2010-07-30 Hui Zhu <teawater@gmail.com>
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Floatformat pairs. */
45 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
46 &floatformat_ieee_half_big,
47 &floatformat_ieee_half_little
48 };
49 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
50 &floatformat_ieee_single_big,
51 &floatformat_ieee_single_little
52 };
53 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
54 &floatformat_ieee_double_big,
55 &floatformat_ieee_double_little
56 };
57 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
58 &floatformat_ieee_double_big,
59 &floatformat_ieee_double_littlebyte_bigword
60 };
61 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
62 &floatformat_i387_ext,
63 &floatformat_i387_ext
64 };
65 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
66 &floatformat_m68881_ext,
67 &floatformat_m68881_ext
68 };
69 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
70 &floatformat_arm_ext_big,
71 &floatformat_arm_ext_littlebyte_bigword
72 };
73 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
74 &floatformat_ia64_spill_big,
75 &floatformat_ia64_spill_little
76 };
77 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
78 &floatformat_ia64_quad_big,
79 &floatformat_ia64_quad_little
80 };
81 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
82 &floatformat_vax_f,
83 &floatformat_vax_f
84 };
85 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
86 &floatformat_vax_d,
87 &floatformat_vax_d
88 };
89 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
90 &floatformat_ibm_long_double,
91 &floatformat_ibm_long_double
92 };
93
94
95 int opaque_type_resolution = 1;
96 static void
97 show_opaque_type_resolution (struct ui_file *file, int from_tty,
98 struct cmd_list_element *c,
99 const char *value)
100 {
101 fprintf_filtered (file, _("\
102 Resolution of opaque struct/class/union types (if set before loading symbols) is %s.\n"),
103 value);
104 }
105
106 int overload_debug = 0;
107 static void
108 show_overload_debug (struct ui_file *file, int from_tty,
109 struct cmd_list_element *c, const char *value)
110 {
111 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
112 value);
113 }
114
115 struct extra
116 {
117 char str[128];
118 int len;
119 }; /* Maximum extension is 128! FIXME */
120
121 static void print_bit_vector (B_TYPE *, int);
122 static void print_arg_types (struct field *, int, int);
123 static void dump_fn_fieldlists (struct type *, int);
124 static void print_cplus_stuff (struct type *, int);
125
126
127 /* Allocate a new OBJFILE-associated type structure and fill it
128 with some defaults. Space for the type structure is allocated
129 on the objfile's objfile_obstack. */
130
131 struct type *
132 alloc_type (struct objfile *objfile)
133 {
134 struct type *type;
135
136 gdb_assert (objfile != NULL);
137
138 /* Alloc the structure and start off with all fields zeroed. */
139 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
140 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
141 struct main_type);
142 OBJSTAT (objfile, n_types++);
143
144 TYPE_OBJFILE_OWNED (type) = 1;
145 TYPE_OWNER (type).objfile = objfile;
146
147 /* Initialize the fields that might not be zero. */
148
149 TYPE_CODE (type) = TYPE_CODE_UNDEF;
150 TYPE_VPTR_FIELDNO (type) = -1;
151 TYPE_CHAIN (type) = type; /* Chain back to itself. */
152
153 return type;
154 }
155
156 /* Allocate a new GDBARCH-associated type structure and fill it
157 with some defaults. Space for the type structure is allocated
158 on the heap. */
159
160 struct type *
161 alloc_type_arch (struct gdbarch *gdbarch)
162 {
163 struct type *type;
164
165 gdb_assert (gdbarch != NULL);
166
167 /* Alloc the structure and start off with all fields zeroed. */
168
169 type = XZALLOC (struct type);
170 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
171
172 TYPE_OBJFILE_OWNED (type) = 0;
173 TYPE_OWNER (type).gdbarch = gdbarch;
174
175 /* Initialize the fields that might not be zero. */
176
177 TYPE_CODE (type) = TYPE_CODE_UNDEF;
178 TYPE_VPTR_FIELDNO (type) = -1;
179 TYPE_CHAIN (type) = type; /* Chain back to itself. */
180
181 return type;
182 }
183
184 /* If TYPE is objfile-associated, allocate a new type structure
185 associated with the same objfile. If TYPE is gdbarch-associated,
186 allocate a new type structure associated with the same gdbarch. */
187
188 struct type *
189 alloc_type_copy (const struct type *type)
190 {
191 if (TYPE_OBJFILE_OWNED (type))
192 return alloc_type (TYPE_OWNER (type).objfile);
193 else
194 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
195 }
196
197 /* If TYPE is gdbarch-associated, return that architecture.
198 If TYPE is objfile-associated, return that objfile's architecture. */
199
200 struct gdbarch *
201 get_type_arch (const struct type *type)
202 {
203 if (TYPE_OBJFILE_OWNED (type))
204 return get_objfile_arch (TYPE_OWNER (type).objfile);
205 else
206 return TYPE_OWNER (type).gdbarch;
207 }
208
209
210 /* Alloc a new type instance structure, fill it with some defaults,
211 and point it at OLDTYPE. Allocate the new type instance from the
212 same place as OLDTYPE. */
213
214 static struct type *
215 alloc_type_instance (struct type *oldtype)
216 {
217 struct type *type;
218
219 /* Allocate the structure. */
220
221 if (! TYPE_OBJFILE_OWNED (oldtype))
222 type = XZALLOC (struct type);
223 else
224 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
225 struct type);
226
227 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
228
229 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
230
231 return type;
232 }
233
234 /* Clear all remnants of the previous type at TYPE, in preparation for
235 replacing it with something else. Preserve owner information. */
236 static void
237 smash_type (struct type *type)
238 {
239 int objfile_owned = TYPE_OBJFILE_OWNED (type);
240 union type_owner owner = TYPE_OWNER (type);
241
242 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
243
244 /* Restore owner information. */
245 TYPE_OBJFILE_OWNED (type) = objfile_owned;
246 TYPE_OWNER (type) = owner;
247
248 /* For now, delete the rings. */
249 TYPE_CHAIN (type) = type;
250
251 /* For now, leave the pointer/reference types alone. */
252 }
253
254 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
255 to a pointer to memory where the pointer type should be stored.
256 If *TYPEPTR is zero, update it to point to the pointer type we return.
257 We allocate new memory if needed. */
258
259 struct type *
260 make_pointer_type (struct type *type, struct type **typeptr)
261 {
262 struct type *ntype; /* New type */
263 struct type *chain;
264
265 ntype = TYPE_POINTER_TYPE (type);
266
267 if (ntype)
268 {
269 if (typeptr == 0)
270 return ntype; /* Don't care about alloc,
271 and have new type. */
272 else if (*typeptr == 0)
273 {
274 *typeptr = ntype; /* Tracking alloc, and have new type. */
275 return ntype;
276 }
277 }
278
279 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
280 {
281 ntype = alloc_type_copy (type);
282 if (typeptr)
283 *typeptr = ntype;
284 }
285 else /* We have storage, but need to reset it. */
286 {
287 ntype = *typeptr;
288 chain = TYPE_CHAIN (ntype);
289 smash_type (ntype);
290 TYPE_CHAIN (ntype) = chain;
291 }
292
293 TYPE_TARGET_TYPE (ntype) = type;
294 TYPE_POINTER_TYPE (type) = ntype;
295
296 /* FIXME! Assume the machine has only one representation for
297 pointers! */
298
299 TYPE_LENGTH (ntype)
300 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
301 TYPE_CODE (ntype) = TYPE_CODE_PTR;
302
303 /* Mark pointers as unsigned. The target converts between pointers
304 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
305 gdbarch_address_to_pointer. */
306 TYPE_UNSIGNED (ntype) = 1;
307
308 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
309 TYPE_POINTER_TYPE (type) = ntype;
310
311 /* Update the length of all the other variants of this type. */
312 chain = TYPE_CHAIN (ntype);
313 while (chain != ntype)
314 {
315 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
316 chain = TYPE_CHAIN (chain);
317 }
318
319 return ntype;
320 }
321
322 /* Given a type TYPE, return a type of pointers to that type.
323 May need to construct such a type if this is the first use. */
324
325 struct type *
326 lookup_pointer_type (struct type *type)
327 {
328 return make_pointer_type (type, (struct type **) 0);
329 }
330
331 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
332 points to a pointer to memory where the reference type should be
333 stored. If *TYPEPTR is zero, update it to point to the reference
334 type we return. We allocate new memory if needed. */
335
336 struct type *
337 make_reference_type (struct type *type, struct type **typeptr)
338 {
339 struct type *ntype; /* New type */
340 struct type *chain;
341
342 ntype = TYPE_REFERENCE_TYPE (type);
343
344 if (ntype)
345 {
346 if (typeptr == 0)
347 return ntype; /* Don't care about alloc,
348 and have new type. */
349 else if (*typeptr == 0)
350 {
351 *typeptr = ntype; /* Tracking alloc, and have new type. */
352 return ntype;
353 }
354 }
355
356 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
357 {
358 ntype = alloc_type_copy (type);
359 if (typeptr)
360 *typeptr = ntype;
361 }
362 else /* We have storage, but need to reset it. */
363 {
364 ntype = *typeptr;
365 chain = TYPE_CHAIN (ntype);
366 smash_type (ntype);
367 TYPE_CHAIN (ntype) = chain;
368 }
369
370 TYPE_TARGET_TYPE (ntype) = type;
371 TYPE_REFERENCE_TYPE (type) = ntype;
372
373 /* FIXME! Assume the machine has only one representation for
374 references, and that it matches the (only) representation for
375 pointers! */
376
377 TYPE_LENGTH (ntype) =
378 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
379 TYPE_CODE (ntype) = TYPE_CODE_REF;
380
381 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
382 TYPE_REFERENCE_TYPE (type) = ntype;
383
384 /* Update the length of all the other variants of this type. */
385 chain = TYPE_CHAIN (ntype);
386 while (chain != ntype)
387 {
388 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
389 chain = TYPE_CHAIN (chain);
390 }
391
392 return ntype;
393 }
394
395 /* Same as above, but caller doesn't care about memory allocation
396 details. */
397
398 struct type *
399 lookup_reference_type (struct type *type)
400 {
401 return make_reference_type (type, (struct type **) 0);
402 }
403
404 /* Lookup a function type that returns type TYPE. TYPEPTR, if
405 nonzero, points to a pointer to memory where the function type
406 should be stored. If *TYPEPTR is zero, update it to point to the
407 function type we return. We allocate new memory if needed. */
408
409 struct type *
410 make_function_type (struct type *type, struct type **typeptr)
411 {
412 struct type *ntype; /* New type */
413
414 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
415 {
416 ntype = alloc_type_copy (type);
417 if (typeptr)
418 *typeptr = ntype;
419 }
420 else /* We have storage, but need to reset it. */
421 {
422 ntype = *typeptr;
423 smash_type (ntype);
424 }
425
426 TYPE_TARGET_TYPE (ntype) = type;
427
428 TYPE_LENGTH (ntype) = 1;
429 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
430
431 return ntype;
432 }
433
434
435 /* Given a type TYPE, return a type of functions that return that type.
436 May need to construct such a type if this is the first use. */
437
438 struct type *
439 lookup_function_type (struct type *type)
440 {
441 return make_function_type (type, (struct type **) 0);
442 }
443
444 /* Identify address space identifier by name --
445 return the integer flag defined in gdbtypes.h. */
446 extern int
447 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
448 {
449 int type_flags;
450
451 /* Check for known address space delimiters. */
452 if (!strcmp (space_identifier, "code"))
453 return TYPE_INSTANCE_FLAG_CODE_SPACE;
454 else if (!strcmp (space_identifier, "data"))
455 return TYPE_INSTANCE_FLAG_DATA_SPACE;
456 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
457 && gdbarch_address_class_name_to_type_flags (gdbarch,
458 space_identifier,
459 &type_flags))
460 return type_flags;
461 else
462 error (_("Unknown address space specifier: \"%s\""), space_identifier);
463 }
464
465 /* Identify address space identifier by integer flag as defined in
466 gdbtypes.h -- return the string version of the adress space name. */
467
468 const char *
469 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
470 {
471 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
472 return "code";
473 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
474 return "data";
475 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
476 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
477 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
478 else
479 return NULL;
480 }
481
482 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
483
484 If STORAGE is non-NULL, create the new type instance there.
485 STORAGE must be in the same obstack as TYPE. */
486
487 static struct type *
488 make_qualified_type (struct type *type, int new_flags,
489 struct type *storage)
490 {
491 struct type *ntype;
492
493 ntype = type;
494 do
495 {
496 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
497 return ntype;
498 ntype = TYPE_CHAIN (ntype);
499 }
500 while (ntype != type);
501
502 /* Create a new type instance. */
503 if (storage == NULL)
504 ntype = alloc_type_instance (type);
505 else
506 {
507 /* If STORAGE was provided, it had better be in the same objfile
508 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
509 if one objfile is freed and the other kept, we'd have
510 dangling pointers. */
511 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
512
513 ntype = storage;
514 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
515 TYPE_CHAIN (ntype) = ntype;
516 }
517
518 /* Pointers or references to the original type are not relevant to
519 the new type. */
520 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
521 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
522
523 /* Chain the new qualified type to the old type. */
524 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
525 TYPE_CHAIN (type) = ntype;
526
527 /* Now set the instance flags and return the new type. */
528 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
529
530 /* Set length of new type to that of the original type. */
531 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
532
533 return ntype;
534 }
535
536 /* Make an address-space-delimited variant of a type -- a type that
537 is identical to the one supplied except that it has an address
538 space attribute attached to it (such as "code" or "data").
539
540 The space attributes "code" and "data" are for Harvard
541 architectures. The address space attributes are for architectures
542 which have alternately sized pointers or pointers with alternate
543 representations. */
544
545 struct type *
546 make_type_with_address_space (struct type *type, int space_flag)
547 {
548 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
549 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
550 | TYPE_INSTANCE_FLAG_DATA_SPACE
551 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
552 | space_flag);
553
554 return make_qualified_type (type, new_flags, NULL);
555 }
556
557 /* Make a "c-v" variant of a type -- a type that is identical to the
558 one supplied except that it may have const or volatile attributes
559 CNST is a flag for setting the const attribute
560 VOLTL is a flag for setting the volatile attribute
561 TYPE is the base type whose variant we are creating.
562
563 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
564 storage to hold the new qualified type; *TYPEPTR and TYPE must be
565 in the same objfile. Otherwise, allocate fresh memory for the new
566 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
567 new type we construct. */
568 struct type *
569 make_cv_type (int cnst, int voltl,
570 struct type *type,
571 struct type **typeptr)
572 {
573 struct type *ntype; /* New type */
574
575 int new_flags = (TYPE_INSTANCE_FLAGS (type)
576 & ~(TYPE_INSTANCE_FLAG_CONST
577 | TYPE_INSTANCE_FLAG_VOLATILE));
578
579 if (cnst)
580 new_flags |= TYPE_INSTANCE_FLAG_CONST;
581
582 if (voltl)
583 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
584
585 if (typeptr && *typeptr != NULL)
586 {
587 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
588 a C-V variant chain that threads across objfiles: if one
589 objfile gets freed, then the other has a broken C-V chain.
590
591 This code used to try to copy over the main type from TYPE to
592 *TYPEPTR if they were in different objfiles, but that's
593 wrong, too: TYPE may have a field list or member function
594 lists, which refer to types of their own, etc. etc. The
595 whole shebang would need to be copied over recursively; you
596 can't have inter-objfile pointers. The only thing to do is
597 to leave stub types as stub types, and look them up afresh by
598 name each time you encounter them. */
599 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
600 }
601
602 ntype = make_qualified_type (type, new_flags,
603 typeptr ? *typeptr : NULL);
604
605 if (typeptr != NULL)
606 *typeptr = ntype;
607
608 return ntype;
609 }
610
611 /* Replace the contents of ntype with the type *type. This changes the
612 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
613 the changes are propogated to all types in the TYPE_CHAIN.
614
615 In order to build recursive types, it's inevitable that we'll need
616 to update types in place --- but this sort of indiscriminate
617 smashing is ugly, and needs to be replaced with something more
618 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
619 clear if more steps are needed. */
620 void
621 replace_type (struct type *ntype, struct type *type)
622 {
623 struct type *chain;
624
625 /* These two types had better be in the same objfile. Otherwise,
626 the assignment of one type's main type structure to the other
627 will produce a type with references to objects (names; field
628 lists; etc.) allocated on an objfile other than its own. */
629 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
630
631 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
632
633 /* The type length is not a part of the main type. Update it for
634 each type on the variant chain. */
635 chain = ntype;
636 do
637 {
638 /* Assert that this element of the chain has no address-class bits
639 set in its flags. Such type variants might have type lengths
640 which are supposed to be different from the non-address-class
641 variants. This assertion shouldn't ever be triggered because
642 symbol readers which do construct address-class variants don't
643 call replace_type(). */
644 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
645
646 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
647 chain = TYPE_CHAIN (chain);
648 }
649 while (ntype != chain);
650
651 /* Assert that the two types have equivalent instance qualifiers.
652 This should be true for at least all of our debug readers. */
653 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
654 }
655
656 /* Implement direct support for MEMBER_TYPE in GNU C++.
657 May need to construct such a type if this is the first use.
658 The TYPE is the type of the member. The DOMAIN is the type
659 of the aggregate that the member belongs to. */
660
661 struct type *
662 lookup_memberptr_type (struct type *type, struct type *domain)
663 {
664 struct type *mtype;
665
666 mtype = alloc_type_copy (type);
667 smash_to_memberptr_type (mtype, domain, type);
668 return mtype;
669 }
670
671 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
672
673 struct type *
674 lookup_methodptr_type (struct type *to_type)
675 {
676 struct type *mtype;
677
678 mtype = alloc_type_copy (to_type);
679 smash_to_methodptr_type (mtype, to_type);
680 return mtype;
681 }
682
683 /* Allocate a stub method whose return type is TYPE. This apparently
684 happens for speed of symbol reading, since parsing out the
685 arguments to the method is cpu-intensive, the way we are doing it.
686 So, we will fill in arguments later. This always returns a fresh
687 type. */
688
689 struct type *
690 allocate_stub_method (struct type *type)
691 {
692 struct type *mtype;
693
694 mtype = alloc_type_copy (type);
695 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
696 TYPE_LENGTH (mtype) = 1;
697 TYPE_STUB (mtype) = 1;
698 TYPE_TARGET_TYPE (mtype) = type;
699 /* _DOMAIN_TYPE (mtype) = unknown yet */
700 return mtype;
701 }
702
703 /* Create a range type using either a blank type supplied in
704 RESULT_TYPE, or creating a new type, inheriting the objfile from
705 INDEX_TYPE.
706
707 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
708 to HIGH_BOUND, inclusive.
709
710 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
711 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
712
713 struct type *
714 create_range_type (struct type *result_type, struct type *index_type,
715 LONGEST low_bound, LONGEST high_bound)
716 {
717 if (result_type == NULL)
718 result_type = alloc_type_copy (index_type);
719 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
720 TYPE_TARGET_TYPE (result_type) = index_type;
721 if (TYPE_STUB (index_type))
722 TYPE_TARGET_STUB (result_type) = 1;
723 else
724 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
725 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
726 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
727 TYPE_LOW_BOUND (result_type) = low_bound;
728 TYPE_HIGH_BOUND (result_type) = high_bound;
729
730 if (low_bound >= 0)
731 TYPE_UNSIGNED (result_type) = 1;
732
733 return result_type;
734 }
735
736 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
737 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
738 bounds will fit in LONGEST), or -1 otherwise. */
739
740 int
741 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
742 {
743 CHECK_TYPEDEF (type);
744 switch (TYPE_CODE (type))
745 {
746 case TYPE_CODE_RANGE:
747 *lowp = TYPE_LOW_BOUND (type);
748 *highp = TYPE_HIGH_BOUND (type);
749 return 1;
750 case TYPE_CODE_ENUM:
751 if (TYPE_NFIELDS (type) > 0)
752 {
753 /* The enums may not be sorted by value, so search all
754 entries */
755 int i;
756
757 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
758 for (i = 0; i < TYPE_NFIELDS (type); i++)
759 {
760 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
761 *lowp = TYPE_FIELD_BITPOS (type, i);
762 if (TYPE_FIELD_BITPOS (type, i) > *highp)
763 *highp = TYPE_FIELD_BITPOS (type, i);
764 }
765
766 /* Set unsigned indicator if warranted. */
767 if (*lowp >= 0)
768 {
769 TYPE_UNSIGNED (type) = 1;
770 }
771 }
772 else
773 {
774 *lowp = 0;
775 *highp = -1;
776 }
777 return 0;
778 case TYPE_CODE_BOOL:
779 *lowp = 0;
780 *highp = 1;
781 return 0;
782 case TYPE_CODE_INT:
783 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
784 return -1;
785 if (!TYPE_UNSIGNED (type))
786 {
787 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
788 *highp = -*lowp - 1;
789 return 0;
790 }
791 /* ... fall through for unsigned ints ... */
792 case TYPE_CODE_CHAR:
793 *lowp = 0;
794 /* This round-about calculation is to avoid shifting by
795 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
796 if TYPE_LENGTH (type) == sizeof (LONGEST). */
797 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
798 *highp = (*highp - 1) | *highp;
799 return 0;
800 default:
801 return -1;
802 }
803 }
804
805 /* Create an array type using either a blank type supplied in
806 RESULT_TYPE, or creating a new type, inheriting the objfile from
807 RANGE_TYPE.
808
809 Elements will be of type ELEMENT_TYPE, the indices will be of type
810 RANGE_TYPE.
811
812 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
813 sure it is TYPE_CODE_UNDEF before we bash it into an array
814 type? */
815
816 struct type *
817 create_array_type (struct type *result_type,
818 struct type *element_type,
819 struct type *range_type)
820 {
821 LONGEST low_bound, high_bound;
822
823 if (result_type == NULL)
824 result_type = alloc_type_copy (range_type);
825
826 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
827 TYPE_TARGET_TYPE (result_type) = element_type;
828 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
829 low_bound = high_bound = 0;
830 CHECK_TYPEDEF (element_type);
831 /* Be careful when setting the array length. Ada arrays can be
832 empty arrays with the high_bound being smaller than the low_bound.
833 In such cases, the array length should be zero. */
834 if (high_bound < low_bound)
835 TYPE_LENGTH (result_type) = 0;
836 else
837 TYPE_LENGTH (result_type) =
838 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
839 TYPE_NFIELDS (result_type) = 1;
840 TYPE_FIELDS (result_type) =
841 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
842 TYPE_INDEX_TYPE (result_type) = range_type;
843 TYPE_VPTR_FIELDNO (result_type) = -1;
844
845 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays */
846 if (TYPE_LENGTH (result_type) == 0)
847 TYPE_TARGET_STUB (result_type) = 1;
848
849 return result_type;
850 }
851
852 struct type *
853 lookup_array_range_type (struct type *element_type,
854 int low_bound, int high_bound)
855 {
856 struct gdbarch *gdbarch = get_type_arch (element_type);
857 struct type *index_type = builtin_type (gdbarch)->builtin_int;
858 struct type *range_type
859 = create_range_type (NULL, index_type, low_bound, high_bound);
860
861 return create_array_type (NULL, element_type, range_type);
862 }
863
864 /* Create a string type using either a blank type supplied in
865 RESULT_TYPE, or creating a new type. String types are similar
866 enough to array of char types that we can use create_array_type to
867 build the basic type and then bash it into a string type.
868
869 For fixed length strings, the range type contains 0 as the lower
870 bound and the length of the string minus one as the upper bound.
871
872 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
873 sure it is TYPE_CODE_UNDEF before we bash it into a string
874 type? */
875
876 struct type *
877 create_string_type (struct type *result_type,
878 struct type *string_char_type,
879 struct type *range_type)
880 {
881 result_type = create_array_type (result_type,
882 string_char_type,
883 range_type);
884 TYPE_CODE (result_type) = TYPE_CODE_STRING;
885 return result_type;
886 }
887
888 struct type *
889 lookup_string_range_type (struct type *string_char_type,
890 int low_bound, int high_bound)
891 {
892 struct type *result_type;
893
894 result_type = lookup_array_range_type (string_char_type,
895 low_bound, high_bound);
896 TYPE_CODE (result_type) = TYPE_CODE_STRING;
897 return result_type;
898 }
899
900 struct type *
901 create_set_type (struct type *result_type, struct type *domain_type)
902 {
903 if (result_type == NULL)
904 result_type = alloc_type_copy (domain_type);
905
906 TYPE_CODE (result_type) = TYPE_CODE_SET;
907 TYPE_NFIELDS (result_type) = 1;
908 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
909
910 if (!TYPE_STUB (domain_type))
911 {
912 LONGEST low_bound, high_bound, bit_length;
913
914 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
915 low_bound = high_bound = 0;
916 bit_length = high_bound - low_bound + 1;
917 TYPE_LENGTH (result_type)
918 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
919 if (low_bound >= 0)
920 TYPE_UNSIGNED (result_type) = 1;
921 }
922 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
923
924 return result_type;
925 }
926
927 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
928 and any array types nested inside it. */
929
930 void
931 make_vector_type (struct type *array_type)
932 {
933 struct type *inner_array, *elt_type;
934 int flags;
935
936 /* Find the innermost array type, in case the array is
937 multi-dimensional. */
938 inner_array = array_type;
939 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
940 inner_array = TYPE_TARGET_TYPE (inner_array);
941
942 elt_type = TYPE_TARGET_TYPE (inner_array);
943 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
944 {
945 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_FLAG_NOTTEXT;
946 elt_type = make_qualified_type (elt_type, flags, NULL);
947 TYPE_TARGET_TYPE (inner_array) = elt_type;
948 }
949
950 TYPE_VECTOR (array_type) = 1;
951 }
952
953 struct type *
954 init_vector_type (struct type *elt_type, int n)
955 {
956 struct type *array_type;
957
958 array_type = lookup_array_range_type (elt_type, 0, n - 1);
959 make_vector_type (array_type);
960 return array_type;
961 }
962
963 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
964 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
965 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
966 TYPE doesn't include the offset (that's the value of the MEMBER
967 itself), but does include the structure type into which it points
968 (for some reason).
969
970 When "smashing" the type, we preserve the objfile that the old type
971 pointed to, since we aren't changing where the type is actually
972 allocated. */
973
974 void
975 smash_to_memberptr_type (struct type *type, struct type *domain,
976 struct type *to_type)
977 {
978 smash_type (type);
979 TYPE_TARGET_TYPE (type) = to_type;
980 TYPE_DOMAIN_TYPE (type) = domain;
981 /* Assume that a data member pointer is the same size as a normal
982 pointer. */
983 TYPE_LENGTH (type)
984 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
985 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
986 }
987
988 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
989
990 When "smashing" the type, we preserve the objfile that the old type
991 pointed to, since we aren't changing where the type is actually
992 allocated. */
993
994 void
995 smash_to_methodptr_type (struct type *type, struct type *to_type)
996 {
997 smash_type (type);
998 TYPE_TARGET_TYPE (type) = to_type;
999 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1000 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1001 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1002 }
1003
1004 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1005 METHOD just means `function that gets an extra "this" argument'.
1006
1007 When "smashing" the type, we preserve the objfile that the old type
1008 pointed to, since we aren't changing where the type is actually
1009 allocated. */
1010
1011 void
1012 smash_to_method_type (struct type *type, struct type *domain,
1013 struct type *to_type, struct field *args,
1014 int nargs, int varargs)
1015 {
1016 smash_type (type);
1017 TYPE_TARGET_TYPE (type) = to_type;
1018 TYPE_DOMAIN_TYPE (type) = domain;
1019 TYPE_FIELDS (type) = args;
1020 TYPE_NFIELDS (type) = nargs;
1021 if (varargs)
1022 TYPE_VARARGS (type) = 1;
1023 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1024 TYPE_CODE (type) = TYPE_CODE_METHOD;
1025 }
1026
1027 /* Return a typename for a struct/union/enum type without "struct ",
1028 "union ", or "enum ". If the type has a NULL name, return NULL. */
1029
1030 char *
1031 type_name_no_tag (const struct type *type)
1032 {
1033 if (TYPE_TAG_NAME (type) != NULL)
1034 return TYPE_TAG_NAME (type);
1035
1036 /* Is there code which expects this to return the name if there is
1037 no tag name? My guess is that this is mainly used for C++ in
1038 cases where the two will always be the same. */
1039 return TYPE_NAME (type);
1040 }
1041
1042 /* Lookup a typedef or primitive type named NAME, visible in lexical
1043 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1044 suitably defined. */
1045
1046 struct type *
1047 lookup_typename (const struct language_defn *language,
1048 struct gdbarch *gdbarch, char *name,
1049 const struct block *block, int noerr)
1050 {
1051 struct symbol *sym;
1052 struct type *tmp;
1053
1054 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1055 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1056 {
1057 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1058 if (tmp)
1059 {
1060 return tmp;
1061 }
1062 else if (!tmp && noerr)
1063 {
1064 return NULL;
1065 }
1066 else
1067 {
1068 error (_("No type named %s."), name);
1069 }
1070 }
1071 return (SYMBOL_TYPE (sym));
1072 }
1073
1074 struct type *
1075 lookup_unsigned_typename (const struct language_defn *language,
1076 struct gdbarch *gdbarch, char *name)
1077 {
1078 char *uns = alloca (strlen (name) + 10);
1079
1080 strcpy (uns, "unsigned ");
1081 strcpy (uns + 9, name);
1082 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1083 }
1084
1085 struct type *
1086 lookup_signed_typename (const struct language_defn *language,
1087 struct gdbarch *gdbarch, char *name)
1088 {
1089 struct type *t;
1090 char *uns = alloca (strlen (name) + 8);
1091
1092 strcpy (uns, "signed ");
1093 strcpy (uns + 7, name);
1094 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1095 /* If we don't find "signed FOO" just try again with plain "FOO". */
1096 if (t != NULL)
1097 return t;
1098 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1099 }
1100
1101 /* Lookup a structure type named "struct NAME",
1102 visible in lexical block BLOCK. */
1103
1104 struct type *
1105 lookup_struct (char *name, struct block *block)
1106 {
1107 struct symbol *sym;
1108
1109 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1110
1111 if (sym == NULL)
1112 {
1113 error (_("No struct type named %s."), name);
1114 }
1115 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1116 {
1117 error (_("This context has class, union or enum %s, not a struct."),
1118 name);
1119 }
1120 return (SYMBOL_TYPE (sym));
1121 }
1122
1123 /* Lookup a union type named "union NAME",
1124 visible in lexical block BLOCK. */
1125
1126 struct type *
1127 lookup_union (char *name, struct block *block)
1128 {
1129 struct symbol *sym;
1130 struct type *t;
1131
1132 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1133
1134 if (sym == NULL)
1135 error (_("No union type named %s."), name);
1136
1137 t = SYMBOL_TYPE (sym);
1138
1139 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1140 return t;
1141
1142 /* If we get here, it's not a union. */
1143 error (_("This context has class, struct or enum %s, not a union."),
1144 name);
1145 }
1146
1147
1148 /* Lookup an enum type named "enum NAME",
1149 visible in lexical block BLOCK. */
1150
1151 struct type *
1152 lookup_enum (char *name, struct block *block)
1153 {
1154 struct symbol *sym;
1155
1156 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1157 if (sym == NULL)
1158 {
1159 error (_("No enum type named %s."), name);
1160 }
1161 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1162 {
1163 error (_("This context has class, struct or union %s, not an enum."),
1164 name);
1165 }
1166 return (SYMBOL_TYPE (sym));
1167 }
1168
1169 /* Lookup a template type named "template NAME<TYPE>",
1170 visible in lexical block BLOCK. */
1171
1172 struct type *
1173 lookup_template_type (char *name, struct type *type,
1174 struct block *block)
1175 {
1176 struct symbol *sym;
1177 char *nam = (char *)
1178 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1179
1180 strcpy (nam, name);
1181 strcat (nam, "<");
1182 strcat (nam, TYPE_NAME (type));
1183 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1184
1185 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1186
1187 if (sym == NULL)
1188 {
1189 error (_("No template type named %s."), name);
1190 }
1191 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1192 {
1193 error (_("This context has class, union or enum %s, not a struct."),
1194 name);
1195 }
1196 return (SYMBOL_TYPE (sym));
1197 }
1198
1199 /* Given a type TYPE, lookup the type of the component of type named
1200 NAME.
1201
1202 TYPE can be either a struct or union, or a pointer or reference to
1203 a struct or union. If it is a pointer or reference, its target
1204 type is automatically used. Thus '.' and '->' are interchangable,
1205 as specified for the definitions of the expression element types
1206 STRUCTOP_STRUCT and STRUCTOP_PTR.
1207
1208 If NOERR is nonzero, return zero if NAME is not suitably defined.
1209 If NAME is the name of a baseclass type, return that type. */
1210
1211 struct type *
1212 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1213 {
1214 int i;
1215
1216 for (;;)
1217 {
1218 CHECK_TYPEDEF (type);
1219 if (TYPE_CODE (type) != TYPE_CODE_PTR
1220 && TYPE_CODE (type) != TYPE_CODE_REF)
1221 break;
1222 type = TYPE_TARGET_TYPE (type);
1223 }
1224
1225 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1226 && TYPE_CODE (type) != TYPE_CODE_UNION)
1227 {
1228 target_terminal_ours ();
1229 gdb_flush (gdb_stdout);
1230 fprintf_unfiltered (gdb_stderr, "Type ");
1231 type_print (type, "", gdb_stderr, -1);
1232 error (_(" is not a structure or union type."));
1233 }
1234
1235 #if 0
1236 /* FIXME: This change put in by Michael seems incorrect for the case
1237 where the structure tag name is the same as the member name.
1238 I.E. when doing "ptype bell->bar" for "struct foo { int bar; int
1239 foo; } bell;" Disabled by fnf. */
1240 {
1241 char *typename;
1242
1243 typename = type_name_no_tag (type);
1244 if (typename != NULL && strcmp (typename, name) == 0)
1245 return type;
1246 }
1247 #endif
1248
1249 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1250 {
1251 char *t_field_name = TYPE_FIELD_NAME (type, i);
1252
1253 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1254 {
1255 return TYPE_FIELD_TYPE (type, i);
1256 }
1257 else if (!t_field_name || *t_field_name == '\0')
1258 {
1259 struct type *subtype
1260 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1261
1262 if (subtype != NULL)
1263 return subtype;
1264 }
1265 }
1266
1267 /* OK, it's not in this class. Recursively check the baseclasses. */
1268 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1269 {
1270 struct type *t;
1271
1272 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1273 if (t != NULL)
1274 {
1275 return t;
1276 }
1277 }
1278
1279 if (noerr)
1280 {
1281 return NULL;
1282 }
1283
1284 target_terminal_ours ();
1285 gdb_flush (gdb_stdout);
1286 fprintf_unfiltered (gdb_stderr, "Type ");
1287 type_print (type, "", gdb_stderr, -1);
1288 fprintf_unfiltered (gdb_stderr, " has no component named ");
1289 fputs_filtered (name, gdb_stderr);
1290 error (("."));
1291 return (struct type *) -1; /* For lint */
1292 }
1293
1294 /* Lookup the vptr basetype/fieldno values for TYPE.
1295 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1296 vptr_fieldno. Also, if found and basetype is from the same objfile,
1297 cache the results.
1298 If not found, return -1 and ignore BASETYPEP.
1299 Callers should be aware that in some cases (for example,
1300 the type or one of its baseclasses is a stub type and we are
1301 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1302 this function will not be able to find the
1303 virtual function table pointer, and vptr_fieldno will remain -1 and
1304 vptr_basetype will remain NULL or incomplete. */
1305
1306 int
1307 get_vptr_fieldno (struct type *type, struct type **basetypep)
1308 {
1309 CHECK_TYPEDEF (type);
1310
1311 if (TYPE_VPTR_FIELDNO (type) < 0)
1312 {
1313 int i;
1314
1315 /* We must start at zero in case the first (and only) baseclass
1316 is virtual (and hence we cannot share the table pointer). */
1317 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1318 {
1319 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1320 int fieldno;
1321 struct type *basetype;
1322
1323 fieldno = get_vptr_fieldno (baseclass, &basetype);
1324 if (fieldno >= 0)
1325 {
1326 /* If the type comes from a different objfile we can't cache
1327 it, it may have a different lifetime. PR 2384 */
1328 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1329 {
1330 TYPE_VPTR_FIELDNO (type) = fieldno;
1331 TYPE_VPTR_BASETYPE (type) = basetype;
1332 }
1333 if (basetypep)
1334 *basetypep = basetype;
1335 return fieldno;
1336 }
1337 }
1338
1339 /* Not found. */
1340 return -1;
1341 }
1342 else
1343 {
1344 if (basetypep)
1345 *basetypep = TYPE_VPTR_BASETYPE (type);
1346 return TYPE_VPTR_FIELDNO (type);
1347 }
1348 }
1349
1350 static void
1351 stub_noname_complaint (void)
1352 {
1353 complaint (&symfile_complaints, _("stub type has NULL name"));
1354 }
1355
1356 /* Added by Bryan Boreham, Kewill, Sun Sep 17 18:07:17 1989.
1357
1358 If this is a stubbed struct (i.e. declared as struct foo *), see if
1359 we can find a full definition in some other file. If so, copy this
1360 definition, so we can use it in future. There used to be a comment
1361 (but not any code) that if we don't find a full definition, we'd
1362 set a flag so we don't spend time in the future checking the same
1363 type. That would be a mistake, though--we might load in more
1364 symbols which contain a full definition for the type.
1365
1366 This used to be coded as a macro, but I don't think it is called
1367 often enough to merit such treatment.
1368
1369 Find the real type of TYPE. This function returns the real type,
1370 after removing all layers of typedefs and completing opaque or stub
1371 types. Completion changes the TYPE argument, but stripping of
1372 typedefs does not.
1373
1374 If TYPE is a TYPE_CODE_TYPEDEF, its length is (also) set to the length of
1375 the target type instead of zero. However, in the case of TYPE_CODE_TYPEDEF
1376 check_typedef can still return different type than the original TYPE
1377 pointer. */
1378
1379 struct type *
1380 check_typedef (struct type *type)
1381 {
1382 struct type *orig_type = type;
1383 int is_const, is_volatile;
1384
1385 gdb_assert (type);
1386
1387 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1388 {
1389 if (!TYPE_TARGET_TYPE (type))
1390 {
1391 char *name;
1392 struct symbol *sym;
1393
1394 /* It is dangerous to call lookup_symbol if we are currently
1395 reading a symtab. Infinite recursion is one danger. */
1396 if (currently_reading_symtab)
1397 return type;
1398
1399 name = type_name_no_tag (type);
1400 /* FIXME: shouldn't we separately check the TYPE_NAME and
1401 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1402 VAR_DOMAIN as appropriate? (this code was written before
1403 TYPE_NAME and TYPE_TAG_NAME were separate). */
1404 if (name == NULL)
1405 {
1406 stub_noname_complaint ();
1407 return type;
1408 }
1409 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1410 if (sym)
1411 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1412 else /* TYPE_CODE_UNDEF */
1413 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1414 }
1415 type = TYPE_TARGET_TYPE (type);
1416 }
1417
1418 is_const = TYPE_CONST (type);
1419 is_volatile = TYPE_VOLATILE (type);
1420
1421 /* If this is a struct/class/union with no fields, then check
1422 whether a full definition exists somewhere else. This is for
1423 systems where a type definition with no fields is issued for such
1424 types, instead of identifying them as stub types in the first
1425 place. */
1426
1427 if (TYPE_IS_OPAQUE (type)
1428 && opaque_type_resolution
1429 && !currently_reading_symtab)
1430 {
1431 char *name = type_name_no_tag (type);
1432 struct type *newtype;
1433
1434 if (name == NULL)
1435 {
1436 stub_noname_complaint ();
1437 return type;
1438 }
1439 newtype = lookup_transparent_type (name);
1440
1441 if (newtype)
1442 {
1443 /* If the resolved type and the stub are in the same
1444 objfile, then replace the stub type with the real deal.
1445 But if they're in separate objfiles, leave the stub
1446 alone; we'll just look up the transparent type every time
1447 we call check_typedef. We can't create pointers between
1448 types allocated to different objfiles, since they may
1449 have different lifetimes. Trying to copy NEWTYPE over to
1450 TYPE's objfile is pointless, too, since you'll have to
1451 move over any other types NEWTYPE refers to, which could
1452 be an unbounded amount of stuff. */
1453 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1454 make_cv_type (is_const, is_volatile, newtype, &type);
1455 else
1456 type = newtype;
1457 }
1458 }
1459 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1460 types. */
1461 else if (TYPE_STUB (type) && !currently_reading_symtab)
1462 {
1463 char *name = type_name_no_tag (type);
1464 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1465 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1466 as appropriate? (this code was written before TYPE_NAME and
1467 TYPE_TAG_NAME were separate). */
1468 struct symbol *sym;
1469
1470 if (name == NULL)
1471 {
1472 stub_noname_complaint ();
1473 return type;
1474 }
1475 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1476 if (sym)
1477 {
1478 /* Same as above for opaque types, we can replace the stub
1479 with the complete type only if they are int the same
1480 objfile. */
1481 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1482 make_cv_type (is_const, is_volatile,
1483 SYMBOL_TYPE (sym), &type);
1484 else
1485 type = SYMBOL_TYPE (sym);
1486 }
1487 }
1488
1489 if (TYPE_TARGET_STUB (type))
1490 {
1491 struct type *range_type;
1492 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1493
1494 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1495 {
1496 /* Empty. */
1497 }
1498 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1499 && TYPE_NFIELDS (type) == 1
1500 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1501 == TYPE_CODE_RANGE))
1502 {
1503 /* Now recompute the length of the array type, based on its
1504 number of elements and the target type's length.
1505 Watch out for Ada null Ada arrays where the high bound
1506 is smaller than the low bound. */
1507 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1508 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1509 ULONGEST len;
1510
1511 if (high_bound < low_bound)
1512 len = 0;
1513 else
1514 {
1515 /* For now, we conservatively take the array length to be 0
1516 if its length exceeds UINT_MAX. The code below assumes
1517 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1518 which is technically not guaranteed by C, but is usually true
1519 (because it would be true if x were unsigned with its
1520 high-order bit on). It uses the fact that
1521 high_bound-low_bound is always representable in
1522 ULONGEST and that if high_bound-low_bound+1 overflows,
1523 it overflows to 0. We must change these tests if we
1524 decide to increase the representation of TYPE_LENGTH
1525 from unsigned int to ULONGEST. */
1526 ULONGEST ulow = low_bound, uhigh = high_bound;
1527 ULONGEST tlen = TYPE_LENGTH (target_type);
1528
1529 len = tlen * (uhigh - ulow + 1);
1530 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1531 || len > UINT_MAX)
1532 len = 0;
1533 }
1534 TYPE_LENGTH (type) = len;
1535 TYPE_TARGET_STUB (type) = 0;
1536 }
1537 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1538 {
1539 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1540 TYPE_TARGET_STUB (type) = 0;
1541 }
1542 }
1543 /* Cache TYPE_LENGTH for future use. */
1544 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1545 return type;
1546 }
1547
1548 /* Parse a type expression in the string [P..P+LENGTH). If an error
1549 occurs, silently return a void type. */
1550
1551 static struct type *
1552 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1553 {
1554 struct ui_file *saved_gdb_stderr;
1555 struct type *type;
1556
1557 /* Suppress error messages. */
1558 saved_gdb_stderr = gdb_stderr;
1559 gdb_stderr = ui_file_new ();
1560
1561 /* Call parse_and_eval_type() without fear of longjmp()s. */
1562 if (!gdb_parse_and_eval_type (p, length, &type))
1563 type = builtin_type (gdbarch)->builtin_void;
1564
1565 /* Stop suppressing error messages. */
1566 ui_file_delete (gdb_stderr);
1567 gdb_stderr = saved_gdb_stderr;
1568
1569 return type;
1570 }
1571
1572 /* Ugly hack to convert method stubs into method types.
1573
1574 He ain't kiddin'. This demangles the name of the method into a
1575 string including argument types, parses out each argument type,
1576 generates a string casting a zero to that type, evaluates the
1577 string, and stuffs the resulting type into an argtype vector!!!
1578 Then it knows the type of the whole function (including argument
1579 types for overloading), which info used to be in the stab's but was
1580 removed to hack back the space required for them. */
1581
1582 static void
1583 check_stub_method (struct type *type, int method_id, int signature_id)
1584 {
1585 struct gdbarch *gdbarch = get_type_arch (type);
1586 struct fn_field *f;
1587 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1588 char *demangled_name = cplus_demangle (mangled_name,
1589 DMGL_PARAMS | DMGL_ANSI);
1590 char *argtypetext, *p;
1591 int depth = 0, argcount = 1;
1592 struct field *argtypes;
1593 struct type *mtype;
1594
1595 /* Make sure we got back a function string that we can use. */
1596 if (demangled_name)
1597 p = strchr (demangled_name, '(');
1598 else
1599 p = NULL;
1600
1601 if (demangled_name == NULL || p == NULL)
1602 error (_("Internal: Cannot demangle mangled name `%s'."),
1603 mangled_name);
1604
1605 /* Now, read in the parameters that define this type. */
1606 p += 1;
1607 argtypetext = p;
1608 while (*p)
1609 {
1610 if (*p == '(' || *p == '<')
1611 {
1612 depth += 1;
1613 }
1614 else if (*p == ')' || *p == '>')
1615 {
1616 depth -= 1;
1617 }
1618 else if (*p == ',' && depth == 0)
1619 {
1620 argcount += 1;
1621 }
1622
1623 p += 1;
1624 }
1625
1626 /* If we read one argument and it was ``void'', don't count it. */
1627 if (strncmp (argtypetext, "(void)", 6) == 0)
1628 argcount -= 1;
1629
1630 /* We need one extra slot, for the THIS pointer. */
1631
1632 argtypes = (struct field *)
1633 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1634 p = argtypetext;
1635
1636 /* Add THIS pointer for non-static methods. */
1637 f = TYPE_FN_FIELDLIST1 (type, method_id);
1638 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1639 argcount = 0;
1640 else
1641 {
1642 argtypes[0].type = lookup_pointer_type (type);
1643 argcount = 1;
1644 }
1645
1646 if (*p != ')') /* () means no args, skip while */
1647 {
1648 depth = 0;
1649 while (*p)
1650 {
1651 if (depth <= 0 && (*p == ',' || *p == ')'))
1652 {
1653 /* Avoid parsing of ellipsis, they will be handled below.
1654 Also avoid ``void'' as above. */
1655 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1656 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1657 {
1658 argtypes[argcount].type =
1659 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1660 argcount += 1;
1661 }
1662 argtypetext = p + 1;
1663 }
1664
1665 if (*p == '(' || *p == '<')
1666 {
1667 depth += 1;
1668 }
1669 else if (*p == ')' || *p == '>')
1670 {
1671 depth -= 1;
1672 }
1673
1674 p += 1;
1675 }
1676 }
1677
1678 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1679
1680 /* Now update the old "stub" type into a real type. */
1681 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1682 TYPE_DOMAIN_TYPE (mtype) = type;
1683 TYPE_FIELDS (mtype) = argtypes;
1684 TYPE_NFIELDS (mtype) = argcount;
1685 TYPE_STUB (mtype) = 0;
1686 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1687 if (p[-2] == '.')
1688 TYPE_VARARGS (mtype) = 1;
1689
1690 xfree (demangled_name);
1691 }
1692
1693 /* This is the external interface to check_stub_method, above. This
1694 function unstubs all of the signatures for TYPE's METHOD_ID method
1695 name. After calling this function TYPE_FN_FIELD_STUB will be
1696 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1697 correct.
1698
1699 This function unfortunately can not die until stabs do. */
1700
1701 void
1702 check_stub_method_group (struct type *type, int method_id)
1703 {
1704 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1705 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1706 int j, found_stub = 0;
1707
1708 for (j = 0; j < len; j++)
1709 if (TYPE_FN_FIELD_STUB (f, j))
1710 {
1711 found_stub = 1;
1712 check_stub_method (type, method_id, j);
1713 }
1714
1715 /* GNU v3 methods with incorrect names were corrected when we read
1716 in type information, because it was cheaper to do it then. The
1717 only GNU v2 methods with incorrect method names are operators and
1718 destructors; destructors were also corrected when we read in type
1719 information.
1720
1721 Therefore the only thing we need to handle here are v2 operator
1722 names. */
1723 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1724 {
1725 int ret;
1726 char dem_opname[256];
1727
1728 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1729 method_id),
1730 dem_opname, DMGL_ANSI);
1731 if (!ret)
1732 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1733 method_id),
1734 dem_opname, 0);
1735 if (ret)
1736 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1737 }
1738 }
1739
1740 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1741 const struct cplus_struct_type cplus_struct_default = { };
1742
1743 void
1744 allocate_cplus_struct_type (struct type *type)
1745 {
1746 if (HAVE_CPLUS_STRUCT (type))
1747 /* Structure was already allocated. Nothing more to do. */
1748 return;
1749
1750 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1751 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1752 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1753 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1754 }
1755
1756 const struct gnat_aux_type gnat_aux_default =
1757 { NULL };
1758
1759 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1760 and allocate the associated gnat-specific data. The gnat-specific
1761 data is also initialized to gnat_aux_default. */
1762 void
1763 allocate_gnat_aux_type (struct type *type)
1764 {
1765 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1766 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1767 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1768 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1769 }
1770
1771
1772 /* Helper function to initialize the standard scalar types.
1773
1774 If NAME is non-NULL, then we make a copy of the string pointed
1775 to by name in the objfile_obstack for that objfile, and initialize
1776 the type name to that copy. There are places (mipsread.c in particular),
1777 where init_type is called with a NULL value for NAME). */
1778
1779 struct type *
1780 init_type (enum type_code code, int length, int flags,
1781 char *name, struct objfile *objfile)
1782 {
1783 struct type *type;
1784
1785 type = alloc_type (objfile);
1786 TYPE_CODE (type) = code;
1787 TYPE_LENGTH (type) = length;
1788
1789 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1790 if (flags & TYPE_FLAG_UNSIGNED)
1791 TYPE_UNSIGNED (type) = 1;
1792 if (flags & TYPE_FLAG_NOSIGN)
1793 TYPE_NOSIGN (type) = 1;
1794 if (flags & TYPE_FLAG_STUB)
1795 TYPE_STUB (type) = 1;
1796 if (flags & TYPE_FLAG_TARGET_STUB)
1797 TYPE_TARGET_STUB (type) = 1;
1798 if (flags & TYPE_FLAG_STATIC)
1799 TYPE_STATIC (type) = 1;
1800 if (flags & TYPE_FLAG_PROTOTYPED)
1801 TYPE_PROTOTYPED (type) = 1;
1802 if (flags & TYPE_FLAG_INCOMPLETE)
1803 TYPE_INCOMPLETE (type) = 1;
1804 if (flags & TYPE_FLAG_VARARGS)
1805 TYPE_VARARGS (type) = 1;
1806 if (flags & TYPE_FLAG_VECTOR)
1807 TYPE_VECTOR (type) = 1;
1808 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1809 TYPE_STUB_SUPPORTED (type) = 1;
1810 if (flags & TYPE_FLAG_NOTTEXT)
1811 TYPE_NOTTEXT (type) = 1;
1812 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1813 TYPE_FIXED_INSTANCE (type) = 1;
1814
1815 if (name)
1816 TYPE_NAME (type) = obsavestring (name, strlen (name),
1817 &objfile->objfile_obstack);
1818
1819 /* C++ fancies. */
1820
1821 if (name && strcmp (name, "char") == 0)
1822 TYPE_NOSIGN (type) = 1;
1823
1824 switch (code)
1825 {
1826 case TYPE_CODE_STRUCT:
1827 case TYPE_CODE_UNION:
1828 case TYPE_CODE_NAMESPACE:
1829 INIT_CPLUS_SPECIFIC (type);
1830 break;
1831 case TYPE_CODE_FLT:
1832 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1833 break;
1834 case TYPE_CODE_FUNC:
1835 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1836 break;
1837 }
1838 return type;
1839 }
1840
1841 int
1842 can_dereference (struct type *t)
1843 {
1844 /* FIXME: Should we return true for references as well as
1845 pointers? */
1846 CHECK_TYPEDEF (t);
1847 return
1848 (t != NULL
1849 && TYPE_CODE (t) == TYPE_CODE_PTR
1850 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1851 }
1852
1853 int
1854 is_integral_type (struct type *t)
1855 {
1856 CHECK_TYPEDEF (t);
1857 return
1858 ((t != NULL)
1859 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1860 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1861 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1862 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1863 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1864 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1865 }
1866
1867 /* A helper function which returns true if types A and B represent the
1868 "same" class type. This is true if the types have the same main
1869 type, or the same name. */
1870
1871 int
1872 class_types_same_p (const struct type *a, const struct type *b)
1873 {
1874 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
1875 || (TYPE_NAME (a) && TYPE_NAME (b)
1876 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
1877 }
1878
1879 /* Check whether BASE is an ancestor or base class or DCLASS
1880 Return 1 if so, and 0 if not.
1881 Note: callers may want to check for identity of the types before
1882 calling this function -- identical types are considered to satisfy
1883 the ancestor relationship even if they're identical. */
1884
1885 int
1886 is_ancestor (struct type *base, struct type *dclass)
1887 {
1888 int i;
1889
1890 CHECK_TYPEDEF (base);
1891 CHECK_TYPEDEF (dclass);
1892
1893 if (class_types_same_p (base, dclass))
1894 return 1;
1895
1896 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
1897 {
1898 if (is_ancestor (base, TYPE_BASECLASS (dclass, i)))
1899 return 1;
1900 }
1901
1902 return 0;
1903 }
1904
1905 /* Like is_ancestor, but only returns true when BASE is a public
1906 ancestor of DCLASS. */
1907
1908 int
1909 is_public_ancestor (struct type *base, struct type *dclass)
1910 {
1911 int i;
1912
1913 CHECK_TYPEDEF (base);
1914 CHECK_TYPEDEF (dclass);
1915
1916 if (class_types_same_p (base, dclass))
1917 return 1;
1918
1919 for (i = 0; i < TYPE_N_BASECLASSES (dclass); ++i)
1920 {
1921 if (! BASETYPE_VIA_PUBLIC (dclass, i))
1922 continue;
1923 if (is_public_ancestor (base, TYPE_BASECLASS (dclass, i)))
1924 return 1;
1925 }
1926
1927 return 0;
1928 }
1929
1930 /* A helper function for is_unique_ancestor. */
1931
1932 static int
1933 is_unique_ancestor_worker (struct type *base, struct type *dclass,
1934 int *offset,
1935 const bfd_byte *contents, CORE_ADDR address)
1936 {
1937 int i, count = 0;
1938
1939 CHECK_TYPEDEF (base);
1940 CHECK_TYPEDEF (dclass);
1941
1942 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
1943 {
1944 struct type *iter = check_typedef (TYPE_BASECLASS (dclass, i));
1945 int this_offset = baseclass_offset (dclass, i, contents, address);
1946
1947 if (this_offset == -1)
1948 error (_("virtual baseclass botch"));
1949
1950 if (class_types_same_p (base, iter))
1951 {
1952 /* If this is the first subclass, set *OFFSET and set count
1953 to 1. Otherwise, if this is at the same offset as
1954 previous instances, do nothing. Otherwise, increment
1955 count. */
1956 if (*offset == -1)
1957 {
1958 *offset = this_offset;
1959 count = 1;
1960 }
1961 else if (this_offset == *offset)
1962 {
1963 /* Nothing. */
1964 }
1965 else
1966 ++count;
1967 }
1968 else
1969 count += is_unique_ancestor_worker (base, iter, offset,
1970 contents + this_offset,
1971 address + this_offset);
1972 }
1973
1974 return count;
1975 }
1976
1977 /* Like is_ancestor, but only returns true if BASE is a unique base
1978 class of the type of VAL. */
1979
1980 int
1981 is_unique_ancestor (struct type *base, struct value *val)
1982 {
1983 int offset = -1;
1984
1985 return is_unique_ancestor_worker (base, value_type (val), &offset,
1986 value_contents (val),
1987 value_address (val)) == 1;
1988 }
1989
1990 \f
1991
1992
1993 /* Functions for overload resolution begin here */
1994
1995 /* Compare two badness vectors A and B and return the result.
1996 0 => A and B are identical
1997 1 => A and B are incomparable
1998 2 => A is better than B
1999 3 => A is worse than B */
2000
2001 int
2002 compare_badness (struct badness_vector *a, struct badness_vector *b)
2003 {
2004 int i;
2005 int tmp;
2006 short found_pos = 0; /* any positives in c? */
2007 short found_neg = 0; /* any negatives in c? */
2008
2009 /* differing lengths => incomparable */
2010 if (a->length != b->length)
2011 return 1;
2012
2013 /* Subtract b from a */
2014 for (i = 0; i < a->length; i++)
2015 {
2016 tmp = a->rank[i] - b->rank[i];
2017 if (tmp > 0)
2018 found_pos = 1;
2019 else if (tmp < 0)
2020 found_neg = 1;
2021 }
2022
2023 if (found_pos)
2024 {
2025 if (found_neg)
2026 return 1; /* incomparable */
2027 else
2028 return 3; /* A > B */
2029 }
2030 else
2031 /* no positives */
2032 {
2033 if (found_neg)
2034 return 2; /* A < B */
2035 else
2036 return 0; /* A == B */
2037 }
2038 }
2039
2040 /* Rank a function by comparing its parameter types (PARMS, length
2041 NPARMS), to the types of an argument list (ARGS, length NARGS).
2042 Return a pointer to a badness vector. This has NARGS + 1
2043 entries. */
2044
2045 struct badness_vector *
2046 rank_function (struct type **parms, int nparms,
2047 struct type **args, int nargs)
2048 {
2049 int i;
2050 struct badness_vector *bv;
2051 int min_len = nparms < nargs ? nparms : nargs;
2052
2053 bv = xmalloc (sizeof (struct badness_vector));
2054 bv->length = nargs + 1; /* add 1 for the length-match rank */
2055 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2056
2057 /* First compare the lengths of the supplied lists.
2058 If there is a mismatch, set it to a high value. */
2059
2060 /* pai/1997-06-03 FIXME: when we have debug info about default
2061 arguments and ellipsis parameter lists, we should consider those
2062 and rank the length-match more finely. */
2063
2064 LENGTH_MATCH (bv) = (nargs != nparms) ? LENGTH_MISMATCH_BADNESS : 0;
2065
2066 /* Now rank all the parameters of the candidate function */
2067 for (i = 1; i <= min_len; i++)
2068 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2069
2070 /* If more arguments than parameters, add dummy entries */
2071 for (i = min_len + 1; i <= nargs; i++)
2072 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2073
2074 return bv;
2075 }
2076
2077 /* Compare the names of two integer types, assuming that any sign
2078 qualifiers have been checked already. We do it this way because
2079 there may be an "int" in the name of one of the types. */
2080
2081 static int
2082 integer_types_same_name_p (const char *first, const char *second)
2083 {
2084 int first_p, second_p;
2085
2086 /* If both are shorts, return 1; if neither is a short, keep
2087 checking. */
2088 first_p = (strstr (first, "short") != NULL);
2089 second_p = (strstr (second, "short") != NULL);
2090 if (first_p && second_p)
2091 return 1;
2092 if (first_p || second_p)
2093 return 0;
2094
2095 /* Likewise for long. */
2096 first_p = (strstr (first, "long") != NULL);
2097 second_p = (strstr (second, "long") != NULL);
2098 if (first_p && second_p)
2099 return 1;
2100 if (first_p || second_p)
2101 return 0;
2102
2103 /* Likewise for char. */
2104 first_p = (strstr (first, "char") != NULL);
2105 second_p = (strstr (second, "char") != NULL);
2106 if (first_p && second_p)
2107 return 1;
2108 if (first_p || second_p)
2109 return 0;
2110
2111 /* They must both be ints. */
2112 return 1;
2113 }
2114
2115 /* Compare one type (PARM) for compatibility with another (ARG).
2116 * PARM is intended to be the parameter type of a function; and
2117 * ARG is the supplied argument's type. This function tests if
2118 * the latter can be converted to the former.
2119 *
2120 * Return 0 if they are identical types;
2121 * Otherwise, return an integer which corresponds to how compatible
2122 * PARM is to ARG. The higher the return value, the worse the match.
2123 * Generally the "bad" conversions are all uniformly assigned a 100. */
2124
2125 int
2126 rank_one_type (struct type *parm, struct type *arg)
2127 {
2128 /* Identical type pointers. */
2129 /* However, this still doesn't catch all cases of same type for arg
2130 and param. The reason is that builtin types are different from
2131 the same ones constructed from the object. */
2132 if (parm == arg)
2133 return 0;
2134
2135 /* Resolve typedefs */
2136 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2137 parm = check_typedef (parm);
2138 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2139 arg = check_typedef (arg);
2140
2141 /*
2142 Well, damnit, if the names are exactly the same, I'll say they
2143 are exactly the same. This happens when we generate method
2144 stubs. The types won't point to the same address, but they
2145 really are the same.
2146 */
2147
2148 if (TYPE_NAME (parm) && TYPE_NAME (arg)
2149 && !strcmp (TYPE_NAME (parm), TYPE_NAME (arg)))
2150 return 0;
2151
2152 /* Check if identical after resolving typedefs. */
2153 if (parm == arg)
2154 return 0;
2155
2156 /* See through references, since we can almost make non-references
2157 references. */
2158 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2159 return (rank_one_type (parm, TYPE_TARGET_TYPE (arg))
2160 + REFERENCE_CONVERSION_BADNESS);
2161 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2162 return (rank_one_type (TYPE_TARGET_TYPE (parm), arg)
2163 + REFERENCE_CONVERSION_BADNESS);
2164 if (overload_debug)
2165 /* Debugging only. */
2166 fprintf_filtered (gdb_stderr,
2167 "------ Arg is %s [%d], parm is %s [%d]\n",
2168 TYPE_NAME (arg), TYPE_CODE (arg),
2169 TYPE_NAME (parm), TYPE_CODE (parm));
2170
2171 /* x -> y means arg of type x being supplied for parameter of type y */
2172
2173 switch (TYPE_CODE (parm))
2174 {
2175 case TYPE_CODE_PTR:
2176 switch (TYPE_CODE (arg))
2177 {
2178 case TYPE_CODE_PTR:
2179 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID
2180 && TYPE_CODE (TYPE_TARGET_TYPE (arg)) != TYPE_CODE_VOID)
2181 return VOID_PTR_CONVERSION_BADNESS;
2182 else
2183 return rank_one_type (TYPE_TARGET_TYPE (parm),
2184 TYPE_TARGET_TYPE (arg));
2185 case TYPE_CODE_ARRAY:
2186 return rank_one_type (TYPE_TARGET_TYPE (parm),
2187 TYPE_TARGET_TYPE (arg));
2188 case TYPE_CODE_FUNC:
2189 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2190 case TYPE_CODE_INT:
2191 case TYPE_CODE_ENUM:
2192 case TYPE_CODE_FLAGS:
2193 case TYPE_CODE_CHAR:
2194 case TYPE_CODE_RANGE:
2195 case TYPE_CODE_BOOL:
2196 return POINTER_CONVERSION_BADNESS;
2197 default:
2198 return INCOMPATIBLE_TYPE_BADNESS;
2199 }
2200 case TYPE_CODE_ARRAY:
2201 switch (TYPE_CODE (arg))
2202 {
2203 case TYPE_CODE_PTR:
2204 case TYPE_CODE_ARRAY:
2205 return rank_one_type (TYPE_TARGET_TYPE (parm),
2206 TYPE_TARGET_TYPE (arg));
2207 default:
2208 return INCOMPATIBLE_TYPE_BADNESS;
2209 }
2210 case TYPE_CODE_FUNC:
2211 switch (TYPE_CODE (arg))
2212 {
2213 case TYPE_CODE_PTR: /* funcptr -> func */
2214 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2215 default:
2216 return INCOMPATIBLE_TYPE_BADNESS;
2217 }
2218 case TYPE_CODE_INT:
2219 switch (TYPE_CODE (arg))
2220 {
2221 case TYPE_CODE_INT:
2222 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2223 {
2224 /* Deal with signed, unsigned, and plain chars and
2225 signed and unsigned ints. */
2226 if (TYPE_NOSIGN (parm))
2227 {
2228 /* This case only for character types */
2229 if (TYPE_NOSIGN (arg))
2230 return 0; /* plain char -> plain char */
2231 else /* signed/unsigned char -> plain char */
2232 return INTEGER_CONVERSION_BADNESS;
2233 }
2234 else if (TYPE_UNSIGNED (parm))
2235 {
2236 if (TYPE_UNSIGNED (arg))
2237 {
2238 /* unsigned int -> unsigned int, or
2239 unsigned long -> unsigned long */
2240 if (integer_types_same_name_p (TYPE_NAME (parm),
2241 TYPE_NAME (arg)))
2242 return 0;
2243 else if (integer_types_same_name_p (TYPE_NAME (arg),
2244 "int")
2245 && integer_types_same_name_p (TYPE_NAME (parm),
2246 "long"))
2247 return INTEGER_PROMOTION_BADNESS; /* unsigned int -> unsigned long */
2248 else
2249 return INTEGER_CONVERSION_BADNESS; /* unsigned long -> unsigned int */
2250 }
2251 else
2252 {
2253 if (integer_types_same_name_p (TYPE_NAME (arg),
2254 "long")
2255 && integer_types_same_name_p (TYPE_NAME (parm),
2256 "int"))
2257 return INTEGER_CONVERSION_BADNESS; /* signed long -> unsigned int */
2258 else
2259 return INTEGER_CONVERSION_BADNESS; /* signed int/long -> unsigned int/long */
2260 }
2261 }
2262 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2263 {
2264 if (integer_types_same_name_p (TYPE_NAME (parm),
2265 TYPE_NAME (arg)))
2266 return 0;
2267 else if (integer_types_same_name_p (TYPE_NAME (arg),
2268 "int")
2269 && integer_types_same_name_p (TYPE_NAME (parm),
2270 "long"))
2271 return INTEGER_PROMOTION_BADNESS;
2272 else
2273 return INTEGER_CONVERSION_BADNESS;
2274 }
2275 else
2276 return INTEGER_CONVERSION_BADNESS;
2277 }
2278 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2279 return INTEGER_PROMOTION_BADNESS;
2280 else
2281 return INTEGER_CONVERSION_BADNESS;
2282 case TYPE_CODE_ENUM:
2283 case TYPE_CODE_FLAGS:
2284 case TYPE_CODE_CHAR:
2285 case TYPE_CODE_RANGE:
2286 case TYPE_CODE_BOOL:
2287 return INTEGER_PROMOTION_BADNESS;
2288 case TYPE_CODE_FLT:
2289 return INT_FLOAT_CONVERSION_BADNESS;
2290 case TYPE_CODE_PTR:
2291 return NS_POINTER_CONVERSION_BADNESS;
2292 default:
2293 return INCOMPATIBLE_TYPE_BADNESS;
2294 }
2295 break;
2296 case TYPE_CODE_ENUM:
2297 switch (TYPE_CODE (arg))
2298 {
2299 case TYPE_CODE_INT:
2300 case TYPE_CODE_CHAR:
2301 case TYPE_CODE_RANGE:
2302 case TYPE_CODE_BOOL:
2303 case TYPE_CODE_ENUM:
2304 return INTEGER_CONVERSION_BADNESS;
2305 case TYPE_CODE_FLT:
2306 return INT_FLOAT_CONVERSION_BADNESS;
2307 default:
2308 return INCOMPATIBLE_TYPE_BADNESS;
2309 }
2310 break;
2311 case TYPE_CODE_CHAR:
2312 switch (TYPE_CODE (arg))
2313 {
2314 case TYPE_CODE_RANGE:
2315 case TYPE_CODE_BOOL:
2316 case TYPE_CODE_ENUM:
2317 return INTEGER_CONVERSION_BADNESS;
2318 case TYPE_CODE_FLT:
2319 return INT_FLOAT_CONVERSION_BADNESS;
2320 case TYPE_CODE_INT:
2321 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2322 return INTEGER_CONVERSION_BADNESS;
2323 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2324 return INTEGER_PROMOTION_BADNESS;
2325 /* >>> !! else fall through !! <<< */
2326 case TYPE_CODE_CHAR:
2327 /* Deal with signed, unsigned, and plain chars for C++ and
2328 with int cases falling through from previous case. */
2329 if (TYPE_NOSIGN (parm))
2330 {
2331 if (TYPE_NOSIGN (arg))
2332 return 0;
2333 else
2334 return INTEGER_CONVERSION_BADNESS;
2335 }
2336 else if (TYPE_UNSIGNED (parm))
2337 {
2338 if (TYPE_UNSIGNED (arg))
2339 return 0;
2340 else
2341 return INTEGER_PROMOTION_BADNESS;
2342 }
2343 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2344 return 0;
2345 else
2346 return INTEGER_CONVERSION_BADNESS;
2347 default:
2348 return INCOMPATIBLE_TYPE_BADNESS;
2349 }
2350 break;
2351 case TYPE_CODE_RANGE:
2352 switch (TYPE_CODE (arg))
2353 {
2354 case TYPE_CODE_INT:
2355 case TYPE_CODE_CHAR:
2356 case TYPE_CODE_RANGE:
2357 case TYPE_CODE_BOOL:
2358 case TYPE_CODE_ENUM:
2359 return INTEGER_CONVERSION_BADNESS;
2360 case TYPE_CODE_FLT:
2361 return INT_FLOAT_CONVERSION_BADNESS;
2362 default:
2363 return INCOMPATIBLE_TYPE_BADNESS;
2364 }
2365 break;
2366 case TYPE_CODE_BOOL:
2367 switch (TYPE_CODE (arg))
2368 {
2369 case TYPE_CODE_INT:
2370 case TYPE_CODE_CHAR:
2371 case TYPE_CODE_RANGE:
2372 case TYPE_CODE_ENUM:
2373 case TYPE_CODE_FLT:
2374 case TYPE_CODE_PTR:
2375 return BOOLEAN_CONVERSION_BADNESS;
2376 case TYPE_CODE_BOOL:
2377 return 0;
2378 default:
2379 return INCOMPATIBLE_TYPE_BADNESS;
2380 }
2381 break;
2382 case TYPE_CODE_FLT:
2383 switch (TYPE_CODE (arg))
2384 {
2385 case TYPE_CODE_FLT:
2386 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2387 return FLOAT_PROMOTION_BADNESS;
2388 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2389 return 0;
2390 else
2391 return FLOAT_CONVERSION_BADNESS;
2392 case TYPE_CODE_INT:
2393 case TYPE_CODE_BOOL:
2394 case TYPE_CODE_ENUM:
2395 case TYPE_CODE_RANGE:
2396 case TYPE_CODE_CHAR:
2397 return INT_FLOAT_CONVERSION_BADNESS;
2398 default:
2399 return INCOMPATIBLE_TYPE_BADNESS;
2400 }
2401 break;
2402 case TYPE_CODE_COMPLEX:
2403 switch (TYPE_CODE (arg))
2404 { /* Strictly not needed for C++, but... */
2405 case TYPE_CODE_FLT:
2406 return FLOAT_PROMOTION_BADNESS;
2407 case TYPE_CODE_COMPLEX:
2408 return 0;
2409 default:
2410 return INCOMPATIBLE_TYPE_BADNESS;
2411 }
2412 break;
2413 case TYPE_CODE_STRUCT:
2414 /* currently same as TYPE_CODE_CLASS */
2415 switch (TYPE_CODE (arg))
2416 {
2417 case TYPE_CODE_STRUCT:
2418 /* Check for derivation */
2419 if (is_ancestor (parm, arg))
2420 return BASE_CONVERSION_BADNESS;
2421 /* else fall through */
2422 default:
2423 return INCOMPATIBLE_TYPE_BADNESS;
2424 }
2425 break;
2426 case TYPE_CODE_UNION:
2427 switch (TYPE_CODE (arg))
2428 {
2429 case TYPE_CODE_UNION:
2430 default:
2431 return INCOMPATIBLE_TYPE_BADNESS;
2432 }
2433 break;
2434 case TYPE_CODE_MEMBERPTR:
2435 switch (TYPE_CODE (arg))
2436 {
2437 default:
2438 return INCOMPATIBLE_TYPE_BADNESS;
2439 }
2440 break;
2441 case TYPE_CODE_METHOD:
2442 switch (TYPE_CODE (arg))
2443 {
2444
2445 default:
2446 return INCOMPATIBLE_TYPE_BADNESS;
2447 }
2448 break;
2449 case TYPE_CODE_REF:
2450 switch (TYPE_CODE (arg))
2451 {
2452
2453 default:
2454 return INCOMPATIBLE_TYPE_BADNESS;
2455 }
2456
2457 break;
2458 case TYPE_CODE_SET:
2459 switch (TYPE_CODE (arg))
2460 {
2461 /* Not in C++ */
2462 case TYPE_CODE_SET:
2463 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2464 TYPE_FIELD_TYPE (arg, 0));
2465 default:
2466 return INCOMPATIBLE_TYPE_BADNESS;
2467 }
2468 break;
2469 case TYPE_CODE_VOID:
2470 default:
2471 return INCOMPATIBLE_TYPE_BADNESS;
2472 } /* switch (TYPE_CODE (arg)) */
2473 }
2474
2475
2476 /* End of functions for overload resolution */
2477
2478 static void
2479 print_bit_vector (B_TYPE *bits, int nbits)
2480 {
2481 int bitno;
2482
2483 for (bitno = 0; bitno < nbits; bitno++)
2484 {
2485 if ((bitno % 8) == 0)
2486 {
2487 puts_filtered (" ");
2488 }
2489 if (B_TST (bits, bitno))
2490 printf_filtered (("1"));
2491 else
2492 printf_filtered (("0"));
2493 }
2494 }
2495
2496 /* Note the first arg should be the "this" pointer, we may not want to
2497 include it since we may get into a infinitely recursive
2498 situation. */
2499
2500 static void
2501 print_arg_types (struct field *args, int nargs, int spaces)
2502 {
2503 if (args != NULL)
2504 {
2505 int i;
2506
2507 for (i = 0; i < nargs; i++)
2508 recursive_dump_type (args[i].type, spaces + 2);
2509 }
2510 }
2511
2512 int
2513 field_is_static (struct field *f)
2514 {
2515 /* "static" fields are the fields whose location is not relative
2516 to the address of the enclosing struct. It would be nice to
2517 have a dedicated flag that would be set for static fields when
2518 the type is being created. But in practice, checking the field
2519 loc_kind should give us an accurate answer. */
2520 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2521 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2522 }
2523
2524 static void
2525 dump_fn_fieldlists (struct type *type, int spaces)
2526 {
2527 int method_idx;
2528 int overload_idx;
2529 struct fn_field *f;
2530
2531 printfi_filtered (spaces, "fn_fieldlists ");
2532 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2533 printf_filtered ("\n");
2534 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2535 {
2536 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2537 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2538 method_idx,
2539 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2540 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2541 gdb_stdout);
2542 printf_filtered (_(") length %d\n"),
2543 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2544 for (overload_idx = 0;
2545 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2546 overload_idx++)
2547 {
2548 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2549 overload_idx,
2550 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2551 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2552 gdb_stdout);
2553 printf_filtered (")\n");
2554 printfi_filtered (spaces + 8, "type ");
2555 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2556 gdb_stdout);
2557 printf_filtered ("\n");
2558
2559 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2560 spaces + 8 + 2);
2561
2562 printfi_filtered (spaces + 8, "args ");
2563 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2564 gdb_stdout);
2565 printf_filtered ("\n");
2566
2567 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2568 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2569 overload_idx)),
2570 spaces);
2571 printfi_filtered (spaces + 8, "fcontext ");
2572 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2573 gdb_stdout);
2574 printf_filtered ("\n");
2575
2576 printfi_filtered (spaces + 8, "is_const %d\n",
2577 TYPE_FN_FIELD_CONST (f, overload_idx));
2578 printfi_filtered (spaces + 8, "is_volatile %d\n",
2579 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2580 printfi_filtered (spaces + 8, "is_private %d\n",
2581 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2582 printfi_filtered (spaces + 8, "is_protected %d\n",
2583 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2584 printfi_filtered (spaces + 8, "is_stub %d\n",
2585 TYPE_FN_FIELD_STUB (f, overload_idx));
2586 printfi_filtered (spaces + 8, "voffset %u\n",
2587 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2588 }
2589 }
2590 }
2591
2592 static void
2593 print_cplus_stuff (struct type *type, int spaces)
2594 {
2595 printfi_filtered (spaces, "n_baseclasses %d\n",
2596 TYPE_N_BASECLASSES (type));
2597 printfi_filtered (spaces, "nfn_fields %d\n",
2598 TYPE_NFN_FIELDS (type));
2599 printfi_filtered (spaces, "nfn_fields_total %d\n",
2600 TYPE_NFN_FIELDS_TOTAL (type));
2601 if (TYPE_N_BASECLASSES (type) > 0)
2602 {
2603 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2604 TYPE_N_BASECLASSES (type));
2605 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2606 gdb_stdout);
2607 printf_filtered (")");
2608
2609 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2610 TYPE_N_BASECLASSES (type));
2611 puts_filtered ("\n");
2612 }
2613 if (TYPE_NFIELDS (type) > 0)
2614 {
2615 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2616 {
2617 printfi_filtered (spaces,
2618 "private_field_bits (%d bits at *",
2619 TYPE_NFIELDS (type));
2620 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2621 gdb_stdout);
2622 printf_filtered (")");
2623 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2624 TYPE_NFIELDS (type));
2625 puts_filtered ("\n");
2626 }
2627 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2628 {
2629 printfi_filtered (spaces,
2630 "protected_field_bits (%d bits at *",
2631 TYPE_NFIELDS (type));
2632 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2633 gdb_stdout);
2634 printf_filtered (")");
2635 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2636 TYPE_NFIELDS (type));
2637 puts_filtered ("\n");
2638 }
2639 }
2640 if (TYPE_NFN_FIELDS (type) > 0)
2641 {
2642 dump_fn_fieldlists (type, spaces);
2643 }
2644 }
2645
2646 /* Print the contents of the TYPE's type_specific union, assuming that
2647 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2648
2649 static void
2650 print_gnat_stuff (struct type *type, int spaces)
2651 {
2652 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2653
2654 recursive_dump_type (descriptive_type, spaces + 2);
2655 }
2656
2657 static struct obstack dont_print_type_obstack;
2658
2659 void
2660 recursive_dump_type (struct type *type, int spaces)
2661 {
2662 int idx;
2663
2664 if (spaces == 0)
2665 obstack_begin (&dont_print_type_obstack, 0);
2666
2667 if (TYPE_NFIELDS (type) > 0
2668 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2669 {
2670 struct type **first_dont_print
2671 = (struct type **) obstack_base (&dont_print_type_obstack);
2672
2673 int i = (struct type **)
2674 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2675
2676 while (--i >= 0)
2677 {
2678 if (type == first_dont_print[i])
2679 {
2680 printfi_filtered (spaces, "type node ");
2681 gdb_print_host_address (type, gdb_stdout);
2682 printf_filtered (_(" <same as already seen type>\n"));
2683 return;
2684 }
2685 }
2686
2687 obstack_ptr_grow (&dont_print_type_obstack, type);
2688 }
2689
2690 printfi_filtered (spaces, "type node ");
2691 gdb_print_host_address (type, gdb_stdout);
2692 printf_filtered ("\n");
2693 printfi_filtered (spaces, "name '%s' (",
2694 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2695 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2696 printf_filtered (")\n");
2697 printfi_filtered (spaces, "tagname '%s' (",
2698 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2699 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2700 printf_filtered (")\n");
2701 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2702 switch (TYPE_CODE (type))
2703 {
2704 case TYPE_CODE_UNDEF:
2705 printf_filtered ("(TYPE_CODE_UNDEF)");
2706 break;
2707 case TYPE_CODE_PTR:
2708 printf_filtered ("(TYPE_CODE_PTR)");
2709 break;
2710 case TYPE_CODE_ARRAY:
2711 printf_filtered ("(TYPE_CODE_ARRAY)");
2712 break;
2713 case TYPE_CODE_STRUCT:
2714 printf_filtered ("(TYPE_CODE_STRUCT)");
2715 break;
2716 case TYPE_CODE_UNION:
2717 printf_filtered ("(TYPE_CODE_UNION)");
2718 break;
2719 case TYPE_CODE_ENUM:
2720 printf_filtered ("(TYPE_CODE_ENUM)");
2721 break;
2722 case TYPE_CODE_FLAGS:
2723 printf_filtered ("(TYPE_CODE_FLAGS)");
2724 break;
2725 case TYPE_CODE_FUNC:
2726 printf_filtered ("(TYPE_CODE_FUNC)");
2727 break;
2728 case TYPE_CODE_INT:
2729 printf_filtered ("(TYPE_CODE_INT)");
2730 break;
2731 case TYPE_CODE_FLT:
2732 printf_filtered ("(TYPE_CODE_FLT)");
2733 break;
2734 case TYPE_CODE_VOID:
2735 printf_filtered ("(TYPE_CODE_VOID)");
2736 break;
2737 case TYPE_CODE_SET:
2738 printf_filtered ("(TYPE_CODE_SET)");
2739 break;
2740 case TYPE_CODE_RANGE:
2741 printf_filtered ("(TYPE_CODE_RANGE)");
2742 break;
2743 case TYPE_CODE_STRING:
2744 printf_filtered ("(TYPE_CODE_STRING)");
2745 break;
2746 case TYPE_CODE_BITSTRING:
2747 printf_filtered ("(TYPE_CODE_BITSTRING)");
2748 break;
2749 case TYPE_CODE_ERROR:
2750 printf_filtered ("(TYPE_CODE_ERROR)");
2751 break;
2752 case TYPE_CODE_MEMBERPTR:
2753 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
2754 break;
2755 case TYPE_CODE_METHODPTR:
2756 printf_filtered ("(TYPE_CODE_METHODPTR)");
2757 break;
2758 case TYPE_CODE_METHOD:
2759 printf_filtered ("(TYPE_CODE_METHOD)");
2760 break;
2761 case TYPE_CODE_REF:
2762 printf_filtered ("(TYPE_CODE_REF)");
2763 break;
2764 case TYPE_CODE_CHAR:
2765 printf_filtered ("(TYPE_CODE_CHAR)");
2766 break;
2767 case TYPE_CODE_BOOL:
2768 printf_filtered ("(TYPE_CODE_BOOL)");
2769 break;
2770 case TYPE_CODE_COMPLEX:
2771 printf_filtered ("(TYPE_CODE_COMPLEX)");
2772 break;
2773 case TYPE_CODE_TYPEDEF:
2774 printf_filtered ("(TYPE_CODE_TYPEDEF)");
2775 break;
2776 case TYPE_CODE_NAMESPACE:
2777 printf_filtered ("(TYPE_CODE_NAMESPACE)");
2778 break;
2779 default:
2780 printf_filtered ("(UNKNOWN TYPE CODE)");
2781 break;
2782 }
2783 puts_filtered ("\n");
2784 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
2785 if (TYPE_OBJFILE_OWNED (type))
2786 {
2787 printfi_filtered (spaces, "objfile ");
2788 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
2789 }
2790 else
2791 {
2792 printfi_filtered (spaces, "gdbarch ");
2793 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
2794 }
2795 printf_filtered ("\n");
2796 printfi_filtered (spaces, "target_type ");
2797 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
2798 printf_filtered ("\n");
2799 if (TYPE_TARGET_TYPE (type) != NULL)
2800 {
2801 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
2802 }
2803 printfi_filtered (spaces, "pointer_type ");
2804 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
2805 printf_filtered ("\n");
2806 printfi_filtered (spaces, "reference_type ");
2807 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
2808 printf_filtered ("\n");
2809 printfi_filtered (spaces, "type_chain ");
2810 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
2811 printf_filtered ("\n");
2812 printfi_filtered (spaces, "instance_flags 0x%x",
2813 TYPE_INSTANCE_FLAGS (type));
2814 if (TYPE_CONST (type))
2815 {
2816 puts_filtered (" TYPE_FLAG_CONST");
2817 }
2818 if (TYPE_VOLATILE (type))
2819 {
2820 puts_filtered (" TYPE_FLAG_VOLATILE");
2821 }
2822 if (TYPE_CODE_SPACE (type))
2823 {
2824 puts_filtered (" TYPE_FLAG_CODE_SPACE");
2825 }
2826 if (TYPE_DATA_SPACE (type))
2827 {
2828 puts_filtered (" TYPE_FLAG_DATA_SPACE");
2829 }
2830 if (TYPE_ADDRESS_CLASS_1 (type))
2831 {
2832 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
2833 }
2834 if (TYPE_ADDRESS_CLASS_2 (type))
2835 {
2836 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
2837 }
2838 puts_filtered ("\n");
2839
2840 printfi_filtered (spaces, "flags");
2841 if (TYPE_UNSIGNED (type))
2842 {
2843 puts_filtered (" TYPE_FLAG_UNSIGNED");
2844 }
2845 if (TYPE_NOSIGN (type))
2846 {
2847 puts_filtered (" TYPE_FLAG_NOSIGN");
2848 }
2849 if (TYPE_STUB (type))
2850 {
2851 puts_filtered (" TYPE_FLAG_STUB");
2852 }
2853 if (TYPE_TARGET_STUB (type))
2854 {
2855 puts_filtered (" TYPE_FLAG_TARGET_STUB");
2856 }
2857 if (TYPE_STATIC (type))
2858 {
2859 puts_filtered (" TYPE_FLAG_STATIC");
2860 }
2861 if (TYPE_PROTOTYPED (type))
2862 {
2863 puts_filtered (" TYPE_FLAG_PROTOTYPED");
2864 }
2865 if (TYPE_INCOMPLETE (type))
2866 {
2867 puts_filtered (" TYPE_FLAG_INCOMPLETE");
2868 }
2869 if (TYPE_VARARGS (type))
2870 {
2871 puts_filtered (" TYPE_FLAG_VARARGS");
2872 }
2873 /* This is used for things like AltiVec registers on ppc. Gcc emits
2874 an attribute for the array type, which tells whether or not we
2875 have a vector, instead of a regular array. */
2876 if (TYPE_VECTOR (type))
2877 {
2878 puts_filtered (" TYPE_FLAG_VECTOR");
2879 }
2880 if (TYPE_FIXED_INSTANCE (type))
2881 {
2882 puts_filtered (" TYPE_FIXED_INSTANCE");
2883 }
2884 if (TYPE_STUB_SUPPORTED (type))
2885 {
2886 puts_filtered (" TYPE_STUB_SUPPORTED");
2887 }
2888 if (TYPE_NOTTEXT (type))
2889 {
2890 puts_filtered (" TYPE_NOTTEXT");
2891 }
2892 puts_filtered ("\n");
2893 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
2894 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
2895 puts_filtered ("\n");
2896 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
2897 {
2898 printfi_filtered (spaces + 2,
2899 "[%d] bitpos %d bitsize %d type ",
2900 idx, TYPE_FIELD_BITPOS (type, idx),
2901 TYPE_FIELD_BITSIZE (type, idx));
2902 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
2903 printf_filtered (" name '%s' (",
2904 TYPE_FIELD_NAME (type, idx) != NULL
2905 ? TYPE_FIELD_NAME (type, idx)
2906 : "<NULL>");
2907 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
2908 printf_filtered (")\n");
2909 if (TYPE_FIELD_TYPE (type, idx) != NULL)
2910 {
2911 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
2912 }
2913 }
2914 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2915 {
2916 printfi_filtered (spaces, "low %s%s high %s%s\n",
2917 plongest (TYPE_LOW_BOUND (type)),
2918 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
2919 plongest (TYPE_HIGH_BOUND (type)),
2920 TYPE_HIGH_BOUND_UNDEFINED (type) ? " (undefined)" : "");
2921 }
2922 printfi_filtered (spaces, "vptr_basetype ");
2923 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
2924 puts_filtered ("\n");
2925 if (TYPE_VPTR_BASETYPE (type) != NULL)
2926 {
2927 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
2928 }
2929 printfi_filtered (spaces, "vptr_fieldno %d\n",
2930 TYPE_VPTR_FIELDNO (type));
2931
2932 switch (TYPE_SPECIFIC_FIELD (type))
2933 {
2934 case TYPE_SPECIFIC_CPLUS_STUFF:
2935 printfi_filtered (spaces, "cplus_stuff ");
2936 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
2937 gdb_stdout);
2938 puts_filtered ("\n");
2939 print_cplus_stuff (type, spaces);
2940 break;
2941
2942 case TYPE_SPECIFIC_GNAT_STUFF:
2943 printfi_filtered (spaces, "gnat_stuff ");
2944 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
2945 puts_filtered ("\n");
2946 print_gnat_stuff (type, spaces);
2947 break;
2948
2949 case TYPE_SPECIFIC_FLOATFORMAT:
2950 printfi_filtered (spaces, "floatformat ");
2951 if (TYPE_FLOATFORMAT (type) == NULL)
2952 puts_filtered ("(null)");
2953 else
2954 {
2955 puts_filtered ("{ ");
2956 if (TYPE_FLOATFORMAT (type)[0] == NULL
2957 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
2958 puts_filtered ("(null)");
2959 else
2960 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
2961
2962 puts_filtered (", ");
2963 if (TYPE_FLOATFORMAT (type)[1] == NULL
2964 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
2965 puts_filtered ("(null)");
2966 else
2967 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
2968
2969 puts_filtered (" }");
2970 }
2971 puts_filtered ("\n");
2972 break;
2973
2974 case TYPE_SPECIFIC_CALLING_CONVENTION:
2975 printfi_filtered (spaces, "calling_convention %d\n",
2976 TYPE_CALLING_CONVENTION (type));
2977 break;
2978 }
2979
2980 if (spaces == 0)
2981 obstack_free (&dont_print_type_obstack, NULL);
2982 }
2983
2984 /* Trivial helpers for the libiberty hash table, for mapping one
2985 type to another. */
2986
2987 struct type_pair
2988 {
2989 struct type *old, *new;
2990 };
2991
2992 static hashval_t
2993 type_pair_hash (const void *item)
2994 {
2995 const struct type_pair *pair = item;
2996
2997 return htab_hash_pointer (pair->old);
2998 }
2999
3000 static int
3001 type_pair_eq (const void *item_lhs, const void *item_rhs)
3002 {
3003 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3004
3005 return lhs->old == rhs->old;
3006 }
3007
3008 /* Allocate the hash table used by copy_type_recursive to walk
3009 types without duplicates. We use OBJFILE's obstack, because
3010 OBJFILE is about to be deleted. */
3011
3012 htab_t
3013 create_copied_types_hash (struct objfile *objfile)
3014 {
3015 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3016 NULL, &objfile->objfile_obstack,
3017 hashtab_obstack_allocate,
3018 dummy_obstack_deallocate);
3019 }
3020
3021 /* Recursively copy (deep copy) TYPE, if it is associated with
3022 OBJFILE. Return a new type allocated using malloc, a saved type if
3023 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3024 not associated with OBJFILE. */
3025
3026 struct type *
3027 copy_type_recursive (struct objfile *objfile,
3028 struct type *type,
3029 htab_t copied_types)
3030 {
3031 struct type_pair *stored, pair;
3032 void **slot;
3033 struct type *new_type;
3034
3035 if (! TYPE_OBJFILE_OWNED (type))
3036 return type;
3037
3038 /* This type shouldn't be pointing to any types in other objfiles;
3039 if it did, the type might disappear unexpectedly. */
3040 gdb_assert (TYPE_OBJFILE (type) == objfile);
3041
3042 pair.old = type;
3043 slot = htab_find_slot (copied_types, &pair, INSERT);
3044 if (*slot != NULL)
3045 return ((struct type_pair *) *slot)->new;
3046
3047 new_type = alloc_type_arch (get_type_arch (type));
3048
3049 /* We must add the new type to the hash table immediately, in case
3050 we encounter this type again during a recursive call below. */
3051 stored = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3052 stored->old = type;
3053 stored->new = new_type;
3054 *slot = stored;
3055
3056 /* Copy the common fields of types. For the main type, we simply
3057 copy the entire thing and then update specific fields as needed. */
3058 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3059 TYPE_OBJFILE_OWNED (new_type) = 0;
3060 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3061
3062 if (TYPE_NAME (type))
3063 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3064 if (TYPE_TAG_NAME (type))
3065 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3066
3067 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3068 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3069
3070 /* Copy the fields. */
3071 if (TYPE_NFIELDS (type))
3072 {
3073 int i, nfields;
3074
3075 nfields = TYPE_NFIELDS (type);
3076 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3077 for (i = 0; i < nfields; i++)
3078 {
3079 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3080 TYPE_FIELD_ARTIFICIAL (type, i);
3081 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3082 if (TYPE_FIELD_TYPE (type, i))
3083 TYPE_FIELD_TYPE (new_type, i)
3084 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3085 copied_types);
3086 if (TYPE_FIELD_NAME (type, i))
3087 TYPE_FIELD_NAME (new_type, i) =
3088 xstrdup (TYPE_FIELD_NAME (type, i));
3089 switch (TYPE_FIELD_LOC_KIND (type, i))
3090 {
3091 case FIELD_LOC_KIND_BITPOS:
3092 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3093 TYPE_FIELD_BITPOS (type, i));
3094 break;
3095 case FIELD_LOC_KIND_PHYSADDR:
3096 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3097 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3098 break;
3099 case FIELD_LOC_KIND_PHYSNAME:
3100 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3101 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3102 i)));
3103 break;
3104 default:
3105 internal_error (__FILE__, __LINE__,
3106 _("Unexpected type field location kind: %d"),
3107 TYPE_FIELD_LOC_KIND (type, i));
3108 }
3109 }
3110 }
3111
3112 /* For range types, copy the bounds information. */
3113 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3114 {
3115 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3116 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3117 }
3118
3119 /* Copy pointers to other types. */
3120 if (TYPE_TARGET_TYPE (type))
3121 TYPE_TARGET_TYPE (new_type) =
3122 copy_type_recursive (objfile,
3123 TYPE_TARGET_TYPE (type),
3124 copied_types);
3125 if (TYPE_VPTR_BASETYPE (type))
3126 TYPE_VPTR_BASETYPE (new_type) =
3127 copy_type_recursive (objfile,
3128 TYPE_VPTR_BASETYPE (type),
3129 copied_types);
3130 /* Maybe copy the type_specific bits.
3131
3132 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3133 base classes and methods. There's no fundamental reason why we
3134 can't, but at the moment it is not needed. */
3135
3136 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3137 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3138 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3139 || TYPE_CODE (type) == TYPE_CODE_UNION
3140 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3141 INIT_CPLUS_SPECIFIC (new_type);
3142
3143 return new_type;
3144 }
3145
3146 /* Make a copy of the given TYPE, except that the pointer & reference
3147 types are not preserved.
3148
3149 This function assumes that the given type has an associated objfile.
3150 This objfile is used to allocate the new type. */
3151
3152 struct type *
3153 copy_type (const struct type *type)
3154 {
3155 struct type *new_type;
3156
3157 gdb_assert (TYPE_OBJFILE_OWNED (type));
3158
3159 new_type = alloc_type_copy (type);
3160 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3161 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3162 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3163 sizeof (struct main_type));
3164
3165 return new_type;
3166 }
3167
3168
3169 /* Helper functions to initialize architecture-specific types. */
3170
3171 /* Allocate a type structure associated with GDBARCH and set its
3172 CODE, LENGTH, and NAME fields. */
3173 struct type *
3174 arch_type (struct gdbarch *gdbarch,
3175 enum type_code code, int length, char *name)
3176 {
3177 struct type *type;
3178
3179 type = alloc_type_arch (gdbarch);
3180 TYPE_CODE (type) = code;
3181 TYPE_LENGTH (type) = length;
3182
3183 if (name)
3184 TYPE_NAME (type) = xstrdup (name);
3185
3186 return type;
3187 }
3188
3189 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3190 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3191 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3192 struct type *
3193 arch_integer_type (struct gdbarch *gdbarch,
3194 int bit, int unsigned_p, char *name)
3195 {
3196 struct type *t;
3197
3198 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3199 if (unsigned_p)
3200 TYPE_UNSIGNED (t) = 1;
3201 if (name && strcmp (name, "char") == 0)
3202 TYPE_NOSIGN (t) = 1;
3203
3204 return t;
3205 }
3206
3207 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3208 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3209 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3210 struct type *
3211 arch_character_type (struct gdbarch *gdbarch,
3212 int bit, int unsigned_p, char *name)
3213 {
3214 struct type *t;
3215
3216 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3217 if (unsigned_p)
3218 TYPE_UNSIGNED (t) = 1;
3219
3220 return t;
3221 }
3222
3223 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3224 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3225 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3226 struct type *
3227 arch_boolean_type (struct gdbarch *gdbarch,
3228 int bit, int unsigned_p, char *name)
3229 {
3230 struct type *t;
3231
3232 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3233 if (unsigned_p)
3234 TYPE_UNSIGNED (t) = 1;
3235
3236 return t;
3237 }
3238
3239 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3240 BIT is the type size in bits; if BIT equals -1, the size is
3241 determined by the floatformat. NAME is the type name. Set the
3242 TYPE_FLOATFORMAT from FLOATFORMATS. */
3243 struct type *
3244 arch_float_type (struct gdbarch *gdbarch,
3245 int bit, char *name, const struct floatformat **floatformats)
3246 {
3247 struct type *t;
3248
3249 if (bit == -1)
3250 {
3251 gdb_assert (floatformats != NULL);
3252 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3253 bit = floatformats[0]->totalsize;
3254 }
3255 gdb_assert (bit >= 0);
3256
3257 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3258 TYPE_FLOATFORMAT (t) = floatformats;
3259 return t;
3260 }
3261
3262 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3263 NAME is the type name. TARGET_TYPE is the component float type. */
3264 struct type *
3265 arch_complex_type (struct gdbarch *gdbarch,
3266 char *name, struct type *target_type)
3267 {
3268 struct type *t;
3269
3270 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3271 2 * TYPE_LENGTH (target_type), name);
3272 TYPE_TARGET_TYPE (t) = target_type;
3273 return t;
3274 }
3275
3276 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3277 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3278 struct type *
3279 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3280 {
3281 int nfields = length * TARGET_CHAR_BIT;
3282 struct type *type;
3283
3284 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3285 TYPE_UNSIGNED (type) = 1;
3286 TYPE_NFIELDS (type) = nfields;
3287 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3288
3289 return type;
3290 }
3291
3292 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3293 position BITPOS is called NAME. */
3294 void
3295 append_flags_type_flag (struct type *type, int bitpos, char *name)
3296 {
3297 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3298 gdb_assert (bitpos < TYPE_NFIELDS (type));
3299 gdb_assert (bitpos >= 0);
3300
3301 if (name)
3302 {
3303 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3304 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3305 }
3306 else
3307 {
3308 /* Don't show this field to the user. */
3309 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3310 }
3311 }
3312
3313 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3314 specified by CODE) associated with GDBARCH. NAME is the type name. */
3315 struct type *
3316 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3317 {
3318 struct type *t;
3319
3320 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3321 t = arch_type (gdbarch, code, 0, NULL);
3322 TYPE_TAG_NAME (t) = name;
3323 INIT_CPLUS_SPECIFIC (t);
3324 return t;
3325 }
3326
3327 /* Add new field with name NAME and type FIELD to composite type T.
3328 Do not set the field's position or adjust the type's length;
3329 the caller should do so. Return the new field. */
3330 struct field *
3331 append_composite_type_field_raw (struct type *t, char *name,
3332 struct type *field)
3333 {
3334 struct field *f;
3335
3336 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3337 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3338 sizeof (struct field) * TYPE_NFIELDS (t));
3339 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3340 memset (f, 0, sizeof f[0]);
3341 FIELD_TYPE (f[0]) = field;
3342 FIELD_NAME (f[0]) = name;
3343 return f;
3344 }
3345
3346 /* Add new field with name NAME and type FIELD to composite type T.
3347 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3348 void
3349 append_composite_type_field_aligned (struct type *t, char *name,
3350 struct type *field, int alignment)
3351 {
3352 struct field *f = append_composite_type_field_raw (t, name, field);
3353
3354 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3355 {
3356 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3357 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3358 }
3359 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3360 {
3361 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3362 if (TYPE_NFIELDS (t) > 1)
3363 {
3364 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3365 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3366 * TARGET_CHAR_BIT));
3367
3368 if (alignment)
3369 {
3370 int left = FIELD_BITPOS (f[0]) % (alignment * TARGET_CHAR_BIT);
3371
3372 if (left)
3373 {
3374 FIELD_BITPOS (f[0]) += left;
3375 TYPE_LENGTH (t) += left / TARGET_CHAR_BIT;
3376 }
3377 }
3378 }
3379 }
3380 }
3381
3382 /* Add new field with name NAME and type FIELD to composite type T. */
3383 void
3384 append_composite_type_field (struct type *t, char *name,
3385 struct type *field)
3386 {
3387 append_composite_type_field_aligned (t, name, field, 0);
3388 }
3389
3390
3391 static struct gdbarch_data *gdbtypes_data;
3392
3393 const struct builtin_type *
3394 builtin_type (struct gdbarch *gdbarch)
3395 {
3396 return gdbarch_data (gdbarch, gdbtypes_data);
3397 }
3398
3399 static void *
3400 gdbtypes_post_init (struct gdbarch *gdbarch)
3401 {
3402 struct builtin_type *builtin_type
3403 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3404
3405 /* Basic types. */
3406 builtin_type->builtin_void
3407 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3408 builtin_type->builtin_char
3409 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3410 !gdbarch_char_signed (gdbarch), "char");
3411 builtin_type->builtin_signed_char
3412 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3413 0, "signed char");
3414 builtin_type->builtin_unsigned_char
3415 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3416 1, "unsigned char");
3417 builtin_type->builtin_short
3418 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3419 0, "short");
3420 builtin_type->builtin_unsigned_short
3421 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3422 1, "unsigned short");
3423 builtin_type->builtin_int
3424 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3425 0, "int");
3426 builtin_type->builtin_unsigned_int
3427 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3428 1, "unsigned int");
3429 builtin_type->builtin_long
3430 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3431 0, "long");
3432 builtin_type->builtin_unsigned_long
3433 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3434 1, "unsigned long");
3435 builtin_type->builtin_long_long
3436 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3437 0, "long long");
3438 builtin_type->builtin_unsigned_long_long
3439 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3440 1, "unsigned long long");
3441 builtin_type->builtin_float
3442 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3443 "float", gdbarch_float_format (gdbarch));
3444 builtin_type->builtin_double
3445 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3446 "double", gdbarch_double_format (gdbarch));
3447 builtin_type->builtin_long_double
3448 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3449 "long double", gdbarch_long_double_format (gdbarch));
3450 builtin_type->builtin_complex
3451 = arch_complex_type (gdbarch, "complex",
3452 builtin_type->builtin_float);
3453 builtin_type->builtin_double_complex
3454 = arch_complex_type (gdbarch, "double complex",
3455 builtin_type->builtin_double);
3456 builtin_type->builtin_string
3457 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3458 builtin_type->builtin_bool
3459 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3460
3461 /* The following three are about decimal floating point types, which
3462 are 32-bits, 64-bits and 128-bits respectively. */
3463 builtin_type->builtin_decfloat
3464 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3465 builtin_type->builtin_decdouble
3466 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3467 builtin_type->builtin_declong
3468 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3469
3470 /* "True" character types. */
3471 builtin_type->builtin_true_char
3472 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3473 builtin_type->builtin_true_unsigned_char
3474 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3475
3476 /* Fixed-size integer types. */
3477 builtin_type->builtin_int0
3478 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3479 builtin_type->builtin_int8
3480 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3481 builtin_type->builtin_uint8
3482 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3483 builtin_type->builtin_int16
3484 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3485 builtin_type->builtin_uint16
3486 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3487 builtin_type->builtin_int32
3488 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3489 builtin_type->builtin_uint32
3490 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3491 builtin_type->builtin_int64
3492 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3493 builtin_type->builtin_uint64
3494 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3495 builtin_type->builtin_int128
3496 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3497 builtin_type->builtin_uint128
3498 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3499 TYPE_NOTTEXT (builtin_type->builtin_int8) = 1;
3500 TYPE_NOTTEXT (builtin_type->builtin_uint8) = 1;
3501
3502 /* Wide character types. */
3503 builtin_type->builtin_char16
3504 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3505 builtin_type->builtin_char32
3506 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3507
3508
3509 /* Default data/code pointer types. */
3510 builtin_type->builtin_data_ptr
3511 = lookup_pointer_type (builtin_type->builtin_void);
3512 builtin_type->builtin_func_ptr
3513 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3514
3515 /* This type represents a GDB internal function. */
3516 builtin_type->internal_fn
3517 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3518 "<internal function>");
3519
3520 return builtin_type;
3521 }
3522
3523
3524 /* This set of objfile-based types is intended to be used by symbol
3525 readers as basic types. */
3526
3527 static const struct objfile_data *objfile_type_data;
3528
3529 const struct objfile_type *
3530 objfile_type (struct objfile *objfile)
3531 {
3532 struct gdbarch *gdbarch;
3533 struct objfile_type *objfile_type
3534 = objfile_data (objfile, objfile_type_data);
3535
3536 if (objfile_type)
3537 return objfile_type;
3538
3539 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3540 1, struct objfile_type);
3541
3542 /* Use the objfile architecture to determine basic type properties. */
3543 gdbarch = get_objfile_arch (objfile);
3544
3545 /* Basic types. */
3546 objfile_type->builtin_void
3547 = init_type (TYPE_CODE_VOID, 1,
3548 0,
3549 "void", objfile);
3550
3551 objfile_type->builtin_char
3552 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3553 (TYPE_FLAG_NOSIGN
3554 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3555 "char", objfile);
3556 objfile_type->builtin_signed_char
3557 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3558 0,
3559 "signed char", objfile);
3560 objfile_type->builtin_unsigned_char
3561 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3562 TYPE_FLAG_UNSIGNED,
3563 "unsigned char", objfile);
3564 objfile_type->builtin_short
3565 = init_type (TYPE_CODE_INT,
3566 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3567 0, "short", objfile);
3568 objfile_type->builtin_unsigned_short
3569 = init_type (TYPE_CODE_INT,
3570 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3571 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3572 objfile_type->builtin_int
3573 = init_type (TYPE_CODE_INT,
3574 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3575 0, "int", objfile);
3576 objfile_type->builtin_unsigned_int
3577 = init_type (TYPE_CODE_INT,
3578 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3579 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3580 objfile_type->builtin_long
3581 = init_type (TYPE_CODE_INT,
3582 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3583 0, "long", objfile);
3584 objfile_type->builtin_unsigned_long
3585 = init_type (TYPE_CODE_INT,
3586 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3587 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3588 objfile_type->builtin_long_long
3589 = init_type (TYPE_CODE_INT,
3590 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3591 0, "long long", objfile);
3592 objfile_type->builtin_unsigned_long_long
3593 = init_type (TYPE_CODE_INT,
3594 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3595 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3596
3597 objfile_type->builtin_float
3598 = init_type (TYPE_CODE_FLT,
3599 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3600 0, "float", objfile);
3601 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3602 = gdbarch_float_format (gdbarch);
3603 objfile_type->builtin_double
3604 = init_type (TYPE_CODE_FLT,
3605 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3606 0, "double", objfile);
3607 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3608 = gdbarch_double_format (gdbarch);
3609 objfile_type->builtin_long_double
3610 = init_type (TYPE_CODE_FLT,
3611 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3612 0, "long double", objfile);
3613 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3614 = gdbarch_long_double_format (gdbarch);
3615
3616 /* This type represents a type that was unrecognized in symbol read-in. */
3617 objfile_type->builtin_error
3618 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3619
3620 /* The following set of types is used for symbols with no
3621 debug information. */
3622 objfile_type->nodebug_text_symbol
3623 = init_type (TYPE_CODE_FUNC, 1, 0,
3624 "<text variable, no debug info>", objfile);
3625 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3626 = objfile_type->builtin_int;
3627 objfile_type->nodebug_data_symbol
3628 = init_type (TYPE_CODE_INT,
3629 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3630 "<data variable, no debug info>", objfile);
3631 objfile_type->nodebug_unknown_symbol
3632 = init_type (TYPE_CODE_INT, 1, 0,
3633 "<variable (not text or data), no debug info>", objfile);
3634 objfile_type->nodebug_tls_symbol
3635 = init_type (TYPE_CODE_INT,
3636 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3637 "<thread local variable, no debug info>", objfile);
3638
3639 /* NOTE: on some targets, addresses and pointers are not necessarily
3640 the same --- for example, on the D10V, pointers are 16 bits long,
3641 but addresses are 32 bits long. See doc/gdbint.texinfo,
3642 ``Pointers Are Not Always Addresses''.
3643
3644 The upshot is:
3645 - gdb's `struct type' always describes the target's
3646 representation.
3647 - gdb's `struct value' objects should always hold values in
3648 target form.
3649 - gdb's CORE_ADDR values are addresses in the unified virtual
3650 address space that the assembler and linker work with. Thus,
3651 since target_read_memory takes a CORE_ADDR as an argument, it
3652 can access any memory on the target, even if the processor has
3653 separate code and data address spaces.
3654
3655 So, for example:
3656 - If v is a value holding a D10V code pointer, its contents are
3657 in target form: a big-endian address left-shifted two bits.
3658 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3659 sizeof (void *) == 2 on the target.
3660
3661 In this context, objfile_type->builtin_core_addr is a bit odd:
3662 it's a target type for a value the target will never see. It's
3663 only used to hold the values of (typeless) linker symbols, which
3664 are indeed in the unified virtual address space. */
3665
3666 objfile_type->builtin_core_addr
3667 = init_type (TYPE_CODE_INT,
3668 gdbarch_addr_bit (gdbarch) / 8,
3669 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3670
3671 set_objfile_data (objfile, objfile_type_data, objfile_type);
3672 return objfile_type;
3673 }
3674
3675
3676 extern void _initialize_gdbtypes (void);
3677 void
3678 _initialize_gdbtypes (void)
3679 {
3680 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3681 objfile_type_data = register_objfile_data ();
3682
3683 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug, _("\
3684 Set debugging of C++ overloading."), _("\
3685 Show debugging of C++ overloading."), _("\
3686 When enabled, ranking of the functions is displayed."),
3687 NULL,
3688 show_overload_debug,
3689 &setdebuglist, &showdebuglist);
3690
3691 /* Add user knob for controlling resolution of opaque types. */
3692 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
3693 &opaque_type_resolution, _("\
3694 Set resolution of opaque struct/class/union types (if set before loading symbols)."), _("\
3695 Show resolution of opaque struct/class/union types (if set before loading symbols)."), NULL,
3696 NULL,
3697 show_opaque_type_resolution,
3698 &setlist, &showlist);
3699 }
This page took 0.157685 seconds and 4 git commands to generate.