 count = 1;
3406 }
3407 else if (this_offset == *offset)
3408 {
3409 /* Nothing. */
3410 }
3411 else
3412 ++count;
3413 }
3414 else
3415 count += is_unique_ancestor_worker (base, iter, offset,
3416 valaddr,
3417 embedded_offset + this_offset,
3418 address, val);
3419 }
3420
3421 return count;
3422 }
3423
3424 /* Like is_ancestor, but only returns true if BASE is a unique base
3425 class of the type of VAL. */
3426
3427 int
3428 is_unique_ancestor (struct type *base, struct value *val)
3429 {
3430 int offset = -1;
3431
3432 return is_unique_ancestor_worker (base, value_type (val), &offset,
3433 value_contents_for_printing (val),
3434 value_embedded_offset (val),
3435 value_address (val), val) == 1;
3436 }
3437
3438 /* See gdbtypes.h. */
3439
3440 enum bfd_endian
3441 type_byte_order (const struct type *type)
3442 {
3443 bfd_endian byteorder = gdbarch_byte_order (get_type_arch (type));
3444 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
3445 {
3446 if (byteorder == BFD_ENDIAN_BIG)
3447 return BFD_ENDIAN_LITTLE;
3448 else
3449 {
3450 gdb_assert (byteorder == BFD_ENDIAN_LITTLE);
3451 return BFD_ENDIAN_BIG;
3452 }
3453 }
3454
3455 return byteorder;
3456 }
3457
3458 \f
3459 /* Overload resolution. */
3460
3461 /* Return the sum of the rank of A with the rank of B. */
3462
3463 struct rank
3464 sum_ranks (struct rank a, struct rank b)
3465 {
3466 struct rank c;
3467 c.rank = a.rank + b.rank;
3468 c.subrank = a.subrank + b.subrank;
3469 return c;
3470 }
3471
3472 /* Compare rank A and B and return:
3473 0 if a = b
3474 1 if a is better than b
3475 -1 if b is better than a. */
3476
3477 int
3478 compare_ranks (struct rank a, struct rank b)
3479 {
3480 if (a.rank == b.rank)
3481 {
3482 if (a.subrank == b.subrank)
3483 return 0;
3484 if (a.subrank < b.subrank)
3485 return 1;
3486 if (a.subrank > b.subrank)
3487 return -1;
3488 }
3489
3490 if (a.rank < b.rank)
3491 return 1;
3492
3493 /* a.rank > b.rank */
3494 return -1;
3495 }
3496
3497 /* Functions for overload resolution begin here. */
3498
3499 /* Compare two badness vectors A and B and return the result.
3500 0 => A and B are identical
3501 1 => A and B are incomparable
3502 2 => A is better than B
3503 3 => A is worse than B */
3504
3505 int
3506 compare_badness (const badness_vector &a, const badness_vector &b)
3507 {
3508 int i;
3509 int tmp;
3510 short found_pos = 0; /* any positives in c? */
3511 short found_neg = 0; /* any negatives in c? */
3512
3513 /* differing sizes => incomparable */
3514 if (a.size () != b.size ())
3515 return 1;
3516
3517 /* Subtract b from a */
3518 for (i = 0; i < a.size (); i++)
3519 {
3520 tmp = compare_ranks (b[i], a[i]);
3521 if (tmp > 0)
3522 found_pos = 1;
3523 else if (tmp < 0)
3524 found_neg = 1;
3525 }
3526
3527 if (found_pos)
3528 {
3529 if (found_neg)
3530 return 1; /* incomparable */
3531 else
3532 return 3; /* A > B */
3533 }
3534 else
3535 /* no positives */
3536 {
3537 if (found_neg)
3538 return 2; /* A < B */
3539 else
3540 return 0; /* A == B */
3541 }
3542 }
3543
3544 /* Rank a function by comparing its parameter types (PARMS), to the
3545 types of an argument list (ARGS). Return the badness vector. This
3546 has ARGS.size() + 1 entries. */
3547
3548 badness_vector
3549 rank_function (gdb::array_view<type *> parms,
3550 gdb::array_view<value *> args)
3551 {
3552 /* add 1 for the length-match rank. */
3553 badness_vector bv;
3554 bv.reserve (1 + args.size ());
3555
3556 /* First compare the lengths of the supplied lists.
3557 If there is a mismatch, set it to a high value. */
3558
3559 /* pai/1997-06-03 FIXME: when we have debug info about default
3560 arguments and ellipsis parameter lists, we should consider those
3561 and rank the length-match more finely. */
3562
3563 bv.push_back ((args.size () != parms.size ())
3564 ? LENGTH_MISMATCH_BADNESS
3565 : EXACT_MATCH_BADNESS);
3566
3567 /* Now rank all the parameters of the candidate function. */
3568 size_t min_len = std::min (parms.size (), args.size ());
3569
3570 for (size_t i = 0; i < min_len; i++)
3571 bv.push_back (rank_one_type (parms[i], value_type (args[i]),
3572 args[i]));
3573
3574 /* If more arguments than parameters, add dummy entries. */
3575 for (size_t i = min_len; i < args.size (); i++)
3576 bv.push_back (TOO_FEW_PARAMS_BADNESS);
3577
3578 return bv;
3579 }
3580
3581 /* Compare the names of two integer types, assuming that any sign
3582 qualifiers have been checked already. We do it this way because
3583 there may be an "int" in the name of one of the types. */
3584
3585 static int
3586 integer_types_same_name_p (const char *first, const char *second)
3587 {
3588 int first_p, second_p;
3589
3590 /* If both are shorts, return 1; if neither is a short, keep
3591 checking. */
3592 first_p = (strstr (first, "short") != NULL);
3593 second_p = (strstr (second, "short") != NULL);
3594 if (first_p && second_p)
3595 return 1;
3596 if (first_p || second_p)
3597 return 0;
3598
3599 /* Likewise for long. */
3600 first_p = (strstr (first, "long") != NULL);
3601 second_p = (strstr (second, "long") != NULL);
3602 if (first_p && second_p)
3603 return 1;
3604 if (first_p || second_p)
3605 return 0;
3606
3607 /* Likewise for char. */
3608 first_p = (strstr (first, "char") != NULL);
3609 second_p = (strstr (second, "char") != NULL);
3610 if (first_p && second_p)
3611 return 1;
3612 if (first_p || second_p)
3613 return 0;
3614
3615 /* They must both be ints. */
3616 return 1;
3617 }
3618
3619 /* Compares type A to type B. Returns true if they represent the same
3620 type, false otherwise. */
3621
3622 bool
3623 types_equal (struct type *a, struct type *b)
3624 {
3625 /* Identical type pointers. */
3626 /* However, this still doesn't catch all cases of same type for b
3627 and a. The reason is that builtin types are different from
3628 the same ones constructed from the object. */
3629 if (a == b)
3630 return true;
3631
3632 /* Resolve typedefs */
3633 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3634 a = check_typedef (a);
3635 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3636 b = check_typedef (b);
3637
3638 /* If after resolving typedefs a and b are not of the same type
3639 code then they are not equal. */
3640 if (TYPE_CODE (a) != TYPE_CODE (b))
3641 return false;
3642
3643 /* If a and b are both pointers types or both reference types then
3644 they are equal of the same type iff the objects they refer to are
3645 of the same type. */
3646 if (TYPE_CODE (a) == TYPE_CODE_PTR
3647 || TYPE_CODE (a) == TYPE_CODE_REF)
3648 return types_equal (TYPE_TARGET_TYPE (a),
3649 TYPE_TARGET_TYPE (b));
3650
3651 /* Well, damnit, if the names are exactly the same, I'll say they
3652 are exactly the same. This happens when we generate method
3653 stubs. The types won't point to the same address, but they
3654 really are the same. */
3655
3656 if (TYPE_NAME (a) && TYPE_NAME (b)
3657 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3658 return true;
3659
3660 /* Check if identical after resolving typedefs. */
3661 if (a == b)
3662 return true;
3663
3664 /* Two function types are equal if their argument and return types
3665 are equal. */
3666 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3667 {
3668 int i;
3669
3670 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3671 return false;
3672
3673 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3674 return false;
3675
3676 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3677 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3678 return false;
3679
3680 return true;
3681 }
3682
3683 return false;
3684 }
3685 \f
3686 /* Deep comparison of types. */
3687
3688 /* An entry in the type-equality bcache. */
3689
3690 struct type_equality_entry
3691 {
3692 type_equality_entry (struct type *t1, struct type *t2)
3693 : type1 (t1),
3694 type2 (t2)
3695 {
3696 }
3697
3698 struct type *type1, *type2;
3699 };
3700
3701 /* A helper function to compare two strings. Returns true if they are
3702 the same, false otherwise. Handles NULLs properly. */
3703
3704 static bool
3705 compare_maybe_null_strings (const char *s, const char *t)
3706 {
3707 if (s == NULL || t == NULL)
3708 return s == t;
3709 return strcmp (s, t) == 0;
3710 }
3711
3712 /* A helper function for check_types_worklist that checks two types for
3713 "deep" equality. Returns true if the types are considered the
3714 same, false otherwise. */
3715
3716 static bool
3717 check_types_equal (struct type *type1, struct type *type2,
3718 std::vector<type_equality_entry> *worklist)
3719 {
3720 type1 = check_typedef (type1);
3721 type2 = check_typedef (type2);
3722
3723 if (type1 == type2)
3724 return true;
3725
3726 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3727 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3728 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3729 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3730 || TYPE_ENDIANITY_NOT_DEFAULT (type1) != TYPE_ENDIANITY_NOT_DEFAULT (type2)
3731 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3732 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3733 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3734 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3735 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3736 return false;
3737
3738 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3739 return false;
3740 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3741 return false;
3742
3743 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3744 {
3745 if (*TYPE_RANGE_DATA (type1) != *TYPE_RANGE_DATA (type2))
3746 return false;
3747 }
3748 else
3749 {
3750 int i;
3751
3752 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3753 {
3754 const struct field *field1 = &TYPE_FIELD (type1, i);
3755 const struct field *field2 = &TYPE_FIELD (type2, i);
3756
3757 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3758 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3759 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3760 return false;
3761 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3762 FIELD_NAME (*field2)))
3763 return false;
3764 switch (FIELD_LOC_KIND (*field1))
3765 {
3766 case FIELD_LOC_KIND_BITPOS:
3767 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3768 return false;
3769 break;
3770 case FIELD_LOC_KIND_ENUMVAL:
3771 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3772 return false;
3773 break;
3774 case FIELD_LOC_KIND_PHYSADDR:
3775 if (FIELD_STATIC_PHYSADDR (*field1)
3776 != FIELD_STATIC_PHYSADDR (*field2))
3777 return false;
3778 break;
3779 case FIELD_LOC_KIND_PHYSNAME:
3780 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3781 FIELD_STATIC_PHYSNAME (*field2)))
3782 return false;
3783 break;
3784 case FIELD_LOC_KIND_DWARF_BLOCK:
3785 {
3786 struct dwarf2_locexpr_baton *block1, *block2;
3787
3788 block1 = FIELD_DWARF_BLOCK (*field1);
3789 block2 = FIELD_DWARF_BLOCK (*field2);
3790 if (block1->per_cu != block2->per_cu
3791 || block1->size != block2->size
3792 || memcmp (block1->data, block2->data, block1->size) != 0)
3793 return false;
3794 }
3795 break;
3796 default:
3797 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3798 "%d by check_types_equal"),
3799 FIELD_LOC_KIND (*field1));
3800 }
3801
3802 worklist->emplace_back (FIELD_TYPE (*field1), FIELD_TYPE (*field2));
3803 }
3804 }
3805
3806 if (TYPE_TARGET_TYPE (type1) != NULL)
3807 {
3808 if (TYPE_TARGET_TYPE (type2) == NULL)
3809 return false;
3810
3811 worklist->emplace_back (TYPE_TARGET_TYPE (type1),
3812 TYPE_TARGET_TYPE (type2));
3813 }
3814 else if (TYPE_TARGET_TYPE (type2) != NULL)
3815 return false;
3816
3817 return true;
3818 }
3819
3820 /* Check types on a worklist for equality. Returns false if any pair
3821 is not equal, true if they are all considered equal. */
3822
3823 static bool
3824 check_types_worklist (std::vector<type_equality_entry> *worklist,
3825 gdb::bcache *cache)
3826 {
3827 while (!worklist->empty ())
3828 {
3829 int added;
3830
3831 struct type_equality_entry entry = std::move (worklist->back ());
3832 worklist->pop_back ();
3833
3834 /* If the type pair has already been visited, we know it is
3835 ok. */
3836 cache->insert (&entry, sizeof (entry), &added);
3837 if (!added)
3838 continue;
3839
3840 if (!check_types_equal (entry.type1, entry.type2, worklist))
3841 return false;
3842 }
3843
3844 return true;
3845 }
3846
3847 /* Return true if types TYPE1 and TYPE2 are equal, as determined by a
3848 "deep comparison". Otherwise return false. */
3849
3850 bool
3851 types_deeply_equal (struct type *type1, struct type *type2)
3852 {
3853 std::vector<type_equality_entry> worklist;
3854
3855 gdb_assert (type1 != NULL && type2 != NULL);
3856
3857 /* Early exit for the simple case. */
3858 if (type1 == type2)
3859 return true;
3860
3861 gdb::bcache cache (nullptr, nullptr);
3862 worklist.emplace_back (type1, type2);
3863 return check_types_worklist (&worklist, &cache);
3864 }
3865
3866 /* Allocated status of type TYPE. Return zero if type TYPE is allocated.
3867 Otherwise return one. */
3868
3869 int
3870 type_not_allocated (const struct type *type)
3871 {
3872 struct dynamic_prop *prop = TYPE_ALLOCATED_PROP (type);
3873
3874 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3875 && !TYPE_DYN_PROP_ADDR (prop));
3876 }
3877
3878 /* Associated status of type TYPE. Return zero if type TYPE is associated.
3879 Otherwise return one. */
3880
3881 int
3882 type_not_associated (const struct type *type)
3883 {
3884 struct dynamic_prop *prop = TYPE_ASSOCIATED_PROP (type);
3885
3886 return (prop && TYPE_DYN_PROP_KIND (prop) == PROP_CONST
3887 && !TYPE_DYN_PROP_ADDR (prop));
3888 }
3889
3890 /* rank_one_type helper for when PARM's type code is TYPE_CODE_PTR. */
3891
3892 static struct rank
3893 rank_one_type_parm_ptr (struct type *parm, struct type *arg, struct value *value)
3894 {
3895 struct rank rank = {0,0};
3896
3897 switch (TYPE_CODE (arg))
3898 {
3899 case TYPE_CODE_PTR:
3900
3901 /* Allowed pointer conversions are:
3902 (a) pointer to void-pointer conversion. */
3903 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3904 return VOID_PTR_CONVERSION_BADNESS;
3905
3906 /* (b) pointer to ancestor-pointer conversion. */
3907 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3908 TYPE_TARGET_TYPE (arg),
3909 0);
3910 if (rank.subrank >= 0)
3911 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3912
3913 return INCOMPATIBLE_TYPE_BADNESS;
3914 case TYPE_CODE_ARRAY:
3915 {
3916 struct type *t1 = TYPE_TARGET_TYPE (parm);
3917 struct type *t2 = TYPE_TARGET_TYPE (arg);
3918
3919 if (types_equal (t1, t2))
3920 {
3921 /* Make sure they are CV equal. */
3922 if (TYPE_CONST (t1) != TYPE_CONST (t2))
3923 rank.subrank |= CV_CONVERSION_CONST;
3924 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
3925 rank.subrank |= CV_CONVERSION_VOLATILE;
3926 if (rank.subrank != 0)
3927 return sum_ranks (CV_CONVERSION_BADNESS, rank);
3928 return EXACT_MATCH_BADNESS;
3929 }
3930 return INCOMPATIBLE_TYPE_BADNESS;
3931 }
3932 case TYPE_CODE_FUNC:
3933 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3934 case TYPE_CODE_INT:
3935 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3936 {
3937 if (value_as_long (value) == 0)
3938 {
3939 /* Null pointer conversion: allow it to be cast to a pointer.
3940 [4.10.1 of C++ standard draft n3290] */
3941 return NULL_POINTER_CONVERSION_BADNESS;
3942 }
3943 else
3944 {
3945 /* If type checking is disabled, allow the conversion. */
3946 if (!strict_type_checking)
3947 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3948 }
3949 }
3950 /* fall through */
3951 case TYPE_CODE_ENUM:
3952 case TYPE_CODE_FLAGS:
3953 case TYPE_CODE_CHAR:
3954 case TYPE_CODE_RANGE:
3955 case TYPE_CODE_BOOL:
3956 default:
3957 return INCOMPATIBLE_TYPE_BADNESS;
3958 }
3959 }
3960
3961 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ARRAY. */
3962
3963 static struct rank
3964 rank_one_type_parm_array (struct type *parm, struct type *arg, struct value *value)
3965 {
3966 switch (TYPE_CODE (arg))
3967 {
3968 case TYPE_CODE_PTR:
3969 case TYPE_CODE_ARRAY:
3970 return rank_one_type (TYPE_TARGET_TYPE (parm),
3971 TYPE_TARGET_TYPE (arg), NULL);
3972 default:
3973 return INCOMPATIBLE_TYPE_BADNESS;
3974 }
3975 }
3976
3977 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FUNC. */
3978
3979 static struct rank
3980 rank_one_type_parm_func (struct type *parm, struct type *arg, struct value *value)
3981 {
3982 switch (TYPE_CODE (arg))
3983 {
3984 case TYPE_CODE_PTR: /* funcptr -> func */
3985 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3986 default:
3987 return INCOMPATIBLE_TYPE_BADNESS;
3988 }
3989 }
3990
3991 /* rank_one_type helper for when PARM's type code is TYPE_CODE_INT. */
3992
3993 static struct rank
3994 rank_one_type_parm_int (struct type *parm, struct type *arg, struct value *value)
3995 {
3996 switch (TYPE_CODE (arg))
3997 {
3998 case TYPE_CODE_INT:
3999 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4000 {
4001 /* Deal with signed, unsigned, and plain chars and
4002 signed and unsigned ints. */
4003 if (TYPE_NOSIGN (parm))
4004 {
4005 /* This case only for character types. */
4006 if (TYPE_NOSIGN (arg))
4007 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
4008 else /* signed/unsigned char -> plain char */
4009 return INTEGER_CONVERSION_BADNESS;
4010 }
4011 else if (TYPE_UNSIGNED (parm))
4012 {
4013 if (TYPE_UNSIGNED (arg))
4014 {
4015 /* unsigned int -> unsigned int, or
4016 unsigned long -> unsigned long */
4017 if (integer_types_same_name_p (TYPE_NAME (parm),
4018 TYPE_NAME (arg)))
4019 return EXACT_MATCH_BADNESS;
4020 else if (integer_types_same_name_p (TYPE_NAME (arg),
4021 "int")
4022 && integer_types_same_name_p (TYPE_NAME (parm),
4023 "long"))
4024 /* unsigned int -> unsigned long */
4025 return INTEGER_PROMOTION_BADNESS;
4026 else
4027 /* unsigned long -> unsigned int */
4028 return INTEGER_CONVERSION_BADNESS;
4029 }
4030 else
4031 {
4032 if (integer_types_same_name_p (TYPE_NAME (arg),
4033 "long")
4034 && integer_types_same_name_p (TYPE_NAME (parm),
4035 "int"))
4036 /* signed long -> unsigned int */
4037 return INTEGER_CONVERSION_BADNESS;
4038 else
4039 /* signed int/long -> unsigned int/long */
4040 return INTEGER_CONVERSION_BADNESS;
4041 }
4042 }
4043 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4044 {
4045 if (integer_types_same_name_p (TYPE_NAME (parm),
4046 TYPE_NAME (arg)))
4047 return EXACT_MATCH_BADNESS;
4048 else if (integer_types_same_name_p (TYPE_NAME (arg),
4049 "int")
4050 && integer_types_same_name_p (TYPE_NAME (parm),
4051 "long"))
4052 return INTEGER_PROMOTION_BADNESS;
4053 else
4054 return INTEGER_CONVERSION_BADNESS;
4055 }
4056 else
4057 return INTEGER_CONVERSION_BADNESS;
4058 }
4059 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4060 return INTEGER_PROMOTION_BADNESS;
4061 else
4062 return INTEGER_CONVERSION_BADNESS;
4063 case TYPE_CODE_ENUM:
4064 case TYPE_CODE_FLAGS:
4065 case TYPE_CODE_CHAR:
4066 case TYPE_CODE_RANGE:
4067 case TYPE_CODE_BOOL:
4068 if (TYPE_DECLARED_CLASS (arg))
4069 return INCOMPATIBLE_TYPE_BADNESS;
4070 return INTEGER_PROMOTION_BADNESS;
4071 case TYPE_CODE_FLT:
4072 return INT_FLOAT_CONVERSION_BADNESS;
4073 case TYPE_CODE_PTR:
4074 return NS_POINTER_CONVERSION_BADNESS;
4075 default:
4076 return INCOMPATIBLE_TYPE_BADNESS;
4077 }
4078 }
4079
4080 /* rank_one_type helper for when PARM's type code is TYPE_CODE_ENUM. */
4081
4082 static struct rank
4083 rank_one_type_parm_enum (struct type *parm, struct type *arg, struct value *value)
4084 {
4085 switch (TYPE_CODE (arg))
4086 {
4087 case TYPE_CODE_INT:
4088 case TYPE_CODE_CHAR:
4089 case TYPE_CODE_RANGE:
4090 case TYPE_CODE_BOOL:
4091 case TYPE_CODE_ENUM:
4092 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
4093 return INCOMPATIBLE_TYPE_BADNESS;
4094 return INTEGER_CONVERSION_BADNESS;
4095 case TYPE_CODE_FLT:
4096 return INT_FLOAT_CONVERSION_BADNESS;
4097 default:
4098 return INCOMPATIBLE_TYPE_BADNESS;
4099 }
4100 }
4101
4102 /* rank_one_type helper for when PARM's type code is TYPE_CODE_CHAR. */
4103
4104 static struct rank
4105 rank_one_type_parm_char (struct type *parm, struct type *arg, struct value *value)
4106 {
4107 switch (TYPE_CODE (arg))
4108 {
4109 case TYPE_CODE_RANGE:
4110 case TYPE_CODE_BOOL:
4111 case TYPE_CODE_ENUM:
4112 if (TYPE_DECLARED_CLASS (arg))
4113 return INCOMPATIBLE_TYPE_BADNESS;
4114 return INTEGER_CONVERSION_BADNESS;
4115 case TYPE_CODE_FLT:
4116 return INT_FLOAT_CONVERSION_BADNESS;
4117 case TYPE_CODE_INT:
4118 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
4119 return INTEGER_CONVERSION_BADNESS;
4120 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4121 return INTEGER_PROMOTION_BADNESS;
4122 /* fall through */
4123 case TYPE_CODE_CHAR:
4124 /* Deal with signed, unsigned, and plain chars for C++ and
4125 with int cases falling through from previous case. */
4126 if (TYPE_NOSIGN (parm))
4127 {
4128 if (TYPE_NOSIGN (arg))
4129 return EXACT_MATCH_BADNESS;
4130 else
4131 return INTEGER_CONVERSION_BADNESS;
4132 }
4133 else if (TYPE_UNSIGNED (parm))
4134 {
4135 if (TYPE_UNSIGNED (arg))
4136 return EXACT_MATCH_BADNESS;
4137 else
4138 return INTEGER_PROMOTION_BADNESS;
4139 }
4140 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
4141 return EXACT_MATCH_BADNESS;
4142 else
4143 return INTEGER_CONVERSION_BADNESS;
4144 default:
4145 return INCOMPATIBLE_TYPE_BADNESS;
4146 }
4147 }
4148
4149 /* rank_one_type helper for when PARM's type code is TYPE_CODE_RANGE. */
4150
4151 static struct rank
4152 rank_one_type_parm_range (struct type *parm, struct type *arg, struct value *value)
4153 {
4154 switch (TYPE_CODE (arg))
4155 {
4156 case TYPE_CODE_INT:
4157 case TYPE_CODE_CHAR:
4158 case TYPE_CODE_RANGE:
4159 case TYPE_CODE_BOOL:
4160 case TYPE_CODE_ENUM:
4161 return INTEGER_CONVERSION_BADNESS;
4162 case TYPE_CODE_FLT:
4163 return INT_FLOAT_CONVERSION_BADNESS;
4164 default:
4165 return INCOMPATIBLE_TYPE_BADNESS;
4166 }
4167 }
4168
4169 /* rank_one_type helper for when PARM's type code is TYPE_CODE_BOOL. */
4170
4171 static struct rank
4172 rank_one_type_parm_bool (struct type *parm, struct type *arg, struct value *value)
4173 {
4174 switch (TYPE_CODE (arg))
4175 {
4176 /* n3290 draft, section 4.12.1 (conv.bool):
4177
4178 "A prvalue of arithmetic, unscoped enumeration, pointer, or
4179 pointer to member type can be converted to a prvalue of type
4180 bool. A zero value, null pointer value, or null member pointer
4181 value is converted to false; any other value is converted to
4182 true. A prvalue of type std::nullptr_t can be converted to a
4183 prvalue of type bool; the resulting value is false." */
4184 case TYPE_CODE_INT:
4185 case TYPE_CODE_CHAR:
4186 case TYPE_CODE_ENUM:
4187 case TYPE_CODE_FLT:
4188 case TYPE_CODE_MEMBERPTR:
4189 case TYPE_CODE_PTR:
4190 return BOOL_CONVERSION_BADNESS;
4191 case TYPE_CODE_RANGE:
4192 return INCOMPATIBLE_TYPE_BADNESS;
4193 case TYPE_CODE_BOOL:
4194 return EXACT_MATCH_BADNESS;
4195 default:
4196 return INCOMPATIBLE_TYPE_BADNESS;
4197 }
4198 }
4199
4200 /* rank_one_type helper for when PARM's type code is TYPE_CODE_FLOAT. */
4201
4202 static struct rank
4203 rank_one_type_parm_float (struct type *parm, struct type *arg, struct value *value)
4204 {
4205 switch (TYPE_CODE (arg))
4206 {
4207 case TYPE_CODE_FLT:
4208 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
4209 return FLOAT_PROMOTION_BADNESS;
4210 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
4211 return EXACT_MATCH_BADNESS;
4212 else
4213 return FLOAT_CONVERSION_BADNESS;
4214 case TYPE_CODE_INT:
4215 case TYPE_CODE_BOOL:
4216 case TYPE_CODE_ENUM:
4217 case TYPE_CODE_RANGE:
4218 case TYPE_CODE_CHAR:
4219 return INT_FLOAT_CONVERSION_BADNESS;
4220 default:
4221 return INCOMPATIBLE_TYPE_BADNESS;
4222 }
4223 }
4224
4225 /* rank_one_type helper for when PARM's type code is TYPE_CODE_COMPLEX. */
4226
4227 static struct rank
4228 rank_one_type_parm_complex (struct type *parm, struct type *arg, struct value *value)
4229 {
4230 switch (TYPE_CODE (arg))
4231 { /* Strictly not needed for C++, but... */
4232 case TYPE_CODE_FLT:
4233 return FLOAT_PROMOTION_BADNESS;
4234 case TYPE_CODE_COMPLEX:
4235 return EXACT_MATCH_BADNESS;
4236 default:
4237 return INCOMPATIBLE_TYPE_BADNESS;
4238 }
4239 }
4240
4241 /* rank_one_type helper for when PARM's type code is TYPE_CODE_STRUCT. */
4242
4243 static struct rank
4244 rank_one_type_parm_struct (struct type *parm, struct type *arg, struct value *value)
4245 {
4246 struct rank rank = {0, 0};
4247
4248 switch (TYPE_CODE (arg))
4249 {
4250 case TYPE_CODE_STRUCT:
4251 /* Check for derivation */
4252 rank.subrank = distance_to_ancestor (parm, arg, 0);
4253 if (rank.subrank >= 0)
4254 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
4255 /* fall through */
4256 default:
4257 return INCOMPATIBLE_TYPE_BADNESS;
4258 }
4259 }
4260
4261 /* rank_one_type helper for when PARM's type code is TYPE_CODE_SET. */
4262
4263 static struct rank
4264 rank_one_type_parm_set (struct type *parm, struct type *arg, struct value *value)
4265 {
4266 switch (TYPE_CODE (arg))
4267 {
4268 /* Not in C++ */
4269 case TYPE_CODE_SET:
4270 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
4271 TYPE_FIELD_TYPE (arg, 0), NULL);
4272 default:
4273 return INCOMPATIBLE_TYPE_BADNESS;
4274 }
4275 }
4276
4277 /* Compare one type (PARM) for compatibility with another (ARG).
4278 * PARM is intended to be the parameter type of a function; and
4279 * ARG is the supplied argument's type. This function tests if
4280 * the latter can be converted to the former.
4281 * VALUE is the argument's value or NULL if none (or called recursively)
4282 *
4283 * Return 0 if they are identical types;
4284 * Otherwise, return an integer which corresponds to how compatible
4285 * PARM is to ARG. The higher the return value, the worse the match.
4286 * Generally the "bad" conversions are all uniformly assigned a 100. */
4287
4288 struct rank
4289 rank_one_type (struct type *parm, struct type *arg, struct value *value)
4290 {
4291 struct rank rank = {0,0};
4292
4293 /* Resolve typedefs */
4294 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
4295 parm = check_typedef (parm);
4296 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
4297 arg = check_typedef (arg);
4298
4299 if (TYPE_IS_REFERENCE (parm) && value != NULL)
4300 {
4301 if (VALUE_LVAL (value) == not_lval)
4302 {
4303 /* Rvalues should preferably bind to rvalue references or const
4304 lvalue references. */
4305 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4306 rank.subrank = REFERENCE_CONVERSION_RVALUE;
4307 else if (TYPE_CONST (TYPE_TARGET_TYPE (parm)))
4308 rank.subrank = REFERENCE_CONVERSION_CONST_LVALUE;
4309 else
4310 return INCOMPATIBLE_TYPE_BADNESS;
4311 return sum_ranks (rank, REFERENCE_CONVERSION_BADNESS);
4312 }
4313 else
4314 {
4315 /* It's illegal to pass an lvalue as an rvalue. */
4316 if (TYPE_CODE (parm) == TYPE_CODE_RVALUE_REF)
4317 return INCOMPATIBLE_TYPE_BADNESS;
4318 }
4319 }
4320
4321 if (types_equal (parm, arg))
4322 {
4323 struct type *t1 = parm;
4324 struct type *t2 = arg;
4325
4326 /* For pointers and references, compare target type. */
4327 if (TYPE_CODE (parm) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (parm))
4328 {
4329 t1 = TYPE_TARGET_TYPE (parm);
4330 t2 = TYPE_TARGET_TYPE (arg);
4331 }
4332
4333 /* Make sure they are CV equal, too. */
4334 if (TYPE_CONST (t1) != TYPE_CONST (t2))
4335 rank.subrank |= CV_CONVERSION_CONST;
4336 if (TYPE_VOLATILE (t1) != TYPE_VOLATILE (t2))
4337 rank.subrank |= CV_CONVERSION_VOLATILE;
4338 if (rank.subrank != 0)
4339 return sum_ranks (CV_CONVERSION_BADNESS, rank);
4340 return EXACT_MATCH_BADNESS;
4341 }
4342
4343 /* See through references, since we can almost make non-references
4344 references. */
4345
4346 if (TYPE_IS_REFERENCE (arg))
4347 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
4348 REFERENCE_SEE_THROUGH_BADNESS));
4349 if (TYPE_IS_REFERENCE (parm))
4350 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
4351 REFERENCE_SEE_THROUGH_BADNESS));
4352 if (overload_debug)
4353 /* Debugging only. */
4354 fprintf_filtered (gdb_stderr,
4355 "------ Arg is %s [%d], parm is %s [%d]\n",
4356 TYPE_NAME (arg), TYPE_CODE (arg),
4357 TYPE_NAME (parm), TYPE_CODE (parm));
4358
4359 /* x -> y means arg of type x being supplied for parameter of type y. */
4360
4361 switch (TYPE_CODE (parm))
4362 {
4363 case TYPE_CODE_PTR:
4364 return rank_one_type_parm_ptr (parm, arg, value);
4365 case TYPE_CODE_ARRAY:
4366 return rank_one_type_parm_array (parm, arg, value);
4367 case TYPE_CODE_FUNC:
4368 return rank_one_type_parm_func (parm, arg, value);
4369 case TYPE_CODE_INT:
4370 return rank_one_type_parm_int (parm, arg, value);
4371 case TYPE_CODE_ENUM:
4372 return rank_one_type_parm_enum (parm, arg, value);
4373 case TYPE_CODE_CHAR:
4374 return rank_one_type_parm_char (parm, arg, value);
4375 case TYPE_CODE_RANGE:
4376 return rank_one_type_parm_range (parm, arg, value);
4377 case TYPE_CODE_BOOL:
4378 return rank_one_type_parm_bool (parm, arg, value);
4379 case TYPE_CODE_FLT:
4380 return rank_one_type_parm_float (parm, arg, value);
4381 case TYPE_CODE_COMPLEX:
4382 return rank_one_type_parm_complex (parm, arg, value);
4383 case TYPE_CODE_STRUCT:
4384 return rank_one_type_parm_struct (parm, arg, value);
4385 case TYPE_CODE_SET:
4386 return rank_one_type_parm_set (parm, arg, value);
4387 default:
4388 return INCOMPATIBLE_TYPE_BADNESS;
4389 } /* switch (TYPE_CODE (arg)) */
4390 }
4391
4392 /* End of functions for overload resolution. */
4393 \f
4394 /* Routines to pretty-print types. */
4395
4396 static void
4397 print_bit_vector (B_TYPE *bits, int nbits)
4398 {
4399 int bitno;
4400
4401 for (bitno = 0; bitno < nbits; bitno++)
4402 {
4403 if ((bitno % 8) == 0)
4404 {
4405 puts_filtered (" ");
4406 }
4407 if (B_TST (bits, bitno))
4408 printf_filtered (("1"));
4409 else
4410 printf_filtered (("0"));
4411 }
4412 }
4413
4414 /* Note the first arg should be the "this" pointer, we may not want to
4415 include it since we may get into a infinitely recursive
4416 situation. */
4417
4418 static void
4419 print_args (struct field *args, int nargs, int spaces)
4420 {
4421 if (args != NULL)
4422 {
4423 int i;
4424
4425 for (i = 0; i < nargs; i++)
4426 {
4427 printfi_filtered (spaces, "[%d] name '%s'\n", i,
4428 args[i].name != NULL ? args[i].name : "<NULL>");
4429 recursive_dump_type (args[i].type, spaces + 2);
4430 }
4431 }
4432 }
4433
4434 int
4435 field_is_static (struct field *f)
4436 {
4437 /* "static" fields are the fields whose location is not relative
4438 to the address of the enclosing struct. It would be nice to
4439 have a dedicated flag that would be set for static fields when
4440 the type is being created. But in practice, checking the field
4441 loc_kind should give us an accurate answer. */
4442 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
4443 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
4444 }
4445
4446 static void
4447 dump_fn_fieldlists (struct type *type, int spaces)
4448 {
4449 int method_idx;
4450 int overload_idx;
4451 struct fn_field *f;
4452
4453 printfi_filtered (spaces, "fn_fieldlists ");
4454 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
4455 printf_filtered ("\n");
4456 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
4457 {
4458 f = TYPE_FN_FIELDLIST1 (type, method_idx);
4459 printfi_filtered (spaces + 2, "[%d] name '%s' (",
4460 method_idx,
4461 TYPE_FN_FIELDLIST_NAME (type, method_idx));
4462 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
4463 gdb_stdout);
4464 printf_filtered (_(") length %d\n"),
4465 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
4466 for (overload_idx = 0;
4467 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
4468 overload_idx++)
4469 {
4470 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
4471 overload_idx,
4472 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
4473 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
4474 gdb_stdout);
4475 printf_filtered (")\n");
4476 printfi_filtered (spaces + 8, "type ");
4477 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
4478 gdb_stdout);
4479 printf_filtered ("\n");
4480
4481 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
4482 spaces + 8 + 2);
4483
4484 printfi_filtered (spaces + 8, "args ");
4485 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
4486 gdb_stdout);
4487 printf_filtered ("\n");
4488 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
4489 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
4490 spaces + 8 + 2);
4491 printfi_filtered (spaces + 8, "fcontext ");
4492 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
4493 gdb_stdout);
4494 printf_filtered ("\n");
4495
4496 printfi_filtered (spaces + 8, "is_const %d\n",
4497 TYPE_FN_FIELD_CONST (f, overload_idx));
4498 printfi_filtered (spaces + 8, "is_volatile %d\n",
4499 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
4500 printfi_filtered (spaces + 8, "is_private %d\n",
4501 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
4502 printfi_filtered (spaces + 8, "is_protected %d\n",
4503 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
4504 printfi_filtered (spaces + 8, "is_stub %d\n",
4505 TYPE_FN_FIELD_STUB (f, overload_idx));
4506 printfi_filtered (spaces + 8, "defaulted %d\n",
4507 TYPE_FN_FIELD_DEFAULTED (f, overload_idx));
4508 printfi_filtered (spaces + 8, "is_deleted %d\n",
4509 TYPE_FN_FIELD_DELETED (f, overload_idx));
4510 printfi_filtered (spaces + 8, "voffset %u\n",
4511 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
4512 }
4513 }
4514 }
4515
4516 static void
4517 print_cplus_stuff (struct type *type, int spaces)
4518 {
4519 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
4520 printfi_filtered (spaces, "vptr_basetype ");
4521 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
4522 puts_filtered ("\n");
4523 if (TYPE_VPTR_BASETYPE (type) != NULL)
4524 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
4525
4526 printfi_filtered (spaces, "n_baseclasses %d\n",
4527 TYPE_N_BASECLASSES (type));
4528 printfi_filtered (spaces, "nfn_fields %d\n",
4529 TYPE_NFN_FIELDS (type));
4530 if (TYPE_N_BASECLASSES (type) > 0)
4531 {
4532 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
4533 TYPE_N_BASECLASSES (type));
4534 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
4535 gdb_stdout);
4536 printf_filtered (")");
4537
4538 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
4539 TYPE_N_BASECLASSES (type));
4540 puts_filtered ("\n");
4541 }
4542 if (TYPE_NFIELDS (type) > 0)
4543 {
4544 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
4545 {
4546 printfi_filtered (spaces,
4547 "private_field_bits (%d bits at *",
4548 TYPE_NFIELDS (type));
4549 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
4550 gdb_stdout);
4551 printf_filtered (")");
4552 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
4553 TYPE_NFIELDS (type));
4554 puts_filtered ("\n");
4555 }
4556 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
4557 {
4558 printfi_filtered (spaces,
4559 "protected_field_bits (%d bits at *",
4560 TYPE_NFIELDS (type));
4561 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
4562 gdb_stdout);
4563 printf_filtered (")");
4564 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
4565 TYPE_NFIELDS (type));
4566 puts_filtered ("\n");
4567 }
4568 }
4569 if (TYPE_NFN_FIELDS (type) > 0)
4570 {
4571 dump_fn_fieldlists (type, spaces);
4572 }
4573
4574 printfi_filtered (spaces, "calling_convention %d\n",
4575 TYPE_CPLUS_CALLING_CONVENTION (type));
4576 }
4577
4578 /* Print the contents of the TYPE's type_specific union, assuming that
4579 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
4580
4581 static void
4582 print_gnat_stuff (struct type *type, int spaces)
4583 {
4584 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
4585
4586 if (descriptive_type == NULL)
4587 printfi_filtered (spaces + 2, "no descriptive type\n");
4588 else
4589 {
4590 printfi_filtered (spaces + 2, "descriptive type\n");
4591 recursive_dump_type (descriptive_type, spaces + 4);
4592 }
4593 }
4594
4595 static struct obstack dont_print_type_obstack;
4596
4597 void
4598 recursive_dump_type (struct type *type, int spaces)
4599 {
4600 int idx;
4601
4602 if (spaces == 0)
4603 obstack_begin (&dont_print_type_obstack, 0);
4604
4605 if (TYPE_NFIELDS (type) > 0
4606 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
4607 {
4608 struct type **first_dont_print
4609 = (struct type **) obstack_base (&dont_print_type_obstack);
4610
4611 int i = (struct type **)
4612 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
4613
4614 while (--i >= 0)
4615 {
4616 if (type == first_dont_print[i])
4617 {
4618 printfi_filtered (spaces, "type node ");
4619 gdb_print_host_address (type, gdb_stdout);
4620 printf_filtered (_(" <same as already seen type>\n"));
4621 return;
4622 }
4623 }
4624
4625 obstack_ptr_grow (&dont_print_type_obstack, type);
4626 }
4627
4628 printfi_filtered (spaces, "type node ");
4629 gdb_print_host_address (type, gdb_stdout);
4630 printf_filtered ("\n");
4631 printfi_filtered (spaces, "name '%s' (",
4632 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
4633 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
4634 printf_filtered (")\n");
4635 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
4636 switch (TYPE_CODE (type))
4637 {
4638 case TYPE_CODE_UNDEF:
4639 printf_filtered ("(TYPE_CODE_UNDEF)");
4640 break;
4641 case TYPE_CODE_PTR:
4642 printf_filtered ("(TYPE_CODE_PTR)");
4643 break;
4644 case TYPE_CODE_ARRAY:
4645 printf_filtered ("(TYPE_CODE_ARRAY)");
4646 break;
4647 case TYPE_CODE_STRUCT:
4648 printf_filtered ("(TYPE_CODE_STRUCT)");
4649 break;
4650 case TYPE_CODE_UNION:
4651 printf_filtered ("(TYPE_CODE_UNION)");
4652 break;
4653 case TYPE_CODE_ENUM:
4654 printf_filtered ("(TYPE_CODE_ENUM)");
4655 break;
4656 case TYPE_CODE_FLAGS:
4657 printf_filtered ("(TYPE_CODE_FLAGS)");
4658 break;
4659 case TYPE_CODE_FUNC:
4660 printf_filtered ("(TYPE_CODE_FUNC)");
4661 break;
4662 case TYPE_CODE_INT:
4663 printf_filtered ("(TYPE_CODE_INT)");
4664 break;
4665 case TYPE_CODE_FLT:
4666 printf_filtered ("(TYPE_CODE_FLT)");
4667 break;
4668 case TYPE_CODE_VOID:
4669 printf_filtered ("(TYPE_CODE_VOID)");
4670 break;
4671 case TYPE_CODE_SET:
4672 printf_filtered ("(TYPE_CODE_SET)");
4673 break;
4674 case TYPE_CODE_RANGE:
4675 printf_filtered ("(TYPE_CODE_RANGE)");
4676 break;
4677 case TYPE_CODE_STRING:
4678 printf_filtered ("(TYPE_CODE_STRING)");
4679 break;
4680 case TYPE_CODE_ERROR:
4681 printf_filtered ("(TYPE_CODE_ERROR)");
4682 break;
4683 case TYPE_CODE_MEMBERPTR:
4684 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4685 break;
4686 case TYPE_CODE_METHODPTR:
4687 printf_filtered ("(TYPE_CODE_METHODPTR)");
4688 break;
4689 case TYPE_CODE_METHOD:
4690 printf_filtered ("(TYPE_CODE_METHOD)");
4691 break;
4692 case TYPE_CODE_REF:
4693 printf_filtered ("(TYPE_CODE_REF)");
4694 break;
4695 case TYPE_CODE_CHAR:
4696 printf_filtered ("(TYPE_CODE_CHAR)");
4697 break;
4698 case TYPE_CODE_BOOL:
4699 printf_filtered ("(TYPE_CODE_BOOL)");
4700 break;
4701 case TYPE_CODE_COMPLEX:
4702 printf_filtered ("(TYPE_CODE_COMPLEX)");
4703 break;
4704 case TYPE_CODE_TYPEDEF:
4705 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4706 break;
4707 case TYPE_CODE_NAMESPACE:
4708 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4709 break;
4710 default:
4711 printf_filtered ("(UNKNOWN TYPE CODE)");
4712 break;
4713 }
4714 puts_filtered ("\n");
4715 printfi_filtered (spaces, "length %s\n", pulongest (TYPE_LENGTH (type)));
4716 if (TYPE_OBJFILE_OWNED (type))
4717 {
4718 printfi_filtered (spaces, "objfile ");
4719 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4720 }
4721 else
4722 {
4723 printfi_filtered (spaces, "gdbarch ");
4724 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4725 }
4726 printf_filtered ("\n");
4727 printfi_filtered (spaces, "target_type ");
4728 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4729 printf_filtered ("\n");
4730 if (TYPE_TARGET_TYPE (type) != NULL)
4731 {
4732 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4733 }
4734 printfi_filtered (spaces, "pointer_type ");
4735 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4736 printf_filtered ("\n");
4737 printfi_filtered (spaces, "reference_type ");
4738 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4739 printf_filtered ("\n");
4740 printfi_filtered (spaces, "type_chain ");
4741 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4742 printf_filtered ("\n");
4743 printfi_filtered (spaces, "instance_flags 0x%x",
4744 TYPE_INSTANCE_FLAGS (type));
4745 if (TYPE_CONST (type))
4746 {
4747 puts_filtered (" TYPE_CONST");
4748 }
4749 if (TYPE_VOLATILE (type))
4750 {
4751 puts_filtered (" TYPE_VOLATILE");
4752 }
4753 if (TYPE_CODE_SPACE (type))
4754 {
4755 puts_filtered (" TYPE_CODE_SPACE");
4756 }
4757 if (TYPE_DATA_SPACE (type))
4758 {
4759 puts_filtered (" TYPE_DATA_SPACE");
4760 }
4761 if (TYPE_ADDRESS_CLASS_1 (type))
4762 {
4763 puts_filtered (" TYPE_ADDRESS_CLASS_1");
4764 }
4765 if (TYPE_ADDRESS_CLASS_2 (type))
4766 {
4767 puts_filtered (" TYPE_ADDRESS_CLASS_2");
4768 }
4769 if (TYPE_RESTRICT (type))
4770 {
4771 puts_filtered (" TYPE_RESTRICT");
4772 }
4773 if (TYPE_ATOMIC (type))
4774 {
4775 puts_filtered (" TYPE_ATOMIC");
4776 }
4777 puts_filtered ("\n");
4778
4779 printfi_filtered (spaces, "flags");
4780 if (TYPE_UNSIGNED (type))
4781 {
4782 puts_filtered (" TYPE_UNSIGNED");
4783 }
4784 if (TYPE_NOSIGN (type))
4785 {
4786 puts_filtered (" TYPE_NOSIGN");
4787 }
4788 if (TYPE_ENDIANITY_NOT_DEFAULT (type))
4789 {
4790 puts_filtered (" TYPE_ENDIANITY_NOT_DEFAULT");
4791 }
4792 if (TYPE_STUB (type))
4793 {
4794 puts_filtered (" TYPE_STUB");
4795 }
4796 if (TYPE_TARGET_STUB (type))
4797 {
4798 puts_filtered (" TYPE_TARGET_STUB");
4799 }
4800 if (TYPE_PROTOTYPED (type))
4801 {
4802 puts_filtered (" TYPE_PROTOTYPED");
4803 }
4804 if (TYPE_INCOMPLETE (type))
4805 {
4806 puts_filtered (" TYPE_INCOMPLETE");
4807 }
4808 if (TYPE_VARARGS (type))
4809 {
4810 puts_filtered (" TYPE_VARARGS");
4811 }
4812 /* This is used for things like AltiVec registers on ppc. Gcc emits
4813 an attribute for the array type, which tells whether or not we
4814 have a vector, instead of a regular array. */
4815 if (TYPE_VECTOR (type))
4816 {
4817 puts_filtered (" TYPE_VECTOR");
4818 }
4819 if (TYPE_FIXED_INSTANCE (type))
4820 {
4821 puts_filtered (" TYPE_FIXED_INSTANCE");
4822 }
4823 if (TYPE_STUB_SUPPORTED (type))
4824 {
4825 puts_filtered (" TYPE_STUB_SUPPORTED");
4826 }
4827 if (TYPE_NOTTEXT (type))
4828 {
4829 puts_filtered (" TYPE_NOTTEXT");
4830 }
4831 puts_filtered ("\n");
4832 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4833 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4834 puts_filtered ("\n");
4835 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4836 {
4837 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4838 printfi_filtered (spaces + 2,
4839 "[%d] enumval %s type ",
4840 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4841 else
4842 printfi_filtered (spaces + 2,
4843 "[%d] bitpos %s bitsize %d type ",
4844 idx, plongest (TYPE_FIELD_BITPOS (type, idx)),
4845 TYPE_FIELD_BITSIZE (type, idx));
4846 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4847 printf_filtered (" name '%s' (",
4848 TYPE_FIELD_NAME (type, idx) != NULL
4849 ? TYPE_FIELD_NAME (type, idx)
4850 : "<NULL>");
4851 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4852 printf_filtered (")\n");
4853 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4854 {
4855 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4856 }
4857 }
4858 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4859 {
4860 printfi_filtered (spaces, "low %s%s high %s%s\n",
4861 plongest (TYPE_LOW_BOUND (type)),
4862 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4863 plongest (TYPE_HIGH_BOUND (type)),
4864 TYPE_HIGH_BOUND_UNDEFINED (type)
4865 ? " (undefined)" : "");
4866 }
4867
4868 switch (TYPE_SPECIFIC_FIELD (type))
4869 {
4870 case TYPE_SPECIFIC_CPLUS_STUFF:
4871 printfi_filtered (spaces, "cplus_stuff ");
4872 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4873 gdb_stdout);
4874 puts_filtered ("\n");
4875 print_cplus_stuff (type, spaces);
4876 break;
4877
4878 case TYPE_SPECIFIC_GNAT_STUFF:
4879 printfi_filtered (spaces, "gnat_stuff ");
4880 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4881 puts_filtered ("\n");
4882 print_gnat_stuff (type, spaces);
4883 break;
4884
4885 case TYPE_SPECIFIC_FLOATFORMAT:
4886 printfi_filtered (spaces, "floatformat ");
4887 if (TYPE_FLOATFORMAT (type) == NULL
4888 || TYPE_FLOATFORMAT (type)->name == NULL)
4889 puts_filtered ("(null)");
4890 else
4891 puts_filtered (TYPE_FLOATFORMAT (type)->name);
4892 puts_filtered ("\n");
4893 break;
4894
4895 case TYPE_SPECIFIC_FUNC:
4896 printfi_filtered (spaces, "calling_convention %d\n",
4897 TYPE_CALLING_CONVENTION (type));
4898 /* tail_call_list is not printed. */
4899 break;
4900
4901 case TYPE_SPECIFIC_SELF_TYPE:
4902 printfi_filtered (spaces, "self_type ");
4903 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4904 puts_filtered ("\n");
4905 break;
4906 }
4907
4908 if (spaces == 0)
4909 obstack_free (&dont_print_type_obstack, NULL);
4910 }
4911 \f
4912 /* Trivial helpers for the libiberty hash table, for mapping one
4913 type to another. */
4914
4915 struct type_pair : public allocate_on_obstack
4916 {
4917 type_pair (struct type *old_, struct type *newobj_)
4918 : old (old_), newobj (newobj_)
4919 {}
4920
4921 struct type * const old, * const newobj;
4922 };
4923
4924 static hashval_t
4925 type_pair_hash (const void *item)
4926 {
4927 const struct type_pair *pair = (const struct type_pair *) item;
4928
4929 return htab_hash_pointer (pair->old);
4930 }
4931
4932 static int
4933 type_pair_eq (const void *item_lhs, const void *item_rhs)
4934 {
4935 const struct type_pair *lhs = (const struct type_pair *) item_lhs;
4936 const struct type_pair *rhs = (const struct type_pair *) item_rhs;
4937
4938 return lhs->old == rhs->old;
4939 }
4940
4941 /* Allocate the hash table used by copy_type_recursive to walk
4942 types without duplicates. We use OBJFILE's obstack, because
4943 OBJFILE is about to be deleted. */
4944
4945 htab_t
4946 create_copied_types_hash (struct objfile *objfile)
4947 {
4948 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4949 NULL, &objfile->objfile_obstack,
4950 hashtab_obstack_allocate,
4951 dummy_obstack_deallocate);
4952 }
4953
4954 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4955
4956 static struct dynamic_prop_list *
4957 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4958 struct dynamic_prop_list *list)
4959 {
4960 struct dynamic_prop_list *copy = list;
4961 struct dynamic_prop_list **node_ptr = &copy;
4962
4963 while (*node_ptr != NULL)
4964 {
4965 struct dynamic_prop_list *node_copy;
4966
4967 node_copy = ((struct dynamic_prop_list *)
4968 obstack_copy (objfile_obstack, *node_ptr,
4969 sizeof (struct dynamic_prop_list)));
4970 node_copy->prop = (*node_ptr)->prop;
4971 *node_ptr = node_copy;
4972
4973 node_ptr = &node_copy->next;
4974 }
4975
4976 return copy;
4977 }
4978
4979 /* Recursively copy (deep copy) TYPE, if it is associated with
4980 OBJFILE. Return a new type owned by the gdbarch associated with the type, a
4981 saved type if we have already visited TYPE (using COPIED_TYPES), or TYPE if
4982 it is not associated with OBJFILE. */
4983
4984 struct type *
4985 copy_type_recursive (struct objfile *objfile,
4986 struct type *type,
4987 htab_t copied_types)
4988 {
4989 void **slot;
4990 struct type *new_type;
4991
4992 if (! TYPE_OBJFILE_OWNED (type))
4993 return type;
4994
4995 /* This type shouldn't be pointing to any types in other objfiles;
4996 if it did, the type might disappear unexpectedly. */
4997 gdb_assert (TYPE_OBJFILE (type) == objfile);
4998
4999 struct type_pair pair (type, nullptr);
5000
5001 slot = htab_find_slot (copied_types, &pair, INSERT);
5002 if (*slot != NULL)
5003 return ((struct type_pair *) *slot)->newobj;
5004
5005 new_type = alloc_type_arch (get_type_arch (type));
5006
5007 /* We must add the new type to the hash table immediately, in case
5008 we encounter this type again during a recursive call below. */
5009 struct type_pair *stored
5010 = new (&objfile->objfile_obstack) struct type_pair (type, new_type);
5011
5012 *slot = stored;
5013
5014 /* Copy the common fields of types. For the main type, we simply
5015 copy the entire thing and then update specific fields as needed. */
5016 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
5017 TYPE_OBJFILE_OWNED (new_type) = 0;
5018 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
5019
5020 if (TYPE_NAME (type))
5021 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
5022
5023 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5024 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5025
5026 /* Copy the fields. */
5027 if (TYPE_NFIELDS (type))
5028 {
5029 int i, nfields;
5030
5031 nfields = TYPE_NFIELDS (type);
5032 TYPE_FIELDS (new_type) = (struct field *)
5033 TYPE_ZALLOC (new_type, nfields * sizeof (struct field));
5034 for (i = 0; i < nfields; i++)
5035 {
5036 TYPE_FIELD_ARTIFICIAL (new_type, i) =
5037 TYPE_FIELD_ARTIFICIAL (type, i);
5038 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
5039 if (TYPE_FIELD_TYPE (type, i))
5040 TYPE_FIELD_TYPE (new_type, i)
5041 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
5042 copied_types);
5043 if (TYPE_FIELD_NAME (type, i))
5044 TYPE_FIELD_NAME (new_type, i) =
5045 xstrdup (TYPE_FIELD_NAME (type, i));
5046 switch (TYPE_FIELD_LOC_KIND (type, i))
5047 {
5048 case FIELD_LOC_KIND_BITPOS:
5049 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
5050 TYPE_FIELD_BITPOS (type, i));
5051 break;
5052 case FIELD_LOC_KIND_ENUMVAL:
5053 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
5054 TYPE_FIELD_ENUMVAL (type, i));
5055 break;
5056 case FIELD_LOC_KIND_PHYSADDR:
5057 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
5058 TYPE_FIELD_STATIC_PHYSADDR (type, i));
5059 break;
5060 case FIELD_LOC_KIND_PHYSNAME:
5061 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
5062 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
5063 i)));
5064 break;
5065 default:
5066 internal_error (__FILE__, __LINE__,
5067 _("Unexpected type field location kind: %d"),
5068 TYPE_FIELD_LOC_KIND (type, i));
5069 }
5070 }
5071 }
5072
5073 /* For range types, copy the bounds information. */
5074 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
5075 {
5076 TYPE_RANGE_DATA (new_type) = (struct range_bounds *)
5077 TYPE_ALLOC (new_type, sizeof (struct range_bounds));
5078 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
5079 }
5080
5081 if (TYPE_DYN_PROP_LIST (type) != NULL)
5082 TYPE_DYN_PROP_LIST (new_type)
5083 = copy_dynamic_prop_list (&objfile->objfile_obstack,
5084 TYPE_DYN_PROP_LIST (type));
5085
5086
5087 /* Copy pointers to other types. */
5088 if (TYPE_TARGET_TYPE (type))
5089 TYPE_TARGET_TYPE (new_type) =
5090 copy_type_recursive (objfile,
5091 TYPE_TARGET_TYPE (type),
5092 copied_types);
5093
5094 /* Maybe copy the type_specific bits.
5095
5096 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
5097 base classes and methods. There's no fundamental reason why we
5098 can't, but at the moment it is not needed. */
5099
5100 switch (TYPE_SPECIFIC_FIELD (type))
5101 {
5102 case TYPE_SPECIFIC_NONE:
5103 break;
5104 case TYPE_SPECIFIC_FUNC:
5105 INIT_FUNC_SPECIFIC (new_type);
5106 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
5107 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
5108 TYPE_TAIL_CALL_LIST (new_type) = NULL;
5109 break;
5110 case TYPE_SPECIFIC_FLOATFORMAT:
5111 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
5112 break;
5113 case TYPE_SPECIFIC_CPLUS_STUFF:
5114 INIT_CPLUS_SPECIFIC (new_type);
5115 break;
5116 case TYPE_SPECIFIC_GNAT_STUFF:
5117 INIT_GNAT_SPECIFIC (new_type);
5118 break;
5119 case TYPE_SPECIFIC_SELF_TYPE:
5120 set_type_self_type (new_type,
5121 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
5122 copied_types));
5123 break;
5124 default:
5125 gdb_assert_not_reached ("bad type_specific_kind");
5126 }
5127
5128 return new_type;
5129 }
5130
5131 /* Make a copy of the given TYPE, except that the pointer & reference
5132 types are not preserved.
5133
5134 This function assumes that the given type has an associated objfile.
5135 This objfile is used to allocate the new type. */
5136
5137 struct type *
5138 copy_type (const struct type *type)
5139 {
5140 struct type *new_type;
5141
5142 gdb_assert (TYPE_OBJFILE_OWNED (type));
5143
5144 new_type = alloc_type_copy (type);
5145 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
5146 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
5147 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
5148 sizeof (struct main_type));
5149 if (TYPE_DYN_PROP_LIST (type) != NULL)
5150 TYPE_DYN_PROP_LIST (new_type)
5151 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
5152 TYPE_DYN_PROP_LIST (type));
5153
5154 return new_type;
5155 }
5156 \f
5157 /* Helper functions to initialize architecture-specific types. */
5158
5159 /* Allocate a type structure associated with GDBARCH and set its
5160 CODE, LENGTH, and NAME fields. */
5161
5162 struct type *
5163 arch_type (struct gdbarch *gdbarch,
5164 enum type_code code, int bit, const char *name)
5165 {
5166 struct type *type;
5167
5168 type = alloc_type_arch (gdbarch);
5169 set_type_code (type, code);
5170 gdb_assert ((bit % TARGET_CHAR_BIT) == 0);
5171 TYPE_LENGTH (type) = bit / TARGET_CHAR_BIT;
5172
5173 if (name)
5174 TYPE_NAME (type) = gdbarch_obstack_strdup (gdbarch, name);
5175
5176 return type;
5177 }
5178
5179 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
5180 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5181 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5182
5183 struct type *
5184 arch_integer_type (struct gdbarch *gdbarch,
5185 int bit, int unsigned_p, const char *name)
5186 {
5187 struct type *t;
5188
5189 t = arch_type (gdbarch, TYPE_CODE_INT, bit, name);
5190 if (unsigned_p)
5191 TYPE_UNSIGNED (t) = 1;
5192
5193 return t;
5194 }
5195
5196 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
5197 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5198 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5199
5200 struct type *
5201 arch_character_type (struct gdbarch *gdbarch,
5202 int bit, int unsigned_p, const char *name)
5203 {
5204 struct type *t;
5205
5206 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit, name);
5207 if (unsigned_p)
5208 TYPE_UNSIGNED (t) = 1;
5209
5210 return t;
5211 }
5212
5213 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
5214 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
5215 the type's TYPE_UNSIGNED flag. NAME is the type name. */
5216
5217 struct type *
5218 arch_boolean_type (struct gdbarch *gdbarch,
5219 int bit, int unsigned_p, const char *name)
5220 {
5221 struct type *t;
5222
5223 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit, name);
5224 if (unsigned_p)
5225 TYPE_UNSIGNED (t) = 1;
5226
5227 return t;
5228 }
5229
5230 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
5231 BIT is the type size in bits; if BIT equals -1, the size is
5232 determined by the floatformat. NAME is the type name. Set the
5233 TYPE_FLOATFORMAT from FLOATFORMATS. */
5234
5235 struct type *
5236 arch_float_type (struct gdbarch *gdbarch,
5237 int bit, const char *name,
5238 const struct floatformat **floatformats)
5239 {
5240 const struct floatformat *fmt = floatformats[gdbarch_byte_order (gdbarch)];
5241 struct type *t;
5242
5243 bit = verify_floatformat (bit, fmt);
5244 t = arch_type (gdbarch, TYPE_CODE_FLT, bit, name);
5245 TYPE_FLOATFORMAT (t) = fmt;
5246
5247 return t;
5248 }
5249
5250 /* Allocate a TYPE_CODE_DECFLOAT type structure associated with GDBARCH.
5251 BIT is the type size in bits. NAME is the type name. */
5252
5253 struct type *
5254 arch_decfloat_type (struct gdbarch *gdbarch, int bit, const char *name)
5255 {
5256 struct type *t;
5257
5258 t = arch_type (gdbarch, TYPE_CODE_DECFLOAT, bit, name);
5259 return t;
5260 }
5261
5262 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
5263 NAME is the type name. TARGET_TYPE is the component float type. */
5264
5265 struct type *
5266 arch_complex_type (struct gdbarch *gdbarch,
5267 const char *name, struct type *target_type)
5268 {
5269 struct type *t;
5270
5271 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
5272 2 * TYPE_LENGTH (target_type) * TARGET_CHAR_BIT, name);
5273 TYPE_TARGET_TYPE (t) = target_type;
5274 return t;
5275 }
5276
5277 /* Allocate a TYPE_CODE_PTR type structure associated with GDBARCH.
5278 BIT is the pointer type size in bits. NAME is the type name.
5279 TARGET_TYPE is the pointer target type. Always sets the pointer type's
5280 TYPE_UNSIGNED flag. */
5281
5282 struct type *
5283 arch_pointer_type (struct gdbarch *gdbarch,
5284 int bit, const char *name, struct type *target_type)
5285 {
5286 struct type *t;
5287
5288 t = arch_type (gdbarch, TYPE_CODE_PTR, bit, name);
5289 TYPE_TARGET_TYPE (t) = target_type;
5290 TYPE_UNSIGNED (t) = 1;
5291 return t;
5292 }
5293
5294 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
5295 NAME is the type name. BIT is the size of the flag word in bits. */
5296
5297 struct type *
5298 arch_flags_type (struct gdbarch *gdbarch, const char *name, int bit)
5299 {
5300 struct type *type;
5301
5302 type = arch_type (gdbarch, TYPE_CODE_FLAGS, bit, name);
5303 TYPE_UNSIGNED (type) = 1;
5304 TYPE_NFIELDS (type) = 0;
5305 /* Pre-allocate enough space assuming every field is one bit. */
5306 TYPE_FIELDS (type)
5307 = (struct field *) TYPE_ZALLOC (type, bit * sizeof (struct field));
5308
5309 return type;
5310 }
5311
5312 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5313 position BITPOS is called NAME. Pass NAME as "" for fields that
5314 should not be printed. */
5315
5316 void
5317 append_flags_type_field (struct type *type, int start_bitpos, int nr_bits,
5318 struct type *field_type, const char *name)
5319 {
5320 int type_bitsize = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
5321 int field_nr = TYPE_NFIELDS (type);
5322
5323 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
5324 gdb_assert (TYPE_NFIELDS (type) + 1 <= type_bitsize);
5325 gdb_assert (start_bitpos >= 0 && start_bitpos < type_bitsize);
5326 gdb_assert (nr_bits >= 1 && nr_bits <= type_bitsize);
5327 gdb_assert (name != NULL);
5328
5329 TYPE_FIELD_NAME (type, field_nr) = xstrdup (name);
5330 TYPE_FIELD_TYPE (type, field_nr) = field_type;
5331 SET_FIELD_BITPOS (TYPE_FIELD (type, field_nr), start_bitpos);
5332 TYPE_FIELD_BITSIZE (type, field_nr) = nr_bits;
5333 ++TYPE_NFIELDS (type);
5334 }
5335
5336 /* Special version of append_flags_type_field to add a flag field.
5337 Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
5338 position BITPOS is called NAME. */
5339
5340 void
5341 append_flags_type_flag (struct type *type, int bitpos, const char *name)
5342 {
5343 struct gdbarch *gdbarch = get_type_arch (type);
5344
5345 append_flags_type_field (type, bitpos, 1,
5346 builtin_type (gdbarch)->builtin_bool,
5347 name);
5348 }
5349
5350 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
5351 specified by CODE) associated with GDBARCH. NAME is the type name. */
5352
5353 struct type *
5354 arch_composite_type (struct gdbarch *gdbarch, const char *name,
5355 enum type_code code)
5356 {
5357 struct type *t;
5358
5359 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
5360 t = arch_type (gdbarch, code, 0, NULL);
5361 TYPE_NAME (t) = name;
5362 INIT_CPLUS_SPECIFIC (t);
5363 return t;
5364 }
5365
5366 /* Add new field with name NAME and type FIELD to composite type T.
5367 Do not set the field's position or adjust the type's length;
5368 the caller should do so. Return the new field. */
5369
5370 struct field *
5371 append_composite_type_field_raw (struct type *t, const char *name,
5372 struct type *field)
5373 {
5374 struct field *f;
5375
5376 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
5377 TYPE_FIELDS (t) = XRESIZEVEC (struct field, TYPE_FIELDS (t),
5378 TYPE_NFIELDS (t));
5379 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
5380 memset (f, 0, sizeof f[0]);
5381 FIELD_TYPE (f[0]) = field;
5382 FIELD_NAME (f[0]) = name;
5383 return f;
5384 }
5385
5386 /* Add new field with name NAME and type FIELD to composite type T.
5387 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
5388
5389 void
5390 append_composite_type_field_aligned (struct type *t, const char *name,
5391 struct type *field, int alignment)
5392 {
5393 struct field *f = append_composite_type_field_raw (t, name, field);
5394
5395 if (TYPE_CODE (t) == TYPE_CODE_UNION)
5396 {
5397 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
5398 TYPE_LENGTH (t) = TYPE_LENGTH (field);
5399 }
5400 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
5401 {
5402 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
5403 if (TYPE_NFIELDS (t) > 1)
5404 {
5405 SET_FIELD_BITPOS (f[0],
5406 (FIELD_BITPOS (f[-1])
5407 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
5408 * TARGET_CHAR_BIT)));
5409
5410 if (alignment)
5411 {
5412 int left;
5413
5414 alignment *= TARGET_CHAR_BIT;
5415 left = FIELD_BITPOS (f[0]) % alignment;
5416
5417 if (left)
5418 {
5419 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
5420 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
5421 }
5422 }
5423 }
5424 }
5425 }
5426
5427 /* Add new field with name NAME and type FIELD to composite type T. */
5428
5429 void
5430 append_composite_type_field (struct type *t, const char *name,
5431 struct type *field)
5432 {
5433 append_composite_type_field_aligned (t, name, field, 0);
5434 }
5435
5436 static struct gdbarch_data *gdbtypes_data;
5437
5438 const struct builtin_type *
5439 builtin_type (struct gdbarch *gdbarch)
5440 {
5441 return (const struct builtin_type *) gdbarch_data (gdbarch, gdbtypes_data);
5442 }
5443
5444 static void *
5445 gdbtypes_post_init (struct gdbarch *gdbarch)
5446 {
5447 struct builtin_type *builtin_type
5448 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
5449
5450 /* Basic types. */
5451 builtin_type->builtin_void
5452 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5453 builtin_type->builtin_char
5454 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5455 !gdbarch_char_signed (gdbarch), "char");
5456 TYPE_NOSIGN (builtin_type->builtin_char) = 1;
5457 builtin_type->builtin_signed_char
5458 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5459 0, "signed char");
5460 builtin_type->builtin_unsigned_char
5461 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
5462 1, "unsigned char");
5463 builtin_type->builtin_short
5464 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5465 0, "short");
5466 builtin_type->builtin_unsigned_short
5467 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
5468 1, "unsigned short");
5469 builtin_type->builtin_int
5470 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5471 0, "int");
5472 builtin_type->builtin_unsigned_int
5473 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
5474 1, "unsigned int");
5475 builtin_type->builtin_long
5476 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5477 0, "long");
5478 builtin_type->builtin_unsigned_long
5479 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
5480 1, "unsigned long");
5481 builtin_type->builtin_long_long
5482 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5483 0, "long long");
5484 builtin_type->builtin_unsigned_long_long
5485 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
5486 1, "unsigned long long");
5487 builtin_type->builtin_half
5488 = arch_float_type (gdbarch, gdbarch_half_bit (gdbarch),
5489 "half", gdbarch_half_format (gdbarch));
5490 builtin_type->builtin_float
5491 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
5492 "float", gdbarch_float_format (gdbarch));
5493 builtin_type->builtin_double
5494 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
5495 "double", gdbarch_double_format (gdbarch));
5496 builtin_type->builtin_long_double
5497 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
5498 "long double", gdbarch_long_double_format (gdbarch));
5499 builtin_type->builtin_complex
5500 = arch_complex_type (gdbarch, "complex",
5501 builtin_type->builtin_float);
5502 builtin_type->builtin_double_complex
5503 = arch_complex_type (gdbarch, "double complex",
5504 builtin_type->builtin_double);
5505 builtin_type->builtin_string
5506 = arch_type (gdbarch, TYPE_CODE_STRING, TARGET_CHAR_BIT, "string");
5507 builtin_type->builtin_bool
5508 = arch_type (gdbarch, TYPE_CODE_BOOL, TARGET_CHAR_BIT, "bool");
5509
5510 /* The following three are about decimal floating point types, which
5511 are 32-bits, 64-bits and 128-bits respectively. */
5512 builtin_type->builtin_decfloat
5513 = arch_decfloat_type (gdbarch, 32, "_Decimal32");
5514 builtin_type->builtin_decdouble
5515 = arch_decfloat_type (gdbarch, 64, "_Decimal64");
5516 builtin_type->builtin_declong
5517 = arch_decfloat_type (gdbarch, 128, "_Decimal128");
5518
5519 /* "True" character types. */
5520 builtin_type->builtin_true_char
5521 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
5522 builtin_type->builtin_true_unsigned_char
5523 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
5524
5525 /* Fixed-size integer types. */
5526 builtin_type->builtin_int0
5527 = arch_integer_type (gdbarch, 0, 0, "int0_t");
5528 builtin_type->builtin_int8
5529 = arch_integer_type (gdbarch, 8, 0, "int8_t");
5530 builtin_type->builtin_uint8
5531 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
5532 builtin_type->builtin_int16
5533 = arch_integer_type (gdbarch, 16, 0, "int16_t");
5534 builtin_type->builtin_uint16
5535 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
5536 builtin_type->builtin_int24
5537 = arch_integer_type (gdbarch, 24, 0, "int24_t");
5538 builtin_type->builtin_uint24
5539 = arch_integer_type (gdbarch, 24, 1, "uint24_t");
5540 builtin_type->builtin_int32
5541 = arch_integer_type (gdbarch, 32, 0, "int32_t");
5542 builtin_type->builtin_uint32
5543 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
5544 builtin_type->builtin_int64
5545 = arch_integer_type (gdbarch, 64, 0, "int64_t");
5546 builtin_type->builtin_uint64
5547 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
5548 builtin_type->builtin_int128
5549 = arch_integer_type (gdbarch, 128, 0, "int128_t");
5550 builtin_type->builtin_uint128
5551 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
5552 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
5553 TYPE_INSTANCE_FLAG_NOTTEXT;
5554 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
5555 TYPE_INSTANCE_FLAG_NOTTEXT;
5556
5557 /* Wide character types. */
5558 builtin_type->builtin_char16
5559 = arch_integer_type (gdbarch, 16, 1, "char16_t");
5560 builtin_type->builtin_char32
5561 = arch_integer_type (gdbarch, 32, 1, "char32_t");
5562 builtin_type->builtin_wchar
5563 = arch_integer_type (gdbarch, gdbarch_wchar_bit (gdbarch),
5564 !gdbarch_wchar_signed (gdbarch), "wchar_t");
5565
5566 /* Default data/code pointer types. */
5567 builtin_type->builtin_data_ptr
5568 = lookup_pointer_type (builtin_type->builtin_void);
5569 builtin_type->builtin_func_ptr
5570 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
5571 builtin_type->builtin_func_func
5572 = lookup_function_type (builtin_type->builtin_func_ptr);
5573
5574 /* This type represents a GDB internal function. */
5575 builtin_type->internal_fn
5576 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
5577 "<internal function>");
5578
5579 /* This type represents an xmethod. */
5580 builtin_type->xmethod
5581 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
5582
5583 return builtin_type;
5584 }
5585
5586 /* This set of objfile-based types is intended to be used by symbol
5587 readers as basic types. */
5588
5589 static const struct objfile_key<struct objfile_type,
5590 gdb::noop_deleter<struct objfile_type>>
5591 objfile_type_data;
5592
5593 const struct objfile_type *
5594 objfile_type (struct objfile *objfile)
5595 {
5596 struct gdbarch *gdbarch;
5597 struct objfile_type *objfile_type = objfile_type_data.get (objfile);
5598
5599 if (objfile_type)
5600 return objfile_type;
5601
5602 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
5603 1, struct objfile_type);
5604
5605 /* Use the objfile architecture to determine basic type properties. */
5606 gdbarch = get_objfile_arch (objfile);
5607
5608 /* Basic types. */
5609 objfile_type->builtin_void
5610 = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
5611 objfile_type->builtin_char
5612 = init_integer_type (objfile, TARGET_CHAR_BIT,
5613 !gdbarch_char_signed (gdbarch), "char");
5614 TYPE_NOSIGN (objfile_type->builtin_char) = 1;
5615 objfile_type->builtin_signed_char
5616 = init_integer_type (objfile, TARGET_CHAR_BIT,
5617 0, "signed char");
5618 objfile_type->builtin_unsigned_char
5619 = init_integer_type (objfile, TARGET_CHAR_BIT,
5620 1, "unsigned char");
5621 objfile_type->builtin_short
5622 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5623 0, "short");
5624 objfile_type->builtin_unsigned_short
5625 = init_integer_type (objfile, gdbarch_short_bit (gdbarch),
5626 1, "unsigned short");
5627 objfile_type->builtin_int
5628 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5629 0, "int");
5630 objfile_type->builtin_unsigned_int
5631 = init_integer_type (objfile, gdbarch_int_bit (gdbarch),
5632 1, "unsigned int");
5633 objfile_type->builtin_long
5634 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5635 0, "long");
5636 objfile_type->builtin_unsigned_long
5637 = init_integer_type (objfile, gdbarch_long_bit (gdbarch),
5638 1, "unsigned long");
5639 objfile_type->builtin_long_long
5640 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5641 0, "long long");
5642 objfile_type->builtin_unsigned_long_long
5643 = init_integer_type (objfile, gdbarch_long_long_bit (gdbarch),
5644 1, "unsigned long long");
5645 objfile_type->builtin_float
5646 = init_float_type (objfile, gdbarch_float_bit (gdbarch),
5647 "float", gdbarch_float_format (gdbarch));
5648 objfile_type->builtin_double
5649 = init_float_type (objfile, gdbarch_double_bit (gdbarch),
5650 "double", gdbarch_double_format (gdbarch));
5651 objfile_type->builtin_long_double
5652 = init_float_type (objfile, gdbarch_long_double_bit (gdbarch),
5653 "long double", gdbarch_long_double_format (gdbarch));
5654
5655 /* This type represents a type that was unrecognized in symbol read-in. */
5656 objfile_type->builtin_error
5657 = init_type (objfile, TYPE_CODE_ERROR, 0, "<unknown type>");
5658
5659 /* The following set of types is used for symbols with no
5660 debug information. */
5661 objfile_type->nodebug_text_symbol
5662 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5663 "<text variable, no debug info>");
5664 objfile_type->nodebug_text_gnu_ifunc_symbol
5665 = init_type (objfile, TYPE_CODE_FUNC, TARGET_CHAR_BIT,
5666 "<text gnu-indirect-function variable, no debug info>");
5667 TYPE_GNU_IFUNC (objfile_type->nodebug_text_gnu_ifunc_symbol) = 1;
5668 objfile_type->nodebug_got_plt_symbol
5669 = init_pointer_type (objfile, gdbarch_addr_bit (gdbarch),
5670 "<text from jump slot in .got.plt, no debug info>",
5671 objfile_type->nodebug_text_symbol);
5672 objfile_type->nodebug_data_symbol
5673 = init_nodebug_var_type (objfile, "<data variable, no debug info>");
5674 objfile_type->nodebug_unknown_symbol
5675 = init_nodebug_var_type (objfile, "<variable (not text or data), no debug info>");
5676 objfile_type->nodebug_tls_symbol
5677 = init_nodebug_var_type (objfile, "<thread local variable, no debug info>");
5678
5679 /* NOTE: on some targets, addresses and pointers are not necessarily
5680 the same.
5681
5682 The upshot is:
5683 - gdb's `struct type' always describes the target's
5684 representation.
5685 - gdb's `struct value' objects should always hold values in
5686 target form.
5687 - gdb's CORE_ADDR values are addresses in the unified virtual
5688 address space that the assembler and linker work with. Thus,
5689 since target_read_memory takes a CORE_ADDR as an argument, it
5690 can access any memory on the target, even if the processor has
5691 separate code and data address spaces.
5692
5693 In this context, objfile_type->builtin_core_addr is a bit odd:
5694 it's a target type for a value the target will never see. It's
5695 only used to hold the values of (typeless) linker symbols, which
5696 are indeed in the unified virtual address space. */
5697
5698 objfile_type->builtin_core_addr
5699 = init_integer_type (objfile, gdbarch_addr_bit (gdbarch), 1,
5700 "__CORE_ADDR");
5701
5702 objfile_type_data.set (objfile, objfile_type);
5703 return objfile_type;
5704 }
5705
5706 void _initialize_gdbtypes ();
5707 void
5708 _initialize_gdbtypes ()
5709 {
5710 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5711
5712 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5713 _("Set debugging of C++ overloading."),
5714 _("Show debugging of C++ overloading."),
5715 _("When enabled, ranking of the "
5716 "functions is displayed."),
5717 NULL,
5718 show_overload_debug,
5719 &setdebuglist, &showdebuglist);
5720
5721 /* Add user knob for controlling resolution of opaque types. */
5722 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5723 &opaque_type_resolution,
5724 _("Set resolution of opaque struct/class/union"
5725 " types (if set before loading symbols)."),
5726 _("Show resolution of opaque struct/class/union"
5727 " types (if set before loading symbols)."),
5728 NULL, NULL,
5729 show_opaque_type_resolution,
5730 &setlist, &showlist);
5731
5732 /* Add an option to permit non-strict type checking. */
5733 add_setshow_boolean_cmd ("type", class_support,
5734 &strict_type_checking,
5735 _("Set strict type checking."),
5736 _("Show strict type checking."),
5737 NULL, NULL,
5738 show_strict_type_checking,
5739 &setchecklist, &showchecklist);
5740 }
This page took 0.169146 seconds and 4 git commands to generate.