Remove CHECK_TYPEDEF, use check_typedef instead
[deliverable/binutils-gdb.git] / gdb / gdbtypes.c
1 /* Support routines for manipulating internal types for GDB.
2
3 Copyright (C) 1992-2015 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "bfd.h"
24 #include "symtab.h"
25 #include "symfile.h"
26 #include "objfiles.h"
27 #include "gdbtypes.h"
28 #include "expression.h"
29 #include "language.h"
30 #include "target.h"
31 #include "value.h"
32 #include "demangle.h"
33 #include "complaints.h"
34 #include "gdbcmd.h"
35 #include "cp-abi.h"
36 #include "hashtab.h"
37 #include "cp-support.h"
38 #include "bcache.h"
39 #include "dwarf2loc.h"
40 #include "gdbcore.h"
41
42 /* Initialize BADNESS constants. */
43
44 const struct rank LENGTH_MISMATCH_BADNESS = {100,0};
45
46 const struct rank TOO_FEW_PARAMS_BADNESS = {100,0};
47 const struct rank INCOMPATIBLE_TYPE_BADNESS = {100,0};
48
49 const struct rank EXACT_MATCH_BADNESS = {0,0};
50
51 const struct rank INTEGER_PROMOTION_BADNESS = {1,0};
52 const struct rank FLOAT_PROMOTION_BADNESS = {1,0};
53 const struct rank BASE_PTR_CONVERSION_BADNESS = {1,0};
54 const struct rank INTEGER_CONVERSION_BADNESS = {2,0};
55 const struct rank FLOAT_CONVERSION_BADNESS = {2,0};
56 const struct rank INT_FLOAT_CONVERSION_BADNESS = {2,0};
57 const struct rank VOID_PTR_CONVERSION_BADNESS = {2,0};
58 const struct rank BOOL_CONVERSION_BADNESS = {3,0};
59 const struct rank BASE_CONVERSION_BADNESS = {2,0};
60 const struct rank REFERENCE_CONVERSION_BADNESS = {2,0};
61 const struct rank NULL_POINTER_CONVERSION_BADNESS = {2,0};
62 const struct rank NS_POINTER_CONVERSION_BADNESS = {10,0};
63 const struct rank NS_INTEGER_POINTER_CONVERSION_BADNESS = {3,0};
64
65 /* Floatformat pairs. */
66 const struct floatformat *floatformats_ieee_half[BFD_ENDIAN_UNKNOWN] = {
67 &floatformat_ieee_half_big,
68 &floatformat_ieee_half_little
69 };
70 const struct floatformat *floatformats_ieee_single[BFD_ENDIAN_UNKNOWN] = {
71 &floatformat_ieee_single_big,
72 &floatformat_ieee_single_little
73 };
74 const struct floatformat *floatformats_ieee_double[BFD_ENDIAN_UNKNOWN] = {
75 &floatformat_ieee_double_big,
76 &floatformat_ieee_double_little
77 };
78 const struct floatformat *floatformats_ieee_double_littlebyte_bigword[BFD_ENDIAN_UNKNOWN] = {
79 &floatformat_ieee_double_big,
80 &floatformat_ieee_double_littlebyte_bigword
81 };
82 const struct floatformat *floatformats_i387_ext[BFD_ENDIAN_UNKNOWN] = {
83 &floatformat_i387_ext,
84 &floatformat_i387_ext
85 };
86 const struct floatformat *floatformats_m68881_ext[BFD_ENDIAN_UNKNOWN] = {
87 &floatformat_m68881_ext,
88 &floatformat_m68881_ext
89 };
90 const struct floatformat *floatformats_arm_ext[BFD_ENDIAN_UNKNOWN] = {
91 &floatformat_arm_ext_big,
92 &floatformat_arm_ext_littlebyte_bigword
93 };
94 const struct floatformat *floatformats_ia64_spill[BFD_ENDIAN_UNKNOWN] = {
95 &floatformat_ia64_spill_big,
96 &floatformat_ia64_spill_little
97 };
98 const struct floatformat *floatformats_ia64_quad[BFD_ENDIAN_UNKNOWN] = {
99 &floatformat_ia64_quad_big,
100 &floatformat_ia64_quad_little
101 };
102 const struct floatformat *floatformats_vax_f[BFD_ENDIAN_UNKNOWN] = {
103 &floatformat_vax_f,
104 &floatformat_vax_f
105 };
106 const struct floatformat *floatformats_vax_d[BFD_ENDIAN_UNKNOWN] = {
107 &floatformat_vax_d,
108 &floatformat_vax_d
109 };
110 const struct floatformat *floatformats_ibm_long_double[BFD_ENDIAN_UNKNOWN] = {
111 &floatformat_ibm_long_double_big,
112 &floatformat_ibm_long_double_little
113 };
114
115 /* Should opaque types be resolved? */
116
117 static int opaque_type_resolution = 1;
118
119 /* A flag to enable printing of debugging information of C++
120 overloading. */
121
122 unsigned int overload_debug = 0;
123
124 /* A flag to enable strict type checking. */
125
126 static int strict_type_checking = 1;
127
128 /* A function to show whether opaque types are resolved. */
129
130 static void
131 show_opaque_type_resolution (struct ui_file *file, int from_tty,
132 struct cmd_list_element *c,
133 const char *value)
134 {
135 fprintf_filtered (file, _("Resolution of opaque struct/class/union types "
136 "(if set before loading symbols) is %s.\n"),
137 value);
138 }
139
140 /* A function to show whether C++ overload debugging is enabled. */
141
142 static void
143 show_overload_debug (struct ui_file *file, int from_tty,
144 struct cmd_list_element *c, const char *value)
145 {
146 fprintf_filtered (file, _("Debugging of C++ overloading is %s.\n"),
147 value);
148 }
149
150 /* A function to show the status of strict type checking. */
151
152 static void
153 show_strict_type_checking (struct ui_file *file, int from_tty,
154 struct cmd_list_element *c, const char *value)
155 {
156 fprintf_filtered (file, _("Strict type checking is %s.\n"), value);
157 }
158
159 \f
160 /* Allocate a new OBJFILE-associated type structure and fill it
161 with some defaults. Space for the type structure is allocated
162 on the objfile's objfile_obstack. */
163
164 struct type *
165 alloc_type (struct objfile *objfile)
166 {
167 struct type *type;
168
169 gdb_assert (objfile != NULL);
170
171 /* Alloc the structure and start off with all fields zeroed. */
172 type = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct type);
173 TYPE_MAIN_TYPE (type) = OBSTACK_ZALLOC (&objfile->objfile_obstack,
174 struct main_type);
175 OBJSTAT (objfile, n_types++);
176
177 TYPE_OBJFILE_OWNED (type) = 1;
178 TYPE_OWNER (type).objfile = objfile;
179
180 /* Initialize the fields that might not be zero. */
181
182 TYPE_CODE (type) = TYPE_CODE_UNDEF;
183 TYPE_CHAIN (type) = type; /* Chain back to itself. */
184
185 return type;
186 }
187
188 /* Allocate a new GDBARCH-associated type structure and fill it
189 with some defaults. Space for the type structure is allocated
190 on the heap. */
191
192 struct type *
193 alloc_type_arch (struct gdbarch *gdbarch)
194 {
195 struct type *type;
196
197 gdb_assert (gdbarch != NULL);
198
199 /* Alloc the structure and start off with all fields zeroed. */
200
201 type = XCNEW (struct type);
202 TYPE_MAIN_TYPE (type) = XCNEW (struct main_type);
203
204 TYPE_OBJFILE_OWNED (type) = 0;
205 TYPE_OWNER (type).gdbarch = gdbarch;
206
207 /* Initialize the fields that might not be zero. */
208
209 TYPE_CODE (type) = TYPE_CODE_UNDEF;
210 TYPE_CHAIN (type) = type; /* Chain back to itself. */
211
212 return type;
213 }
214
215 /* If TYPE is objfile-associated, allocate a new type structure
216 associated with the same objfile. If TYPE is gdbarch-associated,
217 allocate a new type structure associated with the same gdbarch. */
218
219 struct type *
220 alloc_type_copy (const struct type *type)
221 {
222 if (TYPE_OBJFILE_OWNED (type))
223 return alloc_type (TYPE_OWNER (type).objfile);
224 else
225 return alloc_type_arch (TYPE_OWNER (type).gdbarch);
226 }
227
228 /* If TYPE is gdbarch-associated, return that architecture.
229 If TYPE is objfile-associated, return that objfile's architecture. */
230
231 struct gdbarch *
232 get_type_arch (const struct type *type)
233 {
234 if (TYPE_OBJFILE_OWNED (type))
235 return get_objfile_arch (TYPE_OWNER (type).objfile);
236 else
237 return TYPE_OWNER (type).gdbarch;
238 }
239
240 /* See gdbtypes.h. */
241
242 struct type *
243 get_target_type (struct type *type)
244 {
245 if (type != NULL)
246 {
247 type = TYPE_TARGET_TYPE (type);
248 if (type != NULL)
249 type = check_typedef (type);
250 }
251
252 return type;
253 }
254
255 /* Alloc a new type instance structure, fill it with some defaults,
256 and point it at OLDTYPE. Allocate the new type instance from the
257 same place as OLDTYPE. */
258
259 static struct type *
260 alloc_type_instance (struct type *oldtype)
261 {
262 struct type *type;
263
264 /* Allocate the structure. */
265
266 if (! TYPE_OBJFILE_OWNED (oldtype))
267 type = XCNEW (struct type);
268 else
269 type = OBSTACK_ZALLOC (&TYPE_OBJFILE (oldtype)->objfile_obstack,
270 struct type);
271
272 TYPE_MAIN_TYPE (type) = TYPE_MAIN_TYPE (oldtype);
273
274 TYPE_CHAIN (type) = type; /* Chain back to itself for now. */
275
276 return type;
277 }
278
279 /* Clear all remnants of the previous type at TYPE, in preparation for
280 replacing it with something else. Preserve owner information. */
281
282 static void
283 smash_type (struct type *type)
284 {
285 int objfile_owned = TYPE_OBJFILE_OWNED (type);
286 union type_owner owner = TYPE_OWNER (type);
287
288 memset (TYPE_MAIN_TYPE (type), 0, sizeof (struct main_type));
289
290 /* Restore owner information. */
291 TYPE_OBJFILE_OWNED (type) = objfile_owned;
292 TYPE_OWNER (type) = owner;
293
294 /* For now, delete the rings. */
295 TYPE_CHAIN (type) = type;
296
297 /* For now, leave the pointer/reference types alone. */
298 }
299
300 /* Lookup a pointer to a type TYPE. TYPEPTR, if nonzero, points
301 to a pointer to memory where the pointer type should be stored.
302 If *TYPEPTR is zero, update it to point to the pointer type we return.
303 We allocate new memory if needed. */
304
305 struct type *
306 make_pointer_type (struct type *type, struct type **typeptr)
307 {
308 struct type *ntype; /* New type */
309 struct type *chain;
310
311 ntype = TYPE_POINTER_TYPE (type);
312
313 if (ntype)
314 {
315 if (typeptr == 0)
316 return ntype; /* Don't care about alloc,
317 and have new type. */
318 else if (*typeptr == 0)
319 {
320 *typeptr = ntype; /* Tracking alloc, and have new type. */
321 return ntype;
322 }
323 }
324
325 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
326 {
327 ntype = alloc_type_copy (type);
328 if (typeptr)
329 *typeptr = ntype;
330 }
331 else /* We have storage, but need to reset it. */
332 {
333 ntype = *typeptr;
334 chain = TYPE_CHAIN (ntype);
335 smash_type (ntype);
336 TYPE_CHAIN (ntype) = chain;
337 }
338
339 TYPE_TARGET_TYPE (ntype) = type;
340 TYPE_POINTER_TYPE (type) = ntype;
341
342 /* FIXME! Assumes the machine has only one representation for pointers! */
343
344 TYPE_LENGTH (ntype)
345 = gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
346 TYPE_CODE (ntype) = TYPE_CODE_PTR;
347
348 /* Mark pointers as unsigned. The target converts between pointers
349 and addresses (CORE_ADDRs) using gdbarch_pointer_to_address and
350 gdbarch_address_to_pointer. */
351 TYPE_UNSIGNED (ntype) = 1;
352
353 /* Update the length of all the other variants of this type. */
354 chain = TYPE_CHAIN (ntype);
355 while (chain != ntype)
356 {
357 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
358 chain = TYPE_CHAIN (chain);
359 }
360
361 return ntype;
362 }
363
364 /* Given a type TYPE, return a type of pointers to that type.
365 May need to construct such a type if this is the first use. */
366
367 struct type *
368 lookup_pointer_type (struct type *type)
369 {
370 return make_pointer_type (type, (struct type **) 0);
371 }
372
373 /* Lookup a C++ `reference' to a type TYPE. TYPEPTR, if nonzero,
374 points to a pointer to memory where the reference type should be
375 stored. If *TYPEPTR is zero, update it to point to the reference
376 type we return. We allocate new memory if needed. */
377
378 struct type *
379 make_reference_type (struct type *type, struct type **typeptr)
380 {
381 struct type *ntype; /* New type */
382 struct type *chain;
383
384 ntype = TYPE_REFERENCE_TYPE (type);
385
386 if (ntype)
387 {
388 if (typeptr == 0)
389 return ntype; /* Don't care about alloc,
390 and have new type. */
391 else if (*typeptr == 0)
392 {
393 *typeptr = ntype; /* Tracking alloc, and have new type. */
394 return ntype;
395 }
396 }
397
398 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
399 {
400 ntype = alloc_type_copy (type);
401 if (typeptr)
402 *typeptr = ntype;
403 }
404 else /* We have storage, but need to reset it. */
405 {
406 ntype = *typeptr;
407 chain = TYPE_CHAIN (ntype);
408 smash_type (ntype);
409 TYPE_CHAIN (ntype) = chain;
410 }
411
412 TYPE_TARGET_TYPE (ntype) = type;
413 TYPE_REFERENCE_TYPE (type) = ntype;
414
415 /* FIXME! Assume the machine has only one representation for
416 references, and that it matches the (only) representation for
417 pointers! */
418
419 TYPE_LENGTH (ntype) =
420 gdbarch_ptr_bit (get_type_arch (type)) / TARGET_CHAR_BIT;
421 TYPE_CODE (ntype) = TYPE_CODE_REF;
422
423 if (!TYPE_REFERENCE_TYPE (type)) /* Remember it, if don't have one. */
424 TYPE_REFERENCE_TYPE (type) = ntype;
425
426 /* Update the length of all the other variants of this type. */
427 chain = TYPE_CHAIN (ntype);
428 while (chain != ntype)
429 {
430 TYPE_LENGTH (chain) = TYPE_LENGTH (ntype);
431 chain = TYPE_CHAIN (chain);
432 }
433
434 return ntype;
435 }
436
437 /* Same as above, but caller doesn't care about memory allocation
438 details. */
439
440 struct type *
441 lookup_reference_type (struct type *type)
442 {
443 return make_reference_type (type, (struct type **) 0);
444 }
445
446 /* Lookup a function type that returns type TYPE. TYPEPTR, if
447 nonzero, points to a pointer to memory where the function type
448 should be stored. If *TYPEPTR is zero, update it to point to the
449 function type we return. We allocate new memory if needed. */
450
451 struct type *
452 make_function_type (struct type *type, struct type **typeptr)
453 {
454 struct type *ntype; /* New type */
455
456 if (typeptr == 0 || *typeptr == 0) /* We'll need to allocate one. */
457 {
458 ntype = alloc_type_copy (type);
459 if (typeptr)
460 *typeptr = ntype;
461 }
462 else /* We have storage, but need to reset it. */
463 {
464 ntype = *typeptr;
465 smash_type (ntype);
466 }
467
468 TYPE_TARGET_TYPE (ntype) = type;
469
470 TYPE_LENGTH (ntype) = 1;
471 TYPE_CODE (ntype) = TYPE_CODE_FUNC;
472
473 INIT_FUNC_SPECIFIC (ntype);
474
475 return ntype;
476 }
477
478 /* Given a type TYPE, return a type of functions that return that type.
479 May need to construct such a type if this is the first use. */
480
481 struct type *
482 lookup_function_type (struct type *type)
483 {
484 return make_function_type (type, (struct type **) 0);
485 }
486
487 /* Given a type TYPE and argument types, return the appropriate
488 function type. If the final type in PARAM_TYPES is NULL, make a
489 varargs function. */
490
491 struct type *
492 lookup_function_type_with_arguments (struct type *type,
493 int nparams,
494 struct type **param_types)
495 {
496 struct type *fn = make_function_type (type, (struct type **) 0);
497 int i;
498
499 if (nparams > 0)
500 {
501 if (param_types[nparams - 1] == NULL)
502 {
503 --nparams;
504 TYPE_VARARGS (fn) = 1;
505 }
506 else if (TYPE_CODE (check_typedef (param_types[nparams - 1]))
507 == TYPE_CODE_VOID)
508 {
509 --nparams;
510 /* Caller should have ensured this. */
511 gdb_assert (nparams == 0);
512 TYPE_PROTOTYPED (fn) = 1;
513 }
514 }
515
516 TYPE_NFIELDS (fn) = nparams;
517 TYPE_FIELDS (fn) = TYPE_ZALLOC (fn, nparams * sizeof (struct field));
518 for (i = 0; i < nparams; ++i)
519 TYPE_FIELD_TYPE (fn, i) = param_types[i];
520
521 return fn;
522 }
523
524 /* Identify address space identifier by name --
525 return the integer flag defined in gdbtypes.h. */
526
527 int
528 address_space_name_to_int (struct gdbarch *gdbarch, char *space_identifier)
529 {
530 int type_flags;
531
532 /* Check for known address space delimiters. */
533 if (!strcmp (space_identifier, "code"))
534 return TYPE_INSTANCE_FLAG_CODE_SPACE;
535 else if (!strcmp (space_identifier, "data"))
536 return TYPE_INSTANCE_FLAG_DATA_SPACE;
537 else if (gdbarch_address_class_name_to_type_flags_p (gdbarch)
538 && gdbarch_address_class_name_to_type_flags (gdbarch,
539 space_identifier,
540 &type_flags))
541 return type_flags;
542 else
543 error (_("Unknown address space specifier: \"%s\""), space_identifier);
544 }
545
546 /* Identify address space identifier by integer flag as defined in
547 gdbtypes.h -- return the string version of the adress space name. */
548
549 const char *
550 address_space_int_to_name (struct gdbarch *gdbarch, int space_flag)
551 {
552 if (space_flag & TYPE_INSTANCE_FLAG_CODE_SPACE)
553 return "code";
554 else if (space_flag & TYPE_INSTANCE_FLAG_DATA_SPACE)
555 return "data";
556 else if ((space_flag & TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
557 && gdbarch_address_class_type_flags_to_name_p (gdbarch))
558 return gdbarch_address_class_type_flags_to_name (gdbarch, space_flag);
559 else
560 return NULL;
561 }
562
563 /* Create a new type with instance flags NEW_FLAGS, based on TYPE.
564
565 If STORAGE is non-NULL, create the new type instance there.
566 STORAGE must be in the same obstack as TYPE. */
567
568 static struct type *
569 make_qualified_type (struct type *type, int new_flags,
570 struct type *storage)
571 {
572 struct type *ntype;
573
574 ntype = type;
575 do
576 {
577 if (TYPE_INSTANCE_FLAGS (ntype) == new_flags)
578 return ntype;
579 ntype = TYPE_CHAIN (ntype);
580 }
581 while (ntype != type);
582
583 /* Create a new type instance. */
584 if (storage == NULL)
585 ntype = alloc_type_instance (type);
586 else
587 {
588 /* If STORAGE was provided, it had better be in the same objfile
589 as TYPE. Otherwise, we can't link it into TYPE's cv chain:
590 if one objfile is freed and the other kept, we'd have
591 dangling pointers. */
592 gdb_assert (TYPE_OBJFILE (type) == TYPE_OBJFILE (storage));
593
594 ntype = storage;
595 TYPE_MAIN_TYPE (ntype) = TYPE_MAIN_TYPE (type);
596 TYPE_CHAIN (ntype) = ntype;
597 }
598
599 /* Pointers or references to the original type are not relevant to
600 the new type. */
601 TYPE_POINTER_TYPE (ntype) = (struct type *) 0;
602 TYPE_REFERENCE_TYPE (ntype) = (struct type *) 0;
603
604 /* Chain the new qualified type to the old type. */
605 TYPE_CHAIN (ntype) = TYPE_CHAIN (type);
606 TYPE_CHAIN (type) = ntype;
607
608 /* Now set the instance flags and return the new type. */
609 TYPE_INSTANCE_FLAGS (ntype) = new_flags;
610
611 /* Set length of new type to that of the original type. */
612 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
613
614 return ntype;
615 }
616
617 /* Make an address-space-delimited variant of a type -- a type that
618 is identical to the one supplied except that it has an address
619 space attribute attached to it (such as "code" or "data").
620
621 The space attributes "code" and "data" are for Harvard
622 architectures. The address space attributes are for architectures
623 which have alternately sized pointers or pointers with alternate
624 representations. */
625
626 struct type *
627 make_type_with_address_space (struct type *type, int space_flag)
628 {
629 int new_flags = ((TYPE_INSTANCE_FLAGS (type)
630 & ~(TYPE_INSTANCE_FLAG_CODE_SPACE
631 | TYPE_INSTANCE_FLAG_DATA_SPACE
632 | TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL))
633 | space_flag);
634
635 return make_qualified_type (type, new_flags, NULL);
636 }
637
638 /* Make a "c-v" variant of a type -- a type that is identical to the
639 one supplied except that it may have const or volatile attributes
640 CNST is a flag for setting the const attribute
641 VOLTL is a flag for setting the volatile attribute
642 TYPE is the base type whose variant we are creating.
643
644 If TYPEPTR and *TYPEPTR are non-zero, then *TYPEPTR points to
645 storage to hold the new qualified type; *TYPEPTR and TYPE must be
646 in the same objfile. Otherwise, allocate fresh memory for the new
647 type whereever TYPE lives. If TYPEPTR is non-zero, set it to the
648 new type we construct. */
649
650 struct type *
651 make_cv_type (int cnst, int voltl,
652 struct type *type,
653 struct type **typeptr)
654 {
655 struct type *ntype; /* New type */
656
657 int new_flags = (TYPE_INSTANCE_FLAGS (type)
658 & ~(TYPE_INSTANCE_FLAG_CONST
659 | TYPE_INSTANCE_FLAG_VOLATILE));
660
661 if (cnst)
662 new_flags |= TYPE_INSTANCE_FLAG_CONST;
663
664 if (voltl)
665 new_flags |= TYPE_INSTANCE_FLAG_VOLATILE;
666
667 if (typeptr && *typeptr != NULL)
668 {
669 /* TYPE and *TYPEPTR must be in the same objfile. We can't have
670 a C-V variant chain that threads across objfiles: if one
671 objfile gets freed, then the other has a broken C-V chain.
672
673 This code used to try to copy over the main type from TYPE to
674 *TYPEPTR if they were in different objfiles, but that's
675 wrong, too: TYPE may have a field list or member function
676 lists, which refer to types of their own, etc. etc. The
677 whole shebang would need to be copied over recursively; you
678 can't have inter-objfile pointers. The only thing to do is
679 to leave stub types as stub types, and look them up afresh by
680 name each time you encounter them. */
681 gdb_assert (TYPE_OBJFILE (*typeptr) == TYPE_OBJFILE (type));
682 }
683
684 ntype = make_qualified_type (type, new_flags,
685 typeptr ? *typeptr : NULL);
686
687 if (typeptr != NULL)
688 *typeptr = ntype;
689
690 return ntype;
691 }
692
693 /* Make a 'restrict'-qualified version of TYPE. */
694
695 struct type *
696 make_restrict_type (struct type *type)
697 {
698 return make_qualified_type (type,
699 (TYPE_INSTANCE_FLAGS (type)
700 | TYPE_INSTANCE_FLAG_RESTRICT),
701 NULL);
702 }
703
704 /* Make a type without const, volatile, or restrict. */
705
706 struct type *
707 make_unqualified_type (struct type *type)
708 {
709 return make_qualified_type (type,
710 (TYPE_INSTANCE_FLAGS (type)
711 & ~(TYPE_INSTANCE_FLAG_CONST
712 | TYPE_INSTANCE_FLAG_VOLATILE
713 | TYPE_INSTANCE_FLAG_RESTRICT)),
714 NULL);
715 }
716
717 /* Make a '_Atomic'-qualified version of TYPE. */
718
719 struct type *
720 make_atomic_type (struct type *type)
721 {
722 return make_qualified_type (type,
723 (TYPE_INSTANCE_FLAGS (type)
724 | TYPE_INSTANCE_FLAG_ATOMIC),
725 NULL);
726 }
727
728 /* Replace the contents of ntype with the type *type. This changes the
729 contents, rather than the pointer for TYPE_MAIN_TYPE (ntype); thus
730 the changes are propogated to all types in the TYPE_CHAIN.
731
732 In order to build recursive types, it's inevitable that we'll need
733 to update types in place --- but this sort of indiscriminate
734 smashing is ugly, and needs to be replaced with something more
735 controlled. TYPE_MAIN_TYPE is a step in this direction; it's not
736 clear if more steps are needed. */
737
738 void
739 replace_type (struct type *ntype, struct type *type)
740 {
741 struct type *chain;
742
743 /* These two types had better be in the same objfile. Otherwise,
744 the assignment of one type's main type structure to the other
745 will produce a type with references to objects (names; field
746 lists; etc.) allocated on an objfile other than its own. */
747 gdb_assert (TYPE_OBJFILE (ntype) == TYPE_OBJFILE (ntype));
748
749 *TYPE_MAIN_TYPE (ntype) = *TYPE_MAIN_TYPE (type);
750
751 /* The type length is not a part of the main type. Update it for
752 each type on the variant chain. */
753 chain = ntype;
754 do
755 {
756 /* Assert that this element of the chain has no address-class bits
757 set in its flags. Such type variants might have type lengths
758 which are supposed to be different from the non-address-class
759 variants. This assertion shouldn't ever be triggered because
760 symbol readers which do construct address-class variants don't
761 call replace_type(). */
762 gdb_assert (TYPE_ADDRESS_CLASS_ALL (chain) == 0);
763
764 TYPE_LENGTH (chain) = TYPE_LENGTH (type);
765 chain = TYPE_CHAIN (chain);
766 }
767 while (ntype != chain);
768
769 /* Assert that the two types have equivalent instance qualifiers.
770 This should be true for at least all of our debug readers. */
771 gdb_assert (TYPE_INSTANCE_FLAGS (ntype) == TYPE_INSTANCE_FLAGS (type));
772 }
773
774 /* Implement direct support for MEMBER_TYPE in GNU C++.
775 May need to construct such a type if this is the first use.
776 The TYPE is the type of the member. The DOMAIN is the type
777 of the aggregate that the member belongs to. */
778
779 struct type *
780 lookup_memberptr_type (struct type *type, struct type *domain)
781 {
782 struct type *mtype;
783
784 mtype = alloc_type_copy (type);
785 smash_to_memberptr_type (mtype, domain, type);
786 return mtype;
787 }
788
789 /* Return a pointer-to-method type, for a method of type TO_TYPE. */
790
791 struct type *
792 lookup_methodptr_type (struct type *to_type)
793 {
794 struct type *mtype;
795
796 mtype = alloc_type_copy (to_type);
797 smash_to_methodptr_type (mtype, to_type);
798 return mtype;
799 }
800
801 /* Allocate a stub method whose return type is TYPE. This apparently
802 happens for speed of symbol reading, since parsing out the
803 arguments to the method is cpu-intensive, the way we are doing it.
804 So, we will fill in arguments later. This always returns a fresh
805 type. */
806
807 struct type *
808 allocate_stub_method (struct type *type)
809 {
810 struct type *mtype;
811
812 mtype = alloc_type_copy (type);
813 TYPE_CODE (mtype) = TYPE_CODE_METHOD;
814 TYPE_LENGTH (mtype) = 1;
815 TYPE_STUB (mtype) = 1;
816 TYPE_TARGET_TYPE (mtype) = type;
817 /* TYPE_SELF_TYPE (mtype) = unknown yet */
818 return mtype;
819 }
820
821 /* Create a range type with a dynamic range from LOW_BOUND to
822 HIGH_BOUND, inclusive. See create_range_type for further details. */
823
824 struct type *
825 create_range_type (struct type *result_type, struct type *index_type,
826 const struct dynamic_prop *low_bound,
827 const struct dynamic_prop *high_bound)
828 {
829 if (result_type == NULL)
830 result_type = alloc_type_copy (index_type);
831 TYPE_CODE (result_type) = TYPE_CODE_RANGE;
832 TYPE_TARGET_TYPE (result_type) = index_type;
833 if (TYPE_STUB (index_type))
834 TYPE_TARGET_STUB (result_type) = 1;
835 else
836 TYPE_LENGTH (result_type) = TYPE_LENGTH (check_typedef (index_type));
837
838 TYPE_RANGE_DATA (result_type) = (struct range_bounds *)
839 TYPE_ZALLOC (result_type, sizeof (struct range_bounds));
840 TYPE_RANGE_DATA (result_type)->low = *low_bound;
841 TYPE_RANGE_DATA (result_type)->high = *high_bound;
842
843 if (low_bound->kind == PROP_CONST && low_bound->data.const_val >= 0)
844 TYPE_UNSIGNED (result_type) = 1;
845
846 /* Ada allows the declaration of range types whose upper bound is
847 less than the lower bound, so checking the lower bound is not
848 enough. Make sure we do not mark a range type whose upper bound
849 is negative as unsigned. */
850 if (high_bound->kind == PROP_CONST && high_bound->data.const_val < 0)
851 TYPE_UNSIGNED (result_type) = 0;
852
853 return result_type;
854 }
855
856 /* Create a range type using either a blank type supplied in
857 RESULT_TYPE, or creating a new type, inheriting the objfile from
858 INDEX_TYPE.
859
860 Indices will be of type INDEX_TYPE, and will range from LOW_BOUND
861 to HIGH_BOUND, inclusive.
862
863 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
864 sure it is TYPE_CODE_UNDEF before we bash it into a range type? */
865
866 struct type *
867 create_static_range_type (struct type *result_type, struct type *index_type,
868 LONGEST low_bound, LONGEST high_bound)
869 {
870 struct dynamic_prop low, high;
871
872 low.kind = PROP_CONST;
873 low.data.const_val = low_bound;
874
875 high.kind = PROP_CONST;
876 high.data.const_val = high_bound;
877
878 result_type = create_range_type (result_type, index_type, &low, &high);
879
880 return result_type;
881 }
882
883 /* Predicate tests whether BOUNDS are static. Returns 1 if all bounds values
884 are static, otherwise returns 0. */
885
886 static int
887 has_static_range (const struct range_bounds *bounds)
888 {
889 return (bounds->low.kind == PROP_CONST
890 && bounds->high.kind == PROP_CONST);
891 }
892
893
894 /* Set *LOWP and *HIGHP to the lower and upper bounds of discrete type
895 TYPE. Return 1 if type is a range type, 0 if it is discrete (and
896 bounds will fit in LONGEST), or -1 otherwise. */
897
898 int
899 get_discrete_bounds (struct type *type, LONGEST *lowp, LONGEST *highp)
900 {
901 type = check_typedef (type);
902 switch (TYPE_CODE (type))
903 {
904 case TYPE_CODE_RANGE:
905 *lowp = TYPE_LOW_BOUND (type);
906 *highp = TYPE_HIGH_BOUND (type);
907 return 1;
908 case TYPE_CODE_ENUM:
909 if (TYPE_NFIELDS (type) > 0)
910 {
911 /* The enums may not be sorted by value, so search all
912 entries. */
913 int i;
914
915 *lowp = *highp = TYPE_FIELD_ENUMVAL (type, 0);
916 for (i = 0; i < TYPE_NFIELDS (type); i++)
917 {
918 if (TYPE_FIELD_ENUMVAL (type, i) < *lowp)
919 *lowp = TYPE_FIELD_ENUMVAL (type, i);
920 if (TYPE_FIELD_ENUMVAL (type, i) > *highp)
921 *highp = TYPE_FIELD_ENUMVAL (type, i);
922 }
923
924 /* Set unsigned indicator if warranted. */
925 if (*lowp >= 0)
926 {
927 TYPE_UNSIGNED (type) = 1;
928 }
929 }
930 else
931 {
932 *lowp = 0;
933 *highp = -1;
934 }
935 return 0;
936 case TYPE_CODE_BOOL:
937 *lowp = 0;
938 *highp = 1;
939 return 0;
940 case TYPE_CODE_INT:
941 if (TYPE_LENGTH (type) > sizeof (LONGEST)) /* Too big */
942 return -1;
943 if (!TYPE_UNSIGNED (type))
944 {
945 *lowp = -(1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1));
946 *highp = -*lowp - 1;
947 return 0;
948 }
949 /* ... fall through for unsigned ints ... */
950 case TYPE_CODE_CHAR:
951 *lowp = 0;
952 /* This round-about calculation is to avoid shifting by
953 TYPE_LENGTH (type) * TARGET_CHAR_BIT, which will not work
954 if TYPE_LENGTH (type) == sizeof (LONGEST). */
955 *highp = 1 << (TYPE_LENGTH (type) * TARGET_CHAR_BIT - 1);
956 *highp = (*highp - 1) | *highp;
957 return 0;
958 default:
959 return -1;
960 }
961 }
962
963 /* Assuming TYPE is a simple, non-empty array type, compute its upper
964 and lower bound. Save the low bound into LOW_BOUND if not NULL.
965 Save the high bound into HIGH_BOUND if not NULL.
966
967 Return 1 if the operation was successful. Return zero otherwise,
968 in which case the values of LOW_BOUND and HIGH_BOUNDS are unmodified.
969
970 We now simply use get_discrete_bounds call to get the values
971 of the low and high bounds.
972 get_discrete_bounds can return three values:
973 1, meaning that index is a range,
974 0, meaning that index is a discrete type,
975 or -1 for failure. */
976
977 int
978 get_array_bounds (struct type *type, LONGEST *low_bound, LONGEST *high_bound)
979 {
980 struct type *index = TYPE_INDEX_TYPE (type);
981 LONGEST low = 0;
982 LONGEST high = 0;
983 int res;
984
985 if (index == NULL)
986 return 0;
987
988 res = get_discrete_bounds (index, &low, &high);
989 if (res == -1)
990 return 0;
991
992 /* Check if the array bounds are undefined. */
993 if (res == 1
994 && ((low_bound && TYPE_ARRAY_LOWER_BOUND_IS_UNDEFINED (type))
995 || (high_bound && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))))
996 return 0;
997
998 if (low_bound)
999 *low_bound = low;
1000
1001 if (high_bound)
1002 *high_bound = high;
1003
1004 return 1;
1005 }
1006
1007 /* Assuming that TYPE is a discrete type and VAL is a valid integer
1008 representation of a value of this type, save the corresponding
1009 position number in POS.
1010
1011 Its differs from VAL only in the case of enumeration types. In
1012 this case, the position number of the value of the first listed
1013 enumeration literal is zero; the position number of the value of
1014 each subsequent enumeration literal is one more than that of its
1015 predecessor in the list.
1016
1017 Return 1 if the operation was successful. Return zero otherwise,
1018 in which case the value of POS is unmodified.
1019 */
1020
1021 int
1022 discrete_position (struct type *type, LONGEST val, LONGEST *pos)
1023 {
1024 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
1025 {
1026 int i;
1027
1028 for (i = 0; i < TYPE_NFIELDS (type); i += 1)
1029 {
1030 if (val == TYPE_FIELD_ENUMVAL (type, i))
1031 {
1032 *pos = i;
1033 return 1;
1034 }
1035 }
1036 /* Invalid enumeration value. */
1037 return 0;
1038 }
1039 else
1040 {
1041 *pos = val;
1042 return 1;
1043 }
1044 }
1045
1046 /* Create an array type using either a blank type supplied in
1047 RESULT_TYPE, or creating a new type, inheriting the objfile from
1048 RANGE_TYPE.
1049
1050 Elements will be of type ELEMENT_TYPE, the indices will be of type
1051 RANGE_TYPE.
1052
1053 If BIT_STRIDE is not zero, build a packed array type whose element
1054 size is BIT_STRIDE. Otherwise, ignore this parameter.
1055
1056 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1057 sure it is TYPE_CODE_UNDEF before we bash it into an array
1058 type? */
1059
1060 struct type *
1061 create_array_type_with_stride (struct type *result_type,
1062 struct type *element_type,
1063 struct type *range_type,
1064 unsigned int bit_stride)
1065 {
1066 if (result_type == NULL)
1067 result_type = alloc_type_copy (range_type);
1068
1069 TYPE_CODE (result_type) = TYPE_CODE_ARRAY;
1070 TYPE_TARGET_TYPE (result_type) = element_type;
1071 if (has_static_range (TYPE_RANGE_DATA (range_type)))
1072 {
1073 LONGEST low_bound, high_bound;
1074
1075 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1076 low_bound = high_bound = 0;
1077 element_type = check_typedef (element_type);
1078 /* Be careful when setting the array length. Ada arrays can be
1079 empty arrays with the high_bound being smaller than the low_bound.
1080 In such cases, the array length should be zero. */
1081 if (high_bound < low_bound)
1082 TYPE_LENGTH (result_type) = 0;
1083 else if (bit_stride > 0)
1084 TYPE_LENGTH (result_type) =
1085 (bit_stride * (high_bound - low_bound + 1) + 7) / 8;
1086 else
1087 TYPE_LENGTH (result_type) =
1088 TYPE_LENGTH (element_type) * (high_bound - low_bound + 1);
1089 }
1090 else
1091 {
1092 /* This type is dynamic and its length needs to be computed
1093 on demand. In the meantime, avoid leaving the TYPE_LENGTH
1094 undefined by setting it to zero. Although we are not expected
1095 to trust TYPE_LENGTH in this case, setting the size to zero
1096 allows us to avoid allocating objects of random sizes in case
1097 we accidently do. */
1098 TYPE_LENGTH (result_type) = 0;
1099 }
1100
1101 TYPE_NFIELDS (result_type) = 1;
1102 TYPE_FIELDS (result_type) =
1103 (struct field *) TYPE_ZALLOC (result_type, sizeof (struct field));
1104 TYPE_INDEX_TYPE (result_type) = range_type;
1105 if (bit_stride > 0)
1106 TYPE_FIELD_BITSIZE (result_type, 0) = bit_stride;
1107
1108 /* TYPE_FLAG_TARGET_STUB will take care of zero length arrays. */
1109 if (TYPE_LENGTH (result_type) == 0)
1110 TYPE_TARGET_STUB (result_type) = 1;
1111
1112 return result_type;
1113 }
1114
1115 /* Same as create_array_type_with_stride but with no bit_stride
1116 (BIT_STRIDE = 0), thus building an unpacked array. */
1117
1118 struct type *
1119 create_array_type (struct type *result_type,
1120 struct type *element_type,
1121 struct type *range_type)
1122 {
1123 return create_array_type_with_stride (result_type, element_type,
1124 range_type, 0);
1125 }
1126
1127 struct type *
1128 lookup_array_range_type (struct type *element_type,
1129 LONGEST low_bound, LONGEST high_bound)
1130 {
1131 struct gdbarch *gdbarch = get_type_arch (element_type);
1132 struct type *index_type = builtin_type (gdbarch)->builtin_int;
1133 struct type *range_type
1134 = create_static_range_type (NULL, index_type, low_bound, high_bound);
1135
1136 return create_array_type (NULL, element_type, range_type);
1137 }
1138
1139 /* Create a string type using either a blank type supplied in
1140 RESULT_TYPE, or creating a new type. String types are similar
1141 enough to array of char types that we can use create_array_type to
1142 build the basic type and then bash it into a string type.
1143
1144 For fixed length strings, the range type contains 0 as the lower
1145 bound and the length of the string minus one as the upper bound.
1146
1147 FIXME: Maybe we should check the TYPE_CODE of RESULT_TYPE to make
1148 sure it is TYPE_CODE_UNDEF before we bash it into a string
1149 type? */
1150
1151 struct type *
1152 create_string_type (struct type *result_type,
1153 struct type *string_char_type,
1154 struct type *range_type)
1155 {
1156 result_type = create_array_type (result_type,
1157 string_char_type,
1158 range_type);
1159 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1160 return result_type;
1161 }
1162
1163 struct type *
1164 lookup_string_range_type (struct type *string_char_type,
1165 LONGEST low_bound, LONGEST high_bound)
1166 {
1167 struct type *result_type;
1168
1169 result_type = lookup_array_range_type (string_char_type,
1170 low_bound, high_bound);
1171 TYPE_CODE (result_type) = TYPE_CODE_STRING;
1172 return result_type;
1173 }
1174
1175 struct type *
1176 create_set_type (struct type *result_type, struct type *domain_type)
1177 {
1178 if (result_type == NULL)
1179 result_type = alloc_type_copy (domain_type);
1180
1181 TYPE_CODE (result_type) = TYPE_CODE_SET;
1182 TYPE_NFIELDS (result_type) = 1;
1183 TYPE_FIELDS (result_type) = TYPE_ZALLOC (result_type, sizeof (struct field));
1184
1185 if (!TYPE_STUB (domain_type))
1186 {
1187 LONGEST low_bound, high_bound, bit_length;
1188
1189 if (get_discrete_bounds (domain_type, &low_bound, &high_bound) < 0)
1190 low_bound = high_bound = 0;
1191 bit_length = high_bound - low_bound + 1;
1192 TYPE_LENGTH (result_type)
1193 = (bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
1194 if (low_bound >= 0)
1195 TYPE_UNSIGNED (result_type) = 1;
1196 }
1197 TYPE_FIELD_TYPE (result_type, 0) = domain_type;
1198
1199 return result_type;
1200 }
1201
1202 /* Convert ARRAY_TYPE to a vector type. This may modify ARRAY_TYPE
1203 and any array types nested inside it. */
1204
1205 void
1206 make_vector_type (struct type *array_type)
1207 {
1208 struct type *inner_array, *elt_type;
1209 int flags;
1210
1211 /* Find the innermost array type, in case the array is
1212 multi-dimensional. */
1213 inner_array = array_type;
1214 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
1215 inner_array = TYPE_TARGET_TYPE (inner_array);
1216
1217 elt_type = TYPE_TARGET_TYPE (inner_array);
1218 if (TYPE_CODE (elt_type) == TYPE_CODE_INT)
1219 {
1220 flags = TYPE_INSTANCE_FLAGS (elt_type) | TYPE_INSTANCE_FLAG_NOTTEXT;
1221 elt_type = make_qualified_type (elt_type, flags, NULL);
1222 TYPE_TARGET_TYPE (inner_array) = elt_type;
1223 }
1224
1225 TYPE_VECTOR (array_type) = 1;
1226 }
1227
1228 struct type *
1229 init_vector_type (struct type *elt_type, int n)
1230 {
1231 struct type *array_type;
1232
1233 array_type = lookup_array_range_type (elt_type, 0, n - 1);
1234 make_vector_type (array_type);
1235 return array_type;
1236 }
1237
1238 /* Internal routine called by TYPE_SELF_TYPE to return the type that TYPE
1239 belongs to. In c++ this is the class of "this", but TYPE_THIS_TYPE is too
1240 confusing. "self" is a common enough replacement for "this".
1241 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1242 TYPE_CODE_METHOD. */
1243
1244 struct type *
1245 internal_type_self_type (struct type *type)
1246 {
1247 switch (TYPE_CODE (type))
1248 {
1249 case TYPE_CODE_METHODPTR:
1250 case TYPE_CODE_MEMBERPTR:
1251 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1252 return NULL;
1253 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1254 return TYPE_MAIN_TYPE (type)->type_specific.self_type;
1255 case TYPE_CODE_METHOD:
1256 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1257 return NULL;
1258 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1259 return TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type;
1260 default:
1261 gdb_assert_not_reached ("bad type");
1262 }
1263 }
1264
1265 /* Set the type of the class that TYPE belongs to.
1266 In c++ this is the class of "this".
1267 TYPE must be one of TYPE_CODE_METHODPTR, TYPE_CODE_MEMBERPTR, or
1268 TYPE_CODE_METHOD. */
1269
1270 void
1271 set_type_self_type (struct type *type, struct type *self_type)
1272 {
1273 switch (TYPE_CODE (type))
1274 {
1275 case TYPE_CODE_METHODPTR:
1276 case TYPE_CODE_MEMBERPTR:
1277 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1278 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_SELF_TYPE;
1279 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_SELF_TYPE);
1280 TYPE_MAIN_TYPE (type)->type_specific.self_type = self_type;
1281 break;
1282 case TYPE_CODE_METHOD:
1283 if (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_NONE)
1284 INIT_FUNC_SPECIFIC (type);
1285 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_FUNC);
1286 TYPE_MAIN_TYPE (type)->type_specific.func_stuff->self_type = self_type;
1287 break;
1288 default:
1289 gdb_assert_not_reached ("bad type");
1290 }
1291 }
1292
1293 /* Smash TYPE to be a type of pointers to members of SELF_TYPE with type
1294 TO_TYPE. A member pointer is a wierd thing -- it amounts to a
1295 typed offset into a struct, e.g. "an int at offset 8". A MEMBER
1296 TYPE doesn't include the offset (that's the value of the MEMBER
1297 itself), but does include the structure type into which it points
1298 (for some reason).
1299
1300 When "smashing" the type, we preserve the objfile that the old type
1301 pointed to, since we aren't changing where the type is actually
1302 allocated. */
1303
1304 void
1305 smash_to_memberptr_type (struct type *type, struct type *self_type,
1306 struct type *to_type)
1307 {
1308 smash_type (type);
1309 TYPE_CODE (type) = TYPE_CODE_MEMBERPTR;
1310 TYPE_TARGET_TYPE (type) = to_type;
1311 set_type_self_type (type, self_type);
1312 /* Assume that a data member pointer is the same size as a normal
1313 pointer. */
1314 TYPE_LENGTH (type)
1315 = gdbarch_ptr_bit (get_type_arch (to_type)) / TARGET_CHAR_BIT;
1316 }
1317
1318 /* Smash TYPE to be a type of pointer to methods type TO_TYPE.
1319
1320 When "smashing" the type, we preserve the objfile that the old type
1321 pointed to, since we aren't changing where the type is actually
1322 allocated. */
1323
1324 void
1325 smash_to_methodptr_type (struct type *type, struct type *to_type)
1326 {
1327 smash_type (type);
1328 TYPE_CODE (type) = TYPE_CODE_METHODPTR;
1329 TYPE_TARGET_TYPE (type) = to_type;
1330 set_type_self_type (type, TYPE_SELF_TYPE (to_type));
1331 TYPE_LENGTH (type) = cplus_method_ptr_size (to_type);
1332 }
1333
1334 /* Smash TYPE to be a type of method of SELF_TYPE with type TO_TYPE.
1335 METHOD just means `function that gets an extra "this" argument'.
1336
1337 When "smashing" the type, we preserve the objfile that the old type
1338 pointed to, since we aren't changing where the type is actually
1339 allocated. */
1340
1341 void
1342 smash_to_method_type (struct type *type, struct type *self_type,
1343 struct type *to_type, struct field *args,
1344 int nargs, int varargs)
1345 {
1346 smash_type (type);
1347 TYPE_CODE (type) = TYPE_CODE_METHOD;
1348 TYPE_TARGET_TYPE (type) = to_type;
1349 set_type_self_type (type, self_type);
1350 TYPE_FIELDS (type) = args;
1351 TYPE_NFIELDS (type) = nargs;
1352 if (varargs)
1353 TYPE_VARARGS (type) = 1;
1354 TYPE_LENGTH (type) = 1; /* In practice, this is never needed. */
1355 }
1356
1357 /* Return a typename for a struct/union/enum type without "struct ",
1358 "union ", or "enum ". If the type has a NULL name, return NULL. */
1359
1360 const char *
1361 type_name_no_tag (const struct type *type)
1362 {
1363 if (TYPE_TAG_NAME (type) != NULL)
1364 return TYPE_TAG_NAME (type);
1365
1366 /* Is there code which expects this to return the name if there is
1367 no tag name? My guess is that this is mainly used for C++ in
1368 cases where the two will always be the same. */
1369 return TYPE_NAME (type);
1370 }
1371
1372 /* A wrapper of type_name_no_tag which calls error if the type is anonymous.
1373 Since GCC PR debug/47510 DWARF provides associated information to detect the
1374 anonymous class linkage name from its typedef.
1375
1376 Parameter TYPE should not yet have CHECK_TYPEDEF applied, this function will
1377 apply it itself. */
1378
1379 const char *
1380 type_name_no_tag_or_error (struct type *type)
1381 {
1382 struct type *saved_type = type;
1383 const char *name;
1384 struct objfile *objfile;
1385
1386 type = check_typedef (type);
1387
1388 name = type_name_no_tag (type);
1389 if (name != NULL)
1390 return name;
1391
1392 name = type_name_no_tag (saved_type);
1393 objfile = TYPE_OBJFILE (saved_type);
1394 error (_("Invalid anonymous type %s [in module %s], GCC PR debug/47510 bug?"),
1395 name ? name : "<anonymous>",
1396 objfile ? objfile_name (objfile) : "<arch>");
1397 }
1398
1399 /* Lookup a typedef or primitive type named NAME, visible in lexical
1400 block BLOCK. If NOERR is nonzero, return zero if NAME is not
1401 suitably defined. */
1402
1403 struct type *
1404 lookup_typename (const struct language_defn *language,
1405 struct gdbarch *gdbarch, const char *name,
1406 const struct block *block, int noerr)
1407 {
1408 struct symbol *sym;
1409 struct type *type;
1410
1411 sym = lookup_symbol_in_language (name, block, VAR_DOMAIN,
1412 language->la_language, NULL);
1413 if (sym != NULL && SYMBOL_CLASS (sym) == LOC_TYPEDEF)
1414 return SYMBOL_TYPE (sym);
1415
1416 if (noerr)
1417 return NULL;
1418 error (_("No type named %s."), name);
1419 }
1420
1421 struct type *
1422 lookup_unsigned_typename (const struct language_defn *language,
1423 struct gdbarch *gdbarch, const char *name)
1424 {
1425 char *uns = alloca (strlen (name) + 10);
1426
1427 strcpy (uns, "unsigned ");
1428 strcpy (uns + 9, name);
1429 return lookup_typename (language, gdbarch, uns, (struct block *) NULL, 0);
1430 }
1431
1432 struct type *
1433 lookup_signed_typename (const struct language_defn *language,
1434 struct gdbarch *gdbarch, const char *name)
1435 {
1436 struct type *t;
1437 char *uns = alloca (strlen (name) + 8);
1438
1439 strcpy (uns, "signed ");
1440 strcpy (uns + 7, name);
1441 t = lookup_typename (language, gdbarch, uns, (struct block *) NULL, 1);
1442 /* If we don't find "signed FOO" just try again with plain "FOO". */
1443 if (t != NULL)
1444 return t;
1445 return lookup_typename (language, gdbarch, name, (struct block *) NULL, 0);
1446 }
1447
1448 /* Lookup a structure type named "struct NAME",
1449 visible in lexical block BLOCK. */
1450
1451 struct type *
1452 lookup_struct (const char *name, const struct block *block)
1453 {
1454 struct symbol *sym;
1455
1456 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1457
1458 if (sym == NULL)
1459 {
1460 error (_("No struct type named %s."), name);
1461 }
1462 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1463 {
1464 error (_("This context has class, union or enum %s, not a struct."),
1465 name);
1466 }
1467 return (SYMBOL_TYPE (sym));
1468 }
1469
1470 /* Lookup a union type named "union NAME",
1471 visible in lexical block BLOCK. */
1472
1473 struct type *
1474 lookup_union (const char *name, const struct block *block)
1475 {
1476 struct symbol *sym;
1477 struct type *t;
1478
1479 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1480
1481 if (sym == NULL)
1482 error (_("No union type named %s."), name);
1483
1484 t = SYMBOL_TYPE (sym);
1485
1486 if (TYPE_CODE (t) == TYPE_CODE_UNION)
1487 return t;
1488
1489 /* If we get here, it's not a union. */
1490 error (_("This context has class, struct or enum %s, not a union."),
1491 name);
1492 }
1493
1494 /* Lookup an enum type named "enum NAME",
1495 visible in lexical block BLOCK. */
1496
1497 struct type *
1498 lookup_enum (const char *name, const struct block *block)
1499 {
1500 struct symbol *sym;
1501
1502 sym = lookup_symbol (name, block, STRUCT_DOMAIN, 0);
1503 if (sym == NULL)
1504 {
1505 error (_("No enum type named %s."), name);
1506 }
1507 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_ENUM)
1508 {
1509 error (_("This context has class, struct or union %s, not an enum."),
1510 name);
1511 }
1512 return (SYMBOL_TYPE (sym));
1513 }
1514
1515 /* Lookup a template type named "template NAME<TYPE>",
1516 visible in lexical block BLOCK. */
1517
1518 struct type *
1519 lookup_template_type (char *name, struct type *type,
1520 const struct block *block)
1521 {
1522 struct symbol *sym;
1523 char *nam = (char *)
1524 alloca (strlen (name) + strlen (TYPE_NAME (type)) + 4);
1525
1526 strcpy (nam, name);
1527 strcat (nam, "<");
1528 strcat (nam, TYPE_NAME (type));
1529 strcat (nam, " >"); /* FIXME, extra space still introduced in gcc? */
1530
1531 sym = lookup_symbol (nam, block, VAR_DOMAIN, 0);
1532
1533 if (sym == NULL)
1534 {
1535 error (_("No template type named %s."), name);
1536 }
1537 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_STRUCT)
1538 {
1539 error (_("This context has class, union or enum %s, not a struct."),
1540 name);
1541 }
1542 return (SYMBOL_TYPE (sym));
1543 }
1544
1545 /* Given a type TYPE, lookup the type of the component of type named
1546 NAME.
1547
1548 TYPE can be either a struct or union, or a pointer or reference to
1549 a struct or union. If it is a pointer or reference, its target
1550 type is automatically used. Thus '.' and '->' are interchangable,
1551 as specified for the definitions of the expression element types
1552 STRUCTOP_STRUCT and STRUCTOP_PTR.
1553
1554 If NOERR is nonzero, return zero if NAME is not suitably defined.
1555 If NAME is the name of a baseclass type, return that type. */
1556
1557 struct type *
1558 lookup_struct_elt_type (struct type *type, const char *name, int noerr)
1559 {
1560 int i;
1561 char *type_name;
1562
1563 for (;;)
1564 {
1565 type = check_typedef (type);
1566 if (TYPE_CODE (type) != TYPE_CODE_PTR
1567 && TYPE_CODE (type) != TYPE_CODE_REF)
1568 break;
1569 type = TYPE_TARGET_TYPE (type);
1570 }
1571
1572 if (TYPE_CODE (type) != TYPE_CODE_STRUCT
1573 && TYPE_CODE (type) != TYPE_CODE_UNION)
1574 {
1575 type_name = type_to_string (type);
1576 make_cleanup (xfree, type_name);
1577 error (_("Type %s is not a structure or union type."), type_name);
1578 }
1579
1580 #if 0
1581 /* FIXME: This change put in by Michael seems incorrect for the case
1582 where the structure tag name is the same as the member name.
1583 I.e. when doing "ptype bell->bar" for "struct foo { int bar; int
1584 foo; } bell;" Disabled by fnf. */
1585 {
1586 char *type_name;
1587
1588 type_name = type_name_no_tag (type);
1589 if (type_name != NULL && strcmp (type_name, name) == 0)
1590 return type;
1591 }
1592 #endif
1593
1594 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1595 {
1596 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1597
1598 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1599 {
1600 return TYPE_FIELD_TYPE (type, i);
1601 }
1602 else if (!t_field_name || *t_field_name == '\0')
1603 {
1604 struct type *subtype
1605 = lookup_struct_elt_type (TYPE_FIELD_TYPE (type, i), name, 1);
1606
1607 if (subtype != NULL)
1608 return subtype;
1609 }
1610 }
1611
1612 /* OK, it's not in this class. Recursively check the baseclasses. */
1613 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1614 {
1615 struct type *t;
1616
1617 t = lookup_struct_elt_type (TYPE_BASECLASS (type, i), name, 1);
1618 if (t != NULL)
1619 {
1620 return t;
1621 }
1622 }
1623
1624 if (noerr)
1625 {
1626 return NULL;
1627 }
1628
1629 type_name = type_to_string (type);
1630 make_cleanup (xfree, type_name);
1631 error (_("Type %s has no component named %s."), type_name, name);
1632 }
1633
1634 /* Store in *MAX the largest number representable by unsigned integer type
1635 TYPE. */
1636
1637 void
1638 get_unsigned_type_max (struct type *type, ULONGEST *max)
1639 {
1640 unsigned int n;
1641
1642 type = check_typedef (type);
1643 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && TYPE_UNSIGNED (type));
1644 gdb_assert (TYPE_LENGTH (type) <= sizeof (ULONGEST));
1645
1646 /* Written this way to avoid overflow. */
1647 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1648 *max = ((((ULONGEST) 1 << (n - 1)) - 1) << 1) | 1;
1649 }
1650
1651 /* Store in *MIN, *MAX the smallest and largest numbers representable by
1652 signed integer type TYPE. */
1653
1654 void
1655 get_signed_type_minmax (struct type *type, LONGEST *min, LONGEST *max)
1656 {
1657 unsigned int n;
1658
1659 type = check_typedef (type);
1660 gdb_assert (TYPE_CODE (type) == TYPE_CODE_INT && !TYPE_UNSIGNED (type));
1661 gdb_assert (TYPE_LENGTH (type) <= sizeof (LONGEST));
1662
1663 n = TYPE_LENGTH (type) * TARGET_CHAR_BIT;
1664 *min = -((ULONGEST) 1 << (n - 1));
1665 *max = ((ULONGEST) 1 << (n - 1)) - 1;
1666 }
1667
1668 /* Internal routine called by TYPE_VPTR_FIELDNO to return the value of
1669 cplus_stuff.vptr_fieldno.
1670
1671 cplus_stuff is initialized to cplus_struct_default which does not
1672 set vptr_fieldno to -1 for portability reasons (IWBN to use C99
1673 designated initializers). We cope with that here. */
1674
1675 int
1676 internal_type_vptr_fieldno (struct type *type)
1677 {
1678 type = check_typedef (type);
1679 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1680 || TYPE_CODE (type) == TYPE_CODE_UNION);
1681 if (!HAVE_CPLUS_STRUCT (type))
1682 return -1;
1683 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno;
1684 }
1685
1686 /* Set the value of cplus_stuff.vptr_fieldno. */
1687
1688 void
1689 set_type_vptr_fieldno (struct type *type, int fieldno)
1690 {
1691 type = check_typedef (type);
1692 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1693 || TYPE_CODE (type) == TYPE_CODE_UNION);
1694 if (!HAVE_CPLUS_STRUCT (type))
1695 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1696 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_fieldno = fieldno;
1697 }
1698
1699 /* Internal routine called by TYPE_VPTR_BASETYPE to return the value of
1700 cplus_stuff.vptr_basetype. */
1701
1702 struct type *
1703 internal_type_vptr_basetype (struct type *type)
1704 {
1705 type = check_typedef (type);
1706 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1707 || TYPE_CODE (type) == TYPE_CODE_UNION);
1708 gdb_assert (TYPE_SPECIFIC_FIELD (type) == TYPE_SPECIFIC_CPLUS_STUFF);
1709 return TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype;
1710 }
1711
1712 /* Set the value of cplus_stuff.vptr_basetype. */
1713
1714 void
1715 set_type_vptr_basetype (struct type *type, struct type *basetype)
1716 {
1717 type = check_typedef (type);
1718 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
1719 || TYPE_CODE (type) == TYPE_CODE_UNION);
1720 if (!HAVE_CPLUS_STRUCT (type))
1721 ALLOCATE_CPLUS_STRUCT_TYPE (type);
1722 TYPE_RAW_CPLUS_SPECIFIC (type)->vptr_basetype = basetype;
1723 }
1724
1725 /* Lookup the vptr basetype/fieldno values for TYPE.
1726 If found store vptr_basetype in *BASETYPEP if non-NULL, and return
1727 vptr_fieldno. Also, if found and basetype is from the same objfile,
1728 cache the results.
1729 If not found, return -1 and ignore BASETYPEP.
1730 Callers should be aware that in some cases (for example,
1731 the type or one of its baseclasses is a stub type and we are
1732 debugging a .o file, or the compiler uses DWARF-2 and is not GCC),
1733 this function will not be able to find the
1734 virtual function table pointer, and vptr_fieldno will remain -1 and
1735 vptr_basetype will remain NULL or incomplete. */
1736
1737 int
1738 get_vptr_fieldno (struct type *type, struct type **basetypep)
1739 {
1740 type = check_typedef (type);
1741
1742 if (TYPE_VPTR_FIELDNO (type) < 0)
1743 {
1744 int i;
1745
1746 /* We must start at zero in case the first (and only) baseclass
1747 is virtual (and hence we cannot share the table pointer). */
1748 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
1749 {
1750 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
1751 int fieldno;
1752 struct type *basetype;
1753
1754 fieldno = get_vptr_fieldno (baseclass, &basetype);
1755 if (fieldno >= 0)
1756 {
1757 /* If the type comes from a different objfile we can't cache
1758 it, it may have a different lifetime. PR 2384 */
1759 if (TYPE_OBJFILE (type) == TYPE_OBJFILE (basetype))
1760 {
1761 set_type_vptr_fieldno (type, fieldno);
1762 set_type_vptr_basetype (type, basetype);
1763 }
1764 if (basetypep)
1765 *basetypep = basetype;
1766 return fieldno;
1767 }
1768 }
1769
1770 /* Not found. */
1771 return -1;
1772 }
1773 else
1774 {
1775 if (basetypep)
1776 *basetypep = TYPE_VPTR_BASETYPE (type);
1777 return TYPE_VPTR_FIELDNO (type);
1778 }
1779 }
1780
1781 static void
1782 stub_noname_complaint (void)
1783 {
1784 complaint (&symfile_complaints, _("stub type has NULL name"));
1785 }
1786
1787 /* Worker for is_dynamic_type. */
1788
1789 static int
1790 is_dynamic_type_internal (struct type *type, int top_level)
1791 {
1792 type = check_typedef (type);
1793
1794 /* We only want to recognize references at the outermost level. */
1795 if (top_level && TYPE_CODE (type) == TYPE_CODE_REF)
1796 type = check_typedef (TYPE_TARGET_TYPE (type));
1797
1798 /* Types that have a dynamic TYPE_DATA_LOCATION are considered
1799 dynamic, even if the type itself is statically defined.
1800 From a user's point of view, this may appear counter-intuitive;
1801 but it makes sense in this context, because the point is to determine
1802 whether any part of the type needs to be resolved before it can
1803 be exploited. */
1804 if (TYPE_DATA_LOCATION (type) != NULL
1805 && (TYPE_DATA_LOCATION_KIND (type) == PROP_LOCEXPR
1806 || TYPE_DATA_LOCATION_KIND (type) == PROP_LOCLIST))
1807 return 1;
1808
1809 switch (TYPE_CODE (type))
1810 {
1811 case TYPE_CODE_RANGE:
1812 {
1813 /* A range type is obviously dynamic if it has at least one
1814 dynamic bound. But also consider the range type to be
1815 dynamic when its subtype is dynamic, even if the bounds
1816 of the range type are static. It allows us to assume that
1817 the subtype of a static range type is also static. */
1818 return (!has_static_range (TYPE_RANGE_DATA (type))
1819 || is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0));
1820 }
1821
1822 case TYPE_CODE_ARRAY:
1823 {
1824 gdb_assert (TYPE_NFIELDS (type) == 1);
1825
1826 /* The array is dynamic if either the bounds are dynamic,
1827 or the elements it contains have a dynamic contents. */
1828 if (is_dynamic_type_internal (TYPE_INDEX_TYPE (type), 0))
1829 return 1;
1830 return is_dynamic_type_internal (TYPE_TARGET_TYPE (type), 0);
1831 }
1832
1833 case TYPE_CODE_STRUCT:
1834 case TYPE_CODE_UNION:
1835 {
1836 int i;
1837
1838 for (i = 0; i < TYPE_NFIELDS (type); ++i)
1839 if (!field_is_static (&TYPE_FIELD (type, i))
1840 && is_dynamic_type_internal (TYPE_FIELD_TYPE (type, i), 0))
1841 return 1;
1842 }
1843 break;
1844 }
1845
1846 return 0;
1847 }
1848
1849 /* See gdbtypes.h. */
1850
1851 int
1852 is_dynamic_type (struct type *type)
1853 {
1854 return is_dynamic_type_internal (type, 1);
1855 }
1856
1857 static struct type *resolve_dynamic_type_internal
1858 (struct type *type, struct property_addr_info *addr_stack, int top_level);
1859
1860 /* Given a dynamic range type (dyn_range_type) and a stack of
1861 struct property_addr_info elements, return a static version
1862 of that type. */
1863
1864 static struct type *
1865 resolve_dynamic_range (struct type *dyn_range_type,
1866 struct property_addr_info *addr_stack)
1867 {
1868 CORE_ADDR value;
1869 struct type *static_range_type, *static_target_type;
1870 const struct dynamic_prop *prop;
1871 const struct dwarf2_locexpr_baton *baton;
1872 struct dynamic_prop low_bound, high_bound;
1873
1874 gdb_assert (TYPE_CODE (dyn_range_type) == TYPE_CODE_RANGE);
1875
1876 prop = &TYPE_RANGE_DATA (dyn_range_type)->low;
1877 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1878 {
1879 low_bound.kind = PROP_CONST;
1880 low_bound.data.const_val = value;
1881 }
1882 else
1883 {
1884 low_bound.kind = PROP_UNDEFINED;
1885 low_bound.data.const_val = 0;
1886 }
1887
1888 prop = &TYPE_RANGE_DATA (dyn_range_type)->high;
1889 if (dwarf2_evaluate_property (prop, addr_stack, &value))
1890 {
1891 high_bound.kind = PROP_CONST;
1892 high_bound.data.const_val = value;
1893
1894 if (TYPE_RANGE_DATA (dyn_range_type)->flag_upper_bound_is_count)
1895 high_bound.data.const_val
1896 = low_bound.data.const_val + high_bound.data.const_val - 1;
1897 }
1898 else
1899 {
1900 high_bound.kind = PROP_UNDEFINED;
1901 high_bound.data.const_val = 0;
1902 }
1903
1904 static_target_type
1905 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (dyn_range_type),
1906 addr_stack, 0);
1907 static_range_type = create_range_type (copy_type (dyn_range_type),
1908 static_target_type,
1909 &low_bound, &high_bound);
1910 TYPE_RANGE_DATA (static_range_type)->flag_bound_evaluated = 1;
1911 return static_range_type;
1912 }
1913
1914 /* Resolves dynamic bound values of an array type TYPE to static ones.
1915 ADDR_STACK is a stack of struct property_addr_info to be used
1916 if needed during the dynamic resolution. */
1917
1918 static struct type *
1919 resolve_dynamic_array (struct type *type,
1920 struct property_addr_info *addr_stack)
1921 {
1922 CORE_ADDR value;
1923 struct type *elt_type;
1924 struct type *range_type;
1925 struct type *ary_dim;
1926
1927 gdb_assert (TYPE_CODE (type) == TYPE_CODE_ARRAY);
1928
1929 elt_type = type;
1930 range_type = check_typedef (TYPE_INDEX_TYPE (elt_type));
1931 range_type = resolve_dynamic_range (range_type, addr_stack);
1932
1933 ary_dim = check_typedef (TYPE_TARGET_TYPE (elt_type));
1934
1935 if (ary_dim != NULL && TYPE_CODE (ary_dim) == TYPE_CODE_ARRAY)
1936 elt_type = resolve_dynamic_array (TYPE_TARGET_TYPE (type), addr_stack);
1937 else
1938 elt_type = TYPE_TARGET_TYPE (type);
1939
1940 return create_array_type_with_stride (copy_type (type),
1941 elt_type, range_type,
1942 TYPE_FIELD_BITSIZE (type, 0));
1943 }
1944
1945 /* Resolve dynamic bounds of members of the union TYPE to static
1946 bounds. ADDR_STACK is a stack of struct property_addr_info
1947 to be used if needed during the dynamic resolution. */
1948
1949 static struct type *
1950 resolve_dynamic_union (struct type *type,
1951 struct property_addr_info *addr_stack)
1952 {
1953 struct type *resolved_type;
1954 int i;
1955 unsigned int max_len = 0;
1956
1957 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
1958
1959 resolved_type = copy_type (type);
1960 TYPE_FIELDS (resolved_type)
1961 = TYPE_ALLOC (resolved_type,
1962 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1963 memcpy (TYPE_FIELDS (resolved_type),
1964 TYPE_FIELDS (type),
1965 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
1966 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
1967 {
1968 struct type *t;
1969
1970 if (field_is_static (&TYPE_FIELD (type, i)))
1971 continue;
1972
1973 t = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
1974 addr_stack, 0);
1975 TYPE_FIELD_TYPE (resolved_type, i) = t;
1976 if (TYPE_LENGTH (t) > max_len)
1977 max_len = TYPE_LENGTH (t);
1978 }
1979
1980 TYPE_LENGTH (resolved_type) = max_len;
1981 return resolved_type;
1982 }
1983
1984 /* Resolve dynamic bounds of members of the struct TYPE to static
1985 bounds. ADDR_STACK is a stack of struct property_addr_info to
1986 be used if needed during the dynamic resolution. */
1987
1988 static struct type *
1989 resolve_dynamic_struct (struct type *type,
1990 struct property_addr_info *addr_stack)
1991 {
1992 struct type *resolved_type;
1993 int i;
1994 unsigned resolved_type_bit_length = 0;
1995
1996 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT);
1997 gdb_assert (TYPE_NFIELDS (type) > 0);
1998
1999 resolved_type = copy_type (type);
2000 TYPE_FIELDS (resolved_type)
2001 = TYPE_ALLOC (resolved_type,
2002 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2003 memcpy (TYPE_FIELDS (resolved_type),
2004 TYPE_FIELDS (type),
2005 TYPE_NFIELDS (resolved_type) * sizeof (struct field));
2006 for (i = 0; i < TYPE_NFIELDS (resolved_type); ++i)
2007 {
2008 unsigned new_bit_length;
2009 struct property_addr_info pinfo;
2010
2011 if (field_is_static (&TYPE_FIELD (type, i)))
2012 continue;
2013
2014 /* As we know this field is not a static field, the field's
2015 field_loc_kind should be FIELD_LOC_KIND_BITPOS. Verify
2016 this is the case, but only trigger a simple error rather
2017 than an internal error if that fails. While failing
2018 that verification indicates a bug in our code, the error
2019 is not severe enough to suggest to the user he stops
2020 his debugging session because of it. */
2021 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_BITPOS)
2022 error (_("Cannot determine struct field location"
2023 " (invalid location kind)"));
2024
2025 pinfo.type = check_typedef (TYPE_FIELD_TYPE (type, i));
2026 pinfo.valaddr = addr_stack->valaddr;
2027 pinfo.addr = addr_stack->addr;
2028 pinfo.next = addr_stack;
2029
2030 TYPE_FIELD_TYPE (resolved_type, i)
2031 = resolve_dynamic_type_internal (TYPE_FIELD_TYPE (resolved_type, i),
2032 &pinfo, 0);
2033 gdb_assert (TYPE_FIELD_LOC_KIND (resolved_type, i)
2034 == FIELD_LOC_KIND_BITPOS);
2035
2036 new_bit_length = TYPE_FIELD_BITPOS (resolved_type, i);
2037 if (TYPE_FIELD_BITSIZE (resolved_type, i) != 0)
2038 new_bit_length += TYPE_FIELD_BITSIZE (resolved_type, i);
2039 else
2040 new_bit_length += (TYPE_LENGTH (TYPE_FIELD_TYPE (resolved_type, i))
2041 * TARGET_CHAR_BIT);
2042
2043 /* Normally, we would use the position and size of the last field
2044 to determine the size of the enclosing structure. But GCC seems
2045 to be encoding the position of some fields incorrectly when
2046 the struct contains a dynamic field that is not placed last.
2047 So we compute the struct size based on the field that has
2048 the highest position + size - probably the best we can do. */
2049 if (new_bit_length > resolved_type_bit_length)
2050 resolved_type_bit_length = new_bit_length;
2051 }
2052
2053 TYPE_LENGTH (resolved_type)
2054 = (resolved_type_bit_length + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2055
2056 /* The Ada language uses this field as a cache for static fixed types: reset
2057 it as RESOLVED_TYPE must have its own static fixed type. */
2058 TYPE_TARGET_TYPE (resolved_type) = NULL;
2059
2060 return resolved_type;
2061 }
2062
2063 /* Worker for resolved_dynamic_type. */
2064
2065 static struct type *
2066 resolve_dynamic_type_internal (struct type *type,
2067 struct property_addr_info *addr_stack,
2068 int top_level)
2069 {
2070 struct type *real_type = check_typedef (type);
2071 struct type *resolved_type = type;
2072 struct dynamic_prop *prop;
2073 CORE_ADDR value;
2074
2075 if (!is_dynamic_type_internal (real_type, top_level))
2076 return type;
2077
2078 if (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2079 {
2080 resolved_type = copy_type (type);
2081 TYPE_TARGET_TYPE (resolved_type)
2082 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type), addr_stack,
2083 top_level);
2084 }
2085 else
2086 {
2087 /* Before trying to resolve TYPE, make sure it is not a stub. */
2088 type = real_type;
2089
2090 switch (TYPE_CODE (type))
2091 {
2092 case TYPE_CODE_REF:
2093 {
2094 struct property_addr_info pinfo;
2095
2096 pinfo.type = check_typedef (TYPE_TARGET_TYPE (type));
2097 pinfo.valaddr = NULL;
2098 if (addr_stack->valaddr != NULL)
2099 pinfo.addr = extract_typed_address (addr_stack->valaddr, type);
2100 else
2101 pinfo.addr = read_memory_typed_address (addr_stack->addr, type);
2102 pinfo.next = addr_stack;
2103
2104 resolved_type = copy_type (type);
2105 TYPE_TARGET_TYPE (resolved_type)
2106 = resolve_dynamic_type_internal (TYPE_TARGET_TYPE (type),
2107 &pinfo, top_level);
2108 break;
2109 }
2110
2111 case TYPE_CODE_ARRAY:
2112 resolved_type = resolve_dynamic_array (type, addr_stack);
2113 break;
2114
2115 case TYPE_CODE_RANGE:
2116 resolved_type = resolve_dynamic_range (type, addr_stack);
2117 break;
2118
2119 case TYPE_CODE_UNION:
2120 resolved_type = resolve_dynamic_union (type, addr_stack);
2121 break;
2122
2123 case TYPE_CODE_STRUCT:
2124 resolved_type = resolve_dynamic_struct (type, addr_stack);
2125 break;
2126 }
2127 }
2128
2129 /* Resolve data_location attribute. */
2130 prop = TYPE_DATA_LOCATION (resolved_type);
2131 if (prop != NULL && dwarf2_evaluate_property (prop, addr_stack, &value))
2132 {
2133 TYPE_DYN_PROP_ADDR (prop) = value;
2134 TYPE_DYN_PROP_KIND (prop) = PROP_CONST;
2135 }
2136
2137 return resolved_type;
2138 }
2139
2140 /* See gdbtypes.h */
2141
2142 struct type *
2143 resolve_dynamic_type (struct type *type, const gdb_byte *valaddr,
2144 CORE_ADDR addr)
2145 {
2146 struct property_addr_info pinfo
2147 = {check_typedef (type), valaddr, addr, NULL};
2148
2149 return resolve_dynamic_type_internal (type, &pinfo, 1);
2150 }
2151
2152 /* See gdbtypes.h */
2153
2154 struct dynamic_prop *
2155 get_dyn_prop (enum dynamic_prop_node_kind prop_kind, const struct type *type)
2156 {
2157 struct dynamic_prop_list *node = TYPE_DYN_PROP_LIST (type);
2158
2159 while (node != NULL)
2160 {
2161 if (node->prop_kind == prop_kind)
2162 return &node->prop;
2163 node = node->next;
2164 }
2165 return NULL;
2166 }
2167
2168 /* See gdbtypes.h */
2169
2170 void
2171 add_dyn_prop (enum dynamic_prop_node_kind prop_kind, struct dynamic_prop prop,
2172 struct type *type, struct objfile *objfile)
2173 {
2174 struct dynamic_prop_list *temp;
2175
2176 gdb_assert (TYPE_OBJFILE_OWNED (type));
2177
2178 temp = obstack_alloc (&objfile->objfile_obstack,
2179 sizeof (struct dynamic_prop_list));
2180 temp->prop_kind = prop_kind;
2181 temp->prop = prop;
2182 temp->next = TYPE_DYN_PROP_LIST (type);
2183
2184 TYPE_DYN_PROP_LIST (type) = temp;
2185 }
2186
2187
2188 /* Find the real type of TYPE. This function returns the real type,
2189 after removing all layers of typedefs, and completing opaque or stub
2190 types. Completion changes the TYPE argument, but stripping of
2191 typedefs does not.
2192
2193 Instance flags (e.g. const/volatile) are preserved as typedefs are
2194 stripped. If necessary a new qualified form of the underlying type
2195 is created.
2196
2197 NOTE: This will return a typedef if TYPE_TARGET_TYPE for the typedef has
2198 not been computed and we're either in the middle of reading symbols, or
2199 there was no name for the typedef in the debug info.
2200
2201 NOTE: Lookup of opaque types can throw errors for invalid symbol files.
2202 QUITs in the symbol reading code can also throw.
2203 Thus this function can throw an exception.
2204
2205 If TYPE is a TYPE_CODE_TYPEDEF, its length is updated to the length of
2206 the target type.
2207
2208 If this is a stubbed struct (i.e. declared as struct foo *), see if
2209 we can find a full definition in some other file. If so, copy this
2210 definition, so we can use it in future. There used to be a comment
2211 (but not any code) that if we don't find a full definition, we'd
2212 set a flag so we don't spend time in the future checking the same
2213 type. That would be a mistake, though--we might load in more
2214 symbols which contain a full definition for the type. */
2215
2216 struct type *
2217 check_typedef (struct type *type)
2218 {
2219 struct type *orig_type = type;
2220 /* While we're removing typedefs, we don't want to lose qualifiers.
2221 E.g., const/volatile. */
2222 int instance_flags = TYPE_INSTANCE_FLAGS (type);
2223
2224 gdb_assert (type);
2225
2226 while (TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
2227 {
2228 if (!TYPE_TARGET_TYPE (type))
2229 {
2230 const char *name;
2231 struct symbol *sym;
2232
2233 /* It is dangerous to call lookup_symbol if we are currently
2234 reading a symtab. Infinite recursion is one danger. */
2235 if (currently_reading_symtab)
2236 return make_qualified_type (type, instance_flags, NULL);
2237
2238 name = type_name_no_tag (type);
2239 /* FIXME: shouldn't we separately check the TYPE_NAME and
2240 the TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or
2241 VAR_DOMAIN as appropriate? (this code was written before
2242 TYPE_NAME and TYPE_TAG_NAME were separate). */
2243 if (name == NULL)
2244 {
2245 stub_noname_complaint ();
2246 return make_qualified_type (type, instance_flags, NULL);
2247 }
2248 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2249 if (sym)
2250 TYPE_TARGET_TYPE (type) = SYMBOL_TYPE (sym);
2251 else /* TYPE_CODE_UNDEF */
2252 TYPE_TARGET_TYPE (type) = alloc_type_arch (get_type_arch (type));
2253 }
2254 type = TYPE_TARGET_TYPE (type);
2255
2256 /* Preserve the instance flags as we traverse down the typedef chain.
2257
2258 Handling address spaces/classes is nasty, what do we do if there's a
2259 conflict?
2260 E.g., what if an outer typedef marks the type as class_1 and an inner
2261 typedef marks the type as class_2?
2262 This is the wrong place to do such error checking. We leave it to
2263 the code that created the typedef in the first place to flag the
2264 error. We just pick the outer address space (akin to letting the
2265 outer cast in a chain of casting win), instead of assuming
2266 "it can't happen". */
2267 {
2268 const int ALL_SPACES = (TYPE_INSTANCE_FLAG_CODE_SPACE
2269 | TYPE_INSTANCE_FLAG_DATA_SPACE);
2270 const int ALL_CLASSES = TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL;
2271 int new_instance_flags = TYPE_INSTANCE_FLAGS (type);
2272
2273 /* Treat code vs data spaces and address classes separately. */
2274 if ((instance_flags & ALL_SPACES) != 0)
2275 new_instance_flags &= ~ALL_SPACES;
2276 if ((instance_flags & ALL_CLASSES) != 0)
2277 new_instance_flags &= ~ALL_CLASSES;
2278
2279 instance_flags |= new_instance_flags;
2280 }
2281 }
2282
2283 /* If this is a struct/class/union with no fields, then check
2284 whether a full definition exists somewhere else. This is for
2285 systems where a type definition with no fields is issued for such
2286 types, instead of identifying them as stub types in the first
2287 place. */
2288
2289 if (TYPE_IS_OPAQUE (type)
2290 && opaque_type_resolution
2291 && !currently_reading_symtab)
2292 {
2293 const char *name = type_name_no_tag (type);
2294 struct type *newtype;
2295
2296 if (name == NULL)
2297 {
2298 stub_noname_complaint ();
2299 return make_qualified_type (type, instance_flags, NULL);
2300 }
2301 newtype = lookup_transparent_type (name);
2302
2303 if (newtype)
2304 {
2305 /* If the resolved type and the stub are in the same
2306 objfile, then replace the stub type with the real deal.
2307 But if they're in separate objfiles, leave the stub
2308 alone; we'll just look up the transparent type every time
2309 we call check_typedef. We can't create pointers between
2310 types allocated to different objfiles, since they may
2311 have different lifetimes. Trying to copy NEWTYPE over to
2312 TYPE's objfile is pointless, too, since you'll have to
2313 move over any other types NEWTYPE refers to, which could
2314 be an unbounded amount of stuff. */
2315 if (TYPE_OBJFILE (newtype) == TYPE_OBJFILE (type))
2316 type = make_qualified_type (newtype,
2317 TYPE_INSTANCE_FLAGS (type),
2318 type);
2319 else
2320 type = newtype;
2321 }
2322 }
2323 /* Otherwise, rely on the stub flag being set for opaque/stubbed
2324 types. */
2325 else if (TYPE_STUB (type) && !currently_reading_symtab)
2326 {
2327 const char *name = type_name_no_tag (type);
2328 /* FIXME: shouldn't we separately check the TYPE_NAME and the
2329 TYPE_TAG_NAME, and look in STRUCT_DOMAIN and/or VAR_DOMAIN
2330 as appropriate? (this code was written before TYPE_NAME and
2331 TYPE_TAG_NAME were separate). */
2332 struct symbol *sym;
2333
2334 if (name == NULL)
2335 {
2336 stub_noname_complaint ();
2337 return make_qualified_type (type, instance_flags, NULL);
2338 }
2339 sym = lookup_symbol (name, 0, STRUCT_DOMAIN, 0);
2340 if (sym)
2341 {
2342 /* Same as above for opaque types, we can replace the stub
2343 with the complete type only if they are in the same
2344 objfile. */
2345 if (TYPE_OBJFILE (SYMBOL_TYPE(sym)) == TYPE_OBJFILE (type))
2346 type = make_qualified_type (SYMBOL_TYPE (sym),
2347 TYPE_INSTANCE_FLAGS (type),
2348 type);
2349 else
2350 type = SYMBOL_TYPE (sym);
2351 }
2352 }
2353
2354 if (TYPE_TARGET_STUB (type))
2355 {
2356 struct type *range_type;
2357 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
2358
2359 if (TYPE_STUB (target_type) || TYPE_TARGET_STUB (target_type))
2360 {
2361 /* Nothing we can do. */
2362 }
2363 else if (TYPE_CODE (type) == TYPE_CODE_RANGE)
2364 {
2365 TYPE_LENGTH (type) = TYPE_LENGTH (target_type);
2366 TYPE_TARGET_STUB (type) = 0;
2367 }
2368 }
2369
2370 type = make_qualified_type (type, instance_flags, NULL);
2371
2372 /* Cache TYPE_LENGTH for future use. */
2373 TYPE_LENGTH (orig_type) = TYPE_LENGTH (type);
2374
2375 return type;
2376 }
2377
2378 /* Parse a type expression in the string [P..P+LENGTH). If an error
2379 occurs, silently return a void type. */
2380
2381 static struct type *
2382 safe_parse_type (struct gdbarch *gdbarch, char *p, int length)
2383 {
2384 struct ui_file *saved_gdb_stderr;
2385 struct type *type = NULL; /* Initialize to keep gcc happy. */
2386
2387 /* Suppress error messages. */
2388 saved_gdb_stderr = gdb_stderr;
2389 gdb_stderr = ui_file_new ();
2390
2391 /* Call parse_and_eval_type() without fear of longjmp()s. */
2392 TRY
2393 {
2394 type = parse_and_eval_type (p, length);
2395 }
2396 CATCH (except, RETURN_MASK_ERROR)
2397 {
2398 type = builtin_type (gdbarch)->builtin_void;
2399 }
2400 END_CATCH
2401
2402 /* Stop suppressing error messages. */
2403 ui_file_delete (gdb_stderr);
2404 gdb_stderr = saved_gdb_stderr;
2405
2406 return type;
2407 }
2408
2409 /* Ugly hack to convert method stubs into method types.
2410
2411 He ain't kiddin'. This demangles the name of the method into a
2412 string including argument types, parses out each argument type,
2413 generates a string casting a zero to that type, evaluates the
2414 string, and stuffs the resulting type into an argtype vector!!!
2415 Then it knows the type of the whole function (including argument
2416 types for overloading), which info used to be in the stab's but was
2417 removed to hack back the space required for them. */
2418
2419 static void
2420 check_stub_method (struct type *type, int method_id, int signature_id)
2421 {
2422 struct gdbarch *gdbarch = get_type_arch (type);
2423 struct fn_field *f;
2424 char *mangled_name = gdb_mangle_name (type, method_id, signature_id);
2425 char *demangled_name = gdb_demangle (mangled_name,
2426 DMGL_PARAMS | DMGL_ANSI);
2427 char *argtypetext, *p;
2428 int depth = 0, argcount = 1;
2429 struct field *argtypes;
2430 struct type *mtype;
2431
2432 /* Make sure we got back a function string that we can use. */
2433 if (demangled_name)
2434 p = strchr (demangled_name, '(');
2435 else
2436 p = NULL;
2437
2438 if (demangled_name == NULL || p == NULL)
2439 error (_("Internal: Cannot demangle mangled name `%s'."),
2440 mangled_name);
2441
2442 /* Now, read in the parameters that define this type. */
2443 p += 1;
2444 argtypetext = p;
2445 while (*p)
2446 {
2447 if (*p == '(' || *p == '<')
2448 {
2449 depth += 1;
2450 }
2451 else if (*p == ')' || *p == '>')
2452 {
2453 depth -= 1;
2454 }
2455 else if (*p == ',' && depth == 0)
2456 {
2457 argcount += 1;
2458 }
2459
2460 p += 1;
2461 }
2462
2463 /* If we read one argument and it was ``void'', don't count it. */
2464 if (startswith (argtypetext, "(void)"))
2465 argcount -= 1;
2466
2467 /* We need one extra slot, for the THIS pointer. */
2468
2469 argtypes = (struct field *)
2470 TYPE_ALLOC (type, (argcount + 1) * sizeof (struct field));
2471 p = argtypetext;
2472
2473 /* Add THIS pointer for non-static methods. */
2474 f = TYPE_FN_FIELDLIST1 (type, method_id);
2475 if (TYPE_FN_FIELD_STATIC_P (f, signature_id))
2476 argcount = 0;
2477 else
2478 {
2479 argtypes[0].type = lookup_pointer_type (type);
2480 argcount = 1;
2481 }
2482
2483 if (*p != ')') /* () means no args, skip while. */
2484 {
2485 depth = 0;
2486 while (*p)
2487 {
2488 if (depth <= 0 && (*p == ',' || *p == ')'))
2489 {
2490 /* Avoid parsing of ellipsis, they will be handled below.
2491 Also avoid ``void'' as above. */
2492 if (strncmp (argtypetext, "...", p - argtypetext) != 0
2493 && strncmp (argtypetext, "void", p - argtypetext) != 0)
2494 {
2495 argtypes[argcount].type =
2496 safe_parse_type (gdbarch, argtypetext, p - argtypetext);
2497 argcount += 1;
2498 }
2499 argtypetext = p + 1;
2500 }
2501
2502 if (*p == '(' || *p == '<')
2503 {
2504 depth += 1;
2505 }
2506 else if (*p == ')' || *p == '>')
2507 {
2508 depth -= 1;
2509 }
2510
2511 p += 1;
2512 }
2513 }
2514
2515 TYPE_FN_FIELD_PHYSNAME (f, signature_id) = mangled_name;
2516
2517 /* Now update the old "stub" type into a real type. */
2518 mtype = TYPE_FN_FIELD_TYPE (f, signature_id);
2519 /* MTYPE may currently be a function (TYPE_CODE_FUNC).
2520 We want a method (TYPE_CODE_METHOD). */
2521 smash_to_method_type (mtype, type, TYPE_TARGET_TYPE (mtype),
2522 argtypes, argcount, p[-2] == '.');
2523 TYPE_STUB (mtype) = 0;
2524 TYPE_FN_FIELD_STUB (f, signature_id) = 0;
2525
2526 xfree (demangled_name);
2527 }
2528
2529 /* This is the external interface to check_stub_method, above. This
2530 function unstubs all of the signatures for TYPE's METHOD_ID method
2531 name. After calling this function TYPE_FN_FIELD_STUB will be
2532 cleared for each signature and TYPE_FN_FIELDLIST_NAME will be
2533 correct.
2534
2535 This function unfortunately can not die until stabs do. */
2536
2537 void
2538 check_stub_method_group (struct type *type, int method_id)
2539 {
2540 int len = TYPE_FN_FIELDLIST_LENGTH (type, method_id);
2541 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
2542 int j, found_stub = 0;
2543
2544 for (j = 0; j < len; j++)
2545 if (TYPE_FN_FIELD_STUB (f, j))
2546 {
2547 found_stub = 1;
2548 check_stub_method (type, method_id, j);
2549 }
2550
2551 /* GNU v3 methods with incorrect names were corrected when we read
2552 in type information, because it was cheaper to do it then. The
2553 only GNU v2 methods with incorrect method names are operators and
2554 destructors; destructors were also corrected when we read in type
2555 information.
2556
2557 Therefore the only thing we need to handle here are v2 operator
2558 names. */
2559 if (found_stub && !startswith (TYPE_FN_FIELD_PHYSNAME (f, 0), "_Z"))
2560 {
2561 int ret;
2562 char dem_opname[256];
2563
2564 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2565 method_id),
2566 dem_opname, DMGL_ANSI);
2567 if (!ret)
2568 ret = cplus_demangle_opname (TYPE_FN_FIELDLIST_NAME (type,
2569 method_id),
2570 dem_opname, 0);
2571 if (ret)
2572 TYPE_FN_FIELDLIST_NAME (type, method_id) = xstrdup (dem_opname);
2573 }
2574 }
2575
2576 /* Ensure it is in .rodata (if available) by workarounding GCC PR 44690. */
2577 const struct cplus_struct_type cplus_struct_default = { };
2578
2579 void
2580 allocate_cplus_struct_type (struct type *type)
2581 {
2582 if (HAVE_CPLUS_STRUCT (type))
2583 /* Structure was already allocated. Nothing more to do. */
2584 return;
2585
2586 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_CPLUS_STUFF;
2587 TYPE_RAW_CPLUS_SPECIFIC (type) = (struct cplus_struct_type *)
2588 TYPE_ALLOC (type, sizeof (struct cplus_struct_type));
2589 *(TYPE_RAW_CPLUS_SPECIFIC (type)) = cplus_struct_default;
2590 set_type_vptr_fieldno (type, -1);
2591 }
2592
2593 const struct gnat_aux_type gnat_aux_default =
2594 { NULL };
2595
2596 /* Set the TYPE's type-specific kind to TYPE_SPECIFIC_GNAT_STUFF,
2597 and allocate the associated gnat-specific data. The gnat-specific
2598 data is also initialized to gnat_aux_default. */
2599
2600 void
2601 allocate_gnat_aux_type (struct type *type)
2602 {
2603 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_GNAT_STUFF;
2604 TYPE_GNAT_SPECIFIC (type) = (struct gnat_aux_type *)
2605 TYPE_ALLOC (type, sizeof (struct gnat_aux_type));
2606 *(TYPE_GNAT_SPECIFIC (type)) = gnat_aux_default;
2607 }
2608
2609 /* Helper function to initialize the standard scalar types.
2610
2611 If NAME is non-NULL, then it is used to initialize the type name.
2612 Note that NAME is not copied; it is required to have a lifetime at
2613 least as long as OBJFILE. */
2614
2615 struct type *
2616 init_type (enum type_code code, int length, int flags,
2617 const char *name, struct objfile *objfile)
2618 {
2619 struct type *type;
2620
2621 type = alloc_type (objfile);
2622 TYPE_CODE (type) = code;
2623 TYPE_LENGTH (type) = length;
2624
2625 gdb_assert (!(flags & (TYPE_FLAG_MIN - 1)));
2626 if (flags & TYPE_FLAG_UNSIGNED)
2627 TYPE_UNSIGNED (type) = 1;
2628 if (flags & TYPE_FLAG_NOSIGN)
2629 TYPE_NOSIGN (type) = 1;
2630 if (flags & TYPE_FLAG_STUB)
2631 TYPE_STUB (type) = 1;
2632 if (flags & TYPE_FLAG_TARGET_STUB)
2633 TYPE_TARGET_STUB (type) = 1;
2634 if (flags & TYPE_FLAG_STATIC)
2635 TYPE_STATIC (type) = 1;
2636 if (flags & TYPE_FLAG_PROTOTYPED)
2637 TYPE_PROTOTYPED (type) = 1;
2638 if (flags & TYPE_FLAG_INCOMPLETE)
2639 TYPE_INCOMPLETE (type) = 1;
2640 if (flags & TYPE_FLAG_VARARGS)
2641 TYPE_VARARGS (type) = 1;
2642 if (flags & TYPE_FLAG_VECTOR)
2643 TYPE_VECTOR (type) = 1;
2644 if (flags & TYPE_FLAG_STUB_SUPPORTED)
2645 TYPE_STUB_SUPPORTED (type) = 1;
2646 if (flags & TYPE_FLAG_FIXED_INSTANCE)
2647 TYPE_FIXED_INSTANCE (type) = 1;
2648 if (flags & TYPE_FLAG_GNU_IFUNC)
2649 TYPE_GNU_IFUNC (type) = 1;
2650
2651 TYPE_NAME (type) = name;
2652
2653 /* C++ fancies. */
2654
2655 if (name && strcmp (name, "char") == 0)
2656 TYPE_NOSIGN (type) = 1;
2657
2658 switch (code)
2659 {
2660 case TYPE_CODE_STRUCT:
2661 case TYPE_CODE_UNION:
2662 case TYPE_CODE_NAMESPACE:
2663 INIT_CPLUS_SPECIFIC (type);
2664 break;
2665 case TYPE_CODE_FLT:
2666 TYPE_SPECIFIC_FIELD (type) = TYPE_SPECIFIC_FLOATFORMAT;
2667 break;
2668 case TYPE_CODE_FUNC:
2669 INIT_FUNC_SPECIFIC (type);
2670 break;
2671 }
2672 return type;
2673 }
2674 \f
2675 /* Queries on types. */
2676
2677 int
2678 can_dereference (struct type *t)
2679 {
2680 /* FIXME: Should we return true for references as well as
2681 pointers? */
2682 t = check_typedef (t);
2683 return
2684 (t != NULL
2685 && TYPE_CODE (t) == TYPE_CODE_PTR
2686 && TYPE_CODE (TYPE_TARGET_TYPE (t)) != TYPE_CODE_VOID);
2687 }
2688
2689 int
2690 is_integral_type (struct type *t)
2691 {
2692 t = check_typedef (t);
2693 return
2694 ((t != NULL)
2695 && ((TYPE_CODE (t) == TYPE_CODE_INT)
2696 || (TYPE_CODE (t) == TYPE_CODE_ENUM)
2697 || (TYPE_CODE (t) == TYPE_CODE_FLAGS)
2698 || (TYPE_CODE (t) == TYPE_CODE_CHAR)
2699 || (TYPE_CODE (t) == TYPE_CODE_RANGE)
2700 || (TYPE_CODE (t) == TYPE_CODE_BOOL)));
2701 }
2702
2703 /* Return true if TYPE is scalar. */
2704
2705 static int
2706 is_scalar_type (struct type *type)
2707 {
2708 type = check_typedef (type);
2709
2710 switch (TYPE_CODE (type))
2711 {
2712 case TYPE_CODE_ARRAY:
2713 case TYPE_CODE_STRUCT:
2714 case TYPE_CODE_UNION:
2715 case TYPE_CODE_SET:
2716 case TYPE_CODE_STRING:
2717 return 0;
2718 default:
2719 return 1;
2720 }
2721 }
2722
2723 /* Return true if T is scalar, or a composite type which in practice has
2724 the memory layout of a scalar type. E.g., an array or struct with only
2725 one scalar element inside it, or a union with only scalar elements. */
2726
2727 int
2728 is_scalar_type_recursive (struct type *t)
2729 {
2730 t = check_typedef (t);
2731
2732 if (is_scalar_type (t))
2733 return 1;
2734 /* Are we dealing with an array or string of known dimensions? */
2735 else if ((TYPE_CODE (t) == TYPE_CODE_ARRAY
2736 || TYPE_CODE (t) == TYPE_CODE_STRING) && TYPE_NFIELDS (t) == 1
2737 && TYPE_CODE (TYPE_INDEX_TYPE (t)) == TYPE_CODE_RANGE)
2738 {
2739 LONGEST low_bound, high_bound;
2740 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (t));
2741
2742 get_discrete_bounds (TYPE_INDEX_TYPE (t), &low_bound, &high_bound);
2743
2744 return high_bound == low_bound && is_scalar_type_recursive (elt_type);
2745 }
2746 /* Are we dealing with a struct with one element? */
2747 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT && TYPE_NFIELDS (t) == 1)
2748 return is_scalar_type_recursive (TYPE_FIELD_TYPE (t, 0));
2749 else if (TYPE_CODE (t) == TYPE_CODE_UNION)
2750 {
2751 int i, n = TYPE_NFIELDS (t);
2752
2753 /* If all elements of the union are scalar, then the union is scalar. */
2754 for (i = 0; i < n; i++)
2755 if (!is_scalar_type_recursive (TYPE_FIELD_TYPE (t, i)))
2756 return 0;
2757
2758 return 1;
2759 }
2760
2761 return 0;
2762 }
2763
2764 /* Return true is T is a class or a union. False otherwise. */
2765
2766 int
2767 class_or_union_p (const struct type *t)
2768 {
2769 return (TYPE_CODE (t) == TYPE_CODE_STRUCT
2770 || TYPE_CODE (t) == TYPE_CODE_UNION);
2771 }
2772
2773 /* A helper function which returns true if types A and B represent the
2774 "same" class type. This is true if the types have the same main
2775 type, or the same name. */
2776
2777 int
2778 class_types_same_p (const struct type *a, const struct type *b)
2779 {
2780 return (TYPE_MAIN_TYPE (a) == TYPE_MAIN_TYPE (b)
2781 || (TYPE_NAME (a) && TYPE_NAME (b)
2782 && !strcmp (TYPE_NAME (a), TYPE_NAME (b))));
2783 }
2784
2785 /* If BASE is an ancestor of DCLASS return the distance between them.
2786 otherwise return -1;
2787 eg:
2788
2789 class A {};
2790 class B: public A {};
2791 class C: public B {};
2792 class D: C {};
2793
2794 distance_to_ancestor (A, A, 0) = 0
2795 distance_to_ancestor (A, B, 0) = 1
2796 distance_to_ancestor (A, C, 0) = 2
2797 distance_to_ancestor (A, D, 0) = 3
2798
2799 If PUBLIC is 1 then only public ancestors are considered,
2800 and the function returns the distance only if BASE is a public ancestor
2801 of DCLASS.
2802 Eg:
2803
2804 distance_to_ancestor (A, D, 1) = -1. */
2805
2806 static int
2807 distance_to_ancestor (struct type *base, struct type *dclass, int is_public)
2808 {
2809 int i;
2810 int d;
2811
2812 base = check_typedef (base);
2813 dclass = check_typedef (dclass);
2814
2815 if (class_types_same_p (base, dclass))
2816 return 0;
2817
2818 for (i = 0; i < TYPE_N_BASECLASSES (dclass); i++)
2819 {
2820 if (is_public && ! BASETYPE_VIA_PUBLIC (dclass, i))
2821 continue;
2822
2823 d = distance_to_ancestor (base, TYPE_BASECLASS (dclass, i), is_public);
2824 if (d >= 0)
2825 return 1 + d;
2826 }
2827
2828 return -1;
2829 }
2830
2831 /* Check whether BASE is an ancestor or base class or DCLASS
2832 Return 1 if so, and 0 if not.
2833 Note: If BASE and DCLASS are of the same type, this function
2834 will return 1. So for some class A, is_ancestor (A, A) will
2835 return 1. */
2836
2837 int
2838 is_ancestor (struct type *base, struct type *dclass)
2839 {
2840 return distance_to_ancestor (base, dclass, 0) >= 0;
2841 }
2842
2843 /* Like is_ancestor, but only returns true when BASE is a public
2844 ancestor of DCLASS. */
2845
2846 int
2847 is_public_ancestor (struct type *base, struct type *dclass)
2848 {
2849 return distance_to_ancestor (base, dclass, 1) >= 0;
2850 }
2851
2852 /* A helper function for is_unique_ancestor. */
2853
2854 static int
2855 is_unique_ancestor_worker (struct type *base, struct type *dclass,
2856 int *offset,
2857 const gdb_byte *valaddr, int embedded_offset,
2858 CORE_ADDR address, struct value *val)
2859 {
2860 int i, count = 0;
2861
2862 base = check_typedef (base);
2863 dclass = check_typedef (dclass);
2864
2865 for (i = 0; i < TYPE_N_BASECLASSES (dclass) && count < 2; ++i)
2866 {
2867 struct type *iter;
2868 int this_offset;
2869
2870 iter = check_typedef (TYPE_BASECLASS (dclass, i));
2871
2872 this_offset = baseclass_offset (dclass, i, valaddr, embedded_offset,
2873 address, val);
2874
2875 if (class_types_same_p (base, iter))
2876 {
2877 /* If this is the first subclass, set *OFFSET and set count
2878 to 1. Otherwise, if this is at the same offset as
2879 previous instances, do nothing. Otherwise, increment
2880 count. */
2881 if (*offset == -1)
2882 {
2883 *offset = this_offset;
2884 count = 1;
2885 }
2886 else if (this_offset == *offset)
2887 {
2888 /* Nothing. */
2889 }
2890 else
2891 ++count;
2892 }
2893 else
2894 count += is_unique_ancestor_worker (base, iter, offset,
2895 valaddr,
2896 embedded_offset + this_offset,
2897 address, val);
2898 }
2899
2900 return count;
2901 }
2902
2903 /* Like is_ancestor, but only returns true if BASE is a unique base
2904 class of the type of VAL. */
2905
2906 int
2907 is_unique_ancestor (struct type *base, struct value *val)
2908 {
2909 int offset = -1;
2910
2911 return is_unique_ancestor_worker (base, value_type (val), &offset,
2912 value_contents_for_printing (val),
2913 value_embedded_offset (val),
2914 value_address (val), val) == 1;
2915 }
2916
2917 \f
2918 /* Overload resolution. */
2919
2920 /* Return the sum of the rank of A with the rank of B. */
2921
2922 struct rank
2923 sum_ranks (struct rank a, struct rank b)
2924 {
2925 struct rank c;
2926 c.rank = a.rank + b.rank;
2927 c.subrank = a.subrank + b.subrank;
2928 return c;
2929 }
2930
2931 /* Compare rank A and B and return:
2932 0 if a = b
2933 1 if a is better than b
2934 -1 if b is better than a. */
2935
2936 int
2937 compare_ranks (struct rank a, struct rank b)
2938 {
2939 if (a.rank == b.rank)
2940 {
2941 if (a.subrank == b.subrank)
2942 return 0;
2943 if (a.subrank < b.subrank)
2944 return 1;
2945 if (a.subrank > b.subrank)
2946 return -1;
2947 }
2948
2949 if (a.rank < b.rank)
2950 return 1;
2951
2952 /* a.rank > b.rank */
2953 return -1;
2954 }
2955
2956 /* Functions for overload resolution begin here. */
2957
2958 /* Compare two badness vectors A and B and return the result.
2959 0 => A and B are identical
2960 1 => A and B are incomparable
2961 2 => A is better than B
2962 3 => A is worse than B */
2963
2964 int
2965 compare_badness (struct badness_vector *a, struct badness_vector *b)
2966 {
2967 int i;
2968 int tmp;
2969 short found_pos = 0; /* any positives in c? */
2970 short found_neg = 0; /* any negatives in c? */
2971
2972 /* differing lengths => incomparable */
2973 if (a->length != b->length)
2974 return 1;
2975
2976 /* Subtract b from a */
2977 for (i = 0; i < a->length; i++)
2978 {
2979 tmp = compare_ranks (b->rank[i], a->rank[i]);
2980 if (tmp > 0)
2981 found_pos = 1;
2982 else if (tmp < 0)
2983 found_neg = 1;
2984 }
2985
2986 if (found_pos)
2987 {
2988 if (found_neg)
2989 return 1; /* incomparable */
2990 else
2991 return 3; /* A > B */
2992 }
2993 else
2994 /* no positives */
2995 {
2996 if (found_neg)
2997 return 2; /* A < B */
2998 else
2999 return 0; /* A == B */
3000 }
3001 }
3002
3003 /* Rank a function by comparing its parameter types (PARMS, length
3004 NPARMS), to the types of an argument list (ARGS, length NARGS).
3005 Return a pointer to a badness vector. This has NARGS + 1
3006 entries. */
3007
3008 struct badness_vector *
3009 rank_function (struct type **parms, int nparms,
3010 struct value **args, int nargs)
3011 {
3012 int i;
3013 struct badness_vector *bv;
3014 int min_len = nparms < nargs ? nparms : nargs;
3015
3016 bv = xmalloc (sizeof (struct badness_vector));
3017 bv->length = nargs + 1; /* add 1 for the length-match rank. */
3018 bv->rank = XNEWVEC (struct rank, nargs + 1);
3019
3020 /* First compare the lengths of the supplied lists.
3021 If there is a mismatch, set it to a high value. */
3022
3023 /* pai/1997-06-03 FIXME: when we have debug info about default
3024 arguments and ellipsis parameter lists, we should consider those
3025 and rank the length-match more finely. */
3026
3027 LENGTH_MATCH (bv) = (nargs != nparms)
3028 ? LENGTH_MISMATCH_BADNESS
3029 : EXACT_MATCH_BADNESS;
3030
3031 /* Now rank all the parameters of the candidate function. */
3032 for (i = 1; i <= min_len; i++)
3033 bv->rank[i] = rank_one_type (parms[i - 1], value_type (args[i - 1]),
3034 args[i - 1]);
3035
3036 /* If more arguments than parameters, add dummy entries. */
3037 for (i = min_len + 1; i <= nargs; i++)
3038 bv->rank[i] = TOO_FEW_PARAMS_BADNESS;
3039
3040 return bv;
3041 }
3042
3043 /* Compare the names of two integer types, assuming that any sign
3044 qualifiers have been checked already. We do it this way because
3045 there may be an "int" in the name of one of the types. */
3046
3047 static int
3048 integer_types_same_name_p (const char *first, const char *second)
3049 {
3050 int first_p, second_p;
3051
3052 /* If both are shorts, return 1; if neither is a short, keep
3053 checking. */
3054 first_p = (strstr (first, "short") != NULL);
3055 second_p = (strstr (second, "short") != NULL);
3056 if (first_p && second_p)
3057 return 1;
3058 if (first_p || second_p)
3059 return 0;
3060
3061 /* Likewise for long. */
3062 first_p = (strstr (first, "long") != NULL);
3063 second_p = (strstr (second, "long") != NULL);
3064 if (first_p && second_p)
3065 return 1;
3066 if (first_p || second_p)
3067 return 0;
3068
3069 /* Likewise for char. */
3070 first_p = (strstr (first, "char") != NULL);
3071 second_p = (strstr (second, "char") != NULL);
3072 if (first_p && second_p)
3073 return 1;
3074 if (first_p || second_p)
3075 return 0;
3076
3077 /* They must both be ints. */
3078 return 1;
3079 }
3080
3081 /* Compares type A to type B returns 1 if the represent the same type
3082 0 otherwise. */
3083
3084 int
3085 types_equal (struct type *a, struct type *b)
3086 {
3087 /* Identical type pointers. */
3088 /* However, this still doesn't catch all cases of same type for b
3089 and a. The reason is that builtin types are different from
3090 the same ones constructed from the object. */
3091 if (a == b)
3092 return 1;
3093
3094 /* Resolve typedefs */
3095 if (TYPE_CODE (a) == TYPE_CODE_TYPEDEF)
3096 a = check_typedef (a);
3097 if (TYPE_CODE (b) == TYPE_CODE_TYPEDEF)
3098 b = check_typedef (b);
3099
3100 /* If after resolving typedefs a and b are not of the same type
3101 code then they are not equal. */
3102 if (TYPE_CODE (a) != TYPE_CODE (b))
3103 return 0;
3104
3105 /* If a and b are both pointers types or both reference types then
3106 they are equal of the same type iff the objects they refer to are
3107 of the same type. */
3108 if (TYPE_CODE (a) == TYPE_CODE_PTR
3109 || TYPE_CODE (a) == TYPE_CODE_REF)
3110 return types_equal (TYPE_TARGET_TYPE (a),
3111 TYPE_TARGET_TYPE (b));
3112
3113 /* Well, damnit, if the names are exactly the same, I'll say they
3114 are exactly the same. This happens when we generate method
3115 stubs. The types won't point to the same address, but they
3116 really are the same. */
3117
3118 if (TYPE_NAME (a) && TYPE_NAME (b)
3119 && strcmp (TYPE_NAME (a), TYPE_NAME (b)) == 0)
3120 return 1;
3121
3122 /* Check if identical after resolving typedefs. */
3123 if (a == b)
3124 return 1;
3125
3126 /* Two function types are equal if their argument and return types
3127 are equal. */
3128 if (TYPE_CODE (a) == TYPE_CODE_FUNC)
3129 {
3130 int i;
3131
3132 if (TYPE_NFIELDS (a) != TYPE_NFIELDS (b))
3133 return 0;
3134
3135 if (!types_equal (TYPE_TARGET_TYPE (a), TYPE_TARGET_TYPE (b)))
3136 return 0;
3137
3138 for (i = 0; i < TYPE_NFIELDS (a); ++i)
3139 if (!types_equal (TYPE_FIELD_TYPE (a, i), TYPE_FIELD_TYPE (b, i)))
3140 return 0;
3141
3142 return 1;
3143 }
3144
3145 return 0;
3146 }
3147 \f
3148 /* Deep comparison of types. */
3149
3150 /* An entry in the type-equality bcache. */
3151
3152 typedef struct type_equality_entry
3153 {
3154 struct type *type1, *type2;
3155 } type_equality_entry_d;
3156
3157 DEF_VEC_O (type_equality_entry_d);
3158
3159 /* A helper function to compare two strings. Returns 1 if they are
3160 the same, 0 otherwise. Handles NULLs properly. */
3161
3162 static int
3163 compare_maybe_null_strings (const char *s, const char *t)
3164 {
3165 if (s == NULL && t != NULL)
3166 return 0;
3167 else if (s != NULL && t == NULL)
3168 return 0;
3169 else if (s == NULL && t== NULL)
3170 return 1;
3171 return strcmp (s, t) == 0;
3172 }
3173
3174 /* A helper function for check_types_worklist that checks two types for
3175 "deep" equality. Returns non-zero if the types are considered the
3176 same, zero otherwise. */
3177
3178 static int
3179 check_types_equal (struct type *type1, struct type *type2,
3180 VEC (type_equality_entry_d) **worklist)
3181 {
3182 type1 = check_typedef (type1);
3183 type2 = check_typedef (type2);
3184
3185 if (type1 == type2)
3186 return 1;
3187
3188 if (TYPE_CODE (type1) != TYPE_CODE (type2)
3189 || TYPE_LENGTH (type1) != TYPE_LENGTH (type2)
3190 || TYPE_UNSIGNED (type1) != TYPE_UNSIGNED (type2)
3191 || TYPE_NOSIGN (type1) != TYPE_NOSIGN (type2)
3192 || TYPE_VARARGS (type1) != TYPE_VARARGS (type2)
3193 || TYPE_VECTOR (type1) != TYPE_VECTOR (type2)
3194 || TYPE_NOTTEXT (type1) != TYPE_NOTTEXT (type2)
3195 || TYPE_INSTANCE_FLAGS (type1) != TYPE_INSTANCE_FLAGS (type2)
3196 || TYPE_NFIELDS (type1) != TYPE_NFIELDS (type2))
3197 return 0;
3198
3199 if (!compare_maybe_null_strings (TYPE_TAG_NAME (type1),
3200 TYPE_TAG_NAME (type2)))
3201 return 0;
3202 if (!compare_maybe_null_strings (TYPE_NAME (type1), TYPE_NAME (type2)))
3203 return 0;
3204
3205 if (TYPE_CODE (type1) == TYPE_CODE_RANGE)
3206 {
3207 if (memcmp (TYPE_RANGE_DATA (type1), TYPE_RANGE_DATA (type2),
3208 sizeof (*TYPE_RANGE_DATA (type1))) != 0)
3209 return 0;
3210 }
3211 else
3212 {
3213 int i;
3214
3215 for (i = 0; i < TYPE_NFIELDS (type1); ++i)
3216 {
3217 const struct field *field1 = &TYPE_FIELD (type1, i);
3218 const struct field *field2 = &TYPE_FIELD (type2, i);
3219 struct type_equality_entry entry;
3220
3221 if (FIELD_ARTIFICIAL (*field1) != FIELD_ARTIFICIAL (*field2)
3222 || FIELD_BITSIZE (*field1) != FIELD_BITSIZE (*field2)
3223 || FIELD_LOC_KIND (*field1) != FIELD_LOC_KIND (*field2))
3224 return 0;
3225 if (!compare_maybe_null_strings (FIELD_NAME (*field1),
3226 FIELD_NAME (*field2)))
3227 return 0;
3228 switch (FIELD_LOC_KIND (*field1))
3229 {
3230 case FIELD_LOC_KIND_BITPOS:
3231 if (FIELD_BITPOS (*field1) != FIELD_BITPOS (*field2))
3232 return 0;
3233 break;
3234 case FIELD_LOC_KIND_ENUMVAL:
3235 if (FIELD_ENUMVAL (*field1) != FIELD_ENUMVAL (*field2))
3236 return 0;
3237 break;
3238 case FIELD_LOC_KIND_PHYSADDR:
3239 if (FIELD_STATIC_PHYSADDR (*field1)
3240 != FIELD_STATIC_PHYSADDR (*field2))
3241 return 0;
3242 break;
3243 case FIELD_LOC_KIND_PHYSNAME:
3244 if (!compare_maybe_null_strings (FIELD_STATIC_PHYSNAME (*field1),
3245 FIELD_STATIC_PHYSNAME (*field2)))
3246 return 0;
3247 break;
3248 case FIELD_LOC_KIND_DWARF_BLOCK:
3249 {
3250 struct dwarf2_locexpr_baton *block1, *block2;
3251
3252 block1 = FIELD_DWARF_BLOCK (*field1);
3253 block2 = FIELD_DWARF_BLOCK (*field2);
3254 if (block1->per_cu != block2->per_cu
3255 || block1->size != block2->size
3256 || memcmp (block1->data, block2->data, block1->size) != 0)
3257 return 0;
3258 }
3259 break;
3260 default:
3261 internal_error (__FILE__, __LINE__, _("Unsupported field kind "
3262 "%d by check_types_equal"),
3263 FIELD_LOC_KIND (*field1));
3264 }
3265
3266 entry.type1 = FIELD_TYPE (*field1);
3267 entry.type2 = FIELD_TYPE (*field2);
3268 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3269 }
3270 }
3271
3272 if (TYPE_TARGET_TYPE (type1) != NULL)
3273 {
3274 struct type_equality_entry entry;
3275
3276 if (TYPE_TARGET_TYPE (type2) == NULL)
3277 return 0;
3278
3279 entry.type1 = TYPE_TARGET_TYPE (type1);
3280 entry.type2 = TYPE_TARGET_TYPE (type2);
3281 VEC_safe_push (type_equality_entry_d, *worklist, &entry);
3282 }
3283 else if (TYPE_TARGET_TYPE (type2) != NULL)
3284 return 0;
3285
3286 return 1;
3287 }
3288
3289 /* Check types on a worklist for equality. Returns zero if any pair
3290 is not equal, non-zero if they are all considered equal. */
3291
3292 static int
3293 check_types_worklist (VEC (type_equality_entry_d) **worklist,
3294 struct bcache *cache)
3295 {
3296 while (!VEC_empty (type_equality_entry_d, *worklist))
3297 {
3298 struct type_equality_entry entry;
3299 int added;
3300
3301 entry = *VEC_last (type_equality_entry_d, *worklist);
3302 VEC_pop (type_equality_entry_d, *worklist);
3303
3304 /* If the type pair has already been visited, we know it is
3305 ok. */
3306 bcache_full (&entry, sizeof (entry), cache, &added);
3307 if (!added)
3308 continue;
3309
3310 if (check_types_equal (entry.type1, entry.type2, worklist) == 0)
3311 return 0;
3312 }
3313
3314 return 1;
3315 }
3316
3317 /* Return non-zero if types TYPE1 and TYPE2 are equal, as determined by a
3318 "deep comparison". Otherwise return zero. */
3319
3320 int
3321 types_deeply_equal (struct type *type1, struct type *type2)
3322 {
3323 struct gdb_exception except = exception_none;
3324 int result = 0;
3325 struct bcache *cache;
3326 VEC (type_equality_entry_d) *worklist = NULL;
3327 struct type_equality_entry entry;
3328
3329 gdb_assert (type1 != NULL && type2 != NULL);
3330
3331 /* Early exit for the simple case. */
3332 if (type1 == type2)
3333 return 1;
3334
3335 cache = bcache_xmalloc (NULL, NULL);
3336
3337 entry.type1 = type1;
3338 entry.type2 = type2;
3339 VEC_safe_push (type_equality_entry_d, worklist, &entry);
3340
3341 /* check_types_worklist calls several nested helper functions, some
3342 of which can raise a GDB exception, so we just check and rethrow
3343 here. If there is a GDB exception, a comparison is not capable
3344 (or trusted), so exit. */
3345 TRY
3346 {
3347 result = check_types_worklist (&worklist, cache);
3348 }
3349 CATCH (ex, RETURN_MASK_ALL)
3350 {
3351 except = ex;
3352 }
3353 END_CATCH
3354
3355 bcache_xfree (cache);
3356 VEC_free (type_equality_entry_d, worklist);
3357
3358 /* Rethrow if there was a problem. */
3359 if (except.reason < 0)
3360 throw_exception (except);
3361
3362 return result;
3363 }
3364 \f
3365 /* Compare one type (PARM) for compatibility with another (ARG).
3366 * PARM is intended to be the parameter type of a function; and
3367 * ARG is the supplied argument's type. This function tests if
3368 * the latter can be converted to the former.
3369 * VALUE is the argument's value or NULL if none (or called recursively)
3370 *
3371 * Return 0 if they are identical types;
3372 * Otherwise, return an integer which corresponds to how compatible
3373 * PARM is to ARG. The higher the return value, the worse the match.
3374 * Generally the "bad" conversions are all uniformly assigned a 100. */
3375
3376 struct rank
3377 rank_one_type (struct type *parm, struct type *arg, struct value *value)
3378 {
3379 struct rank rank = {0,0};
3380
3381 if (types_equal (parm, arg))
3382 return EXACT_MATCH_BADNESS;
3383
3384 /* Resolve typedefs */
3385 if (TYPE_CODE (parm) == TYPE_CODE_TYPEDEF)
3386 parm = check_typedef (parm);
3387 if (TYPE_CODE (arg) == TYPE_CODE_TYPEDEF)
3388 arg = check_typedef (arg);
3389
3390 /* See through references, since we can almost make non-references
3391 references. */
3392 if (TYPE_CODE (arg) == TYPE_CODE_REF)
3393 return (sum_ranks (rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL),
3394 REFERENCE_CONVERSION_BADNESS));
3395 if (TYPE_CODE (parm) == TYPE_CODE_REF)
3396 return (sum_ranks (rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL),
3397 REFERENCE_CONVERSION_BADNESS));
3398 if (overload_debug)
3399 /* Debugging only. */
3400 fprintf_filtered (gdb_stderr,
3401 "------ Arg is %s [%d], parm is %s [%d]\n",
3402 TYPE_NAME (arg), TYPE_CODE (arg),
3403 TYPE_NAME (parm), TYPE_CODE (parm));
3404
3405 /* x -> y means arg of type x being supplied for parameter of type y. */
3406
3407 switch (TYPE_CODE (parm))
3408 {
3409 case TYPE_CODE_PTR:
3410 switch (TYPE_CODE (arg))
3411 {
3412 case TYPE_CODE_PTR:
3413
3414 /* Allowed pointer conversions are:
3415 (a) pointer to void-pointer conversion. */
3416 if (TYPE_CODE (TYPE_TARGET_TYPE (parm)) == TYPE_CODE_VOID)
3417 return VOID_PTR_CONVERSION_BADNESS;
3418
3419 /* (b) pointer to ancestor-pointer conversion. */
3420 rank.subrank = distance_to_ancestor (TYPE_TARGET_TYPE (parm),
3421 TYPE_TARGET_TYPE (arg),
3422 0);
3423 if (rank.subrank >= 0)
3424 return sum_ranks (BASE_PTR_CONVERSION_BADNESS, rank);
3425
3426 return INCOMPATIBLE_TYPE_BADNESS;
3427 case TYPE_CODE_ARRAY:
3428 if (types_equal (TYPE_TARGET_TYPE (parm),
3429 TYPE_TARGET_TYPE (arg)))
3430 return EXACT_MATCH_BADNESS;
3431 return INCOMPATIBLE_TYPE_BADNESS;
3432 case TYPE_CODE_FUNC:
3433 return rank_one_type (TYPE_TARGET_TYPE (parm), arg, NULL);
3434 case TYPE_CODE_INT:
3435 if (value != NULL && TYPE_CODE (value_type (value)) == TYPE_CODE_INT)
3436 {
3437 if (value_as_long (value) == 0)
3438 {
3439 /* Null pointer conversion: allow it to be cast to a pointer.
3440 [4.10.1 of C++ standard draft n3290] */
3441 return NULL_POINTER_CONVERSION_BADNESS;
3442 }
3443 else
3444 {
3445 /* If type checking is disabled, allow the conversion. */
3446 if (!strict_type_checking)
3447 return NS_INTEGER_POINTER_CONVERSION_BADNESS;
3448 }
3449 }
3450 /* fall through */
3451 case TYPE_CODE_ENUM:
3452 case TYPE_CODE_FLAGS:
3453 case TYPE_CODE_CHAR:
3454 case TYPE_CODE_RANGE:
3455 case TYPE_CODE_BOOL:
3456 default:
3457 return INCOMPATIBLE_TYPE_BADNESS;
3458 }
3459 case TYPE_CODE_ARRAY:
3460 switch (TYPE_CODE (arg))
3461 {
3462 case TYPE_CODE_PTR:
3463 case TYPE_CODE_ARRAY:
3464 return rank_one_type (TYPE_TARGET_TYPE (parm),
3465 TYPE_TARGET_TYPE (arg), NULL);
3466 default:
3467 return INCOMPATIBLE_TYPE_BADNESS;
3468 }
3469 case TYPE_CODE_FUNC:
3470 switch (TYPE_CODE (arg))
3471 {
3472 case TYPE_CODE_PTR: /* funcptr -> func */
3473 return rank_one_type (parm, TYPE_TARGET_TYPE (arg), NULL);
3474 default:
3475 return INCOMPATIBLE_TYPE_BADNESS;
3476 }
3477 case TYPE_CODE_INT:
3478 switch (TYPE_CODE (arg))
3479 {
3480 case TYPE_CODE_INT:
3481 if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3482 {
3483 /* Deal with signed, unsigned, and plain chars and
3484 signed and unsigned ints. */
3485 if (TYPE_NOSIGN (parm))
3486 {
3487 /* This case only for character types. */
3488 if (TYPE_NOSIGN (arg))
3489 return EXACT_MATCH_BADNESS; /* plain char -> plain char */
3490 else /* signed/unsigned char -> plain char */
3491 return INTEGER_CONVERSION_BADNESS;
3492 }
3493 else if (TYPE_UNSIGNED (parm))
3494 {
3495 if (TYPE_UNSIGNED (arg))
3496 {
3497 /* unsigned int -> unsigned int, or
3498 unsigned long -> unsigned long */
3499 if (integer_types_same_name_p (TYPE_NAME (parm),
3500 TYPE_NAME (arg)))
3501 return EXACT_MATCH_BADNESS;
3502 else if (integer_types_same_name_p (TYPE_NAME (arg),
3503 "int")
3504 && integer_types_same_name_p (TYPE_NAME (parm),
3505 "long"))
3506 /* unsigned int -> unsigned long */
3507 return INTEGER_PROMOTION_BADNESS;
3508 else
3509 /* unsigned long -> unsigned int */
3510 return INTEGER_CONVERSION_BADNESS;
3511 }
3512 else
3513 {
3514 if (integer_types_same_name_p (TYPE_NAME (arg),
3515 "long")
3516 && integer_types_same_name_p (TYPE_NAME (parm),
3517 "int"))
3518 /* signed long -> unsigned int */
3519 return INTEGER_CONVERSION_BADNESS;
3520 else
3521 /* signed int/long -> unsigned int/long */
3522 return INTEGER_CONVERSION_BADNESS;
3523 }
3524 }
3525 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3526 {
3527 if (integer_types_same_name_p (TYPE_NAME (parm),
3528 TYPE_NAME (arg)))
3529 return EXACT_MATCH_BADNESS;
3530 else if (integer_types_same_name_p (TYPE_NAME (arg),
3531 "int")
3532 && integer_types_same_name_p (TYPE_NAME (parm),
3533 "long"))
3534 return INTEGER_PROMOTION_BADNESS;
3535 else
3536 return INTEGER_CONVERSION_BADNESS;
3537 }
3538 else
3539 return INTEGER_CONVERSION_BADNESS;
3540 }
3541 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3542 return INTEGER_PROMOTION_BADNESS;
3543 else
3544 return INTEGER_CONVERSION_BADNESS;
3545 case TYPE_CODE_ENUM:
3546 case TYPE_CODE_FLAGS:
3547 case TYPE_CODE_CHAR:
3548 case TYPE_CODE_RANGE:
3549 case TYPE_CODE_BOOL:
3550 if (TYPE_DECLARED_CLASS (arg))
3551 return INCOMPATIBLE_TYPE_BADNESS;
3552 return INTEGER_PROMOTION_BADNESS;
3553 case TYPE_CODE_FLT:
3554 return INT_FLOAT_CONVERSION_BADNESS;
3555 case TYPE_CODE_PTR:
3556 return NS_POINTER_CONVERSION_BADNESS;
3557 default:
3558 return INCOMPATIBLE_TYPE_BADNESS;
3559 }
3560 break;
3561 case TYPE_CODE_ENUM:
3562 switch (TYPE_CODE (arg))
3563 {
3564 case TYPE_CODE_INT:
3565 case TYPE_CODE_CHAR:
3566 case TYPE_CODE_RANGE:
3567 case TYPE_CODE_BOOL:
3568 case TYPE_CODE_ENUM:
3569 if (TYPE_DECLARED_CLASS (parm) || TYPE_DECLARED_CLASS (arg))
3570 return INCOMPATIBLE_TYPE_BADNESS;
3571 return INTEGER_CONVERSION_BADNESS;
3572 case TYPE_CODE_FLT:
3573 return INT_FLOAT_CONVERSION_BADNESS;
3574 default:
3575 return INCOMPATIBLE_TYPE_BADNESS;
3576 }
3577 break;
3578 case TYPE_CODE_CHAR:
3579 switch (TYPE_CODE (arg))
3580 {
3581 case TYPE_CODE_RANGE:
3582 case TYPE_CODE_BOOL:
3583 case TYPE_CODE_ENUM:
3584 if (TYPE_DECLARED_CLASS (arg))
3585 return INCOMPATIBLE_TYPE_BADNESS;
3586 return INTEGER_CONVERSION_BADNESS;
3587 case TYPE_CODE_FLT:
3588 return INT_FLOAT_CONVERSION_BADNESS;
3589 case TYPE_CODE_INT:
3590 if (TYPE_LENGTH (arg) > TYPE_LENGTH (parm))
3591 return INTEGER_CONVERSION_BADNESS;
3592 else if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3593 return INTEGER_PROMOTION_BADNESS;
3594 /* >>> !! else fall through !! <<< */
3595 case TYPE_CODE_CHAR:
3596 /* Deal with signed, unsigned, and plain chars for C++ and
3597 with int cases falling through from previous case. */
3598 if (TYPE_NOSIGN (parm))
3599 {
3600 if (TYPE_NOSIGN (arg))
3601 return EXACT_MATCH_BADNESS;
3602 else
3603 return INTEGER_CONVERSION_BADNESS;
3604 }
3605 else if (TYPE_UNSIGNED (parm))
3606 {
3607 if (TYPE_UNSIGNED (arg))
3608 return EXACT_MATCH_BADNESS;
3609 else
3610 return INTEGER_PROMOTION_BADNESS;
3611 }
3612 else if (!TYPE_NOSIGN (arg) && !TYPE_UNSIGNED (arg))
3613 return EXACT_MATCH_BADNESS;
3614 else
3615 return INTEGER_CONVERSION_BADNESS;
3616 default:
3617 return INCOMPATIBLE_TYPE_BADNESS;
3618 }
3619 break;
3620 case TYPE_CODE_RANGE:
3621 switch (TYPE_CODE (arg))
3622 {
3623 case TYPE_CODE_INT:
3624 case TYPE_CODE_CHAR:
3625 case TYPE_CODE_RANGE:
3626 case TYPE_CODE_BOOL:
3627 case TYPE_CODE_ENUM:
3628 return INTEGER_CONVERSION_BADNESS;
3629 case TYPE_CODE_FLT:
3630 return INT_FLOAT_CONVERSION_BADNESS;
3631 default:
3632 return INCOMPATIBLE_TYPE_BADNESS;
3633 }
3634 break;
3635 case TYPE_CODE_BOOL:
3636 switch (TYPE_CODE (arg))
3637 {
3638 /* n3290 draft, section 4.12.1 (conv.bool):
3639
3640 "A prvalue of arithmetic, unscoped enumeration, pointer, or
3641 pointer to member type can be converted to a prvalue of type
3642 bool. A zero value, null pointer value, or null member pointer
3643 value is converted to false; any other value is converted to
3644 true. A prvalue of type std::nullptr_t can be converted to a
3645 prvalue of type bool; the resulting value is false." */
3646 case TYPE_CODE_INT:
3647 case TYPE_CODE_CHAR:
3648 case TYPE_CODE_ENUM:
3649 case TYPE_CODE_FLT:
3650 case TYPE_CODE_MEMBERPTR:
3651 case TYPE_CODE_PTR:
3652 return BOOL_CONVERSION_BADNESS;
3653 case TYPE_CODE_RANGE:
3654 return INCOMPATIBLE_TYPE_BADNESS;
3655 case TYPE_CODE_BOOL:
3656 return EXACT_MATCH_BADNESS;
3657 default:
3658 return INCOMPATIBLE_TYPE_BADNESS;
3659 }
3660 break;
3661 case TYPE_CODE_FLT:
3662 switch (TYPE_CODE (arg))
3663 {
3664 case TYPE_CODE_FLT:
3665 if (TYPE_LENGTH (arg) < TYPE_LENGTH (parm))
3666 return FLOAT_PROMOTION_BADNESS;
3667 else if (TYPE_LENGTH (arg) == TYPE_LENGTH (parm))
3668 return EXACT_MATCH_BADNESS;
3669 else
3670 return FLOAT_CONVERSION_BADNESS;
3671 case TYPE_CODE_INT:
3672 case TYPE_CODE_BOOL:
3673 case TYPE_CODE_ENUM:
3674 case TYPE_CODE_RANGE:
3675 case TYPE_CODE_CHAR:
3676 return INT_FLOAT_CONVERSION_BADNESS;
3677 default:
3678 return INCOMPATIBLE_TYPE_BADNESS;
3679 }
3680 break;
3681 case TYPE_CODE_COMPLEX:
3682 switch (TYPE_CODE (arg))
3683 { /* Strictly not needed for C++, but... */
3684 case TYPE_CODE_FLT:
3685 return FLOAT_PROMOTION_BADNESS;
3686 case TYPE_CODE_COMPLEX:
3687 return EXACT_MATCH_BADNESS;
3688 default:
3689 return INCOMPATIBLE_TYPE_BADNESS;
3690 }
3691 break;
3692 case TYPE_CODE_STRUCT:
3693 switch (TYPE_CODE (arg))
3694 {
3695 case TYPE_CODE_STRUCT:
3696 /* Check for derivation */
3697 rank.subrank = distance_to_ancestor (parm, arg, 0);
3698 if (rank.subrank >= 0)
3699 return sum_ranks (BASE_CONVERSION_BADNESS, rank);
3700 /* else fall through */
3701 default:
3702 return INCOMPATIBLE_TYPE_BADNESS;
3703 }
3704 break;
3705 case TYPE_CODE_UNION:
3706 switch (TYPE_CODE (arg))
3707 {
3708 case TYPE_CODE_UNION:
3709 default:
3710 return INCOMPATIBLE_TYPE_BADNESS;
3711 }
3712 break;
3713 case TYPE_CODE_MEMBERPTR:
3714 switch (TYPE_CODE (arg))
3715 {
3716 default:
3717 return INCOMPATIBLE_TYPE_BADNESS;
3718 }
3719 break;
3720 case TYPE_CODE_METHOD:
3721 switch (TYPE_CODE (arg))
3722 {
3723
3724 default:
3725 return INCOMPATIBLE_TYPE_BADNESS;
3726 }
3727 break;
3728 case TYPE_CODE_REF:
3729 switch (TYPE_CODE (arg))
3730 {
3731
3732 default:
3733 return INCOMPATIBLE_TYPE_BADNESS;
3734 }
3735
3736 break;
3737 case TYPE_CODE_SET:
3738 switch (TYPE_CODE (arg))
3739 {
3740 /* Not in C++ */
3741 case TYPE_CODE_SET:
3742 return rank_one_type (TYPE_FIELD_TYPE (parm, 0),
3743 TYPE_FIELD_TYPE (arg, 0), NULL);
3744 default:
3745 return INCOMPATIBLE_TYPE_BADNESS;
3746 }
3747 break;
3748 case TYPE_CODE_VOID:
3749 default:
3750 return INCOMPATIBLE_TYPE_BADNESS;
3751 } /* switch (TYPE_CODE (arg)) */
3752 }
3753
3754 /* End of functions for overload resolution. */
3755 \f
3756 /* Routines to pretty-print types. */
3757
3758 static void
3759 print_bit_vector (B_TYPE *bits, int nbits)
3760 {
3761 int bitno;
3762
3763 for (bitno = 0; bitno < nbits; bitno++)
3764 {
3765 if ((bitno % 8) == 0)
3766 {
3767 puts_filtered (" ");
3768 }
3769 if (B_TST (bits, bitno))
3770 printf_filtered (("1"));
3771 else
3772 printf_filtered (("0"));
3773 }
3774 }
3775
3776 /* Note the first arg should be the "this" pointer, we may not want to
3777 include it since we may get into a infinitely recursive
3778 situation. */
3779
3780 static void
3781 print_args (struct field *args, int nargs, int spaces)
3782 {
3783 if (args != NULL)
3784 {
3785 int i;
3786
3787 for (i = 0; i < nargs; i++)
3788 {
3789 printfi_filtered (spaces, "[%d] name '%s'\n", i,
3790 args[i].name != NULL ? args[i].name : "<NULL>");
3791 recursive_dump_type (args[i].type, spaces + 2);
3792 }
3793 }
3794 }
3795
3796 int
3797 field_is_static (struct field *f)
3798 {
3799 /* "static" fields are the fields whose location is not relative
3800 to the address of the enclosing struct. It would be nice to
3801 have a dedicated flag that would be set for static fields when
3802 the type is being created. But in practice, checking the field
3803 loc_kind should give us an accurate answer. */
3804 return (FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSNAME
3805 || FIELD_LOC_KIND (*f) == FIELD_LOC_KIND_PHYSADDR);
3806 }
3807
3808 static void
3809 dump_fn_fieldlists (struct type *type, int spaces)
3810 {
3811 int method_idx;
3812 int overload_idx;
3813 struct fn_field *f;
3814
3815 printfi_filtered (spaces, "fn_fieldlists ");
3816 gdb_print_host_address (TYPE_FN_FIELDLISTS (type), gdb_stdout);
3817 printf_filtered ("\n");
3818 for (method_idx = 0; method_idx < TYPE_NFN_FIELDS (type); method_idx++)
3819 {
3820 f = TYPE_FN_FIELDLIST1 (type, method_idx);
3821 printfi_filtered (spaces + 2, "[%d] name '%s' (",
3822 method_idx,
3823 TYPE_FN_FIELDLIST_NAME (type, method_idx));
3824 gdb_print_host_address (TYPE_FN_FIELDLIST_NAME (type, method_idx),
3825 gdb_stdout);
3826 printf_filtered (_(") length %d\n"),
3827 TYPE_FN_FIELDLIST_LENGTH (type, method_idx));
3828 for (overload_idx = 0;
3829 overload_idx < TYPE_FN_FIELDLIST_LENGTH (type, method_idx);
3830 overload_idx++)
3831 {
3832 printfi_filtered (spaces + 4, "[%d] physname '%s' (",
3833 overload_idx,
3834 TYPE_FN_FIELD_PHYSNAME (f, overload_idx));
3835 gdb_print_host_address (TYPE_FN_FIELD_PHYSNAME (f, overload_idx),
3836 gdb_stdout);
3837 printf_filtered (")\n");
3838 printfi_filtered (spaces + 8, "type ");
3839 gdb_print_host_address (TYPE_FN_FIELD_TYPE (f, overload_idx),
3840 gdb_stdout);
3841 printf_filtered ("\n");
3842
3843 recursive_dump_type (TYPE_FN_FIELD_TYPE (f, overload_idx),
3844 spaces + 8 + 2);
3845
3846 printfi_filtered (spaces + 8, "args ");
3847 gdb_print_host_address (TYPE_FN_FIELD_ARGS (f, overload_idx),
3848 gdb_stdout);
3849 printf_filtered ("\n");
3850 print_args (TYPE_FN_FIELD_ARGS (f, overload_idx),
3851 TYPE_NFIELDS (TYPE_FN_FIELD_TYPE (f, overload_idx)),
3852 spaces + 8 + 2);
3853 printfi_filtered (spaces + 8, "fcontext ");
3854 gdb_print_host_address (TYPE_FN_FIELD_FCONTEXT (f, overload_idx),
3855 gdb_stdout);
3856 printf_filtered ("\n");
3857
3858 printfi_filtered (spaces + 8, "is_const %d\n",
3859 TYPE_FN_FIELD_CONST (f, overload_idx));
3860 printfi_filtered (spaces + 8, "is_volatile %d\n",
3861 TYPE_FN_FIELD_VOLATILE (f, overload_idx));
3862 printfi_filtered (spaces + 8, "is_private %d\n",
3863 TYPE_FN_FIELD_PRIVATE (f, overload_idx));
3864 printfi_filtered (spaces + 8, "is_protected %d\n",
3865 TYPE_FN_FIELD_PROTECTED (f, overload_idx));
3866 printfi_filtered (spaces + 8, "is_stub %d\n",
3867 TYPE_FN_FIELD_STUB (f, overload_idx));
3868 printfi_filtered (spaces + 8, "voffset %u\n",
3869 TYPE_FN_FIELD_VOFFSET (f, overload_idx));
3870 }
3871 }
3872 }
3873
3874 static void
3875 print_cplus_stuff (struct type *type, int spaces)
3876 {
3877 printfi_filtered (spaces, "vptr_fieldno %d\n", TYPE_VPTR_FIELDNO (type));
3878 printfi_filtered (spaces, "vptr_basetype ");
3879 gdb_print_host_address (TYPE_VPTR_BASETYPE (type), gdb_stdout);
3880 puts_filtered ("\n");
3881 if (TYPE_VPTR_BASETYPE (type) != NULL)
3882 recursive_dump_type (TYPE_VPTR_BASETYPE (type), spaces + 2);
3883
3884 printfi_filtered (spaces, "n_baseclasses %d\n",
3885 TYPE_N_BASECLASSES (type));
3886 printfi_filtered (spaces, "nfn_fields %d\n",
3887 TYPE_NFN_FIELDS (type));
3888 if (TYPE_N_BASECLASSES (type) > 0)
3889 {
3890 printfi_filtered (spaces, "virtual_field_bits (%d bits at *",
3891 TYPE_N_BASECLASSES (type));
3892 gdb_print_host_address (TYPE_FIELD_VIRTUAL_BITS (type),
3893 gdb_stdout);
3894 printf_filtered (")");
3895
3896 print_bit_vector (TYPE_FIELD_VIRTUAL_BITS (type),
3897 TYPE_N_BASECLASSES (type));
3898 puts_filtered ("\n");
3899 }
3900 if (TYPE_NFIELDS (type) > 0)
3901 {
3902 if (TYPE_FIELD_PRIVATE_BITS (type) != NULL)
3903 {
3904 printfi_filtered (spaces,
3905 "private_field_bits (%d bits at *",
3906 TYPE_NFIELDS (type));
3907 gdb_print_host_address (TYPE_FIELD_PRIVATE_BITS (type),
3908 gdb_stdout);
3909 printf_filtered (")");
3910 print_bit_vector (TYPE_FIELD_PRIVATE_BITS (type),
3911 TYPE_NFIELDS (type));
3912 puts_filtered ("\n");
3913 }
3914 if (TYPE_FIELD_PROTECTED_BITS (type) != NULL)
3915 {
3916 printfi_filtered (spaces,
3917 "protected_field_bits (%d bits at *",
3918 TYPE_NFIELDS (type));
3919 gdb_print_host_address (TYPE_FIELD_PROTECTED_BITS (type),
3920 gdb_stdout);
3921 printf_filtered (")");
3922 print_bit_vector (TYPE_FIELD_PROTECTED_BITS (type),
3923 TYPE_NFIELDS (type));
3924 puts_filtered ("\n");
3925 }
3926 }
3927 if (TYPE_NFN_FIELDS (type) > 0)
3928 {
3929 dump_fn_fieldlists (type, spaces);
3930 }
3931 }
3932
3933 /* Print the contents of the TYPE's type_specific union, assuming that
3934 its type-specific kind is TYPE_SPECIFIC_GNAT_STUFF. */
3935
3936 static void
3937 print_gnat_stuff (struct type *type, int spaces)
3938 {
3939 struct type *descriptive_type = TYPE_DESCRIPTIVE_TYPE (type);
3940
3941 if (descriptive_type == NULL)
3942 printfi_filtered (spaces + 2, "no descriptive type\n");
3943 else
3944 {
3945 printfi_filtered (spaces + 2, "descriptive type\n");
3946 recursive_dump_type (descriptive_type, spaces + 4);
3947 }
3948 }
3949
3950 static struct obstack dont_print_type_obstack;
3951
3952 void
3953 recursive_dump_type (struct type *type, int spaces)
3954 {
3955 int idx;
3956
3957 if (spaces == 0)
3958 obstack_begin (&dont_print_type_obstack, 0);
3959
3960 if (TYPE_NFIELDS (type) > 0
3961 || (HAVE_CPLUS_STRUCT (type) && TYPE_NFN_FIELDS (type) > 0))
3962 {
3963 struct type **first_dont_print
3964 = (struct type **) obstack_base (&dont_print_type_obstack);
3965
3966 int i = (struct type **)
3967 obstack_next_free (&dont_print_type_obstack) - first_dont_print;
3968
3969 while (--i >= 0)
3970 {
3971 if (type == first_dont_print[i])
3972 {
3973 printfi_filtered (spaces, "type node ");
3974 gdb_print_host_address (type, gdb_stdout);
3975 printf_filtered (_(" <same as already seen type>\n"));
3976 return;
3977 }
3978 }
3979
3980 obstack_ptr_grow (&dont_print_type_obstack, type);
3981 }
3982
3983 printfi_filtered (spaces, "type node ");
3984 gdb_print_host_address (type, gdb_stdout);
3985 printf_filtered ("\n");
3986 printfi_filtered (spaces, "name '%s' (",
3987 TYPE_NAME (type) ? TYPE_NAME (type) : "<NULL>");
3988 gdb_print_host_address (TYPE_NAME (type), gdb_stdout);
3989 printf_filtered (")\n");
3990 printfi_filtered (spaces, "tagname '%s' (",
3991 TYPE_TAG_NAME (type) ? TYPE_TAG_NAME (type) : "<NULL>");
3992 gdb_print_host_address (TYPE_TAG_NAME (type), gdb_stdout);
3993 printf_filtered (")\n");
3994 printfi_filtered (spaces, "code 0x%x ", TYPE_CODE (type));
3995 switch (TYPE_CODE (type))
3996 {
3997 case TYPE_CODE_UNDEF:
3998 printf_filtered ("(TYPE_CODE_UNDEF)");
3999 break;
4000 case TYPE_CODE_PTR:
4001 printf_filtered ("(TYPE_CODE_PTR)");
4002 break;
4003 case TYPE_CODE_ARRAY:
4004 printf_filtered ("(TYPE_CODE_ARRAY)");
4005 break;
4006 case TYPE_CODE_STRUCT:
4007 printf_filtered ("(TYPE_CODE_STRUCT)");
4008 break;
4009 case TYPE_CODE_UNION:
4010 printf_filtered ("(TYPE_CODE_UNION)");
4011 break;
4012 case TYPE_CODE_ENUM:
4013 printf_filtered ("(TYPE_CODE_ENUM)");
4014 break;
4015 case TYPE_CODE_FLAGS:
4016 printf_filtered ("(TYPE_CODE_FLAGS)");
4017 break;
4018 case TYPE_CODE_FUNC:
4019 printf_filtered ("(TYPE_CODE_FUNC)");
4020 break;
4021 case TYPE_CODE_INT:
4022 printf_filtered ("(TYPE_CODE_INT)");
4023 break;
4024 case TYPE_CODE_FLT:
4025 printf_filtered ("(TYPE_CODE_FLT)");
4026 break;
4027 case TYPE_CODE_VOID:
4028 printf_filtered ("(TYPE_CODE_VOID)");
4029 break;
4030 case TYPE_CODE_SET:
4031 printf_filtered ("(TYPE_CODE_SET)");
4032 break;
4033 case TYPE_CODE_RANGE:
4034 printf_filtered ("(TYPE_CODE_RANGE)");
4035 break;
4036 case TYPE_CODE_STRING:
4037 printf_filtered ("(TYPE_CODE_STRING)");
4038 break;
4039 case TYPE_CODE_ERROR:
4040 printf_filtered ("(TYPE_CODE_ERROR)");
4041 break;
4042 case TYPE_CODE_MEMBERPTR:
4043 printf_filtered ("(TYPE_CODE_MEMBERPTR)");
4044 break;
4045 case TYPE_CODE_METHODPTR:
4046 printf_filtered ("(TYPE_CODE_METHODPTR)");
4047 break;
4048 case TYPE_CODE_METHOD:
4049 printf_filtered ("(TYPE_CODE_METHOD)");
4050 break;
4051 case TYPE_CODE_REF:
4052 printf_filtered ("(TYPE_CODE_REF)");
4053 break;
4054 case TYPE_CODE_CHAR:
4055 printf_filtered ("(TYPE_CODE_CHAR)");
4056 break;
4057 case TYPE_CODE_BOOL:
4058 printf_filtered ("(TYPE_CODE_BOOL)");
4059 break;
4060 case TYPE_CODE_COMPLEX:
4061 printf_filtered ("(TYPE_CODE_COMPLEX)");
4062 break;
4063 case TYPE_CODE_TYPEDEF:
4064 printf_filtered ("(TYPE_CODE_TYPEDEF)");
4065 break;
4066 case TYPE_CODE_NAMESPACE:
4067 printf_filtered ("(TYPE_CODE_NAMESPACE)");
4068 break;
4069 default:
4070 printf_filtered ("(UNKNOWN TYPE CODE)");
4071 break;
4072 }
4073 puts_filtered ("\n");
4074 printfi_filtered (spaces, "length %d\n", TYPE_LENGTH (type));
4075 if (TYPE_OBJFILE_OWNED (type))
4076 {
4077 printfi_filtered (spaces, "objfile ");
4078 gdb_print_host_address (TYPE_OWNER (type).objfile, gdb_stdout);
4079 }
4080 else
4081 {
4082 printfi_filtered (spaces, "gdbarch ");
4083 gdb_print_host_address (TYPE_OWNER (type).gdbarch, gdb_stdout);
4084 }
4085 printf_filtered ("\n");
4086 printfi_filtered (spaces, "target_type ");
4087 gdb_print_host_address (TYPE_TARGET_TYPE (type), gdb_stdout);
4088 printf_filtered ("\n");
4089 if (TYPE_TARGET_TYPE (type) != NULL)
4090 {
4091 recursive_dump_type (TYPE_TARGET_TYPE (type), spaces + 2);
4092 }
4093 printfi_filtered (spaces, "pointer_type ");
4094 gdb_print_host_address (TYPE_POINTER_TYPE (type), gdb_stdout);
4095 printf_filtered ("\n");
4096 printfi_filtered (spaces, "reference_type ");
4097 gdb_print_host_address (TYPE_REFERENCE_TYPE (type), gdb_stdout);
4098 printf_filtered ("\n");
4099 printfi_filtered (spaces, "type_chain ");
4100 gdb_print_host_address (TYPE_CHAIN (type), gdb_stdout);
4101 printf_filtered ("\n");
4102 printfi_filtered (spaces, "instance_flags 0x%x",
4103 TYPE_INSTANCE_FLAGS (type));
4104 if (TYPE_CONST (type))
4105 {
4106 puts_filtered (" TYPE_FLAG_CONST");
4107 }
4108 if (TYPE_VOLATILE (type))
4109 {
4110 puts_filtered (" TYPE_FLAG_VOLATILE");
4111 }
4112 if (TYPE_CODE_SPACE (type))
4113 {
4114 puts_filtered (" TYPE_FLAG_CODE_SPACE");
4115 }
4116 if (TYPE_DATA_SPACE (type))
4117 {
4118 puts_filtered (" TYPE_FLAG_DATA_SPACE");
4119 }
4120 if (TYPE_ADDRESS_CLASS_1 (type))
4121 {
4122 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_1");
4123 }
4124 if (TYPE_ADDRESS_CLASS_2 (type))
4125 {
4126 puts_filtered (" TYPE_FLAG_ADDRESS_CLASS_2");
4127 }
4128 if (TYPE_RESTRICT (type))
4129 {
4130 puts_filtered (" TYPE_FLAG_RESTRICT");
4131 }
4132 if (TYPE_ATOMIC (type))
4133 {
4134 puts_filtered (" TYPE_FLAG_ATOMIC");
4135 }
4136 puts_filtered ("\n");
4137
4138 printfi_filtered (spaces, "flags");
4139 if (TYPE_UNSIGNED (type))
4140 {
4141 puts_filtered (" TYPE_FLAG_UNSIGNED");
4142 }
4143 if (TYPE_NOSIGN (type))
4144 {
4145 puts_filtered (" TYPE_FLAG_NOSIGN");
4146 }
4147 if (TYPE_STUB (type))
4148 {
4149 puts_filtered (" TYPE_FLAG_STUB");
4150 }
4151 if (TYPE_TARGET_STUB (type))
4152 {
4153 puts_filtered (" TYPE_FLAG_TARGET_STUB");
4154 }
4155 if (TYPE_STATIC (type))
4156 {
4157 puts_filtered (" TYPE_FLAG_STATIC");
4158 }
4159 if (TYPE_PROTOTYPED (type))
4160 {
4161 puts_filtered (" TYPE_FLAG_PROTOTYPED");
4162 }
4163 if (TYPE_INCOMPLETE (type))
4164 {
4165 puts_filtered (" TYPE_FLAG_INCOMPLETE");
4166 }
4167 if (TYPE_VARARGS (type))
4168 {
4169 puts_filtered (" TYPE_FLAG_VARARGS");
4170 }
4171 /* This is used for things like AltiVec registers on ppc. Gcc emits
4172 an attribute for the array type, which tells whether or not we
4173 have a vector, instead of a regular array. */
4174 if (TYPE_VECTOR (type))
4175 {
4176 puts_filtered (" TYPE_FLAG_VECTOR");
4177 }
4178 if (TYPE_FIXED_INSTANCE (type))
4179 {
4180 puts_filtered (" TYPE_FIXED_INSTANCE");
4181 }
4182 if (TYPE_STUB_SUPPORTED (type))
4183 {
4184 puts_filtered (" TYPE_STUB_SUPPORTED");
4185 }
4186 if (TYPE_NOTTEXT (type))
4187 {
4188 puts_filtered (" TYPE_NOTTEXT");
4189 }
4190 puts_filtered ("\n");
4191 printfi_filtered (spaces, "nfields %d ", TYPE_NFIELDS (type));
4192 gdb_print_host_address (TYPE_FIELDS (type), gdb_stdout);
4193 puts_filtered ("\n");
4194 for (idx = 0; idx < TYPE_NFIELDS (type); idx++)
4195 {
4196 if (TYPE_CODE (type) == TYPE_CODE_ENUM)
4197 printfi_filtered (spaces + 2,
4198 "[%d] enumval %s type ",
4199 idx, plongest (TYPE_FIELD_ENUMVAL (type, idx)));
4200 else
4201 printfi_filtered (spaces + 2,
4202 "[%d] bitpos %d bitsize %d type ",
4203 idx, TYPE_FIELD_BITPOS (type, idx),
4204 TYPE_FIELD_BITSIZE (type, idx));
4205 gdb_print_host_address (TYPE_FIELD_TYPE (type, idx), gdb_stdout);
4206 printf_filtered (" name '%s' (",
4207 TYPE_FIELD_NAME (type, idx) != NULL
4208 ? TYPE_FIELD_NAME (type, idx)
4209 : "<NULL>");
4210 gdb_print_host_address (TYPE_FIELD_NAME (type, idx), gdb_stdout);
4211 printf_filtered (")\n");
4212 if (TYPE_FIELD_TYPE (type, idx) != NULL)
4213 {
4214 recursive_dump_type (TYPE_FIELD_TYPE (type, idx), spaces + 4);
4215 }
4216 }
4217 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4218 {
4219 printfi_filtered (spaces, "low %s%s high %s%s\n",
4220 plongest (TYPE_LOW_BOUND (type)),
4221 TYPE_LOW_BOUND_UNDEFINED (type) ? " (undefined)" : "",
4222 plongest (TYPE_HIGH_BOUND (type)),
4223 TYPE_HIGH_BOUND_UNDEFINED (type)
4224 ? " (undefined)" : "");
4225 }
4226
4227 switch (TYPE_SPECIFIC_FIELD (type))
4228 {
4229 case TYPE_SPECIFIC_CPLUS_STUFF:
4230 printfi_filtered (spaces, "cplus_stuff ");
4231 gdb_print_host_address (TYPE_CPLUS_SPECIFIC (type),
4232 gdb_stdout);
4233 puts_filtered ("\n");
4234 print_cplus_stuff (type, spaces);
4235 break;
4236
4237 case TYPE_SPECIFIC_GNAT_STUFF:
4238 printfi_filtered (spaces, "gnat_stuff ");
4239 gdb_print_host_address (TYPE_GNAT_SPECIFIC (type), gdb_stdout);
4240 puts_filtered ("\n");
4241 print_gnat_stuff (type, spaces);
4242 break;
4243
4244 case TYPE_SPECIFIC_FLOATFORMAT:
4245 printfi_filtered (spaces, "floatformat ");
4246 if (TYPE_FLOATFORMAT (type) == NULL)
4247 puts_filtered ("(null)");
4248 else
4249 {
4250 puts_filtered ("{ ");
4251 if (TYPE_FLOATFORMAT (type)[0] == NULL
4252 || TYPE_FLOATFORMAT (type)[0]->name == NULL)
4253 puts_filtered ("(null)");
4254 else
4255 puts_filtered (TYPE_FLOATFORMAT (type)[0]->name);
4256
4257 puts_filtered (", ");
4258 if (TYPE_FLOATFORMAT (type)[1] == NULL
4259 || TYPE_FLOATFORMAT (type)[1]->name == NULL)
4260 puts_filtered ("(null)");
4261 else
4262 puts_filtered (TYPE_FLOATFORMAT (type)[1]->name);
4263
4264 puts_filtered (" }");
4265 }
4266 puts_filtered ("\n");
4267 break;
4268
4269 case TYPE_SPECIFIC_FUNC:
4270 printfi_filtered (spaces, "calling_convention %d\n",
4271 TYPE_CALLING_CONVENTION (type));
4272 /* tail_call_list is not printed. */
4273 break;
4274
4275 case TYPE_SPECIFIC_SELF_TYPE:
4276 printfi_filtered (spaces, "self_type ");
4277 gdb_print_host_address (TYPE_SELF_TYPE (type), gdb_stdout);
4278 puts_filtered ("\n");
4279 break;
4280 }
4281
4282 if (spaces == 0)
4283 obstack_free (&dont_print_type_obstack, NULL);
4284 }
4285 \f
4286 /* Trivial helpers for the libiberty hash table, for mapping one
4287 type to another. */
4288
4289 struct type_pair
4290 {
4291 struct type *old, *newobj;
4292 };
4293
4294 static hashval_t
4295 type_pair_hash (const void *item)
4296 {
4297 const struct type_pair *pair = item;
4298
4299 return htab_hash_pointer (pair->old);
4300 }
4301
4302 static int
4303 type_pair_eq (const void *item_lhs, const void *item_rhs)
4304 {
4305 const struct type_pair *lhs = item_lhs, *rhs = item_rhs;
4306
4307 return lhs->old == rhs->old;
4308 }
4309
4310 /* Allocate the hash table used by copy_type_recursive to walk
4311 types without duplicates. We use OBJFILE's obstack, because
4312 OBJFILE is about to be deleted. */
4313
4314 htab_t
4315 create_copied_types_hash (struct objfile *objfile)
4316 {
4317 return htab_create_alloc_ex (1, type_pair_hash, type_pair_eq,
4318 NULL, &objfile->objfile_obstack,
4319 hashtab_obstack_allocate,
4320 dummy_obstack_deallocate);
4321 }
4322
4323 /* Recursively copy (deep copy) a dynamic attribute list of a type. */
4324
4325 static struct dynamic_prop_list *
4326 copy_dynamic_prop_list (struct obstack *objfile_obstack,
4327 struct dynamic_prop_list *list)
4328 {
4329 struct dynamic_prop_list *copy = list;
4330 struct dynamic_prop_list **node_ptr = &copy;
4331
4332 while (*node_ptr != NULL)
4333 {
4334 struct dynamic_prop_list *node_copy;
4335
4336 node_copy = obstack_copy (objfile_obstack, *node_ptr,
4337 sizeof (struct dynamic_prop_list));
4338 node_copy->prop = (*node_ptr)->prop;
4339 *node_ptr = node_copy;
4340
4341 node_ptr = &node_copy->next;
4342 }
4343
4344 return copy;
4345 }
4346
4347 /* Recursively copy (deep copy) TYPE, if it is associated with
4348 OBJFILE. Return a new type allocated using malloc, a saved type if
4349 we have already visited TYPE (using COPIED_TYPES), or TYPE if it is
4350 not associated with OBJFILE. */
4351
4352 struct type *
4353 copy_type_recursive (struct objfile *objfile,
4354 struct type *type,
4355 htab_t copied_types)
4356 {
4357 struct type_pair *stored, pair;
4358 void **slot;
4359 struct type *new_type;
4360
4361 if (! TYPE_OBJFILE_OWNED (type))
4362 return type;
4363
4364 /* This type shouldn't be pointing to any types in other objfiles;
4365 if it did, the type might disappear unexpectedly. */
4366 gdb_assert (TYPE_OBJFILE (type) == objfile);
4367
4368 pair.old = type;
4369 slot = htab_find_slot (copied_types, &pair, INSERT);
4370 if (*slot != NULL)
4371 return ((struct type_pair *) *slot)->newobj;
4372
4373 new_type = alloc_type_arch (get_type_arch (type));
4374
4375 /* We must add the new type to the hash table immediately, in case
4376 we encounter this type again during a recursive call below. */
4377 stored
4378 = obstack_alloc (&objfile->objfile_obstack, sizeof (struct type_pair));
4379 stored->old = type;
4380 stored->newobj = new_type;
4381 *slot = stored;
4382
4383 /* Copy the common fields of types. For the main type, we simply
4384 copy the entire thing and then update specific fields as needed. */
4385 *TYPE_MAIN_TYPE (new_type) = *TYPE_MAIN_TYPE (type);
4386 TYPE_OBJFILE_OWNED (new_type) = 0;
4387 TYPE_OWNER (new_type).gdbarch = get_type_arch (type);
4388
4389 if (TYPE_NAME (type))
4390 TYPE_NAME (new_type) = xstrdup (TYPE_NAME (type));
4391 if (TYPE_TAG_NAME (type))
4392 TYPE_TAG_NAME (new_type) = xstrdup (TYPE_TAG_NAME (type));
4393
4394 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4395 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4396
4397 /* Copy the fields. */
4398 if (TYPE_NFIELDS (type))
4399 {
4400 int i, nfields;
4401
4402 nfields = TYPE_NFIELDS (type);
4403 TYPE_FIELDS (new_type) = XCNEWVEC (struct field, nfields);
4404 for (i = 0; i < nfields; i++)
4405 {
4406 TYPE_FIELD_ARTIFICIAL (new_type, i) =
4407 TYPE_FIELD_ARTIFICIAL (type, i);
4408 TYPE_FIELD_BITSIZE (new_type, i) = TYPE_FIELD_BITSIZE (type, i);
4409 if (TYPE_FIELD_TYPE (type, i))
4410 TYPE_FIELD_TYPE (new_type, i)
4411 = copy_type_recursive (objfile, TYPE_FIELD_TYPE (type, i),
4412 copied_types);
4413 if (TYPE_FIELD_NAME (type, i))
4414 TYPE_FIELD_NAME (new_type, i) =
4415 xstrdup (TYPE_FIELD_NAME (type, i));
4416 switch (TYPE_FIELD_LOC_KIND (type, i))
4417 {
4418 case FIELD_LOC_KIND_BITPOS:
4419 SET_FIELD_BITPOS (TYPE_FIELD (new_type, i),
4420 TYPE_FIELD_BITPOS (type, i));
4421 break;
4422 case FIELD_LOC_KIND_ENUMVAL:
4423 SET_FIELD_ENUMVAL (TYPE_FIELD (new_type, i),
4424 TYPE_FIELD_ENUMVAL (type, i));
4425 break;
4426 case FIELD_LOC_KIND_PHYSADDR:
4427 SET_FIELD_PHYSADDR (TYPE_FIELD (new_type, i),
4428 TYPE_FIELD_STATIC_PHYSADDR (type, i));
4429 break;
4430 case FIELD_LOC_KIND_PHYSNAME:
4431 SET_FIELD_PHYSNAME (TYPE_FIELD (new_type, i),
4432 xstrdup (TYPE_FIELD_STATIC_PHYSNAME (type,
4433 i)));
4434 break;
4435 default:
4436 internal_error (__FILE__, __LINE__,
4437 _("Unexpected type field location kind: %d"),
4438 TYPE_FIELD_LOC_KIND (type, i));
4439 }
4440 }
4441 }
4442
4443 /* For range types, copy the bounds information. */
4444 if (TYPE_CODE (type) == TYPE_CODE_RANGE)
4445 {
4446 TYPE_RANGE_DATA (new_type) = xmalloc (sizeof (struct range_bounds));
4447 *TYPE_RANGE_DATA (new_type) = *TYPE_RANGE_DATA (type);
4448 }
4449
4450 if (TYPE_DYN_PROP_LIST (type) != NULL)
4451 TYPE_DYN_PROP_LIST (new_type)
4452 = copy_dynamic_prop_list (&objfile->objfile_obstack,
4453 TYPE_DYN_PROP_LIST (type));
4454
4455
4456 /* Copy pointers to other types. */
4457 if (TYPE_TARGET_TYPE (type))
4458 TYPE_TARGET_TYPE (new_type) =
4459 copy_type_recursive (objfile,
4460 TYPE_TARGET_TYPE (type),
4461 copied_types);
4462
4463 /* Maybe copy the type_specific bits.
4464
4465 NOTE drow/2005-12-09: We do not copy the C++-specific bits like
4466 base classes and methods. There's no fundamental reason why we
4467 can't, but at the moment it is not needed. */
4468
4469 switch (TYPE_SPECIFIC_FIELD (type))
4470 {
4471 case TYPE_SPECIFIC_NONE:
4472 break;
4473 case TYPE_SPECIFIC_FUNC:
4474 INIT_FUNC_SPECIFIC (new_type);
4475 TYPE_CALLING_CONVENTION (new_type) = TYPE_CALLING_CONVENTION (type);
4476 TYPE_NO_RETURN (new_type) = TYPE_NO_RETURN (type);
4477 TYPE_TAIL_CALL_LIST (new_type) = NULL;
4478 break;
4479 case TYPE_SPECIFIC_FLOATFORMAT:
4480 TYPE_FLOATFORMAT (new_type) = TYPE_FLOATFORMAT (type);
4481 break;
4482 case TYPE_SPECIFIC_CPLUS_STUFF:
4483 INIT_CPLUS_SPECIFIC (new_type);
4484 break;
4485 case TYPE_SPECIFIC_GNAT_STUFF:
4486 INIT_GNAT_SPECIFIC (new_type);
4487 break;
4488 case TYPE_SPECIFIC_SELF_TYPE:
4489 set_type_self_type (new_type,
4490 copy_type_recursive (objfile, TYPE_SELF_TYPE (type),
4491 copied_types));
4492 break;
4493 default:
4494 gdb_assert_not_reached ("bad type_specific_kind");
4495 }
4496
4497 return new_type;
4498 }
4499
4500 /* Make a copy of the given TYPE, except that the pointer & reference
4501 types are not preserved.
4502
4503 This function assumes that the given type has an associated objfile.
4504 This objfile is used to allocate the new type. */
4505
4506 struct type *
4507 copy_type (const struct type *type)
4508 {
4509 struct type *new_type;
4510
4511 gdb_assert (TYPE_OBJFILE_OWNED (type));
4512
4513 new_type = alloc_type_copy (type);
4514 TYPE_INSTANCE_FLAGS (new_type) = TYPE_INSTANCE_FLAGS (type);
4515 TYPE_LENGTH (new_type) = TYPE_LENGTH (type);
4516 memcpy (TYPE_MAIN_TYPE (new_type), TYPE_MAIN_TYPE (type),
4517 sizeof (struct main_type));
4518 if (TYPE_DYN_PROP_LIST (type) != NULL)
4519 TYPE_DYN_PROP_LIST (new_type)
4520 = copy_dynamic_prop_list (&TYPE_OBJFILE (type) -> objfile_obstack,
4521 TYPE_DYN_PROP_LIST (type));
4522
4523 return new_type;
4524 }
4525 \f
4526 /* Helper functions to initialize architecture-specific types. */
4527
4528 /* Allocate a type structure associated with GDBARCH and set its
4529 CODE, LENGTH, and NAME fields. */
4530
4531 struct type *
4532 arch_type (struct gdbarch *gdbarch,
4533 enum type_code code, int length, char *name)
4534 {
4535 struct type *type;
4536
4537 type = alloc_type_arch (gdbarch);
4538 TYPE_CODE (type) = code;
4539 TYPE_LENGTH (type) = length;
4540
4541 if (name)
4542 TYPE_NAME (type) = xstrdup (name);
4543
4544 return type;
4545 }
4546
4547 /* Allocate a TYPE_CODE_INT type structure associated with GDBARCH.
4548 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4549 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4550
4551 struct type *
4552 arch_integer_type (struct gdbarch *gdbarch,
4553 int bit, int unsigned_p, char *name)
4554 {
4555 struct type *t;
4556
4557 t = arch_type (gdbarch, TYPE_CODE_INT, bit / TARGET_CHAR_BIT, name);
4558 if (unsigned_p)
4559 TYPE_UNSIGNED (t) = 1;
4560 if (name && strcmp (name, "char") == 0)
4561 TYPE_NOSIGN (t) = 1;
4562
4563 return t;
4564 }
4565
4566 /* Allocate a TYPE_CODE_CHAR type structure associated with GDBARCH.
4567 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4568 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4569
4570 struct type *
4571 arch_character_type (struct gdbarch *gdbarch,
4572 int bit, int unsigned_p, char *name)
4573 {
4574 struct type *t;
4575
4576 t = arch_type (gdbarch, TYPE_CODE_CHAR, bit / TARGET_CHAR_BIT, name);
4577 if (unsigned_p)
4578 TYPE_UNSIGNED (t) = 1;
4579
4580 return t;
4581 }
4582
4583 /* Allocate a TYPE_CODE_BOOL type structure associated with GDBARCH.
4584 BIT is the type size in bits. If UNSIGNED_P is non-zero, set
4585 the type's TYPE_UNSIGNED flag. NAME is the type name. */
4586
4587 struct type *
4588 arch_boolean_type (struct gdbarch *gdbarch,
4589 int bit, int unsigned_p, char *name)
4590 {
4591 struct type *t;
4592
4593 t = arch_type (gdbarch, TYPE_CODE_BOOL, bit / TARGET_CHAR_BIT, name);
4594 if (unsigned_p)
4595 TYPE_UNSIGNED (t) = 1;
4596
4597 return t;
4598 }
4599
4600 /* Allocate a TYPE_CODE_FLT type structure associated with GDBARCH.
4601 BIT is the type size in bits; if BIT equals -1, the size is
4602 determined by the floatformat. NAME is the type name. Set the
4603 TYPE_FLOATFORMAT from FLOATFORMATS. */
4604
4605 struct type *
4606 arch_float_type (struct gdbarch *gdbarch,
4607 int bit, char *name, const struct floatformat **floatformats)
4608 {
4609 struct type *t;
4610
4611 if (bit == -1)
4612 {
4613 gdb_assert (floatformats != NULL);
4614 gdb_assert (floatformats[0] != NULL && floatformats[1] != NULL);
4615 bit = floatformats[0]->totalsize;
4616 }
4617 gdb_assert (bit >= 0);
4618
4619 t = arch_type (gdbarch, TYPE_CODE_FLT, bit / TARGET_CHAR_BIT, name);
4620 TYPE_FLOATFORMAT (t) = floatformats;
4621 return t;
4622 }
4623
4624 /* Allocate a TYPE_CODE_COMPLEX type structure associated with GDBARCH.
4625 NAME is the type name. TARGET_TYPE is the component float type. */
4626
4627 struct type *
4628 arch_complex_type (struct gdbarch *gdbarch,
4629 char *name, struct type *target_type)
4630 {
4631 struct type *t;
4632
4633 t = arch_type (gdbarch, TYPE_CODE_COMPLEX,
4634 2 * TYPE_LENGTH (target_type), name);
4635 TYPE_TARGET_TYPE (t) = target_type;
4636 return t;
4637 }
4638
4639 /* Allocate a TYPE_CODE_FLAGS type structure associated with GDBARCH.
4640 NAME is the type name. LENGTH is the size of the flag word in bytes. */
4641
4642 struct type *
4643 arch_flags_type (struct gdbarch *gdbarch, char *name, int length)
4644 {
4645 int nfields = length * TARGET_CHAR_BIT;
4646 struct type *type;
4647
4648 type = arch_type (gdbarch, TYPE_CODE_FLAGS, length, name);
4649 TYPE_UNSIGNED (type) = 1;
4650 TYPE_NFIELDS (type) = nfields;
4651 TYPE_FIELDS (type) = TYPE_ZALLOC (type, nfields * sizeof (struct field));
4652
4653 return type;
4654 }
4655
4656 /* Add field to TYPE_CODE_FLAGS type TYPE to indicate the bit at
4657 position BITPOS is called NAME. */
4658
4659 void
4660 append_flags_type_flag (struct type *type, int bitpos, char *name)
4661 {
4662 gdb_assert (TYPE_CODE (type) == TYPE_CODE_FLAGS);
4663 gdb_assert (bitpos < TYPE_NFIELDS (type));
4664 gdb_assert (bitpos >= 0);
4665
4666 if (name)
4667 {
4668 TYPE_FIELD_NAME (type, bitpos) = xstrdup (name);
4669 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), bitpos);
4670 }
4671 else
4672 {
4673 /* Don't show this field to the user. */
4674 SET_FIELD_BITPOS (TYPE_FIELD (type, bitpos), -1);
4675 }
4676 }
4677
4678 /* Allocate a TYPE_CODE_STRUCT or TYPE_CODE_UNION type structure (as
4679 specified by CODE) associated with GDBARCH. NAME is the type name. */
4680
4681 struct type *
4682 arch_composite_type (struct gdbarch *gdbarch, char *name, enum type_code code)
4683 {
4684 struct type *t;
4685
4686 gdb_assert (code == TYPE_CODE_STRUCT || code == TYPE_CODE_UNION);
4687 t = arch_type (gdbarch, code, 0, NULL);
4688 TYPE_TAG_NAME (t) = name;
4689 INIT_CPLUS_SPECIFIC (t);
4690 return t;
4691 }
4692
4693 /* Add new field with name NAME and type FIELD to composite type T.
4694 Do not set the field's position or adjust the type's length;
4695 the caller should do so. Return the new field. */
4696
4697 struct field *
4698 append_composite_type_field_raw (struct type *t, char *name,
4699 struct type *field)
4700 {
4701 struct field *f;
4702
4703 TYPE_NFIELDS (t) = TYPE_NFIELDS (t) + 1;
4704 TYPE_FIELDS (t) = xrealloc (TYPE_FIELDS (t),
4705 sizeof (struct field) * TYPE_NFIELDS (t));
4706 f = &(TYPE_FIELDS (t)[TYPE_NFIELDS (t) - 1]);
4707 memset (f, 0, sizeof f[0]);
4708 FIELD_TYPE (f[0]) = field;
4709 FIELD_NAME (f[0]) = name;
4710 return f;
4711 }
4712
4713 /* Add new field with name NAME and type FIELD to composite type T.
4714 ALIGNMENT (if non-zero) specifies the minimum field alignment. */
4715
4716 void
4717 append_composite_type_field_aligned (struct type *t, char *name,
4718 struct type *field, int alignment)
4719 {
4720 struct field *f = append_composite_type_field_raw (t, name, field);
4721
4722 if (TYPE_CODE (t) == TYPE_CODE_UNION)
4723 {
4724 if (TYPE_LENGTH (t) < TYPE_LENGTH (field))
4725 TYPE_LENGTH (t) = TYPE_LENGTH (field);
4726 }
4727 else if (TYPE_CODE (t) == TYPE_CODE_STRUCT)
4728 {
4729 TYPE_LENGTH (t) = TYPE_LENGTH (t) + TYPE_LENGTH (field);
4730 if (TYPE_NFIELDS (t) > 1)
4731 {
4732 SET_FIELD_BITPOS (f[0],
4733 (FIELD_BITPOS (f[-1])
4734 + (TYPE_LENGTH (FIELD_TYPE (f[-1]))
4735 * TARGET_CHAR_BIT)));
4736
4737 if (alignment)
4738 {
4739 int left;
4740
4741 alignment *= TARGET_CHAR_BIT;
4742 left = FIELD_BITPOS (f[0]) % alignment;
4743
4744 if (left)
4745 {
4746 SET_FIELD_BITPOS (f[0], FIELD_BITPOS (f[0]) + (alignment - left));
4747 TYPE_LENGTH (t) += (alignment - left) / TARGET_CHAR_BIT;
4748 }
4749 }
4750 }
4751 }
4752 }
4753
4754 /* Add new field with name NAME and type FIELD to composite type T. */
4755
4756 void
4757 append_composite_type_field (struct type *t, char *name,
4758 struct type *field)
4759 {
4760 append_composite_type_field_aligned (t, name, field, 0);
4761 }
4762
4763 static struct gdbarch_data *gdbtypes_data;
4764
4765 const struct builtin_type *
4766 builtin_type (struct gdbarch *gdbarch)
4767 {
4768 return gdbarch_data (gdbarch, gdbtypes_data);
4769 }
4770
4771 static void *
4772 gdbtypes_post_init (struct gdbarch *gdbarch)
4773 {
4774 struct builtin_type *builtin_type
4775 = GDBARCH_OBSTACK_ZALLOC (gdbarch, struct builtin_type);
4776
4777 /* Basic types. */
4778 builtin_type->builtin_void
4779 = arch_type (gdbarch, TYPE_CODE_VOID, 1, "void");
4780 builtin_type->builtin_char
4781 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4782 !gdbarch_char_signed (gdbarch), "char");
4783 builtin_type->builtin_signed_char
4784 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4785 0, "signed char");
4786 builtin_type->builtin_unsigned_char
4787 = arch_integer_type (gdbarch, TARGET_CHAR_BIT,
4788 1, "unsigned char");
4789 builtin_type->builtin_short
4790 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4791 0, "short");
4792 builtin_type->builtin_unsigned_short
4793 = arch_integer_type (gdbarch, gdbarch_short_bit (gdbarch),
4794 1, "unsigned short");
4795 builtin_type->builtin_int
4796 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4797 0, "int");
4798 builtin_type->builtin_unsigned_int
4799 = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
4800 1, "unsigned int");
4801 builtin_type->builtin_long
4802 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4803 0, "long");
4804 builtin_type->builtin_unsigned_long
4805 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
4806 1, "unsigned long");
4807 builtin_type->builtin_long_long
4808 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4809 0, "long long");
4810 builtin_type->builtin_unsigned_long_long
4811 = arch_integer_type (gdbarch, gdbarch_long_long_bit (gdbarch),
4812 1, "unsigned long long");
4813 builtin_type->builtin_float
4814 = arch_float_type (gdbarch, gdbarch_float_bit (gdbarch),
4815 "float", gdbarch_float_format (gdbarch));
4816 builtin_type->builtin_double
4817 = arch_float_type (gdbarch, gdbarch_double_bit (gdbarch),
4818 "double", gdbarch_double_format (gdbarch));
4819 builtin_type->builtin_long_double
4820 = arch_float_type (gdbarch, gdbarch_long_double_bit (gdbarch),
4821 "long double", gdbarch_long_double_format (gdbarch));
4822 builtin_type->builtin_complex
4823 = arch_complex_type (gdbarch, "complex",
4824 builtin_type->builtin_float);
4825 builtin_type->builtin_double_complex
4826 = arch_complex_type (gdbarch, "double complex",
4827 builtin_type->builtin_double);
4828 builtin_type->builtin_string
4829 = arch_type (gdbarch, TYPE_CODE_STRING, 1, "string");
4830 builtin_type->builtin_bool
4831 = arch_type (gdbarch, TYPE_CODE_BOOL, 1, "bool");
4832
4833 /* The following three are about decimal floating point types, which
4834 are 32-bits, 64-bits and 128-bits respectively. */
4835 builtin_type->builtin_decfloat
4836 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 32 / 8, "_Decimal32");
4837 builtin_type->builtin_decdouble
4838 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 64 / 8, "_Decimal64");
4839 builtin_type->builtin_declong
4840 = arch_type (gdbarch, TYPE_CODE_DECFLOAT, 128 / 8, "_Decimal128");
4841
4842 /* "True" character types. */
4843 builtin_type->builtin_true_char
4844 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 0, "true character");
4845 builtin_type->builtin_true_unsigned_char
4846 = arch_character_type (gdbarch, TARGET_CHAR_BIT, 1, "true character");
4847
4848 /* Fixed-size integer types. */
4849 builtin_type->builtin_int0
4850 = arch_integer_type (gdbarch, 0, 0, "int0_t");
4851 builtin_type->builtin_int8
4852 = arch_integer_type (gdbarch, 8, 0, "int8_t");
4853 builtin_type->builtin_uint8
4854 = arch_integer_type (gdbarch, 8, 1, "uint8_t");
4855 builtin_type->builtin_int16
4856 = arch_integer_type (gdbarch, 16, 0, "int16_t");
4857 builtin_type->builtin_uint16
4858 = arch_integer_type (gdbarch, 16, 1, "uint16_t");
4859 builtin_type->builtin_int32
4860 = arch_integer_type (gdbarch, 32, 0, "int32_t");
4861 builtin_type->builtin_uint32
4862 = arch_integer_type (gdbarch, 32, 1, "uint32_t");
4863 builtin_type->builtin_int64
4864 = arch_integer_type (gdbarch, 64, 0, "int64_t");
4865 builtin_type->builtin_uint64
4866 = arch_integer_type (gdbarch, 64, 1, "uint64_t");
4867 builtin_type->builtin_int128
4868 = arch_integer_type (gdbarch, 128, 0, "int128_t");
4869 builtin_type->builtin_uint128
4870 = arch_integer_type (gdbarch, 128, 1, "uint128_t");
4871 TYPE_INSTANCE_FLAGS (builtin_type->builtin_int8) |=
4872 TYPE_INSTANCE_FLAG_NOTTEXT;
4873 TYPE_INSTANCE_FLAGS (builtin_type->builtin_uint8) |=
4874 TYPE_INSTANCE_FLAG_NOTTEXT;
4875
4876 /* Wide character types. */
4877 builtin_type->builtin_char16
4878 = arch_integer_type (gdbarch, 16, 0, "char16_t");
4879 builtin_type->builtin_char32
4880 = arch_integer_type (gdbarch, 32, 0, "char32_t");
4881
4882
4883 /* Default data/code pointer types. */
4884 builtin_type->builtin_data_ptr
4885 = lookup_pointer_type (builtin_type->builtin_void);
4886 builtin_type->builtin_func_ptr
4887 = lookup_pointer_type (lookup_function_type (builtin_type->builtin_void));
4888 builtin_type->builtin_func_func
4889 = lookup_function_type (builtin_type->builtin_func_ptr);
4890
4891 /* This type represents a GDB internal function. */
4892 builtin_type->internal_fn
4893 = arch_type (gdbarch, TYPE_CODE_INTERNAL_FUNCTION, 0,
4894 "<internal function>");
4895
4896 /* This type represents an xmethod. */
4897 builtin_type->xmethod
4898 = arch_type (gdbarch, TYPE_CODE_XMETHOD, 0, "<xmethod>");
4899
4900 return builtin_type;
4901 }
4902
4903 /* This set of objfile-based types is intended to be used by symbol
4904 readers as basic types. */
4905
4906 static const struct objfile_data *objfile_type_data;
4907
4908 const struct objfile_type *
4909 objfile_type (struct objfile *objfile)
4910 {
4911 struct gdbarch *gdbarch;
4912 struct objfile_type *objfile_type
4913 = objfile_data (objfile, objfile_type_data);
4914
4915 if (objfile_type)
4916 return objfile_type;
4917
4918 objfile_type = OBSTACK_CALLOC (&objfile->objfile_obstack,
4919 1, struct objfile_type);
4920
4921 /* Use the objfile architecture to determine basic type properties. */
4922 gdbarch = get_objfile_arch (objfile);
4923
4924 /* Basic types. */
4925 objfile_type->builtin_void
4926 = init_type (TYPE_CODE_VOID, 1,
4927 0,
4928 "void", objfile);
4929
4930 objfile_type->builtin_char
4931 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4932 (TYPE_FLAG_NOSIGN
4933 | (gdbarch_char_signed (gdbarch) ? 0 : TYPE_FLAG_UNSIGNED)),
4934 "char", objfile);
4935 objfile_type->builtin_signed_char
4936 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4937 0,
4938 "signed char", objfile);
4939 objfile_type->builtin_unsigned_char
4940 = init_type (TYPE_CODE_INT, TARGET_CHAR_BIT / TARGET_CHAR_BIT,
4941 TYPE_FLAG_UNSIGNED,
4942 "unsigned char", objfile);
4943 objfile_type->builtin_short
4944 = init_type (TYPE_CODE_INT,
4945 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4946 0, "short", objfile);
4947 objfile_type->builtin_unsigned_short
4948 = init_type (TYPE_CODE_INT,
4949 gdbarch_short_bit (gdbarch) / TARGET_CHAR_BIT,
4950 TYPE_FLAG_UNSIGNED, "unsigned short", objfile);
4951 objfile_type->builtin_int
4952 = init_type (TYPE_CODE_INT,
4953 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4954 0, "int", objfile);
4955 objfile_type->builtin_unsigned_int
4956 = init_type (TYPE_CODE_INT,
4957 gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT,
4958 TYPE_FLAG_UNSIGNED, "unsigned int", objfile);
4959 objfile_type->builtin_long
4960 = init_type (TYPE_CODE_INT,
4961 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4962 0, "long", objfile);
4963 objfile_type->builtin_unsigned_long
4964 = init_type (TYPE_CODE_INT,
4965 gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT,
4966 TYPE_FLAG_UNSIGNED, "unsigned long", objfile);
4967 objfile_type->builtin_long_long
4968 = init_type (TYPE_CODE_INT,
4969 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4970 0, "long long", objfile);
4971 objfile_type->builtin_unsigned_long_long
4972 = init_type (TYPE_CODE_INT,
4973 gdbarch_long_long_bit (gdbarch) / TARGET_CHAR_BIT,
4974 TYPE_FLAG_UNSIGNED, "unsigned long long", objfile);
4975
4976 objfile_type->builtin_float
4977 = init_type (TYPE_CODE_FLT,
4978 gdbarch_float_bit (gdbarch) / TARGET_CHAR_BIT,
4979 0, "float", objfile);
4980 TYPE_FLOATFORMAT (objfile_type->builtin_float)
4981 = gdbarch_float_format (gdbarch);
4982 objfile_type->builtin_double
4983 = init_type (TYPE_CODE_FLT,
4984 gdbarch_double_bit (gdbarch) / TARGET_CHAR_BIT,
4985 0, "double", objfile);
4986 TYPE_FLOATFORMAT (objfile_type->builtin_double)
4987 = gdbarch_double_format (gdbarch);
4988 objfile_type->builtin_long_double
4989 = init_type (TYPE_CODE_FLT,
4990 gdbarch_long_double_bit (gdbarch) / TARGET_CHAR_BIT,
4991 0, "long double", objfile);
4992 TYPE_FLOATFORMAT (objfile_type->builtin_long_double)
4993 = gdbarch_long_double_format (gdbarch);
4994
4995 /* This type represents a type that was unrecognized in symbol read-in. */
4996 objfile_type->builtin_error
4997 = init_type (TYPE_CODE_ERROR, 0, 0, "<unknown type>", objfile);
4998
4999 /* The following set of types is used for symbols with no
5000 debug information. */
5001 objfile_type->nodebug_text_symbol
5002 = init_type (TYPE_CODE_FUNC, 1, 0,
5003 "<text variable, no debug info>", objfile);
5004 TYPE_TARGET_TYPE (objfile_type->nodebug_text_symbol)
5005 = objfile_type->builtin_int;
5006 objfile_type->nodebug_text_gnu_ifunc_symbol
5007 = init_type (TYPE_CODE_FUNC, 1, TYPE_FLAG_GNU_IFUNC,
5008 "<text gnu-indirect-function variable, no debug info>",
5009 objfile);
5010 TYPE_TARGET_TYPE (objfile_type->nodebug_text_gnu_ifunc_symbol)
5011 = objfile_type->nodebug_text_symbol;
5012 objfile_type->nodebug_got_plt_symbol
5013 = init_type (TYPE_CODE_PTR, gdbarch_addr_bit (gdbarch) / 8, 0,
5014 "<text from jump slot in .got.plt, no debug info>",
5015 objfile);
5016 TYPE_TARGET_TYPE (objfile_type->nodebug_got_plt_symbol)
5017 = objfile_type->nodebug_text_symbol;
5018 objfile_type->nodebug_data_symbol
5019 = init_type (TYPE_CODE_INT,
5020 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5021 "<data variable, no debug info>", objfile);
5022 objfile_type->nodebug_unknown_symbol
5023 = init_type (TYPE_CODE_INT, 1, 0,
5024 "<variable (not text or data), no debug info>", objfile);
5025 objfile_type->nodebug_tls_symbol
5026 = init_type (TYPE_CODE_INT,
5027 gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT, 0,
5028 "<thread local variable, no debug info>", objfile);
5029
5030 /* NOTE: on some targets, addresses and pointers are not necessarily
5031 the same.
5032
5033 The upshot is:
5034 - gdb's `struct type' always describes the target's
5035 representation.
5036 - gdb's `struct value' objects should always hold values in
5037 target form.
5038 - gdb's CORE_ADDR values are addresses in the unified virtual
5039 address space that the assembler and linker work with. Thus,
5040 since target_read_memory takes a CORE_ADDR as an argument, it
5041 can access any memory on the target, even if the processor has
5042 separate code and data address spaces.
5043
5044 In this context, objfile_type->builtin_core_addr is a bit odd:
5045 it's a target type for a value the target will never see. It's
5046 only used to hold the values of (typeless) linker symbols, which
5047 are indeed in the unified virtual address space. */
5048
5049 objfile_type->builtin_core_addr
5050 = init_type (TYPE_CODE_INT,
5051 gdbarch_addr_bit (gdbarch) / 8,
5052 TYPE_FLAG_UNSIGNED, "__CORE_ADDR", objfile);
5053
5054 set_objfile_data (objfile, objfile_type_data, objfile_type);
5055 return objfile_type;
5056 }
5057
5058 extern initialize_file_ftype _initialize_gdbtypes;
5059
5060 void
5061 _initialize_gdbtypes (void)
5062 {
5063 gdbtypes_data = gdbarch_data_register_post_init (gdbtypes_post_init);
5064 objfile_type_data = register_objfile_data ();
5065
5066 add_setshow_zuinteger_cmd ("overload", no_class, &overload_debug,
5067 _("Set debugging of C++ overloading."),
5068 _("Show debugging of C++ overloading."),
5069 _("When enabled, ranking of the "
5070 "functions is displayed."),
5071 NULL,
5072 show_overload_debug,
5073 &setdebuglist, &showdebuglist);
5074
5075 /* Add user knob for controlling resolution of opaque types. */
5076 add_setshow_boolean_cmd ("opaque-type-resolution", class_support,
5077 &opaque_type_resolution,
5078 _("Set resolution of opaque struct/class/union"
5079 " types (if set before loading symbols)."),
5080 _("Show resolution of opaque struct/class/union"
5081 " types (if set before loading symbols)."),
5082 NULL, NULL,
5083 show_opaque_type_resolution,
5084 &setlist, &showlist);
5085
5086 /* Add an option to permit non-strict type checking. */
5087 add_setshow_boolean_cmd ("type", class_support,
5088 &strict_type_checking,
5089 _("Set strict type checking."),
5090 _("Show strict type checking."),
5091 NULL, NULL,
5092 show_strict_type_checking,
5093 &setchecklist, &showchecklist);
5094 }
This page took 0.135515 seconds and 4 git commands to generate.