*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992, 1993, 1994, 1995, 1996, 1998, 1999, 2000, 2001, 2002,
4 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 Free Software Foundation, Inc.
6
7 Contributed by Cygnus Support, using pieces from other GDB modules.
8
9 This file is part of GDB.
10
11 This program is free software; you can redistribute it and/or modify
12 it under the terms of the GNU General Public License as published by
13 the Free Software Foundation; either version 3 of the License, or
14 (at your option) any later version.
15
16 This program is distributed in the hope that it will be useful,
17 but WITHOUT ANY WARRANTY; without even the implied warranty of
18 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 GNU General Public License for more details.
20
21 You should have received a copy of the GNU General Public License
22 along with this program. If not, see <http://www.gnu.org/licenses/>. */
23
24 #include "defs.h"
25 #include "gdb_string.h"
26 #include "bfd.h"
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "target.h"
34 #include "value.h"
35 #include "demangle.h"
36 #include "complaints.h"
37 #include "gdbcmd.h"
38 #include "wrapper.h"
39 #include "cp-abi.h"
40 #include "gdb_assert.h"
41 #include "hashtab.h"
42
43
44 /* Initialize BADNESS constants. */
45
46 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
47
48 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
49 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
50
51 const struct rank EXACT_MATCH_BADNESS = {0,0};
52
53 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
54 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
55 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
56 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
57 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
58 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
59 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
60 const struct rank BOOL_PTR_CONVERSION_BADNESS = {3,0};
61 const struct rank BASE_CONVERSION_BADNESS = {2,0};
62 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
63
64 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
65
66 /* Floatformat pairs. */
67 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
68 &floatformat_ieee_half_big,
69 &floatformat_ieee_half_little
70 };
71 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
72 &floatformat_ieee_single_big,
73 &floatformat_ieee_single_little
74 };
75 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
76 &floatformat_ieee_double_big,
77 &floatformat_ieee_double_little
78 };
79 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
80 &floatformat_ieee_double_big,
81 &floatformat_ieee_double_littlebyte_bigword
82 };
83 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
84 &floatformat_i387_ext,
85 &floatformat_i387_ext
86 };
87 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
88 &floatformat_m68881_ext,
89 &floatformat_m68881_ext
90 };
91 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
92 &floatformat_arm_ext_big,
93 &floatformat_arm_ext_littlebyte_bigword
94 };
95 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
96 &floatformat_ia64_spill_big,
97 &floatformat_ia64_spill_little
98 };
99 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
100 &floatformat_ia64_quad_big,
101 &floatformat_ia64_quad_little
102 };
103 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
104 &floatformat_vax_f,
105 &floatformat_vax_f
106 };
107 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
108 &floatformat_vax_d,
109 &floatformat_vax_d
110 };
111 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
112 &floatformat_ibm_long_double,
113 &floatformat_ibm_long_double
114 };
115
116
117 int opaque_type_resolution = 1;
118 static void
119 show_opaque_type_resolution (struct ui_file *file, int from_tty,
120 struct cmd_list_element *c,
121 const char *value)
122 {
123 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
124 "(if set before loading symbols) is %s.\n"),
125 value);
126 }
127
128 int overload_debug = 0;
129 static void
130 show_overload_debug (struct ui_file *file, int from_tty,
131 struct cmd_list_element *c, const char *value)
132 {
133 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
134 value);
135 }
136
137 struct extra
138 {
139 char str[128];
140 int len;
141 }; /* Maximum extension is 128! FIXME */
142
143 static void print_bit_vector (B_TYPE *, int);
144 static void print_arg_types (struct field *, int, int);
145 static void dump_fn_fieldlists (struct type *, int);
146 static void print_cplus_stuff (struct type *, int);
147
148
149 /* Allocate a new OBJFILE-associated type structure and fill it
150 with some defaults. Space for the type structure is allocated
151 on the objfile's objfile_obstack. */
152
153 struct type *
154 alloc_type (struct objfile *objfile)
155 {
156 struct type *type;
157
158 gdb_assert (objfile != NULL);
159
160 /* Alloc the structure and start off with all fields zeroed. */
161 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
162 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
163 struct main_type);
164 OBJSTAT (objfile, n_types++);
165
166 TYPE_OBJFILE_OWNED (type) = 1;
167 TYPE_OWNER (type).objfile = objfile;
168
169 /* Initialize the fields that might not be zero. */
170
171 TYPE_CODE (type) = TYPE_CODE_UNDEF;
172 TYPE_VPTR_FIELDNO (type) = -1;
173 TYPE_CHAIN (type) = type; /* Chain back to itself. */
174
175 return type;
176 }
177
178 /* Allocate a new GDBARCH-associated type structure and fill it
179 with some defaults. Space for the type structure is allocated
180 on the heap. */
181
182 struct type *
183 alloc_type_arch (struct gdbarch *gdbarch)
184 {
185 struct type *type;
186
187 gdb_assert (gdbarch != NULL);
188
189 /* Alloc the structure and start off with all fields zeroed. */
190
191 type = XZALLOC (struct type);
192 TYPE_MAIN_TYPE (type) = XZALLOC (struct main_type);
193
194 TYPE_OBJFILE_OWNED (type) = 0;
195 TYPE_OWNER (type).gdbarch = gdbarch;
196
197 /* Initialize the fields that might not be zero. */
198
199 TYPE_CODE (type) = TYPE_CODE_UNDEF;
200 TYPE_VPTR_FIELDNO (type) = -1;
201 TYPE_CHAIN (type) = type; /* Chain back to itself. */
202
203 return type;
204 }
205
206 /* If TYPE is objfile-associated, allocate a new type structure
207 associated with the same objfile. If TYPE is gdbarch-associated,
208 allocate a new type structure associated with the same gdbarch. */
209
210 struct type *
211 alloc_type_copy (const struct type *type)
212 {
213 if (TYPE_OBJFILE_OWNED (type))
214 return alloc_type (TYPE_OWNER (type).objfile);
215 else
216 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
217 }
218
219 /* If TYPE is gdbarch-associated, return that architecture.
220 If TYPE is objfile-associated, return that objfile's architecture. */
221
222 struct gdbarch *
223 get_type_arch (const struct type *type)
224 {
225 if (TYPE_OBJFILE_OWNED (type))
226 return get_objfile_arch (TYPE_OWNER (type).objfile);
227 else
228 return TYPE_OWNER (type).gdbarch;
229 }
230
231
232 /* Alloc a new type instance structure, fill it with some defaults,
233 and point it at OLDTYPE. Allocate the new type instance from the
234 same place as OLDTYPE. */
235
236 static struct type *
237 alloc_type_instance (struct type *oldtype)
238 {
239 struct type *type;
240
241 /* Allocate the structure. */
242
243 if (! TYPE_OBJFILE_OWNED (oldtype))
244 type = XZALLOC (struct type);
245 else
246 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
247 struct type);
248
249 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
250
251 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
252
253 return type;
254 }
255
256 /* Clear all remnants of the previous type at TYPE, in preparation for
257 replacing it with something else. Preserve owner information. */
258 static void
259 smash_type (struct type *type)
260 {
261 int objfile_owned = TYPE_OBJFILE_OWNED (type);
262 union type_owner owner = TYPE_OWNER (type);
263
264 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
265
266 /* Restore owner information. */
267 TYPE_OBJFILE_OWNED (type) = objfile_owned;
268 TYPE_OWNER (type) = owner;
269
270 /* For now, delete the rings. */
271 TYPE_CHAIN (type) = type;
272
273 /* For now, leave the pointer/reference types alone. */
274 }
275
276 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
277 to a pointer to memory where the pointer type should be stored.
278 If *TYPEPTR is zero, update it to point to the pointer type we return.
279 We allocate new memory if needed. */
280
281 struct type *
282 make_pointer_type (struct type *type, struct type **typeptr)
283 {
284 struct type *ntype; /* New type */
285 struct type *chain;
286
287 ntype = TYPE_POINTER_TYPE (type);
288
289 if (ntype)
290 {
291 if (typeptr == 0)
292 return ntype; /* Don't care about alloc,
293 and have new type. */
294 else if (*typeptr == 0)
295 {
296 *typeptr = ntype; /* Tracking alloc, and have new type. */
297 return ntype;
298 }
299 }
300
301 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
302 {
303 ntype = alloc_type_copy (type);
304 if (typeptr)
305 *typeptr = ntype;
306 }
307 else /* We have storage, but need to reset it. */
308 {
309 ntype = *typeptr;
310 chain = TYPE_CHAIN (ntype);
311 smash_type (ntype);
312 TYPE_CHAIN (ntype) = chain;
313 }
314
315 TYPE_TARGET_TYPE (ntype) = type;
316 TYPE_POINTER_TYPE (type) = ntype;
317
318 /* FIXME! Assume the machine has only one representation for
319 pointers! */
320
321 TYPE_LENGTH (ntype)
322 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
323 TYPE_CODE (ntype) = TYPE_CODE_PTR;
324
325 /* Mark pointers as unsigned. The target converts between pointers
326 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
327 gdbarch_address_to_pointer. */
328 TYPE_UNSIGNED (ntype) = 1;
329
330 if (!TYPE_POINTER_TYPE (type)) /* Remember it, if don't have one. */
331 TYPE_POINTER_TYPE (type) = ntype;
332
333 /* Update the length of all the other variants of this type. */
334 chain = TYPE_CHAIN (ntype);
335 while (chain != ntype)
336 {
337 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
338 chain = TYPE_CHAIN (chain);
339 }
340
341 return ntype;
342 }
343
344 /* Given a type TYPE, return a type of pointers to that type.
345 May need to construct such a type if this is the first use. */
346
347 struct type *
348 lookup_pointer_type (struct type *type)
349 {
350 return make_pointer_type (type, (struct type **) 0);
351 }
352
353 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
354 points to a pointer to memory where the reference type should be
355 stored. If *TYPEPTR is zero, update it to point to the reference
356 type we return. We allocate new memory if needed. */
357
358 struct type *
359 make_reference_type (struct type *type, struct type **typeptr)
360 {
361 struct type *ntype; /* New type */
362 struct type *chain;
363
364 ntype = TYPE_REFERENCE_TYPE (type);
365
366 if (ntype)
367 {
368 if (typeptr == 0)
369 return ntype; /* Don't care about alloc,
370 and have new type. */
371 else if (*typeptr == 0)
372 {
373 *typeptr = ntype; /* Tracking alloc, and have new type. */
374 return ntype;
375 }
376 }
377
378 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
379 {
380 ntype = alloc_type_copy (type);
381 if (typeptr)
382 *typeptr = ntype;
383 }
384 else /* We have storage, but need to reset it. */
385 {
386 ntype = *typeptr;
387 chain = TYPE_CHAIN (ntype);
388 smash_type (ntype);
389 TYPE_CHAIN (ntype) = chain;
390 }
391
392 TYPE_TARGET_TYPE (ntype) = type;
393 TYPE_REFERENCE_TYPE (type) = ntype;
394
395 /* FIXME! Assume the machine has only one representation for
396 references, and that it matches the (only) representation for
397 pointers! */
398
399 TYPE_LENGTH (ntype) =
400 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
401 TYPE_CODE (ntype) = TYPE_CODE_REF;
402
403 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
404 TYPE_REFERENCE_TYPE (type) = ntype;
405
406 /* Update the length of all the other variants of this type. */
407 chain = TYPE_CHAIN (ntype);
408 while (chain != ntype)
409 {
410 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
411 chain = TYPE_CHAIN (chain);
412 }
413
414 return ntype;
415 }
416
417 /* Same as above, but caller doesn't care about memory allocation
418 details. */
419
420 struct type *
421 lookup_reference_type (struct type *type)
422 {
423 return make_reference_type (type, (struct type **) 0);
424 }
425
426 /* Lookup a function type that returns type TYPE. TYPEPTR, if
427 nonzero, points to a pointer to memory where the function type
428 should be stored. If *TYPEPTR is zero, update it to point to the
429 function type we return. We allocate new memory if needed. */
430
431 struct type *
432 make_function_type (struct type *type, struct type **typeptr)
433 {
434 struct type *ntype; /* New type */
435
436 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
437 {
438 ntype = alloc_type_copy (type);
439 if (typeptr)
440 *typeptr = ntype;
441 }
442 else /* We have storage, but need to reset it. */
443 {
444 ntype = *typeptr;
445 smash_type (ntype);
446 }
447
448 TYPE_TARGET_TYPE (ntype) = type;
449
450 TYPE_LENGTH (ntype) = 1;
451 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
452
453 return ntype;
454 }
455
456
457 /* Given a type TYPE, return a type of functions that return that type.
458 May need to construct such a type if this is the first use. */
459
460 struct type *
461 lookup_function_type (struct type *type)
462 {
463 return make_function_type (type, (struct type **) 0);
464 }
465
466 /* Identify address space identifier by name --
467 return the integer flag defined in gdbtypes.h. */
468 extern int
469 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
470 {
471 int type_flags;
472
473 /* Check for known address space delimiters. */
474 if (!strcmp (space_identifier, "code"))
475 return TYPE_INSTANCE_FLAG_CODE_SPACE;
476 else if (!strcmp (space_identifier, "data"))
477 return TYPE_INSTANCE_FLAG_DATA_SPACE;
478 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
479 && gdbarch_address_class_name_to_type_flags (gdbarch,
480 space_identifier,
481 &type_flags))
482 return type_flags;
483 else
484 error (_("Unknown address space specifier: \"%s\""), space_identifier);
485 }
486
487 /* Identify address space identifier by integer flag as defined in
488 gdbtypes.h -- return the string version of the adress space name. */
489
490 const char *
491 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
492 {
493 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
494 return "code";
495 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
496 return "data";
497 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
498 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
499 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
500 else
501 return NULL;
502 }
503
504 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
505
506 If STORAGE is non-NULL, create the new type instance there.
507 STORAGE must be in the same obstack as TYPE. */
508
509 static struct type *
510 make_qualified_type (struct type *type, int new_flags,
511 struct type *storage)
512 {
513 struct type *ntype;
514
515 ntype = type;
516 do
517 {
518 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
519 return ntype;
520 ntype = TYPE_CHAIN (ntype);
521 }
522 while (ntype != type);
523
524 /* Create a new type instance. */
525 if (storage == NULL)
526 ntype = alloc_type_instance (type);
527 else
528 {
529 /* If STORAGE was provided, it had better be in the same objfile
530 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
531 if one objfile is freed and the other kept, we'd have
532 dangling pointers. */
533 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
534
535 ntype = storage;
536 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
537 TYPE_CHAIN (ntype) = ntype;
538 }
539
540 /* Pointers or references to the original type are not relevant to
541 the new type. */
542 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
543 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
544
545 /* Chain the new qualified type to the old type. */
546 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
547 TYPE_CHAIN (type) = ntype;
548
549 /* Now set the instance flags and return the new type. */
550 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
551
552 /* Set length of new type to that of the original type. */
553 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
554
555 return ntype;
556 }
557
558 /* Make an address-space-delimited variant of a type -- a type that
559 is identical to the one supplied except that it has an address
560 space attribute attached to it (such as "code" or "data").
561
562 The space attributes "code" and "data" are for Harvard
563 architectures. The address space attributes are for architectures
564 which have alternately sized pointers or pointers with alternate
565 representations. */
566
567 struct type *
568 make_type_with_address_space (struct type *type, int space_flag)
569 {
570 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
571 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
572 | TYPE_INSTANCE_FLAG_DATA_SPACE
573 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
574 | space_flag);
575
576 return make_qualified_type (type, new_flags, NULL);
577 }
578
579 /* Make a "c-v" variant of a type -- a type that is identical to the
580 one supplied except that it may have const or volatile attributes
581 CNST is a flag for setting the const attribute
582 VOLTL is a flag for setting the volatile attribute
583 TYPE is the base type whose variant we are creating.
584
585 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
586 storage to hold the new qualified type; *TYPEPTR and TYPE must be
587 in the same objfile. Otherwise, allocate fresh memory for the new
588 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
589 new type we construct. */
590 struct type *
591 make_cv_type (int cnst, int voltl,
592 struct type *type,
593 struct type **typeptr)
594 {
595 struct type *ntype; /* New type */
596
597 int new_flags = (TYPE_INSTANCE_FLAGS (type)
598 & ~(TYPE_INSTANCE_FLAG_CONST
599 | TYPE_INSTANCE_FLAG_VOLATILE));
600
601 if (cnst)
602 new_flags |= TYPE_INSTANCE_FLAG_CONST;
603
604 if (voltl)
605 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
606
607 if (typeptr && *typeptr != NULL)
608 {
609 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
610 a C-V variant chain that threads across objfiles: if one
611 objfile gets freed, then the other has a broken C-V chain.
612
613 This code used to try to copy over the main type from TYPE to
614 *TYPEPTR if they were in different objfiles, but that's
615 wrong, too: TYPE may have a field list or member function
616 lists, which refer to types of their own, etc. etc. The
617 whole shebang would need to be copied over recursively; you
618 can't have inter-objfile pointers. The only thing to do is
619 to leave stub types as stub types, and look them up afresh by
620 name each time you encounter them. */
621 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
622 }
623
624 ntype = make_qualified_type (type, new_flags,
625 typeptr ? *typeptr : NULL);
626
627 if (typeptr != NULL)
628 *typeptr = ntype;
629
630 return ntype;
631 }
632
633 /* Replace the contents of ntype with the type *type. This changes the
634 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
635 the changes are propogated to all types in the TYPE_CHAIN.
636
637 In order to build recursive types, it's inevitable that we'll need
638 to update types in place --- but this sort of indiscriminate
639 smashing is ugly, and needs to be replaced with something more
640 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
641 clear if more steps are needed. */
642 void
643 replace_type (struct type *ntype, struct type *type)
644 {
645 struct type *chain;
646
647 /* These two types had better be in the same objfile. Otherwise,
648 the assignment of one type's main type structure to the other
649 will produce a type with references to objects (names; field
650 lists; etc.) allocated on an objfile other than its own. */
651 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
652
653 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
654
655 /* The type length is not a part of the main type. Update it for
656 each type on the variant chain. */
657 chain = ntype;
658 do
659 {
660 /* Assert that this element of the chain has no address-class bits
661 set in its flags. Such type variants might have type lengths
662 which are supposed to be different from the non-address-class
663 variants. This assertion shouldn't ever be triggered because
664 symbol readers which do construct address-class variants don't
665 call replace_type(). */
666 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
667
668 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
669 chain = TYPE_CHAIN (chain);
670 }
671 while (ntype != chain);
672
673 /* Assert that the two types have equivalent instance qualifiers.
674 This should be true for at least all of our debug readers. */
675 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
676 }
677
678 /* Implement direct support for MEMBER_TYPE in GNU C++.
679 May need to construct such a type if this is the first use.
680 The TYPE is the type of the member. The DOMAIN is the type
681 of the aggregate that the member belongs to. */
682
683 struct type *
684 lookup_memberptr_type (struct type *type, struct type *domain)
685 {
686 struct type *mtype;
687
688 mtype = alloc_type_copy (type);
689 smash_to_memberptr_type (mtype, domain, type);
690 return mtype;
691 }
692
693 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
694
695 struct type *
696 lookup_methodptr_type (struct type *to_type)
697 {
698 struct type *mtype;
699
700 mtype = alloc_type_copy (to_type);
701 smash_to_methodptr_type (mtype, to_type);
702 return mtype;
703 }
704
705 /* Allocate a stub method whose return type is TYPE. This apparently
706 happens for speed of symbol reading, since parsing out the
707 arguments to the method is cpu-intensive, the way we are doing it.
708 So, we will fill in arguments later. This always returns a fresh
709 type. */
710
711 struct type *
712 allocate_stub_method (struct type *type)
713 {
714 struct type *mtype;
715
716 mtype = alloc_type_copy (type);
717 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
718 TYPE_LENGTH (mtype) = 1;
719 TYPE_STUB (mtype) = 1;
720 TYPE_TARGET_TYPE (mtype) = type;
721 /* _DOMAIN_TYPE (mtype) = unknown yet */
722 return mtype;
723 }
724
725 /* Create a range type using either a blank type supplied in
726 RESULT_TYPE, or creating a new type, inheriting the objfile from
727 INDEX_TYPE.
728
729 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
730 to HIGH_BOUND, inclusive.
731
732 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
733 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
734
735 struct type *
736 create_range_type (struct type *result_type, struct type *index_type,
737 LONGEST low_bound, LONGEST high_bound)
738 {
739 if (result_type == NULL)
740 result_type = alloc_type_copy (index_type);
741 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
742 TYPE_TARGET_TYPE (result_type) = index_type;
743 if (TYPE_STUB (index_type))
744 TYPE_TARGET_STUB (result_type) = 1;
745 else
746 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
747 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
748 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
749 TYPE_LOW_BOUND (result_type) = low_bound;
750 TYPE_HIGH_BOUND (result_type) = high_bound;
751
752 if (low_bound >= 0)
753 TYPE_UNSIGNED (result_type) = 1;
754
755 return result_type;
756 }
757
758 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
759 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
760 bounds will fit in LONGEST), or -1 otherwise. */
761
762 int
763 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
764 {
765 CHECK_TYPEDEF (type);
766 switch (TYPE_CODE (type))
767 {
768 case TYPE_CODE_RANGE:
769 *lowp = TYPE_LOW_BOUND (type);
770 *highp = TYPE_HIGH_BOUND (type);
771 return 1;
772 case TYPE_CODE_ENUM:
773 if (TYPE_NFIELDS (type) > 0)
774 {
775 /* The enums may not be sorted by value, so search all
776 entries. */
777 int i;
778
779 *lowp = *highp = TYPE_FIELD_BITPOS (type, 0);
780 for (i = 0; i < TYPE_NFIELDS (type); i++)
781 {
782 if (TYPE_FIELD_BITPOS (type, i) < *lowp)
783 *lowp = TYPE_FIELD_BITPOS (type, i);
784 if (TYPE_FIELD_BITPOS (type, i) > *highp)
785 *highp = TYPE_FIELD_BITPOS (type, i);
786 }
787
788 /* Set unsigned indicator if warranted. */
789 if (*lowp >= 0)
790 {
791 TYPE_UNSIGNED (type) = 1;
792 }
793 }
794 else
795 {
796 *lowp = 0;
797 *highp = -1;
798 }
799 return 0;
800 case TYPE_CODE_BOOL:
801 *lowp = 0;
802 *highp = 1;
803 return 0;
804 case TYPE_CODE_INT:
805 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
806 return -1;
807 if (!TYPE_UNSIGNED (type))
808 {
809 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
810 *highp = -*lowp - 1;
811 return 0;
812 }
813 /* ... fall through for unsigned ints ... */
814 case TYPE_CODE_CHAR:
815 *lowp = 0;
816 /* This round-about calculation is to avoid shifting by
817 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
818 if TYPE_LENGTH (type) == sizeof (LONGEST). */
819 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
820 *highp = (*highp - 1) | *highp;
821 return 0;
822 default:
823 return -1;
824 }
825 }
826
827 /* Assuming TYPE is a simple, non-empty array type, compute its upper
828 and lower bound. Save the low bound into LOW_BOUND if not NULL.
829 Save the high bound into HIGH_BOUND if not NULL.
830
831 Return 1 if the operation was successful. Return zero otherwise,
832 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
833
834 We now simply use get_discrete_bounds call to get the values
835 of the low and high bounds.
836 get_discrete_bounds can return three values:
837 1, meaning that index is a range,
838 0, meaning that index is a discrete type,
839 or -1 for failure. */
840
841 int
842 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
843 {
844 struct type *index = TYPE_INDEX_TYPE (type);
845 LONGEST low = 0;
846 LONGEST high = 0;
847 int res;
848
849 if (index == NULL)
850 return 0;
851
852 res = get_discrete_bounds (index, &low, &high);
853 if (res == -1)
854 return 0;
855
856 /* Check if the array bounds are undefined. */
857 if (res == 1
858 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
859 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
860 return 0;
861
862 if (low_bound)
863 *low_bound = low;
864
865 if (high_bound)
866 *high_bound = high;
867
868 return 1;
869 }
870
871 /* Create an array type using either a blank type supplied in
872 RESULT_TYPE, or creating a new type, inheriting the objfile from
873 RANGE_TYPE.
874
875 Elements will be of type ELEMENT_TYPE, the indices will be of type
876 RANGE_TYPE.
877
878 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
879 sure it is TYPE_CODE_UNDEF before we bash it into an array
880 type? */
881
882 struct type *
883 create_array_type (struct type *result_type,
884 struct type *element_type,
885 struct type *range_type)
886 {
887 LONGEST low_bound, high_bound;
888
889 if (result_type == NULL)
890 result_type = alloc_type_copy (range_type);
891
892 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
893 TYPE_TARGET_TYPE (result_type) = element_type;
894 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
895 low_bound = high_bound = 0;
896 CHECK_TYPEDEF (element_type);
897 /* Be careful when setting the array length. Ada arrays can be
898 empty arrays with the high_bound being smaller than the low_bound.
899 In such cases, the array length should be zero. */
900 if (high_bound < low_bound)
901 TYPE_LENGTH (result_type) = 0;
902 else
903 TYPE_LENGTH (result_type) =
904 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
905 TYPE_NFIELDS (result_type) = 1;
906 TYPE_FIELDS (result_type) =
907 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
908 TYPE_INDEX_TYPE (result_type) = range_type;
909 TYPE_VPTR_FIELDNO (result_type) = -1;
910
911 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
912 if (TYPE_LENGTH (result_type) == 0)
913 TYPE_TARGET_STUB (result_type) = 1;
914
915 return result_type;
916 }
917
918 struct type *
919 lookup_array_range_type (struct type *element_type,
920 int low_bound, int high_bound)
921 {
922 struct gdbarch *gdbarch = get_type_arch (element_type);
923 struct type *index_type = builtin_type (gdbarch)->builtin_int;
924 struct type *range_type
925 = create_range_type (NULL, index_type, low_bound, high_bound);
926
927 return create_array_type (NULL, element_type, range_type);
928 }
929
930 /* Create a string type using either a blank type supplied in
931 RESULT_TYPE, or creating a new type. String types are similar
932 enough to array of char types that we can use create_array_type to
933 build the basic type and then bash it into a string type.
934
935 For fixed length strings, the range type contains 0 as the lower
936 bound and the length of the string minus one as the upper bound.
937
938 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
939 sure it is TYPE_CODE_UNDEF before we bash it into a string
940 type? */
941
942 struct type *
943 create_string_type (struct type *result_type,
944 struct type *string_char_type,
945 struct type *range_type)
946 {
947 result_type = create_array_type (result_type,
948 string_char_type,
949 range_type);
950 TYPE_CODE (result_type) = TYPE_CODE_STRING;
951 return result_type;
952 }
953
954 struct type *
955 lookup_string_range_type (struct type *string_char_type,
956 int low_bound, int high_bound)
957 {
958 struct type *result_type;
959
960 result_type = lookup_array_range_type (string_char_type,
961 low_bound, high_bound);
962 TYPE_CODE (result_type) = TYPE_CODE_STRING;
963 return result_type;
964 }
965
966 struct type *
967 create_set_type (struct type *result_type, struct type *domain_type)
968 {
969 if (result_type == NULL)
970 result_type = alloc_type_copy (domain_type);
971
972 TYPE_CODE (result_type) = TYPE_CODE_SET;
973 TYPE_NFIELDS (result_type) = 1;
974 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
975
976 if (!TYPE_STUB (domain_type))
977 {
978 LONGEST low_bound, high_bound, bit_length;
979
980 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
981 low_bound = high_bound = 0;
982 bit_length = high_bound - low_bound + 1;
983 TYPE_LENGTH (result_type)
984 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
985 if (low_bound >= 0)
986 TYPE_UNSIGNED (result_type) = 1;
987 }
988 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
989
990 return result_type;
991 }
992
993 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
994 and any array types nested inside it. */
995
996 void
997 make_vector_type (struct type *array_type)
998 {
999 struct type *inner_array, *elt_type;
1000 int flags;
1001
1002 /* Find the innermost array type, in case the array is
1003 multi-dimensional. */
1004 inner_array = array_type;
1005 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1006 inner_array = TYPE_TARGET_TYPE (inner_array);
1007
1008 elt_type = TYPE_TARGET_TYPE (inner_array);
1009 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1010 {
1011 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1012 elt_type = make_qualified_type (elt_type, flags, NULL);
1013 TYPE_TARGET_TYPE (inner_array) = elt_type;
1014 }
1015
1016 TYPE_VECTOR (array_type) = 1;
1017 }
1018
1019 struct type *
1020 init_vector_type (struct type *elt_type, int n)
1021 {
1022 struct type *array_type;
1023
1024 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1025 make_vector_type (array_type);
1026 return array_type;
1027 }
1028
1029 /* Smash TYPE to be a type of pointers to members of DOMAIN with type
1030 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1031 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1032 TYPE doesn't include the offset (that's the value of the MEMBER
1033 itself), but does include the structure type into which it points
1034 (for some reason).
1035
1036 When "smashing" the type, we preserve the objfile that the old type
1037 pointed to, since we aren't changing where the type is actually
1038 allocated. */
1039
1040 void
1041 smash_to_memberptr_type (struct type *type, struct type *domain,
1042 struct type *to_type)
1043 {
1044 smash_type (type);
1045 TYPE_TARGET_TYPE (type) = to_type;
1046 TYPE_DOMAIN_TYPE (type) = domain;
1047 /* Assume that a data member pointer is the same size as a normal
1048 pointer. */
1049 TYPE_LENGTH (type)
1050 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1051 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1052 }
1053
1054 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1055
1056 When "smashing" the type, we preserve the objfile that the old type
1057 pointed to, since we aren't changing where the type is actually
1058 allocated. */
1059
1060 void
1061 smash_to_methodptr_type (struct type *type, struct type *to_type)
1062 {
1063 smash_type (type);
1064 TYPE_TARGET_TYPE (type) = to_type;
1065 TYPE_DOMAIN_TYPE (type) = TYPE_DOMAIN_TYPE (to_type);
1066 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1067 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1068 }
1069
1070 /* Smash TYPE to be a type of method of DOMAIN with type TO_TYPE.
1071 METHOD just means `function that gets an extra "this" argument'.
1072
1073 When "smashing" the type, we preserve the objfile that the old type
1074 pointed to, since we aren't changing where the type is actually
1075 allocated. */
1076
1077 void
1078 smash_to_method_type (struct type *type, struct type *domain,
1079 struct type *to_type, struct field *args,
1080 int nargs, int varargs)
1081 {
1082 smash_type (type);
1083 TYPE_TARGET_TYPE (type) = to_type;
1084 TYPE_DOMAIN_TYPE (type) = domain;
1085 TYPE_FIELDS (type) = args;
1086 TYPE_NFIELDS (type) = nargs;
1087 if (varargs)
1088 TYPE_VARARGS (type) = 1;
1089 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1090 TYPE_CODE (type) = TYPE_CODE_METHOD;
1091 }
1092
1093 /* Return a typename for a struct/union/enum type without "struct ",
1094 "union ", or "enum ". If the type has a NULL name, return NULL. */
1095
1096 char *
1097 type_name_no_tag (const struct type *type)
1098 {
1099 if (TYPE_TAG_NAME (type) != NULL)
1100 return TYPE_TAG_NAME (type);
1101
1102 /* Is there code which expects this to return the name if there is
1103 no tag name? My guess is that this is mainly used for C++ in
1104 cases where the two will always be the same. */
1105 return TYPE_NAME (type);
1106 }
1107
1108 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1109 Since GCC PR debug/47510 DWARF provides associated information to detect the
1110 anonymous class linkage name from its typedef.
1111
1112 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1113 apply it itself. */
1114
1115 const char *
1116 type_name_no_tag_or_error (struct type *type)
1117 {
1118 struct type *saved_type = type;
1119 const char *name;
1120 struct objfile *objfile;
1121
1122 CHECK_TYPEDEF (type);
1123
1124 name = type_name_no_tag (type);
1125 if (name != NULL)
1126 return name;
1127
1128 name = type_name_no_tag (saved_type);
1129 objfile = TYPE_OBJFILE (saved_type);
1130 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1131 name ? name : "<anonymous>", objfile ? objfile->name : "<arch>");
1132 }
1133
1134 /* Lookup a typedef or primitive type named NAME, visible in lexical
1135 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1136 suitably defined. */
1137
1138 struct type *
1139 lookup_typename (const struct language_defn *language,
1140 struct gdbarch *gdbarch, const char *name,
1141 const struct block *block, int noerr)
1142 {
1143 struct symbol *sym;
1144 struct type *tmp;
1145
1146 sym = lookup_symbol (name, block, VAR_DOMAIN, 0);
1147 if (sym == NULL || SYMBOL_CLASS (sym) != LOC_TYPEDEF)
1148 {
1149 tmp = language_lookup_primitive_type_by_name (language, gdbarch, name);
1150 if (tmp)
1151 {
1152 return tmp;
1153 }
1154 else if (!tmp && noerr)
1155 {
1156 return NULL;
1157 }
1158 else
1159 {
1160 error (_("No type named %s."), name);
1161 }
1162 }
1163 return (SYMBOL_TYPE (sym));
1164 }
1165
1166 struct type *
1167 lookup_unsigned_typename (const struct language_defn *language,
1168 struct gdbarch *gdbarch, char *name)
1169 {
1170 char *uns = alloca (strlen (name) + 10);
1171
1172 strcpy (uns, "unsigned ");
1173 strcpy (uns + 9, name);
1174 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1175 }
1176
1177 struct type *
1178 lookup_signed_typename (const struct language_defn *language,
1179 struct gdbarch *gdbarch, char *name)
1180 {
1181 struct type *t;
1182 char *uns = alloca (strlen (name) + 8);
1183
1184 strcpy (uns, "signed ");
1185 strcpy (uns + 7, name);
1186 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1187 /* If we don't find "signed FOO" just try again with plain "FOO". */
1188 if (t != NULL)
1189 return t;
1190 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1191 }
1192
1193 /* Lookup a structure type named "struct NAME",
1194 visible in lexical block BLOCK. */
1195
1196 struct type *
1197 lookup_struct (const char *name, struct block *block)
1198 {
1199 struct symbol *sym;
1200
1201 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1202
1203 if (sym == NULL)
1204 {
1205 error (_("No struct type named %s."), name);
1206 }
1207 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1208 {
1209 error (_("This context has class, union or enum %s, not a struct."),
1210 name);
1211 }
1212 return (SYMBOL_TYPE (sym));
1213 }
1214
1215 /* Lookup a union type named "union NAME",
1216 visible in lexical block BLOCK. */
1217
1218 struct type *
1219 lookup_union (const char *name, struct block *block)
1220 {
1221 struct symbol *sym;
1222 struct type *t;
1223
1224 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1225
1226 if (sym == NULL)
1227 error (_("No union type named %s."), name);
1228
1229 t = SYMBOL_TYPE (sym);
1230
1231 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1232 return t;
1233
1234 /* If we get here, it's not a union. */
1235 error (_("This context has class, struct or enum %s, not a union."),
1236 name);
1237 }
1238
1239
1240 /* Lookup an enum type named "enum NAME",
1241 visible in lexical block BLOCK. */
1242
1243 struct type *
1244 lookup_enum (const char *name, struct block *block)
1245 {
1246 struct symbol *sym;
1247
1248 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1249 if (sym == NULL)
1250 {
1251 error (_("No enum type named %s."), name);
1252 }
1253 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1254 {
1255 error (_("This context has class, struct or union %s, not an enum."),
1256 name);
1257 }
1258 return (SYMBOL_TYPE (sym));
1259 }
1260
1261 /* Lookup a template type named "template NAME<TYPE>",
1262 visible in lexical block BLOCK. */
1263
1264 struct type *
1265 lookup_template_type (char *name, struct type *type,
1266 struct block *block)
1267 {
1268 struct symbol *sym;
1269 char *nam = (char *)
1270 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1271
1272 strcpy (nam, name);
1273 strcat (nam, "<");
1274 strcat (nam, TYPE_NAME (type));
1275 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1276
1277 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1278
1279 if (sym == NULL)
1280 {
1281 error (_("No template type named %s."), name);
1282 }
1283 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1284 {
1285 error (_("This context has class, union or enum %s, not a struct."),
1286 name);
1287 }
1288 return (SYMBOL_TYPE (sym));
1289 }
1290
1291 /* Given a type TYPE, lookup the type of the component of type named
1292 NAME.
1293
1294 TYPE can be either a struct or union, or a pointer or reference to
1295 a struct or union. If it is a pointer or reference, its target
1296 type is automatically used. Thus '.' and '->' are interchangable,
1297 as specified for the definitions of the expression element types
1298 STRUCTOP_STRUCT and STRUCTOP_PTR.
1299
1300 If NOERR is nonzero, return zero if NAME is not suitably defined.
1301 If NAME is the name of a baseclass type, return that type. */
1302
1303 struct type *
1304 lookup_struct_elt_type (struct type *type, char *name, int noerr)
1305 {
1306 int i;
1307 char *typename;
1308
1309 for (;;)
1310 {
1311 CHECK_TYPEDEF (type);
1312 if (TYPE_CODE (type) != TYPE_CODE_PTR
1313 && TYPE_CODE (type) != TYPE_CODE_REF)
1314 break;
1315 type = TYPE_TARGET_TYPE (type);
1316 }
1317
1318 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1319 && TYPE_CODE (type) != TYPE_CODE_UNION)
1320 {
1321 typename = type_to_string (type);
1322 make_cleanup (xfree, typename);
1323 error (_("Type %s is not a structure or union type."), typename);
1324 }
1325
1326 #if 0
1327 /* FIXME: This change put in by Michael seems incorrect for the case
1328 where the structure tag name is the same as the member name.
1329 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1330 foo; } bell;" Disabled by fnf. */
1331 {
1332 char *typename;
1333
1334 typename = type_name_no_tag (type);
1335 if (typename != NULL && strcmp (typename, name) == 0)
1336 return type;
1337 }
1338 #endif
1339
1340 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1341 {
1342 char *t_field_name = TYPE_FIELD_NAME (type, i);
1343
1344 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1345 {
1346 return TYPE_FIELD_TYPE (type, i);
1347 }
1348 else if (!t_field_name || *t_field_name == '\0')
1349 {
1350 struct type *subtype
1351 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1352
1353 if (subtype != NULL)
1354 return subtype;
1355 }
1356 }
1357
1358 /* OK, it's not in this class. Recursively check the baseclasses. */
1359 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1360 {
1361 struct type *t;
1362
1363 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1364 if (t != NULL)
1365 {
1366 return t;
1367 }
1368 }
1369
1370 if (noerr)
1371 {
1372 return NULL;
1373 }
1374
1375 typename = type_to_string (type);
1376 make_cleanup (xfree, typename);
1377 error (_("Type %s has no component named %s."), typename, name);
1378 }
1379
1380 /* Lookup the vptr basetype/fieldno values for TYPE.
1381 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1382 vptr_fieldno. Also, if found and basetype is from the same objfile,
1383 cache the results.
1384 If not found, return -1 and ignore BASETYPEP.
1385 Callers should be aware that in some cases (for example,
1386 the type or one of its baseclasses is a stub type and we are
1387 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1388 this function will not be able to find the
1389 virtual function table pointer, and vptr_fieldno will remain -1 and
1390 vptr_basetype will remain NULL or incomplete. */
1391
1392 int
1393 get_vptr_fieldno (struct type *type, struct type **basetypep)
1394 {
1395 CHECK_TYPEDEF (type);
1396
1397 if (TYPE_VPTR_FIELDNO (type) < 0)
1398 {
1399 int i;
1400
1401 /* We must start at zero in case the first (and only) baseclass
1402 is virtual (and hence we cannot share the table pointer). */
1403 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1404 {
1405 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1406 int fieldno;
1407 struct type *basetype;
1408
1409 fieldno = get_vptr_fieldno (baseclass, &basetype);
1410 if (fieldno >= 0)
1411 {
1412 /* If the type comes from a different objfile we can't cache
1413 it, it may have a different lifetime. PR 2384 */
1414 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1415 {
1416 TYPE_VPTR_FIELDNO (type) = fieldno;
1417 TYPE_VPTR_BASETYPE (type) = basetype;
1418 }
1419 if (basetypep)
1420 *basetypep = basetype;
1421 return fieldno;
1422 }
1423 }
1424
1425 /* Not found. */
1426 return -1;
1427 }
1428 else
1429 {
1430 if (basetypep)
1431 *basetypep = TYPE_VPTR_BASETYPE (type);
1432 return TYPE_VPTR_FIELDNO (type);
1433 }
1434 }
1435
1436 static void
1437 stub_noname_complaint (void)
1438 {
1439 complaint (&symfile_complaints, _("stub type has NULL name"));
1440 }
1441
1442 /* Find the real type of TYPE. This function returns the real type,
1443 after removing all layers of typedefs, and completing opaque or stub
1444 types. Completion changes the TYPE argument, but stripping of
1445 typedefs does not.
1446
1447 Instance flags (e.g. const/volatile) are preserved as typedefs are
1448 stripped. If necessary a new qualified form of the underlying type
1449 is created.
1450
1451 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
1452 not been computed and we're either in the middle of reading symbols, or
1453 there was no name for the typedef in the debug info.
1454
1455 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
1456 the target type.
1457
1458 If this is a stubbed struct (i.e. declared as struct foo *), see if
1459 we can find a full definition in some other file. If so, copy this
1460 definition, so we can use it in future. There used to be a comment
1461 (but not any code) that if we don't find a full definition, we'd
1462 set a flag so we don't spend time in the future checking the same
1463 type. That would be a mistake, though--we might load in more
1464 symbols which contain a full definition for the type. */
1465
1466 struct type *
1467 check_typedef (struct type *type)
1468 {
1469 struct type *orig_type = type;
1470 /* While we're removing typedefs, we don't want to lose qualifiers.
1471 E.g., const/volatile. */
1472 int instance_flags = TYPE_INSTANCE_FLAGS (type);
1473
1474 gdb_assert (type);
1475
1476 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
1477 {
1478 if (!TYPE_TARGET_TYPE (type))
1479 {
1480 char *name;
1481 struct symbol *sym;
1482
1483 /* It is dangerous to call lookup_symbol if we are currently
1484 reading a symtab. Infinite recursion is one danger. */
1485 if (currently_reading_symtab)
1486 return make_qualified_type (type, instance_flags, NULL);
1487
1488 name = type_name_no_tag (type);
1489 /* FIXME: shouldn't we separately check the TYPE_NAME and
1490 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
1491 VAR_DOMAIN as appropriate? (this code was written before
1492 TYPE_NAME and TYPE_TAG_NAME were separate). */
1493 if (name == NULL)
1494 {
1495 stub_noname_complaint ();
1496 return make_qualified_type (type, instance_flags, NULL);
1497 }
1498 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1499 if (sym)
1500 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
1501 else /* TYPE_CODE_UNDEF */
1502 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
1503 }
1504 type = TYPE_TARGET_TYPE (type);
1505
1506 /* Preserve the instance flags as we traverse down the typedef chain.
1507
1508 Handling address spaces/classes is nasty, what do we do if there's a
1509 conflict?
1510 E.g., what if an outer typedef marks the type as class_1 and an inner
1511 typedef marks the type as class_2?
1512 This is the wrong place to do such error checking. We leave it to
1513 the code that created the typedef in the first place to flag the
1514 error. We just pick the outer address space (akin to letting the
1515 outer cast in a chain of casting win), instead of assuming
1516 "it can't happen". */
1517 {
1518 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
1519 | TYPE_INSTANCE_FLAG_DATA_SPACE);
1520 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
1521 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
1522
1523 /* Treat code vs data spaces and address classes separately. */
1524 if ((instance_flags & ALL_SPACES) != 0)
1525 new_instance_flags &= ~ALL_SPACES;
1526 if ((instance_flags & ALL_CLASSES) != 0)
1527 new_instance_flags &= ~ALL_CLASSES;
1528
1529 instance_flags |= new_instance_flags;
1530 }
1531 }
1532
1533 /* If this is a struct/class/union with no fields, then check
1534 whether a full definition exists somewhere else. This is for
1535 systems where a type definition with no fields is issued for such
1536 types, instead of identifying them as stub types in the first
1537 place. */
1538
1539 if (TYPE_IS_OPAQUE (type)
1540 && opaque_type_resolution
1541 && !currently_reading_symtab)
1542 {
1543 char *name = type_name_no_tag (type);
1544 struct type *newtype;
1545
1546 if (name == NULL)
1547 {
1548 stub_noname_complaint ();
1549 return make_qualified_type (type, instance_flags, NULL);
1550 }
1551 newtype = lookup_transparent_type (name);
1552
1553 if (newtype)
1554 {
1555 /* If the resolved type and the stub are in the same
1556 objfile, then replace the stub type with the real deal.
1557 But if they're in separate objfiles, leave the stub
1558 alone; we'll just look up the transparent type every time
1559 we call check_typedef. We can't create pointers between
1560 types allocated to different objfiles, since they may
1561 have different lifetimes. Trying to copy NEWTYPE over to
1562 TYPE's objfile is pointless, too, since you'll have to
1563 move over any other types NEWTYPE refers to, which could
1564 be an unbounded amount of stuff. */
1565 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
1566 type = make_qualified_type (newtype,
1567 TYPE_INSTANCE_FLAGS (type),
1568 type);
1569 else
1570 type = newtype;
1571 }
1572 }
1573 /* Otherwise, rely on the stub flag being set for opaque/stubbed
1574 types. */
1575 else if (TYPE_STUB (type) && !currently_reading_symtab)
1576 {
1577 char *name = type_name_no_tag (type);
1578 /* FIXME: shouldn't we separately check the TYPE_NAME and the
1579 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
1580 as appropriate? (this code was written before TYPE_NAME and
1581 TYPE_TAG_NAME were separate). */
1582 struct symbol *sym;
1583
1584 if (name == NULL)
1585 {
1586 stub_noname_complaint ();
1587 return make_qualified_type (type, instance_flags, NULL);
1588 }
1589 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
1590 if (sym)
1591 {
1592 /* Same as above for opaque types, we can replace the stub
1593 with the complete type only if they are in the same
1594 objfile. */
1595 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
1596 type = make_qualified_type (SYMBOL_TYPE (sym),
1597 TYPE_INSTANCE_FLAGS (type),
1598 type);
1599 else
1600 type = SYMBOL_TYPE (sym);
1601 }
1602 }
1603
1604 if (TYPE_TARGET_STUB (type))
1605 {
1606 struct type *range_type;
1607 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1608
1609 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
1610 {
1611 /* Nothing we can do. */
1612 }
1613 else if (TYPE_CODE (type) == TYPE_CODE_ARRAY
1614 && TYPE_NFIELDS (type) == 1
1615 && (TYPE_CODE (range_type = TYPE_INDEX_TYPE (type))
1616 == TYPE_CODE_RANGE))
1617 {
1618 /* Now recompute the length of the array type, based on its
1619 number of elements and the target type's length.
1620 Watch out for Ada null Ada arrays where the high bound
1621 is smaller than the low bound. */
1622 const LONGEST low_bound = TYPE_LOW_BOUND (range_type);
1623 const LONGEST high_bound = TYPE_HIGH_BOUND (range_type);
1624 ULONGEST len;
1625
1626 if (high_bound < low_bound)
1627 len = 0;
1628 else
1629 {
1630 /* For now, we conservatively take the array length to be 0
1631 if its length exceeds UINT_MAX. The code below assumes
1632 that for x < 0, (ULONGEST) x == -x + ULONGEST_MAX + 1,
1633 which is technically not guaranteed by C, but is usually true
1634 (because it would be true if x were unsigned with its
1635 high-order bit on). It uses the fact that
1636 high_bound-low_bound is always representable in
1637 ULONGEST and that if high_bound-low_bound+1 overflows,
1638 it overflows to 0. We must change these tests if we
1639 decide to increase the representation of TYPE_LENGTH
1640 from unsigned int to ULONGEST. */
1641 ULONGEST ulow = low_bound, uhigh = high_bound;
1642 ULONGEST tlen = TYPE_LENGTH (target_type);
1643
1644 len = tlen * (uhigh - ulow + 1);
1645 if (tlen == 0 || (len / tlen - 1 + ulow) != uhigh
1646 || len > UINT_MAX)
1647 len = 0;
1648 }
1649 TYPE_LENGTH (type) = len;
1650 TYPE_TARGET_STUB (type) = 0;
1651 }
1652 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
1653 {
1654 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
1655 TYPE_TARGET_STUB (type) = 0;
1656 }
1657 }
1658
1659 type = make_qualified_type (type, instance_flags, NULL);
1660
1661 /* Cache TYPE_LENGTH for future use. */
1662 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
1663
1664 return type;
1665 }
1666
1667 /* Parse a type expression in the string [P..P+LENGTH). If an error
1668 occurs, silently return a void type. */
1669
1670 static struct type *
1671 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
1672 {
1673 struct ui_file *saved_gdb_stderr;
1674 struct type *type;
1675
1676 /* Suppress error messages. */
1677 saved_gdb_stderr = gdb_stderr;
1678 gdb_stderr = ui_file_new ();
1679
1680 /* Call parse_and_eval_type() without fear of longjmp()s. */
1681 if (!gdb_parse_and_eval_type (p, length, &type))
1682 type = builtin_type (gdbarch)->builtin_void;
1683
1684 /* Stop suppressing error messages. */
1685 ui_file_delete (gdb_stderr);
1686 gdb_stderr = saved_gdb_stderr;
1687
1688 return type;
1689 }
1690
1691 /* Ugly hack to convert method stubs into method types.
1692
1693 He ain't kiddin'. This demangles the name of the method into a
1694 string including argument types, parses out each argument type,
1695 generates a string casting a zero to that type, evaluates the
1696 string, and stuffs the resulting type into an argtype vector!!!
1697 Then it knows the type of the whole function (including argument
1698 types for overloading), which info used to be in the stab's but was
1699 removed to hack back the space required for them. */
1700
1701 static void
1702 check_stub_method (struct type *type, int method_id, int signature_id)
1703 {
1704 struct gdbarch *gdbarch = get_type_arch (type);
1705 struct fn_field *f;
1706 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
1707 char *demangled_name = cplus_demangle (mangled_name,
1708 DMGL_PARAMS | DMGL_ANSI);
1709 char *argtypetext, *p;
1710 int depth = 0, argcount = 1;
1711 struct field *argtypes;
1712 struct type *mtype;
1713
1714 /* Make sure we got back a function string that we can use. */
1715 if (demangled_name)
1716 p = strchr (demangled_name, '(');
1717 else
1718 p = NULL;
1719
1720 if (demangled_name == NULL || p == NULL)
1721 error (_("Internal: Cannot demangle mangled name `%s'."),
1722 mangled_name);
1723
1724 /* Now, read in the parameters that define this type. */
1725 p += 1;
1726 argtypetext = p;
1727 while (*p)
1728 {
1729 if (*p == '(' || *p == '<')
1730 {
1731 depth += 1;
1732 }
1733 else if (*p == ')' || *p == '>')
1734 {
1735 depth -= 1;
1736 }
1737 else if (*p == ',' && depth == 0)
1738 {
1739 argcount += 1;
1740 }
1741
1742 p += 1;
1743 }
1744
1745 /* If we read one argument and it was ``void'', don't count it. */
1746 if (strncmp (argtypetext, "(void)", 6) == 0)
1747 argcount -= 1;
1748
1749 /* We need one extra slot, for the THIS pointer. */
1750
1751 argtypes = (struct field *)
1752 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
1753 p = argtypetext;
1754
1755 /* Add THIS pointer for non-static methods. */
1756 f = TYPE_FN_FIELDLIST1 (type, method_id);
1757 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
1758 argcount = 0;
1759 else
1760 {
1761 argtypes[0].type = lookup_pointer_type (type);
1762 argcount = 1;
1763 }
1764
1765 if (*p != ')') /* () means no args, skip while. */
1766 {
1767 depth = 0;
1768 while (*p)
1769 {
1770 if (depth <= 0 && (*p == ',' || *p == ')'))
1771 {
1772 /* Avoid parsing of ellipsis, they will be handled below.
1773 Also avoid ``void'' as above. */
1774 if (strncmp (argtypetext, "...", p - argtypetext) != 0
1775 && strncmp (argtypetext, "void", p - argtypetext) != 0)
1776 {
1777 argtypes[argcount].type =
1778 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
1779 argcount += 1;
1780 }
1781 argtypetext = p + 1;
1782 }
1783
1784 if (*p == '(' || *p == '<')
1785 {
1786 depth += 1;
1787 }
1788 else if (*p == ')' || *p == '>')
1789 {
1790 depth -= 1;
1791 }
1792
1793 p += 1;
1794 }
1795 }
1796
1797 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
1798
1799 /* Now update the old "stub" type into a real type. */
1800 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
1801 TYPE_DOMAIN_TYPE (mtype) = type;
1802 TYPE_FIELDS (mtype) = argtypes;
1803 TYPE_NFIELDS (mtype) = argcount;
1804 TYPE_STUB (mtype) = 0;
1805 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
1806 if (p[-2] == '.')
1807 TYPE_VARARGS (mtype) = 1;
1808
1809 xfree (demangled_name);
1810 }
1811
1812 /* This is the external interface to check_stub_method, above. This
1813 function unstubs all of the signatures for TYPE's METHOD_ID method
1814 name. After calling this function TYPE_FN_FIELD_STUB will be
1815 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
1816 correct.
1817
1818 This function unfortunately can not die until stabs do. */
1819
1820 void
1821 check_stub_method_group (struct type *type, int method_id)
1822 {
1823 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
1824 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
1825 int j, found_stub = 0;
1826
1827 for (j = 0; j < len; j++)
1828 if (TYPE_FN_FIELD_STUB (f, j))
1829 {
1830 found_stub = 1;
1831 check_stub_method (type, method_id, j);
1832 }
1833
1834 /* GNU v3 methods with incorrect names were corrected when we read
1835 in type information, because it was cheaper to do it then. The
1836 only GNU v2 methods with incorrect method names are operators and
1837 destructors; destructors were also corrected when we read in type
1838 information.
1839
1840 Therefore the only thing we need to handle here are v2 operator
1841 names. */
1842 if (found_stub && strncmp (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z", 2) != 0)
1843 {
1844 int ret;
1845 char dem_opname[256];
1846
1847 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1848 method_id),
1849 dem_opname, DMGL_ANSI);
1850 if (!ret)
1851 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
1852 method_id),
1853 dem_opname, 0);
1854 if (ret)
1855 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
1856 }
1857 }
1858
1859 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
1860 const struct cplus_struct_type cplus_struct_default = { };
1861
1862 void
1863 allocate_cplus_struct_type (struct type *type)
1864 {
1865 if (HAVE_CPLUS_STRUCT (type))
1866 /* Structure was already allocated. Nothing more to do. */
1867 return;
1868
1869 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
1870 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
1871 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
1872 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
1873 }
1874
1875 const struct gnat_aux_type gnat_aux_default =
1876 { NULL };
1877
1878 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
1879 and allocate the associated gnat-specific data. The gnat-specific
1880 data is also initialized to gnat_aux_default. */
1881 void
1882 allocate_gnat_aux_type (struct type *type)
1883 {
1884 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
1885 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
1886 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
1887 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
1888 }
1889
1890
1891 /* Helper function to initialize the standard scalar types.
1892
1893 If NAME is non-NULL, then we make a copy of the string pointed
1894 to by name in the objfile_obstack for that objfile, and initialize
1895 the type name to that copy. There are places (mipsread.c in particular),
1896 where init_type is called with a NULL value for NAME). */
1897
1898 struct type *
1899 init_type (enum type_code code, int length, int flags,
1900 char *name, struct objfile *objfile)
1901 {
1902 struct type *type;
1903
1904 type = alloc_type (objfile);
1905 TYPE_CODE (type) = code;
1906 TYPE_LENGTH (type) = length;
1907
1908 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
1909 if (flags & TYPE_FLAG_UNSIGNED)
1910 TYPE_UNSIGNED (type) = 1;
1911 if (flags & TYPE_FLAG_NOSIGN)
1912 TYPE_NOSIGN (type) = 1;
1913 if (flags & TYPE_FLAG_STUB)
1914 TYPE_STUB (type) = 1;
1915 if (flags & TYPE_FLAG_TARGET_STUB)
1916 TYPE_TARGET_STUB (type) = 1;
1917 if (flags & TYPE_FLAG_STATIC)
1918 TYPE_STATIC (type) = 1;
1919 if (flags & TYPE_FLAG_PROTOTYPED)
1920 TYPE_PROTOTYPED (type) = 1;
1921 if (flags & TYPE_FLAG_INCOMPLETE)
1922 TYPE_INCOMPLETE (type) = 1;
1923 if (flags & TYPE_FLAG_VARARGS)
1924 TYPE_VARARGS (type) = 1;
1925 if (flags & TYPE_FLAG_VECTOR)
1926 TYPE_VECTOR (type) = 1;
1927 if (flags & TYPE_FLAG_STUB_SUPPORTED)
1928 TYPE_STUB_SUPPORTED (type) = 1;
1929 if (flags & TYPE_FLAG_FIXED_INSTANCE)
1930 TYPE_FIXED_INSTANCE (type) = 1;
1931 if (flags & TYPE_FLAG_GNU_IFUNC)
1932 TYPE_GNU_IFUNC (type) = 1;
1933
1934 if (name)
1935 TYPE_NAME (type) = obsavestring (name, strlen (name),
1936 &objfile->objfile_obstack);
1937
1938 /* C++ fancies. */
1939
1940 if (name && strcmp (name, "char") == 0)
1941 TYPE_NOSIGN (type) = 1;
1942
1943 switch (code)
1944 {
1945 case TYPE_CODE_STRUCT:
1946 case TYPE_CODE_UNION:
1947 case TYPE_CODE_NAMESPACE:
1948 INIT_CPLUS_SPECIFIC (type);
1949 break;
1950 case TYPE_CODE_FLT:
1951 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
1952 break;
1953 case TYPE_CODE_FUNC:
1954 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CALLING_CONVENTION;
1955 break;
1956 }
1957 return type;
1958 }
1959
1960 int
1961 can_dereference (struct type *t)
1962 {
1963 /* FIXME: Should we return true for references as well as
1964 pointers? */
1965 CHECK_TYPEDEF (t);
1966 return
1967 (t != NULL
1968 && TYPE_CODE (t) == TYPE_CODE_PTR
1969 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
1970 }
1971
1972 int
1973 is_integral_type (struct type *t)
1974 {
1975 CHECK_TYPEDEF (t);
1976 return
1977 ((t != NULL)
1978 && ((TYPE_CODE (t) == TYPE_CODE_INT)
1979 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
1980 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
1981 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
1982 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
1983 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
1984 }
1985
1986 /* Return true if TYPE is scalar. */
1987
1988 static int
1989 is_scalar_type (struct type *type)
1990 {
1991 CHECK_TYPEDEF (type);
1992
1993 switch (TYPE_CODE (type))
1994 {
1995 case TYPE_CODE_ARRAY:
1996 case TYPE_CODE_STRUCT:
1997 case TYPE_CODE_UNION:
1998 case TYPE_CODE_SET:
1999 case TYPE_CODE_STRING:
2000 case TYPE_CODE_BITSTRING:
2001 return 0;
2002 default:
2003 return 1;
2004 }
2005 }
2006
2007 /* Return true if T is scalar, or a composite type which in practice has
2008 the memory layout of a scalar type. E.g., an array or struct with only
2009 one scalar element inside it, or a union with only scalar elements. */
2010
2011 int
2012 is_scalar_type_recursive (struct type *t)
2013 {
2014 CHECK_TYPEDEF (t);
2015
2016 if (is_scalar_type (t))
2017 return 1;
2018 /* Are we dealing with an array or string of known dimensions? */
2019 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2020 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2021 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2022 {
2023 LONGEST low_bound, high_bound;
2024 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2025
2026 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2027
2028 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2029 }
2030 /* Are we dealing with a struct with one element? */
2031 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2032 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2033 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2034 {
2035 int i, n = TYPE_NFIELDS (t);
2036
2037 /* If all elements of the union are scalar, then the union is scalar. */
2038 for (i = 0; i < n; i++)
2039 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2040 return 0;
2041
2042 return 1;
2043 }
2044
2045 return 0;
2046 }
2047
2048 /* A helper function which returns true if types A and B represent the
2049 "same" class type. This is true if the types have the same main
2050 type, or the same name. */
2051
2052 int
2053 class_types_same_p (const struct type *a, const struct type *b)
2054 {
2055 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2056 || (TYPE_NAME (a) && TYPE_NAME (b)
2057 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2058 }
2059
2060 /* If BASE is an ancestor of DCLASS return the distance between them.
2061 otherwise return -1;
2062 eg:
2063
2064 class A {};
2065 class B: public A {};
2066 class C: public B {};
2067 class D: C {};
2068
2069 distance_to_ancestor (A, A, 0) = 0
2070 distance_to_ancestor (A, B, 0) = 1
2071 distance_to_ancestor (A, C, 0) = 2
2072 distance_to_ancestor (A, D, 0) = 3
2073
2074 If PUBLIC is 1 then only public ancestors are considered,
2075 and the function returns the distance only if BASE is a public ancestor
2076 of DCLASS.
2077 Eg:
2078
2079 distance_to_ancestor (A, D, 1) = -1. */
2080
2081 static int
2082 distance_to_ancestor (struct type *base, struct type *dclass, int public)
2083 {
2084 int i;
2085 int d;
2086
2087 CHECK_TYPEDEF (base);
2088 CHECK_TYPEDEF (dclass);
2089
2090 if (class_types_same_p (base, dclass))
2091 return 0;
2092
2093 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2094 {
2095 if (public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2096 continue;
2097
2098 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), public);
2099 if (d >= 0)
2100 return 1 + d;
2101 }
2102
2103 return -1;
2104 }
2105
2106 /* Check whether BASE is an ancestor or base class or DCLASS
2107 Return 1 if so, and 0 if not.
2108 Note: If BASE and DCLASS are of the same type, this function
2109 will return 1. So for some class A, is_ancestor (A, A) will
2110 return 1. */
2111
2112 int
2113 is_ancestor (struct type *base, struct type *dclass)
2114 {
2115 return distance_to_ancestor (base, dclass, 0) >= 0;
2116 }
2117
2118 /* Like is_ancestor, but only returns true when BASE is a public
2119 ancestor of DCLASS. */
2120
2121 int
2122 is_public_ancestor (struct type *base, struct type *dclass)
2123 {
2124 return distance_to_ancestor (base, dclass, 1) >= 0;
2125 }
2126
2127 /* A helper function for is_unique_ancestor. */
2128
2129 static int
2130 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2131 int *offset,
2132 const gdb_byte *valaddr, int embedded_offset,
2133 CORE_ADDR address, struct value *val)
2134 {
2135 int i, count = 0;
2136
2137 CHECK_TYPEDEF (base);
2138 CHECK_TYPEDEF (dclass);
2139
2140 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2141 {
2142 struct type *iter;
2143 int this_offset;
2144
2145 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2146
2147 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2148 address, val);
2149
2150 if (class_types_same_p (base, iter))
2151 {
2152 /* If this is the first subclass, set *OFFSET and set count
2153 to 1. Otherwise, if this is at the same offset as
2154 previous instances, do nothing. Otherwise, increment
2155 count. */
2156 if (*offset == -1)
2157 {
2158 *offset = this_offset;
2159 count = 1;
2160 }
2161 else if (this_offset == *offset)
2162 {
2163 /* Nothing. */
2164 }
2165 else
2166 ++count;
2167 }
2168 else
2169 count += is_unique_ancestor_worker (base, iter, offset,
2170 valaddr,
2171 embedded_offset + this_offset,
2172 address, val);
2173 }
2174
2175 return count;
2176 }
2177
2178 /* Like is_ancestor, but only returns true if BASE is a unique base
2179 class of the type of VAL. */
2180
2181 int
2182 is_unique_ancestor (struct type *base, struct value *val)
2183 {
2184 int offset = -1;
2185
2186 return is_unique_ancestor_worker (base, value_type (val), &offset,
2187 value_contents_for_printing (val),
2188 value_embedded_offset (val),
2189 value_address (val), val) == 1;
2190 }
2191
2192 \f
2193
2194 /* Return the sum of the rank of A with the rank of B. */
2195
2196 struct rank
2197 sum_ranks (struct rank a, struct rank b)
2198 {
2199 struct rank c;
2200 c.rank = a.rank + b.rank;
2201 c.subrank = a.subrank + b.subrank;
2202 return c;
2203 }
2204
2205 /* Compare rank A and B and return:
2206 0 if a = b
2207 1 if a is better than b
2208 -1 if b is better than a. */
2209
2210 int
2211 compare_ranks (struct rank a, struct rank b)
2212 {
2213 if (a.rank == b.rank)
2214 {
2215 if (a.subrank == b.subrank)
2216 return 0;
2217 if (a.subrank < b.subrank)
2218 return 1;
2219 if (a.subrank > b.subrank)
2220 return -1;
2221 }
2222
2223 if (a.rank < b.rank)
2224 return 1;
2225
2226 /* a.rank > b.rank */
2227 return -1;
2228 }
2229
2230 /* Functions for overload resolution begin here. */
2231
2232 /* Compare two badness vectors A and B and return the result.
2233 0 => A and B are identical
2234 1 => A and B are incomparable
2235 2 => A is better than B
2236 3 => A is worse than B */
2237
2238 int
2239 compare_badness (struct badness_vector *a, struct badness_vector *b)
2240 {
2241 int i;
2242 int tmp;
2243 short found_pos = 0; /* any positives in c? */
2244 short found_neg = 0; /* any negatives in c? */
2245
2246 /* differing lengths => incomparable */
2247 if (a->length != b->length)
2248 return 1;
2249
2250 /* Subtract b from a */
2251 for (i = 0; i < a->length; i++)
2252 {
2253 tmp = compare_ranks (b->rank[i], a->rank[i]);
2254 if (tmp > 0)
2255 found_pos = 1;
2256 else if (tmp < 0)
2257 found_neg = 1;
2258 }
2259
2260 if (found_pos)
2261 {
2262 if (found_neg)
2263 return 1; /* incomparable */
2264 else
2265 return 3; /* A > B */
2266 }
2267 else
2268 /* no positives */
2269 {
2270 if (found_neg)
2271 return 2; /* A < B */
2272 else
2273 return 0; /* A == B */
2274 }
2275 }
2276
2277 /* Rank a function by comparing its parameter types (PARMS, length
2278 NPARMS), to the types of an argument list (ARGS, length NARGS).
2279 Return a pointer to a badness vector. This has NARGS + 1
2280 entries. */
2281
2282 struct badness_vector *
2283 rank_function (struct type **parms, int nparms,
2284 struct type **args, int nargs)
2285 {
2286 int i;
2287 struct badness_vector *bv;
2288 int min_len = nparms < nargs ? nparms : nargs;
2289
2290 bv = xmalloc (sizeof (struct badness_vector));
2291 bv->length = nargs + 1; /* add 1 for the length-match rank. */
2292 bv->rank = xmalloc ((nargs + 1) * sizeof (int));
2293
2294 /* First compare the lengths of the supplied lists.
2295 If there is a mismatch, set it to a high value. */
2296
2297 /* pai/1997-06-03 FIXME: when we have debug info about default
2298 arguments and ellipsis parameter lists, we should consider those
2299 and rank the length-match more finely. */
2300
2301 LENGTH_MATCH (bv) = (nargs != nparms)
2302 ? LENGTH_MISMATCH_BADNESS
2303 : EXACT_MATCH_BADNESS;
2304
2305 /* Now rank all the parameters of the candidate function. */
2306 for (i = 1; i <= min_len; i++)
2307 bv->rank[i] = rank_one_type (parms[i-1], args[i-1]);
2308
2309 /* If more arguments than parameters, add dummy entries. */
2310 for (i = min_len + 1; i <= nargs; i++)
2311 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
2312
2313 return bv;
2314 }
2315
2316 /* Compare the names of two integer types, assuming that any sign
2317 qualifiers have been checked already. We do it this way because
2318 there may be an "int" in the name of one of the types. */
2319
2320 static int
2321 integer_types_same_name_p (const char *first, const char *second)
2322 {
2323 int first_p, second_p;
2324
2325 /* If both are shorts, return 1; if neither is a short, keep
2326 checking. */
2327 first_p = (strstr (first, "short") != NULL);
2328 second_p = (strstr (second, "short") != NULL);
2329 if (first_p && second_p)
2330 return 1;
2331 if (first_p || second_p)
2332 return 0;
2333
2334 /* Likewise for long. */
2335 first_p = (strstr (first, "long") != NULL);
2336 second_p = (strstr (second, "long") != NULL);
2337 if (first_p && second_p)
2338 return 1;
2339 if (first_p || second_p)
2340 return 0;
2341
2342 /* Likewise for char. */
2343 first_p = (strstr (first, "char") != NULL);
2344 second_p = (strstr (second, "char") != NULL);
2345 if (first_p && second_p)
2346 return 1;
2347 if (first_p || second_p)
2348 return 0;
2349
2350 /* They must both be ints. */
2351 return 1;
2352 }
2353
2354 /* Compares type A to type B returns 1 if the represent the same type
2355 0 otherwise. */
2356
2357 static int
2358 types_equal (struct type *a, struct type *b)
2359 {
2360 /* Identical type pointers. */
2361 /* However, this still doesn't catch all cases of same type for b
2362 and a. The reason is that builtin types are different from
2363 the same ones constructed from the object. */
2364 if (a == b)
2365 return 1;
2366
2367 /* Resolve typedefs */
2368 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
2369 a = check_typedef (a);
2370 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
2371 b = check_typedef (b);
2372
2373 /* If after resolving typedefs a and b are not of the same type
2374 code then they are not equal. */
2375 if (TYPE_CODE (a) != TYPE_CODE (b))
2376 return 0;
2377
2378 /* If a and b are both pointers types or both reference types then
2379 they are equal of the same type iff the objects they refer to are
2380 of the same type. */
2381 if (TYPE_CODE (a) == TYPE_CODE_PTR
2382 || TYPE_CODE (a) == TYPE_CODE_REF)
2383 return types_equal (TYPE_TARGET_TYPE (a),
2384 TYPE_TARGET_TYPE (b));
2385
2386 /* Well, damnit, if the names are exactly the same, I'll say they
2387 are exactly the same. This happens when we generate method
2388 stubs. The types won't point to the same address, but they
2389 really are the same. */
2390
2391 if (TYPE_NAME (a) && TYPE_NAME (b)
2392 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
2393 return 1;
2394
2395 /* Check if identical after resolving typedefs. */
2396 if (a == b)
2397 return 1;
2398
2399 return 0;
2400 }
2401
2402 /* Compare one type (PARM) for compatibility with another (ARG).
2403 * PARM is intended to be the parameter type of a function; and
2404 * ARG is the supplied argument's type. This function tests if
2405 * the latter can be converted to the former.
2406 *
2407 * Return 0 if they are identical types;
2408 * Otherwise, return an integer which corresponds to how compatible
2409 * PARM is to ARG. The higher the return value, the worse the match.
2410 * Generally the "bad" conversions are all uniformly assigned a 100. */
2411
2412 struct rank
2413 rank_one_type (struct type *parm, struct type *arg)
2414 {
2415 struct rank rank = {0,0};
2416
2417 if (types_equal (parm, arg))
2418 return EXACT_MATCH_BADNESS;
2419
2420 /* Resolve typedefs */
2421 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
2422 parm = check_typedef (parm);
2423 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
2424 arg = check_typedef (arg);
2425
2426 /* See through references, since we can almost make non-references
2427 references. */
2428 if (TYPE_CODE (arg) == TYPE_CODE_REF)
2429 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg)),
2430 REFERENCE_CONVERSION_BADNESS));
2431 if (TYPE_CODE (parm) == TYPE_CODE_REF)
2432 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg),
2433 REFERENCE_CONVERSION_BADNESS));
2434 if (overload_debug)
2435 /* Debugging only. */
2436 fprintf_filtered (gdb_stderr,
2437 "------ Arg is %s [%d], parm is %s [%d]\n",
2438 TYPE_NAME (arg), TYPE_CODE (arg),
2439 TYPE_NAME (parm), TYPE_CODE (parm));
2440
2441 /* x -> y means arg of type x being supplied for parameter of type y. */
2442
2443 switch (TYPE_CODE (parm))
2444 {
2445 case TYPE_CODE_PTR:
2446 switch (TYPE_CODE (arg))
2447 {
2448 case TYPE_CODE_PTR:
2449
2450 /* Allowed pointer conversions are:
2451 (a) pointer to void-pointer conversion. */
2452 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
2453 return VOID_PTR_CONVERSION_BADNESS;
2454
2455 /* (b) pointer to ancestor-pointer conversion. */
2456 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
2457 TYPE_TARGET_TYPE (arg),
2458 0);
2459 if (rank.subrank >= 0)
2460 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
2461
2462 return INCOMPATIBLE_TYPE_BADNESS;
2463 case TYPE_CODE_ARRAY:
2464 if (types_equal (TYPE_TARGET_TYPE (parm),
2465 TYPE_TARGET_TYPE (arg)))
2466 return EXACT_MATCH_BADNESS;
2467 return INCOMPATIBLE_TYPE_BADNESS;
2468 case TYPE_CODE_FUNC:
2469 return rank_one_type (TYPE_TARGET_TYPE (parm), arg);
2470 case TYPE_CODE_INT:
2471 case TYPE_CODE_ENUM:
2472 case TYPE_CODE_FLAGS:
2473 case TYPE_CODE_CHAR:
2474 case TYPE_CODE_RANGE:
2475 case TYPE_CODE_BOOL:
2476 default:
2477 return INCOMPATIBLE_TYPE_BADNESS;
2478 }
2479 case TYPE_CODE_ARRAY:
2480 switch (TYPE_CODE (arg))
2481 {
2482 case TYPE_CODE_PTR:
2483 case TYPE_CODE_ARRAY:
2484 return rank_one_type (TYPE_TARGET_TYPE (parm),
2485 TYPE_TARGET_TYPE (arg));
2486 default:
2487 return INCOMPATIBLE_TYPE_BADNESS;
2488 }
2489 case TYPE_CODE_FUNC:
2490 switch (TYPE_CODE (arg))
2491 {
2492 case TYPE_CODE_PTR: /* funcptr -> func */
2493 return rank_one_type (parm, TYPE_TARGET_TYPE (arg));
2494 default:
2495 return INCOMPATIBLE_TYPE_BADNESS;
2496 }
2497 case TYPE_CODE_INT:
2498 switch (TYPE_CODE (arg))
2499 {
2500 case TYPE_CODE_INT:
2501 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2502 {
2503 /* Deal with signed, unsigned, and plain chars and
2504 signed and unsigned ints. */
2505 if (TYPE_NOSIGN (parm))
2506 {
2507 /* This case only for character types. */
2508 if (TYPE_NOSIGN (arg))
2509 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
2510 else /* signed/unsigned char -> plain char */
2511 return INTEGER_CONVERSION_BADNESS;
2512 }
2513 else if (TYPE_UNSIGNED (parm))
2514 {
2515 if (TYPE_UNSIGNED (arg))
2516 {
2517 /* unsigned int -> unsigned int, or
2518 unsigned long -> unsigned long */
2519 if (integer_types_same_name_p (TYPE_NAME (parm),
2520 TYPE_NAME (arg)))
2521 return EXACT_MATCH_BADNESS;
2522 else if (integer_types_same_name_p (TYPE_NAME (arg),
2523 "int")
2524 && integer_types_same_name_p (TYPE_NAME (parm),
2525 "long"))
2526 /* unsigned int -> unsigned long */
2527 return INTEGER_PROMOTION_BADNESS;
2528 else
2529 /* unsigned long -> unsigned int */
2530 return INTEGER_CONVERSION_BADNESS;
2531 }
2532 else
2533 {
2534 if (integer_types_same_name_p (TYPE_NAME (arg),
2535 "long")
2536 && integer_types_same_name_p (TYPE_NAME (parm),
2537 "int"))
2538 /* signed long -> unsigned int */
2539 return INTEGER_CONVERSION_BADNESS;
2540 else
2541 /* signed int/long -> unsigned int/long */
2542 return INTEGER_CONVERSION_BADNESS;
2543 }
2544 }
2545 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2546 {
2547 if (integer_types_same_name_p (TYPE_NAME (parm),
2548 TYPE_NAME (arg)))
2549 return EXACT_MATCH_BADNESS;
2550 else if (integer_types_same_name_p (TYPE_NAME (arg),
2551 "int")
2552 && integer_types_same_name_p (TYPE_NAME (parm),
2553 "long"))
2554 return INTEGER_PROMOTION_BADNESS;
2555 else
2556 return INTEGER_CONVERSION_BADNESS;
2557 }
2558 else
2559 return INTEGER_CONVERSION_BADNESS;
2560 }
2561 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2562 return INTEGER_PROMOTION_BADNESS;
2563 else
2564 return INTEGER_CONVERSION_BADNESS;
2565 case TYPE_CODE_ENUM:
2566 case TYPE_CODE_FLAGS:
2567 case TYPE_CODE_CHAR:
2568 case TYPE_CODE_RANGE:
2569 case TYPE_CODE_BOOL:
2570 return INTEGER_PROMOTION_BADNESS;
2571 case TYPE_CODE_FLT:
2572 return INT_FLOAT_CONVERSION_BADNESS;
2573 case TYPE_CODE_PTR:
2574 return NS_POINTER_CONVERSION_BADNESS;
2575 default:
2576 return INCOMPATIBLE_TYPE_BADNESS;
2577 }
2578 break;
2579 case TYPE_CODE_ENUM:
2580 switch (TYPE_CODE (arg))
2581 {
2582 case TYPE_CODE_INT:
2583 case TYPE_CODE_CHAR:
2584 case TYPE_CODE_RANGE:
2585 case TYPE_CODE_BOOL:
2586 case TYPE_CODE_ENUM:
2587 return INTEGER_CONVERSION_BADNESS;
2588 case TYPE_CODE_FLT:
2589 return INT_FLOAT_CONVERSION_BADNESS;
2590 default:
2591 return INCOMPATIBLE_TYPE_BADNESS;
2592 }
2593 break;
2594 case TYPE_CODE_CHAR:
2595 switch (TYPE_CODE (arg))
2596 {
2597 case TYPE_CODE_RANGE:
2598 case TYPE_CODE_BOOL:
2599 case TYPE_CODE_ENUM:
2600 return INTEGER_CONVERSION_BADNESS;
2601 case TYPE_CODE_FLT:
2602 return INT_FLOAT_CONVERSION_BADNESS;
2603 case TYPE_CODE_INT:
2604 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
2605 return INTEGER_CONVERSION_BADNESS;
2606 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2607 return INTEGER_PROMOTION_BADNESS;
2608 /* >>> !! else fall through !! <<< */
2609 case TYPE_CODE_CHAR:
2610 /* Deal with signed, unsigned, and plain chars for C++ and
2611 with int cases falling through from previous case. */
2612 if (TYPE_NOSIGN (parm))
2613 {
2614 if (TYPE_NOSIGN (arg))
2615 return EXACT_MATCH_BADNESS;
2616 else
2617 return INTEGER_CONVERSION_BADNESS;
2618 }
2619 else if (TYPE_UNSIGNED (parm))
2620 {
2621 if (TYPE_UNSIGNED (arg))
2622 return EXACT_MATCH_BADNESS;
2623 else
2624 return INTEGER_PROMOTION_BADNESS;
2625 }
2626 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
2627 return EXACT_MATCH_BADNESS;
2628 else
2629 return INTEGER_CONVERSION_BADNESS;
2630 default:
2631 return INCOMPATIBLE_TYPE_BADNESS;
2632 }
2633 break;
2634 case TYPE_CODE_RANGE:
2635 switch (TYPE_CODE (arg))
2636 {
2637 case TYPE_CODE_INT:
2638 case TYPE_CODE_CHAR:
2639 case TYPE_CODE_RANGE:
2640 case TYPE_CODE_BOOL:
2641 case TYPE_CODE_ENUM:
2642 return INTEGER_CONVERSION_BADNESS;
2643 case TYPE_CODE_FLT:
2644 return INT_FLOAT_CONVERSION_BADNESS;
2645 default:
2646 return INCOMPATIBLE_TYPE_BADNESS;
2647 }
2648 break;
2649 case TYPE_CODE_BOOL:
2650 switch (TYPE_CODE (arg))
2651 {
2652 case TYPE_CODE_INT:
2653 case TYPE_CODE_CHAR:
2654 case TYPE_CODE_RANGE:
2655 case TYPE_CODE_ENUM:
2656 case TYPE_CODE_FLT:
2657 return INCOMPATIBLE_TYPE_BADNESS;
2658 case TYPE_CODE_PTR:
2659 return BOOL_PTR_CONVERSION_BADNESS;
2660 case TYPE_CODE_BOOL:
2661 return EXACT_MATCH_BADNESS;
2662 default:
2663 return INCOMPATIBLE_TYPE_BADNESS;
2664 }
2665 break;
2666 case TYPE_CODE_FLT:
2667 switch (TYPE_CODE (arg))
2668 {
2669 case TYPE_CODE_FLT:
2670 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
2671 return FLOAT_PROMOTION_BADNESS;
2672 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
2673 return EXACT_MATCH_BADNESS;
2674 else
2675 return FLOAT_CONVERSION_BADNESS;
2676 case TYPE_CODE_INT:
2677 case TYPE_CODE_BOOL:
2678 case TYPE_CODE_ENUM:
2679 case TYPE_CODE_RANGE:
2680 case TYPE_CODE_CHAR:
2681 return INT_FLOAT_CONVERSION_BADNESS;
2682 default:
2683 return INCOMPATIBLE_TYPE_BADNESS;
2684 }
2685 break;
2686 case TYPE_CODE_COMPLEX:
2687 switch (TYPE_CODE (arg))
2688 { /* Strictly not needed for C++, but... */
2689 case TYPE_CODE_FLT:
2690 return FLOAT_PROMOTION_BADNESS;
2691 case TYPE_CODE_COMPLEX:
2692 return EXACT_MATCH_BADNESS;
2693 default:
2694 return INCOMPATIBLE_TYPE_BADNESS;
2695 }
2696 break;
2697 case TYPE_CODE_STRUCT:
2698 /* currently same as TYPE_CODE_CLASS. */
2699 switch (TYPE_CODE (arg))
2700 {
2701 case TYPE_CODE_STRUCT:
2702 /* Check for derivation */
2703 rank.subrank = distance_to_ancestor (parm, arg, 0);
2704 if (rank.subrank >= 0)
2705 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
2706 /* else fall through */
2707 default:
2708 return INCOMPATIBLE_TYPE_BADNESS;
2709 }
2710 break;
2711 case TYPE_CODE_UNION:
2712 switch (TYPE_CODE (arg))
2713 {
2714 case TYPE_CODE_UNION:
2715 default:
2716 return INCOMPATIBLE_TYPE_BADNESS;
2717 }
2718 break;
2719 case TYPE_CODE_MEMBERPTR:
2720 switch (TYPE_CODE (arg))
2721 {
2722 default:
2723 return INCOMPATIBLE_TYPE_BADNESS;
2724 }
2725 break;
2726 case TYPE_CODE_METHOD:
2727 switch (TYPE_CODE (arg))
2728 {
2729
2730 default:
2731 return INCOMPATIBLE_TYPE_BADNESS;
2732 }
2733 break;
2734 case TYPE_CODE_REF:
2735 switch (TYPE_CODE (arg))
2736 {
2737
2738 default:
2739 return INCOMPATIBLE_TYPE_BADNESS;
2740 }
2741
2742 break;
2743 case TYPE_CODE_SET:
2744 switch (TYPE_CODE (arg))
2745 {
2746 /* Not in C++ */
2747 case TYPE_CODE_SET:
2748 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
2749 TYPE_FIELD_TYPE (arg, 0));
2750 default:
2751 return INCOMPATIBLE_TYPE_BADNESS;
2752 }
2753 break;
2754 case TYPE_CODE_VOID:
2755 default:
2756 return INCOMPATIBLE_TYPE_BADNESS;
2757 } /* switch (TYPE_CODE (arg)) */
2758 }
2759
2760
2761 /* End of functions for overload resolution. */
2762
2763 static void
2764 print_bit_vector (B_TYPE *bits, int nbits)
2765 {
2766 int bitno;
2767
2768 for (bitno = 0; bitno < nbits; bitno++)
2769 {
2770 if ((bitno % 8) == 0)
2771 {
2772 puts_filtered (" ");
2773 }
2774 if (B_TST (bits, bitno))
2775 printf_filtered (("1"));
2776 else
2777 printf_filtered (("0"));
2778 }
2779 }
2780
2781 /* Note the first arg should be the "this" pointer, we may not want to
2782 include it since we may get into a infinitely recursive
2783 situation. */
2784
2785 static void
2786 print_arg_types (struct field *args, int nargs, int spaces)
2787 {
2788 if (args != NULL)
2789 {
2790 int i;
2791
2792 for (i = 0; i < nargs; i++)
2793 recursive_dump_type (args[i].type, spaces + 2);
2794 }
2795 }
2796
2797 int
2798 field_is_static (struct field *f)
2799 {
2800 /* "static" fields are the fields whose location is not relative
2801 to the address of the enclosing struct. It would be nice to
2802 have a dedicated flag that would be set for static fields when
2803 the type is being created. But in practice, checking the field
2804 loc_kind should give us an accurate answer. */
2805 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
2806 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
2807 }
2808
2809 static void
2810 dump_fn_fieldlists (struct type *type, int spaces)
2811 {
2812 int method_idx;
2813 int overload_idx;
2814 struct fn_field *f;
2815
2816 printfi_filtered (spaces, "fn_fieldlists ");
2817 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
2818 printf_filtered ("\n");
2819 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
2820 {
2821 f = TYPE_FN_FIELDLIST1 (type, method_idx);
2822 printfi_filtered (spaces + 2, "[%d] name '%s' (",
2823 method_idx,
2824 TYPE_FN_FIELDLIST_NAME (type, method_idx));
2825 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
2826 gdb_stdout);
2827 printf_filtered (_(") length %d\n"),
2828 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
2829 for (overload_idx = 0;
2830 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
2831 overload_idx++)
2832 {
2833 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
2834 overload_idx,
2835 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
2836 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
2837 gdb_stdout);
2838 printf_filtered (")\n");
2839 printfi_filtered (spaces + 8, "type ");
2840 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
2841 gdb_stdout);
2842 printf_filtered ("\n");
2843
2844 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
2845 spaces + 8 + 2);
2846
2847 printfi_filtered (spaces + 8, "args ");
2848 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
2849 gdb_stdout);
2850 printf_filtered ("\n");
2851
2852 print_arg_types (TYPE_FN_FIELD_ARGS (f, overload_idx),
2853 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f,
2854 overload_idx)),
2855 spaces);
2856 printfi_filtered (spaces + 8, "fcontext ");
2857 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
2858 gdb_stdout);
2859 printf_filtered ("\n");
2860
2861 printfi_filtered (spaces + 8, "is_const %d\n",
2862 TYPE_FN_FIELD_CONST (f, overload_idx));
2863 printfi_filtered (spaces + 8, "is_volatile %d\n",
2864 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
2865 printfi_filtered (spaces + 8, "is_private %d\n",
2866 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
2867 printfi_filtered (spaces + 8, "is_protected %d\n",
2868 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
2869 printfi_filtered (spaces + 8, "is_stub %d\n",
2870 TYPE_FN_FIELD_STUB (f, overload_idx));
2871 printfi_filtered (spaces + 8, "voffset %u\n",
2872 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
2873 }
2874 }
2875 }
2876
2877 static void
2878 print_cplus_stuff (struct type *type, int spaces)
2879 {
2880 printfi_filtered (spaces, "n_baseclasses %d\n",
2881 TYPE_N_BASECLASSES (type));
2882 printfi_filtered (spaces, "nfn_fields %d\n",
2883 TYPE_NFN_FIELDS (type));
2884 printfi_filtered (spaces, "nfn_fields_total %d\n",
2885 TYPE_NFN_FIELDS_TOTAL (type));
2886 if (TYPE_N_BASECLASSES (type) > 0)
2887 {
2888 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
2889 TYPE_N_BASECLASSES (type));
2890 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
2891 gdb_stdout);
2892 printf_filtered (")");
2893
2894 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
2895 TYPE_N_BASECLASSES (type));
2896 puts_filtered ("\n");
2897 }
2898 if (TYPE_NFIELDS (type) > 0)
2899 {
2900 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
2901 {
2902 printfi_filtered (spaces,
2903 "private_field_bits (%d bits at *",
2904 TYPE_NFIELDS (type));
2905 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
2906 gdb_stdout);
2907 printf_filtered (")");
2908 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
2909 TYPE_NFIELDS (type));
2910 puts_filtered ("\n");
2911 }
2912 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
2913 {
2914 printfi_filtered (spaces,
2915 "protected_field_bits (%d bits at *",
2916 TYPE_NFIELDS (type));
2917 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
2918 gdb_stdout);
2919 printf_filtered (")");
2920 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
2921 TYPE_NFIELDS (type));
2922 puts_filtered ("\n");
2923 }
2924 }
2925 if (TYPE_NFN_FIELDS (type) > 0)
2926 {
2927 dump_fn_fieldlists (type, spaces);
2928 }
2929 }
2930
2931 /* Print the contents of the TYPE's type_specific union, assuming that
2932 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
2933
2934 static void
2935 print_gnat_stuff (struct type *type, int spaces)
2936 {
2937 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
2938
2939 recursive_dump_type (descriptive_type, spaces + 2);
2940 }
2941
2942 static struct obstack dont_print_type_obstack;
2943
2944 void
2945 recursive_dump_type (struct type *type, int spaces)
2946 {
2947 int idx;
2948
2949 if (spaces == 0)
2950 obstack_begin (&dont_print_type_obstack, 0);
2951
2952 if (TYPE_NFIELDS (type) > 0
2953 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
2954 {
2955 struct type **first_dont_print
2956 = (struct type **) obstack_base (&dont_print_type_obstack);
2957
2958 int i = (struct type **)
2959 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
2960
2961 while (--i >= 0)
2962 {
2963 if (type == first_dont_print[i])
2964 {
2965 printfi_filtered (spaces, "type node ");
2966 gdb_print_host_address (type, gdb_stdout);
2967 printf_filtered (_(" <same as already seen type>\n"));
2968 return;
2969 }
2970 }
2971
2972 obstack_ptr_grow (&dont_print_type_obstack, type);
2973 }
2974
2975 printfi_filtered (spaces, "type node ");
2976 gdb_print_host_address (type, gdb_stdout);
2977 printf_filtered ("\n");
2978 printfi_filtered (spaces, "name '%s' (",
2979 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
2980 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
2981 printf_filtered (")\n");
2982 printfi_filtered (spaces, "tagname '%s' (",
2983 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
2984 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
2985 printf_filtered (")\n");
2986 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
2987 switch (TYPE_CODE (type))
2988 {
2989 case TYPE_CODE_UNDEF:
2990 printf_filtered ("(TYPE_CODE_UNDEF)");
2991 break;
2992 case TYPE_CODE_PTR:
2993 printf_filtered ("(TYPE_CODE_PTR)");
2994 break;
2995 case TYPE_CODE_ARRAY:
2996 printf_filtered ("(TYPE_CODE_ARRAY)");
2997 break;
2998 case TYPE_CODE_STRUCT:
2999 printf_filtered ("(TYPE_CODE_STRUCT)");
3000 break;
3001 case TYPE_CODE_UNION:
3002 printf_filtered ("(TYPE_CODE_UNION)");
3003 break;
3004 case TYPE_CODE_ENUM:
3005 printf_filtered ("(TYPE_CODE_ENUM)");
3006 break;
3007 case TYPE_CODE_FLAGS:
3008 printf_filtered ("(TYPE_CODE_FLAGS)");
3009 break;
3010 case TYPE_CODE_FUNC:
3011 printf_filtered ("(TYPE_CODE_FUNC)");
3012 break;
3013 case TYPE_CODE_INT:
3014 printf_filtered ("(TYPE_CODE_INT)");
3015 break;
3016 case TYPE_CODE_FLT:
3017 printf_filtered ("(TYPE_CODE_FLT)");
3018 break;
3019 case TYPE_CODE_VOID:
3020 printf_filtered ("(TYPE_CODE_VOID)");
3021 break;
3022 case TYPE_CODE_SET:
3023 printf_filtered ("(TYPE_CODE_SET)");
3024 break;
3025 case TYPE_CODE_RANGE:
3026 printf_filtered ("(TYPE_CODE_RANGE)");
3027 break;
3028 case TYPE_CODE_STRING:
3029 printf_filtered ("(TYPE_CODE_STRING)");
3030 break;
3031 case TYPE_CODE_BITSTRING:
3032 printf_filtered ("(TYPE_CODE_BITSTRING)");
3033 break;
3034 case TYPE_CODE_ERROR:
3035 printf_filtered ("(TYPE_CODE_ERROR)");
3036 break;
3037 case TYPE_CODE_MEMBERPTR:
3038 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
3039 break;
3040 case TYPE_CODE_METHODPTR:
3041 printf_filtered ("(TYPE_CODE_METHODPTR)");
3042 break;
3043 case TYPE_CODE_METHOD:
3044 printf_filtered ("(TYPE_CODE_METHOD)");
3045 break;
3046 case TYPE_CODE_REF:
3047 printf_filtered ("(TYPE_CODE_REF)");
3048 break;
3049 case TYPE_CODE_CHAR:
3050 printf_filtered ("(TYPE_CODE_CHAR)");
3051 break;
3052 case TYPE_CODE_BOOL:
3053 printf_filtered ("(TYPE_CODE_BOOL)");
3054 break;
3055 case TYPE_CODE_COMPLEX:
3056 printf_filtered ("(TYPE_CODE_COMPLEX)");
3057 break;
3058 case TYPE_CODE_TYPEDEF:
3059 printf_filtered ("(TYPE_CODE_TYPEDEF)");
3060 break;
3061 case TYPE_CODE_NAMESPACE:
3062 printf_filtered ("(TYPE_CODE_NAMESPACE)");
3063 break;
3064 default:
3065 printf_filtered ("(UNKNOWN TYPE CODE)");
3066 break;
3067 }
3068 puts_filtered ("\n");
3069 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
3070 if (TYPE_OBJFILE_OWNED (type))
3071 {
3072 printfi_filtered (spaces, "objfile ");
3073 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
3074 }
3075 else
3076 {
3077 printfi_filtered (spaces, "gdbarch ");
3078 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
3079 }
3080 printf_filtered ("\n");
3081 printfi_filtered (spaces, "target_type ");
3082 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
3083 printf_filtered ("\n");
3084 if (TYPE_TARGET_TYPE (type) != NULL)
3085 {
3086 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
3087 }
3088 printfi_filtered (spaces, "pointer_type ");
3089 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
3090 printf_filtered ("\n");
3091 printfi_filtered (spaces, "reference_type ");
3092 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
3093 printf_filtered ("\n");
3094 printfi_filtered (spaces, "type_chain ");
3095 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
3096 printf_filtered ("\n");
3097 printfi_filtered (spaces, "instance_flags 0x%x",
3098 TYPE_INSTANCE_FLAGS (type));
3099 if (TYPE_CONST (type))
3100 {
3101 puts_filtered (" TYPE_FLAG_CONST");
3102 }
3103 if (TYPE_VOLATILE (type))
3104 {
3105 puts_filtered (" TYPE_FLAG_VOLATILE");
3106 }
3107 if (TYPE_CODE_SPACE (type))
3108 {
3109 puts_filtered (" TYPE_FLAG_CODE_SPACE");
3110 }
3111 if (TYPE_DATA_SPACE (type))
3112 {
3113 puts_filtered (" TYPE_FLAG_DATA_SPACE");
3114 }
3115 if (TYPE_ADDRESS_CLASS_1 (type))
3116 {
3117 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
3118 }
3119 if (TYPE_ADDRESS_CLASS_2 (type))
3120 {
3121 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
3122 }
3123 puts_filtered ("\n");
3124
3125 printfi_filtered (spaces, "flags");
3126 if (TYPE_UNSIGNED (type))
3127 {
3128 puts_filtered (" TYPE_FLAG_UNSIGNED");
3129 }
3130 if (TYPE_NOSIGN (type))
3131 {
3132 puts_filtered (" TYPE_FLAG_NOSIGN");
3133 }
3134 if (TYPE_STUB (type))
3135 {
3136 puts_filtered (" TYPE_FLAG_STUB");
3137 }
3138 if (TYPE_TARGET_STUB (type))
3139 {
3140 puts_filtered (" TYPE_FLAG_TARGET_STUB");
3141 }
3142 if (TYPE_STATIC (type))
3143 {
3144 puts_filtered (" TYPE_FLAG_STATIC");
3145 }
3146 if (TYPE_PROTOTYPED (type))
3147 {
3148 puts_filtered (" TYPE_FLAG_PROTOTYPED");
3149 }
3150 if (TYPE_INCOMPLETE (type))
3151 {
3152 puts_filtered (" TYPE_FLAG_INCOMPLETE");
3153 }
3154 if (TYPE_VARARGS (type))
3155 {
3156 puts_filtered (" TYPE_FLAG_VARARGS");
3157 }
3158 /* This is used for things like AltiVec registers on ppc. Gcc emits
3159 an attribute for the array type, which tells whether or not we
3160 have a vector, instead of a regular array. */
3161 if (TYPE_VECTOR (type))
3162 {
3163 puts_filtered (" TYPE_FLAG_VECTOR");
3164 }
3165 if (TYPE_FIXED_INSTANCE (type))
3166 {
3167 puts_filtered (" TYPE_FIXED_INSTANCE");
3168 }
3169 if (TYPE_STUB_SUPPORTED (type))
3170 {
3171 puts_filtered (" TYPE_STUB_SUPPORTED");
3172 }
3173 if (TYPE_NOTTEXT (type))
3174 {
3175 puts_filtered (" TYPE_NOTTEXT");
3176 }
3177 puts_filtered ("\n");
3178 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
3179 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
3180 puts_filtered ("\n");
3181 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
3182 {
3183 printfi_filtered (spaces + 2,
3184 "[%d] bitpos %d bitsize %d type ",
3185 idx, TYPE_FIELD_BITPOS (type, idx),
3186 TYPE_FIELD_BITSIZE (type, idx));
3187 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
3188 printf_filtered (" name '%s' (",
3189 TYPE_FIELD_NAME (type, idx) != NULL
3190 ? TYPE_FIELD_NAME (type, idx)
3191 : "<NULL>");
3192 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
3193 printf_filtered (")\n");
3194 if (TYPE_FIELD_TYPE (type, idx) != NULL)
3195 {
3196 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
3197 }
3198 }
3199 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3200 {
3201 printfi_filtered (spaces, "low %s%s high %s%s\n",
3202 plongest (TYPE_LOW_BOUND (type)),
3203 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
3204 plongest (TYPE_HIGH_BOUND (type)),
3205 TYPE_HIGH_BOUND_UNDEFINED (type)
3206 ? " (undefined)" : "");
3207 }
3208 printfi_filtered (spaces, "vptr_basetype ");
3209 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3210 puts_filtered ("\n");
3211 if (TYPE_VPTR_BASETYPE (type) != NULL)
3212 {
3213 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3214 }
3215 printfi_filtered (spaces, "vptr_fieldno %d\n",
3216 TYPE_VPTR_FIELDNO (type));
3217
3218 switch (TYPE_SPECIFIC_FIELD (type))
3219 {
3220 case TYPE_SPECIFIC_CPLUS_STUFF:
3221 printfi_filtered (spaces, "cplus_stuff ");
3222 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
3223 gdb_stdout);
3224 puts_filtered ("\n");
3225 print_cplus_stuff (type, spaces);
3226 break;
3227
3228 case TYPE_SPECIFIC_GNAT_STUFF:
3229 printfi_filtered (spaces, "gnat_stuff ");
3230 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
3231 puts_filtered ("\n");
3232 print_gnat_stuff (type, spaces);
3233 break;
3234
3235 case TYPE_SPECIFIC_FLOATFORMAT:
3236 printfi_filtered (spaces, "floatformat ");
3237 if (TYPE_FLOATFORMAT (type) == NULL)
3238 puts_filtered ("(null)");
3239 else
3240 {
3241 puts_filtered ("{ ");
3242 if (TYPE_FLOATFORMAT (type)[0] == NULL
3243 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
3244 puts_filtered ("(null)");
3245 else
3246 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
3247
3248 puts_filtered (", ");
3249 if (TYPE_FLOATFORMAT (type)[1] == NULL
3250 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
3251 puts_filtered ("(null)");
3252 else
3253 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
3254
3255 puts_filtered (" }");
3256 }
3257 puts_filtered ("\n");
3258 break;
3259
3260 case TYPE_SPECIFIC_CALLING_CONVENTION:
3261 printfi_filtered (spaces, "calling_convention %d\n",
3262 TYPE_CALLING_CONVENTION (type));
3263 break;
3264 }
3265
3266 if (spaces == 0)
3267 obstack_free (&dont_print_type_obstack, NULL);
3268 }
3269
3270 /* Trivial helpers for the libiberty hash table, for mapping one
3271 type to another. */
3272
3273 struct type_pair
3274 {
3275 struct type *old, *new;
3276 };
3277
3278 static hashval_t
3279 type_pair_hash (const void *item)
3280 {
3281 const struct type_pair *pair = item;
3282
3283 return htab_hash_pointer (pair->old);
3284 }
3285
3286 static int
3287 type_pair_eq (const void *item_lhs, const void *item_rhs)
3288 {
3289 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
3290
3291 return lhs->old == rhs->old;
3292 }
3293
3294 /* Allocate the hash table used by copy_type_recursive to walk
3295 types without duplicates. We use OBJFILE's obstack, because
3296 OBJFILE is about to be deleted. */
3297
3298 htab_t
3299 create_copied_types_hash (struct objfile *objfile)
3300 {
3301 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
3302 NULL, &objfile->objfile_obstack,
3303 hashtab_obstack_allocate,
3304 dummy_obstack_deallocate);
3305 }
3306
3307 /* Recursively copy (deep copy) TYPE, if it is associated with
3308 OBJFILE. Return a new type allocated using malloc, a saved type if
3309 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
3310 not associated with OBJFILE. */
3311
3312 struct type *
3313 copy_type_recursive (struct objfile *objfile,
3314 struct type *type,
3315 htab_t copied_types)
3316 {
3317 struct type_pair *stored, pair;
3318 void **slot;
3319 struct type *new_type;
3320
3321 if (! TYPE_OBJFILE_OWNED (type))
3322 return type;
3323
3324 /* This type shouldn't be pointing to any types in other objfiles;
3325 if it did, the type might disappear unexpectedly. */
3326 gdb_assert (TYPE_OBJFILE (type) == objfile);
3327
3328 pair.old = type;
3329 slot = htab_find_slot (copied_types, &pair, INSERT);
3330 if (*slot != NULL)
3331 return ((struct type_pair *) *slot)->new;
3332
3333 new_type = alloc_type_arch (get_type_arch (type));
3334
3335 /* We must add the new type to the hash table immediately, in case
3336 we encounter this type again during a recursive call below. */
3337 stored
3338 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
3339 stored->old = type;
3340 stored->new = new_type;
3341 *slot = stored;
3342
3343 /* Copy the common fields of types. For the main type, we simply
3344 copy the entire thing and then update specific fields as needed. */
3345 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
3346 TYPE_OBJFILE_OWNED (new_type) = 0;
3347 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
3348
3349 if (TYPE_NAME (type))
3350 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
3351 if (TYPE_TAG_NAME (type))
3352 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
3353
3354 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3355 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3356
3357 /* Copy the fields. */
3358 if (TYPE_NFIELDS (type))
3359 {
3360 int i, nfields;
3361
3362 nfields = TYPE_NFIELDS (type);
3363 TYPE_FIELDS (new_type) = XCALLOC (nfields, struct field);
3364 for (i = 0; i < nfields; i++)
3365 {
3366 TYPE_FIELD_ARTIFICIAL (new_type, i) =
3367 TYPE_FIELD_ARTIFICIAL (type, i);
3368 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
3369 if (TYPE_FIELD_TYPE (type, i))
3370 TYPE_FIELD_TYPE (new_type, i)
3371 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
3372 copied_types);
3373 if (TYPE_FIELD_NAME (type, i))
3374 TYPE_FIELD_NAME (new_type, i) =
3375 xstrdup (TYPE_FIELD_NAME (type, i));
3376 switch (TYPE_FIELD_LOC_KIND (type, i))
3377 {
3378 case FIELD_LOC_KIND_BITPOS:
3379 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
3380 TYPE_FIELD_BITPOS (type, i));
3381 break;
3382 case FIELD_LOC_KIND_PHYSADDR:
3383 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
3384 TYPE_FIELD_STATIC_PHYSADDR (type, i));
3385 break;
3386 case FIELD_LOC_KIND_PHYSNAME:
3387 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
3388 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
3389 i)));
3390 break;
3391 default:
3392 internal_error (__FILE__, __LINE__,
3393 _("Unexpected type field location kind: %d"),
3394 TYPE_FIELD_LOC_KIND (type, i));
3395 }
3396 }
3397 }
3398
3399 /* For range types, copy the bounds information. */
3400 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
3401 {
3402 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
3403 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
3404 }
3405
3406 /* Copy pointers to other types. */
3407 if (TYPE_TARGET_TYPE (type))
3408 TYPE_TARGET_TYPE (new_type) =
3409 copy_type_recursive (objfile,
3410 TYPE_TARGET_TYPE (type),
3411 copied_types);
3412 if (TYPE_VPTR_BASETYPE (type))
3413 TYPE_VPTR_BASETYPE (new_type) =
3414 copy_type_recursive (objfile,
3415 TYPE_VPTR_BASETYPE (type),
3416 copied_types);
3417 /* Maybe copy the type_specific bits.
3418
3419 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
3420 base classes and methods. There's no fundamental reason why we
3421 can't, but at the moment it is not needed. */
3422
3423 if (TYPE_CODE (type) == TYPE_CODE_FLT)
3424 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
3425 else if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3426 || TYPE_CODE (type) == TYPE_CODE_UNION
3427 || TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
3428 INIT_CPLUS_SPECIFIC (new_type);
3429
3430 return new_type;
3431 }
3432
3433 /* Make a copy of the given TYPE, except that the pointer & reference
3434 types are not preserved.
3435
3436 This function assumes that the given type has an associated objfile.
3437 This objfile is used to allocate the new type. */
3438
3439 struct type *
3440 copy_type (const struct type *type)
3441 {
3442 struct type *new_type;
3443
3444 gdb_assert (TYPE_OBJFILE_OWNED (type));
3445
3446 new_type = alloc_type_copy (type);
3447 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
3448 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
3449 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
3450 sizeof (struct main_type));
3451
3452 return new_type;
3453 }
3454
3455
3456 /* Helper functions to initialize architecture-specific types. */
3457
3458 /* Allocate a type structure associated with GDBARCH and set its
3459 CODE, LENGTH, and NAME fields. */
3460 struct type *
3461 arch_type (struct gdbarch *gdbarch,
3462 enum type_code code, int length, char *name)
3463 {
3464 struct type *type;
3465
3466 type = alloc_type_arch (gdbarch);
3467 TYPE_CODE (type) = code;
3468 TYPE_LENGTH (type) = length;
3469
3470 if (name)
3471 TYPE_NAME (type) = xstrdup (name);
3472
3473 return type;
3474 }
3475
3476 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
3477 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3478 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3479 struct type *
3480 arch_integer_type (struct gdbarch *gdbarch,
3481 int bit, int unsigned_p, char *name)
3482 {
3483 struct type *t;
3484
3485 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
3486 if (unsigned_p)
3487 TYPE_UNSIGNED (t) = 1;
3488 if (name && strcmp (name, "char") == 0)
3489 TYPE_NOSIGN (t) = 1;
3490
3491 return t;
3492 }
3493
3494 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
3495 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3496 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3497 struct type *
3498 arch_character_type (struct gdbarch *gdbarch,
3499 int bit, int unsigned_p, char *name)
3500 {
3501 struct type *t;
3502
3503 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
3504 if (unsigned_p)
3505 TYPE_UNSIGNED (t) = 1;
3506
3507 return t;
3508 }
3509
3510 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
3511 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
3512 the type's TYPE_UNSIGNED flag. NAME is the type name. */
3513 struct type *
3514 arch_boolean_type (struct gdbarch *gdbarch,
3515 int bit, int unsigned_p, char *name)
3516 {
3517 struct type *t;
3518
3519 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
3520 if (unsigned_p)
3521 TYPE_UNSIGNED (t) = 1;
3522
3523 return t;
3524 }
3525
3526 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
3527 BIT is the type size in bits; if BIT equals -1, the size is
3528 determined by the floatformat. NAME is the type name. Set the
3529 TYPE_FLOATFORMAT from FLOATFORMATS. */
3530 struct type *
3531 arch_float_type (struct gdbarch *gdbarch,
3532 int bit, char *name, const struct floatformat **floatformats)
3533 {
3534 struct type *t;
3535
3536 if (bit == -1)
3537 {
3538 gdb_assert (floatformats != NULL);
3539 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
3540 bit = floatformats[0]->totalsize;
3541 }
3542 gdb_assert (bit >= 0);
3543
3544 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
3545 TYPE_FLOATFORMAT (t) = floatformats;
3546 return t;
3547 }
3548
3549 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
3550 NAME is the type name. TARGET_TYPE is the component float type. */
3551 struct type *
3552 arch_complex_type (struct gdbarch *gdbarch,
3553 char *name, struct type *target_type)
3554 {
3555 struct type *t;
3556
3557 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
3558 2 * TYPE_LENGTH (target_type), name);
3559 TYPE_TARGET_TYPE (t) = target_type;
3560 return t;
3561 }
3562
3563 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
3564 NAME is the type name. LENGTH is the size of the flag word in bytes. */
3565 struct type *
3566 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
3567 {
3568 int nfields = length * TARGET_CHAR_BIT;
3569 struct type *type;
3570
3571 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
3572 TYPE_UNSIGNED (type) = 1;
3573 TYPE_NFIELDS (type) = nfields;
3574 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
3575
3576 return type;
3577 }
3578
3579 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
3580 position BITPOS is called NAME. */
3581 void
3582 append_flags_type_flag (struct type *type, int bitpos, char *name)
3583 {
3584 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
3585 gdb_assert (bitpos < TYPE_NFIELDS (type));
3586 gdb_assert (bitpos >= 0);
3587
3588 if (name)
3589 {
3590 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
3591 TYPE_FIELD_BITPOS (type, bitpos) = bitpos;
3592 }
3593 else
3594 {
3595 /* Don't show this field to the user. */
3596 TYPE_FIELD_BITPOS (type, bitpos) = -1;
3597 }
3598 }
3599
3600 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
3601 specified by CODE) associated with GDBARCH. NAME is the type name. */
3602 struct type *
3603 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
3604 {
3605 struct type *t;
3606
3607 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
3608 t = arch_type (gdbarch, code, 0, NULL);
3609 TYPE_TAG_NAME (t) = name;
3610 INIT_CPLUS_SPECIFIC (t);
3611 return t;
3612 }
3613
3614 /* Add new field with name NAME and type FIELD to composite type T.
3615 Do not set the field's position or adjust the type's length;
3616 the caller should do so. Return the new field. */
3617 struct field *
3618 append_composite_type_field_raw (struct type *t, char *name,
3619 struct type *field)
3620 {
3621 struct field *f;
3622
3623 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
3624 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
3625 sizeof (struct field) * TYPE_NFIELDS (t));
3626 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
3627 memset (f, 0, sizeof f[0]);
3628 FIELD_TYPE (f[0]) = field;
3629 FIELD_NAME (f[0]) = name;
3630 return f;
3631 }
3632
3633 /* Add new field with name NAME and type FIELD to composite type T.
3634 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
3635 void
3636 append_composite_type_field_aligned (struct type *t, char *name,
3637 struct type *field, int alignment)
3638 {
3639 struct field *f = append_composite_type_field_raw (t, name, field);
3640
3641 if (TYPE_CODE (t) == TYPE_CODE_UNION)
3642 {
3643 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
3644 TYPE_LENGTH (t) = TYPE_LENGTH (field);
3645 }
3646 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
3647 {
3648 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
3649 if (TYPE_NFIELDS (t) > 1)
3650 {
3651 FIELD_BITPOS (f[0]) = (FIELD_BITPOS (f[-1])
3652 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
3653 * TARGET_CHAR_BIT));
3654
3655 if (alignment)
3656 {
3657 int left;
3658
3659 alignment *= TARGET_CHAR_BIT;
3660 left = FIELD_BITPOS (f[0]) % alignment;
3661
3662 if (left)
3663 {
3664 FIELD_BITPOS (f[0]) += (alignment - left);
3665 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
3666 }
3667 }
3668 }
3669 }
3670 }
3671
3672 /* Add new field with name NAME and type FIELD to composite type T. */
3673 void
3674 append_composite_type_field (struct type *t, char *name,
3675 struct type *field)
3676 {
3677 append_composite_type_field_aligned (t, name, field, 0);
3678 }
3679
3680
3681 static struct gdbarch_data *gdbtypes_data;
3682
3683 const struct builtin_type *
3684 builtin_type (struct gdbarch *gdbarch)
3685 {
3686 return gdbarch_data (gdbarch, gdbtypes_data);
3687 }
3688
3689 static void *
3690 gdbtypes_post_init (struct gdbarch *gdbarch)
3691 {
3692 struct builtin_type *builtin_type
3693 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
3694
3695 /* Basic types. */
3696 builtin_type->builtin_void
3697 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
3698 builtin_type->builtin_char
3699 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3700 !gdbarch_char_signed (gdbarch), "char");
3701 builtin_type->builtin_signed_char
3702 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3703 0, "signed char");
3704 builtin_type->builtin_unsigned_char
3705 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
3706 1, "unsigned char");
3707 builtin_type->builtin_short
3708 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3709 0, "short");
3710 builtin_type->builtin_unsigned_short
3711 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
3712 1, "unsigned short");
3713 builtin_type->builtin_int
3714 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3715 0, "int");
3716 builtin_type->builtin_unsigned_int
3717 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
3718 1, "unsigned int");
3719 builtin_type->builtin_long
3720 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3721 0, "long");
3722 builtin_type->builtin_unsigned_long
3723 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
3724 1, "unsigned long");
3725 builtin_type->builtin_long_long
3726 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3727 0, "long long");
3728 builtin_type->builtin_unsigned_long_long
3729 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
3730 1, "unsigned long long");
3731 builtin_type->builtin_float
3732 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
3733 "float", gdbarch_float_format (gdbarch));
3734 builtin_type->builtin_double
3735 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
3736 "double", gdbarch_double_format (gdbarch));
3737 builtin_type->builtin_long_double
3738 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
3739 "long double", gdbarch_long_double_format (gdbarch));
3740 builtin_type->builtin_complex
3741 = arch_complex_type (gdbarch, "complex",
3742 builtin_type->builtin_float);
3743 builtin_type->builtin_double_complex
3744 = arch_complex_type (gdbarch, "double complex",
3745 builtin_type->builtin_double);
3746 builtin_type->builtin_string
3747 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
3748 builtin_type->builtin_bool
3749 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
3750
3751 /* The following three are about decimal floating point types, which
3752 are 32-bits, 64-bits and 128-bits respectively. */
3753 builtin_type->builtin_decfloat
3754 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
3755 builtin_type->builtin_decdouble
3756 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
3757 builtin_type->builtin_declong
3758 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
3759
3760 /* "True" character types. */
3761 builtin_type->builtin_true_char
3762 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
3763 builtin_type->builtin_true_unsigned_char
3764 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
3765
3766 /* Fixed-size integer types. */
3767 builtin_type->builtin_int0
3768 = arch_integer_type (gdbarch, 0, 0, "int0_t");
3769 builtin_type->builtin_int8
3770 = arch_integer_type (gdbarch, 8, 0, "int8_t");
3771 builtin_type->builtin_uint8
3772 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
3773 builtin_type->builtin_int16
3774 = arch_integer_type (gdbarch, 16, 0, "int16_t");
3775 builtin_type->builtin_uint16
3776 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
3777 builtin_type->builtin_int32
3778 = arch_integer_type (gdbarch, 32, 0, "int32_t");
3779 builtin_type->builtin_uint32
3780 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
3781 builtin_type->builtin_int64
3782 = arch_integer_type (gdbarch, 64, 0, "int64_t");
3783 builtin_type->builtin_uint64
3784 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
3785 builtin_type->builtin_int128
3786 = arch_integer_type (gdbarch, 128, 0, "int128_t");
3787 builtin_type->builtin_uint128
3788 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
3789 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
3790 TYPE_INSTANCE_FLAG_NOTTEXT;
3791 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
3792 TYPE_INSTANCE_FLAG_NOTTEXT;
3793
3794 /* Wide character types. */
3795 builtin_type->builtin_char16
3796 = arch_integer_type (gdbarch, 16, 0, "char16_t");
3797 builtin_type->builtin_char32
3798 = arch_integer_type (gdbarch, 32, 0, "char32_t");
3799
3800
3801 /* Default data/code pointer types. */
3802 builtin_type->builtin_data_ptr
3803 = lookup_pointer_type (builtin_type->builtin_void);
3804 builtin_type->builtin_func_ptr
3805 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
3806 builtin_type->builtin_func_func
3807 = lookup_function_type (builtin_type->builtin_func_ptr);
3808
3809 /* This type represents a GDB internal function. */
3810 builtin_type->internal_fn
3811 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
3812 "<internal function>");
3813
3814 return builtin_type;
3815 }
3816
3817
3818 /* This set of objfile-based types is intended to be used by symbol
3819 readers as basic types. */
3820
3821 static const struct objfile_data *objfile_type_data;
3822
3823 const struct objfile_type *
3824 objfile_type (struct objfile *objfile)
3825 {
3826 struct gdbarch *gdbarch;
3827 struct objfile_type *objfile_type
3828 = objfile_data (objfile, objfile_type_data);
3829
3830 if (objfile_type)
3831 return objfile_type;
3832
3833 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
3834 1, struct objfile_type);
3835
3836 /* Use the objfile architecture to determine basic type properties. */
3837 gdbarch = get_objfile_arch (objfile);
3838
3839 /* Basic types. */
3840 objfile_type->builtin_void
3841 = init_type (TYPE_CODE_VOID, 1,
3842 0,
3843 "void", objfile);
3844
3845 objfile_type->builtin_char
3846 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3847 (TYPE_FLAG_NOSIGN
3848 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
3849 "char", objfile);
3850 objfile_type->builtin_signed_char
3851 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3852 0,
3853 "signed char", objfile);
3854 objfile_type->builtin_unsigned_char
3855 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
3856 TYPE_FLAG_UNSIGNED,
3857 "unsigned char", objfile);
3858 objfile_type->builtin_short
3859 = init_type (TYPE_CODE_INT,
3860 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3861 0, "short", objfile);
3862 objfile_type->builtin_unsigned_short
3863 = init_type (TYPE_CODE_INT,
3864 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
3865 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
3866 objfile_type->builtin_int
3867 = init_type (TYPE_CODE_INT,
3868 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3869 0, "int", objfile);
3870 objfile_type->builtin_unsigned_int
3871 = init_type (TYPE_CODE_INT,
3872 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
3873 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
3874 objfile_type->builtin_long
3875 = init_type (TYPE_CODE_INT,
3876 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3877 0, "long", objfile);
3878 objfile_type->builtin_unsigned_long
3879 = init_type (TYPE_CODE_INT,
3880 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
3881 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
3882 objfile_type->builtin_long_long
3883 = init_type (TYPE_CODE_INT,
3884 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3885 0, "long long", objfile);
3886 objfile_type->builtin_unsigned_long_long
3887 = init_type (TYPE_CODE_INT,
3888 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
3889 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
3890
3891 objfile_type->builtin_float
3892 = init_type (TYPE_CODE_FLT,
3893 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
3894 0, "float", objfile);
3895 TYPE_FLOATFORMAT (objfile_type->builtin_float)
3896 = gdbarch_float_format (gdbarch);
3897 objfile_type->builtin_double
3898 = init_type (TYPE_CODE_FLT,
3899 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
3900 0, "double", objfile);
3901 TYPE_FLOATFORMAT (objfile_type->builtin_double)
3902 = gdbarch_double_format (gdbarch);
3903 objfile_type->builtin_long_double
3904 = init_type (TYPE_CODE_FLT,
3905 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
3906 0, "long double", objfile);
3907 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
3908 = gdbarch_long_double_format (gdbarch);
3909
3910 /* This type represents a type that was unrecognized in symbol read-in. */
3911 objfile_type->builtin_error
3912 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
3913
3914 /* The following set of types is used for symbols with no
3915 debug information. */
3916 objfile_type->nodebug_text_symbol
3917 = init_type (TYPE_CODE_FUNC, 1, 0,
3918 "<text variable, no debug info>", objfile);
3919 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
3920 = objfile_type->builtin_int;
3921 objfile_type->nodebug_text_gnu_ifunc_symbol
3922 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
3923 "<text gnu-indirect-function variable, no debug info>",
3924 objfile);
3925 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
3926 = objfile_type->nodebug_text_symbol;
3927 objfile_type->nodebug_got_plt_symbol
3928 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
3929 "<text from jump slot in .got.plt, no debug info>",
3930 objfile);
3931 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
3932 = objfile_type->nodebug_text_symbol;
3933 objfile_type->nodebug_data_symbol
3934 = init_type (TYPE_CODE_INT,
3935 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3936 "<data variable, no debug info>", objfile);
3937 objfile_type->nodebug_unknown_symbol
3938 = init_type (TYPE_CODE_INT, 1, 0,
3939 "<variable (not text or data), no debug info>", objfile);
3940 objfile_type->nodebug_tls_symbol
3941 = init_type (TYPE_CODE_INT,
3942 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
3943 "<thread local variable, no debug info>", objfile);
3944
3945 /* NOTE: on some targets, addresses and pointers are not necessarily
3946 the same --- for example, on the D10V, pointers are 16 bits long,
3947 but addresses are 32 bits long. See doc/gdbint.texinfo,
3948 ``Pointers Are Not Always Addresses''.
3949
3950 The upshot is:
3951 - gdb's `struct type' always describes the target's
3952 representation.
3953 - gdb's `struct value' objects should always hold values in
3954 target form.
3955 - gdb's CORE_ADDR values are addresses in the unified virtual
3956 address space that the assembler and linker work with. Thus,
3957 since target_read_memory takes a CORE_ADDR as an argument, it
3958 can access any memory on the target, even if the processor has
3959 separate code and data address spaces.
3960
3961 So, for example:
3962 - If v is a value holding a D10V code pointer, its contents are
3963 in target form: a big-endian address left-shifted two bits.
3964 - If p is a D10V pointer type, TYPE_LENGTH (p) == 2, just as
3965 sizeof (void *) == 2 on the target.
3966
3967 In this context, objfile_type->builtin_core_addr is a bit odd:
3968 it's a target type for a value the target will never see. It's
3969 only used to hold the values of (typeless) linker symbols, which
3970 are indeed in the unified virtual address space. */
3971
3972 objfile_type->builtin_core_addr
3973 = init_type (TYPE_CODE_INT,
3974 gdbarch_addr_bit (gdbarch) / 8,
3975 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
3976
3977 set_objfile_data (objfile, objfile_type_data, objfile_type);
3978 return objfile_type;
3979 }
3980
3981
3982 extern void _initialize_gdbtypes (void);
3983 void
3984 _initialize_gdbtypes (void)
3985 {
3986 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
3987 objfile_type_data = register_objfile_data ();
3988
3989 add_setshow_zinteger_cmd ("overload", no_class, &overload_debug,
3990 _("Set debugging of C++ overloading."),
3991 _("Show debugging of C++ overloading."),
3992 _("When enabled, ranking of the "
3993 "functions is displayed."),
3994 NULL,
3995 show_overload_debug,
3996 &setdebuglist, &showdebuglist);
3997
3998 /* Add user knob for controlling resolution of opaque types. */
3999 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
4000 &opaque_type_resolution,
4001 _("Set resolution of opaque struct/class/union"
4002 " types (if set before loading symbols)."),
4003 _("Show resolution of opaque struct/class/union"
4004 " types (if set before loading symbols)."),
4005 NULL, NULL,
4006 show_opaque_type_resolution,
4007 &setlist, &showlist);
4008 }
This page took 0.24443 seconds and 4 git commands to generate.